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This paper is concerned with Kolmogorov’s two-equation model for turbulence
inℝ3 involving the mean velocity 𝒖, the pressure 𝑝, an average frequency 𝜔 > 0,
and a mean turbulent kinetic energy 𝑘. We consider the system with space-
periodic boundary conditions in a cube Ω = (]0, 𝑎[)3, which is a good choice for
studying the decay of free turbulent motion sufficiently far away from bound-
aries. In particular, this choice is compatible with the rich set of similarity
transformations for turbulence. The main part of this work consists in proving
existence of global weak solutions of this model. For this we approximate the
system by adding a suitable regularizing 𝑟-Laplacian and invoke existence result
for evolutionary equationswith pseudo-monotone operators. An important point
constitutes the derivation of pointwise a priori estimates for 𝜔 (upper and lower)
and 𝑘 (only lower) that are independent of the box size 𝑎, thus allow us to control
the parabolicity of the diffusion operators.

1 INTRODUCTION

In 1942, A. N. Kolmogorov (see Kolmogorov [1] and pp. 214–216 in Spalding [2] for an English translation) postulated
the following system of PDEs as a model for the isotropic homogeneous turbulent motion of an incompressible fluid
(𝑥, 𝑡) ∈ ℝ3 × ]0,∞[:

div 𝒖 = 0 , (1.1a)

𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅ ∇)𝒖 = 𝜈0 div

(
𝑘
𝜔
𝑫(𝒖)

)
− ∇𝑝 + 𝒇, (1.1b)

𝜕𝜔

𝜕𝑡
+ 𝒖 ⋅ ∇𝜔 = 𝜈1 div

(
𝑘
𝜔
∇𝜔

)
− 𝛼1𝜔

2, (1.1c)

𝜕𝑘

𝜕𝑡
+ 𝒖 ⋅ ∇𝑘 = 𝜈2 div

(
𝑘
𝜔
∇𝑘

)
+ 𝜈0

𝑘
𝜔
||𝑫(𝒖)||2 − 𝛼2𝑘𝜔. (1.1d)
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Throughout the paper, bold letters denote functions with values in ℝ3 or ℝ9 as well as normed spaces of such functions.
Here, the unknowns have the following physical meaning:

𝒖 is the velocity of the mean flow, 𝑝 is the average of the pressure, 𝑘 is the mean turbulent kinetic energy,

𝜔 is the average of the frequency associated with the turbulent kinetic energy. (1.2)

The velocity field 𝒗 of the fluid motion is given by 𝒗 = 𝒖 + �̃�, where �̃� denotes the turbulent fluctuation velocity, such

that the scalar 𝑘 is the time average 1

2
|�̃�|2. Further,

𝜈0, 𝜈1, 𝜈2 > 0 and 𝛼2, 𝛼1 > 0 are dimensionless constant;

𝒇 is a given averaged external force,

𝑫(𝒖) =
1
2

(
∇𝒖 + (∇𝒖)⊤

)
is the mean strain-rate tensor. (1.3)

The function 𝜈0
𝑘

𝜔
denotes the kinematic eddy viscosity, while 𝜈1

𝑘

𝜔
and 𝜈2

𝑘

𝜔
denote the corresponding diffusion constants

for the scalars𝜔 and 𝑘. The constants 𝜈0, 𝜈1, 𝜈2 > 0 and 𝛼2, 𝛼1 > 0 in Equation (1.1) are related to the constants𝐴, 𝐴′, 𝐴′′

[1] (cf. also p. 213 in Spalding [2] where 𝑏 = 2

3
𝑘) as follows:

𝜈0 =
4
3
𝐴, 𝜈1 =

2
3
𝐴′, 𝜈2 =

2
3
𝐴′′, 𝛼1 =

7
11
, 𝛼2 = 1. (1.4)

In Section 2, we discuss the scaling properties of the two-equation model (1.1) with the special viscosities “𝜈𝑗 𝑘∕𝜔” and
loss terms “𝛼1𝜔2” and “𝛼2 𝑘𝜔.” These specific choices of power-law nonlinearities relate to specific scaling laws in free
turbulence. In Kolmogorov [1], there is no indication why the particular values of 𝛼1 and 𝛼2 were chosen.
Since the numerical values of 𝜈1 and 𝜈2 are not relevant for the existence theory of weak solutions for Equation (1.1)

we are going to develop below, we assume them to be equal to 1. A detailed discussion of the numerical values of clo-
sure coefficients and their role in turbulence modeling can be found, for example, in Baumert [3] and Chap. 4.3.1 in
Wilcox [4]. However, we keep the coefficient 𝜈0 to emphasize that the viscous dissipation generated by the viscous term
in Equation (1.1a) is feeding into the mean turbulent kinetic energy, see the second last term in Equation (1.1d). Hence,
for sufficiently smooth solutions, we have the formal energy relation

d

d𝑡 ∫ℝ3

(
1
2
|𝒖|2 + 𝑘

)
d𝑥 = ∫

ℝ3

(𝒇 ⋅ 𝒖 − 𝛼2𝜔𝑘) d𝑥, (1.5)

where the first term on the right-hand side gives the power of the external forces, while the second term is Kolmogorov’s
way of modeling dissipative losses, for example, through thermal radiation. We refer to Refs. [5, 6] for general issues in
turbulent modeling, in particular to Chap. 7+8 in Chacón Rebello and Lewandowski [6] for the mathematical analysis of
the NS-TKE model (Navier–Stokes equation with Turbulent Kinetic Energy), where Equation (1.1c) for 𝜔 is absent and
the energetic losses in Equation (1.1d) are modeled via 𝑘3∕2∕𝓁 with a suitable mixing length 𝓁 instead of 𝛼2𝑘𝜔 (see e.g.,
Equation (4.137) in Chacón Rebello and Lewandowski [6].
System (1.1) is an outgrowth of A. N. Kolmogorov’s theory of turbulence published in a series of papers in 1941. Com-

prehensive presentations of this theory can be found, for example, in Frisch [7] and Vol. I, Chap. 6.1, 6.2; Vol. II, Chap. 8
in Monin [8] (see also the article pp. 488–503 in Tikhomirov [9]). The function 𝐿 = 𝑘1∕2

𝜔
(“external length scale” or “size of

largest eddies”) plays an important role for the study of the energy spectrum of the turbulence (see Chap. 33 in Landau and
Lifschitz [10], Chap. 8.1 inWilcox [4]). A review of the work of A. N. Kolmogorov and the Russian school of turbulence can
be found in Yaglom [11]. This paper contains also some remarks about a possibly “missing source term” in Equation (1.1c)
(cf. p. 212 in Spalding [2]).
A profound discussion of the mathematical background of Obukhoff–Kolmogorov’s spectral theory of turbulence (K41-

functions, bounds for the energy spectrum for low and high frequencies) is given in Vigneron [12].
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In Bulíček and Málek [13], the authors study system (1.1) in Ω×] 0, 𝑇 [, where Ω ⊂ ℝ3 is a bounded 𝐶1,1 domain, with
mixed boundary conditions for 𝜔 and 𝑘, the condition 𝒖 ⋅ 𝒏 = 0 and a condition for the normal traction of the tensor
−𝑝𝑰 + 𝜈0

𝑘

𝜔
𝑫(𝒖) on 𝜕Ω × ]0, 𝑇[. Under these boundary conditions, system (1.1) characterizes a wall-bounded turbulent

motion, that is, turbulence is generated at the Dirichlet part of the boundary. The authors complete this boundary value
problem by the initial conditions (1.10b) and prove the existence of a weak solution by combining a truncation method
and the Galerkin approximation. Wall-generated turbulence is an important topic in engineering applications where
two-equation models, including the 𝑘,- 𝜀 model, are heavily used, see Chacón Rebello and Lewandowski [6] and the
references there.
The emphasis of this paper is quite different aswe are interested in free turbulence (also called isotropic or homogeneous

turbulence) that develops far away of the boundary and is rather governed by suitable scaling symmetries in the sense of
Oberlack [14] and Klingenberg et al. [15]. In Ref. [1] Kolmogorov writes about the derivation of his model: “Wemay submit
to a rather less complete mathematical investigation the turbulent motion which is homogeneous and isotropic (in all scales),
and from which mean flow is absent; such a flow decays continuously with time. . . . Starting from the above local properties
of turbulence (and with the help of some more coarsely approximate assumptions), we may construct the following complete
systemof equations to describe turbulentmotion:” and then he states his two-equationmodel (cited fromEnglish translation
in Spalding [2]).
To preserve these similarity transforms, we avoid boundaries and use periodic boundary conditions and on a cube

size with side length 𝑎, that can be chosen much larger than the structures under consideration. A bonus of the scaling
invariance of Equation (1.1) for 𝒇 ≡ 0 is the existence of a rich class of similarity solutions. Compatible with the periodic
boundary conditions, we have the following explicit spatially constant solutions:

𝒖 ≡ 𝒖◦, 𝑝 ≡ 0, 𝜔(𝑡) =
𝜔◦

1+𝛼1𝜔◦𝑡
, 𝑘(𝑡) =

𝑘◦

(1+𝛼1𝜔◦𝑡)𝛼2∕𝛼1
, (1.6)

that is, the mean turbulent kinetic energy decays like 𝑡−𝛼2∕𝛼1 , if there is no feeding through macroscopic viscous dis-
sipation. Indeed, independent of 𝒖 and 𝑘, Equation (1.1c) for 𝜔 can always be solved by the spatially constant solution
𝜔(𝑥, 𝑡) = 𝜔◦∕(1+𝛼1𝜔◦𝑡). The occurrence of asymptotically self-similar behavior for Ω = ℝ𝑑 for a closely related, but
much simpler coupled system (obtained by replacing the Navier–Stokes equation by a scalar equation for shear flows
and neglecting lower order terms) is discussed in Mielke [16].
To show the effect of energy feeding from viscous dissipation into the turbulent kinetic energy 𝑘 via the source term

𝜈0
𝑘

𝜔
|𝑫(𝒖)|2, we can look at the following family of exact shear flow solutions:

𝒖(𝑥, 𝑡) =
𝑈

1+𝛼1𝜔◦𝑡

⎛⎜⎜⎝
sin(𝜆𝑥3)
cos(𝜆𝑥3)

0

⎞⎟⎟⎠ , 𝜔(𝑥, 𝑡) =
𝜔◦

1+𝛼1𝜔◦𝑡
, 𝑘(𝑥, 𝑡) =

𝑘◦
(1+𝛼1𝜔◦𝑡)2

. (1.7)

with 𝑝 ≡ 0, where the positive constant parameters 𝜔◦, 𝑘◦, 𝜆, and 𝑈 are related by

𝑈2 =
𝛼2 − 2𝛼1

𝛼1
𝑘◦ and 𝜆2 =

2𝛼1
𝜈0

𝜔2◦
𝑘◦

. (1.8)

These solutions only exist for the case 𝛼2∕𝛼1 > 2, and thus the decay of 𝑘 like 1∕𝑡2 is slower than 1∕𝑡𝛼2∕𝛼1 in Equation (1.6),
because of the spatially constant source term 𝜈0

𝑘

𝜔
|𝑫(𝒖)|2 = 𝛼1𝜔◦𝑈

2(1+𝛼1𝜔◦𝑡)
−3. As inOberlack [14], these invariant solu-

tions exist because of the scaling symmetries, and moreover they are indeed compatible with period boundary conditions
if 𝜆𝑎 ∈ 2𝜋ℕ. For a given 𝑎, we find infinitely many solutions by choosing 𝜆𝑛 = 2𝜋𝑛∕𝑎 and suitable 𝑘◦ and 𝜔◦. This also
highlights the fact that there are no uniform compactness properties unless we prescribe a lower bound for 𝑘.
In place of ℝ3 × ]0,∞[, in the present paper, we study system (1.1) in the space–time cylinder 𝑄 = Ω× ]0, 𝑇[, where

Ω = (]0, 𝑎[)3 with 𝑇, 𝑎 > 0 arbitrary but fixed. To implement periodic boundary conditions, we interpret Ω as a torus by
identifying the opposite sides. If 𝜕Ω denotes the boundary of the cube Ω ⊂ ℝ3 we set

Γ𝑖 = 𝜕Ω ∩ {𝑥𝑖 = 0}, Γ𝑖+3 = 𝜕Ω ∩ {𝑥𝑖 = 𝑎} for 𝑖 = 1, 2, 3, (1.9)
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and complement (1.1) with periodic boundary conditions and initial conditions as follows:

𝒖||Γ𝑖× ] 0,𝑇 [ = 𝒖||Γ𝑖+3× ] 0,𝑇 [ and analogously for 𝑝, 𝜔, 𝑘,

𝑫(𝒖)||Γ𝑖× ] 0,𝑇 [ = 𝑫(𝒖)||Γ𝑖+3× ] 0,𝑇 [ and analogously for ∇𝜔,∇𝑘

⎫⎪⎬⎪⎭ for 𝑖 = 1, 2, 3; (1.10a)

𝒖 = 𝒖0, 𝜔 = 𝜔0, 𝑘 = 𝑘0 in Ω× {0}. (1.10b)

Initial/boundary-value problem (1.1) and (1.10) characterizes a turbulent motion of an incompressible fluid in 𝑄 that
evolves from {𝒖0, 𝜔0, 𝑘0} at time 𝑡 = 0. We assume the pressure to be periodic thus avoiding additional pressure gradients
that might occur when assuming that ∇𝑝 is periodic only. As a consequence the mean flow 𝑎−3 ∫

Ω
𝒖(𝑥, 𝑡) d𝑥 is constant,

when assuming 𝒇 ≡ 0, cf. [17, 18]. The usage of periodic boundary conditions is common in theoretical investigations of
the Navier–Stokes equations and modeling of free turbulence, see, for example, Refs. [7, 12, 19–22].
On physical grounds, the size 𝑎 of the underlying cube Ω should be greater than certain quantities of the turbulent

motion. A detailed discussion of this aspect is given on pp. 25–26 and 424–435 in Davidson [23] (cf. also item 2◦ below).
This is one of the main reasons why we consider a cube Ω of side length 𝑎 and periodic boundary conditions, which
provides an analysis that is completely independent of 𝑎. In particular, we can choose 𝑎 much bigger than the “external
length scale” 𝐿(𝑥, 𝑡) ∶= 𝑘(𝑥, 𝑡)1∕2∕𝜔(𝑥, 𝑡).
Our proof of the existence of weak solutions of Equations (1.1) and (1.10), which has been already sketched in Mielke

andNaumann [24], is entirely independent of the discussion in Bulíček andMálek [13].More specifically, the basic aspects
of our paper are:

1◦ In Section 3,we introduce the notion ofweak solution {𝒖, 𝜔, 𝑘}with defectmeasure𝜇 for Equations (1.1) and (1.10). This
notion leads to a balance law for ∫

Ω
𝑘(𝑥, ⋅) d𝑥 and gives a connection between the energy equality for 1

2
∫
Ω
|𝒖(𝑥, ⋅)|2 d𝑥

and the vanishing of 𝜇, cf. Proposition 3.7, which states that Equation (1.5) holds if 𝜇 = 0.
2◦ In Section 4,we present our existence theorem forweak solutions {𝒖, 𝜔, 𝑘}with defectmeasure𝜇. Based on comparison

arguments with the explicit solution in Equation (1.6), our solutions {𝒖, 𝜔, 𝑘} satisfy, for a.a. (𝑥, 𝑡) ∈ Ω × ]0, 𝑇[,

𝜔∗

1+𝛼1𝜔∗𝑡
≥ 𝜔(𝑥, 𝑡) ≥ 𝜔∗

1+𝛼1𝜔∗𝑡
and 𝑘(𝑥, 𝑡) ≥ 𝑘∗

(1+𝛼1𝜔∗𝑡)𝛼2∕𝛼1
, (1.11)

if the initial conditions in Equation (1.10b) satisfy the corresponding estimates at 𝑡 = 0. It is important to preserve these
estimates even through the necessary approximations, since that provide a lower bound for the diffusion coefficients
𝑘∕𝑤 in the three evolution equations.

3◦ Moreover, the bounds in Equation (1.11) provide a physically relevant lower bound for Kolmogorov’s external length
scale 𝐿 = 𝑘1∕2∕𝜔, namely

𝐿(𝑥, 𝑡) =
𝑘(𝑥, 𝑡)1∕2

𝜔(𝑥, 𝑡)
≥ 𝑐 (1+𝑡)1−𝛼2∕(2𝛼1) for all 𝑡 ∈ [0, 𝑇 ], (1.12)

where 𝛼2 and 𝛼1 are from Equations (1.1c) and (1.1d), and where 𝑐 = const > 0 neither depends on 𝑎 nor on 𝑇 (cf.
Corollary 4.3 in Section 4). Using A. N. Kolmogorov’s values from Equation (1.4), we have 𝛼2∕𝛼1 = 11∕7 and 𝐿 grows
at least as 𝑡3∕14, which compares well to 𝑡2∕7 mentioned in Kolmogorov [1].

4◦ The proof of our existence theorem is given in Section 5. It is based on the existence of an approximate solution
{𝒖𝜀, 𝜔𝜀, 𝑘𝜀} (without defect measure) of Equations (1.1) and (1.10), establishing a priori estimates independently of 𝜀
and then carrying out the limit passage 𝜀 → 0. The existence of the approximate solutions is obtained by applying an
abstract existence results for evolutionary equations with pseudo-monotone operators from Thm. 8.9 in Roubíček [25],
see Appendix A for the details.

5◦ Our approach is easily adaptable to more general domains with suitable boundary conditions, and to the full-spaceℝ𝑑

with general 𝑑 ∈ ℕ. However, for notational convenience and physical relevance, we restrict ourselves to 𝑑 = 3 and
the spatially periodic case.
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6◦ In Lewandowski [26], a simplified one-equation model of turbulence is studied, where a defect measure appears as
well (see the pages 397 and 416 there). Weak solutions for the full one-equation model were obtained in Bulíček et al.
[27].

The parallel work in Bulíček and Málek [13] developed completely independently to the present work, which had its
origin inMielke andNaumann [24]. The formerwork is based on an intricateGalerkin approximationwith several regular-
ization parameters and is devoted to the case of bounded domainswith nontrivial (even non-smooth) boundary conditions
that can trigger the generation of turbulence. For the initial condition 𝑘0 ∶= 𝑘(⋅, 0), we rely on the stronger assumption
𝑘0(𝑥) ≥ 𝑘∗ > 0 to obtain the very explicit lower bound for 𝑘(𝑥, 𝑡) in Equation (1.11) that is independent of the domain size
𝑎. In Bulíček and Málek [13], it is sufficient to assume the much weaker condition min{0, log 𝑘0} ∈ 𝐿1(Ω), but estimates
are given in terms of domain-dependent constants. Moreover, Bulíček andMálek [13] has a stronger notion of solution that
additionally guarantees the validity of a local balance equation for the total energy density 𝐸(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) +

1

2
|𝒖(𝑥, 𝑡)|2,

see Remark 3.6 and relation (3.19) there.
In subsequent work, we will investigate similarity solutions that are induced by the scaling laws discussed in Section 2.

The most challenging question will be the derivation of suitable solution concepts that allow the turbulent kinetic energy
𝑘 to vanish on parts of the domain. This would allow us to study the predictions of the Kolmogorov model (1.1) in which
way turbulent regions invade nonturbulent regions.

2 SCALING LAWS AND SIMILARITY

Weconsider the free turbulentmotion of an incompressible fluid inℝ3 × ]0,∞[, which is governed by the following system
of PDEs (note that 𝒇 ≡ 0):

div 𝒖 = 0, (2.1a)

𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅ ∇)𝒖 = div (𝑑1(𝜔, 𝑘)𝑫(𝒖)) − ∇𝑝, (2.1b)

𝜕𝜔

𝜕𝑡
+ 𝒖 ⋅ ∇𝜔 = div (𝑑2(𝜔, 𝑘)∇𝜔) − 𝑔2(𝜔, 𝑘)𝜔, (2.1c)

𝜕𝑘

𝜕𝑡
+ 𝒖 ⋅ ∇𝑘 = div (𝑑3(𝜔, 𝑘)∇𝑘) + 𝑑1(𝜔, 𝑘)||𝑫(𝒖)||2 − 𝑔3(𝜔, 𝑘)𝑘, (2.1d)

where 𝒖, 𝑝, 𝜔 and 𝑘 are the unknowns, and

𝑑𝑖 ∶ (]0,∞[)
2
⟶ ]0,∞[ (𝑖 = 1, 2, 3) and 𝑔𝑚 ∶ (]0,∞[)

2
⟶ ]0,∞[ (𝑚 = 2, 3) (2.2)

are given coefficients. The coefficient 𝑑1(𝜔, 𝑘) represents a “generalized” viscosity of the fluid. System (2.1) obviously
includes Kolmogorov’s two-equation model (1.1) with

𝑑1(𝜔, 𝑘) = 𝜈0
𝑘
𝜔
, 𝑑2(𝜔, 𝑘) = 𝜈1

𝑘
𝜔
, 𝑑3(𝜔, 𝑘) = 𝜈2

𝑘
𝜔
, 𝑔2(𝜔, 𝑘) = 𝛼1𝜔, 𝑔3(𝜔, 𝑘) = 𝛼2𝜔. (2.3)

We want to show that these choices are special, because they give a richer structure of scaling invariances than arbi-
trary nonlinear functions. In particular, they respect the classical Reynolds symmetry (see Sec. 3.3 in Chacón Rebello
and Lewandowski [6]), but go one step beyond because the viscosities 𝑑𝑗(𝜔, 𝑘) also have scaling properties. We refer to
Refs. [14, 28, 29] where the importance of scaling symmetries for the modeling of free turbulence is discussed.
Let {𝒖, 𝜔, 𝑘} be a classical solution of Equation (2.1) that has a suitable decay for |𝑥|→∞ such that the following inte-

grals over ℝ3 exist. We multiply Equation (2.1b) by 𝒖, integrate by parts over ℝ3, integrate Equation (2.1d) over ℝ3, and
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add the equations obtained. This gives the energy balance

d

d𝑡 ∫ℝ3

(
1
2
|𝒖|2 + 𝑘

)
d𝑥 = −∫

ℝ3

𝑔3(𝜔, 𝑘)𝑘 d𝑥, 𝑡 ∈ ]0,∞[, (2.4)

cf. Proposition 3.7 in Section 4.
We are now studying the invariance of {𝒖, 𝜔, 𝑘} under the scaling

𝜕𝑡 ↦ 𝛼𝜕𝑡, 𝜕𝑥𝑗 ↦ 𝛽𝜕𝑥𝑗 , 𝒖 ↦ 𝛾𝒖, 𝜔 ↦ 𝜌𝜔, 𝑘 ↦ 𝜎𝑘, (2.5)

where (𝛼, 𝛽, 𝛾, 𝜌, 𝜎) ∈ ( ] 0, +∞ [ )5. Here, the pressure 𝑝 is omitted, for it can be always suitably scaled. In addition to the
well-known scaling laws for the Navier–Stokes equations, the scaling (2.5) have to leave invariant the coefficients 𝑑𝑖(𝜔, 𝑘)
and 𝑔𝑚(𝜔, 𝑡) for 𝑖 = 1, 2, 3 and𝑚 = 2, 3, too.
To this end, we consider the following conditions for the family of parameters (𝛼, 𝛽, 𝛾, 𝜌, 𝜎) and the coefficients 𝑑𝑖 and

𝑔𝑚:

𝛼 = 𝛽𝛾, 𝜎 = 𝛾2, (2.6)

∀ 𝜔, 𝑘 > 0 ∶

⎧⎪⎨⎪⎩
𝛽2𝑑𝑖(𝜌𝜔, 𝜎𝑘) = 𝛼𝑑𝑖(𝜔, 𝑘), 𝑖 = 1, 2, 3,

𝑔𝑚(𝜌𝜔, 𝜎𝑘) = 𝛼𝑔𝑚(𝜔, 𝑘), 𝑚 = 2, 3.
(2.7)

The first condition in Equation (2.6) implies the invariance of the convective derivative 𝜕𝑡 + 𝒖 ⋅ ∇ under Equation (2.5),
while the second condition implies that |𝒖|2 and 𝑘 have the same scaling property which is necessary for the conservation
law (2.4) to hold. It is now easy to see that system (2.1) is invariant under the scaling laws (2.5) if the conditions (2.6) and
(2.7) hold.
In order to relate the present discussion to Kolmogorov’s two-equation model (1.1) we make an “ansatz” for the

parameter 𝛽 as well as for the coefficients 𝑑𝑖 and 𝑔𝑚. For (𝛾, 𝜌), (𝜔, 𝑘) ∈ (]0,∞[)2 define

𝛽 = 𝜌𝐴𝛾1−2𝐵 (2.8)

𝑑𝑖(𝜔, 𝑘) = 𝐷𝑖𝜔
−𝐴𝑘𝐵, 𝑔𝑚(𝜔, 𝑘) = 𝐺𝑚𝜔

𝐴𝑘1−𝐵, (2.9)

where 𝐷𝑖 , 𝐺𝑚 (𝑖 = 1, 2, 3;𝑚 = 2, 3) and 𝐴, 𝐵 are arbitrary positive constants. Condition (2.8) is equivalent to

𝛽

𝛾
𝜌−𝐴𝛾2𝐵 = 1 resp. 1

𝛽𝛾
𝜌𝐴𝛾2(1−𝐵) = 1. (2.10)

Observing Equation (2.6), it is readily seen that 𝑑𝑖 and 𝑔𝑚 as in Equation(2.9) obey the scaling conditions (2.7) for all
choices of 𝐷𝑖 , 𝐺𝑚, 𝐴, and 𝐵.
Finally, let 𝐴 = 𝐵 = 1 in Equations (2.8) and (2.9), that is, 𝑔𝑚 does not depend on 𝑘. Then we obtain

𝑑𝑖(𝜔, 𝑘) = 𝐷𝑖
𝑘
𝜔
, 𝑔𝑚(𝜔, 𝑘) = 𝐺𝑚𝜔 (𝑖 = 1, 2, 3; 𝑚 = 2, 3). (2.11)

Hence, Kolmogorov’s two-equation model of turbulence, which is obtained for 𝐷𝑖 = 𝜈𝑖−1, 𝐺2 = 𝛼1, and 𝐺3 = 𝛼2, is
invariant under the scaling (2.5) with the two-parameter family

(𝜌, 𝛾) ↦ (𝛼, 𝛽, 𝛾, 𝜌, 𝜎) =

(
𝜌,
𝜌

𝛾
, 𝛾, 𝜌, 𝛾2

)
. (2.12)
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3 DEFINITION OFWEAK SOLUTIONS

We begin with introducing notations that will be used throughout the paper.
Let 𝑋 denote any real normed space with norm | ⋅ |𝑋 , and let ⟨𝑥∗, 𝑥⟩𝑋 denote the dual pairing of 𝑥∗ ∈ 𝑋∗ and 𝑥 ∈ 𝑋.

By 𝐿𝑝(0, 𝑇; 𝑋) (1 ≤ 𝑝 ≤ +∞) we denote the vector space of all equivalence classes of Bochner measurable mappings 𝑢 ∶
[ 0, 𝑇 ] → 𝑋 such that

‖𝑢‖𝐿𝑝(0,𝑇;𝑋) = ⎧⎪⎨⎪⎩
(∫ 𝑇

0
||𝑢(𝑡)||𝑝𝑋 d𝑡)1∕𝑝 if 1 ≤ 𝑝 < +∞,

ess sup
𝑡∈[0,𝑇 ]

||𝑢(𝑡)||𝑋 if 𝑝 = +∞
(3.1)

is finite (see e.g., Chap. III, §3, Chap. IV, §3 in Bourbaki [30], App. in Brézis [31], and Droniou [32] for details). LetΩ ⊆ ℝ𝑁

(𝑁 ≥ 2) be any open set, and let 𝑄 = Ω× ]0, 𝑇[ for 𝑇 > 0. For 1 ≤ 𝑝 < ∞ and 𝑢 ∈ 𝐿𝑝(𝑄) define

[𝑢](𝑡)(⋅) = 𝑢(⋅, 𝑡) for a.a. 𝑡 ∈ [ 0, 𝑇 ]. (3.2)

By Fubini’s theorem, the function 𝑡 ↦ ∫
Ω
|𝑢(𝑥, 𝑡)|𝑝d𝑥 is in 𝐿1(0, 𝑇) and there holds

∫
𝑇

0

‖‖[𝑢](𝑡)‖‖𝑝𝐿𝑝(Ω) d𝑡 = ∫
𝑄

||𝑢(𝑥, 𝑡)||𝑝 d𝑥 d𝑡. (3.3)

An elementary argument shows that the mapping 𝑢 ↦ [𝑢] is a linear isometry of 𝐿𝑝(𝑄) onto 𝐿𝑝(0, 𝑇; 𝐿𝑝(Ω)). Therefore,
these spaces will be identified in what follows. By 𝑊1,𝑝(Ω), we denote the usual Sobolev space, and we set𝑾1,𝑝(Ω) =
(𝑊1.𝑝(Ω))𝑁 .
Unless otherwise stated, from now on let Ω = (]0, 𝑎[)3 denote the cube introduced in Section 1. We define

𝑊
1,𝑝
per(Ω) =

{
𝑢 ∈ 𝑊1,𝑝(Ω); 𝑢||Γ𝑖 = 𝑢||Γ𝑖+3 for 𝑖 = 1, 2, 3

}
,

𝑾
1,𝑝
per,div

(Ω) =
{
𝒖 ∈ 𝑾

1,𝑝
per (Ω); div 𝒖 = 0 a.e. in Ω

}
,

𝐶1per,𝑇(𝑄) =
{
𝜑 ∈ 𝐶1(𝑄); 𝜑||Γ𝑖×]0,𝑇[ = 𝜑||Γ𝑖+3×]0,𝑇[, ∇𝜑||Γ𝑖×]0,𝑇[ = ∇𝜑||Γ𝑖+3×]0,𝑇[ for 𝑖 = 1, 2, 3, 𝜑(⋅, 𝑇) = 0 on Ω

}
,

𝑪1
per,𝑇,div

(𝑄) =
{
𝒗 ∈ 𝑪1per,𝑇(𝑄); div 𝒗 = 0 in 𝑄

}
. (3.4)

We emphasize that the test functions in𝐶1per,𝑇(𝑄) vanish at 𝑡 = 𝑇. Finally, by≥(𝑄), we denote the set of all non-negative,
bounded Radon measures on the 𝜎-algebra of Borel sets ⊆ 𝑄, which is a closed cone in the vector space(𝑄) ≃ 𝐶(𝑄)∗ of
all (signed) Radon measures.
To simplify the notation, we subsequently set 𝛼1 = 1 and 𝜈2 = 1, which can always be achieved by exploiting the scaling

(2.12). We further set 𝜈1 = 1, but keep the constant 𝜈0 > 0 to emphasize that the source term in Equation (1.1d) for the
turbulent energy 𝑘 arises from the dissipation in the momentum equation (1.1b) for 𝒖.

Definition 3.1. Let 𝒇 ∈ 𝑳1(𝑄), 𝒖0 ∈ 𝑳1(Ω) and 𝜔0, 𝑘0 ∈ 𝐿1(Ω) such that 𝜔0, 𝑘0 ≥ 0 a.e. in Ω. A triple of measurable
functions {𝒖, 𝜔, 𝑘} in 𝑄 is called weak solution of Equations (1.1) and (1.10) with a non-negative defect measure𝜇 ∈ ≥(𝑄),
if

𝜔 > 0,
𝑘
𝜔

≥ const > 0 a.e. in 𝑄, (3.5)
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𝒖 ∈ 𝐿∞
(
0, 𝑇; 𝑳2(Ω)

)
∩ 𝐿2
(
0, 𝑇;𝑾1,2

per,div
(Ω)
)
,

𝜔 ∈ 𝐿∞
(
0, 𝑇; 𝐿2(Ω)

)
∩ 𝐿2
(
0, 𝑇;𝑊1,2

per(Ω)
)
,

𝑘 ∈ 𝐿∞(0, 𝑇; 𝐿1(Ω)
)
∩ 𝐿15∕14

(
0, 𝑇;𝑊

1,15∕14
per (Ω)

)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.6)

∫
𝑄

𝑘
𝜔

((
1 + ||𝑫(𝒖)||)||𝑫(𝒖)|| + |∇𝜔| + |∇𝑘|) d𝑥 d𝑡 < ∞, (3.7)

the following weak equations hold

−∫
𝑄

𝒖 ⋅
𝜕𝒗

𝜕𝑡
d𝑥 d𝑡 −∫

𝑄

(𝒖 ⊗ 𝒖) ∶ ∇𝒗 d𝑥 d𝑡 + 𝜈0 ∫
𝑄

𝑘
𝜔
𝑫(𝒖) ∶ 𝑫(𝒗) d𝑥 d𝑡

= ∫
Ω

𝒖0(𝑥) ⋅ 𝒗(𝑥, 0) d𝑥 + ∫
𝑄

𝒇 ⋅ 𝒗 d𝑥 d𝑡 for all 𝒗 ∈ 𝑪1
per,𝑇,div

(𝑄),

⎫⎪⎪⎬⎪⎪⎭
(3.8)

−∫
𝑄

𝜔
𝜕𝜑

𝜕𝑡
d𝑥 d𝑡 − ∫

𝑄

𝜔𝒖 ⋅ ∇𝜑 d𝑥 d𝑡 + ∫
𝑄

𝑘
𝜔
∇𝜔 ⋅ ∇𝜑 d𝑥 d𝑡

= ∫
Ω

𝜔0(𝑥)𝜑(𝑥, 0) d𝑥 − ∫
𝑄

𝜔2𝜑 d𝑥 d𝑡 for all 𝜑 ∈ 𝐶1per,𝑇(𝑄),

⎫⎪⎪⎬⎪⎪⎭
(3.9)

−∫
𝑄

𝑘
𝜕𝑧

𝜕𝑡
d𝑥 d𝑡 − ∫

𝑄

𝑘𝒖 ⋅ ∇𝑧 d𝑥 d𝑡 + ∫
𝑄

𝑘
𝜔
∇𝑘 ⋅ ∇𝑧 d𝑥 d𝑡

= ∫
Ω

𝑘0(𝑥)𝑧(𝑥, 0) d𝑥 + ∫
𝑄

(
𝜈0
𝑘
𝜔
||𝑫(𝒖)||2 − 𝛼2𝑘𝜔

)
𝑧 d𝑥 d𝑡 + ∫

𝑄

𝑧 d𝜇 for all 𝑧 ∈ 𝐶1per,𝑇(𝑄),

⎫⎪⎪⎬⎪⎪⎭
(3.10)

the Leray–Hopf type energy bound for the Navier–Stokes equation

∫
Ω

1
2
||𝒖(𝑥, 𝑡)||2 d𝑥 + ∫

𝑡

0
∫
Ω

𝜈0
𝑘
𝜔
||𝑫(𝒖)||2 d𝑥 d𝑠 ≤ ∫

Ω

1
2
||𝒖0(𝑥)||2 d𝑥 + ∫

𝑡

0
∫
Ω

𝒇 ⋅ 𝒖 d𝑥 d𝑠 for a.a. 𝑡 ∈ [0, 𝑇], (3.11)

and the total energy satisfies the estimate

∫
Ω

(
1
2
||𝒖(𝑥, 𝑡)||2+𝑘(𝑥, 𝑡)) d𝑥 + ∫

𝑡

0
∫
Ω

𝛼2𝑘𝜔 d𝑥 d𝑠 ≤ ∫
Ω

(
1
2
||𝒖0(𝑥)||2+𝑘0(𝑥)) d𝑥 + ∫

𝑡

0
∫
Ω

𝒇 ⋅ 𝒖 d𝑥 d𝑠 for a.a. 𝑡 ∈ [0, 𝑇].

(3.12)

It is easy to see that all integrals in Equations (3.8)–(3.10) are well-defined. It suffices to consider the integrals with
integrands 𝑘𝒖 ⋅ ∇𝑧 and 𝑘

𝜔
|𝑫(𝒖)|2𝑧 in Equation (3.10). First, it is well-known that condition (3.6) on 𝒖 implies 𝒖 ∈

𝑳10∕3(𝑄) (combine Hölder’s inequality and Sobolev’s embedding theorem). Analogously, the condition (3.6) on 𝑘 implies
𝑘 ∈ 𝐿10∕7(𝑄) (take 𝑁 = 3, 𝜃 = 3∕4, (𝑝1, 𝑝2) = (1,

15

14
), and (𝑠1, 𝑠2) = (∞,

15

14
) in Lemma 4.1(B) below). Hence, 𝑘𝒖 ∈ 𝑳1(𝑄).

Second, 𝑘
𝜔
|𝑫(𝒖)|2 ∈ 𝐿1(𝑄) by virtue of Equation (3.7).

Remark 3.2. The condition 𝑘∕𝜔 ≥ const > 0 is crucial for our existence theory, in particular for obtaining the regularities
for {𝒖, 𝜔, 𝑘} stated in Equation (3.6). It would be desirable to develop an existence theory without this condition, because this
would allow us to study how the support of 𝑘, which may be called the “turbulent region”, invades the “non-turbulent region”
where 𝑘 ≡ 0.
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Remark 3.3 (Classical solutions are weak solutions). Every sufficiently regular classical solution {𝒖, 𝜔, 𝑘} of Equations (1.1)
and (1.10) satisfies the variational identities (3.8)–(3.10) with defect measure 𝜇 = 0. To verify this, we multiply (1.1b)–(1.1d) by
the test functions 𝒗, 𝜑, and 𝑧, respectively, and integrate by parts over the cubeΩ and then over the interval [ 0, 𝑇 ].Moreover,
it is easy to see that the energy inequalities (3.11) and (3.12) hold as equalities.

Of course, the important implication to be shown is that smooth weak solutions are indeed classical solutions. In order
to establish this, we crucially use that the inequality (3.12) for the total energy ∫

Ω
(
1

2
|𝒖|2 + 𝑘) d𝑥 and combine it with the

upper estimate (3.11) for the macroscopic kinetic energy ∫
Ω

1

2
|𝒖|2 d𝑥 and a lower energy estimate for the turbulent kinetic

energy ∫
Ω
𝑘 d𝑥, which will be derived next.

Lemma 3.4. Let {𝒖, 𝜔, 𝑘} be a weak solution of Equations (1.1) and (1.10) with defect measure 𝜇. Then, we have the integral
relations

∫
Ω

𝜔(𝑥, 𝑡) d𝑥 + ∫
𝑡

0
∫
Ω

𝜔2 d𝑥 d𝑠 = ∫
Ω

𝜔0(𝑥) d𝑥 for all 𝑡 ∈ [0, 𝑇 ], (3.13a)

∫
Ω

𝑘(𝑥, 𝑡) d𝑥 = ∫
Ω

𝑘0(𝑥) d𝑥 + ∫
𝑡

0
∫
Ω

(
𝜈0
𝑘
𝜔
||𝑫(𝒖)||2 − 𝛼2𝑘𝜔

)
d𝑥 d𝑠 + 𝜇

(
Ω×[0, 𝑡 ]

)
for a.a. 𝑡 ∈ [0, 𝑇 ], (3.13b)

lim
𝑡→0 ∫Ω 𝑘(𝑥, 𝑡) d𝑥 = ∫

Ω

𝑘0(𝑥) d𝑥 + 𝜇
(
Ω×{0}

)
, (3.13c)

∫
Ω

𝑘(𝑥, 𝑡) d𝑥 = ∫
Ω

𝑘(𝑥, 𝑠) d𝑥 + ∫
𝑡

𝑠
∫
Ω

(
𝜈0
𝑘
𝜔
||𝑫(𝒖)||2 − 𝛼2𝑘𝜔

)
d𝑥 d𝜏 + 𝜇

(
Ω× ] 𝑠, 𝑡 ]

)
for a.a. 𝑠, 𝑡 with 𝑠 < 𝑡. (3.13d)

Proof. It suffices to prove Equation (3.13b). The same reasoning gives Equation (3.13a), and the relations (3.13c) and (3.13d)
follow from Equation (3.13b). For 𝑡 ∈ ] 0, 𝑇 [, and𝑚 >

1

𝑇−𝑡
with𝑚 ∈ ℕ we define

𝜂𝑚(𝑠) =

⎧⎪⎪⎨⎪⎪⎩

1 if 0 ≤ 𝑠 ≤ 𝑡,

𝑚(𝑡−𝑠) + 1 if 𝑡 ≤ 𝑠 ≤ 𝑡 +
1

𝑚
,

0 if 𝑠 ≥ 𝑡 +
1

𝑚
.

(3.14)

Then, 𝜂𝑚 ∈ 𝐶([0,∞[) and �̇�𝑚 = 𝑚11]𝑡,𝑡+1∕𝑚[. For the Steklov average 𝜂𝑚,𝜆(𝑠) =
1

𝜆
∫ 𝑠+𝜆

𝑠
𝜂𝑚(𝜏) d𝜏with 𝑠 ≥ 0, 𝜆 > 0, we find

𝜂𝑚,𝜆 ∈ 𝐶1([0, 𝑇]), 𝜂𝑚,𝜆
𝜆→0+

⟶ 𝜂𝑚 in 𝐶0([0, 𝑇]), 𝜂𝑚,𝜆(0) = 1 and 𝜂𝑚,𝜆(𝑇) = 0 (3.15)

for 𝜆 ∈ ]0, 𝑡[. Moreover, we have �̇�𝑚,𝜆(𝑠) → �̇�𝑚(𝑠) for all 𝑠 ∈ [0, 𝑇] ⧵ {𝑡, 𝑡+
1

𝑚
}, and for all 𝑓 ∈ 𝐿1(𝑄𝑇) we find

∫
𝑄𝑇

𝑓(𝑥, 𝑠)�̇�𝑚,𝜆(𝑠) d𝑥 d𝑠⟶ −𝑚 ∫
𝑡+1∕𝑚

𝑡
∫
Ω

𝑓(𝑥, 𝑠) d𝑥 d𝑠 as 𝜆 → 0+. (3.16)

Inserting the function 𝑧(𝑥, 𝑠) = 11Ω(𝑥)𝜂𝑚,𝜆(𝑠) for (𝑥, 𝑠) ∈ 𝑄 into Equation (3.10) with 𝑠 in place of 𝑡, the limit 𝜆 → 0+ gives
the relation

𝑚∫
𝑡+1∕𝑚

𝑡
∫
Ω

𝑘(𝑥, 𝑠) d𝑥 d𝑠=∫
Ω

𝑘0(𝑥) d𝑥 + ∫
𝑡+1∕𝑚

0
∫
Ω

(
𝜈0
𝑘
𝜔
||𝑫(𝒖)||2 − 𝛼2𝑘𝜔

)
𝜂𝑚 d𝑥 d𝜏 + 𝜇

(
Ω×[ 0, 𝑡 ]

)
+∫

Ω×]𝑡,𝑡+
1

𝑚
[

𝜂𝑚(𝜏) d𝜇.

(3.17)



10 of 31 MIELKE and NAUMANN

Because of 𝜂𝑚(𝜏) ∈ [0, 1] for all 𝑠 ∈ [0, 𝑇], we have ∫
Ω×]𝑡,𝑡+

1

𝑚
[
𝜂𝑚(𝜏) d𝜇 ≤ 𝜇(Ω × ]𝑡, 𝑡 +

1

𝑚
[) → 0 as 𝑚 → ∞. The limit

passage 𝑚 → ∞ in Equation (3.17) gives Equation (3.13b) for every Lebesgue point 𝑡 ∈ [0, 𝑇 ] of the function 𝑡 ↦
∫
Ω
𝑘(𝑥, 𝑡) d𝑥. □

We are now ready to show that smooth enough weak solutions are indeed classical solutions and that the associated
defect measure has to vanish.

Proposition 3.5 (Smooth weak solutions are classical). If {𝒖, 𝜔, 𝑘} is a weak solution of Equations (1.1) and (1.10) with defect
measure 𝜇 (in the sense of Definition 3.1) such that 𝒖, 𝜔, and 𝑘 are sufficiently smooth (e.g., twice continuously differentiable
in 𝑥 and once in 𝑡), then {𝒖, 𝜔, 𝑘} is a classical solution of Equations (1.1) and (1.10).

Proof. By definition, weak solutions lie in𝑾1,2
per,div(Ω), which implies Equation (1.1a). Similarly, the periodic boundary

conditions (1.10a) follow from the choice of spaces for the weak solution.
Using the smoothness of {𝒖, 𝜔, 𝑘}, we can integrate by parts in the weak equations (3.8) and (3.9). From this, we obtain

the validity of the classical equations (1.1b) and (1.1c) for 𝒖 and 𝜔, respectively, and the initial conditions 𝒖(0, ⋅) = 𝒖0 and
𝜔(0, ⋅) = 𝜔0.
Since theNavier–Stokes equation is classically satisfied, the kinetic energy satisfies Equation (3.11)with equality. Adding

this equality to relation (3.13b) for the turbulent energy, the term 𝜈0
𝑘

𝜔
|𝑫(𝒖)|2 exactly cancels; and we obtain

∫
Ω

(
1
2
|𝒖(𝑥, 𝑡)|2+𝑘(𝑥, 𝑡)) d𝑥 =∫

Ω

(
1
2
|𝒖0|2+𝑘0) d𝑥 +∫ 𝑡

0
∫
Ω
(𝒇⋅𝒖−𝛼2𝑘𝜔) d𝑥 d𝑠 + 𝜇(Ω×[0, 𝑡]) (3.18)

for a.a. 𝑡 ∈ [0, 𝑇]. Comparing this to the total energy inequality (3.12) and using 𝜇 ≥ 0, we conclude 𝜇(Ω×[0, 𝑡]) = 0 for
a.a. 𝑡 ∈ [0, 𝑇]. Thus, we find 𝜇(Ω×[0, 𝑇[) = 0, which gives ∫

𝑄
𝑧 d𝜇 = ∫

Ω
𝑧(𝑥, 𝑇) d𝜇(𝑇, 𝑥) = 0 in Equation (3.10). For the

last identity we exploit that 𝑧 ∈ 𝐶1per,𝑇(𝑄) implies 𝑧(𝑥, 𝑇) = 0 on Ω.
Again, using the smoothness of {𝒖, 𝜔, 𝑘}, we can integrate by parts in the weak equations (3.10) and obtain the validity

of the classical equations (1.1d) and the initial conditions 𝑘(0, ⋅) = 𝑘0. □

We note that by Equation (3.13b) the defect measure 𝜇 ≥ 0 contributes positively to the integrated turbulent energy
∫
Ω
𝑘(𝑥, 𝑡) d𝑥. In contrast, the energy inequality (3.11) for weak solutions of the Navier–Stokes equations provides an upper

bound for the integrated kinetic energy ∫
Ω

1

2
|𝒖(𝑥, 𝑡)|2 d𝑥 in terms of possibly different defectmeasure𝜇NS. The expectation

is that these twomeasures exactly cancel each other when considering the total kinetic energy ∫
Ω
(
1

2
|𝒖(𝑥, 𝑡)|2 + 𝑘(𝑥, 𝑡)) d𝑥,

and then Equation (3.12) holds as an equality. Our methods will not be strong enough to show this cancellation but we
establish the corresponding upper bound stated in Equation (3.12), which may be interpreted as 𝜇 ≤ 𝜇NS. In the related
work Bulíček and Málek [13], the desired cancellation is derived by completely different methods.

Remark 3.6 (Conservation law for the energy density 𝐸). For fluid models involving an additional energy equation, it is
natural to derive equations for the total energy density, which in our case reads 𝐸(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) +

1

2
|𝒖(𝑥, 𝑡)|2. This idea goes

back to Feireisl and Málek in Refs. [33, 34] and provides a local balance law for the total energy density 𝐸.We expect that the
result of Thm. 1.1, Eqn. (1.50) in Bulíček and Málek [13] also holds in our case and conjecture that there exist weak solutions
as stated in Theorem 4.1 that additionally satisfy the distributional form of the local balance equation

𝜕

𝜕𝑡
𝐸 + div ((𝐸+𝑝)𝒖) = div

(
𝑘
𝜔
∇𝑘 + 𝜈0

𝑘
𝜔
𝑫(𝒖)𝒖

)
+ 𝒇⋅𝒖 − 𝛼2𝑘𝜔, (3.19)

A close inspection of our estimates shows that all terms in this equation can be defined as distributions, if the pressure 𝑝 is
recovered from Equation (1.1b) in the standard way. However, at present, it remains unclear how this relation can be derived
using our approach based on pseudo-monotone operators.
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Clearly, integrating the local balance law (3.19) over Ω and using the periodic boundary condition implies that the
total-energy inequality (3.12) holds as equality for all 𝑡 ∈ [0, 𝑇]:

∫
Ω

(
1
2
||𝒖(𝑥, 𝑡)||2 + 𝑘(𝑥, 𝑡)

)
d𝑥 + 𝛼2 ∫

𝑡

0
∫
Ω

𝑘𝜔 d𝑥 d𝑠 = ∫
Ω

(
1
2
||𝒖0(𝑥)||2 + 𝑘0(𝑥)

)
d𝑥 + ∫

𝑡

0
∫
Ω

𝒇 ⋅ 𝒖 d𝑥 d𝑠. (3.20)

The following result shows that in this case, the defectmeasure 𝜇 in Equation (3.10) is closely related to the defectmeasure
associatedwith theweak solution of theNavier–Stokes equation. The result follows simply by subtracting Equation (3.13b)
from Equation (3.20).

Proposition 3.7 (Energy equalities and defect measure). Let {𝒖, 𝜔, 𝑘} and 𝜇 be a weak solution as in Definition 3.1. If
additionally the energy equality (3.20) holds, then the following two statements are equivalent:

(i) 𝜇 = 0;
(ii) ∫

Ω

1

2
|𝒖(𝑥, 𝑡)|2 d𝑥 + 𝜈0 ∫ 𝑡

0
∫
Ω

𝑘

𝜔
|𝑫(𝒖)|2 d𝑥 d𝑠 = 1

2
∫
Ω
|𝒖0(𝑥)|2 d𝑥 + ∫ 𝑡

0
∫
Ω
𝒇 ⋅ 𝒖 d𝑥 d𝑠 for a.a. 𝑡 ∈ [ 0, 𝑇 ].

This result shows that the two energy inequalities (3.11), (3.12) and the defect measure 𝜇 in Equation (3.10) are related
to the classical problem of proving an energy equality for weak solutions of the Navier–Stokes equations. A similar result
for the case of Navier–Stokes equations with temperature dependent viscosities has been obtained in Naumann [35].
Defect measures also appear in a natural way in the context of weak solutions of other types of nonlinear PDEs (see,
e.g., Refs. [36–38]).

4 AN EXISTENCE THEOREM FORWEAK SOLUTIONS

We define the function spaces

𝐶∞per(Ω) =
{
𝑢|Ω ; 𝑢 ∈ 𝐶∞(ℝ3), 𝑢 is 𝑎-periodic in the directions 𝒆1, 𝒆2, 𝒆3

}
,

𝑪∞
per,div

(Ω) =
{
𝒖 ∈ 𝑪∞per(Ω) ; div 𝒖 = 0 in Ω

}
. (4.1)

We impose the following conditions upon the right-hand side in Equation (1.1b) and the initial data in Equation (1.10b):

𝒇 ∈ 𝑳2(𝑄); 𝒖0 ∈ 𝑳2
div
(Ω) ∶= 𝑪∞

per,div
(Ω)
‖⋅‖𝑳2(Ω)

, 𝜔0 ∈ 𝐿∞(Ω), 𝑘0 ∈ 𝐿1(Ω),

there exist positive𝜔∗, 𝜔∗ such that 𝜔∗ ≤ 𝜔0(𝑥) ≤ 𝜔∗ for a.a. 𝑥 ∈ Ω,

there exist positive𝑘∗ such that 𝑘0(𝑥) ≥ 𝑘∗ for a.a. 𝑥 ∈ Ω.

⎫⎪⎪⎬⎪⎪⎭
(4.2)

The following theorem is the main result of our paper.

Theorem 4.1 (Main existence result). Assume Equation (4.2) and 𝛼2 = const > 0 (cf. (1.1d)). Then there exists a triple of
measurable functions {𝒖, 𝜔, 𝑘} in 𝑄 and a non-negative defect measure 𝜇 ∈ ≥(𝑄) such that

𝜔∗
1 + 𝑡𝜔∗

≤ 𝜔(𝑥, 𝑡) ≤ 𝜔∗

1 + 𝑡𝜔∗
and

𝑘∗
(1 + 𝑡𝜔∗)𝛼2

≤ 𝑘(𝑥, 𝑡) for a.a. (𝑥, 𝑡) ∈ 𝑄; (4.3)

𝒖 ∈ 𝐶w
(
[ 0, 𝑇 ]; 𝑳2(Ω)

)
∩ 𝐿2(0, 𝑇;𝑾1,2

per,div
(Ω)
)
,

𝜔 ∈ 𝐶w
(
[ 0, 𝑇 ]; 𝐿2(Ω)

)
∩ 𝐿2
(
0, 𝑇;𝑊1,2

per(Ω)
)
,

𝑘 ∈ 𝐿∞
(
0, 𝑇; 𝐿1(Ω)

)
∩
⋂

1≤𝑝<2
𝐿𝑝
(
0, 𝑇;𝑊

1,𝑝
per(Ω)

)
;

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.4)
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∫
𝑄

𝑘
(||𝑫(𝒖)||2+|∇𝜔|2) d𝑥 d𝑡 < ∞, (4.5)

𝒖′ ∈
⋂

𝜎>16∕5
𝐿4∕3
(
0, 𝑇;
(
𝑾1,𝜎

per,div
(Ω)
)∗)

, and 𝜔′ ∈
⋂

𝜎>16∕5
𝐿4∕3
(
0, 𝑇;
(
𝑊1,𝜎

per(Ω)
)∗)

. (4.6)

The triple {𝒖, 𝑘, 𝜔} is a weak solution of Equations (1.1) and (1.10) in the sense of Definition 3.1 with

𝒖(0) = 𝒖0 in 𝑳2(Ω) and 𝜔(0) = 𝜔0 in 𝐿2(Ω); (4.7)

In particular, Equation (3.10) holds and for all 𝜎 > 16∕5 we have

∫
𝑇

0

⟨
𝒖′(𝑡), 𝒗(𝑡)

⟩
𝑊1,𝜎
per,div

d𝑡 +∫
𝑄

(
−(𝒖⊗𝒖)∶∇𝒗 + 𝜈0

𝑘
𝜔
𝑫(𝒖)∶𝑫(𝒗)

)
d𝑥 d𝑡 =∫

𝑄

𝒇⋅𝒗 d𝑥 d𝑡 for all 𝒗 ∈ 𝐿𝜎
(
0, 𝑇;𝑾1,𝜎

per,div
(Ω)
)
,

(4.8)

∫
𝑇

0

⟨
𝜔′(𝑡), 𝜑(𝑡)

⟩
𝑊1,𝜎
per
d𝑡 − ∫

𝑄

𝜔𝒖 ⋅ ∇𝜑 d𝑥 d𝑡 + ∫
𝑄

𝑘
𝜔
∇𝜔 ⋅ ∇𝜑 d𝑥 d𝑡 = −∫

𝑄

𝜔2𝜑 d𝑥 d𝑡 for all 𝜑 ∈ 𝐿𝜎
(
0, 𝑇;𝑊1,𝜎

per(Ω)
)
.

(4.9)

Of course, in Equations (4.8) and (4.9), it suffices to consider 𝜎 = 16

5
+ 𝜂 for an arbitrarily small 𝜂 > 0. The derivatives

𝒖′ and 𝜔′ in Equation (4.6) are understood in the sense of distributions from ] 0, 𝑇 [, into (𝑾1,𝜎
per,div

(Ω))∗ and (𝑊1,𝜎
per(Ω))

∗,
respectively (see, e.g., App. in Brézis [31] or pp. 54–56 in Droniou [32] for details). Here we have used the continuous and
dense embeddings

𝑊1,2
per(Ω) ⊂ 𝐿2(Ω) ⊂

(
𝑊1,𝜎

per(Ω)
)∗

for 𝜎 ≥ 6
5
. (4.10)

To see that {𝒖, 𝜔, 𝑘} together with the measure 𝜇 in the above theorem are a weak solution of Equations (1.1) and (1.10)
in the sense of the Definition 3.1, it suffices to note that Equations (3.8) and (3.9) follow from Equations (4.8) and (4.9),
respectively, by integration by parts of the first integrals on the left-hand sides.
Before starting the proof, it is instructive to check that the above estimates (4.3)–(4.6) are enough to show that all terms

in (4.8)–(3.10) are well-defined. For this, we first recall the classical Gagliardo-Nirenberg estimate and then provide an
anisotropic version that is adjusted to the parabolic problems on 𝑄 = [0, 𝑇] × Ω, we use the short-hand notations

𝐿𝑠(𝐿𝑝) ∶= 𝐿𝑠(0, 𝑇; 𝐿𝑝(Ω)) and 𝐽𝜃(𝑎, 𝑏) ∶= 𝑎1−𝜃(𝑎+𝑏)
𝜃
. (4.11)

Lemma 4.1 (Gagliardo-Nirenberg estimates). For 𝑁 ∈ ℕ consider a bounded Lipschitz domain Ω ⊂ ℝ𝑁 . (A) (Classical
isotropic version) Assume 1 ≤ 𝑝1 < 𝑝 < ∞, 𝑝2 ∈ ]1,𝑁[ and 𝜃 ∈ ]0, 1[ such that

1
𝑝
= (1−𝜃)

1
𝑝1

+ 𝜃

(
1
𝑝2

−
1
𝑁

)
. (4.12)

Then, there exists a constant 𝐶 > 0 such that for all 𝜓 ∈ 𝑊1,𝑝2(Ω) we have

‖𝜓‖𝐿𝑝(Ω) ≤ 𝐶 𝐽𝜃
(‖𝜓‖𝐿𝑝1 (Ω), ‖∇𝜓‖𝐿𝑝2 (Ω)). (4.13)

(B) (Anisotropic version) Consider 𝑝, 𝑝1, 𝑝2, and 𝜃 as in (A) and 𝑠, 𝑠1, and 𝑠2 satisfying

1 ≤ 𝑠2 ≤ 𝑠 ≤ 𝑠1 and 1
𝑠
= (1−𝜃)

1
𝑠1
+ 𝜃

1
𝑠2
. (4.14)
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Then, there exists 𝐶∗ > 0 such that for all 𝜑 ∈ 𝐿𝑠2(0, 𝑇;𝑊1,𝑝2(Ω)) we have

‖𝜑‖𝐿𝑠(𝐿𝑝) ≤ 𝐶∗𝐽𝜃
(‖𝜑‖𝐿𝑠1 (𝐿𝑝1 ), ‖∇𝜑‖𝐿𝑠2 (𝐿𝑝2 )). (4.15)

Proof. Part (A) is well-known, see, for example, Thm. 1.24 in Roubíček [25].
To establish Part (B) we apply Part (A) for 𝜓 = 𝜑(𝑡) a.a. 𝑡 ∈ [0, 𝑇]. Thus, we obtain (abbreviating ‖𝜓‖𝑝 ∶= ‖𝜓‖𝐿𝑝(Ω))

‖𝜑‖𝑠
𝐿𝑠(𝐿𝑝)

= ∫
𝑇

0

‖𝜑(𝑡)‖𝑠𝑝 d𝑡 4.13)≤ 𝐶1 ∫
𝑇

0

‖𝜑(𝑡)‖(1−𝜃)𝑠𝑝1

(‖𝜑(𝑡)‖𝑝1+‖∇𝜑(𝑡)‖𝑝2)𝜃𝑠 d𝑡 (4.16)

Hölder+(4.14)≤ 𝐶1‖‖ ‖𝜑‖𝑝1‖‖(1−𝜃)𝑠𝐿𝑠1 (0,𝑇)
‖‖‖ ‖𝜑‖𝑝1+‖∇𝜑‖𝑝2‖‖‖𝜃𝑠𝐿𝑠2 (0,𝑇) (4.17)

𝑠1≥𝑠2≤ 𝐶1‖‖𝜑‖(1−𝜃)𝑠𝐿𝑠1 (𝐿𝑝1 )

(
𝑇1∕𝑠2−1∕𝑠1‖𝜑‖𝐿𝑠1 (𝐿𝑝1 )+‖∇𝜑‖𝐿𝑠2 (𝐿𝑝2 ))𝜃𝑠 ≤ 𝐶2

(
𝐽𝜃
(‖𝜑‖𝐿𝑠1 (𝐿𝑝1 ), ‖∇𝜑‖𝐿𝑠2 (𝐿𝑝2 )))𝑠, (4.18)

which is the desired estimate. □

Remark 4.2 (Well-definedness of nonlinear terms).We first show that the second integral on the left-hand side of the vari-
ational identity in Equation (4.8) is well-defined. For the integral of (𝒖⊗𝒖)∶∇𝒗 we see that Equation (4.4) allows us to use
Lemma 4.1 with 𝑁 = 3, (𝑠1, 𝑝1) = (∞, 2) and (𝑠2, 𝑝2) = (2, 2).With 𝜃 = 3∕4 part (A) gives

‖𝒖‖𝑳4(Ω) ≤ 𝐶
(‖𝒖‖𝑳2(Ω) + ‖𝒖‖1∕4𝑳2(Ω)

‖∇𝒖‖3∕4
𝑳2(Ω)

)
, (4.19)

whereas part (B) leads to 𝒖 ∈ 𝐿8∕3(0, 𝑇; 𝑳4(Ω)), which implies

𝒖⊗𝒖 ∈ 𝐿4∕3(0, 𝑇; 𝐿2(Ω)). (4.20)

With 𝜎 > 16∕5 > 2,we have∇𝒗 ∈ 𝐿2(0, 𝑇; 𝐿2(Ω)) and ∫
𝑄
(𝒖⊗𝒖) ∶ ∇𝒗d𝑥 d𝑡 is well-defined. Using 𝜃 = 3∕5 in Lemma 4.1(B)

we obtain 𝑠 = 𝑝 = 10∕3 and hence conclude

‖𝒖‖𝐿10∕3(𝑄) ≤ 𝐶2𝐽3∕5
(‖𝒖‖𝐿∞(𝑳2), ‖∇𝒖‖𝐿2(𝐿2)). (4.21)

For the integral of 𝑘
𝜔
𝑫(𝒖)∶𝑫(𝒗)we use 𝜔 ≥ 𝜔∗∕(1+𝑇𝜔∗) > 0 from Equation (4.3), 𝑘1∕2𝑫(𝒖) ∈ 𝐿2(𝑄) from Equation (4.5).

Using Equation (4.4),we can apply Lemma 4.1(B) to 𝑘 with𝑁 = 3, (𝑠1, 𝑝1) = (∞, 1), and 𝑠2 = 𝑝2 ∈ [1, 2[.Choosing 𝜃 = 3∕4,
we obtain 𝑠 = 𝑝 = 4𝑝2∕3, such that 𝑘 lies in 𝐿4𝑝2∕3(0, 𝑇; 𝐿4𝑝2∕3(Ω)) = 𝐿4𝑝2∕3(𝑄). As 𝑝2 ∈ [1, 2[ is arbitrary, we have 𝑘1∕2 ∈
𝐿𝑞(𝑄) for all 𝑞 ∈ [1, 16∕3[. By Hölder’s inequality, we arrive at

𝑘𝑫(𝒖) = 𝑘1∕2 𝑘1∕2𝑫(𝒖) ∈ 𝐿𝑝(𝑄) for all 𝑝 ∈ [1, 16∕11[. (4.22)

Using 𝑫(𝒗) ∈ 𝐿𝜎(0, 𝑇; 𝐿𝜎(Ω)) = 𝐿𝜎(𝑄) with 𝜎 > 16∕5, we see that there is always a 𝑝 ∈ [1, 16∕11[ such that 1

𝜎
+

1

𝑝
≤ 1.

Hence, we conclude

∫
𝑄

|| 𝑘𝜔𝑫(𝒖)∶𝑫(𝒗)|| d𝑥 d𝑡 ≤ 𝐶‖𝑘𝑫(𝒖)‖𝐿𝑝(𝑄)‖𝑫(𝒗)‖𝐿𝜎(𝑄) < ∞. (4.23)

Thus, by a routine argument, Equations (4.20) and (4.22) lead to the existence of the distributional derivative 𝒖′ as in
Equation (4.6), see also Sections 5.4–5.6.
An analogous reasoning applies to the second and the third integral on the left-hand side of the variational identity in

Equation (4.9).
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Finally, combining 𝒖 ∈ 𝑳2(𝑄) and ∇𝑘 ∈ 𝐿𝑝(𝑄) for all 𝑝 ∈ [1, 2[ (see Equation (4.4)) and 𝑘 ∈ 𝐿4𝑝∕3(𝑄) from above,
Hölder’s inequality gives

𝑘𝒖 ∈ 𝑳𝑞(𝑄) and 𝑘∇𝑘 ∈ 𝑳𝑞(𝑄) for all 𝑞 ∈ [1, 8∕7[, (4.24)

that is, the second and third integral on the left-hand side in Equation (3.10) are well-defined.

The estimates (4.3), which will be derived by using suitable comparison arguments, allow us to deduce the following
result (based on the choice 𝛼1 = 1).

Corollary 4.3. For a.a. (𝑥, 𝑡) ∈ 𝑄, we have the following estimates:

𝐿(𝑥, 𝑡) ∶=
𝑘(𝑥, 𝑡)1∕2

𝜔(𝑥, 𝑡)
≥ 𝑘

1∕2
∗

𝜔∗
(1 + 𝑡𝜔∗)1−𝛼2∕2, (4.25)

1
𝜔∗

+ 𝑡 ≤ 1

𝜔(𝑥, 𝑡)
≤ 1
𝜔∗

+ 𝑡. (4.26)

Kolmogorov claimed in Ref. [1] that 𝐿 = 𝐿(𝑥, 𝑡) “. . . grows in proportion of 𝑡2∕7 . . . ” (see also p. 215 in Spalding [2] or
p. 329 in Tikhomirov [9]). Clearly, from Equation (4.25) with 𝛼2 = 10∕7, it follows

𝐿(𝑥, 𝑡) ≥ 𝑘
1∕2
∗

𝜔∗
(1 + 𝑡𝜔∗)2∕7 for a.a. (𝑥, 𝑡) ∈ Ω× ] 𝑡0, 𝑇 [ . (4.27)

Of course, Kolmogorov’s claim is compatible with our lower estimate for any choice 𝛼2 ≥ 10∕7 (and in Kolmogorov [1]
𝛼2 = 11∕7 was chosen). However, it cannot be true for 𝛼2 ∈ ]0, 10∕7[.

5 PROOF OF THE EXISTENCE THEOREM

The proof of themain Theorem 4.1 proceeds in several steps. First, we regularize the problem by adding small higher-order
dissipation terms of 𝑟-Laplacian type and small coercivity-generating lower-order terms. A general result for pseudo-
monotone operators, which is detailed in Appendix A, then provides approximate solutions {𝒖𝜀, 𝜔𝜀, 𝑘𝜀}. In Section 5.2, we
provide 𝜀-independent upper and lower bounds for 𝜔𝜀 and 𝑘𝜀 by comparison arguments. In Section 5.3, we complement
the standard energy estimates by improved integral estimates for 𝑘𝜀 that allow us to pass to the limit 𝜀 ↘ 0 in Section 5.5.

5.1 Defining suitable approximate solutions {𝒖𝜺, 𝝎𝜺, 𝒌𝜺}

Let be 𝜔∗, 𝜔∗, and 𝑘∗ as in Equation (4.2). We introduce the comparison functions

𝜔(𝑡) =
𝜔∗

1 + 𝑡𝜔∗
, 𝜔(𝑡) =

𝜔∗

1 + 𝑡𝜔∗
, 𝜘(𝑡) = 𝑘∗

(1 + 𝑡𝜔∗)𝛼2
for 𝑡 ∈ [0, 𝑇], (5.1)

which will be the desired bounds for 𝜔𝜀 and 𝑘𝜀 in 𝑄. Subsequently, we will use the notion

𝜉+ ∶= max{𝜉, 0} ≥ 0 and 𝜉− = min{𝜉, 0} ≤ 0 (5.2)

for the positive and negative parts of real numbers or real-valued functions.
We choose a fixed number 𝑟 ∈ ]3,∞[ and consider for all small 𝜀 > 0 the following 𝑟-Laplacian approximation of

Equation (1.1), where we add the coercivity-generating terms 𝜀|𝒖|𝑟−1𝒖, 𝜀|𝜔|𝑟−2𝜔, and 𝜀|𝑘|𝑟−2𝑘 to the right-hand sides
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of Equations (1.1b)–(1.1d), respectively:

div 𝒖 = 0, (5.3a)

𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅ ∇)𝒖 = 𝜈0 div

(
𝑘+

𝜀 + 𝜔+
𝑫(𝒖)

)
− ∇𝑝 + 𝒇 + 𝜀

(
div
(|𝑫(𝒖)|𝑟−2𝑫(𝒖)) − |𝒖|𝑟−2𝒖), (5.3b)

𝜕𝜔

𝜕𝑡
+ 𝒖 ⋅ ∇𝜔 = div

(
𝑘+

𝜀 + 𝜔+
∇𝜔

)
− 𝜔+𝜔 + 𝜀

(
div
(|∇𝜔|𝑟−2∇𝜔) − |𝜔|𝑟−2𝜔) + 𝜀

(
𝜔(𝑡)
)𝑟−1

, (5.3c)

𝜕𝑘

𝜕𝑡
+ 𝒖 ⋅ ∇𝑘 = div

(
𝑘+

𝜀+𝜔+
∇𝑘

)
+ 𝜈0

𝑘+ |𝑫(𝒖)|2
𝜀 + 𝜔++ 𝜀𝑘+

− 𝛼2𝑘𝜔
+ + 𝜀
(
div
(|∇𝑘|𝑟−2∇𝑘) − |𝑘|𝑟−2𝑘) + 𝜀(𝜘(𝑡))𝑟−1. (5.3d)

The additional terms 𝜀(𝜔(𝑡))𝑟−1 and 𝜀(𝜘(𝑡))𝑟−1 are added in Equations (5.3b) and (5.3c), respectively, to make the com-
parison principle work again. In principle, it would be possible to use different exponents 𝑟𝒖, 𝑟𝜔, and 𝑟𝑘 in Equations
(5.3a)–(5.3c), because they need to satisfy different restrictions. In our case, 𝑟 = 𝑟𝒖 = 𝑟𝜔 = 𝑟𝑘 is sufficient and fits exactly
with the assumptions in Equation (A.1) with 𝑝 = 𝑟 for the abstract existence Theorem A.1.
We consider system (5.3) with initial data {𝒖0,𝜀, 𝜔0,𝜀, 𝑘0,𝜀} satisfying

{𝒖0,𝜀, 𝜔0,𝜀, 𝑘0,𝜀} ∈ 𝑾1,𝑟
per,div

(Ω) ×𝑊1,𝑟
per(Ω) ×𝑊

1,𝑟
per(Ω), (5.4a)

𝜔∗ ≤ 𝜔0,𝜀(𝑥) ≤ 𝜔∗ and 𝑘0,𝜀(𝑥) ≥ 𝑘∗ a.e. in Ω, (5.4b)

𝒖0,𝜀 ⟶ 𝒖0 in 𝑳2(Ω), 𝜔0,𝜀 ⟶ 𝜔0 a.e. in Ω, 𝑘0,𝜀 ⟶ 𝑘0 in 𝐿1(Ω) for 𝜀 → 0. (5.4c)

The existence of a sequence {𝒖0,𝜀}𝜀>0, which satisfies Equation (5.4a) follows immediately from the condition on 𝒖0 in
Equation (4.2), whereas the existence of sequences {𝜔0,𝜀}𝜀>0 and {𝑘0,𝜀}𝜀>0 satisfyingEquation (5.4) can be derived by routine
argument from the conditions on 𝜔0 and 𝑘0 in Equation (4.2).
The following lemma states the existence of weak solutions of Equation (5.3) under the periodic boundary conditions

(1.10a) and initial data (5.4). This result, which we derive in Appendix A by a direct application of existence results for
pseudo-monotone evolutionary problems (see TheoremA.1), forms the starting point for our discussion in Sections 5.2–5.6.

Proposition 5.1 (Existence of approximate solutions). Let {𝒖0,𝜀, 𝜔0,𝜀, 𝑘0,𝜀}𝜀>0 be as in Equation (5.4), 𝑟 > 3, and𝒇 ∈ 𝑳2(𝑄).
Then, for every 𝜀 > 0, there exists a triple {𝒖𝜀, 𝜔𝜀, 𝑘𝜀} such that

𝒖𝜀 ∈ 𝐶
(
[ 0, 𝑇 ]; 𝑳2(Ω)

)
∩ 𝐿𝑟
(
0, 𝑇;𝑾1,𝑟

per,div
(Ω)
)
, (5.5a)

𝜔𝜀, 𝑘𝜀 ∈ 𝐶
(
[ 0, 𝑇 ]; 𝐿2(Ω)

)
∩ 𝐿𝑟
(
0, 𝑇;𝑊1,𝑟

per(Ω)
)
, (5.5b)

𝒖′𝜀 ∈ 𝐿𝑟
′

(
0, 𝑇;
(
𝑾1,𝑟

per,div
(Ω)
)∗)

, 𝜔′𝜀, 𝑘
′
𝜀 ∈ 𝐿𝑟

′

(
0, 𝑇;
(
𝑊1,𝑟

per(Ω)
)∗)

, (5.5c)

and

∫
𝑇

0

⟨
𝒖′𝜀(𝑡), 𝒗(𝑡)

⟩
𝑊1,𝑟
per,div

d𝑡 + ∫
𝑄

3∑
𝑖=1

𝑢𝜀,𝑖(𝜕𝑖𝒖𝜀) ⋅ 𝒗 d𝑥 d𝑡 + 𝜈0 ∫
𝑄

𝑘+𝜀

𝜀 + 𝜔+𝜀
𝑫(𝒖𝜀) ∶ 𝑫(𝒗) d𝑥 d𝑡

+ 𝜀 ∫
𝑄

(||𝑫(𝒖𝜀)||𝑟−2𝑫(𝒖𝜀) ∶ 𝑫(𝒗) + |𝒖𝜀|𝑟−2𝒖𝜀 ⋅ 𝒗) d𝑥 d𝑡 = ∫
𝑄

𝒇 ⋅ 𝒗 d𝑥 d𝑡 for all 𝒗 ∈ 𝐿𝑟
(
0, 𝑇;𝑾1,𝑟

per,div
(Ω)
)
,

(5.6a)
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∫
𝑇

0

⟨
𝜔′𝜀(𝑡), 𝜑(𝑡)

⟩
𝑊1,𝑟
per
d𝑡 + ∫

𝑄

𝜑𝒖𝜀 ⋅ ∇𝜔𝜀 d𝑥 d𝑡 + ∫
𝑄

𝑘+𝜀

𝜀 + 𝜔+𝜀
∇𝜔𝜀 ⋅ ∇𝜑 d𝑥 d𝑡 + ∫

𝑄

𝜔+𝜀 𝜔𝜀𝜑 d𝑥 d𝑡

+ 𝜀 ∫
𝑄

(|∇𝜔𝜀|𝑟−2∇𝜔𝜀 ⋅ ∇𝜑 + |𝜔𝜀|𝑟−2𝜔𝜀𝜑) d𝑥 d𝑡 = 𝜀 ∫
𝑄

(
𝜔(𝑡)
)𝑟−1

𝜑 d𝑥 d𝑡 for all 𝜑 ∈ 𝐿𝑟
(
0, 𝑇;𝑊1,𝑟

per(Ω)
)
,

(5.6b)

∫
𝑇

0

⟨
𝑘′𝜀(𝑡), 𝑧(𝑡)

⟩
𝑊1,𝑟
per
d𝑡 + ∫

𝑄

𝑧𝒖𝜀 ⋅ ∇𝑘𝜀 d𝑥 d𝑡 + ∫
𝑄

𝑘+𝜀

𝜀+𝜔+𝜀
∇𝑘𝜀⋅∇𝑧 d𝑥 d𝑡 − 𝜈0 ∫

𝑄

𝑘+𝜀

𝜀+𝜔+𝜀 +𝜀𝑘
+
𝜀

||𝑫(𝒖𝜀)||2𝑧 d𝑥 d𝑡 (5.6c)

+∫
𝑄

𝛼2𝑘𝜀𝜔
+
𝜀 𝑧 d𝑥 d𝑡 + ∫

𝑄

𝜀
(|∇𝑘𝜀|𝑟−2∇𝑘𝜀⋅∇𝑧+|𝑘𝜀|𝑟−2𝑘𝜀𝑧) d𝑥 d𝑡 = ∫

𝑄

𝜀(𝜘(𝑡))𝑟−1𝑧 d𝑥 d𝑡 for all 𝑧 ∈ 𝐿𝑟
(
0, 𝑇;𝑊1,𝑟

per(Ω)
)
,

𝒖𝜀(0) = 𝒖0,𝜀, 𝜔𝜀(0) = 𝜔0,𝜀, 𝑘𝜀(0) = 𝑘0,𝜀. (5.7)

The proof of Proposition 5.1 is the content of Appendix A. Observing the separability of𝑾1,𝑟
per,div

(Ω) and𝑊1,𝑟
per(Ω) and

using Equation (5.5), a routine argument yields that the system (5.6) is equivalent to the following conditions for a.a.
𝑡 ∈ [0, 𝑇]:

⟨
𝒖′𝜀(𝑡), 𝒘

⟩
𝑊1,𝑟
per,div

+ ∫
Ω

(
(𝒖𝜀(𝑡)⋅∇𝒖𝜀(𝑡))⋅𝒘 + 𝜈0

𝑘+𝜀 (𝑡)

𝜀+𝜔+𝜀 (𝑡)
𝑫(𝒖𝜀(𝑡))∶𝑫(𝒘)

)
d𝑥 − ∫

Ω

𝒇(𝑡) ⋅ 𝒘 d𝑥

+ 𝜀 ∫
Ω

(||𝑫(𝒖𝜀(𝑡))||𝑟−2𝑫(𝒖𝜀(𝑡)) ∶ 𝑫(𝒘) + ||𝒖𝜀(𝑡)||𝑟−2𝒖𝜀(𝑡) ⋅ 𝒘) d𝑥 = 0 for all𝒘 ∈ 𝑾1,𝑟
per,div

(Ω),

(5.8a)

⟨
𝜔′𝜀(𝑡), 𝜓

⟩
𝑊1,𝑟
per
𝑞 + ∫

Ω

(
𝜓𝒖𝜀(𝑡) ⋅ ∇𝜔𝜀(𝑡) +

𝑘+𝜀 (𝑡)

𝜀+𝜔+𝜀 (𝑡)
∇𝜔𝜀(𝑡)⋅∇𝜓 + 𝜔+𝜀 (𝑡)𝜔𝜀(𝑡)𝜓

)
d𝑥

+ ∫
Ω

(
+𝜀
(||∇𝜔𝜀(𝑡)||𝑟−2∇𝜔𝜀(𝑡) ⋅ ∇𝜓 + ||𝜔𝜀(𝑡)||𝑟−2𝜔𝜀(𝑡)𝜓)) d𝑥 = 𝜀

(
𝜔(𝑡)
)𝑟−1

∫
Ω

𝜓 d𝑥 for all 𝜓 ∈ 𝑊1,𝑟
per(Ω),

(5.8b)

⟨
𝑘′𝜀(𝑡), 𝑧

⟩
𝑊1,𝑟
per
+ ∫

Ω

(
𝑧𝒖𝜀(𝑡) ⋅ ∇𝑘𝜀(𝑡) +

𝑘+𝜀 (𝑡)

𝜀+𝜔+𝜀 (𝑡)
∇𝑘𝜀(𝑡) ⋅ ∇𝑧

)
d𝑥 − ∫

Ω

𝜈0𝑘
+
𝜀 (𝑡) |𝑫(𝒖𝜀(𝑡))|2

𝜀+𝜔+𝜀 (𝑡)+𝜀𝑘
+
𝜀 (𝑡)

𝑧 d𝑥 + ∫
Ω

𝛼2𝑘𝜀(𝑡)𝜔
+
𝜀 (𝑡)𝑧 d𝑥

+ 𝜀 ∫
Ω

(||∇𝑘𝜀(𝑡)||𝑟−2∇𝑘𝜀(𝑡) ⋅ ∇𝑧 + ||𝑘𝜀(𝑡)||𝑟−2𝑘𝜀(𝑡)𝑧) d𝑥 = 𝜀(𝜘(𝑡))𝑟−1 ∫
Ω

𝑧 d𝑥 for all 𝑧 ∈ 𝑊1,𝑟
per(Ω)

(5.8c)
We notice that the set  ⊂ [ 0, 𝑇 ] of measure zero of those 𝑡 where Equation (5.8) fails, does not depend on (𝒘, 𝜓, 𝑧).
More specifically, if 𝜀 = 𝜀𝑚 > 0 with lim

𝑚→∞
𝜀𝑚 = 0, then can be chosen independently of𝑚.

The variational identities in Equation (5.8) are the point of departure for the proof of a series of the a priori estimates
for {𝒖𝜀, 𝜔𝜀, 𝑘𝜀} we are going to derive in Sections 5.2–5.4.

5.2 Upper and lower bounds for {𝝎𝜺, 𝒌𝜺}

Let𝜔,𝜔, and 𝜘 be as in Equation (5.1) and 𝑟 > 3 as chosen in Section 5.1. The following result provides pointwise upper and
lower bounds that are obtained via classical comparison arguments for weak solutions of the scalar parabolic equations for
𝜔 and 𝑘, cf. Equations (1.1c) and (1.1d), respectively.
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Lemma 5.2. Let be {𝒖𝜀, 𝜔𝜀, 𝑘𝜀} a triple according to Proposition 5.1 with 𝑟 > 3. Then,

𝜔(𝑡) ≤ 𝜔𝜀(𝑥, 𝑡) ≤ 𝜔(𝑡) and 𝜘(𝑡) ≤ 𝑘𝜀(𝑥, 𝑡) (5.9)

for a.a. (𝑥, 𝑡) ∈ 𝑄 and for all 𝜀 > 0.

Proof. For notational simplicity, we set 𝒖 ≡ 𝒖𝜀, 𝜔 ≡ 𝜔𝜀 and 𝑘 ≡ 𝑘𝜀 within this proof.
Step 1: 𝜔 ≥ 𝜔. The function 𝜓 = (𝜔(⋅, 𝑡) − 𝜔(𝑡))− is an admissible test function for Equation (5.8b). Since 𝜔(𝑡) does not

depend on 𝑥, we have 1

2
∇(𝜓2) = 𝜓∇𝜔 and ∇𝜔 ⋅ ∇𝜓 = |∇𝜓|2 ≥ 0. Using 𝜔 > 0 and the monotonicity of 𝜔 ↦ |𝜔|𝑟−2𝜔 we

arrive at

⟨
𝜔′(𝑡),
(
𝜔(𝑡) − 𝜔(𝑡)

)−⟩
𝑊1,𝑟
per
+ ∫

Ω

𝜔2
(
𝜔 − 𝜔(𝑡)

)−
d𝑥 ≤ 𝜀 ∫

Ω

((
𝜔(𝑡)
)𝑟−1

− |𝜔|𝑟−2𝜔)(𝜔 − 𝜔(𝑡)
)−

d𝑥 ≤ 0 (5.10)

for a.a. 𝑡 ∈ [ 0, 𝑇 ]. By construction, we have 𝜔′(𝑡) =
d

d𝑡
𝜔(𝑡) = −(𝜔(𝑡))2. Identifying 𝜔 with a function in

𝐶1([0, 𝑇 ];𝑊1,𝑟
per(Ω)), the estimate (5.10) leads to

⟨
𝜔′(𝑡) − 𝜔′(𝑡),

(
𝜔(𝑡)−𝜔(𝑡)

)−⟩
𝑊1,𝑟
per

≤ −∫
Ω

(
𝜔2 −
(
𝜔(𝑡)
)2)(

𝜔 − 𝜔(𝑡)
)−

d𝑥 ≤ 0. (5.11)

By Equations (5.1) and (5.4b), we have 𝜔(𝑥, 0) − 𝜔(0) ≥ 0, which means 𝜓(𝑥, 0) = 0 for a.a. 𝑥 ∈ Ω. Using a slight
modification of pp. 290–291 in Lions [39], we find

∫
Ω

1
2
𝜓(𝑡)2 d𝑥 = ∫

Ω

1
2
𝜓(0)2 d𝑥 + ∫

𝑡

0

⟨𝜓′, 𝜓⟩𝑊1,𝑟
per
d𝑡 = 0 + ∫

𝑡

0

⟨𝜔′−𝜔′, (𝜔−𝜔)−⟩𝑊1,𝑟
per
d𝑡 ≤ 0. (5.12)

Hence, we conclude 𝜓(𝑡) = 0 for all 𝑡, which means that

𝜔(𝑥, 𝑡) ≥ 𝜔(𝑡) for a.a. (𝑥, 𝑡) ∈ 𝑄. (5.13)

Step 2: 𝜔 ≤ 𝜔. Next, we insert 𝜓 = (𝜔(⋅, 𝑡)−𝜔(𝑡))+ in Equation (5.8b) and argue as in Step 1:

⟨
𝜔′, (𝜔−𝜔)+

⟩
𝑊1,𝑟
per
+ ∫

Ω

𝜔2
(
𝜔 − 𝜔
)+

d𝑥 ≤ 𝜀∫
Ω

(
(𝜔)𝑟−1−𝜔𝑟−1

)(
𝜔−𝜔
)+

d𝑥 ≤ 0. (5.14)

For the last estimate, we used 𝜔 ≥ 𝜔, which was obtained in Step 1. Hence, as above

d

d𝑡 ∫Ω
1
2
𝜓(𝑡)2 d𝑥 =

⟨
𝜔′(𝑡) − �̇�(𝑡),

(
𝜔(𝑡) − 𝜔(𝑡)

)+⟩
𝑊1,𝑟
per

≤ −∫
Ω

(
𝜔2−𝜔

2
)(
𝜔−𝜔
)+

d𝑥 ≤ 0 (5.15)

for a.a. 𝑡 ∈ [ 0, 𝑇 ]. Again by Equations (5.1) and (5.4b), we have 𝜓(0) = 0 a.e. in Ω and conclude

𝜔(𝑥, 𝑡) ≤ 𝜔(𝑡) for a.a. (𝑥, 𝑡) ∈ 𝑄. (5.16)

Step 3: 𝑘 ≥ 𝜘. We first insert 𝑧 = 𝑘−(⋅, 𝑡) into Equation (5.8c) and find 𝑘 ≥ 0 a.e. in 𝑄. Next, we insert the test function
𝑧(𝑥, 𝑡) = (𝑘(𝑥, 𝑡) − 𝜘(𝑡))− and obtain as above

⟨
𝑘′(𝑡), (𝑘(𝑡) − 𝜘(𝑡))−⟩

𝑊1,𝑟
per
+ 𝛼2 ∫

Ω

𝑘(𝑡)𝜔(𝑡)(𝑘−𝜘(𝑡))− d𝑥 ≤ 0 (5.17)
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for a.a. 𝑡 ∈ [ 0, 𝑇 ]. By construction 𝜘 satisfies 𝜘′(𝑡) = −𝛼2𝜘(𝑡)𝜔(𝑡) for all 𝑡 ∈ [ 0, 𝑇 ]. It follows

d

d𝑡 ∫Ω
1
2

(
(𝑘(𝑡)−𝜘(𝑡))−)2 d𝑥 = ⟨𝑘′(𝑡)−�̇�(𝑡), (𝑘(𝑡)−𝜘(𝑡))−⟩

𝑊1,𝑟
per

≤ −∫
Ω

𝛼2
(
𝑘(𝑡)𝜔(𝑡) − 𝜘(𝑡)𝜔(𝑡))(𝑘(𝑡)−𝜘(𝑡))− d𝑥 ≤ 0.

(5.18)

To see the last inequality, we use 𝜔 ≤ 𝜔 a.e. in 𝑄 from Step 2, which gives 𝑘(𝑥, 𝑡)𝜔(𝑥, 𝑡) ≤ 𝜘(𝑡)𝜔(𝑡) for a.a. 𝑥 of the set
{𝑥 ∈ Ω ; 𝑘(𝑥, 𝑡) ≤ 𝜘(𝑡)}. Since 𝑘(𝑥, 0) ≥ 𝜘(0) for a.a. 𝑥 ∈ Ω by Equations (5.1) and (5.4b) we obtain, as above, 𝑘(𝑥, 𝑡) ≥ 𝜘(𝑡)
for a.a. (𝑥, 𝑡) ∈ 𝑄. Altogether the upper and lower bounds in Equation (5.9) are established. □

5.3 Energy estimates for (𝒖𝜺, 𝝎𝜺) and improved estimates for 𝒌𝜺

For the subsequent estimates, we fix the data

𝔇 = {𝑇, 𝒇, 𝜔∗, 𝜔
∗, 𝑘∗, 𝑟} (5.19)

and will indicate constants that only depend on𝔇 by 𝐶𝔇. However, depending on the context, the constants 𝐶𝔇 may be
different. We also define the constant

𝛽∗ =
𝑘∗

(1 + 𝜔∗)(1 + 𝑇𝜔∗)𝛼2
, (5.20)

which according to Lemma 5.2 is a lower bound for 𝑘𝜀∕(𝜀+𝜔𝜀). This allows us to derive the standard estimates for 𝒖𝜀 and
𝜔𝜀.

Lemma 5.3. There exists a constant 𝐶𝔇 > 0 such for all 𝜀 ∈ ]0, 1] and all solutions {𝒖𝜀, 𝜔𝜀, 𝑘𝜀} as in Proposition 5.1 we have
the estimates

‖𝒖𝜀‖2𝐿∞(𝑳2) + ∫
𝑄

(
𝛽∗ +

𝑘𝜀
𝜀+𝜔𝜀

)||𝑫(𝒖𝜀)||2 d𝑥 d𝑡 + 𝜀 ∫
𝑄

(||𝑫(𝒖𝜀)||𝑟+|𝒖𝜀|𝑟) d𝑥 d𝑡 ≤ 𝐶𝔇

(‖𝒖0,𝜀‖2𝑳2 + ‖𝒇‖2𝑳2), (5.21a)

‖𝜔𝜀‖2𝐿∞(𝐿2) + ∫
𝑄

(
𝛽∗ +

𝑘𝜀
𝜀+𝜔𝜀

)|∇𝜔𝜀|2 d𝑥 d𝑡 + 𝜀 ∫
𝑄
(|∇𝜔𝜀|𝑟 + 𝜔𝑟𝜀) d𝑥 d𝑡 ≤ 𝐶𝔇

(
1 + ‖𝜔0,𝜀‖2𝐿2). (5.21b)

Proof. We insert the test functions 𝒘 = 𝒖𝜀 and 𝜓 = 𝜔𝜀 in Equations (5.8a) and (5.8b), respectively. Integrating over [0, 𝑡]
and using 𝑘𝜀

𝜀+𝜔𝜀
≥ 𝛽∗ a.e. in 𝑄 (cf. Equation (5.9)), the desired estimates (5.21) are readily obtained by the aid of Gronwall’s

lemma. □

By Equation (5.4), the approximative initial conditions satisfy sup0<𝜀≤1(‖𝒖0,𝜀‖𝑳2+‖𝜔0,𝜀‖𝐿2) < ∞. Therefore, all terms
on the left-hand sides of Equation (5.21) are bounded independently of 𝜀 ∈ ]0, 1].
Of course, one obtains a trivial bound for 𝑘𝜀 in 𝐿∞(0, 𝑇; 𝐿1(Ω)) by testing Equation (5.8c) with 𝑧 ≡ 1. We include this

result in the following nontrivial estimate that implies uniform higher integrability of 𝑘𝜀 as well as suitable bounds for
∇𝑘𝜀. For this, we test Equation (5.8c) by 𝑧 = 1 − (1+𝑘𝜀)

−𝛿 for 𝛿 ∈ ]0, 1[, which is a well-known technique for treating
diffusion equations with an 𝐿1 right-hand side, see, for example, Refs. [40–42].

Proposition 5.4. For given data 𝔇, 𝑝 ∈ [1, 2[, and 𝛿 ∈ ]0, 1[, there exists 𝐶𝑝,𝛿
𝔇

> 0 such that for all 𝜀 ∈ ]0, 1] and all
{𝒖𝜀, 𝜔𝜀, 𝑘𝜀} as in Proposition 5.1, we have the estimate

‖𝑘𝜀‖𝐿∞(0,𝑇;𝐿1(Ω)) + ∫
𝑄

(
𝑘
4𝑝∕3
𝜀 + |∇𝑘𝜀|𝑝 + |∇𝑘𝜀|2

(1+𝑘𝜀)𝛿
+

𝜀|∇𝑘𝜀|𝑟
(1+𝑘𝜀)1+𝛿

+ 𝜀𝑘𝑟−1𝜀

)
d𝑥 d𝑡 ≤ 𝐶

𝑝,𝛿
𝔇

(
1+‖𝒖0,𝜀‖2𝑳2(Ω)+‖𝑘0,𝜀‖𝐿1(Ω)).

(5.22)
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Proof. Step 1: For 0 < 𝛿 < 1, we define Φ ∶ [0,∞[ → [0,∞[ via

Φ(𝜏) = 𝜏 +
1

1 − 𝛿

(
1 − (1+𝜏)1−𝛿

)
, 0 ≤ 𝜏 < ∞. (5.23)

Hence, Φ is convex and satisfies, for all 𝜏 ≥ 0, the estimates

𝜏
2
−

2

1−𝛿
≤ Φ(𝜏) ≤ 𝜏, Φ′(𝜏) = 1 −

1

(1 + 𝜏)𝛿
∈ [0, 1], Φ′′(𝜏) =

𝛿

(1 + 𝜏)1+𝛿
. (5.24)

From pp. 360–361 and 365–366 in Rakotoson [43] (with𝑊1,𝑝
per(Ω) in place of𝑊

1,𝑝
0 (Ω)) we have the chain rule

∫
𝑡

0

⟨
𝑘′𝜀(𝑠), Φ

′(𝑘𝜀(𝑠))
⟩
𝑊1,𝑟
per
d𝑠 = ∫

Ω

Φ(𝑘𝜀(𝑥, 𝑡)) d𝑥 − ∫
Ω

Φ
(
𝑘0,𝜀(𝑥)

)
d𝑥 (5.25)

for all 𝑡 ∈ [ 0, 𝑇 ]. Using div 𝒖𝜀 = 0 we obtain

∫
Ω

Φ′(𝑘𝜀(⋅, 𝑡))𝒖𝜀(𝑡) ⋅ ∇𝑘𝜀(𝑡) d𝑥 = ∫
Ω

𝒖𝜀(𝑡) ⋅ ∇(Φ(𝑘𝜀(⋅, 𝑡)) d𝑥 = 0 for a.a. 𝑡 ∈ [0, 𝑇]. (5.26)

Inserting 𝑧 = Φ′(𝑘𝜀(⋅, 𝑡)) into Equation (5.8c) and using the last relation, we find (recall 𝜈0 = 1 = 𝛼2)

∫
Ω

Φ(𝑘𝜀(𝑥, 𝑡)) d𝑥 + 𝛿 ∫
𝑡

0
∫
Ω

𝑘𝜀
𝜀+𝜔𝜀

|∇𝑘𝜀|2
(1+𝑘𝜀)1+𝛿

d𝑥 d𝑠 + 𝜀 ∫
𝑡

0
∫
Ω

(
𝛿
|∇𝑘𝜀|𝑟

(1+𝑘𝜀)1+𝛿
+ 𝑘𝑟−1𝜀

(
1 −

1

(1+𝑘𝜀)𝛿

))
d𝑥 d𝑠 (5.27)

= ∫
Ω

Φ
(
𝑘0,𝜀(𝑥)

)
d𝑥 + +∫

𝑡

0
∫
Ω

(
𝜀(𝜘(𝑠))𝑟−1 + 𝑘𝜀

𝜀+𝜔𝜀+𝜀𝑘𝜀
||𝑫(𝒖𝜀)||2 − 𝑘𝜀𝜔𝜀

)(
1 −

1

(1+𝑘𝜀)𝛿

)
d𝑥 d𝑠 (5.28)

for all 𝑡 ∈ [ 0, 𝑇 ]. By Equations (5.21a), (5.24), and 𝑘𝜀∕((𝜀+𝜔𝜀)(1+𝑘𝜀)) ≥ 1∕(1+𝜔(𝑇)) > 0, we find

‖𝑘𝜀‖𝐿∞(0,𝑇;𝐿1(Ω)) + 𝛿 ∫
𝑄

|∇𝑘𝜀|2
(1+𝑘𝜀)𝛿

d𝑥 d𝑡 + 𝜀𝛿 ∫
𝑄

|∇𝑘𝜀|𝑟
(1+𝑘𝜀)1+𝛿

d𝑥 d𝑠 + 𝜀 ∫
𝑄

𝑘𝑟−1𝜀 d𝑥 d𝑡

≤ 𝑐

(
1

1−𝛿
+ ‖𝒖0,𝜀‖2𝑳2 + ‖𝑘0,𝜀‖𝐿1 + ‖𝒇‖2𝑳2 + 𝑘𝑟−1∗

)
, (5.29)

where the constant 𝑐 is independent of 𝛿 and 𝜀. Thus, we have estimated all the terms on the left-hand side of
Equation (5.22) except for the second and third.
Step 2: To estimate ∇𝑘𝜀, we choose 𝑝 ∈ ]1, 2[ and 𝛿 = (2−𝑝)∕𝑝 ∈ ]0, 1[. With Hölder’s inequality, we find

∫
𝑄

|∇𝑘𝜀|𝑝 d𝑥 d𝑡 = ∫
𝑄

|∇𝑘𝜀|𝑝
(1+𝑘𝜀)𝑝𝛿∕2

(1+𝑘𝜀)
𝑝𝛿∕2 d𝑥 d𝑡 ≤

(
∫
𝑄

|∇𝑘𝜀|2
(1+𝑘𝜀)𝛿

d𝑥 d𝑡

)𝑝∕2(
∫
𝑄

(1+𝑘𝜀)
𝛿𝑝∕(2−𝑝) d𝑥 d𝑡

)(2−𝑝)∕2
(5.30)

≤ 1

𝛿𝑝∕2

(
𝛿 ∫

𝑄

|∇𝑘𝜀|2
(1+𝑘𝜀)𝛿

d𝑥 d𝑡

)𝑝∕2
𝑇
(|Ω|+‖𝑘𝜀‖𝐿∞(0,𝑇;𝐿1(Ω))). (5.31)

Using Equation (5.29), this provides the estimate for the third term on the left-hand side of Equation (5.22).
Step 3: To show higher integrability of 𝑘𝜀, we simply use the Gagliardo–Nirenberg interpolation from Lemma 4.1 for

𝑧 ∈ 𝑊1,𝑝(Ω) with Ω ⊂ ℝ3 where 𝑝 ∈ [1, 2[ as in Step 2:

‖𝑧‖𝐿4𝑝∕3(Ω) ≤ 𝐶GN‖𝑧‖1∕4𝐿1(Ω)

(‖𝑧‖𝐿1(Ω) + ‖𝑧‖𝐿𝑝(Ω))3∕4, (5.32)
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Applying this to 𝑧 = 𝑘𝜀(𝑡), taking the power 4𝑝∕3, and integrating 𝑡 ∈ [0, 𝑇] we obtain

∫
𝑄

|𝑘𝜀|4𝑝∕3 d𝑥 d𝑡 = ∫
𝑇

0

‖𝑘𝜀(𝑡)‖4𝑝∕3𝐿4𝑝∕3(Ω)
d𝑡 ≤ 𝐶

4𝑝∕3
GN ∫

𝑇

0

𝐾
𝑝∕3
𝜀

(
𝐾𝜀 + ‖∇𝑘𝜀(𝑡)‖𝐿𝑝(Ω))𝑝 d𝑡, (5.33)

where 𝐾𝜀 ∶= ‖𝑘𝜀(⋅)‖𝐿∞(𝐿1(Ω)) ≤ 𝐶 < ∞ by Step 1. Hence, together with Step 2, the second term on the left-hand side of
Equation (5.22) is uniformly bounded by the right-hand side of Equation (5.22).
In summary, the desired a priori estimate (5.22) is established. □

5.4 Estimates for {𝒖′𝜺, 𝝎
′
𝜺, 𝒌

′
𝜺}

We now provide a priori estimates on the time derivative. To obtain estimates that are independent of 𝜀 ∈ ]0, 1], we
recall 𝑟 ≥ 3 and will use 𝜎 > 𝑟 and estimate in the dual space of 𝑊1,𝜎(Ω). While for 𝒖′𝜀 and 𝜔′𝜀, we obtain estimates in
spaces 𝐿𝑞(0, 𝑇; ((𝑊1,𝜎(Ω))∗)with 𝑞 > 1, the time derivative 𝑘′𝜀 can be estimated only for 𝑞 = 1, because of the source term

𝑘𝜀

𝜀+𝜔𝜀+𝜀𝑘𝜀
|𝑫(𝒖𝜀)|2, for which the only 𝜀-independent a priori estimate is in 𝐿1(𝑄) = 𝐿1(0, 𝑇; 𝐿1(Ω)). This problemwill result

in the occurrence of the defect measure 𝜇. The estimates for 𝒖′𝜀 and 𝜔′𝜀 will work for arbitrary 𝑟 ≥ 3, however, for the esti-
mate of 𝑘′𝜀, we need to restrict 𝑟 to the small interval [3, 11∕3[. Here the upper bound 𝑟 < 11∕3 seems to be critical for
𝑁 = 3, while 2 < 𝑟 < 3might still be considered.

Proposition 5.5. Let𝔇 be fixed.
(A) For all 𝑟 ≥ 3 (implying 𝑟′ = 𝑟∕(𝑟−1) ≤ 3∕2) and𝜎 > 𝑟, there exists a constant𝐶1 such that for all 0 < 𝜀 ≤ 1 the solutions

{𝒖𝜀, 𝜔𝜀, 𝑘𝜀} of Proposition 5.1 satisfy the estimates

‖𝒖′𝜀‖𝐿𝑟′ (0,𝑇;(𝑾1,𝜎
per,div

(Ω))∗) + ‖𝜔′𝜀‖𝐿𝑟′ (0,𝑇;(𝑊1,𝜎
per(Ω))∗)

≤ 𝐶1. (5.34)

(B) For all 𝑟 ∈ [3, 11∕3[ and 𝜎 > 8𝑟∕(11−3𝑟), there exists a constant 𝐶2 such that for all 0 < 𝜀 ≤ 1, the solutions {𝒖𝜀, 𝜔𝜀, 𝑘𝜀}
of Proposition 5.1 satisfy

‖𝑘′𝜀‖𝐿1(0,𝑇;(𝑊1,𝜎
per)∗)

≤ 𝐶2. (5.35)

Proof. Step 1. Estimate for 𝒖′𝜀: For𝒘 ∈ 𝑾1,𝜎
per,div

(Ω), we write Equation (5.8a) in the form

⟨
𝒖′𝜀(𝑡), 𝒘

⟩
𝑾1,𝜎

per,div

=
⟨
𝒖′𝜀(𝑡), 𝒘

⟩
𝑾1,𝑟

per,div

= ∫
Ω
(𝒖𝜀(𝑡)⊗𝒖𝜀(𝑡))∶∇𝒘d𝑥 − 𝜈0 ∫

Ω

𝑘𝜀(𝑡)

𝜀+𝜔𝜀(𝑡)
𝑫(𝒖𝜀(𝑡))∶𝑫(𝒘) d𝑥 (5.36)

− 𝜀 ∫
Ω

(||𝑫(𝒖𝜀(𝑡))||𝑟−2𝑫(𝒖𝜀(𝑡))∶𝑫(𝒘) + ||𝒖𝜀(𝑡)||𝑟−2𝒖𝜀(𝑡)⋅𝒘) d𝑥 + ∫
Ω

𝒇(𝑡) ⋅ 𝒘 d𝑥 =∶
4∑

𝑚=1

𝐼𝜀,𝑚(𝑡)

for a.a. 𝑡 ∈ [0, 𝑇]. The aim is to show |𝐼𝜀,𝑚(𝑡)| ≤ 𝑓𝜀,𝑚(𝑡)‖𝒘‖𝑾1,𝜎(Ω) with 𝑓𝜀,𝑚 bounded in 𝐿𝑞𝑚(0, 𝑇) for some 𝑞𝑚 ≥ 𝑟∕(𝑟−1).
For this, we proceed as in Remark 4.2, but use now that𝒘 ∈ 𝑾1,𝜎

per,div(Ω) is fixed.
For 𝐼𝜀,1, we use ∇𝒘 ∈ 𝑳𝜎(Ω) and need to bound |𝒖𝜀⊗𝒖𝜀| ≤ |𝒖𝜀|2 in 𝐿𝜎

′
(Ω), which means 𝒖𝜀 ∈ 𝑳𝑝(Ω) with 𝑝 =

2𝜎∕(𝜎−1). For this, we use the bounds (5.21a) for 𝒖𝜀, which allow us to apply Lemma 4.1(B) with (𝑠1, 𝑝1) = (∞, 2),
(𝑠2, 𝑝2) = (2, 2), 𝑁 = 3, and 𝜃 = 3∕(2𝜎) < 1∕2. This provides the desired 𝑝 = 2𝜎∕(𝜎−1) and 𝑞1 = 𝑠 = 4𝜎∕3.
To estimate 𝐼𝜀,2, we use 𝜀 + 𝜔𝜀(𝑥, 𝑡) ≥ 𝜔(𝑇) > 0 and need to bound

|𝑘𝜀𝑫(𝒖𝜀)| = 𝑘
1∕2
𝜀 |𝑘1∕2𝜀 𝑫(𝒖𝜀)| in 𝐿𝑞2(0, 𝑇; 𝐿𝜎′(Ω)). (5.37)

By Equation (5.21a), we have a uniform bound for |𝑘1∕2𝜀 𝑫(𝒖𝜀)| in 𝐿2(𝑄) = 𝐿2(0, 𝑇; 𝐿2(Ω)). Moreover, Equation (5.22) pro-
vides uniform bounds for ‖𝑘𝜀‖𝐿∞(0,𝑇;𝐿1(Ω)) and for ‖∇𝑘𝜀‖𝑳𝑝(𝑄) with 𝑝 ∈ [1, 2[. Hence, restricting to 𝑞2 ∈ [1, 2], we proceed
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as follows:

‖𝑘𝜀𝑫(𝒖𝜀)‖𝑞2
𝐿𝑞2 (0,𝑇;𝐿𝜎′ (Ω))

≤ ∫
𝑇

0

(‖𝑘1∕2𝜀 ‖𝐿2𝜎∕(𝜎−2)‖𝑘1∕2𝜀 𝑫(𝒖𝜀)‖𝐿2)𝑞2 d𝑡
≤ ∫

𝑇

0

‖𝑘𝜀‖𝑞2∕2𝐿𝜎∕(𝜎−2)
‖𝑘1∕2𝜀 𝑫(𝒖𝜀)‖𝑞2𝐿2 d𝑡 Hölder≤

(
∫

𝑇

0

‖𝑘𝜀‖𝑞2∕(2−𝑞2)𝐿𝜎∕(𝜎−2)
d𝑡

)(2−𝑞2)∕2(
∫
𝑄

𝑘𝜀|𝑫(𝒖𝜀)|2 d𝑡)𝑞2∕2. (5.38)

The second term in the last product is already uniformly bounded. To estimate the first term, we apply Lemma 4.1(B) with
(𝑠1, 𝑝1) = (∞, 1), 𝑠2 = 𝑝2 ∈ [1, 2[, 𝑁 = 3, and 𝜃 = 6𝑝2∕((4𝑝2−3)𝜎) ∈ ]0, 1[, where we use 𝜎 > 𝑟 ≥ 3 such that 𝑝2 can be
chosen close to 2. From the interpolation condition (4.14), we obtain the range of possible 𝑞2 via

2

𝑞2
− 1 =

2−𝑞2
𝑞2

=
1
𝑠
= (1−𝜃)

1
𝑠1
+ 𝜃

1
𝑠2
= 0 + 𝜃

1
𝑝2

=
6

(4𝑝2−3)𝜎
. (5.39)

Thus, we are able to choose all 𝑞2 ∈ [1, 10𝜎∕(5𝜎+6)[ by adjusting 𝑝2 suitably. As 𝜎 > 𝑟 ≥ 3 we see that 𝑞2 = 3∕2 is
always admissible.
Using 𝜎 ≥ 𝑟 ≥ 3 and Hölder’s inequality, we obtain

||𝐼𝜀,3(𝑡)|| ≤ 𝑓𝜀,3(𝑡)‖𝒘‖𝑾1,𝜎 with 𝑓𝜀,3(𝑡) = 𝐶𝜀‖‖𝒖𝜀(𝑡)‖‖𝑟−1𝑾1,𝑟 . (5.40)

By the uniform bound (5.21a), we obtain ‖𝑓𝜀,3‖𝐿𝑟′ (0,𝑇) ≤ 𝐶∗𝜀
1∕(𝑟−1) with a constant 𝐶∗ independent of 𝜀. Thus, we can

choose 𝑞3 = 𝑟′ = 𝑟∕(𝑟−1) ≤ 3∕2.
With |𝐼𝜀,4(𝑡)| ≤ ‖𝒇(𝑡)‖𝐿2‖𝒘(𝑡)‖𝑳2 ≤ 𝐶‖𝒇(𝑡)‖𝐿2‖𝒘‖𝑾1,𝜎 and 𝒇 ∈ 𝑳2(𝑄) = 𝐿2(0, 𝑇; 𝑳2(Ω)), we obtain 𝑞4 = 2, and con-

clude that in all cases, we have 𝑞𝑚 ≥ 𝑟′ = 𝑟∕(𝑟−1) and the first part of Equation (5.34) is established.
Step 2. Estimate for 𝜔′𝜀: We proceed as in Step 1 by writing Equation (5.8b) in the form

⟨
𝜔′𝜀(𝑡), 𝜓

⟩
𝑊1,𝜎 =

5∑
𝑚=1

𝐽𝜀,𝑚(𝑡) with |𝐽𝜀,𝑚(𝑡)| ≤ 𝑔𝜀,𝑚(𝑡)‖𝜓‖𝑊1,𝜎 , (5.41)

where 𝑔𝜀,𝑚 has to be bounded in 𝐿𝑞𝑚(0, 𝑇) for suitable 𝑞𝑚 ≥ 𝑟′ = 𝑟∕(𝑟−1). Exploiting Lemma 5.2, namely 0 <
𝜔(𝑇) ≤ 𝜔𝜀(𝑥, 𝑡) ≤ 𝜔(0) = 𝜔∗ and Equation (5.21b) and proceeding as in Step 1 we easily find 𝑞1 = 𝑞3 = 𝑞5 = ∞, 𝑞2 =
10𝜎∕(5𝜎+6) ≥ 3∕2, and 𝑞4 = 𝑟′ ≤ 3∕2. Thus, the second part of Equation (5.34), and hence all of Equation (5.34),
is established.
Step 3. Estimate for 𝑘′𝜀: We again write

⟨
𝑘′𝜀(𝑡), 𝑧

⟩
= −∫

Ω

(
𝑧𝒖𝜀(𝑡) ⋅ ∇𝑘𝜀(𝑡) −

𝑘𝜀(𝑡)

𝜀+𝜔𝜀(𝑡)
∇𝑘𝜀(𝑡) ⋅ ∇𝑧 +

𝜈0𝑘𝜀(𝑡)

𝜀+𝜔𝜀(𝑡)+𝜀𝑘𝜀(𝑡)
|𝑫(𝒖𝜀(𝑡))|2𝑧 − 𝛼2𝑘𝜀(𝑡)𝜔𝜀(𝑡)𝑧

)
d𝑥

−∫
Ω

𝜀
(|∇𝑘𝜀(𝑡)|𝑟−2∇𝑘𝜀(𝑡) ⋅ ∇𝑧 + |𝑘𝜀(𝑡)|𝑟−2𝑘𝜀(𝑡)𝑧) d𝑥 + 𝜀(𝜘(𝑡))𝑟−1 ∫

Ω

𝑧 d𝑥 =∶
7∑

𝑚=1

𝐾𝜀,𝑚(𝑡)

and have to show that 𝐾𝜀,𝑚(𝑡) ≤ ℎ𝜀,𝑚(𝑡)‖𝑧‖𝑊1,𝜎 , where each ℎ𝜀,𝑚 is bounded in 𝐿1(0, 𝑇) independently of 𝜀 ∈ ]0, 1[.
Before starting the estimates, we note that the condition 𝑟 ∈ [3, 11∕3[ and 𝜎 > 8𝑟∕(11−3𝑟) implies 𝜎 > 12, which will

be useful below.
For𝑚 = 1, we integrate by parts using div 𝒖𝜀 = 0 and obtain

|𝐾𝜀,1(𝑡)| = |||∫
Ω

𝑘𝜀𝒖𝜀⋅∇𝑧 d𝑥
||| ≤ ℎ𝜀,1(𝑡)‖𝑧‖𝑊1,𝜎 with ℎ𝜀,1(𝑡) = ‖𝑘𝜀𝒖𝜀‖𝐿𝜎′ . (5.42)

Using Equation (5.21a) for 𝒖𝜀 and applying Lemma 4.1 with (𝑠1, 𝑝1) = (∞, 2), (𝑠2, 𝑝2) = (2, 2),𝑁 = 3, and 𝜃 = 3∕5, we find
(𝑠, 𝑝) = (10∕3, 10∕3), which means that 𝒖𝜀 is uniformly bounded in 𝐿10∕3(𝑄). Using the uniform bound (5.22) for 𝑘𝜀 in
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𝐿𝑞(𝑄) for all 𝑞 ∈ [1, 8∕3[, we can choose 𝑞 such that 1
𝑞
+

3

10
≤ 1∕𝜎′ < 1 as 𝜎 > 40∕13 and obtain

∫
𝑇

0

ℎ𝜀,1(𝑡) d𝑡 ≤ ∫
𝑇

0

𝐶‖𝑘𝜀(𝑡)‖𝐿𝑞(Ω)‖𝒖𝜀(𝑡)‖𝐿10∕3(Ω) d𝑡 ≤ 𝐶𝑇‖𝑘𝜀‖𝐿𝑞(𝑄)‖𝒖𝜀‖𝐿10∕3(𝑄) ≤ 𝐶𝑇,1. (5.43)

For 𝑚 = 2, we again use Equation (5.22) and 𝜎 > 8. Choosing 𝑝 ∈ [1, 2[ with 3∕(4𝑝) + 1∕𝑝 + 1∕𝜎 ≤ 1, Hölder’s
inequality gives

∫
𝑇

0

|𝐾𝜀,2(𝑡)| d𝑡 ≤ ∫
𝑇

0

‖𝑘𝜀‖𝐿4𝑝∕3‖∇𝑘𝜀‖𝐿𝑝‖∇𝑧‖𝐿𝜎 d𝑡 ≤ 𝐶𝑇,2‖𝑘𝜀‖𝐿4𝑝∕3(𝑄)‖∇𝑘𝜀‖𝐿𝑝(𝑄)‖𝑧‖𝑊1,𝜎 . (5.44)

The case𝑚 = 3 follows easily as ‖𝑧‖𝐿∞(Ω) ≤ 𝐶‖𝑧‖𝑊1,𝜎 because 𝜎 > 𝑁. Together with the simple energy estimate (5.21a)
(uniform boundedness of the dissipation), we obtain

∫
𝑇

0

|𝐾𝜀,3(𝑡)| d𝑡 ≤ 𝐶 ∫
𝑄

𝑘𝜀
𝜀+𝜔𝜀
|𝑫(𝒖𝜀)|2 d𝑥 d𝑡‖𝑧‖𝐿∞ ≤ 𝐶3‖𝑧‖𝑊1,𝜎 . (5.45)

The case𝑚 = 4 is also trivial, since |𝐾𝜀,4(𝑡)| ≤ 𝐶‖𝑘𝜀(𝑡)‖𝜔∗‖𝑧‖𝐿∞ .
The most difficult term is 𝐾𝜀,5 because we do not have an a priori bound on 𝜀|∇𝑘𝜀|𝑟. We adapt the method developed in

Step 2 of the proof of Proposition 5.4. Using

|𝐾𝜀,5(𝑡)| ≤ ℎ𝜀,5(𝑡)‖𝑧‖𝑊1,𝜎 with ℎ𝜀,5(𝑡) = 𝜀‖‖|∇𝑘𝜀(𝑡)|𝑟−1‖‖𝐿𝜎′ (5.46)

we proceed as follows:

∫
𝑇

0

ℎ𝜀,5 d𝑡 = 𝜀 ∫
𝑇

0

‖∇𝑘𝜀(𝑡)‖𝑟−1𝐿(𝑟−1)𝜎′
d𝑡 ≤ 𝜀𝑇1∕𝜎‖∇𝑘𝜀‖𝑟−1𝐿(𝑟−1)𝜎′ (𝑄)

≤ 𝜀𝑇1∕𝜎

(
∫
𝑄

|∇𝑘𝜀|(𝑟−1)𝜎′
(1+𝑘𝜀)𝜌

(1+𝑘𝜀)
𝜌 d𝑥 d𝑡

)1∕𝜎′
(5.47)

for a 𝜌 > 0 to be chosen appropriately. Applying Hölder’s inequality with 𝑝 = 𝑟′∕𝜎′ > 1 and using 𝜀 = 𝜀1∕𝑟𝜀1∕(𝑝𝜎
′), we

continue

≤ 𝜀1∕𝑟𝑇1∕𝜎

(
∫
𝑄

𝜀|∇𝑘𝜀|𝑟
(1+𝑘𝜀)𝑝𝜌

d𝑥 d𝑡

)1∕(𝑝𝜎′)(
∫
𝑄

(1+𝑘𝜀)
𝑝′𝜌 d𝑥 d𝑡

)1∕(𝑝′𝜎′)
. (5.48)

According to Equation (5.22), both integral terms are uniformly bounded if we can choose 𝜌 such that 𝑝𝜌 ∈ ]1, 2] and
𝑝′𝜌 < 8∕3. Writing 𝜘 = 1∕𝑝, this means 𝜘 < 𝜌 < min{2𝜘, 8(1−𝜘)∕3}, which has solutions 𝜌 if and only if 𝜘 ∈ ]0, 8∕11[,
that is, we need 𝑝 = 𝑟′∕𝜎′ > 11∕8, which in term can only be possible if 𝑟′ > 11∕8 or 𝑟 < 11∕3. Then, 𝑝 = 𝑟′∕𝜎′ > 11∕8
is equivalent to 𝜎 > 8𝑟∕(11−3𝑟). This explains the restriction for 𝑟 and 𝜎 in Equation (5.35) and provides the 𝐿1 bound
∫ 𝑇

0
|𝐾𝜀,5(𝑡)| d𝑡 ≤ 𝜀1∕𝑟𝐶𝑟,𝜎‖𝑧‖𝑊1,𝜎 .
The estimate of 𝐾𝜀,6 follows easily from Equation (5.22) using 𝑟−1 ∈ [2, 8∕3[, which implies ‖𝑘𝜀‖𝐿𝑟−1(𝑄) ≤ 𝐶 and thus

∫
𝑇

0

|𝐾𝜀,6(𝑡)| d𝑡 ≤ ∫
𝑇

0

𝜀‖𝑘𝜀‖𝑟−1𝐿𝑟−1
d𝑡 ‖𝑧‖𝐿∞ ≤ 𝜀𝐶‖𝑧‖𝑊1,𝜎 . (5.49)

The case of 𝐾𝜀,7 is trivial.
For later use in the limit passage 𝜀 → 0, we note that

∫
𝑇

0

(|𝐾𝜀,5(𝑡)| + |𝐾𝜀,6(𝑡)| + |𝐾𝜀,7(𝑡)|) d𝑡 ≤ 𝜀1∕𝑟𝐶𝑟,𝜎‖𝑧‖𝑊1,𝜎 . (5.50)
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Hence, the a priori estimate (5.35) for 𝑘′𝜀 is established. □

5.5 Convergent subsequences

After having derived a series of a priori estimates, we are now able to chooseweakly converging subsequences for 𝜀 → 0. Of
course, themajor step is to identify the limits of the nonlinear terms. For simplicity, we now choose one fixed 𝑟∗ ∈ [3, 11∕3[
and a 𝜎∗ > 12, which implies that Parts (A) and (B) of Proposition 5.5 can be applied. From Equations (5.9), (5.21), (5.22),
(5.34), and (5.35), we obtain a limit triple {𝒖, 𝜔, 𝑘} with the properties

𝜔 ≤ 𝜔 ≤ 𝜔 a.e. on 𝑄,

𝒖 ∈ 𝐿2(0, 𝑇;𝑾1,2(Ω)) ∩ 𝐿∞(0, 𝑇; 𝑳2(Ω)) ∩𝑊1,𝑟′∗
(
0, 𝑇; (𝑾

1,𝜎∗
per,div(Ω))

∗
)
,

𝜔 ∈ 𝐿∞(𝑄) ∩ 𝐿2(0, 𝑇;𝑊1,2(Ω)) ∩𝑊1,𝑟′∗
(
0, 𝑇; (𝑊

1,𝜎∗
per (Ω))

∗
)
,

𝑘 ∈ 𝐿∞(0, 𝑇; 𝐿1(Ω)) ∩ 𝐿4𝑝∕3(𝑄) ∩ 𝐿𝑝(0, 𝑇;𝑊
1,𝑝
per(Ω)) ∩ BV(0, 𝑇; (𝑊

1,𝜎∗
per (Ω))

∗
)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(5.51)

for all 𝑝 ∈ [1, 2[, such that along a suitable subsequence (not relabeled) we have

𝒖𝜀 ⇀ 𝒖 in 𝐿2
(
0, 𝑇;𝑾1,2

per,div
(Ω)
)
and weakly∗ in 𝐿∞

(
0, 𝑇; 𝑳2(Ω)

)
, (5.52a)

𝒖′𝜀 ⇀ 𝒖′ in 𝐿𝑟′∗
(
0, 𝑇; (𝑊

1,𝜎∗
per,div

(Ω))∗
)
, (5.52b)

𝜔𝜀 ⇀ 𝜔 in 𝐿2
(
0, 𝑇;𝑊1,2

per(Ω)
)
and weakly∗ in 𝐿∞(𝑄), (5.52c)

𝜔′𝜀 ⇀ 𝜔′ in 𝐿𝑟′∗
(
0, 𝑇; (𝑊

1,𝜎∗
per (Ω))

∗
)
, (5.52d)

𝑘𝜀 ⇀ 𝑘 in 𝐿𝑝
(
0, 𝑇;𝑊

1,𝑝
per(Ω)

)
and in 𝐿4𝑝∕3(𝑄) for all 𝑝 ∈ [1, 2[. (5.52e)

These weak convergences imply the corresponding properties of the limits 𝒖 and 𝜔 in Equation (5.51). Moreover,‖𝑘‖𝐿∞(0,𝑇;𝐿1(Ω)) ≤ 𝐶 < ∞ follows from Equations (5.22) and (5.52e) by a routine argument. As in Sec. 1.3.2 in Barbu
and Precupanu [44], the space 𝐵𝑉(0, 𝑇; 𝑋), where 𝑋 is a Banach space, denotes all functions 𝑔 ∶ [0, 𝑇] → 𝑋 such that
Var𝑋(𝑔, [𝑎, 𝑏]) ∶= sup

∑𝑁
𝑖=1 ‖𝑔(𝑡𝑖)−𝑔(𝑡𝑖−1)‖𝑋 < ∞ where the supremum is taken over all finite partitions 𝑎 ≤ 𝑡0 < 𝑡1 <

⋯ < 𝑡𝑁 ≤ 𝑏. Clearly, Equation (5.35) implies Var(𝑊1,𝜎
per)∗

(𝑘𝜀, [0, 𝑇]) = ‖𝑘′𝜀‖𝐿1(0,𝑇;(𝑊1,𝜎
per)∗)

≤ 𝐶2. Since for all partitions, we
have

𝑁∑
𝑖=1

‖𝑘(𝑡𝑖)−𝑘(𝑡𝑖−1)‖(𝑊1,𝜎
per)∗

≤ lim inf
𝜀→0

𝑁∑
𝑖=1

‖𝑘𝜀(𝑡𝑖)−𝑘𝜀(𝑡𝑖−1)‖(𝑊1,𝜎
per)∗

≤ 𝐶2, (5.53)

which provides ‖𝑘‖BV(0,𝑇;(𝑊1,𝜎∗
per (Ω))∗)

≤ 𝐶2 < ∞ as stated at the end of Equation (5.51).
We next apply the Aubin–Lions–Simon lemma (see Cor. 4, p. 85 in Simon [45], Thm. 5.1, p. 58 in Lions [39], or Lem. 7.7

in Roubíček [25]) to obtain strong convergence. By taking a further subsequence (not relabeled) Vitali’s theorem implies
the pointwise convergence almost everywhere.

𝒖𝜀 → 𝒖 in 𝑳𝑠(𝑄) for all 𝑠 ∈ [1, 10∕3[ and a.e. in 𝑄, (5.54a)
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𝜔𝜀 → 𝜔 in 𝐿𝑝(𝑄) for all 𝑝 > 1 and a.e. in 𝑄, (5.54b)

𝑘𝜀 → 𝑘 in 𝐿𝑞(𝑄) for all 𝑞 ∈ [1, 8∕3[ and a.e. in 𝑄, (5.54c)

To obtain the results in Equations (5.54b) and (5.54c), we first derive strong convergence for 𝑠 = 𝑝 = 𝑞 = 2 and then use
the boundedness of the sequence for higher 𝑠, 𝑝, and 𝑞 to obtain strong convergence for intermediate values by Riesz
interpolation (use Equation (4.21) for 𝒖𝜀).
We are now ready to consider also the limits of the nonlinear terms. We first treat the diffusive terms.

Lemma 5.6. Along the chosen subsequences for 𝜀 → 0, we have the convergences

𝑘𝜀
𝜀+𝜔𝜀

𝑫(𝒖𝜀) ⇀
𝑘
𝜔
𝑫(𝒖) and

𝑘𝜀
𝜀+𝜔𝜀

∇𝜔𝜀 ⇀
𝑘
𝜔
∇𝜔 in 𝑳𝑠(𝑄) for all 𝑠 ∈ [1, 16∕11[, (5.55a)

𝑘𝜀
𝜀+𝜔𝜀

∇𝑘𝜀 ⇀
𝑘
𝜔
∇𝑘 in 𝑳𝜎(𝑄) for all 𝜎 ∈ [1, 8∕7[. (5.55b)

Proof. We first recall the weak convergences of the gradients 𝑫(𝒖𝜀), ∇𝜔𝜀, and ∇𝑘𝜀 in 𝐿𝑝(𝑄) for all 𝑝 ∈ [1, 2[, see
Equation (5.52). Next, we establish the strong convergence

(
𝑘𝜀

𝜀+𝜔𝜀

)1∕2
→

(
𝑘
𝜔

)1∕2
in 𝐿𝑞(𝑄) for all 𝑞 ∈ [1, 16∕3[. (5.56)

To see this, we use the explicit estimate

‖‖‖
(

𝑘𝜀
𝜀+𝜔𝜀

)1∕2
−

(
𝑘
𝜔

)1∕2‖‖‖𝐿𝑞(𝑄)≤ ‖‖‖
(

𝑘𝜀
𝜀+𝜔𝜀

)1∕2
−

(
𝑘

𝜀+𝜔𝜀

)1∕2‖‖‖𝐿𝑞(𝑄)+ ‖‖‖
(

𝑘
𝜀+𝜔𝜀

)1∕2
−

(
𝑘
𝜔

)1∕2‖‖‖𝐿𝑞(𝑄)
≤
‖𝑘𝜀−𝑘‖1∕2𝐿𝑞∕2(𝑄)

(1+𝜔(𝑇))1∕2
+
‖‖(𝜀+𝜔𝜀 − 𝜔) 𝑘1∕2‖‖𝐿𝑞(𝑄)

2(1+𝜔(𝑇))3∕2
. (5.57)

Clearly, the first term on the right-hand side tends to 0 using Equation (5.54c) and 𝑞∕2 < 8∕3. For the second term,
we can still choose 𝑞 ∈ ]𝑞, 16∕3[ and 𝑝 ≫ 1 such that 1∕𝑞 = 1∕𝑞 + 1∕𝑝. Then, Hölder’s inequality, 𝑘1∕2 ∈ 𝐿𝑞(𝑄), and
Equation (5.54b) for 𝑝 = 𝑝 yield the convergence to 0. Hence, the convergence (5.56) is established.
Now using the weak convergences 𝑫(𝒖𝜀) ⇀ 𝑫(𝒖) and ∇𝜔𝜀 ⇀ ∇𝜔, and ∇𝑘𝜀 ⇀ ∇𝑘 in 𝐿𝑝(𝑄) for 𝑝 ∈ [1, 2[ and

Equation (5.56), we obtain the weak convergences

(
𝑘𝜀

𝜀+𝜔𝜀

)1∕2
𝑫(𝒖𝜀) ⇀

(
𝑘

𝜔

)1∕2
𝑫(𝒖),

(
𝑘𝜀

𝜀+𝜔𝜀

)1∕2
∇𝜔𝜀 ⇀

(
𝑘

𝜔

)1∕2
∇𝜔,

(
𝑘𝜀

𝜀+𝜔𝜀

)1∕2
∇𝑘𝜀 ⇀

(
𝑘

𝜔

)1∕2
∇𝑘 (5.58)

in 𝐿𝑞(𝑄) for all 𝑞 ∈ [1, 16∕11[.
However, by the standard a priori estimates (5.21), we see that the first two sequences are bounded in 𝐿2(𝑄) and

hence converge weakly in 𝐿2(𝑄) as well. The convergence of the third term cannot be improved, because we do not have
appropriate a priori bounds.
Multiplying once again by (𝑘𝜀∕(𝜀+𝜔𝜀))1∕2, which converges strongly according to Equation (5.56), we obtain the results

in Equation (5.55). □

5.6 Limit passage 𝜺 → 𝟎 and appearance of the defect measure

In this subsection, we finalize the proof of Theorem 4.1.
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Using the convergences derived above, it is now straight forward to perform the limit passage 𝜀 → 0 in the equation for
𝒖𝜀 and 𝜔𝜀. In the energy equation for 𝑘𝜀, we have to be a little more careful to show the occurrence of the defect measure
𝜇.
In the Steps 1–3, the limit 𝜀 → 0 will be done with test functions with high integrability 𝑠 in 𝑡 ∈ [0, 𝑇] taking values in

the Sobolev𝑊1,𝜏(Ω) with large 𝜏. This choice will be independent of the chosen 𝑟∗ in the regularization terms. After the
artificial 𝑟∗ has disappeared in the limit, in Step 4, we discuss which minimal 𝑠 and 𝜏 can be chosen in the weak form.
Step 1. Limit in the momentum balance for 𝒖𝜀, from Equations (5.6a)–(4.8): We consider a fixed test function 𝒗 ∈

𝐿𝑠(0, 𝑇;𝑾1,𝜏
per,div(Ω))

∗) with 𝑠 = 4 and 𝜏 ≥ 𝑠∗ > 12 and discuss the convergence of the five terms on the left-hand side of
Equation (5.6a) individually.
The first term is linear in 𝒖′𝜀 and converges because of Equation (5.52b). The second term can be rewritten as

∫
Ω
(𝒖𝜀⊗𝒖𝜀) ∶ ∇𝒗d𝑥 d𝑡 and converges by Equation (5.54a).
For the third term, we use the nonlinear convergences from Lemma 5.6, cf. the first in Equation (5.55a). The fourth and

fifth terms converge to 0 by the estimate ∫ 𝑇

0
|𝐼𝜀,3(𝑡)| d𝑡 ≤ 𝐶∗𝜀

1∕(𝑟∗−1)‖𝑫(𝒗)‖𝐿𝑟∗ (𝑳𝜎∗ )≤𝐶𝜀1∕(𝑟∗−1)‖𝒗‖𝐿𝑠(𝑾1,𝜏), see Step 1 of the
proof of Proposition 5.5.
Thus, Equation (4.8) is established for test functions 𝑣 ∈ 𝐿𝑠(0, 𝑇;𝑾1,𝜏

per,div(Ω))
∗).

Step 2. Limit for 𝜔𝜀, from Equation (5.6b) to Equation (4.9): This case works similar as Step 1.
Step 3. Limit in the energy equation for 𝑘𝜀, from Equation (5.6c) to Equation (3.10): For this limit passage, we choose a

test function 𝑧 ∈ 𝐶1per,𝑇(𝑄),
because we want to take the limit of the dissipation, which is bounded only in 𝐿1(𝑄).
The first term of the left-hand side in Equation (5.6c) is integrated by parts in time to obtain

∫
𝑇

0

⟨
𝑘′𝜀(𝑡), 𝑧(𝑡)

⟩
𝑊1,𝑟
per
d𝑡 = ∫

Ω

𝑘0,𝜀𝑧(⋅, 0) d𝑥 − ∫
𝑄

𝑘𝜀𝑧
′ d𝑥 d𝑡 → ∫

Ω

𝑘0𝑧(⋅, 0) d𝑥 − ∫
𝑄

𝑘𝑧′ d𝑥 d𝑡 (5.59)

by Equations (5.4c) and (5.52e). For the second term, we use Equation (5.54) and conclude

∫
𝑄

𝑧𝒖𝜀⋅∇𝑘𝜀 d𝑥 d𝑡 = −∫
𝑄

𝑘𝜀∇𝒖𝜀⋅∇𝑧 d𝑥 d𝑡 → −∫
𝑄

𝑘𝒖⋅∇𝑧 d𝑥 d𝑡. (5.60)

For the third term, Lemma 5.6 can be exploited (cf. Equation (5.55a)) to find

∫
𝑄

𝑘𝜀
𝜀 + 𝜔𝜀

∇𝑘𝜀 ⋅ ∇𝑧 d𝑥 d𝑡 → ∫
𝑄

𝑘
𝜔
∇𝑘 ⋅ ∇𝑧 d𝑥 d𝑡. (5.61)

We return to the fourth term at the end and continuewith the fifth term. Using Equation (5.54) and𝜔+𝜀 = 𝜔𝜀 ≥ 𝜔(⋅) > 0,
we easily find ∫

𝑄
𝑘𝜀𝜔

+
𝜀 𝑧 d𝑥 d𝑡 → ∫

𝑄
𝑘𝜔𝑧 d𝑥 d𝑡.

The sixth and seventh terms on the left-hand side and the single term on the right-hand side converge to 0, which was
established in Step 3 of the proof of Proposition 5.5, see Equation (5.50).
For the fourth term, it remains to prove the appearance of the non-negative defect measure𝜇 ∈ ≥(𝑄) such that

∫
𝑄

𝜈0𝑘𝜀
𝜀+𝜔𝜀+𝜀𝑘𝜀

||𝑫(𝒖𝜀)||2𝜙 d𝑥 d𝑡 ⟶ ∫
𝑄

𝜈0𝑘

𝜔
||𝑫(𝒖)||2𝜙 d𝑥 d𝑡 + ∫

𝑄

𝜙 d𝜇 for all 𝜙 ∈ 𝐶(𝑄). (5.62)

Indeed, by the positivity of the integrand and the a priori estimate (5.21a), we can apply Riesz’ Representation Theorem
for linear continuous functionals on 𝐶(𝑄). Hence, there exist 𝜇 ∈ ≥(𝑄) such that

∫
𝑄

𝜈0𝑘𝜀
𝜀+𝜔𝜀+𝜀𝑘𝜀

||𝑫(𝒖𝜀)||2𝜙 d𝑥 d𝑡 → ∫
𝑄

𝜙 d𝜇 for all 𝜙 ∈ 𝐶(𝑄). (5.63)

As in Lemma 5.6 ,we can show that ( 𝑘𝜀

𝜀+𝜔𝜀+𝜀𝑘𝜀
)1∕2𝑫(𝒖𝜀) converges weakly to (𝑘∕𝜔)1∕2𝑫(𝒖) in 𝑳2(𝑄). Of course, this weak

convergence remains true if we multiply by a continuous function 𝜓 ∈ 𝐶(𝑄). Thus, the lower semi-continuity of the 𝐿2
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norm yields

∫
𝑄

𝜓2 d𝜇 = lim
𝜀→0 ∫𝑄

𝜈0𝑘𝜀
𝜀 + 𝜔𝜀 + 𝜀𝑘𝜀

||𝑫(𝒖𝜀)||2𝜓2 d𝑥 d𝑡 ≥ ∫
𝑄

𝜈0𝑘

𝜔
||𝑫(𝒖)||2𝜓2 d𝑥 d𝑡 (5.64)

for all 𝜓 ∈ 𝐶(𝑄). Thus, the linear functional 𝜙 ↦ ∫
𝑄
𝜙 d𝜇 − ∫

𝑄

𝜈0𝑘

𝜔
|𝑫(𝒖)|2𝜙 d𝑥 d𝑡 is non-negative and defines the desired

defect measure 𝜇 ∈ ≥(𝑄), and

∫
𝑄

𝜙 d𝜇 = ∫
𝑄

𝜈0𝑘

𝜔
||𝑫(𝒖)||2𝜙 d𝑥 d𝑡 + ∫

𝑄

𝜙 d𝜇 for all 𝜙 ∈ 𝐶(𝑄), (5.65)

which gives the desired convergence (5.62).
Step 4.More test functions: After having passed to the limit 𝜀 → 0, the regularization terms involving the exponent 𝑟 have

disappeared. From the a priori estimates (5.51) for {𝒖, 𝜔, 𝑘}, we know that 𝒖⊗𝒖 ∈ 𝐿5∕3(𝑄) and 𝑘

𝜔
𝑫(𝒖) ∈ 𝐿𝑞(𝑄) for all 𝑞 ∈

[1, 16∕11[. Thus, by density, we can extend the set of test function 𝒗 in Equation (4.6) can be chosen in 𝐿𝑠(0, 𝑇;𝑊1,𝜏
per,div(Ω))

for any 𝑠 > 16∕5 and 𝜏 > 16∕5. This proves Equations (4.8) and (4.9) for the full set of test functions.
Moreover, we find 𝒖′ ∈ 𝐿𝑞((𝑊

1,𝑞′

per,div(Ω))
∗) for all 𝑞 ∈ [1, 16∕11[, which proves Equation (4.6).

Step 5. Several further statements: To derive Equation (4.5), we define the functional  ∶ (𝑘, 𝒖, 𝜔) ↦
∫
𝑄
𝑘 (|𝑫(𝒖)|2+|∇𝜔|2) d𝑥 d𝑡 and use the a priori estimate  (𝑘𝜀, 𝒖𝜀, 𝜔𝜀) ≤ 𝐶, which follows from Equation (5.21) since

𝜔𝜀 ≥ 𝜔(𝑇) > 0. The functional is convex in 𝒖 and 𝜔, hence, it is lower semicontinuous with respect to strong convergence
in 𝑘 (see Equation (5.54c)) and weak convergence for (𝒖, 𝜔) (see Equations (5.52a) and (5.52c)), so that

 (𝑘, 𝒖, 𝜔) ≤ lim inf
𝜀→0

 (𝑘𝜀, 𝒖𝜀, 𝜔𝜀) ≤ 𝐶, (5.66)

which is the desired estimate (4.5). The limit passage 𝜀 → 0 in the pointwise a priori estimates (5.9) leads immediately to
the pointwise estimates (4.3) for 𝜔 and 𝑘.
By Equations (5.52b) and (5.52d), the functions 𝒖𝜀(⋅) and 𝜔𝜀 are uniformly bounded with respect to 𝜀 ∈ ]0, 1]

in 𝑊1,𝑟∗(0, 𝑇; (𝑊1,𝜎∗(Ω))∗) ⊂ 𝐶1∕𝑟∗([0, 𝑇]; (𝑊1,𝜎∗(Ω))∗). Thus, we have uniform convergence and obtain (𝒖, 𝜔) ∈
𝐶1∕𝑟∗([0, 𝑇]; (𝑾1,𝜎∗(Ω))∗×(𝑊1,𝜎∗(Ω))∗). Together with the essential boundedness of (𝒖, 𝜔) in 𝐿2(Ω)×𝐿2(Ω), this implies

(𝒖, 𝜔) ∈ 𝐶w([0, 𝑇]; 𝑳
2(Ω)×𝐿2(Ω)). (5.67)

Hence, Equation (4.4) is established. Moreover, with Equation (5.4c) and the uniform convergence, we deduce the initial
conditions (4.7), that is, 𝒖(⋅, 0) = 𝒖0 and 𝜔(⋅, 0) = 𝜔0.
Step 6. Energy estimates: To obtain the energy-dissipation inequality (3.11) for the Navier–Stokes equation, we insert

𝒘 = 𝒖𝜀(𝑡) into Equation (5.8a), integrate over the interval [0, 𝑡], drop the non-negative term ∫ 𝑡

0
∫
Ω
𝜀|𝑫(𝒖𝜀)|𝑟 d𝑥 d𝑡, and take

the limit 𝜀 → 0.
Finally, we insert 𝑧 ≡ 1 into Equation (5.8c), integrate over [0, 𝑡] and add this identity to the one just obtained for 𝒖𝜀.

Using 𝑘𝜀

𝜀+𝜔𝜀
−

𝑘𝜀

𝜀+𝜔𝜀+𝜀𝑘𝜀
≥ 0, we can drop the two dissipation terms involving |𝑫(𝒖𝜀)|2. Moreover, the regularization term

∫
Ω
𝜀|∇𝑘𝜀|𝑟−2∇𝑘𝜀 ⋅ ∇𝑧 d𝑥 with 𝑧 ≡ 1 gives 0. Hence, taking the limit 𝜀 → 0 yields inequality (3.12) for the total energy.
With this, the proof of our main existence result in Theorem 4.1 is complete.
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APPENDIX A: EXISTENCE OF APPROXIMATE SOLUTIONS
We now provide the proof of Proposition 5.1, which will be obtained as an application of a general existence result of
evolutionary equations of pseudo-monotone type.
We consider a separable reflexive Banach space 𝑽 that is continuously and densely embedded in a Hilbert space 𝑯

such that𝑽 ⊂ 𝑯 ≈ 𝑯∗ ⊂ 𝑽∗. For𝑈 ∈ 𝑽 and Ξ ∈ 𝑽∗, we denote the dual pairing by ⟨Ξ,𝑈⟩. Our operator𝐴 ∶ 𝑽 → 𝑽∗ is
assumed to satisfy the following conditions depending on 𝑝 > 1:

𝑝-boundedness: ∃𝐶1 > 0 ∶ ‖𝐴(𝑈)‖𝑽∗ ≤ 𝐶1

(
1+‖𝑈‖𝑝−1𝑽

)
for all 𝑈 ∈ 𝑽; (A.1a)

𝑝-coercivity: ∃𝐶2 > 0 ∶ ⟨𝐴(𝑈),𝑈⟩ ≥ 1
𝐶2
‖𝑈‖𝑝𝑽 − 𝐶2 for all 𝑈 ∈ 𝑽; (A.1b)

pseudo-monotonicity:

⎧⎪⎨⎪⎩
if 𝑈𝑚 ⇀ 𝑈 in 𝑽 and lim sup

𝑚→∞
⟨𝐴(𝑈𝑚),𝑈𝑚−𝑈⟩ ≤ 0, then

⟨𝐴(𝑈),𝑈−𝑉⟩ ≤ lim inf
𝑚→∞
⟨𝐴(𝑈𝑚),𝑈𝑚−𝑉⟩ for all 𝑉 ∈ 𝑽.

⎫⎪⎬⎪⎭ (A.1c)

Under these conditions, the following existence result is available.

Theorem A.1 see, e.g., Thm. 8.9 in Roubíček [25]. Let 𝑽 and 𝑯 be as above and let the operator 𝐴 ∶ 𝑽 → 𝑽∗ sat-
isfy the assumptions (A.1) with 𝑝 > 1. Then, for all 𝑇 > 0, all 𝑢0 ∈ 𝑯, and all 𝑓 ∈ 𝐿𝑝

′
([0, 𝑇]; 𝑽∗), there exists a solution

𝑢 ∈ 𝐿𝑝(0, 𝑇;𝑽) ∩ 𝐶([0, 𝑇];𝑯) ∩𝑊1,𝑝′ (0, 𝑇;𝑽∗) of the Cauchy problem

𝑢′(𝑡) + 𝐴(𝑢(𝑡)) = 𝑓(𝑡) in𝑽∗ for a.a. 𝑡 ∈ [0, 𝑇] and 𝑢(0) = 𝑢0. (A.2)

To apply this result, we choose 𝑝 = 𝑟 > 3, 𝑈 = (𝒖, 𝜔, 𝑘),

𝑯 = 𝑳2
div
(Ω) × 𝐿2(Ω) × 𝐿2(Ω), and 𝑽 = 𝑾1,𝑟

per,div(Ω) ×𝑊
1,𝑟
per(Ω) ×𝑊

1,𝑟
per(Ω). (A.3)

https://folk.ntnu.no/lqvist/p-laplace.pdf
https://folk.ntnu.no/lqvist/p-laplace.pdf
https://doi.org/10.1002/zamm.202000019
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The operator 𝐴 is defined to make the approximate system (5.6) equivalent to the abstract Cauchy problem (A.2). We
recall that 𝜀 > 0 is fixed in Proposition 5.1, so we do not keep track of the dependence on 𝜀. With 𝑉 = (𝒗, 𝜑, 𝑤), we define
𝐴 ∶ 𝑉 → 𝑉∗ by

⟨𝐴(𝑈), 𝑉⟩ = 𝐼(𝑈,𝑉)

∶= ∫
Ω

𝒖⋅∇𝒖 ⋅ 𝒗 + ∫
Ω

𝑘+

𝜀 + 𝜔+
𝑫(𝒖) ∶ 𝑫(𝒗) + ∫

Ω

𝜑𝒖 ⋅ ∇𝜔 + ∫
Ω

𝑘+

𝜀 + 𝜔+
∇𝜔 ⋅ ∇𝜑 (A.4)

+ ∫
Ω

𝜔+𝜔𝜑 + ∫
Ω

𝑤𝒖 ⋅ ∇𝑘 + ∫
Ω

𝑘+

𝜀+𝜔+
∇𝑘 ⋅ ∇𝑤 − ∫

Ω

𝑘+

𝜀+𝜔++𝜀𝑘+
||𝑫(𝒖)||2𝑤 + ∫

Ω

𝑘+𝜔+𝑤

+ 𝜀 ∫
Ω

(||𝑫(𝒖)||𝑟−2𝑫(𝒖) ∶ 𝑫(𝒗) + |𝒖|𝑟−2𝒖 ⋅ 𝒗 + |∇𝜔|𝑟−2∇𝜔 ⋅ ∇𝜑 + |𝜔|𝑟−2𝜔𝜑 + |∇𝑘|𝑟−2∇𝑘 ⋅ ∇𝑤 + |𝑘|𝑟−2𝑘𝑤). (A.5)

For the rest of this appendix, we continue to omit the measure symbol “ d𝑥” for integration overΩ. Moreover, we have set
𝛼2 = 𝜈0 = 1 for notational simplicity, because these numerical constant have no influence on the analysis.

Proof of Proposition 5.1. It remains to establish the conditions (A.1) on the operator 𝐴.
Step 1. 𝑟-boundedness (A.1a): Using 𝑟 > 3 and Hölder’s inequality, it is easily seen that all integrals in the definition of

𝐼(𝑈, 𝑉) are well-defined. In particular, we find a constant 𝑐1 > 0 such that

||𝐼(𝑈, 𝑉)|| ≤ 𝑐1
(‖𝑈‖2𝑽 + ‖𝑈‖𝑟−1𝑽

)‖𝑉‖𝑽 for all 𝑈,𝑉 ∈ 𝑽. (A.6)

But this implies Equation (A.1a) because of 𝑟 ≥ 3.
Step 2. 𝑟-coercivity (A.1b): For estimating ⟨𝐴(𝑈),𝑈⟩ = 𝐼(𝑈,𝑈) from below, we see that all convective terms disappear

because of div 𝒖 = 0. After dropping the three non-negative terms arising from the dissipation terms involving 𝑘+∕(𝜀+𝜔+),
we find

⟨𝐴(𝑈),𝑈⟩ = 𝐼(𝑈,𝑈) ≥ 𝜀‖‖(𝑫(𝒖), 𝒖,∇𝜔, 𝜔,∇𝑘, 𝑘)‖‖𝑟𝐿𝑟(Ω) − ∫
Ω

𝑘+

𝜀+𝜔++𝜀𝑘+
||𝑫(𝒖)||2𝑘 (A.7)

for all𝑈 ∈ 𝑽. We now use 𝑘+∕(𝜀+𝜔++𝜀𝑘+) ≤ 1∕𝜀 and 𝑟 ≩ 3. By Hölder’s and Young’s inequality, we find 𝑐2 > 0 such that

∫
Ω

𝑘+

𝜀+𝜔++𝜀𝑘+
||𝑫(𝒖)||2𝑘 ≤ 1

𝜀 ∫Ω
||𝑫(𝒖)||2𝑘 ≤ 𝜀

2 ∫
Ω

||𝑫(𝒖)||𝑟 + 𝜀
2 ∫

Ω

|𝑘|𝑟 + 𝑐2, (A.8)

where the constant 𝑐2 depends on 𝜀 > 0, 𝑟 > 3, and vol(Ω). Inserting this into Equation (A.7) and using Korn’s inequality
in𝑾1,𝑟(Ω), we have established Equation (A.1b) for 𝑝 = 𝑟.
Step 3. Strong convergence: In the remaining two steps, we consider a sequence 𝑈𝑚 = (𝒖𝑚, 𝜔𝑚, 𝑘𝑚) satisfying the

assumptions in condition (A.1c), namely

(a) 𝑈𝑚 ⇀ 𝑈 in 𝑽 (b) lim sup
𝑚→∞

⟨𝐴(𝑈𝑚),𝑈𝑚−𝑈⟩ ≤ 0. (A.9)

In this step, we first show that this implies the strong convergence 𝑈𝑚 → 𝑈 in 𝑽, and in Step 4, we deduce the liminf
estimate for Equation (A.1c).
Combining parts (a) and (b) of Equation (A.9), we immediately obtain

lim sup
𝑚→∞

⟨
𝐴(𝑈𝑚) − 𝐴(𝑈) , 𝑈𝑚 − 𝑈

⟩ ≤ 0. (A.10)
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We decompose these duality products into ten separate integrals, namely

⟨
𝐴(𝑈𝑚) − 𝐴(𝑈),𝑈𝑚 − 𝑈

⟩
=

10∑
𝑗=1

𝐾𝑗,𝑚 (A.11)

∶= ∫
Ω
[𝒖𝑚⋅∇𝒖𝑚−𝒖⋅∇𝒖] ⋅ (𝒖𝑚−𝒖) +∫

Ω

[
𝑘+𝑚

𝜀+𝜔+𝑚
𝑫(𝒖𝑚) −

𝑘+

𝜀+𝜔+
𝑫(𝒖)

]
∶𝑫(𝒖𝑚−𝒖) + ∫

Ω

(𝒖𝑚⋅∇𝜔𝑚 − 𝒖⋅∇𝜔) (𝜔𝑚−𝜔)

+∫
Ω

[
𝑘+𝑚

𝜀+𝜔+𝑚
∇𝜔𝑚 −

𝑘+

𝜀+𝜔+
∇𝜔

]
⋅ ∇(𝜔𝑚−𝜔) + ∫

Ω

(𝜔+𝑚𝜔𝑚 − 𝜔+𝜔)(𝜔𝑚−𝜔) + ∫
Ω

(𝒖𝑚 ⋅ ∇𝑘𝑚 − 𝒖 ⋅ ∇𝑘)(𝑘𝑚−𝑘)

+∫
Ω

[
𝑘+𝑚

𝜀+𝜔+𝑚
∇𝑘𝑚 −

𝑘+

𝜀+𝜔+
∇𝑘

]
⋅ ∇(𝑘𝑚−𝑘) + ∫

Ω

(𝑘𝑚𝜔
+
𝑚 − 𝑘𝜔+)(𝑘𝑚−𝑘) − ∫

Ω

(
𝑘+𝑚|𝑫(𝒖𝑚)|2
𝜀+𝜔+𝑚+𝜀𝑘

+
𝑚

−
𝑘+ |𝑫(𝒖)|2
𝜀+𝜔++𝜀𝑘+

)
(𝑘𝑚−𝑘)

+∫
Ω

𝜀 [(Φ𝑟(𝑫(𝒖𝑚)) − Φ𝑟(𝑫(𝒖)))∶𝑫(𝑢𝑚−𝒖) + (Φ𝑟(𝒖𝑚) − Φ𝑟(𝒖)) ⋅(𝒖𝑚−𝒖) + (Φ𝑟(∇𝜔𝑚) − Φ𝑟(∇𝜔)) ⋅ ∇(𝜔𝑚−𝜔)

+ (Φ𝑟(𝜔𝑚) − Φ𝑟(𝜔))(𝜔𝑚−𝜔) + (Φ𝑟(∇𝑘𝑚) − Φ𝑟(∇𝑘)) ⋅ ∇(𝑘𝑚−𝑘) + (Φ𝑟(𝑘𝑚) − Φ𝑟(𝑘)) (𝑘𝑚−𝑘) ] , (A.12)

where Φ𝑟(𝝃 ) ∶= |𝝃 |𝑟−2𝝃 . The last term 𝐾10,𝑚 can be used to control 𝑈𝑚 − 𝑈 in the norm of 𝑽 by using the estimate(
Φ𝑟(𝝃 ) − Φ𝑟(𝜼)

)
⋅ (𝝃−𝜼) ≥ 22−𝑟||𝝃 − 𝜼||𝑟 for all 𝝃 , 𝜼 ∈ ℝ𝑁, (A.13)

see Lindqvist [46] for the derivation of the exact constant. In particular, we find

𝐾10,𝑚 ≥ 𝜀22−𝑟‖‖𝑈𝑚 − 𝑈‖‖𝑟𝑽, (A.14)

and the strong convergence 𝑈𝑚 → 𝑈 follows if we show lim sup𝑚→∞ 𝐾10,𝑚 ≤ 0.
By Equation (A.10), we control the limsup of

∑10
1 𝐾𝑗,𝑚 and hence obtain

lim sup
𝑚→∞

𝐾10,𝑚 = lim sup
𝑚→∞

(
10∑
𝑗=1

𝐾𝑗,𝑚 −
9∑
𝑙=1

𝐾𝑙,𝑚

)
≤ lim sup

𝑚→∞

10∑
𝑗=1

𝐾𝑗,𝑚 − lim inf
𝑚→∞

9∑
𝑙=1

𝐾𝑙,𝑚
(A.10)≤ 0 −

9∑
𝑙=1

lim inf
𝑚→∞

𝐾𝑙,𝑚. (A.15)

Thus, it suffices to show lim inf𝑚→∞ 𝐾𝑙,𝑚 ≥ 0 for 𝑙 ∈ {1, … , 9}. To do so, we use𝑈𝑚 ⇀ 𝑈 (i.e., Equation (A.9 a)), which by
𝑟 > 3 and the compact embedding𝑊1,𝑟(Ω) ⋐ 𝐶0(Ω) implies

𝒖𝑚 → 𝒖, 𝜔𝑚 → 𝜔, 𝑘𝑚 → 𝑘 uniformly in Ω. (A.16)

For treating 𝐾1,𝑚, we use integration by parts and div 𝒖𝑚 = div 𝒖 = 0 to find

𝐾1,𝑚 = ∫
Ω
(div(𝒖𝑚⊗𝒖𝑚) ∶ ∇𝒖 − 𝒖⋅∇𝒖 ⋅ 𝒖𝑚) → ∫

Ω
(div(𝒖⊗𝒖) ∶ ∇𝒖 − 𝒖⋅∇𝒖 ⋅ 𝒖) = 0, (A.17)

because of the uniform convergence 𝒖𝑚 → 𝒖.
Similarly, the other convective terms 𝐾3,𝑚 and 𝐾6.𝑚 converge to 0, since 𝜔𝑚 → 𝜔 and 𝑘𝑚 → 𝑘 converge uniformly.
For the second term 𝐾2,𝑚, we again use the uniform convergence in the decomposition

𝐾2,𝑚 = ∫
Ω

(
𝑘+𝑚

𝜀+𝜔+𝑚
−

𝑘+

𝜀+𝜔+

)
𝑫(𝒖𝑚) ∶ 𝑫(𝒖𝑚−𝒖) + ∫

Ω

𝑘+

𝜀+𝜔+
𝑫(𝒖𝑚−𝒖) ∶ 𝑫(𝒖𝑚−𝒖). (A.18)

The first integral converges to 0 as the two terms involving𝑫 are bounded in 𝑳𝑟(Ω) ⊂ 𝑳2(Ω)while the prefactor converges
to 0 uniformly. The second integral is non-negative, hence lim inf

𝑚→∞
𝐾2,𝑚 ≥ 0 follows. Analogously, the lim inf

𝑚→∞
of 𝐾4,𝑚 and

𝐾7,𝑚 is non-negative.
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By uniform convergence of the integrands, we easily obtain 𝐾5,𝑚 → 0 and 𝐾8,𝑚 → 0.
In 𝐾9,𝑚, the integrand is a product of a function bounded uniformly in 𝐿𝑟∕2(Ω) and 𝑘𝑚−𝑘, which converges uniformly

to 0; hence 𝐾9,𝑚 → 0 as well.
This finishes the proof of Step 3 guaranteeing 𝑈𝑚 → 𝑈 in 𝑽.
Step 4. 𝐴 is pseudo-monotone: For the sequence 𝑈𝑚 satisfying Equation (A.9) we have to show

⟨𝐴(𝑈),𝑈−𝑉⟩ ≤ lim inf
𝑚→∞
⟨𝐴(𝑈𝑚),𝑈𝑚−𝑉⟩ for all 𝑉 = (𝒗, 𝜑, 𝑤) ∈ 𝑽 (A.19)

By Step 3, we are now able to use the strong convergence 𝑈𝑚 → 𝑈. Again we split the duality-product term into 10 parts
and treat the parts separately:

⟨
𝐴(𝑈𝑚),𝑈𝑚 − 𝑉

⟩
=

10∑
𝑗=1

𝐺𝑗,𝑚 (A.20)

∶= ∫
Ω

𝒖𝑚⋅∇𝒖𝑚 ⋅ (𝒖𝑚−𝒗) + ∫
Ω

𝑘+𝑚

𝜀+𝜔+𝑚
𝑫(𝒖𝑚) ∶ 𝑫(𝒖𝑚−𝒗) + ∫

Ω

𝒖𝑚⋅∇𝜔𝑚 (𝜔𝑚−𝜑)

+∫
Ω

𝑘+𝑚

𝜀+𝜔+𝑚
∇𝜔𝑚 ⋅ ∇(𝜔𝑚−𝜑) + ∫

Ω

𝜔+𝑚𝜔𝑚(𝜔𝑚−𝜑) + ∫
Ω

𝒖𝑚⋅∇𝑘𝑚 (𝑘𝑚−𝑤)

+∫
Ω

𝑘+𝑚

𝜀+𝜔+𝑚
∇𝑘𝑚 ⋅ ∇(𝑘𝑚−𝑤) + ∫

Ω

𝑘𝑚𝜔
+
𝑚(𝑘𝑚−𝑤) − ∫

Ω

𝑘+𝑚

𝜀+𝜔+𝑚+𝜀𝑘
+
𝑚

||𝑫(𝒖𝑚)||2(𝑘𝑚−𝑤)
+∫

Ω

𝜀 (Φ𝑟(𝑫(𝒖𝑚)) ∶ 𝑫(𝒖𝑚−𝒗) + Φ𝑟(𝒖𝑚) ⋅ (𝒖𝑚−𝒗) + Φ𝑟(∇𝜔𝑚) ⋅ ∇(𝜔𝑚−𝜑)

+Φ𝑟(𝜔𝑚)(𝜔𝑚−𝜑) + Φ𝑟(∇𝑘𝑚) ⋅ ∇(𝑘𝑚−𝑤) + Φ𝑟(𝑘𝑚)(𝑘𝑚−𝑤)) . (A.21)

Using the uniform convergence of𝑈𝑚 (see Equation (A.16)) and the strong convergence in 𝐿𝑟(Ω) of the derivatives∇𝑈𝑚,
it is straight forward to see that the integrals 𝐺𝑗,𝑚 for 𝑗 ∈ {1, … , 9} converge to their respective limits. For 𝐺10,𝑚, we can
use the estimate

||Φ𝑟(𝝃 ) − Φ𝑟(𝜼)|| ≤ 3𝑟
(|𝝃 | + |𝜼|)𝑟−2||𝝃 − 𝜼|| for all 𝝃 , 𝜼 ∈ ℝ𝑁, (A.22)

see “exerc. 10.a”, p. 257 in Bourbaki [30]. Thus, we conclude that Equation (A.19) holds, even with equality.
Hence, all the assumptions in Equation (A.1) are established, TheoremA.1 is applicable, and the proof of Proposition 5.1

is complete. □

Remark A.2. An alternative proof for Proposition 5.1 is given in the first draft [47] of the present work. That proof is based
on the method of elliptic regularization of abstract evolution equations, cf. Ch. 3, Thm. 1.2 [39].
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