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Abstract

The mechanical behaviour of metamaterials typically depends on their microstructural con-

figuration and composition, in addition to their relative density. The design of these materials

requires extensive experiments or complex finite element models which tend to be numeri-

cally demanding. In order to understand, control and optimise the macroscopic mechanical

behaviour, in this paper numerical homogenisation is applied to a simple square unit cell

with a single inclusion using a combination of elastic and viscoelastic responses on the mi-

cro level. Through a systematic analysis of unit cell behaviour with increasingly complex

microstructural configurations, it is shown how certain macroscale constitutive laws can be

obtained in a controlled and controllable manner.

Keywords Numerical homogenisation · Viscoelasticity · Representative Volume Element ·

Multiscale

1 Introduction

Modern manufacturing technologies have made it possible to specify and design microstruc-

tural properties to achieve desired macrostructural properties, which may be difficult to

achieve with conventional or natural materials (Barchiesi et al. 2019). According to the liter-

ature, metamaterials’ applications in engineering roughly fall into three main fields, namely

electromagnetic, acoustic and mechanical applications (Askari et al. 2020). In this paper,

the focus will be on the mechanical behaviour of metamaterials with particular emphasis on

elastic and viscoelastic properties. Mechanical metamaterials can be utilised in many real

� H. Askes

h.askes@utwente.nl

I.H.A. Abuzayed

ihaabuzayed1@sheffield.ac.uk

Z. Ozdemir

z.ozdemir@sheffield.ac.uk

1 Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield,

S1 3JD, UK

2 Faculty of Engineering Technology, University of Twente, Drienerlolaan 5, Enschede, 7522 NB,

The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s11043-022-09567-8&domain=pdf
http://orcid.org/0000-0002-4900-1376
mailto:h.askes@utwente.nl
mailto:ihaabuzayed1@sheffield.ac.uk
mailto:z.ozdemir@sheffield.ac.uk


Mechanics of Time-Dependent Materials

life applications, such as structural components of vehicles and aircraft, thermal insulators,

wave filters, and blast and impact protective devices.

The general performance of metamaterials depends on the properties of the original ma-

terial, relative density and the microstructural configuration of the unit cell, and they can be

designed using different parent materials and manufacturing techniques. Typical lightweight

geometries studied in the literature include lattice structures such as pyramids (Lee et al.

2006), octagons (Davami et al. 2019) and re-entrant cubes (Ozdemir et al. 2016, 2017).

Furthermore, parent materials vary from metals such as titanium (Jamshidinia et al. 2013;

Ozdemir et al. 2016, 2017; Lijun and Weidong 2018) and stainless steel (Lee et al. 2006;

Smith et al. 2011; Winter et al. 2017; Gümrük et al. 2018) to polymers (Habib et al. 2019)

and porous ceramics (Bruno et al. 2011).

Several studies have addressed the mechanical performance of metamaterials experimen-

tally under static loading conditions, e.g. Bruno et al. (2011), Maskery et al. (2018). Sypeck

and Wadley (2001) used an experimental procedure to compare open-cell periodic lattice

metamaterials with stochastic cellular structures; they concluded that open-cell periodic lat-

tice metamaterials provide higher mechanical properties (stiffness, energy absorption, and

heat exchange) compared with stochastic cellular structures. Experimental approaches can

be particularly useful to identify failure modes (Ozdemir et al. 2016). However, experimen-

tal approaches are not conclusive for optimisation of the metamaterial microstructure, since

they are often costly, dependent on trial and error, and subject to limitations of the experi-

mental setup (Kochmann et al. 2019).

To overcome the limitations of experimental procedures, analytical approaches can be

utilised to design or determine the properties of metamaterials, for instance by using struc-

tural mechanics theories based on trusses or beams (Kochmann et al. 2019) or plates

(Tancogne-Dejean et al. 2018). These methods can be used to identify the initial failure

properties such as the yield strength, but they are feasible for relatively simple microstruc-

tural geometries and simple material models (Kochmann et al. 2019). To assess more general

structural and material properties, analytical approaches can be combined with numerical

simulations such as finite element (FE) computations. Bruno and coworkers studied the re-

lationship between micro and macro properties on porous ceramic, closed-cell stochastic

cellular materials under uniaxial loading (Bruno et al. 2011). Their results show a linear de-

pendency between average microstress and applied macrostress through the porosity, void

distribution and ratio, of the ceramic sample. Furthermore, it was found that the average

microlevel strain depends on the macrolevel strain through the morphology factor, while

the microscopic modulus did not depend on morphology and the Poisson ratio did not de-

pend on porosity. Maskery and coworkers investigated a surface-based lattice numerically

in terms of cell type, orientation and volume fraction, resulting in general design parameters

and criteria (Maskery et al. 2018). The unit cell geometry was found to play an important

role in determining the elastic modulus, while the effect of orientation on the elastic modu-

lus was found to be less pronounced. In a related study, a Ti-6Al-4V titanium alloy lattice

has been studied under cyclic and fatigue loading, which demonstrated the potential use of

lattice metamaterials in dental fillings (Jamshidinia et al. 2013).

However, using conventional numerical modelling techniques, such as detailed FE mod-

els, to simulate the full metamaterial specimen usually requires high computational cost and

time. A promising alternative is homogenisation, which depends on detailed modelling of

a unit cell and using averaging techniques to homogenise the results to obtain mechanical

properties of the full lattice specimen. This can lead to significant reductions in analysis

time and computational cost. Kouznetsova et al. (2001) have provided an in-depth review of

the various homogenisation schemes that are available to determine homogenised material
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properties. The first of these schemes focuses on homogenised moduli and follows the so-

called rule of mixtures. This method is simple and straightforward and can provide upper

and lower bounds of the relevant properties, however, it is only suitable for linear material

behaviour (Kouznetsova et al. 2001).

The second approach is analytical homogenisation (Eshelby 1957; Hashin 1962; Hashin

and Shtrikman 1963; Hill 1963). In this method, the homogenised material properties of the

macrostructure are obtained from the analytical or semi-analytical solution of a boundary

problem of one inclusion in an infinite matrix material. The method is self-consistent and

it yields accurate results for regular geometries, however it cannot be used to model the

behaviour of cluster structures nor high contrasts between phases (Kouznetsova et al. 2001).

A third method is asymptotic homogenisation theory (Toledano and Murakami 1987;

Devries et al. 1989; Fish et al. 1999). This method is based on an expansion of displacement

and stress fields utilising natural length parameters, such as the ratio of size and distribution

of heterogeneities between microstructure to macrostructure. Effective homogenised prop-

erties can be obtained using this method as well as local stress and strain values. However, it

is typically restricted to simple microstructural geometries, small strains and simple material

behaviour (Kouznetsova et al. 2001).

Fourthly, unit cell numerical methods rely on fitting the results of detailed modelling of

a microscale Representative Volume Element (RVE) to the macrostructural homogenised

properties. The concept of an RVE was introduced by Hill (1963) and it is taken as a vol-

ume portion at microlevel such that the homogenised mechanical behaviour of the RVE is

equivalent to the macrostructural mechanical behaviour. The RVE should typically be as

small as possible, but large enough to contain sufficient detail about the microstructural

heterogeneities (van der Sluis et al. 2001). A fundamental assumption in any numerical ho-

mogenisation scheme is that random heterogeneous material is statistically homogeneous –

that is, the macrostructure behaves similarly, within user-defined levels of acceptable error,

to duplicates of a single RVE. To predict the behaviour of heterogeneous materials using

numerical homogenisation, an RVE should be defined and analysed; the results should be

subsequently fitted in a postulated constitutive relation between micro and macro levels.

Numerical homogenisation has been utilised and developed for many applications such as

polymers (van der Sluis et al. 2001) and ceramics (Gourdin et al. 2017). This method allows

simulation of complex microstructural behaviour and, hence, the study of the microstructural

configuration effect on the overall macroscale properties and response. The main challenge

in numerical homogenisation is establishing a robust and versatile constitutive connection

between micro and macro levels (Kouznetsova et al. 2001).

Fifthly, multiscale computational homogenisation methods have been developed (Ter-

ada and Kikuchi 1995; Smit et al. 1998; Miehe et al. 1999; Feyel and Chaboche 2000;

Kouznetsova et al. 2001). This method does not yield a closed-form expression for the

macrostructural material behaviour, but instead estimates the macrostructural stress–strain

relationship by solving, numerically, boundary value problems for RVEs assigned to every

integration point of the macrostructural numerical model. Computational homogenisation

consists of three main steps, which employ two levels of simulations and have to be applied

iteratively for every time step. First, an arbitrary homogenised specimen (representing the

macrolevel) is solved using the FEM. Next, the strains obtained at each integration point

are applied as loading to a unique RVE corresponding to a given integration point. The last

step is to solve the RVE response and translate the obtained microscale reaction forces into

macroscale stresses for the full specimen (Kouznetsova et al. 2001). This method is suit-

able to model complex microstructures as it does not have a limitation on the number or

configuration of RVEs. On the other hand, this method is less suitable for optimisation, de-

sign purposes and studying material behaviour due to microstructural effect, as it yields a
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phenomenological stress–strain behaviour for the macrostructure based on a microstructural

solution, rather than a closed-form constitutive law.

Most of the methods discussed above have primarily been applied to static or quasi-

static applications. However, the microstructural configuration of metamaterials also plays

an important role in the dynamic mechanical response (Barchiesi et al. 2019; Askari et al.

2020). In this work, numerical homogenisation will be applied to time-dependent problems.

Throughout this study, a unit cell with a single inclusion has been considered. Such a unit

cell can be assumed to be an RVE as has been validated for periodic metamaterials by van

der Sluis et al. (2000), Roca et al. (2018), Sridhar et al. (2018). In the case of aperiodic

metamaterials, the same approach of numerical homogenisation can still be used, although

an RVE size determination study should then be conducted beforehand such as those de-

scribed in Gitman et al. (2007), Mirkhalaf et al. (2016). The effects of the inclusion’s size,

aspect ratio and inclination angle with respect to the loading will be studied. An automated

MATLAB code, interfacing with a commercial Finite Element software package, has been

developed to study the effects of a range of microstructural configurations on macrostruc-

tural mechanical properties. Boundary conditions have been discussed and justified with

emphasis on periodic boundary conditions. This work provides a baseline to optimise the

macroscopic behaviour of a simple unit cell.

2 Principles of homogenisation

In this section a brief overview of the averaging concepts in homogenisation theories is

presented, starting with a definition of the homogenised stress and strain, followed by the

concepts of average stress and average strain theorems, and finalising with the Hill–Mandel

macrohomogeneity condition (Hill 1984, 1963; Kouznetsova et al. 2001; van der Sluis et al.

2001; Yu 2016).

The volume average ψ̄ of a generic quantity ψ is defined as

ψ̄ =
1

�

∫

�

ψ(x, y) dV, (1)

where � is the averaging volume at the microlevel. Within the context of homogenisation, �

is taken to be the volume of the RVE and indicated here with VR . The homogenised values,

at the macrolevel, of stress (σ̄ij ) and strain (ε̄ij ) can thus be computed by the derivations that

follow.

The strain is written as εij = 1
2
(ui,j + uj,i), where u is the displacement and an index

following a comma indicates a partial derivative with respect to the relevant local spatial

coordinate. Hence,

ε̄ij =
1

VR

∫

VR

1

2
(ui,j + uj,i) dV =

1

2VR

∮

∂VR

(uinj + ujni) dS. (2)

Here the Gauss divergence theorem has been employed and ni is the outward vector normal

to the boundary ∂VR of the RVE. Substituting ui = xj ε̄ij into Eq. (2) and transforming the

result back into a volume integral then yields

1

2VR

∮

∂VR

(ε̄ikxknj + ε̄jkxkni) dS =
1

2VR

∫

VR

(ε̄ikδkj + ε̄jkδki) dV = ε̄ij . (3)
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This finding is called the average strain theorem and shows that the average strain, obtained

from the displacement at the RVE boundaries, is equal to the homogenised strain ε̄ij (Yu

2016).

Furthermore, the stress field can be written as follows:

σij = σikδjk = σik

∂xj

∂xk

= (σikxj ),k − σik,kxj . (4)

Assuming equilibrium and zero body forces, we have σij,j = 0. Therefore Eq. (4) reduces to

σij = (σikxj ),k. (5)

Applying the averaging integral of Eq. (1) and employing the Gauss divergence theorem

yields

σ̄ij =
1

VR

∫

VR

(σikxj ),k dV =
1

VR

∮

∂VR

σikxjnk dS. (6)

Using the equality t0
i = σiknk , where t0

i is the traction on the boundary of the RVE, the

homogenised stress can be written as

σ̄ij =
1

VR

∮

∂VR

t0
i xj dS. (7)

The so-called average stress theorem states that the averaged stress over the entire RVE is

equal to the stress obtained from the boundary of the RVE (Yu 2016), as follows:

1

VR

∫

VR

(σikxj ),k dV =
1

VR

∮

∂VR

t0
i xj dS = σ̄ij . (8)

The transition from micro to macro properties satisfies the Hill–Mandel macrohomo-

geneity condition, which states that the homogenised, averaged strain energy density is equal

to the strain energy density of the heterogeneous RVE (Hill 1984, 1963; Kouznetsova et al.

2001). Defining the strain energy density at the macrolevel U as

U =
1

2
σ̄ij ε̄ij , (9)

the following condition should be satisfied in order for the Hill–Mandel macrohomogeneity

condition to hold:

σ̄ij ε̄ij =
1

VR

∫

VR

σijεij dV . (10)

It has been demonstrated that uniform traction, uniform displacement and periodic boundary

conditions satisfy the Hill–Mandel macrohomogeneity condition (Yu 2016).
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Fig. 1 Representative volume

element

3 Finite element modelling

This section presents details of the numerical framework used for a parametric study to in-

vestigate the influence of microstructural geometry on macrostructural properties. Through-

out, finite element modelling was conducted on the LS-DYNA software using 4-node quadri-

lateral plane stress elements.

3.1 Microstructural geometry of the unit cell

A simple 2D unit cell with a single elliptical inclusion (see Fig. 1) is considered. The major

and minor diameters of the ellipse are represented with A and B , respectively, by which

the area Ar and aspect ratio AsR follow as Ar = 1
4
πAB and AsR = A/B . The inclination

angle of the inclusion, θ , is measured anti-clockwise from the x-axis to the major axis of

the ellipse. The size of the unit cell is taken to be 1 mm by 1 mm. First, a unit cell of linear

elastic or linear viscoelastic material with an elliptical void is considered. Next, we study a

viscoelastic inclusion in a linear elastic matrix material.

3.2 Periodic boundary conditions

To model the response of the microscale unit cells, four different types of boundary con-

ditions can be considered, namely uniform kinematic, uniform static, mixed and periodic

boundary conditions (van der Sluis et al. 2001, 2000). Uniform kinematic boundary condi-

tions have an intuitive and direct link to the macroscopic strain tensor, but tend to overesti-

mate the stiffness of the RVE. Conversely, uniform static boundary conditions have a clear

link to the macroscopic stress tensor but tend to underestimate the stiffness of the RVE. To

balance the two effects of over and underestimating the RVE stiffness, mixed boundary con-

ditions can be used in which some edges have prescribed displacements and the remaining

edges have prescribed tractions.

On the other hand, periodic boundary conditions provide a better representation of an

infinite model. Through the coupling of the response of opposite edges, periodic boundary

conditions also eliminate the effect of position of the inclusion within the unit cell. There-

fore, this type of boundary conditions is considered to be the most accurate representation of

the physical properties of a unit cell. Periodic boundary conditions can be imposed to study

the mechanical response of any heterogeneous material with relatively small unit cells (van

der Sluis et al. 2001). In the literature, periodic boundary conditions have been widely used
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Fig. 2 Periodic boundary conditions: (a) Relaxation, (b) Creep

for the homogenisation of heterogeneous materials (van der Sluis et al. 2001; Kouznetsova

et al. 2001; Gitman et al. 2007).

Periodic boundary conditions can be used in conjunction with prescribed displacements

or prescribed tractions. In a relaxation test, where the specimen is subjected to prescribed

displacements, periodic boundary conditions are established straightforwardly as follows.

Firstly, an average horizontal normal strain is realised by imposing horizontal displacements

at the two corner nodes on the right edge of the unit cell (C2 and C3 in Fig. 2(a)), whereas

an average shear strain can be achieved by imposing vertical displacements at these nodes.

The translational degrees of freedom of the other two corner nodes (C1 and C4 in Fig. 2(a))

are fixed. Next, multipoint constraints are applied to the remaining edge nodes of the unit

cell. In order to achieve this, the difference between displacements of the right edge nodes

(RN1, RN2, RN3, . . . ) and left edge nodes (LN1, LN2, LN3, . . . ) are coupled with those of

the corner node, that is,

uRNi
x − uLNi

x = ūC2
x , (11)

uRNi
y − uLNi

y = ūC2
y . (12)

Similarly, the displacements of the top edge nodes (TN1, TN2, TN3, . . . ) are coupled to

those of the bottom edge nodes (BN1, BN2, BN3, . . . ):

uT Ni
x − uBNi

x = 0, (13)

uT Ni
y − uBNi

y = 0. (14)

On the other hand, in a creep test a constant force is imposed on an external node, while

the difference between the horizontal displacements of the right edge nodes (RN1, RN2,

RN3, . . . ) and left edge nodes (LN1, LN2, LN3, . . . ) are coupled with this externally loaded

node’s horizontal displacement (Fig. 2(b)), i.e.

uRNi
x − uLNi

x = up
x . (15)

The degrees of freedom of the remaining nodes are coupled following a similar approach

used for the relaxation case, that is, Eqs. (13) and (14). Periodic boundary conditions are im-

plemented using the CONSTRAINED_MULTIPLE_GLOBAL command in the LS-DYNA

software package.
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Fig. 3 (a) Maxwell viscoelastic

model; (b) Maxwell form of the

Standard Solid model

4 Material models

This section summarises the relevant equations of linear elasticity, linear viscoelasticity and

the Maxwell form of the Standard Solid Model for viscoelastic material behaviour. These

constitutive equations will be employed in the numerical parametric studies in the following

section.

4.1 Linear elasticity

A 2D linear elastic plane stress constitutive equation can be written, as usual, as

⎡

⎣

σxx

σyy

σxy

⎤

⎦ =

⎡

⎣

C11 C12 0

C21 C22 0

0 0 C33

⎤

⎦

⎡

⎣

εxx

εyy

γxy

⎤

⎦ , (16)

where [σxx, σyy, σxy]
T and [εxx, εyy, γxy]

T are the stress and strain vector, respectively. De-

pending on the particular loading case, homogenised values for Young’s moduli Ē and Pois-

son’s ratios ν̄ can be obtained, e.g. in the case of uniaxial tension

Ē11 = C̄11

(

1 −

(

C̄21

C̄11

)2
)

, (17)

ν̄12 =
C̄21

C̄11

, (18)

and similarly for other elastic constants.

4.2 Linear viscoelasticity

The constitutive equation for a Maxwell-type material, composed of a linear spring and a

linear dashpot connected in series as shown in Fig. 3(a), is written as

σ +
η

E
σ̇ = ηε̇, (19)

where η is the dynamic viscosity of the dashpot and E is the elastic modulus of the spring.

In stress relaxation, ε = ε0 is the imposed strain with ε̇ = 0. The solution of Eq. (19) can
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then be expressed as

σ(t) = Eε0e
−E(t−τ)/η, (20)

where τ is the load duration. On the other hand, in creep σ = σ0 is the imposed stress with

σ̇ = 0. The solution of Eq. (19) can then be written as

ε(t) =
σ0

η
(t − τ) +

σ0

E
. (21)

The homogenised stress σ̄ (t) and strain ε̄(t) can be constructed by evaluating Eqs. (2) and

(7), respectively, at every time instant, while the macroscopic material properties Ē and η̄

can be evaluated by fitting the curves of σ̄ (t) and ε̄(t) to Eqs. (20) and (21). This homogeni-

sation procedure is based on the assumption that the macro and micro constitutive models

are expected to behave in a similar manner.

4.3 Maxwell form of the Standard Solid Model

The Standard Solid Model for viscoelasticity gives a better representation of both creep and

stress relaxation phenomena. Here we consider the Maxwell form, constructed by connect-

ing a linear spring element (elastic modulus E1) in parallel with a Maxwell element (elastic

modulus E2 and dynamic viscosity η) as shown in Fig. 3(b). The stress–strain relationship

for the standard solid model is thus given by

σ +
η

E2

σ̇ = E1ε +

(

1 +
E1

E2

)

ηε̇. (22)

For a relaxation test, the solution can be written as

σ(t) =
(

(E0 − E∞)e−(E0−E∞)(t−τ)/η + E∞

)

ε0, (23)

where E0 ≡ E1 + E2 is the initial elastic modulus and E∞ ≡ E1 is the final (long term)

elastic modulus. On the other hand, a creep test results in

ε(t) =

((

1

E0

−
1

E∞

)

e
−E∞(E0−E∞)

E0η
(t−τ)

+
1

E∞

)

σ0. (24)

Fitting the homogenised stresses σ̄ and strains ε̄ to Eqs. (23) and (24) can again be used to

obtain the material macroproperties Ē0, Ē∞ and η̄.

5 Parametric studies

A series of parametric FE analyses were performed on the RVE defined in Sect. 3.1 to in-

vestigate the effect of matrix and inclusion material properties, inclusion size and inclusion

aspect ratio. In these simulations, the aspect ratio AsR varies between 1 and 3 with incre-

ments of 0.5, the area Ar ranges from 0.1 mm2 to 0.175 mm2 with 0.025 mm2 increments,

and the inclination angle θ varies between 0◦ and 180◦ with 10◦ increments.

The nature of this research requires evaluating and optimising different unit cells with

different microstructural configurations. To do so in a systematic manner, a MATLAB script

was developed to perform the large number of FE simulations. The MATLAB script builds
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Fig. 4 Variation of homogenised

elastic modulus Ē of linear

elastic RVE with void inclination

angle θ for different aspect ratios

and constant area

Ar = 0.175 mm2

FE models of the microstructure under specific loading and boundary conditions using

ABAQUS via a Python script, runs analyses on LS-DYNA and collects the required outputs

using LS-PrePost. A mesh convergence study was conducted on the three types of RVE. Us-

ing approximately uniform mesh densities and taking 50 elements across each edge of the

unit cell led to negligible variation in the homogenised properties compared to finer meshes.

Therefore, the FE models in this study were considered to be sufficiently mesh independent.

5.1 Linear elastic RVE with void

By way of validation, first we consider a unit cell with a single elliptical void (Fig. 1) made

of a linear elastic material to determine the homogenised elastic modulus Ē. Three different

values of the elastic modulus are assumed for the linear elastic matrix, namely E = 105, 210

and 420 GPa. Poisson’s ratio ν of the matrix material is set to zero. A convergence study (not

reported) has been carried out to optimise the analysis duration. Figure 4 shows the variation

of the homogenised elastic modulus Ē with the inclination angle θ for the unit cell made of

linear elastic material with a single elliptical void shown in Fig. 1 with different aspect ratios

(while Ar = 0.175 mm2 and E = 210 GPa). All simulations with different inclusion areas

and elastic moduli followed the same pattern. It is noted that the macroscopic constitutive

model is anisotropic linear elastic.

An approximate closed-form expression can be obtained through fitting a trigonometric

curve to represent the variation of homogenised elastic modulus Ē with inclination angle θ

for the RVE. That is,

Ē(θ) = E

(

x0 cos(2θ) +

n
∑

i=1

xi cos

(

π − 2θ

2i

)

+ C

)

, (25)

where x0, xi , C are constants representing configurational parameters that depend on the

microstructure of the unit cell. In this equation, a summation of higher-order trigonometric

functions can be used to increase the degree of accuracy of the results. In the fundamental

curve fit (i.e. neglecting the summation) approximation of Eq. (25), C is inversely propor-

tional to both the inclusion area Ar and aspect ratio AsR; however, x0 is directly propor-

tional to the inclusion area Ar and aspect ratio AsR. The values of x0 and C for different

combinations of aspect ratios and inclusion area are summarised in the Appendix (Tables 2

and 3).

The fundamental curve fit prediction for the variation of homogenised elastic modulus Ē

with inclination angle θ for the unit cell made of linear elastic material with single elliptical
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Fig. 5 Comparison between the

FE homogenised elastic modulus

Ē of a linear elastic RVE and its

prediction for different void

inclination angles θ (Ar = 0.175

mm2)

Fig. 6 Variation of homogenised

elastic modulus Ē for

viscoelastic RVE with void

inclination angle θ using creep

and relaxation tests (Ar = 0.175

mm2 and AsR = 3)

void is presented in Fig. 5 together with the FE results. As one can observe from this figure,

the fundamental curve fit prediction yields accurate results. Higher-order terms in Eq. (25)

slightly improve the prediction, but these results are not shown here.

5.2 Viscoelastic RVE with void

Secondly, a series of FE analyses were conducted on a 2D unit cell with a single elliptical

void made of a linear viscoelastic material with elastic modulus E = 210 GPa, dynamic

viscosity η = 190 GN s/m2 and Poisson’s ratio ν = 0. The MAT_VISCOELASTIC material

model of LS-DYNA is used to model the viscoelastic isotropic behaviour. This material

model, which is based on Maxwell’s Standard Solid Model of viscoelasticity, is defined

in LS-DYNA by initial shear modulus G0 = E/2(1 + ν) = 105 GPa, final shear modulus

G∞ = 0 GPa, decay constant β = E/η = 1.1 s−1 and bulk modulus k = E/3(1 − 2ν) = 70

GPa.

In the numerical simulations, two different loading conditions, namely creep and stress

relaxation, are considered for the 2D unit cell with a single elliptical void. In these sim-

ulations, the variation of the homogenised elastic modulus Ē and homogenised dynamic

viscosity η̄ with inclination angle θ are evaluated. As one can observe from Figs. 6 and 7,

the FE models for viscoelastic unit cells with creep and stress relaxation (using inclusion

area Ar = 0.175 mm2 and aspect ratio AsR = 3) show good agreement; similar levels of

correspondence were observed for all other values of inclusion area and aspect ratio. The

macroscale material model again exhibits an anisotropic behaviour.
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Fig. 7 Variation of homogenised

dynamic viscosity η̄ for

viscoelastic RVE with void

inclination angle θ using creep

and relaxation tests (Ar = 0.175

mm2 and AsR = 3)

Fig. 8 Composite unit cell with

viscoelastic inclusion

Similar to the linear elastic case, simple formulas are obtained through fitting the varia-

tion of homogenised elastic modulus Ē and homogenised dynamic viscosity η̄ with inclina-

tion angle θ to a postulated trigonometric series:

Ē(θ) = E

(

x0 cos(2θ) +

n
∑

i=1

xi cos

(

π − 2θ

2i

)

+ C

)

, (26)

η̄(θ) = η

(

x0 cos(2θ) +

n
∑

i=1

xi cos

(

π − 2θ

2i

)

+ C

)

. (27)

It is noted that the constants C, x0 and xi in Eq. (26) are the same as those of the linear elastic

RVE discussed in Sect. 5.1. However, Eq. (27) relates the homogenised dynamic viscosity

η̄ to the microscale dynamic viscosity η, whereby constants C, x0 and xi are found that are

different from those of Eq. (26) – see Tables 4 and 5 of the Appendix for details.

5.3 Linear elastic RVE with viscoelastic inclusion

Next, a composite unit cell consisting of a linear elastic matrix (Material 1) with a Maxwell

viscoelastic inclusion (Material 2) is created as shown in Fig. 8. A parametric study is per-

formed by varying the material properties of the inclusion, while the material properties of

the matrix (E = 210 GPa and ν = 0) are kept constant as shown in Table 1. Six different

composite unit cells are considered. In composite unit cells 1 to 3, the elastic modulus of

the viscoelastic inclusion (Einc) is varied, while keeping the dynamic viscosity η constant.
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Table 1 Material properties of the composite unit cells

Composite No. Material E (GPa) E∞ (GPa) η (GPa s) β (1/s)

Composite Elastic E = 210.00 – – –

unit cell 1 Maxwell Viscoelastic Einc = 105.00 0.00 300.00 0.35

Composite Elastic E = 210.00 – – –

unit cell 2 Maxwell Viscoelastic Einc = 210.00 0.00 300.00 0.70

Composite Elastic E = 210.00 – – –

unit cell 3 Maxwell Viscoelastic Einc = 420.00 0.00 300.00 1.40

Composite Elastic E = 210.00 – – –

unit cell 4 Maxwell Viscoelastic Einc = 105.00 0.00 95.46 1.10

Composite Elastic E = 210.00 – – –

unit cell 5 Maxwell Viscoelastic Einc = 210.00 0.00 190.91 1.10

Composite Elastic E = 210.00 – – –

unit cell 6 Maxwell Viscoelastic Einc = 420.00 0.00 381.81 1.10

Fig. 9 Variation of homogenised

initial elastic modulus Ē0 with

the inclination angle θ for the

composite unit cells 1 to 3 given

in Table 1 (Ar = 0.175 mm2)

On the other hand, in composite unit cells 4 to 6 the elastic modulus Einc and the dynamic

viscosity η of the viscoelastic inclusion are varied while keeping their ratio β constant.

For the composite unit cells given in Table 1, richer behaviour is observed in the ho-

mogenised response that does not exist in either of the 2D linear elastic or viscoelastic unit

cells with a single elliptical void presented in the previous sections. For instance, in a re-

laxation test, the final elastic modulus Ē∞ is not null for the composite unit cells and the

decay constant β has a different definition on the macrolevel in comparison to its microlevel

properties. Furthermore, the dependence of the homogenised dynamic viscosity on the in-

clination angle is opposite to that observed for a unit cell with a void. In a creep test, an

exponential growth of the strain in time is observed, compared to a linear growth in material

2 and constant strain value in material 1 at the microlevel.

Figures 9, 10, 11 and 12 show the variation of the homogenised initial elastic modulus

Ē0, the homogenised final elastic modulus Ē∞ and the homogenised dynamic viscosity η̄

with the inclination angle θ for the composite unit cells given in Table 1. FE analysis results

show that the variation of the initial elastic modulus Ē0 with the inclination angle θ for
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Fig. 10 Variation of

homogenised final elastic

modulus Ē∞ with the inclination

angle θ for composite unit cells 1

to 3 given in Table 1 (Ar = 0.175

mm2)

Fig. 11 Variation of

homogenised dynamic viscosity

η̄ with the inclination angle θ for

composite unit cells 1 to 3 given

in Table 1 (Ar = 0.175 mm2)

Fig. 12 Variation of

homogenised dynamic viscosity

η̄ with the inclination angle θ for

composite unit cells 4 to 6 given

in Table 1 (Ar = 0.175 mm2)

composite unit cells 1 and 4, composite unit cells 2 and 5, and composite unit cells 3 and

6 are identical. On the other hand, the variation of the final elastic modulus Ē∞ with the

inclination angle θ are identical for all composite unit cells, since Ē∞ depends only on the

elastic matrix properties. The variation of the homogenised dynamic viscosity η̄ with the

inclination angle θ shows differences for composite unit cells 4 to 6. The dynamic viscosity

is largest for a 90◦ inclination angle, in which case the composite behaviour resembles most

closely that of a series connection between elastic matrix and viscoelastic inclusion.
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Simple approximate formulas are once again obtained through fitting the FE results to

trigonometric series in order to represent the variation of homogenised final elastic modulus

Ē∞ and homogenised dynamic viscosity η̄:

Ē∞(θ) = E

(

x0 cos(2θ) +

n
∑

i=1

xi cos

(

π − 2θ

2i

)

+ C

)

, (28)

η̄(θ) = η

(

x0 cos(2θ) +

n
∑

i=1

xi cos

(

π − 2θ

2i

)

+ C

)

. (29)

As shown above, the homogenised final elastic modulus Ē∞ depends on the elastic modulus

of the matrix E. Again, the constants C, x0 and xi in this equation are the same for linear

elastic (Sect. 5.1) and Maxwell viscoelastic (Sect. 5.2) RVEs. However, Eq. (29) relates the

macro dynamic viscosity η̄ to the micro dynamic viscosity η: the constants C, x0 and xi in

this equation are different from those of the dynamic viscosity fit parameters of Sect. 5.2,

and presented in Tables 6 and 7 in the Appendix.

6 Conclusions

Numerical homogenisation can be used to understand the material macroproperties of meta-

materials with relatively low cost. Unit cells with a single void or with a viscous inclusion

were modelled under periodic boundary conditions. Systematic parametric studies were con-

ducted to investigate the effect of inclusion area, aspect ratio and inclination angle on the

macroscopic material properties.

The macroscopic material properties of elastic unit cells studied in this paper can be

captured with good accuracy using trigonometric functions, whereas the viscous unit cells

show a multiplicative decomposition that consist of a linear elastic trigonometric function

and a viscous exponential decay. Unit cells with voids show a macroscale constitutive model

similar to the microscale one. On the other hand, the macroscale mechanical properties of the

elastic unit cell with viscous inclusion show an enriched constitutive model at the macrolevel

while using two simple models, linear elastic and Maxwell viscoelastic, for the microlevel.

This enriched macroscale behaviour can be captured accurately with the Standard Solid

Model of viscoelasticity. Consistent results were obtained for creep and relaxation tests

using a nonlinear regression curve fitting tool to fit stresses and strains with time and obtain

the macroscale properties.

The dependence of the homogenised properties on loading rate was checked; simulations

show that homogenised properties tend to be constant for strain rates below 0.001 s−1. Ho-

mogenised properties at higher strain rates, and in particular their frequency dependence,

will be the scope for follow-up research.

Appendix

In this Appendix, we summarise the various values obtained for fitting the constants in the

trigonometric expressions for the macroscopic material properties. Tables 2 and 3 contain

the elastic modulus constants for a linear elastic RVE with a void, whereas Tables 4 and 5

contain the dynamic viscosity values for a viscoelastic RVE with a void. Finally, Tables 6 and

7 contain the dynamic viscosity values for a linear elastic RVE with a viscoelastic inclusion.
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Table 2 Elastic modulus

equation constant (x0) values for

different aspect ratio and area

combinations for all types of

RVEs

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.000 0.052 0.091 0.124 0.153

0.125 0.000 0.060 0.105 0.142 0.175

0.150 0.000 0.067 0.117 0.159 0.196

0.175 0.000 0.073 0.128 0.174 0.215

Table 3 Elastic modulus

equation constant (C) values for

different aspect ratio and area

combinations for all types of

RVEs

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.766 0.757 0.739 0.719 0.699

0.125 0.723 0.713 0.693 0.671 0.649

0.150 0.683 0.672 0.651 0.627 0.602

0.175 0.647 0.635 0.612 0.586 0.560

Table 4 Dynamic viscosity

equation constant (x0) values for

different aspect ratio and area

combinations for RVEs with

viscoelastic matrix and void

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.000 0.092 0.160 0.215 0.262

0.125 0.000 0.105 0.182 0.244 0.296

0.150 0.000 0.116 0.200 0.268 0.326

0.175 0.000 0.125 0.216 0.290 0.354

Table 5 Dynamic viscosity

equation constant (C) values for

different aspect ratio and area

combinations for RVEs with

viscoelastic matrix and void

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 1.371 1.346 1.299 1.248 1.197

0.125 1.278 1.251 1.200 1.145 1.091

0.150 1.194 1.165 1.112 1.055 0.999

0.175 1.116 1.087 1.032 0.973 0.915

Table 6 Dynamic viscosity

equation constant (x0) values for

different aspect ratio and area

combinations for RVEs with

elastic matrix and viscoelastic

inclusion

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.000 –0.431 –0.818 –1.207 –1.608

0.125 0.000 –0.479 –0.903 –1.325 –1.756

0.150 0.000 –0.517 –0.971 –1.420 –1.879

0.175 0.000 –0.547 –1.027 –1.500 –1.986
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Table 7 Dynamic viscosity

equation constant (C) values for

different aspect ratio and area

combinations for RVEs with

elastic matrix and viscoelastic

inclusion

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.830 0.943 1.169 1.449 1.760

0.125 0.954 1.075 1.317 1.613 1.941

0.150 1.058 1.185 1.438 1.747 2.086

0.175 1.149 1.279 1.540 1.857 2.207

Data Availability The data sets generated and analysed during the current study are available from the first

author upon reasonable request.
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