
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/170616

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/170616
mailto:wrap@warwick.ac.uk

WARWICK

Motivated Cooperation in Autonomous Agents

by

Nathan Griffiths

A thesis submitted in partial fulfilment o f the requirements for the degree o f

Doctor o f Philosophy in Computer Science

University o f Warwick, Department o f Computer Science

August, 2000

Contents

List of Figures xt

List of Tables x**

Acknowledgements x*v

Declaration x*v

Abstract xv

1 Introduction 1

1.1 Introduction... 1

1.2 Agents.. 2

1.2.1 Autonomy .. 3

1.2.2 Other Characteristics... 4

1.3 Cooperation... 4

1.3.1 Autonomous C ooperation... 5

1.3.2 Agent Architectures for Cooperation.. g

l

1.4 Aims and Principles.. 7

1.5 Structure of T h e s is .. 11

2 Related Work 12

2.1 Introduction.. 12

2.2 Agency and A utonom y.. 13

2.2.1 Autonomy Through Motivations... 14

2.2.2 Motivated Goal Creation... 15

2.2.3 Autonomy as a Dependence Relationship.. 16

2.3 Individual Intentionally ... 17

2.3.1 The Need for Intention.. 19

2.3.2 Cohen and Levesque’s Model of Intention.. 19

2.4 BDI-based Architectures... 22

2.4.1 IRM A .. 23

2.4.2 P R S ... 24

2.4.3 Alternative Architectures... 26

2.5 Social Intentionally.. 27

2.5.1 Joint Intention T h e o ry .. 30

2.5.2 Social Power T heory ... 31

2.5.3 Commitments and Conventions ... 34

2.6 Multi-Agent Systems and Architectures... 35

2.6.1 G R A TE*.. 35

2.6.2 Planned Team A ctivity.. 37

ii

2.6.3 STEAM 38

2.7 Stages in Cooperative Problem Solving ... 38

2.8 S um m ary .. 40

3 Motivated BDI Agents 42

3.1 Introduction.. 42

3.2 The Z Specification L anguage.. 44

3.3 Overview of S E N A R A .. 46

3.4 Prim itives.. 49

3.5 Environment... 50

3.6 Perceptions... 51

3.7 Beliefs.. 52

3.8 G o a l s .. 53

3.9 A c tio n s ... 54

3.10 Joint and Concurrent A ctions... 55

3.11 Plans... 57

3.12 Intentions.. 60

3.13 M otivations... 64

3.14 S um m ary .. 67

4 A Motivated BDI Agent Architecture 69

4.1 Introduction... 69

4.2 Perceiving the Environment.. 72

iii

4.3 Updating B e lie fs ... 73

4.4 Updating Motivations... 75

4.5 Ensuring Goals are Motivated .. 78

4.6 Goal Generation.. 80

4.7 Ensuring Intentions are Appropriate... 83

4.8 Intention A dop tion .. 85

4.8.1 Selecting and Adopting a P la n ... 86

4.8.2 Immediate Elaboration.. 90

4.8.3 Delayed Elaboration... 92

4.9 Intention S e lec tion .. 93

4.10 Action and Deliberation.. 95

4.11 S um m ary ... 97

5 Autonomous Cooperation in Open Environments 99

5.1 Introduction... 99

5.2 Cooperative Intention.. 100

5.2.1 Requirements of a Model of Cooperation.. ioi

5.2.2 Conventions for Cooperative Intention... 103

5.2.3 Formalising Cooperative Intention... 106

5.3 Stages in Cooperation...107

5.4 Risk in Cooperation..

5.4.1 Trust ...I l l

5.4.2 Updating Trust of O thers...

IV

5.5 Overview of the Warehouse D om ain... 115

5.6 S um m ary ...117

6 Plan Selection 119

6.1 Introduction... 119

6.2 Cooperative Plan Selection... 120

6.3 Plan Selection C rite r ia ... 122

6.4 A Model of Cooperative Plan Selection .. 124

6.4.1 Plan Ratings .. 124

6.4.2 Assessing Contributions.. 125

6.4.3 Assessing Joint Actions .. 127

6.4.4 Assessing Concurrent A ctions... 128

6.4.5 Cooperative Rating of a P lan .. 129

6.4.6 Plan Quality .. 130

6.5 Pre-Execution Plan Assessment .. 131

6.5.1 Best-case and Mean-case Advantage.. 133

6.5.2 Recursion.. 134

6.5.3 Selecting Between Partial P la n s .. 135

6.6 Warehouse Example .. 137

6.7 S um m ary ...140

7 Cooperative Intention Formation 143

5.4.3 Agent Models.. 113

v

7.1 Introduction.. 143

7.2 O verview ... 144

7.3 Annotation Strategies... 147

7.3.1 Choice of Annotation Strategy... 149

7.3.2 Pre-annotated Plans... 150

7.4 Plan Annotation..151

7.4.1 Agents to Annotate... 152

7.4.2 Individual Action Annotation ... 153

7.5 Annotating Simultaneous A c tio n s ... 154

7.5.1 Joint A c tio n s .. 155

7.5.2 Concurrent Actions... 157

7.5.3 Annotated Plans .. 158

7.6 Soliciting Commitment to Cooperate.. 160

7.7 Requesting Assistance ... 163

7.8 Nominal C om m itm ent... 165

7.9 Committing to Cooperate.. 168

7.9.1 Trust in Requesting A g e n t... 171

7.9.2 Commitment to A c tio n s .. 172

7.9.3 Commitment to G o a ls ... 173

7.9.4 Commitment to Plans.. 174

7.10 Generating Full Commitment to Cooperation ..175

7.11 Cooperative Intentions in the Warehouse D o m ain ..177

vi

7.12 Commitment Strategies 179

7.12.1 Minimising Risk and C o s t ... 180

7.12.2 Choice F ac to rs ... 181

7.12.3 Strategy Choice... 183

7.13 Intention Execution... 185

7.13.1 Cooperative Plan Elaboration ... 186

7.13.2 Centralised Elaboration... 188

7.14 S um m ary ..190

8 Conclusions 193

8.1 Introduction.. 193

8.2 Contributions... 194

8.3 Relation to Existing Work.. 196

8.4 Limitations and Future W ork .. 198

8.5 S um m ary .. 200

References 202

A Specification 214

A.l Introduction.. 214

A.2 Prim itives... 214

A. 3 Environment.. 215

A.4 Perceptions.. 215

A.5 Beliefs... 215

vii

A.6 G o a ls .. 216

A.7 A c tio n s ... 216

A. 8 Joint and Concurrent Actions..217

A.9 Plans... 217

A. 10 Intentions.. 218

A. 11 M otivations... 218

A. 12 Agent Mental Components...219

A. 13 Perceiving the Environment.. 220

A. 14 Updating B e l ie f s ... 220

A. 15 Updating Motivations..221

A. 16 Ensuring Goals are Motivated .. 222

A. 17 Goal Generation... 223

A. 18 Ensuring Intentions are A ppropriate..224

A. 19 Intention A d op tion ...225

A.20 Intention S e lec tion ...227

A.21 Action and Deliberation...227

A.22 Necessary and Optional Cooperation..229

A.23 A Model of Cooperative Plan Selection ..230

A.23.1 Assessing Joint Actions ..232

A.23.2 Assessing Concurrent A ctions...233

A.23.3 Cooperative Rating of a P lan ..234

A.23.4 Plan Quality .. 234

vm

A.24 Cooperation in Partial Plans ...234

A.24.1 Best-case and Mean-case Advantage... 236

A.24.2 Recursion..237

A.24.3 Selecting Between Partial P la n s ... 237

A.25 Cooperative Intention..238

A.26 Cooperative P lans..239

A.27 Plan Annotation...240

A.27.1 Action A nnotation...240

A.27.2 Joint Action A nnotation..241

A.27.3 Concurrent Action Annotation...244

A.27.4 Annotated Plans ..245

A.28 Soliciting Commitment to Cooperate..246

A.29 Nominal Commitment ...249

A.30 Committing to Cooperate..250

A.31 Generating Full Commitment to C ooperation...252

A.32 Strategy C hoice... 255

A.33 Cooperative Plan Elaboration..256

A. 34 Updating Trust of O th e rs ...257

B Implementation of the SENARA Testbed 258

B. l Introduction.. 258

B.2 Overview of the T e s tb ed ..259

B.3 Plan Library... 263

ix

B.4 Synchronising and Ordering Action Execution..266

B.4.1 Synchronisation ... 266

B.4.2 Action Ordering ...267

B.5 Example Interaction.. 269

B.5.1 Plan selection...269

B.5.2 Pre-execution Assessm ent... 270

B.5.3 Plan Selection ... 273

B.5.4 Intention A doption... 275

B.5.5 Intention Execution... 277

x

List of Figures

2.1 Norman and Long’s motivated agent architecture (from [7 7]) 16

2.2 The IRMA architecture (from [5]) .. 23

2.3 The PRS architecture (from [38])... 26

2.4 The GRATE* architecture for cooperation (based on [50]) 36

3.1 Overview of the Senar A architecture.. 49

3.2 An example partial p lan ..

3.3 The use of a stack of plans in an in ten tion .. 63

4.1 The S e n a r a architecture... 70

4.2 The problem of plan over-commitment.. 91

5.1 Example agent m o d e ls

5.2 The warehouse environm ent.. jjg

B.l The interface to the S e n a r a testbed... 2 6 j

B.2 Algorithm for inserting ordering actions based on Kinny et al. ’s work . . . 269

xi

List of Tables

2.1 Cohen and Levesque’s definitions of intentions and persistent goals 22

2.2 Cohen and Levesque’s definitions ofjoint intentions and joint persistent goals 30

3.1 Summary of the Z notation (taken from [25]) 47

4.1 The stages in the Senara reasoning cycle.. 7 j

4.2 Algorithm for agent perception.. 72

4.3 Algorithm for updating b e lie fs .. 74

4.4 Algorithm for updating the intensity of motivations...................................... 76

4.5 Algorithm for dropping unmotivated goals ... 79

4.6 Algorithm for goal generation .. g 2

4.7 Algorithm for dropping inappropriate intentions.. g4

4.8 Algorithm for intention adoption... gg

4.9 Algorithm for intention selection.. 94

5.1 Conventions for motivated cooperation.. 204

5.2 Observations about group mental state after Wooldridge and Jennings 105

Xll

7.1 Algorithm to determine whether responses are sufficient to enter into coop-

eration... 146

7.2 The initiator’s algorithm for cooperative intention fo rm ation 148

7.3 Valid and invalid annotations...

7.4 The initiator’s algorithm for requesting assistance..I64

7.5 Algorithm for updating nominal com m itm ent..

7.6 The recipient’s algorithm for processing a request..

B.l Plans for moving and recharging in the warehouse domain . . .

B.2 Plans for storing and checking boxes in the warehouse domains .

xin

Acknowledgements

Any endeavour as consuming as the production of a thesis, necessitates the support and

assistance of others. Many people have indirectly been involved in this work, and deserve

thanks. First, I would like to thank Mike Luck for his encouragement, supervision, percep

tion, and for the many discussions that helped clarify my ideas. Second, I would like to

thank Mike Joy for his guidance and advice. Third, thanks go to the members of the Agent-

Based Systems Group at Warwick for their comments and discussions, in particular thanks

to Kevin Bryson and Simon Miles. Fourth, thanks to Mark d'lnvemo for looking through

extracts of the Z specification contained in this thesis. Fifth, I would like to thank EPSRC

for financial support. Finally, my utmost thanks to Jane for moral and practical support, and

being there when I needed her.

Declaration
The contents of this thesis are a result of my own work, and it contains nothing that is based

on collaborative research. No part of the work contained in this thesis has been submitted

for any degree or qualification at any other university. Earlier work on various aspects of

this thesis has been published in [40] and [64].

XIV

Abstract
Multi-agent systems are underpinned by the notion of cooperation - the process by

which independent agents act together to achieve particular goals. Cooperation between

autonomous agents requires appropriate motivations on behalf of those agents, since an

agent’s behaviour is guided by its motivations. Interaction with others involves an inherent

risk and, to manage this risk, an agent must consider its trust of others in conjunction with

its motivations in entering into, and continuing in, cooperative activity. The aim of this

thesis is to develop a framework for motivated cooperation, focusing in particular on the

motivational reasons an agent might have for cooperating, and how it can use the informa

tion it has about others (such as their capabilities and trustworthiness) to make informed

judgements about the risk involved in cooperating.

The main body of this thesis can be decomposed into four parts. First, we introduce

the issues associated with motivated cooperation, identify the outstanding problems, and

discuss the key related work that gives a context to the thesis. Second, we present the mo-
.. . , „ , . t c cm a d a which forms the foundation of our framework. Third,tivated agent architecture, SENARA, wnicu iu im a u

we introduce the framework itself, drawing out the details related to motivation and risk,

and describing how this framework can be instantiated in particular applications. Final

ly, we conclude the thesis by considering the contributions it has made, and identifying

potential areas for future work.

xv

Chapter 1

Introduction

1.1 Introduction

Artificial intelligence (AI) is a relatively young field, having been established for little more

than half a century. Early research in AI, around the 1960s and 1970s, was concerned

with solving isolated problems such as storing information effectively for fiiture processing

(knowledge representation), and finding an appropriate sequence of actions to achieve a

given task (planning). The next stage of AI research in the 1980s and 1990s saw expansion

into many threads, encompassing neural networks, machine learning, computer vision, and

many others. Until this point AI research had concentrated on the individual, but from

the early 1990s onward researchers began to consider groups of entities. Indeed, one of

the strongest areas of recent growth has been distributed problem solving (DPS), which is

concerned with developing mechanisms for a collection of problem solving nodes, working

together to perform a particular task. Nodes in a DPS system are typically based upon the

earlier products of AI, in particular with respect to their local problem solving abilities.

There are many examples of DPS systems, such as Smith’s cooperating experts model [95],

which is based around the Contract Net protocol [94], and Lesser and Corkill’s Distributed

Vehicle Monitoring Testbed [57] both of which have led to extensive further work.

1

Recent work in the area of artificial intelligence has seen significant development of ear

lier ideas on DPS. Problem solving nodes have become more sophisticated, both in terms

of their capabilities and their reasoning power, and are now typically viewed as agents —

independent entities, capable of acting in their environment according to their perception-

s, based on their own decision-making processes and objectives [60]. Perhaps the single

most significant development, however, is that agents typically have some degree of au

tonomy, in that they are able to guide their own behaviour and function effectively without

outside intervention. Systems containing a group of such problem solving agents are called

multi-agent systems, and form part of the now established subfield of AI, distributed ar

tificial intelligence (DAI). However, DAI is still young, and comprises much diverse and

sometimes contradictory work.

In this thesis we consider multi-agent systems, and in particular we develop a model of

cooperation between autonomous agents. Cooperation is the foundation upon which multi

agent systems are built; groups of agents cooperate to achieve goals that they would not be

able to achieve alone.

1.2 Agents

Over the last decade or so, the question of what constitutes an agent has been the subject

of much discussion [34, 78], with various camps making different claims about what is

required from an entity for it to be considered an agent. In this section we introduce the

notion of agency, and the characteristics that agents typically exhibit, in particular the qual

ity of autonomy. Two general uses of the term agent are distinguished by Wooldridge and

Jennings [103], the first of which is a weak notion in which agents are viewed as having the

following properties.

Autonomy: agents are able to operate without external intervention, and should have some

degree of control over their own behaviour.

2

Social ability: agents are able to interact with others.

Reactivity: in a dynamic environment, agents perceive relevant changes in the environ

ment and are able to react appropriately in a timely fashion.

Pro-activeness: in addition to responding to their environment, agents exhibit goal-directed

behaviour and act under their own volition.

Secondly, Wooldridge and Jennings recognise that for some researchers the term agent

imports a stronger notion so that, in addition to the properties outlined above, agents are

conceived as intentional systems in terms of mentalistic notions, such as belief, knowledge,

intention, and motivation [103]. Several proposed sets of mental components exist but the

combination of beliefs, desires and intentions is arguably the most widespread [44] in terms

of agent characterisation. Beliefs are those propositions about the environment and itself

that an agent takes to be true. An agent’s desires are the situations that it wishes to bring

about, and its intentions are those desires to which it has committed to achieving.

In broad terms, the debate has recently settled, marked by the general acceptance of

this weak definition of agency.

1.2.1 Autonomy

Autonomy is an important quality of an agent, and can be viewed along two complementary

dimensions that are really two aspects of the same characteristic. Firstly, if an agent is

autonomous it is able to act, at least to some extent, without external intervention either

from a human user or another agent. Secondly, an autonomous agent is able to guide its own

behaviour and act according to its own priorities, rather than being under the direct control

of another. Although the importance of autonomy in agents is widely alluded to [1,11,45],

there are few explicit detailed models, and autonomy does not form an explicit part of the

common view of agents as intentional systems. Of those explicit models that do exist, some

model autonomy through the provision of additional mental components (e.g. [61, 77]).

3

The outstanding problem, however, is integrating these additional components seamlessly

with the agent’s other mental components, such as its beliefs, desires, and intentions.

1.2.2 Other Characteristics

Despite the general acceptance of Wooldridge and Jennings’ weak definition of agency1,

there are still a few small areas of debate left open. For example, there is no consensus

over whether temporal continuity, learning, and mobility are required characteristics for

agents [34]. Rosenschein and Genesereth identify benevolence as another important area

of contention by noting that many early DAI systems make the benevolent agent assump

tion [85], by which the agents in a given domain have common or non-conflicting goals. A

consequence of this is that agents are often assumed to aid one another through providing

information and performing tasks requested of them. Rosenschein and Genesereth were

amongst the first to argue that this is unrealistic in many real world situations, and in situ

ations where agents are autonomous, since the behaviour of autonomous agents cannot be

guaranteed. DAI is underpinned by the notion of cooperation, through which a collection of

agents achieve their goals together; in the following section we introduce cooperation and

its relation to agent autonomy.

1.3 Cooperation

A group of agents cooperate when they engage in a joint activity for which the actions

of each are needed for a successful outcome, and where agents’ actions are not under the

direct control of another [101]. Individual agents have limited capabilities and resources,

and consequently the tasks they are able to achieve are also limited. Cooperation allows

agents to transcend these limitations and achieve tasks that they would not be able to achieve
i0 f course, while DAI remains a relatively young and active research area there will not be complete

acceptance of such definitions.

4

alone. By pooling their resources and capabilities, a group of agents may be able to achieve

many more tasks than any individual in the group. Consider the oft cited example of two

agents wishing to move a heavy piece of furniture, where each agent does not have the

strength to move it alone. By acting together and assisting each other they are able to move

the object [67]. Similarly, in a situation where individual agents do not possess sufficient

information to perform some task, then by cooperating and sharing information they are

able to draw on the collective knowledge of the group members and perform the task.

1.3.1 Autonomous Cooperation

When autonomous agents cooperate in a dynamic environment, uncertain behaviour may

arise as a result of their autonomy, or from changes in the environment. An agent acts

according to its own individual high-level desires, which may change over time. Conse

quently, even though an agent might initially agree to contribute to achieving some objec

tive through cooperation, there is no guarantee that its attitude will not change during the

course of the interaction. If the agent’s individual high-level desires change such that the

reason for its cooperation is removed, then it is likely to stop cooperating, and not perform

any additional actions in pursuit of the group objective. This can have repercussions for

the other agents involved, since, if they are not aware that one of their number has ceased

to cooperate, they may continue to act assuming that others are acting accordingly. Thus,

if an action relies on a previous action that should have been performed by an agent that

is no longer cooperating, this latter action will fail. In such a situation the group can ei

ther determine another course of action to complete the achievement of their goal, or they

can concede failure. Indeed, there may be no choice but to allow their cooperation to fail,

depending on the circumstances and the manner in which cooperation broke down. Regard

less of whether the group later goes on to achieve its objective or concede failure, it has

been negatively affected by the agent that left the group, since the members have invested

time and effort in their contributions to the objective, only to have to reconsider their plans,

or for the objective to fail.

5

Cooperation between autonomous agents, therefore, implies an element of risk since

agents may rescind their cooperation at any point, as their desires change. In order for

agents to make informed decisions about when to cooperate with others, some means of

assessing and managing this risk is needed.

1.3.2 Agent Architectures for Cooperation

There is a plethora of architectures ranging from deliberative agents, which have some

mechanism for constructing plans to achieve their goals (e.g. [5, 38]), to reactive agents

where the emphasis is on the agent’s ability to react in a timely manner to changes in its

environment (e.g. [6, 66]). Since agents generally need both the problem solving abilities

that arise from deliberation, and the ability to react quickly to their environment, a number

of hybrid agent architectures have also been suggested (e.g. [30, 32]). Existing architectures

are generally designed with a specific task in mind, and so will tend to emphasise some

characteristic such as problem solving ability, reactivity, or autonomy, according to the

requirements of the task. Where cooperation is investigated without reference to a specific

agent architecture, any resulting model will be abstract and can only serve as a high-level

specification, since it will not give details of how cooperation arises with respect to an

agent’s mental components. While the relationships and high-level mechanisms involved

in cooperation can be investigated without reference to a particular agent architecture, we

cannot look at how cooperation arises from individuals without knowing the details of their

individual architecture. Any model of cooperation must, therefore, give consideration to the

details of the architecture on which it is based; in particular it must account for how agents

are made autonomous. Autonomous agents act according to their high-level desires, which

provide the reason for their actions, and a model of cooperation must also account for how

an autonomous agent can come to have appropriate reasons to cooperate. We discuss these

issues within this thesis in Chapters 3, 4, and 6, where the former two chapters present

our autonomous agent architecture, and the latter describes the reasons why such an agent

might cooperate.

6

1.4 Aims and Principles

Several factors affect the nature of a cooperative interaction among a group of agents, in

cluding the details of the agent architecture, how autonomy is achieved, and whether agents

have an appropriate mechanism for managing the risk arising from cooperation. Cooper

ation involves all of these, and a model of cooperation between autonomous agents must

include them all. Existing models, however, typically do not sufficiently address these ar

eas. In this thesis, we aim to provide a theory of cooperation that encapsulates all of the

relevant factors, with a particular focus on those identified above, namely the need for au

tonomy and risk management. Additionally, this theory must not fall foul of the benevolent

agent assumption where the agents in a system are fundamentally assumed to be helping

each other, and will cooperate regardless of the benefit they themselves will receive from

the cooperation. Rather, we assume that agents are fundamentally autonomous, and are

self-interested. In summary, the aim of this thesis is to develop a principled theory of co

operation grounded in a specific architecture for a dynamic environment where agents are

potentially unreliable. This can be instantiated more precisely as follows.

• We aim to construct a general framework within which to consider the general issues

surrounding cooperation in multi-agent systems. This framework must identify the

key areas of relevance for examination, the structure within which to organise them,

and the broad-based mechanisms required. It should not be tied to particular domains

or applications, and any mechanisms described must be generic and abstract, to apply

across the spectrum of cooperative activity.

• Within this framework, we aim to develop the particular models and mechanisms

needed for agents to establish and perform cooperative interactions. This can be

regarded as instantiating the broad-based framework described above, tailoring ab

stract mechanisms to particular well-defined sub-areas. In so doing, we do not intend

to restrict the applicability of the work, but to ensure that applicability is instead well-

recognised, and that points of variance for different sub-areas may be identified with

7

potential alternative strategies fitting in.

In particular we aim to explicitly consider the development of mechanisms for the

following stages in cooperation.

- Agents must be able to recognise when the potential for cooperation exists, and

when it is the most appropriate way of achieving their goals.

- Once an agent has determined that the best method to achieve its goal is through

cooperation, it needs some mechanisms through which it can elicit assistance

from others.

- Conversely, when requested to offer assistance to another, an agent needs some

means of determining whether to accede to the request.

- Finally, assuming sufficient agents agree to assist, the group of agents concerned

must be able to execute the required actions in a coordinated and synchronised

fashion to achieve their objective.

• In line with the previous point, we aim to develop a prototypical implementation of

the developed model of cooperation as a demonstration, and in order to perform ex

periments, to investigate, test and analyse the algorithms and mechanisms developed,

to provide empirical understanding, and to provide indicative ways for the work to

be used in practice. We view this implementation as of secondary importance, in that

while it offers a useful demonstration the model, it not central to our analysis.

• In considering cooperation of any kind, it is important to pay attention to the reasons

why cooperation arises. These can constrain or bias cooperative activity significantly.

In the development of the two tiers of analysis above (i.e. the framework and model),

we aim to include an explicit recognition of the reasons an agent might have for

entering into cooperation, through the notion of some internal desire or motivation

for doing so. Where cooperation occurs as a result of, and is constrained by, agents’

motivations, we say that it is motivated cooperation — it is motivated cooperation,

8

which is the specific focus of this thesis. Thus, we aim to provide an account of how

motivations provide reasons for

- an agent deciding to request assistance for one of its own objectives;

- an agent agreeing to cooperate with another in achieving an objective that might

not be of direct benefit to itself; and

- an agent continuing to cooperate until the objective is achieved, or deciding that

cooperation is no longer in its best interest, and so terminating its involvement.

• Similarly, it is important to consider the consequences of agents’ autonomy on the

cooperative process. In particular, autonomy implies that agents follow their own

individual high-level desires, and consequently, whether a given agent is cooperative

or not is a direct function of them. If an agent’s high-level desires change during

cooperation, that agent may drop its involvement in cooperation in favour of some

other activity, even if this is detrimental to the remaining agents. Thus, there is a risk

of cooperative activity breaking down due to changes in agents’ desires, potentially

to the cost of those involved. We aim, therefore, to provide a mechanism for agents

to assess and manage the risk of such situations occurring.

We intend the work contained in this thesis to be as general as possible, without over

complication, and easily applicable. In pursuit of these aims, there are a number of prin

ciples that we adopt and use to guide our work. These principles are based on those first

articulated by Luck [59].

• Simplicity contributes to ease of development, evaluation and refinement. The vast

amount of research in AI has led to an ever growing variety of tools, and method

ologies for using those tools, of ever increasing complexity. Arguments for what has

been called ‘minimalist AI’ suggest that there should be a limited range of tools and

methodologies which should only be added to when they can be shown to be inad

equate. This is based on the premise that advances are not made by increasing the

9

number or complexity of tools, but from a small range of simpler tools applied in

useful ways. An important consequence of this approach is that it allows the merit

of such simple tools and methodologies to be evaluated easily and the tools to be re

vised as appropriate. Thus, where existing solutions suffice for particular problems,

we aim to use them in an effort to prevent duplication, to better relate our framework

to existing work in the area, and to frame the work in a context (that already exists)

in which it can be understood.

• Similarly, simplicity also counsels against the imposition of unnecessary constraints

and for the adoption of more general and more applicable solutions. Despite the

inevitable need to focus on details of domains and applications, the more general

relevance in this research must be made clear. Our solution is twofold: we provide

at least two levels of analysis through the general framework and its instantiation

as a model, and we avoid making premature commitments to particular instantiated

solutions wherever possible. In this way, we avoid contributing only in the narrowest

of areas, and also avoid a level of abstraction that tends toward the meaningless.

• One of the most significant problems faced by researchers in the field of multi-agent

systems, and which threatened to limit its development, relates to the vagueness and

ambiguity of much early work. We recognise the need to be careful and precise

in relation to our work, especially in this rapidly moving area, and aim to achieve

that precision through the use of formal specification techniques. Thus, the agent

architecture on which the theory is built and the theory itself, are formally specified

to aid understanding, analysis, and critical comparison with other architectures and

models.

10

1.5 Structure of Thesis

Before we begin to address the aims described above, in Chapter 2 we set the context for

our work by considering related research. Since there is a wide body of work relating to

agency, agent architectures, and cooperation, we select the most significant with respect to

this thesis.

Chapters 3 and 4 describe the architecture on which we base our framework of mo

tivated cooperation. The former of these introduces the mental components required of a

motivated agent situated in a cooperative environment, while the latter details the control

processes that act on these components. Then, in Chapter 5, we give an overview of the

cooperative process, describing the stages it comprises — we discuss how the need for co

operation arises, and how it can be established. In this chapter we also introduce some

of the key concepts that the remainder of the thesis relies on (specifically the notions of

commitment and risk with respect to cooperation).

In Chapter 6 we describe in more detail the situations under which the need for coop

eration arises and, in particular, we discuss the reasons an agent might have for choosing

to achieve its goals cooperatively. Where an agent wishes to cooperate for the achievement

of a particular goal, there are a number of steps that it must take to gain the assistance of

others, and these are described in Chapter 7. Finally, Chapter 8 identifies the contributions

made in this thesis, and areas of possible future extension.

11

Chapter 2

Related Work

2.1 Introduction

Motivated by the need for the work contained in this thesis to be generally applicable,

it must be seen within the wider context of related research. There is, however, a vast

array of related literature — too much to include an exhaustive summary within the con

straints of this thesis. Furthermore, several other researchers have produced extensive re

views (e.g. [53, 72, 73, 78, 79, 103]) which, taken together, offer a broad coverage of the

state of the art in multi-agent systems research. We avoid duplicating such work here, and

instead introduce only the most directly relevant material. The objective of this chapter is

to set the context for the subsequent chapters, rather than to provide a detailed description

of specific theories and models and, as a consequence, we give a precis of the relevant

work, and offer pointers to the appropriate literature. Four broad areas stand out for dis

cussion as directly relevant to motivated cooperation: agency and the notions of autonomy

and intention, agent architectures, theories of social agency, and existing multi-agent sys

tems. Sections 2.2 and 2.3 introduce the notions of agents, autonomy and intention, and

outline the prevailing views in these areas. In Section 2.4 we describe some of the more

significant agent architectures arising from these views. The key theories of social agency

12

are discussed in Section 2.5, and Section 2.6 introduces selected multi-agent systems that

these theories give rise to. Finally, Section 2.7 gives an overview of the stages involved in

cooperation between autonomous agents.

2.2 Agency and Autonomy

In Chapter 1 we noted that most researchers concur with the view of an agent as an indepen

dent entity, capable of acting in its environment according to its perceptions, based upon

its own decision-making processes and objectives. This corresponds to Wooldridge and

Jennings’ weak notion of an agent as an entity that possesses the properties of autonomy,

social ability, reactivity, and proactiveness. Recall also, from Chapter 1, that Wooldridge

and Jennings observe that some researchers use the term agent to import a stronger notion

of intentionality, conceived in mentalistic terms, with notions such as belief and intention.

We adopt this intentional view of agency, and in the remainder of this section we introduce

the foundational work on which it is based. It should be noted that there are many other

notions of agency, and corresponding architectures arising from them, of which the most

significant are briefly introduced in the final part of Section 2.4.

In our view there are a number of fundamental characteristics to autonomy, as identified

below.

• Autonomous agents follow their own desires, are not under the control of others, and

are able to adjust their behaviour in response to their current situation.

• Autonomy allows agents to function effectively when situated in an environment that

is unpredictable due to its complexity and dynamic nature. An agent’s environment

may change through the effects of others’ actions, and it must be able to respond to

the changes that occur. In particular, it must be able to recognise when the goals it

is pursuing are no longer relevant, or when the course of action it is following needs

modification in the light of change.

13

• Finally, in order to react appropriately to changes in the environment an agent must

be able to generate and adopt new goals, according to the current situation, and au

tonomy provides a means to achieve this.

There are several theories of autonomy in agents, ranging from the philosophical and

psychological which aim to further our understanding of autonomy in humans, to those

that are firmly part of DAI. In relation to this thesis, and our investigation of motivated

cooperation, the most significant models are those that discuss autonomy in relation to the

notion of motivation and we introduce these in the remainder of this section.

2.2.1 Autonomy Through Motivations

According to Luck and d’Invemo, autonomous agents possess goals that are generated in

ternally, rather than being adopted from an external source [61, 62]. These goals are gener

ated from a set of motivations, which are high-level desires or preferences that characterise

an agent’s purpose. In addition to causing the generation and subsequent adoption of goals,

motivations also direct an agent’s reasoning and action.

An agent has a given set of motivations, each with a particular intensity, which may be

variable dependent on the current situation. Motivations are represented as triples (m, v, b)

where m is the kind of motivation, v its intensity (as a real number), and b a boolean which

is true if the intensity is fixed, and false otherwise [63]. Luck and d’Invemo suggest that, in

order to achieve action, a threshold value for intensity may be introduced, such that if the

intensity of a particular motivation exceeds this threshold, action towards it is necessary.

Motivations are mitigated by agents selecting an action to achieve an existing goal, or

by retrieving a goal from a repository of known goals. In order to retrieve goals, an agent

must have some means of assessing the alternatives, and should select the set of goals that

affords it the highest motivational benefit. If generating a goal would cause a conflict with

an existing goal, then agents should only generate that goal (and remove the existing one) if

the motivational value of doing so is greater than that of not doing so. Agents are therefore

14

assumed to have appropriate mechanisms for assessing the motivational value of generat

ing, satisfying, and removing goals. However, Luck and d’Invemo do not give details of

how to instantiate these mechanisms, since they are concerned with the development of a

framework for motivated agency, rather than the development of a particular agent archi

tecture.

2.2.2 Motivated Goal Creation

Norman and Long have a related view of motivation to that described above, which focuses

on goal creation in agents [75, 76, 77]. They claim that agents situated in a realistic domain

must be able to generate goals on the fly, limit the goals that are considered for action

(in order to manage the reasoning overhead), and direct attention to the most appropriate

goals for the current situation. Agents are given a set of motives, the function of which is

to monitor the environment and the internal state of the agent, and ensure that a particular

objective is served. Motives ensure that any significant changes to the environment or to the

agent’s internal state are detected and acted upon, and are defined as a function that maps

a set of beliefs to a set of motivated goals. These motivated goals are tuples containing a

goal and a motivation, where a motivation is a heuristic function that maps beliefs to an

intensity used to select between motivated goals. The final component that is needed for

goal generation and goal activation is a set of triggers. A trigger takes a set of motivated

goals and a set of beliefs and causes each goal whose motivation exceeds a certain threshold

to be a candidate for consideration by a deliberative process that decides whether to adopt

the goal. The resultant set of goals is then passed to a planner that directs action in pursuit

of them.

Figure 2.1 illustrates the key parts of this motivated agent architecture. In particular,

motivated goals are generated on the basis of an agent’s motives and beliefs, and are added

to the set of goals considered for activation. If the intensity of the motivation associated with

a goal is greater than some threshold (determined by the planner) then the goal is activated,

15

action

Figure 2.1: Norman and Long’s motivated agent architecture (from [77])

and passed to the planner, which determines how it should be achieved. Despite differences

in terminology, Norman and Long’s view of autonomy is broadly analogous to Luck and

d’Invemo’s — the goals an agent can generate are associated with some intensity based on

its beliefs1, and should this intensity exceed some threshold then the goal is adopted, or

generated.

2.2.3 Autonomy as a Dependence Relationship

In collaboration with others, Castelfranchi [11, 14] proposes a view of autonomy as a rela

tional notion, in that an agent is autonomous for a given action or goal if it is able to perform

the action or achieve the goal without assistance, and is autonomous from some agent or re

source if it can act without reliance on that agent or resource. This view comprises two

distinct categories of autonomy: executive and social. Executive autonomy refers to an

agent’s ability to follow its own initiative and preferences, and guide its own behaviour in *
'This association is indirect in Luck and d’lnvemo’s approach, since motivations have an intensity, and for

each motivation there is a particular set of goals that affords it motivational benefit.

16

terms of the goals it adopts and the actions it performs. In a multi-agent environment, au

tonomy is a social notion, and social autonomy has two complementary aspects. Firstly,

the less an agent is dependent on the actions of others, or the resources they control, for

the achievement of its goals, then the more autonomous it is. Secondly, if an agent is not

dependent on others for its goals, and is able to generate its own goals according to its own

desires, then it is goal autonomous. A goal autonomous agent should have complete control

over which goals it adopts. This does not mean that it cannot adopt a goal on the basis of

a request from another agent, rather that it should have the option of refusing to do so. In

other words, an agent is goal autonomous if it decides to do something for its own reasons,

regardless of whether or not this involves complying with others’ requests.

Castelfranchi is not concerned with providing a model of autonomy at the level of

the data structures and functions required, but with the investigation of the various types

of autonomy that can be distinguished, and extending the notions of executive and social

autonomy; thus Castelifanchi’s work is more abstract than that of Luck and d’Invemo or

Norman and Long.

In this thesis we accept the notions introduced in this section (and adopt Luck and

d’Invemo’s terminology). However, none of this work investigates how autonomy relates to

cooperation amongst agents with respect to a particular architecture, in terms of accounting

for the reasons an agent might have for entering into cooperation, and the processes through

which cooperation arises from agents’ behaviour, and as stated in Chapter 1 we aim to

address this. Other models of autonomy exist, such as (e.g. [1, 45, 70, 92, 93]), but a

discussion of these is beyond the scope of this chapter.

2.3 Individual Intentionality

In our everyday activities it is common for us to make use of such notions as belief, hope,

desire and intention in reasoning about ourselves and others. As Wooldridge points out,

17

these mental states, or intentional attitudes, are part of a well established folk psycholo

gy in which human behaviour can be investigated and forecast [105]. Intentional systems

are those whose behaviour can (at least sometimes) be explained and predicted by the as

cription of intentional attitudes [22], It is clear that agents can be viewed as intentional

systems, and it is commonplace for researchers to couch descriptions of agents in terms of

intentional attitudes. However, it should be noted that it is generally not claimed that inten

tional systems must have beliefs, desires, intentions, and so on, rather that ascribing such

attitudes provides a useful abstraction for investigating agents, and for comprehending and

managing their complexity. The exact composition of the set of attitudes that are required

to explain and predict individual behaviour has been, and will almost certainly continue

to be, the subject of debate for philosophers, cognitive scientists, and artificial intelligence

researchers alike. However, many researchers agree that the notions of belief, desire, and

intention are broadly sufficient (e.g. [2, 3,15,22, 51, 87]). Recall from the previous chapter

that an agent’s beliefs are those propositions about the environment and itself that it takes

to be true, and its desires are the situations that it wishes to bring about in the environment.

Intentions are more complex, and represent the goals to which an agent has committed.

Philosophers have often drawn a distinction between future-directed and present-direc

ted intentions, where the former guide agents’ planning and constrain their adoption of other

intentions, while the latter function causally in producing behaviour [15]. For example, a

future-directed intention may be to go to London tomorrow, while a present-directed inten

tion may be the action of standing up now. It is the notion of future-directed intentions that

we are concerned with in this thesis, since we are concerned with how agents guide their

actions, form plans, and commit to the achievement of their goals. For clarity, we here

after use the term intention to refer to future-directed intentions, unless explicitly specified

otherwise.

18

2.3.1 The Need for Intention

An intention is a commitment to the achievement of a particular goal. Bratman [2, 3] offers

three reasons why intentions are needed to explain and predict agent behaviour. Firstly,

since agents are resource-bounded, and deliberation uses resources, there are limits to the

extent of deliberation possible at the time of action. Agents cannot continually consider

their competing goals and beliefs in deciding what action to take. Eventually an agent must

settle on a particular goal, and establish a commitment towards achieving that goal, there

by balancing deliberation and acting. Secondly, by adopting intentions, an agent is able to

coordinate its present and future actions. Once committed to achieving a given state, an

agent can consider what to do after that state has been established based on the expectation

that its commitment will result in it being achieved. Current intentions, therefore, constrain

the future intentions an agent can adopt. Thirdly, intentions are a commitment to achieve

a particular goal, without specifying how that goal should be achieved; as a result, inten

tions require deliberation, since an agent must determine how to achieve them. Moreover,

since it is not rational for an agent to be committed to achieving conflicting goals, i.e. hold

conflicting intentions, its current intentions establish standards of relevance against which

future options can be judged.

From this description of the functional role of intentions, Bratman [3] identifies two

important desirable properties. Firstly, to prevent agents becoming committed to conflicting

goals, intentions should be consistent in that they should not conflict with each other or with

the agent’s beliefs. Secondly, intentions should have a degree of stability and resist being

reconsidered or abandoned, but should not be completely irrevocable, otherwise an agent

would not be able to adapt to changes in its environment.

2.3.2 Cohen and Levesque’s Model of Intention

Cohen and Levesque offer one of the most influential models of intention, which forms the

base for many theories relating to agents and, in particular, multi-agent cooperation. Build-

19

mg on the ideas of Bratman they add the following desirable properties of intention [15].

An autonomous agent should act upon its intentions and not regardless of them, adopt in

tentions it believes are possible, and forego those believed unachievable. It should commit

to intentions, but not indefinitely, and discharge those intentions believed to have been sat

isfied. Finally, intentions should be modified when relevant beliefs change, and an agent

should adopt subsidiary intentions in favour of achieving existing ones.

These properties give rise to a set of seven criteria that Cohen and Levesque claim

must be satisfied by any reasonable theory of intention. The first three criteria represent the

functional roles of intention, while the remaining four represent its desirable characteristics.

1. Intentions require deliberation since agents must determine ways to achieve them.

2. Intentions constrain the adoption of further intentions, since an agent should not adopt

an intention that is inconsistent with existing ones.

3. Agents must track the success of their intentions, and be disposed to re-planning if

their attempts to achieve their intentions fail.

4. Agents must believe their intentions are possible.

5. Agents must not believe that they will not bring about their intentions. If an agent

believed it would not achieve its intention, then it would not be rational to plan past

it; thus, without this property, agents would not be able to plan to do certain actions

in the future based on achieving their existing intentions.

6. Under certain circumstances, agents must believe that they will bring about their

intentions, meaning that they believe a situation will eventually arise in which they

can bring about their intentions.

7. Agents need not intend all the expected side-effects of their intentions.

These criteria are accepted by many, but there are certain researchers who reject specific

ones. In particular, the final criterion that agents need not intend the expected side effects

20

of their intentions has been the subject of debate. For example, Sidgwick [91] claims that if

an agent has a particular intention and knows that achieving this intention will bring about

some other side-effect in the environment, then we must say that the agent intends this side-

effect. This debate, however, has largely been of a philosophical nature and is beyond the

scope of this thesis.

Now, if, as desired, intentions are to be relatively persistent, but not completely irrevo

cable, the key question that arises is when it is acceptable for an agent to drop an intention.

Cohen and Levesque answer this in their model of intention. Building on the seven cri

teria above, they propose a formal theory in which intention is modelled as a composite

concept specifying the goal an agent has chosen, and how it is committed to achieving that

goal [15, 16]. An agent’s chosen goals (i.e. its intentions) are assumed to be consistent,

achieved by requiring that an intention will not be adopted if it would be inconsistent with

existing ones. (An agent’s desires, or goals, may be inconsistent, but an agent cannot simul

taneously pursue contradictory desires.) Cohen and Levesque also assume that an agent’s

beliefs can be incorrect and can be revised, and that the agent may drop its chosen goals

before they have been achieved.

The foundation of their model is the notion of a persistent goal, where persistence is de

fined in terms of an internal commitment to a particular course of events or the achievement

of a particular goal (see Table 2.1 for this definition). Building on this definition Cohen

and Levesque introduce two forms of intention, depending on whether the object of the

intention is an action or a goal. The difference between these forms is that when an agent

intends to achieve a particular goal, it may not know how it will achieve it, as opposed to

when it intends to perform a particular action, which is defined as a primitive level (again

see Table 2.1 for the definition). Cohen and Levesque’s notion of intention, despite having

certain problems (which we address in Chapter 3), is one of the most widely used [44].

21

Definition 1 An intention is a persistent goal to have knowingly performed
an action, or to have knowingly performed a sequence o f events after which a
goal is achieved.

Definition 2 A persistent goal is a goal that is retained until an agent believes
that it is satisfied, can never be satisfied, or is no longer justified, so that in all
these cases it is irrelevant.

Table 2.1: Cohen and Levesque’s definitions of intentions and persistent goals

2.4 BDI-based Architectures

The Belief-Desire-Intention (BDI) architecture [2, 5] is an abstract model, which forms the

basis of numerous agent theories and systems and, since it is one of the earliest and sim

plest architectures, provides a useful reference for discussing other agent systems. Agents

are based around the mental attitudes of beliefs, desires and intentions, which have been

introduced above.

A BDI agent operates by reasoning about its current beliefs and desires, to determine

one or more desires to make active. Once made active, these desires are committed to and

added to the agent’s current intentions, which in turn define its behaviour. The agent then

acts upon one of these intentions, and updates its beliefs and desires as appropriate. We

describe this process in more detail below, where we consider instantiations of the BDI

architecture.

Though this architecture specifies a generic control mechanism it is nevertheless ab

stract, and needs to be instantiated in detailed architectures for specific applications. There

are many BDI-based systems (see [44] for a description of the most significant architec

tures), along with several logics for reasoning about BDI agents and their behaviour (for

example [82, 83]). In the remainder of this section we describe the archetypal BDI-based

systems, IRMA and PRS.

22

intentions

Figure 2.2: The IRMA architecture (from [5])

2.4.1 IRMA

IRMA (Intelligent Resource-bounded Machine Architecture) shown in Figure 2.2, is the

earliest BDI implementation, in which information stores are shown as rounded boxes, and

processes as rectangles. There are four information repositories in the IRMA architecture

for storing beliefs, desires, intentions, and a plan library.

Beliefs An agent’s beliefs represent the information it has about itself and its environment.

Desires The set of situations an agent wishes to bring about are its desires.

Intentions The goals to which the agent is committed to achieving correspond to its inten

tions, but rather than being stored as goals, they are stored as the plans that have been

chosen to achieve those goals.

Plan library The plan library stores the set of plans from which an agent can select the

23

most appropriate to achieve its goals.

In IRMA, therefore, intentions represent a commitment to a particular course of action,

rather than just to a goal. In addition to these repositories there are a number of processes,

the most significant being a means-end reasoner, an opportunity analyser, a filtering mech

anism, and a deliberation process. An IRMA agent’s beliefs change with its environment,

and different plans become applicable in those environments. The opportunity analyser

proposes plans in the light of changes in the agent’s beliefs that may lead to previously

unexpected opportunities for satisfying desires (or provide means for avoiding unexpected

problems). Plans that may be used as subplans in the elaboration of partial plans are also

proposed by the means-end reasoner, which is invoked for each of the agent’s intentions

that contains partial plans. The plans proposed by the opportunity analyser and the means-

end reasoner are passed through the filtering mechanism, which checks for compatibility

with existing intentions, rejecting plans that are incompatible. There is also a filter override

mechanism through which plans that are incompatible with existing ones can be deemed to

have passed the filtering process and considered by the deliberation process. After filtering,

the remaining plans are passed to the deliberation process, where they are considered and

a subset committed to and added to the agent’s intentions. Finally, the agent performs the

plans that are specified by its intentions.

2.4.2 PRS

PRS (Procedural Reasoning System) [38] is another implemented architecture based on the

BDI model. It is also based around four main repositories: a belief database, a goal stack,

an intention stack and a plan (or Knowledge Area) library, as follows.

Belief database The belief database stores the system’s beliefs about its environment, whi

ch are generally based on its perceptions, but may also comprise pre-compiled knowl

edge.

24

Goal stack The goals of the system correspond to its current desires, i.e. a set of situations

the system wishes to be brought about, which are stored on the goal stack.

Intention stack The contents of the intention stack represent the goals to which the system

is currently committed and it is these goals, or intentions, which control the actions

of the system.

Plan library An agent’s plan library is a collection of partial plans from which the agent

can select the most appropriate for its current goal.

The system is controlled by a reasoner, known as the interpreter, which uses the belief

database, goal stack, intention stack and plan library to determine behaviour. At any partic

ular time, the system has a set of beliefs, stored in the belief database, and a set of active

goals. Based on these, the interpreter determines a set of plans that are potentially relevant

(in that they contribute to the active goals) and applicable based on the current beliefs. One

of these plans is activated by placing it on top of the intention stack as a course of action

the system is committed to executing. During the execution of a plan, the environment may

change, new goals or subgoals can arise, and the interpreter monitors the environment in

order to update its beliefs. The new goals are placed on the goal stack, at which point the in

terpreter checks to see which plans are relevant in the light of the updated beliefs and goals.

This amounts to a continual process of interleaving planning and execution. Figure 2.3

illustrates the PRS architecture, and again information stores are represented as rounded

boxes, and processes as rectangles.

Since plans (or knowledge areas) in PRS are not necessarily complete and can be par

tially elaborated, the top of the intention stack may be a partial plan, leading to partial

execution. In turn, this can lead to new information being obtained and, as a result, PRS

can plan with incomplete information. A consequence of the cycle of partial execution,

updating the beliefs and choosing a new plan, is that PRS is reactive. This is because after

each stage of execution any changes in the environment will be reflected by changes in the

beliefs, which in turn influence the reasoning. A change in beliefs does not directly cause

25

Perception

Action

Figure 2.3: The PRS architecture (from [38])

a change in the current goals, and so the system continues to work towards its high level

goals i.e. it is goal-oriented.

2.4.3 Alternative Architectures

Many other agent architectures exist, and there are a number of alternatives to the BDI ap

proach, such as SOAR [56], TouringMachines [29, 30] and InteRRap [32, 74], of which the

latter two can be categorised as hybrid systems that attempt to combine reactivity with a

classical planning approach. TouringMachines has a layered architecture, comprising a re

active layer for responding to events in the environment, a layer for planning that constructs

plans and focuses the agent’s attention and, finally, a modelling layer for constructing in

formation about others. Each of these layers is passed information from perceptions, and

can cause actions through a control framework that mediates between the three layers.

26

InteRRap also has a layered architecture with behaviour-based, planning, and cooper

ative planning layers, roughly analogous to the layers in TouringMachines. Each of these

layers is divided into sublayers containing knowledge bases and control units specifically

for that layer. Thus, each layer contains the information and control structures needed at that

level. For example, the behaviour-based layer contains knowledge about the environment

and the control mechanisms for acting and perceiving in that environment.

Alternatively, some researchers, most notably Brooks, view agents from a primarily

reactive viewpoint. Brooks [7, 9] eschews symbolic AI in favour of situating, in a complex

environment, autonomous robots without explicit representations of their environment or

reasoning ability. In his view, intelligent behaviour emerges from a subsumption architec

ture in which a hierarchy of behaviours for specific tasks compete with each other to obtain

control of the robot (or agent) [8].

2.5 Social Intentionality

Cooperation underpins multi-agent systems in which individual agents must interact for

the overall system to function effectively and perform tasks that otherwise might not be

achieved, or at least not achieved as easily. Now, an agent’s actions are determined by its

intentions, regardless of whether these actions are cooperative or not. Thus, where a group

of agents cooperate, their behaviour and therefore their cooperation, is at some level defined

by their intentions. In this section we discuss the nature of the commitments required from

a group of agents to act cooperatively, and introduce the notion of social intentionality. We

begin by describing Cohen and Levesque’s theory of group intention, which extends their

individual model described in Section 2.3. In a cooperative environment, agents may be

unable to achieve their goals without drawing on the knowledge or actions of another, i.e.

agents may depend on each other. Castelfranchi’s Social Power Theory is concerned with

the influence of such dependencies, as we discuss later in this section. We end this section

by introducing the notion of joint responsibility, which offers a practical approach to social

27

intentionality.

It is generally accepted that cooperation involves more than just the coordinated simul

taneous actions of a group of individuals, and that it involves some form of group intention

towards the cooperative activity (e.g. [4, 58, 100, 102]). Such a group intention cannot

simply be a version of individual intention where the group is considered to be an agent

itself, since group members may diverge in their beliefs, and there is no obvious coherent

set of beliefs that correspond to the group’s beliefs. This leads to problems in situations

where an individual comes to believe that its intended goal is unachievable and so cannot

remain committed to it, causing it to drop its intention. If such an individual is a member

of a group, then the group should drop its intention. However, not all members of the group

necessarily know that the goal is unachievable and that the intention should be dropped.

Thus, a group’s commitment to cooperate must incorporate some mechanism for an agent

to become committed to informing others if it comes to believe that the intended goal is

unachievable (or should be dropped for some other reason). Bratman [4] identifies this

and a set of other requirements that he claims characterise a group’s cooperative activity as

follows.

• A degree of mutual responsiveness is needed, and each participant should guide its

behaviour in response to others’ intentions and actions.

• This mutual responsiveness should be driven by agents’ commitment and so some

form of commitment to joint activity, or cooperative intention, is necessary.

• Agent’s should be committed to supporting the efforts of others when making their

contributions to the cooperative activity, and so some form of commitment to mutual

support is also required.

• Intentions should not be coerced, and any agents involved in a cooperative intention

must have chosen to cooperate without force from others. This is not to say that

agents should not try somehow to persuade others, merely that they should not use

28

force.

• Cooperative intentions should be common knowledge amongst the participants.

Existing work investigating what is required from a notion of cooperative intention

can be divided into two categories. Firstly, there is the view that cooperative intention

is irreducible, in that it cannot be reduced to a set of individual intentions and mutual

beliefs [88]. Secondly, the more popular view is that cooperative intention is a combination

of individual intentions, mutual beliefs, and a set of mechanisms describing how it should

be maintained [84, 98].

Much of the existing work on cooperation in DAI is based on, or at least influenced

by, the work of philosophers and psychologists such as Bratman [3] (as described above),

Searle [88], and Tuomela and Miller [100],

Tuomela and Miller’s model is one of the more influential models of commitment to

cooperate, or joint intention — the notion of shared plans [42, 43], for example, is based

upon it. In their model, for a group of agents to have a joint intention towards some group

action there are three requirements. Firstly, each agent must have an intention to do its part

of the action. Secondly, agents must believe that eventually suitable conditions will arise

for them to successfully perform their group action and, finally, agents mutually believe

that each agent will do its part as long as the others do likewise. However, as recognised

by Cohen and Levesque, if one agent comes to privately believe the joint intention is no

longer appropriate (i.e. is achieved, unachievable, or not justified) then, assuming the agent

is rational, it must drop its intention [17, 19]. This, however, leaves the rest of the group

abandoned, which is clearly undesirable. There is nothing in Tuomela and Miller’s approach

that requires an agent to stay committed to the group if it comes to have such a private belief.

29

Definition 3 A joint intention is a joint persistent goal by a group to have
knowingly performed an action, or to have knowingly performed a sequence
o f events after which a goal is achieved.

Definition 4 A joint persistent goal is a goal that is held, and mutually be
lieved to be held, by two or more agents, such that until the goal is mutually
believed to be irrelevant the agents have a corresponding weak goal.

Definition 5 An agent has a weak goal i f either it has the goal, or believes the
goal to be irrelevant and has the goal o f making this mutually believed.

Table 2.2: Cohen and Levesque’s definitions ofjoint intentions and joint persistent goals

2.5.1 Joint Intention Theory

According to Cohen and Levesque, a theory of joint intention must take into account that

agents’ beliefs may be divergent since, if an individual comes to privately believe that the

group’s goal is no longer appropriate and should be dropped, the other members of the group

may not hold such a belief, and so do not know they should drop their goal. Therefore, a

joint intention must include some mechanism through which an agent that privately comes

to hold such a belief makes it known to the whole group, rather than simply abandoning

the group action, leaving the others with inappropriate commitments. Cohen and Levesque

introduce the notion of a weak goal to embody this commitment to informing others (see

Table 2.2 for its definition).

In Section 2.3 we introduced Cohen and Levesque’s model of intention, upon which

their model of cooperation is based by generalising their definitions to the case where two

or more agents act as a team. A team is considered to be a group of agents having a shared

objective and a shared mental state. Cohen and Levesque distinguish between a shared and

common goal, in that a shared goal is with respect to a group who collectively have the

goal, while a common goal occurs where a group of agents have the same individual goal

and any one agent’s success is independent of others achieving their goal. Joint intention

30

is based on the premise that if a group member comes to privately believe that it should

drop its intention it should adopt the (private) goal of making this known to the other group

members before it can drop its own commitment. This is achieved through the concept

of mutual belief, which is defined to be an infinite conjunction of beliefs about another’s

beliefs.

Based on the definition of a weak goal, Cohen and Levesque introduce the notion of

a joint persistent goal, in which agents have appropriate mutual beliefs and weak goals

towards some group goal (again see Table 2.2). For a group of agents to be jointly com

mitted to a goal, each member of the group must initially be committed to the goal, and

later believe that the other members have a corresponding weak goal. After the initial com

mitment, others can only be believed to have a weak goal (rather that the main goal itself)

because they might have discovered the goal to be inappropriate and so have dropped their

goal in favour of a secondary goal to establish mutual belief in the original goal’s status. A

joint intention is defined in turn, in Table 2.2, by generalising the definition of individual

intention.

Under normal circumstances, a group’s joint intention will eventually lead to one mem

ber of the group adopting the private goal to establish mutual belief (since the goal will

eventually be considered inappropriate). This establishment of mutual belief can be viewed

as the team overhead that arises from a joint intention and, moreover, Cohen and Levesque

claim that joint intention will lead to communication between agents to establish mutual

belief. An agent can therefore rely on others in the group to inform it when the goal is no

longer appropriate.

2.5.2 Social Power Theory

In a series of collaborations with other researchers [10, 12,14, 20], Castelffanchi presents a

model of social action and cooperation stemming from Social Power Theory, which serves

as the base for computational work known as Social Dependence Networks [89,90]. Castel-

31

franchi approaches the subject from the point of view of psychology and sociology, rather

than computer science per se, and as such many of his comments are concerned with the

lack of DAI models to contribute to the understanding of human interaction. While our

enterprise is not to develop a theory of human interaction, many of his observations are still

relevant.

In Castelfranchi’s view, cooperation implies a common goal shared by agents, so that

goal adoption is necessary as a fundamental aspect of autonomous pro-social behaviour.

Agents form a collective entity when they share a common goal, each agent is required to

do its share of the common goal, and adopts an intention to do so.

A common goal is a goal with respect to which there is mutual dependence between

agents [20], An agent is said to adopt another’s goal if it forms the goal that eventually

the other agent should obtain its goal (where obtaining a goal implies the goal is eventually

achieved and is believed to be achieved). Goal adoption may occur through influencing

another, such as by offering a reward or issuing a threat, but it is assumed that agents cannot

directly modify another’s goals, and instead can communicate with them in an attempt to

change their mental state. Also, an autonomous agent will only adopt a goal if it is useful

with respect to fulfilling its desires. The notion of social power is key to the way in which

agents get others to adopt their goals.

• An agent is said to have the power of a goal if it can ultimately achieve it.

• An agent depends on another for a goal if it does not have the power of achieving

it and the other agent does; or if it has the power of the goal unless the other agent

prevents it.

• An agent is said to have power over another agent for a goal if the other agent depends

on it for that goal.

• An agent is said to have power to influence another for a goal, if it can perform some

action that makes the other agent have the goal as a goal of its own.

32

These notions of social power form the base for Sichman and Demazeau’s computa

tional model of Social Dependence Networks, which are concerned with social reasoning

of autonomous agents [90], Each agent is assumed to have an external description of all

the agents in the group (including itself), which contains details of their goals, actions, re

sources, and plans. These descriptions correspond to the agent’s beliefs about others and,

since beliefs are not guaranteed to be accurate, can be incorrect or incomplete.

The reasoning mechanism proposed relies on the following three types of autonomy.

1. An agent is a-autonomous with respect to a goal and a set of plans if it has the goal,

a plan (in that set of plans) to achieve it, and all actions in that plan are within the

agent’s capabilities.

2. Similarly, an agent is r-autonomous if it controls all the resources required to execute

the plan.

3. Finally, an agent is s-autonomous if it is both a-autonomous and r-autonomous.

If an agent is not autonomous for a given goal, it may depend on others. Corresponding

definitions of a-dependence, r-dependence, s-dependence are given for dependence on an

action, resource, or both. Using these notions of dependence and its descriptions of others

an agent can construct a dependence network to represent all of its action and resource

dependencies regarding others. These dependencies can be used in the agent’s reasoning

process, in particular to identify dependence situations. A key assumption here is that dif

ferent agents’ external descriptions are identical [90]. Based on this assumption an agent

is said to locally believe a given dependence if it uses its own plans when reasoning about

others. If it uses its own plans and those of others, there is said to be a mutually believed

dependence between them. Using these notions it is possible to describe a number of oth

er possible situations such as locally believed independence, mutual dependence, etc. In

more recent work, Sichman and Demazeau extend Social Dependence Networks to include

inconsistencies between agents, i.e. difference in agents’ external descriptions [89].

33

2.5.3 Com m itm ents and Conventions

Wooldridge and Jennings (with others) [48, 52, 102] attempt to begin to bridge the gap

between theory and practice in DAI through the notion of joint responsibility, which is a

mental and behavioural state that they claim captures and formalises many of the intuitive

underpinnings of cooperative problem-solving. In their view a practically applicable theo

ry of social activity among autonomous agents must address how team activity should be

initiated, how to assemble a team, how to plan and distribute work, how to behave once

team activity is initiated, and how to complete the team activity. A framework for co

operation is developed based on joint responsibility, which aims to address these aspects.

The mechanisms on which cooperative interactions are based can be described in terms of

commitments and conventions [49]. A commitment is a pledge or promise to undertake

a specified course of action, and a convention is a means of monitoring commitments in

changing circumstances. Conventions specify the conditions under which a commitment

might be abandoned, and how an agent should behave in such a circumstance.

A common objective is not sufficient for realizing a collective goal — agents must

agree upon a means of achieving it. According to Wooldridge and Jennings much of the

other existing work on team activity has concentrated on joint intentionality in terms of

goals, and has not considered how such goals will be achieved. The first step to achieving

joint action is for a group of agents to have a common objective, or intention, that can only

be achieved through collaboration (where intention is taken to be a goal without a specified

means of achieving it). Agents can then form a commitment to this objective by forming

a joint persistent goal (in the sense of Cohen and Levesque). However, a joint persistent

goal does not specify how to achieve the objective. Wooldridge and Jennings suggest that

agents should agree a strategy by which the objective will be achieved, and then develop

and agree on a plan to achieve the common goal. Their framework is not concerned with

the mechanisms for constructing the common plan, rather that agents agree in principle that

such a plan is needed to achieve the objective.

34

The idea that joint action requires agents to agree to a common plan can be expressed

implicitly through the definition of agents’ roles, or explicitly in the definition of joint

intention. The notion of commitment to a plan defines how an agent should behave once a

plan has been developed — under what conditions it should follow the agreed plan, and how

it should behave if it is no longer rational to do so, i.e. the conventions it should follow. It

would be irrational for an agent to remain committed to a plan if it is invalid, unattainable,

or violated, or if the objective is already achieved or another team member is no longer

committed. If an agent comes to believe that it is irrational to remain committed to the joint

solution, it should become committed to informing other team members.

2.6 Multi-Agent Systems and Architectures

In this section we briefly review some of the most significant multi-agent systems with

respect to the development of our framework. Firstly, we introduce GRATE*, which is

a BDI-based architecture specifically designed for cooperation. We then introduce two

models of cooperation, Planned Team Activity and STEAM, both of which are based on

the notion of joint intentions, as described above.

2.6.1 GRATE*

GRATE* is a layered BDI-based architecture with the addition of joint intentions (as de

scribed in Section 2.5) specifically intended for multi-agent environments where coopera

tion is important [50], Agents are divided into two layers: a cooperative layer and a domain-

specific layer. The function of the domain-specific layer is to determine how to achieve the

agent’s tasks, as defined by its desires or objectives. The cooperation layer operates above

the domain layer, and is given the role of choosing the tasks that should be achieved locally

and those that require cooperation, as well as ensuring that the agent’s actions are coordi

nated with other agents. Three key components provide control in the cooperation layer: a

35

Figure 2.4: The GRATE* architecture for cooperation (based on [50])

domain-interface module that connects the cooperation layer to the domain-specific layer,

a situation-assessment module, and a cooperation module.

Changes in the environment are represented by events, which are monitored by the

situation-assessment module to determine whether a new objective is needed, to find a

means for achieving them, and to check which of them require cooperation. The coop

eration module determines potential participants in achieving objectives that require coop

eration, attempts to form a joint intention with them, and oversees execution of these joint

intentions.

The components of the GRATE* architecture are shown in Figure 2.4, which shows the

two layers, along with the domain-interface, situation-assessment, and cooperation modules

(in boxes). The figure also shows the information repositories (in rounded boxes) that

these modules require, namely, acquaintance and self models that store information about

36

others and the agent itself, and a general information store for other information. Finally,

the figure includes the additional component of a communication manager, to facilitate

communication between the agent and others.

2.6.2 Planned Team Activity

Planned team activity (PTA) is the model of cooperation developed by Kinny et al. [55]

for cooperation among BDI-like agents, building on previous work on BDI agents where

agents are supplied with a repository of partial plans in advance, rather than being required

to plan from first principles [38, 84], An individual’s repository of plans is its plan library,

and the plan library of a group is taken to be the intersection of its members’ plan libraries.

Cooperation in PTA is based upon the group mental states of mutual beliefs, joint

goals, and joint intentions, which are similar to the notions introduced by Cohen and

Levesque [18]. Distinct from Cohen and Levesque’s notion, however, is that joint inten

tion in PTA is a commitment to a joint plan or action, rather than to a goal. Consequently, a

group of agents that have a joint intention also have a commitment to a common course of

action, rather than just to a common goal, thereby avoiding the problem of different agents

being committed to incompatible plans to achieve a jointly intended goal.

Cooperation requires joint commitment to a common course of action, together with

coordination and synchronisation of that action, which is achieved in PTA through com

municative actions. When an agent has a goal that it is unable to achieve alone, it takes

on the role of team leader and attempts to form a team. The first step is to choose a set of

agents with whom it can cooperate and to request their assistance. Once the team agrees to

cooperate and a joint goal has been formed, the team must choose a plan to achieve its goal.

PTA uses a centralised approach where the team leader chooses a plan and informs the rest

of the team of the joint goal, the plan to achieve it, and an assignment of agents to actions

(or role assignment) in that plan.

37

2.6.3 STEAM

STEAM (Shell for TEAMwork) [97, 98, 99] is another implemented model of cooperation

founded upon Cohen and Levesque’s notion of joint intentions. Cooperation in STEAM is

based upon agents building a partial hierarchy of joint and individual intentions, and beliefs

about others’ intentions.

This hierarchy is designed to parallel Grosz and Kraus’ notion of partial shared plan-

s [42]. To achieve coherent cooperation, team members must follow a common approach

to achieving their joint intentions. Grosz and Kraus’ SharedPlan theory requires that agents

have a mutual belief in a common plan, and shared plans for the individual steps in that

plan. STEAM parallels this, in requiring that agents have a mutual belief in a common

plan, and joint intentions for the individual steps in that plan, leading to a recursive hier

archy of joint intentions that ensure team coherence. For each step contained in a jointly

intended plan the team must form a joint intention to execute it, and so on recursively. Such

joint intention hierarchies can evolve dynamically, as partial plans are elaborated. A result

of the commitment implied by joint intentions, is that team members track the subteam’s

joint intention in order to monitor the state of the team activity.

2.7 Stages in Cooperative Problem Solving

Leading on from the work described in Section 2.5, Wooldridge and Jennings [102, 104]

offer one of the few formalised models of cooperation. Their model draws on the notions of

commitments and conventions, and describes cooperation in these terms. Before describing

their model of cooperation, it is necessary to introduce some of the concepts and assump

tions on which it is based. Firstly, the mutual mental states of joint beliefs and joint goals

are used to describe the attitudes of a group. Mutual belief is taken to be the usual infinite

recursion of beliefs about others’ beliefs, and joint goals are based on the corresponding

individual goals, along with a belief about others holding the same goal. Wooldridge and

38

Jennings recognise that such mutual mental states are idealised and are typically not realis

able in real systems. However, they assert that such mental states provide a useful tool for

understanding cooperation between agents.

The primary mental attitude that is used in the development of the model is that of joint

commitment (or joint intention). Wooldridge and Jennings give a definition that is broader

that Cohen and Levesque’s and is defined in terms of commitments and conventions. In

deed, they recast Cohen and Levesque’s definition in their own terms, by describing the

appropriate commitments and conventions that are otherwise implicit. A convention is rep

resented as a tuple comprising a re-evaluation condition and a goal such that, if an agent

comes to believe the re-evaluation condition it should adopt the corresponding goal.

A group is defined to have a joint commitment to a goal, with respect to some motiva

tion, precondition, and convention if and only if,

• the precondition is initially satisfied, and

• until a termination condition is satisfied (as defined by the convention) every agent

in the group either has the appropriate goal or believes the re-evaluation condition of

the convention is satisfied, and has the goal defined by that convention.

The process of cooperation is divided into four phases, as follows.

Recognition Cooperation begins with an individual agent recognising the potential for co

operation.

Team formation The agent that recognised the potential for cooperation requests assis

tance from others and, if successful, obtains a joint commitment from the group of

agents that agree.

Plan formation The agents that have the joint commitment attempt to negotiate a mutually

acceptable plan to achieve their goal.

Team action The agreed plan is executed by the agents.

39

2.8 Summary

In this chapter we have introduced the context for the remainder of the thesis; we have

introduced both the notions of agency and cooperation. In particular we have discussed

motivations and intentions, and presented the abstract BDI architecture, upon which we

build. We have discussed social intentionality, and Cohen and Levesque’s extension of

individual intention to be a group notion.

Each of the theories and architectures described in this chapter are valuable, and make

useful contributions that we incorporate into our framework. However, a number of issues

are unaddressed in existing work, in particular the reasons why agents perform certain ac

tions are often not accounted for. Furthermore, the relation of these reasons, or motivations,

to cooperation in terms of the reasons why agents cooperate and the way in which they

manage the cooperative process are not sufficiently explored. Similarly, the risk that arises

from cooperation with autonomous agents is not considered. It is our aim to address these

issues in the following chapters, in our framework for motivated cooperation.

Our view of autonomy, which is described in Chapters 3 and 4, is based upon Luck and

d’Inverno’s model. However, we instantiate details that are abstract in their model, such

as the mechanisms for assessing the motivational value of a particular situation, goal, or

plan. In Section 2.2 we also introduced Norman and Long’s view of motivation, which is

broadly compatible with Luck and d’Invemo’s. The terminology differs between the two

views, however, and we adopt that given by Luck and d’Invemo’s and base our approach

upon theirs. Castelfranchi’s work on autonomy is concerned with a general investigation of

autonomy and how the dependencies between agents can be used to account for interactions.

Unlike us, Castelfranhi is not concerned with the role an individual’s autonomy plays with

respect to cooperation. Therefore, while we concur with Castelfranchi’s observations we

do not make further use of them in the developement of our framework.

In Section 2.3 we described the notion of intentionality, and introduced Cohen and

Levesque’s widely accepted view of intention. The agent architecture that we describe in

40

the following two chapters is, in part, based upon Cohen and Levesques view of intention.

There is, however, one key difference since their model is focused on a commitment to a

particular goal, whereas we are concerned with commitment to a particular course of action

in pursuit of a goal (as we describe in Section 3.12).

The BDI architecture introduced in Section 2.4 forms the base of our agent architec

ture, which in turn is the foundation upon which our framework is built. We introduced

the archetypical instantiations of the BDI model in the form of IRMA and PRS, and our

architecture broadly corresponds to these, with one very significant difference, namely the

incorporation of motivations. We provide the mechanisms required for an agent to be ful

ly autonomous and yet cooperate with others, through the additional mental component of

motivation.

It is widely accepted that cooperation amongst individuals involves some form of group

commitment, and Cohen and Levesque’s notion of joint intention described in Section 2.5

is used by many researchers as the base for further work. We are no exception in that the

precise nature of group commitment in our framework is based upon Cohen and Levesque’s

notions, as we discuss in Chapter 5. Our framework also utilises Wooldridge and Jennings’

notions of commitment and conventions, and (again in Chapter 5) we extend their formula

tion of joint intention to include the key additional factor of motivation.

The multi-agent architectures introduced in this chapter do not consider motivations or

risk, and in this respect our framework is fundamentally different to them. However, re

gardless of how cooperation arises, the actions involved must be synchronised and ordered,

and we use the mechansims for this defined by PTA.

Finally, the framework of cooperation contained within this thesis can be seen as instan

tiating Wooldridge and Jennings’ stages as described in Section 2.7, and we view Chapters 5

to 7 as providing this instantiation.

41

Chapter 3

Motivated BDI Agents

3.1 Introduction

Early work on cooperation in DAI was concerned with non-autonomous agents, and the

mechanisms used to achieve cooperation often presupposed benevolence on their behalf.

Additionally, it has often been assumed that some, possibly external, entity exists that has

knowledge of the complete system, and which is given both the ability and the authority to

dictate the actions of agents in terms of their interactions with others. In our work, however,

we are concerned with autonomous agents that have complete control of their own actions

and cannot have their cooperative activity externally controlled. Instead, cooperation be

tween a group of autonomous agents must arise from the mental attitudes of the individuals

concerned. Typically, one member of the group has an objective that it is unable to achieve

alone and attempts to gain cooperation from other agents which, in turn, will only enter into

a cooperative interaction if it is of benefit to themselves as individuals. A practically appli

cable theory of cooperation, therefore, must provide details both of how agents can assess

when they require assistance in achieving their objectives, and also when it is of benefit

to themselves to enter into a particular cooperative interaction in pursuit of another’s ob

jective. The details of these mechanisms depend on the specific architecture of the agents

42

concerned, since behaviour is determined by agents’ mental components. Thus, as we ar

gued in Chapter 1, it is important for us to have a full understanding of the specific nature

of the agent architecture upon which we are grounding the development of a framework for

cooperative interaction.

In this and the following chapter, before focusing on the issues involved in coopera

tion, we present the agent architecture, which we call Senara, on which we base our later

model. Senara is centred around the BDI abstract architecture [5] discussed in Chapter 2,

and draws upon existing work on achieving agent autonomy through the ascription of mo

tivations (e.g. [61, 62, 76, 77]). An agent architecture can be seen as containing two related

parts: the mental components it comprises, and the control mechanisms that act upon those

components. Whether or not a particular architecture is intended to be situated in a coop

erative environment influences the set of mental components required. If an agent is to be

cooperative, then it will typically require some means of representing actions or plans that

involve others and have some model of others’ capabilities, reliability etc. These require

ments are relatively easy to incorporate into Senara. Cooperation also has a significant

influence on the nature of the control mechanisms that guide an agent’s behaviour, since

cooperation must arise from an agent’s control mechanisms and there is no external force

imposing cooperation.

In this chapter we introduce the mental components that Senara contains, which are

those defined in the BDI model (as discussed in Section 2.4), with the addition of moti

vations to achieve autonomy. We also introduce a few small extensions to the BDI model

to allow for cooperation; in particular, joint and concurrent actions as described in Sec

tion 3.10. In the following chapter, we describe the control mechanisms that act on these

mental components.

43

3.2 The Z Specification Language

In keeping with the principles outlined in Chapter 1, we aim to ensure clarity and preci

sion in our description of the architecture through the use of formal specification. There

are many specification languages that we might use, ranging from relatively abstract but

expressive logics, to more implementation-oriented approaches. In this thesis we use the Z

notation [96] to formalise Senara’s components, since we consider it sufficiently expres

sive to represent the concepts we discuss, and close enough to the level of implementation

to ensure that an implementation of the specification is essentially a programming exercise

of creating the appropriate data types and interactions. Z is also widely used generally, and

increasingly so in AI (e.g. [21, 39, 61, 71]). In this section we give a brief introduction to Z,

borrowing heavily from that provided by d’Invemo and Luck in [25], and then in remaining

sections describe Senara’s mental components.

The Z specification language is based on set theory and first order predicate logic,

along with the additional concept of a schema type. Schemas comprise two parts: an upper

declarative part that defines a set of variables and their types, and a lower predicate part

that defines the relationships between, and the constraints on, these variables. For example,

the following schema contains two variables, x and y, both natural numbers, such that y is

defined to be the square of jc.

__Example___
x,y : N

y = x * x

The type of a Z schema can be thought of as the Cartesian product of its variables (in no

particular order) constrained by the predicates. Any given variable in a schema can be re

ferred to in Z by giving the schema name and variable name in the form schema-name.var

iable-name. Thus, with respect to the above schema, Examples refers to the variable x.

To facilitate modularity and decomposition in specifications, a schema can include other

schemas and inherit the variables and predicates defined therein. There are two types of

44

schema inclusion, Delta (A) inclusion, in which the variables of the included schema can

be changed, allowing the specification of operations, and Xi (S) inclusion where the includ

ed schema is unchanged. A schema is included using one of these conventions using the

notation Aschema^name (or Eschema^name) in the declarative part.

If we wish to introduce a new type, without specifying its details, we are able to intro

duce it as a given set. For example, we might introduce the set of all agent identifiers using

the following given set.

[.AgentID]

We can now define a variable to be of type agent identifier, a set of identifiers, or an

ordered pair as x : AgentID, x : ¥ AgentID, and x : AgentID x AgentID respectively.

A relation between two types, a source and a target type, is defined to be a set of

ordered pairs P (I x Y) for source and target types X and Y. If there is no element in the

source type that is related to more than one element in the target type, the relation is a

function. A function is partial if not all elements in the source type are related, and is total

if all elements of the source type are related. The domain of a relation, or function, is the

particular set of elements of the source type that are related. Correspondingly, the range

is the set of elements in the target type that are related. A sequence is a particular type of

function whose domain is the set of natural numbers (from 1 to the number of elements in

the sequence), and range is the set of elements in the sequence. For example, the following

relation defines a sequence of three agent identifiers (although we would typically write

such a sequence as (agent!, agentl, agentZ)).

agentIDseq = {(1, agentl), (2, agent2), (3, agentS)}

A set of values can be constructed using set comprehension where, for example, we

can specify the set of squares of natural numbers between 5 and 10 as {« : N | n > 5 A

n < 10 • n * «}. Predicates in Z can be written using the usual universal and existential

quantification operators. For example, we can write that the squares of the natural numbers

45

between 5 and 10 are between 25 and 100 as follows.

Vn : N | (n > 5) A (n < 10) • (n * n > 25) A (n* n < 100)

If we do not need to constrain the variable being quantified, then we can omit the

constraint part of the predicate (i.e. the expressions between “|” and “• ”). For example, we

can write that all natural numbers are greater than zero, as V n : N • n > 0.

A summary of the Z notation is shown in Table 3.1. We do not, however, discuss the

details of the language further in this thesis, instead we refer the reader to one of the many

texts on the subject, such as [80, 106].

The specification contained in this and the following chapter is based upon the work

of Luck and d’Invemo, who propose a formal model of agency and autonomy [61, 62]. In

their work, an agent’s autonomy is characterised by the ability to generate goals, and select

which goal is of the most benefit to the agent individually. We follow this approach, and

base our notion of autonomous agency upon it. However, Luck and d’Invemo’s work is

concerned with a discussion of autonomy and motivation rather than with the development

of a particular agent architecture. We view the architecture presented in this and the fol

lowing chapter as an instantiation of their work, with the required details filled in. It should

be noted that there are generally several, equally valid, ways in which we could specify

a particular notion in Z, without changing the meaning of the specification. Our criteria

for choosing one approach over another is how well it integrates into the specification as a

whole, the ease of understanding and the extent to which it lends itself to implementation.

3.3 Overview of Senara

The key mental components of a Senara agent are beliefs, goals, intentions, motivations,

and a plan library. Recall from Chapter 1 that beliefs are the propositions about the environ

ment and itself that an agent takes to be true. Goals are the situations that an agent wishes

to bring about, intentions are the goals to which it has committed to achieving, and moti-

46

Definitions and declarations
a,b Identifiers
p,q Predicates
s,t Sequences
x,y Expressions
A,B Sets
R,S Relations
d; e Declarations
a == x Abbreviated definition
M
A ::= b((B))

Given set

1 c((C>) Free type declaration

Logic
Logical negation

p A q Logical conjunction
p \/ q Logical disjunction
p ^ q Logical implication
p & q Logical equivalence

Universal quantification
Existential quantification

Sets
a: G y Set membership
0 Empty set
A C B Set inclusion
{x,y, • • •} Set of elements
(*,>>,...) Ordered tuple
A x B x ... Cartesian product
P A Power set
P1A Non-empty power set
A n B Set intersection
AUB Set union
A \B Set difference
UA Generalised union
*A Size of a finite set
[d] e . . . \ p » x) Set Comprehension

Relations and Functions
A ^ B Relation
domi? Domain of a relation
ranÄ Range of a relation
A -A B Partial function
A ->B Total function

Sequences
seq̂ 4 Set of finite sequences
seqj A Non-empty set

of sequences
0 Empty sequence
(x,y,...) Sequence
s ^ t Sequence concatenation
head s First element of sequence
tail s All but first element

Schema notation

r—S
d Vertical schema

P

d

P
Axiomatic definition

s
T
d

P

Schema inclusion

__AS___
S Operation schema
S'

z.a Component selection

Conventions
a? Input to an operation
a State component

a'
before operation

State component

S
after operation

State schema

S'
before operation

State schema

AS
after operation

Change of state (S A S
ES No change of state

Table 3.1: Summary of the Z notation (taken from [25])

47

vations are the high-level desires that guide its behaviour. A control cycle brings together

these mental components, which we describe in detail in following chapter, but first we give

a brief overview in this section.

Firstly, an agent perceives its environment and updates its beliefs, since in order to

act appropriately in a given situation it needs information about that situation. In the light

of these new beliefs the importance of the current situation to each of its motivations is

assessed, and those motivations to which the situation is important are made active. Ac

cording to these active motivations the agent generates a set of goals, and adds them to its

existing goals. The agent then selects one of these goals to work on according to its motiva

tions, and commits to performing a particular course of action (or plan) for the achievement

of this goal by forming an intention (unless it is already committed to its achievement).

Finally, the agent acts towards the intention that is currently considered the most important,

based on the agent’s motivation. An overview of the architecture is illustrated in Figure 3.1,

in which rounded boxes represent the mental components, the central box contains the con

trol mechanisms, and solid and dashed arrows represent the flow of information and control

respectively.

The Senara architecture can be compared with the BDI-based IRMA and PRS ar

chitectures described in Sections 2.4.1 and 2.4.2, and illustrated in Figures 2.2 and 2.3

respectively. The overall form of Senara is broadly similar to these architectures, with

beliefs determining the goals to pursue, which in turn determine the intentions to adopt

and the actions to perform. The key different between Senara and IRMA or PRS is the

addition of motivations. In the remainder of this chapter we describe in detail the mental

components of a Senara agent, and then in the following chapter the control cycle that

acts upon them.

In the specification of Senara that follows we closely follow the work of Luck and

d’Invemo, who have also provided formal Z specifications of AgentSpeak(L) and dMARS,

both of which are more recent incarnations of the PRS architecture to which Senara is

48

Figure 3.1: Overview of the Senara architecture

closely related [24, 25]. Where appropriate in the following sections we utilise their speci

fications in our work. In particular our definitions of beliefs, goals and intentions are based

on Luck and d’Invemo’s specifications.

3.4 Primitives

In this section we define the primitive types that are required to build the formal model of the

Senara agent architecture. We begin by introducing given sets to represent all constants

and variables, denoted by Const and Var respectively, and define a Term as being either a

constant or a variable.

[Const, Var]

Term ::= const ((Const))
| var((Var))

The set of all possible predicate symbols is also represented by a given set denoted by

PredSym, while a Predicate is a predicate symbol followed by a possibly empty sequence

49

of terms. For the purposes of specification we are not concerned with the contents of these

given sets, since we can use them directly.

[PredSym]

__Predicate______
symbol: PredSym
terms : seq Term

3.5 Environment

Agents can only function within the context of an environment, and before we begin to

specify the components of the agent architecture, we must first consider the environment in

which it is to be situated. There are several levels of abstraction at which the environment

could be specified. For example, from an external viewpoint it can be seen as a collection

of objects and agents, while to an agent situated in the environment it can be considered

to be a collection of features that can potentially be perceived and acted upon. Since we

are concerned with the agent level, we adopt this latter view of an environment as a set of

perceivable features, or attributes, in the same way as Luck and d’Invemo [61]. Objects in

the environment, including agents, are viewed as those clusters of attributes that characterise

them. An agent is able to perceive objects, and other agents, by perceiving the appropriate

clusters of attributes, which might include the size, colour, and location of objects.

Formally, an attribute is represented by a predicate, and an environment as a set of

attributes. The schema Env is introduced to represent the particular environment in which

an agent (or group of agents) is situated1.

Attribute = = Predicate
Environment = = P Attribute *

'Specifying the environment as a schema, rather than a global variable, makes it easier to specify the oper

ations an agent can perform in it, using the Z notation’s A convention.

50

environment : Environment
__Env____________________

As an example, suppose that the environment contains a white cardboard box and a

wooden table such that the box is on the table. Using our definition of an Environment we

might represent this situation by the following set of attributes.

[(colour, [box, white]), (madeFrom, [box, cardboard]),
(colour, [table, brown]), (madeFrom, [table, wood]),
(on, [box, table])]

This set of attributes represents the predicates that are true in the environment, and so

are potentially perceivable as attributes by agents, such as the predicate that the cup is red

or the predicate that it is made from porcelain. However, if a particular predicate is not

contained in the set representing an environment then we may take this to mean either that

the predicate must be false, or alternatively that we have no information about its truth or

falsity. This is a well known problem, and can be thought of as there existing two kinds

of negation [86], and can be addressed by making the assumption, as we do in this thesis,

that since it is unrealistic to require a representation of the environment to include all true

predicates, the absence of a predicate in the set representing the environment does not mean

it is false.

3.6 Perceptions

In order to reason about its environment, and act appropriately in it, an agent must be able

to perceive to determine its current state. In the Senara architecture, an agent’s ability to

perceive its environment is determined by its set of perceiving capabilities, or perception

actions. Perception actions operate on the agent’s environment, leaving it unchanged, and

return an appropriate set of percepts corresponding to the agent’s perceptions. The details

of the perception actions that comprise an agent’s perception capabilities are related to its

51

domain. For example, a physically situated robot might have visual and auditory sensors,

while a software agent may be able to determine the contents of certain data structures,

such as the names of the files in a particular directory. We formally define a View to be

a set of perceivable features, or attributes, and a perception action, PerceptionAction, as a

function that takes an environment as its argument and returns a View, corresponding to

those features that the agent perceives.

View == ¥ Attribute
PerceptionAction = = Environment —> View

3.7 Beliefs

An agent’s beliefs are those propositions about its environment, itself, and others that it takes

to be true, and can be thought of as representing the information it has about its environment.

They are not necessarily verifiably true facts about the environment, rather they are the

propositions that the agent considers to be true. Beliefs are typically a combination of a

priori knowledge (such as information about capabilities, attributes, and the domain) and

propositions obtained through perception of the environment and interactions with other

agents.

Beliefs persist until an agent obtains new information from perception that contradicts

them (as described later in Section 4.3). Since beliefs persist, they allow an agent to keep

track of information over time, without which an agent would have available only the infor

mation from its immediate perceptions. It would have no access to information about the

previous states of its environment, and would be unable to reason about previous events,

making it difficult to achieve consistent behaviour over time.

Before we define beliefs we must define a literal as a predicate or its negation. A belief

can then be defined as a single literal. Thus, we can define an agent’s beliefs as a set of

beliefs, which we interpret as the conjunction of all its elements, meaning that if the set

contains the beliefs b\ and Z>2 the agent believes b\ A ¿2.

52

Literal pos{{Predicate))
| not {{Predicate))

Belief = = Literal
Beliefs —— P Belief

As an example, consider an agent situated in the environment given in Section 3.5,

such an agent represent its beliefs about the environment as follows, where pos signifies a

predicate and not its negation.

[(pos colour, [box, white]), (pos madeFrom, [box, cardboard]),
(pos colour, [table, brown]), (pos madeFrom, [table, wood]),
(pos on, [box, table]), (not empty, [table])]

3.8 Goals

An agent must have some means of guiding its behaviour and choosing between actions;

it must have direction. Goals give an agent a purpose and allow it to select between the

courses of action open to it. We take the common view of goals as being those situations

that an agent wishes to bring about. Through perceiving its environment the agent is able to

determine which of its goals are currently relevant, and then choose a course of action that

contributes to the achievement of these goals. Consequently, an agent’s goals influence how

it will react to any given situation. Furthermore, where an agent is capable of performing

problem-solving, its goals pose problems for it in that it must choose or construct plans

about how best to achieve them. A goal is just a description of a situation, and can be

formally specified as a set of literals.

Goal == P Literal

For example, if in the situation given above an agent has the goal of the tabletop being

cleared and the box being moved to the floor, it might represent this as follows.

[(pos empty, [table]), (pos on, [box, floor])]

53

3.9 Actions

To be useful and to achieve its goals, an agent must be able to interact with its environment,

i.e. it must be able to perform actions, which correspond to its capabilities. Now, since

we are concerned with cooperation, we must also consider an agent acting as part of some

more complex group action, which might be constructed out of multiple individual actions.

For reasons of terminological clarity, therefore we introduce the term contribution to refer

to the action of an individual, and the term action to refer to the wider set of both individual

and group actions. In order to formally specify a contribution we first introduce a given set

to represent the set of all possible action symbols.

[ActSym]

Since we are concerned with cooperation and group actions, we require that a contri

bution includes information about the agent who performs it. A contribution is therefore

specified as an action symbol, a possibly empty sequence of terms (representing the param

eters of the action), and a unique agent identifier that refers to the agent who performs it.

We introduce a given set to represent the possible agent identifiers, each of which refers to

precisely one agent.

[AgentlD]

__Contribution-- —-
symbol: ActSym
terms : seq Term
agentID : AgentlD

By way of example, consider the action of picking up a box; we can represent this as

follows, where agent l is the agent that performs the action and boxi is a box.

(pickup, [agentl, boxl], agentl)

54

In order for an agent to reason about the contributions it can perform, it must have some

mechanism for determining their effects. The function contributionEffects, takes a contri

bution and an environment, and returns that environment having had the action performed

upon it.

| contributionEffects : Contribution -> Environment —> Environment

This could be implemented through the use of add and delete lists, in a similar man

ner to Fikes and Nilsson’s STRIPS system [31]. The add and delete lists contain those

predicates that should be added and deleted respectively from the state representation on

execution of the action.

An agent also needs to know when a contribution can be performed. For example it

may only be possible to pick up a box if there is nothing on top of it. We therefore require

that agents have an appropriate instantiation of the function contributionPreconditions be

low, which takes a contribution as its argument, and returns the preconditions that must be

satisfied to perform it.

Precondition = = Literal

| contributionPreconditions : Contribution —» ¥ Precondition

3.10 Joint and Concurrent Actions

Cooperation may take the form of an agent performing an action on behalf of another,

a group of agents performing an action together, or different agents performing a set of

actions at the same time in pursuit of a common aim. Thus, along with the notion of an

individual contribution described above, we can identify two additional action types: joint

actions and concurrent actions.

A joint action is a composite action, made up of individual contributions that must be

performed together by a group of agents. Each agent involved in executing a joint action

55

makes a simultaneous contribution to the joint action, corresponding to the component ac

tion that it performs. For example, if agents a\ and c*2 perform the joint action of lifting a

table together, then «i must make the contribution of lifting one end of the table simultane

ously with a2 lifting the other. A joint action is formally specified as a set of actions, to be

performed simultaneously.

__JointAction___
contributions : IP Contribution

contributions > 2

As an example, suppose there is a box that is too large to be lifted by an individual

agent, but can be lifted if two agents each lift one end of it. This can be represented as a

joint action as follows, where agent2 and agent3 are variables corresponding to the agents

that will perform the action.

[(liftend, [agent2, box2], agent2),
(liftend, [agent3, box2], agent3)]

Concurrent actions are those that can be performed in parallel by different agents, with

out the need for synchronisation (except at the beginning and end of a set of concurrent

actions). As with joint actions, agents perform contributions as part of a set of concurrent

actions. For example, if agents a\ and a 2 each write a chapter for a book, and they perform

their actions in parallel, then ot\ and e*2 perform the concurrent contributions of writing

their respective chapters. Concurrent actions can comprise both individual contributions

and joint actions that are to be performed simultaneously.

CAcomponent ::= Contrib((Contribution))
| JA((P Contribution))

__ConcurrentAction__
contributions : P CAcomponent

contributions > 2

56

As an example, consider the concurrent action comprising the individual contribution

of lifting a box, boxl, and the joint action of two agents lifting a second box, box2, which

can be represented as follows.

[(pickup, [agentl, boxl], agentl),
(liftend, [agent2, box2], agent2),

(liftend, [agent3, box2], agent3)]

Our definitions of joint and concurrent actions are extensions to the BDI model de

scribed in Section 2.4, and are respectively related to the notions of “black-box” and weak

parallelism described by Kinny et al. [55], where “black-box” parallelism refers to an ac

tion that must be executed by more than one agent, and weak parallelism refers to a set of

actions that may be performed simultaneously without constraint on their ordering. The key

difference, however, is that while we consider the component actions, or contributions, that

make up a joint or concurrent action, Kinny represents joint actions as primitive, without

consideration or representation of the individual contributions that comprise it. By repre

senting the components of joint and concurrent actions, agents are given more scope for

reasoning about how to establish cooperation for them, as we discuss later in Chapter 7. In

particular, by representing the contributions in a joint action, we are able to develop mech

anisms for requesting assistance for a contribution, rather than for a joint action as a whole

(see Section 7.6).

3.11 Plans

In addition to the abilities of acting an agent must be able to perform some degree of

problem-solving, or planning, which is concerned with determining a sequence of action-

s, or plan, to transform the environment into a desired state. Planning is an established

subfield of artificial intelligence in its own right, and is not the focus of our work; rather

than focusing on sophisticated techniques for planning, therefore, we adopt the simplified

57

plan

Key:

• intermediate states

; rf
p3 p4

0 subgoals

Figure 3.2: An example partial plan

approach taken in many existing BDI-based architectures, where agents are provided with

a library of predefined plans from which they can select (e.g. [38, 83]). If a plan is defined

solely in terms of a sequence of actions then it can be executed by an agent without the

need for further reasoning, and is said to be fully elaborated. However, if all of an agent’s

plans are fully elaborated then its plan library would have to contain a plan to cover every

eventuality, making it too large to be manageable. A common solution to this problem is to

allow plans to be partially elaborated, meaning that they can be further refined to specific

situations, and contain subgoals in addition to actions (e.g. [5, 38]). Before a partial plan

can be executed, therefore, subplans must be found for the subgoals it contains; this process

is called elaboration and is discussed later in Section 4.10. In addition to making the plan

library more manageable, partial plans provide a simple means of interleaving planning and

acting — an agent is able to execute the actions in a plan until it reaches a subgoal, at which

point it must select a subplan before performing further actions.

Figure 3.2 shows a graphical representation of a partial plan that includes all possible

elaborations, where the edges represent actions, solid bullets correspond to intermediate

states between actions, and outline bullets correspond to subgoals. For each subgoal in the

plan, there is a set of applicable plans, each of which forms a branch of possible elaboration

from that subgoal. The set of plan elaborations is the set of paths from the root of the graph

to the leaves. Thus, for plan p, possible elaborations are paths from the root to the nodes

58

labelled p i, p2, p3, p4, and pb. Note that this graphical representation is limited and does

not allow certain types of plan to be illustrated; it is, however, sufficient for our purposes.

Now, since there may be several plans in a library that achieve a given goal, some way

of choosing between them is needed. Different plans may be applicable in different situ

ations, and we introduce the notion of a plan’s preconditions to represent the situations in

which it is applicable, to enable an agent to select an appropriate plan for a given situation.

This is different to the approach taken in dMARS and AgentSpeak(L), where plans are as

sociated with a trigger event, which corresponds to a particular change in the environment

(or the agent’s goals). Such trigger events cause the plan to be adopted and an appropriate

intention formed. In our approach to formalising plans we are concerned with specifying

the conditions under which a plan can be selected, rather than when it will be selected since

this will be determined by the goals generated by the agent’s motivations. The precondi

tions of a plan define what must be believed by the agent for the plan to be applicable, and

are represented by a set of beliefs.

For agents to be able to interact effectively with others, their plans must be able to rep

resent a group of agents performing actions together; they must have the facility to include

joint and concurrent actions. Thus, a step in a plan is defined to be either an individual

contribution, a joint action, a concurrent action, or a subgoal, and we arrive at the following

specification for a plan, defined as a sequence of steps to achieve a particular goal in a given

context.

PlanStep ::= Individual{(Contribution))
| Jointly IP Contribution))
I Concurrent((P CAcomponent))
| Subgoal ((Goal))

__Plan__
achieves : Goal
preconditions : IP Belief
body: seq PlanStep

To illustrate the form a plan takes, consider an agent with the goal of moving a box b

59

onto another a, where initially both boxes are on the floor and neither have anything on top

of them. This can be represented as on(a,floor) A on(b, floor) A clear(a) A clear(b), and

the desired situation can be represented as on(a,floor) A on(b,a). Since there is a simple

action that transforms the initial state into the desired state, no subgoals are required, and

the plan can be represented as a list of action steps, as follows. As described in Section 3.7

a literal is a predicate or its negation, which we represent as pos and not respectively.

[(pos on, [a, floor]), (pos on, [b, a]),
(pos clear, [b])],
[(pos on, [a, floor]), (pos on, [b, floor]),
(pos clear, [a]), (pos Clear, [b])],
[action <(move, [b, floor, a], agentID)>]

3.12 Intentions

Plan:
achieves :

preconditions :

body:

Intentions represent the plans that an agent is currently committed to executing in order to

achieve particular goals. As we discussed in Section 2.3, there are two justifications for

introducing the mental component of intention. Firstly, since an agent has finite resources,

it cannot continually consider its competing goals in deciding its actions, and must even

tually settle on a particular goal and establish some form of commitment to that objective.

Secondly, an agent must coordinate its present and future actions; once a future action has

been decided on, and the intention to do it has been formed, an agent should be able to

determine further actions on the assumption that the intended action will be performed.

For an agent’s intentions to be useful they must be internally consistent and not conflict

with other intentions, or with the agent’s beliefs. They should also have a degree of stability

in that they resist being reconsidered or abandoned. We take consistency and stability to be

fundamental properties of intentions.

An intention is a plan to achieve a goal, together with commitment to its achievement.

Thus, to represent intentions we must first find a way to represent commitment, which can

60

be thought of as defining the period over which an agent must pursue a particular intention,

and the time at which it is appropriate to drop that intention. As described in Section 2.3

Cohen and Levesque offer an approach to representing commitment by requiring intentions

to include a relevance condition that describes the circumstances under which the agent

must keep its intention, in addition to the intuitive conditions that the intended goal has

been achieved or can never be achieved.

In addition to these conditions, motivations (which we describe in the following section)

are a key factor in determining when to drop an intention, since they determine how valuable

a given goal (and corresponding intention) is to an agent at a particular time. In Senara

an agent’s motivations provide (at least in part) the reason for its intentions, and so an

agent’s motivations play a role in determining when to drop an intention. If an intention

ceases to be motivationally valuable to an agent then it should discharge its commitment to

it. Therefore, we extend Cohen and Levesque’s notion of commitment by requiring that an

intended goal be of motivational value to the agent holding that commitment.

When executing an intention, if the first step of the plan at the top of stack is an action,

the agent can execute it as soon as the action’s preconditions are met, and once an action

is performed it can be removed from the head of the plan. However, if the first step of

the plan is a goal, the agent must choose a subplan to achieve it. Now, since plans may

be partial, subplans may be required for intention execution, and we need to extend our

notion of intention to be a stack of plans, along with some associated commitment. As

in dMARS and AgentSpeak(L), each plan on the stack is a subplan of the one below it.

The chosen subplan is pushed onto the stack of plans, since the agent must execute it and

achieve the subgoal before continuing with the remainder of the plan. Both of these plans,

however, are part of the same intention; the same course of action to achieve the same goal.

Once all the steps of a subplan are executed it is removed from the stack. An intention,

therefore, is defined as a stack of plans, a relevance condition, and the goal it satisfies. We

can represent a stack as a sequence of plans, with the head of the sequence at the base of

the stack. The following schema, Intention, uses two auxiliary functions isSubPlanOf and

61

extractPlan defined in Appendix A, which check whether a plan is a subplan of another,

and extract a particular plan from a sequence of plans respectively.

__Intention__
plans : seq Plan
relevance : P Belief
satisfies : Goal

V i : Ni | i < fiplans — 1 •
isSubPlanOf (extractPlan (i + l,plans)) (extractPlan (i,plans))

= true

This schema describes how all plans in the sequence are subplans of the plan at the head

of the sequence or, more strictly, that the plan at position i + 1 in the sequence is a direct

subplan of the plan at position i. Consider the example of an agent having the intention of

moving a box from one room to another in a warehouse, with the body of the plan from

which this intention was formed containing the three steps of: lifting the box, achieving the

goal of being in the desired location, and putting the box down. If b represents the box, and

loc\ , loc<i the initial and target locations of the box respectively, this plan body might be

written as follows.

body: [action <(lift, [b], agentID)>,
subgoal <[(pos location, [agentID, loci])]>,
action <(putdown, [b], agentID)>]

The corresponding intention is represented graphically as (a) in Figure 3.3, which shows

the components of the intention: the goal it achieves, its preconditions, and the stack of

plans which achieve the goal. After performing the first action, the plan body is left con

taining the second two steps, i.e. (b) in Figure 3.3. Since the first step is now a subgoal, a

subplan must be chosen for this and pushed onto the intention stack. If the chosen subplan

contains the single action of moving right, the resultant intention is as shown in (c).

62

(a)
relevance: ...
s a t i s f i e s : [(pos l o c a t i o n , [b , l o c 2])]

achieves : [(pos location, [b,loc2])]
preconditions :
body: [action <(lift, [b], agentID)>

subgoal <[(pos location, [agentID, loc2])]>
action <(putdown, [b], agentID)>]

(b) satisfies: [(pos location, [b,loc2])]
relevance: ...

achieves: [(pos location, [b,loc2])]
preconditions:
body: [subgoal <[(pos location, [agentID, loc2])]>

action <(putdown, [b], agentID)>]

(c) satisfies: [(pos location, [b,loc2])
relevance: ...
plans: achieves : [(pos location, [agentID, loc2])]

preconditions :
body: [action <(move, [right], agentID)»]

achieves: [(pos location, [b,loc2])]
preconditions: ...
body: [subgoal <[(pos location, [agentID, loc2])]>

action <(putdown, [b], agentID)>]

Figure 3.3: The use of a stack of plans in an intention

63

3.13 Motivations

Thus far in this section we have introduced the standard components of a BDI agent: be

liefs, desires (or goals in our terminology), and intentions, as well as the common notion

of a plan library. However, in order to include the notion of motivation, which as described

in Chapter 2 can be used to achieve agent autonomy, we depart from this standard BDI ap

proach. Motivations provide a mechanism for goal generation and adoption, thus allowing

an agent to have control over its own behaviour, i.e. be autonomous.

We adopt Luck and d’Invemo’s view that a motivation has an intensity, a threshold

value, a set of goals it can generate, and a mitigation function (as reviewed in Section 2.2).

The intensity of a motivation changes according to the state of the agent and its environment

and, if it exceeds the associated threshold then a response is triggered. This response is to

choose the most applicable goals from the associated set of goals and add them to the agent’s

existing goals; we say that these goals have been generated. For example, the intensity of a

hunger motivation may rise above the associated threshold if an agent’s energy level drops

below a certain value, and cause the generation of a goal to eat a snack. Note that while

the intensity of a given motivation fluctuates with time, motivations themselves are not

transient, and the set of motivations a particular agent has does not change, but rather it is

their intensity that changes.

When a generated goal is satisfied, the intensity of the motivation is reduced by the

amount determined by a mitigation function, which takes a motivation and a goal, and

returns the amount by which the achievement of the goal mitigates the motivation. Different

agents may have different mitigation functions and place different motivational values on a

given goal. The mitigation function may place the same value on achieving a particular goal

regardless of the intensity of the motivation, or the motivational effect may be determined

by the current intensity. In our model we view the motivational effect of achieving a goal

as dependent on the motivation’s intensity.

[MotiveSym]

64

__Motivation_____
name : MotiveSym
intensity : R
threshold : R
goals : P Goal

Motivations also aid an agent in choosing which of its current intentions to pursue,

when there are more than one. By choosing the intention whose completion will mitigate the

highest motivation by the largest amount, the agent ensures that it always acts appropriately.

Thus, motivations provide a mechanism by which attention and conduct can be directed.

An agent determines the intensity of its motivations according to the believed state of

the environment. Associated with each motivation is a function that defines the intensity of

the motivation in terms of the environment, and we describe this function in Section 4.4.

When adopting a goal, an agent may be faced with a number of applicable plans, and

its motivations can help in choosing between them. As with choosing between intentions,

an agent should choose, from its set of applicable plans for a given goal, the one that offers

the highest motivational value.

In addition to a mitigation function determining the value of a goal, each of an agent’s

motivations also has a complementary mitigation function that determines the motivational

value of an action to the motivation. The value returned by a mitigation function is de

pendent on the current intensity of the motivation with which it is associated. Thus, if a

motivation is of low intensity (relative to other motivations), and of little relevance to the

agent, then its associated mitigation function will return low values, since even actions that

have a large motivational effect on that motivation are of relatively low importance to the

agent overall. For example, suppose an agent has a hunger motivation and the action of

eating mitigates it. If the hunger motivation is high, then the action of eating is of high mo

tivational importance and the mitigation function should reflect this. Similarly, if the hunger

motivation is low, then eating is less important and will be of less motivational value to the

motivation.

65

To determine the overall motivational value that would arise from performing an action,

the agent must consider the value of the action to each of its motivations, since the action

may be of value to more than one motivation. These values can then be combined by sum

ming them into a single value representing the motivational value of the action concerned.

The motivational value of a plan is influenced firstly by the value that would arise

from the achievement of the goal that the plan is intended to achieve and, secondly, by the

motivational value that is associated with the actions and subgoals contained in the plan.

However, determining the motivational value of a plan is complicated by the partial nature

of plans, and we postpone our discussion of the issues involved until Chapter 6, in which

we describe the process of plan selection.

As stated already, an agent’s actions are governed by the intensities of its motivations,

since they determine the goal that is of the highest importance to the agent. Recall from

earlier in this section the notion of an intention as a commitment to a particular goal, along

with a stack of (partial) plans to achieve it. Since action arises from the execution of the

plan component of an intention, and agents should act towards the goal that is of the high

est motivational value, some mechanism is required to determine which intention is of the

highest motivational value. In other words, an agent must be able to determine which in

tention is of the most importance, and consequently, which plan to execute. In ascertaining

the motivational value of a particular intention, an agent should consider both the value

arising from the goal the intention is towards, and the plans and action contributions that it

contains.

Thus, an agent requires an instantiation of the following functions, where assessSitua-

tion, generateGoals, and mitigation correspond to the mechanisms for assessing the current

believed situation with respect to the motivation, generating an appropriate response in

terms of a set of goals, and determining the motivational value of a goal respectively. The

latter three functions in the schema below take a contribution, plan, and intention as argu

ments and return the motivational value associated with the contribution, plan or intention

66

respectively.

assessSituation : Motivation —> P Belief —> E
mitigation : Motivation —> Goal —> E
mvContribution : Motivation —> Contribution E
mvPlan : Motivation —> P/an —> E
mvlntention : Motivation —> Intention —>• E

3.14 Summary

We have now introduced the set of mental components that comprise the agent architec

ture. These mental components are a standard part of a BDI-based architecture, with the

exception of motivations which are an extension of the BDI approach. An agent has a cer

tain set of capabilities, or action contributions, that it can perform, along with a certain set

of perception capabilities. In addition to these the agent has sets of beliefs, goals, inten

tions, and motivations, along with a particular identifier that is unique to each agent. The

agent also has a library of plans which it is able to use in determining how to achieve its

goals. When an agent cooperates with others it forms a commitment to inform them if it

should later cease its cooperative action, as we describe in Chapter 7; we call this a nominal

commitment, and a set of such commitments is the final mental component of a Senara

agent.

[.NominalCommitment]

67

agentID : AgentID
capabilities : P Contribution
perceivingCapabilities : P PerceptionAction
beliefs : P Belief
goals : P Goal
intentions : ¥ Intention
motivations : ¥ Motivation
planLibrary : ¥ Plan
nominalCommitments : P NominalCommitment

motivations f 0
V c : Contribution • c 6 capabilities c.agentID = agentID

__Agent__

68

Chapter 4

A Motivated BDI Agent Architecture

4.1 Introduction

The interplay between an agent’s mental components, are defined by a set of control mecha

nisms, which in turn determine the behaviour an agent exhibits. In order to act autonomous

ly, an agent must react to the changes in its environment, and adopt goals in response to

them; the manner in which a motivated agent responds to such changes is determined by its

motivations. The significance of a given motivation is dependent on the current state of the

environment and, at any one time, the most significant of an agent’s motivations determine

the goals that it should pursue. In this chapter we present the control mechanisms, in the

form of a reasoning cycle, that act on the mental components of a Senara agent, complet

ing the architecture. The reasoning cycle can be broken down into the nine stages shown in

Table 4.1, each of which we describe in detail in the remainder of this chapter.

The Senara architecture is illustrated in Figure 4.1, where the agent’s mental compo

nents are represented by rounded boxes, which in turn are within the central dashed box.

Control processes that operate on these components are represented by rectangular boxes,

and arrows correspond to the flow of control.

69

Figure 4.1: The Senara architecture

70

1. Perceive the environment.
2. Update beliefs in accordance with current perceptions.
3. Update motivations in the light of these new beliefs.
4. Generate a set of new goals from the updated motivations.
5. Select an appropriate plan for the most motivated of these newly generat

ed goals.
6. Adopt that plan as an intention to achieve the corresponding goal.
7. Select one of the current intentions to pursue.
8. If the first step in the body of the chosen intention is an action then execute

it and remove it from the intention body, otherwise, the first step must be
a subgoal, in which case attempt to elaborate the intention by selecting a
subplan for the subgoal.

9. Perceive the appropriate changes in the environment, as a result of any
actions performed, and return to the beginning of the cycle.

Table 4.1: The stages in the Senara reasoning cycle

In Sections 4.2 and 4.3 we describe how an agent perceives its environment, and up

dates its beliefs to represent the current situation. As an agent’s beliefs change, so does

the relative importance of its motivations, and in Section 4.4 we describe how an agent

assesses its motivations in the light of its beliefs. Since an agent’s behaviour is guided by

its motivations, an agent must ensure that its goals and intentions are of motivational value.

We describe in Sections 4.5 and 4.6 how an agent checks that its goals are of motivational

value, and generates new goals where appropriate, and in Section 4.7 we describe how an

agent ensures that its intentions are of value. Once an agent has dropped inappropriate goals

and intentions, it must adopt new intentions for the goals is has generated, and we describe

this process in Section 4.8. In order to act, an agent must select an intention to focus upon

based on its motivations and then act towards it. Finally, Sections 4.9 and 4.10 discuss how

to select an intention and how to act towards it respectively.

71

Inputs:
env — the agent’s environment
ps — the agent’s perception capabilities

Outputs:
view — the agent’s current perceptions

Algorithm:
view = empty
for p in ps do

view = union(v/ew, (p(env)))
return view

Table 4.2: Algorithm for agent perception

4.2 Perceiving the Environment

In what follows we give Z specification and algorithms for the various mechanisms that

comprise the Senara reasoning cycle. The first step in reasoning is for an agent to perceive

its environment by executing its perception actions, as outlined in Table 4.2. When the

outputs of these perception functions are taken together, they result in a set of percepts of

the current environment represented by a set of attributes. An agent must decide whether

or not to incorporate these percepts into its beliefs, since they may conflict with existing

beliefs, and we call these percepts its candidate beliefs. Note that the perceptions of a

socially situated agent may also include information about others and their actions.

We formalise the perception process in the following schema, in which we include the

schemas representing an agent and its environment (we use the 2 convention to signify that

there is no change of state to these). We then specify an agent’s view to be the generalised

union of the sets of percepts resulting from applying the agent’s perception capabilities in

the current environment.

72

__AgentPerception____________________________________
EEnv
EA gent
view : View

view = U{v : View | (3p A c t: PerceptionAction \
pAct € perceivingCapabilities • v = pAct environment)}

4.3 Updating Beliefs

Beliefs persist until an agent obtains new information contradicting them. Typically, such

information will be the result of the agent perceiving its environment, although it may al

so arise from communication with other agents or a human user. An agent’s beliefs are

required to be consistent with each other, that is, if an agent believes p it should not also be

lieve -ip. If an agent were to have inconsistent beliefs it might exhibit irrational behaviour,

since this might lead to incompatible goals. For example, if I were to simultaneously be

lieve that “it is raining” and “it is not raining” then I might come to have the incompatible

goals (and attempt to adopt incompatible intentions) of “staying indoors” and “going out

side”. An agent cannot, therefore, simply add its candidate beliefs to its existing beliefs

because inconsistencies may result. Instead, agents must introduce new beliefs into their

belief set using some consistency maintaining mechanism.

Although belief revision (e.g. [27, 35]), which is concerned with determining how an

agent should revise its beliefs in the light of contradictory information, is not directly rele

vant to this thesis, an agent must have some mechanism for updating its beliefs. If an agent’s

candidate beliefs include information that contradicts its existing beliefs then it must deter

mine which information to drop. It can either keep its existing beliefs and discard the new

information, or it can drop the existing beliefs and include the new information. Sever

al strategies for belief revision have been suggested, such as Doyle’s Truth Maintenance

System [26], and Galliers’ model of autonomous belief revision [36], but in this work we

simply assume that agents have a mechanism for ensuring their beliefs are kept consistent,

73

Inputs:
bel — the agent’s beliefs
view — the current perceptions

Outputs:
bel' — a revised set of beliefs

Algorithm:
candidateBeliefs = view
bel' = reviseBeliefs(èe/, candidateBeliefs)
return bel'

Table 4.3: Algorithm for updating beliefs

which we call a consistency maintainer, without elaborating further. Using this consisten

cy maintainer, an agent is able to incorporate its set of candidate beliefs into its existing

beliefs using the algorithm given in Table 4.3, and formally specified below, by which the

conflicting is information dropped.

In this table, and the following specification, the function reviseBeliefs takes an agent’s

beliefs and a set of candidate beliefs, and returns the agent’s updated beliefs, and corre

sponds to the consistency maintenance mechanism. The specification includes the schemas

Agent and AgentPerception, the former using Z’s A convention meaning its state (in partic

ular the agent’s beliefs) can change, while the state of the latter is unchanged. The function

interpretView forms a set of candidate beliefs from the set of attributes that comprise a view.

__UpdateBeliefs--
AAgent
EAgentPerception
interpretView : View —> P Belief
reviseBeliefs : P Belief —> ¥ Belief —> ¥ Belief
candidateBeliefs : ¥ Belief

candidateBeliefs — interpretView view
beliefs' = reviseBeliefs beliefs candidateBeliefs
goals' = goals
intentions/ = intentions
motivations' = motivations

74

4.4 Updating Motivations

Once an agent has perceived its environment and modified its beliefs accordingly, it must

update the intensity levels of its motivations in the light of its changed beliefs. The inten

sity of a motivation is determined (at least in part) by the agent’s beliefs about its current

environment. For example, if I am crossing a road and believe that a car is heading towards

me, the intensity of my motivation for survival is likely to increase, and similarly, once the

car has passed by, it is likely to decrease.

Agents are guided by their motivations, and therefore, do not hold goals that are not

motivated. Thus, after updating the intensities of its motivations an agent checks that its

goals are still appropriate. In other words, if the intensity of the agent’s motivations change

in such a way as to make a particular goal unmotivated, then the agent drops it. For example,

if I see a car heading towards me while crossing a road, my survival motivation may cause

me to have the goal of running the across the rest of the road. However, if I then notice

that the car has stopped and parked, the intensity of my survival motivation will decrease,

and it may no longer be appropriate to keep the goal of running the rest of the way. In the

remains of this section we discuss in more detail how an agent should alter the intensity of

its motivations, and when it should drop goals due to lack of motivation.

An agent must have some means of assessing the current (believed) situation and ad

justing the intensity of its motivations accordingly. We require agents in the SENARA ar

chitecture to have an instantiation of the situation assessment mechanism, introduced in

Section 3.13.

Direct-association

The simplest approach, which we call direct-association, is for an agent to have for each of

its motivations an association between a particular set of beliefs, and a predetermined pro

portional change of intensity (positive or negative). Whenever the set of beliefs associated

75

Inputs:
bel — the agent’s beliefs
motivations — the agent’s motivations

Outputs:
the intensities of the agent’s motivations are updated

Algorithm:
fo r m in motivations do

/«.intensity = /«.intensity x assessSituation(/n, bel)

Table 4.4: Algorithm for updating the intensity of motivations

with a motivation are believed to be true by the agent, it should change the motivation’s

intensity by the specified level, as illustrated by the algorithm in Table 4.4.

In Senara, the direct-association approach is represented as a set of tuples of the form

(b, m, i), where b is a set of beliefs, m a motivation, and i the proportional change that

motivation’s intensity should take, should the beliefs b be held by the agent. We assume

that there is at most one tuple for given sets of beliefs and motivations, otherwise it would

be ambiguous and unclear which intensity change the agent should implement. As an ex

ample, suppose that if the agent’s energy level drops below some threshold, its tiredness

motivation should be triggered and change intensity by «. Then we would represent this

using a tuple of the form (lessThan(energy, threshold), tiredness, n). To specify this we

use the supplementary functions, First, Second and Third that return the first, second and

third components of a Cartesian product respectively, as defined in Appendix A. We de

fine a direct association tuple to contain a set of beliefs, a motivation, and a real number.

The schema IntensityAssociation contains a set of direct association tuples, and specifies

that an agent should not have ambiguous tuples for a given motivation and set of beliefs,

i.e. for each motivation and set of beliefs any direct association with matching beliefs and

motivation yields the same change of intensity.

Finally, we specify (in the schema UpdateMotivations) that an agent should update the

intensity of its motivations by the proportion defined by the direct association tuple that

76

corresponds to the agents current beliefs and the motivation concerned. We specify this

though the use of an auxiliary function getlntensity, which takes a set of association tuples,

a set of beliefs, and a motivation and returns the degree of intensity change obtained from

the matching tuple. The predicate part of the schema first specifies this auxiliary function,

and then specifies that it should be applied to each of the agent’s motivations (using its

current beliefs).

iAssociation = = ¥ Belief x Motivation x R

__IntensityAssociation__
iAssociations : P iAssociation

V B : P Belief; m : Motivation; i : P; a : iAssociation •
a = (B, m, i) A a G iAssociations

=> (V /: M; a! : iAssociation \ a! = (B ,m ,j) A
a' G /'Associations • i = j)

__UpdateMotivations_______________________ __________________
AAgent
^IntensityAssociation
getlntensity : P iAssociation -» ¥ Belief —> Motivation —> R

VIA : ¥ iAssociation] B : ¥ Belief] m : Motivation] i : R •
getlntensity IA B m = i

o (3 iA : iAssociation • iA G IA A B = First(iA) A
m = Second(iA) A i = Third(iA))

V m : Motivation \ m G motivations • (3t w ': Motivation \
m! G motivations' • m!.name = m.name A

m! .intensity = m.intensity*
(,getlntensity iAssociations beliefs m) A

m'.threshold = m.threshold A m'.goals = m.goals)
beliefs' — beliefs
goals' = goals
intentions' = intentions

It is worth noting that there are several other strategies for changing the levels of moti

vations that may be explored in further work. For example, agents might learn to associate

new sets of beliefs with appropriate motivation intensities, and modify the levels associated

with the sets of beliefs in the light of experience.

77

4.5 Ensuring Goals are Motivated

A motivated agent must always act according to its motivations, and therefore each of its

goals and intentions must be of motivational value. Before considering how to ensure that

goals are motivated, we first describe what we mean by a goal being motivated or unmoti

vated. As an initial attempt we might propose that a goal is motivated while the intensity of

the motivation that caused its generation is greater than its associated threshold, and if this

intensity falls below the threshold the goal becomes unmotivated. However, this would be

too simplistic since a single goal may be of motivational value to more than one motivation,

and the achievement of the goal may mitigate more than one motivation. For example, if I

have the goal of eating a meal its achievement may mitigate both my hunger and my greed

motivations, even if it was my hunger motivation that caused its generation in the first in

stance. A consequence of this is that if my hunger motivation drops below its associated

threshold it is not true to say that my goal is unmotivated, since it is still of motivational

value to my greed motivation.

This issue can be addressed by saying that a goal is motivated if it mitigates one of

the agents motivations, i.e. if the achievement of the goal would reduce the intensity of the

motivation. Thus in the above example, my goal of eating a meal would be considered

to have motivational value because its achievement would mitigate my greed motivation.

However, suppose that my greed motivation’s intensity was zero, and therefore I am cur

rently placing no importance on it. In this case the goal cannot be said to be motivationally

beneficial, since a motivation’s intensity cannot be reduced below zero — a motivation with

zero intensity cannot be mitigated. Therefore, we arrive at a comprise approach, and say

that a goal is motivated if and only if its achievement would mitigate a motivation whose

intensity is greater than zero.

As we describe in the following section, an agent’s goals are generated as a result of a

motivation’s intensity rising above a certain threshold. Thus, at the time of generation it is

clear that the goal is motivated, i.e. is the result of a particular motivation having a positive

78

Inputs:
goals — the agent’s goals
motivations — the agent’s motivations

Outputs:
goals' — an updated set of goals, such that unmotivated goals are removed

Algorithm:
goals' = goals
f o r g in goals do

keepgoal = false
f o r m in motivations do

i f mitigationalValue(g, m) > 0 and intensity(w) > 0 th en
keepgoal = true

i f n o t keepgoal th en
drop(g, goals')

r e tu r n goals'

Table 4.5: Algorithm for dropping unmotivated goals

intensity. Since we require an agent to act in a motivated fashion, it should drop any goals

that are no longer motivated. After updating the intensities of its motivation an agent should

check which of its goals are appropriate and it should drop any that are not motivated1.

The algorithm for dropping unmotivated goals is given in Table 4.5, which shows how

an agent should check each of its goals against its motivations, and discard those that are

not of motivational value to a single motivation with intensity greater than zero1 2. Formally,

we can write this as follows in the schema DropUnmotivatedGoals, which describes the

change in state of an agent’s goals after dropping unmotivated goals. A goal remains after

dropping those that are unmotivated, if and only if there exists a motivation with positive

intensity that is mitigated by that goal. Conversely, a goal is discarded if for all motivations

(of positive intensity) it is of no motivational value.

1 We assume here that any unmotivated goals have not been adopted as intentions, since any unmotivated

adopted goals, i.e. intentions, will also be dropped because they are not of motivational value, as described in

Section 4.7.
2We refer to motivational value as mitgation in our formal specification and algorithms.

79

__Drop UnmotivatedGoals________________________________
AAgent

y g : Goal | g G goals • g G goals' (3 m : Motivation \
m G motivations • (mitigation m g) > 0 A m.intensity > 0)

Vg : Goal \ g G goals • g 0 goals' (Vm : Motivation |
m G motivations • mitigation m g = 0 V m.intensity — 0)

beliefs' — beliefs
intentions' — intentions
motivations' = motivations

4.6 Goal Generation

Senara is an architecture for autonomous agents and we consider the ability of an agent

to generate its own goals to be a fundamental consequence of its autonomy; the process

of goal generation, however, is typically omitted in existing BDI-based architectures. An

agent’s motivations provide a mechanism for the generation of goals, and an agent should

perform goal generation as soon as it has updated the intensities of its motivations. In order

to generate its goals, an agent must determine which of its motivations are active, i.e. which

have intensities greater than their associated thresholds. Thus, the first step in goal genera

tion is for an agent to check which of its motivations are active. Each active motivation will

cause the generation of one or more goals, and the agent must have some mechanism for

determining what these will be. Recall from our definition of a motivation, in Section 3.13,

that each motivation has an associated set of goals it can generate, from which the most ap

plicable is selected in a given situation. Formally, we introduce a function, generateGoals,

that determines the goal a particular motivation generates in a given situation. The inputs

to this function are the motivation concerned, the agent’s beliefs and its other motivations,

and the output is the set of goals that are generated.

j generateGoals : Motivation -» P Belief -> P Motivation -> P Goal

For example, if my motivation of hunger is active and I believe that it is lunch time,

then I might generate the goal of eating a meal. However, if I believe that it is evening I

80

Inputs:
gAssociations — the agent’s goal generation associations
motivations — the agent’s motivations
goals — the agent’s goals
beliefs — the agent’s beliefs

Outputs:
goals' — an updated set of goals, including newly generated goals

Algorithm:
activeM = empty
goals' = goals
fo r m in motivations do

i f intensity(m) > threshold(w) th en
activeM = union(activeM, {m})

f o r m in activeM do
fo r ga in gAssociations do

i f first(ga) = beliefs and second(ga) = m th en
goals' = union (goals', third(ga))

r e tu r n goals'

Table 4.6: Algorithm for goal generation

may generate the goal of eating a light snack. In addition to beliefs, other motivations such

as that of being healthy, may affect the goal that I generate, such as generating the goal of

eating a low fat meal rather than a high fat meal.

The choice of which particular goal to generate should consider how motivationally

valuable each goal is to a particular motivation, namely, how much the achievement of

the goal would mitigate the motivation. Since we do not require that an agent’s goals are

consistent, because it is not committed to achieving all its goals, any goals that the agent

generates can simply be added to its existing goals.

As with the mechanism an agent uses to update its motivations, different agents may

utilise different strategies. However, one possible implementation of this goal selection

mechanism is for the agent to associate a set of beliefs with a particular set of goals and

a motivation. This can be represented as a tuple, as per the direct association mechanism

81

described in Section 4.4. Such a tuple would be of the form (b,m ,g), where b is a set

of beliefs, m a motivation, and g the set of goals that are generated by an agent with the

motivation and the set of beliefs Although this method is very simple, and does not consider

the agent’s other motivations, it is adequate for our purposes of investigating cooperation

— provided the agent’s designer has chosen appropriate associations. More complex agents

may use heuristics that consider such issues as the intensity of other motivations, and any

past experience of the agent.

The algorithm for goal generation is given in Table 4.6, which shows that for each

of its active motivations the agent should generate the goals defined by the corresponding

goal generation association tuple. Formally, we define a goal association tuple to contain

a set of beliefs, a motivation and a set of goals. The schema GoalGenerationAssociation

specifies that there should be no ambiguity in an agent’s set of goal associations — for

a given motivation and set of beliefs there should be exactly one set of generated goals,

according to the set of goal associations. An agent’s active motivations are specified, in

the GoalGeneration schema, to be those whose intensity is greater than or equal to the

associated threshold. The set of generated goals is obtained by applying the generateGoal

function for each active motivation, and the resultant set is added to the agent’s existing

goals.

gAssociation == IP Belief x Motivation x P Goal

__GoalGenerationAssociation______________________________________
gAssociations : P gAssociation

\/B : P Belief] m : Motivation; G : P Goal-, a : gAssociation •
a = (B,m,G) A a G gAssociations

=$> (V// : P Goal; a' : gAssociation \ a' = (B,m ,H) A
a' 6 gAssociations • G = H)

82

__GoalGeneration___
AAgent
activeMotivations : ¡P Motivation
generatedGoals : P Goal

activeMotivations =
{m : Motivation | m G motivations A m.intensity > m.threshold}

generatedGoals =
|J{G : P Goal | (3 m : Motivation \ m G activeMotivations •

G = generateGoals m beliefs motivations)}
goals' — goals U generatedGoals
beliefs' — beliefs
intentions' = intentions
motivations' = motivations

4.7 Ensuring Intentions are Appropriate

Just as an agent drops unmotivated goals, it must also drop any commitment to achieving

unmotivated intentions. Recall that according to our definition of intention, an agent should

drop its intentions should they become achieved, unachievable, irrelevant, or of no motiva

tional value. Now, since the information the agent has about its environment, i.e. its beliefs,

may have changed, the agent must check to see which, if any, of these drop conditions apply.

It is a straightforward task for an agent to check whether its intentions, or rather the goals

they achieve, have been achieved. The agent must simply check whether the situation it

intends to bring about is achieved, either by its own action, or through some other agent. If

the intention is achieved the agent should drop it3. Checking to see whether an intention is

unachievable is more difficult, since a greater amount of reasoning is required. If the agent

explicitly believes that its goal can never be achieved, then it clearly must drop its intention.

An example of how this might occur is if an agent acquires information provided by another

about the futility of one of its goals. However, if an agent has no explicit beliefs about the

unachievability of its intentions, then it must perform further reasoning about its beliefs and
3Note that if an agent drops an intention because it has been achieved though the actions of another, we

would not say that the agent necessarily achieved its goal intentionally.

83

Inputs:
intentions — the agent’s intentions
motivations — the agent’s motivations

Outputs:
intentions' — an updated set of intentions

Algorithm:
intentions' = intentions
f o r i in intentions do

keepintention = false
i f n o t achieved(i) and n o t unachievable(z) and relevant(z') th en

fo r m in motivations do
i f mitigationalValue(z, m) > 0 and intensity^) > 0 th en

keepgoal = true
i f n o t keepgoal th en

drop(z, intentions')
r e tu r n intentions'

Table 4.7: Algorithm for dropping inappropriate intentions

the inferences it can make from them, to determine whether its goal is unachievable. As we

are not concerned with how an agent should reason about inferences from its beliefs in our

system, we take the simplistic approach of checking explicit beliefs. However, should an

agent be given such reasoning abilities, it would be a trivial matter to integrate them into

the agent architecture, since it does not affect the form of the agents reasoning cycle.

If an intention is not achieved or believed unachievable, then its relevance condition

must be checked, and to do this the agent must simply check that the relevance condition is

still believed. If it is not believed then the agent must drop its intention as being irrelevant.

Finally, an agent must ensure that its intention is still motivated, i.e. is of value to at least

one active motivation, since motivations determine how valuable a given goal is to the

agent at a particular time. If an intention is not motivationally valuable then it should be

dropped, along with the goal that it achieves — the algorithm for ensuring that intentions

are appropriate is given in Table 4.7.

84

In the following schema, Droplnappropriatelntentions, we specify the conditions un

der which an agent should drop an intention. The predicate part specifies, firstly, that an

intention is relevant only while the relevance condition is believed and, secondly, that an

intention is motivated if and only if it is of value to a motivation of positive intensity. An

agent’s intentions are updated such that any that are achieved, unachievable, irrelevant, or

unmotivated are dropped.

Droplnappropriatelntentions____________________________________
AAgent
is Achieved : Intention —> ¥ Belief —> bool
isAchievable : Intention —> P Belief -* bool
isRelevant: Intention —> bool
isMotivated : Intention —> bool

V i : Intention \ i G intentions • isRelevant i = true
(V b : Belief | b G i.relevance • b G beliefs) A

isRelevant i = false <=> (3 b : Belief | b G i.relevance • b beliefs)
V i : Intention \ i G intentions • isMotivated i = true

O (3m : Motivation \ m G motivations •
m.intensity > 0 A (mitigation m i.satisfies) > 0) A

isMotivated i = false ^ (Vm : Motivation | m G motivations •
mitigation m (i.satisfies) — 0 V m.intensity = 0)

V i : Intention \ i G intentions • i G intentions'
«=> isAchieved i beliefs = false A isAchievable i beliefs = true A

isRelevant i = true A isMotivated i = true A
/ 0 intentions'

isAchieved i beliefs — true V isAchievable i beliefs = false V
isRelevant i = false V isMotivated i = false

beliefs' = beliefs
goals' = goals
motivations/ = motivations

4.8 Intention Adoption

Once the agent has dropped inappropriate intentions, it must determine whether to adopt

new intentions for the goals to which it is not committed, and if so, it must create suitable

intentions for them. Now, one of the requirements of intentions described by Bratman [2]

85

and Cohen and Levesque [15] is that intentions should be consistent, or rather, they should

not knowingly be inconsistent. For example, I should not intend to eat out tonight and not

eat out tonight, while I might intend to eat out tonight and write a paper, even if these later

turned out to be incompatible. Thus, an agent cannot simply adopt intentions for its newly

generated goals, since they may contain inconsistencies. As we require our agents to be

driven by their motivations, these motivations play a key role in determining which inten

tions it adopts. For each of its active motivations an agent attempts to adopt an intention

for the goal generated by that motivation, or for the most motivated goal if more than one

goal is generated. When incompatibilities are found they must be resolved in such a way

as to afford the highest motivational value to the agent. This can be determined simply by

considering which motivation has the highest intensity (although an alternative approach

would be to consider a combination of motivational effect and motivational intensity).

4.8.1 Selecting and Adopting a Plan

To adopt an intention an agent must select a plan to use to achieve its goal. From its plan

library an agent selects the set of applicable plans to achieve each of its chosen goals4.

The set of applicable plans for a goal is defined to be those plans that achieve the goal

whose preconditions are met, as specified below in function planSetForGoal. We define

planSetForGoal though the use of a subsidiary function, preconMet, which takes a set of

preconditions and a set of beliefs, and returns true if and only if the preconditions are

believed to be true (as described in Appendix A).

planSetForGoal: Goal —> P Belief —> P Plan -+> ¥ Plan

Vg : Goal; b e l: ¥ Belief-, plib : P Plan • planSetForGoal gbelplib
= {p : Plan | p G plib A p. achieves = g A

preconMet p.preconditions bel = true}
4Note that we assume there is at least one plan in the plan library for each of the goals that an agent might

generate. This is the responsibility of the agent designer, and we do not consider how an agent should behave

if it cannot find at least one applicable plan for a given goal.

86

Once an agent has obtained the set of applicable plans for a given goal and context,

it must choose one, and there are many possible criteria for selecting a plan from a set

of applicable plans. For example, the agent may choose the plan containing the minimum

number of subgoals or the one with the minimum number of actions, i.e. the plan that seems

to require the least further reasoning or action respectively. Alternatively, it may select from

a set of plans by considering the joint and concurrent actions they contain and the agents

with whom cooperation may occur. Without fully elaborating the applicable plans, however,

an agent cannot be certain about its choice, since it does not know which subplans will be

used in the plan’s elaboration. Moreover it is also unable to predict the way the environment

may change, so cannot elaborate the applicable plans to select between them5 and must,

therefore, use some heuristic to choose between plans. We discuss in detail how agents can

choose between applicable plans in the Chapter 6. However, in order to continue with our

specification of the agent architecture, we introduce the function planForGoal that takes a

set of applicable plans and chooses the most appropriate depending on the agent’s current

beliefs and intentions. Beliefs and intentions constrain the plans that are applicable, since

a chosen plan must be consistent both with the agent’s beliefs and its existing intentions.

Since we describe in Chapter 6 the mechanisms an agent might use to chose a particular

plan, we simply specify a function signature here, and describe its instantiation later.

| planForGoal: ¥ Belief —» ¥ Intention -» ¥ Plan -» Goal -+> Plan

Thus, intention adoption comprises the two stages of first determining which goals to

adopt intentions for, and then selecting plans for those goals. This is done by resolving in

compatibilities between goals to get a set of compatible motivated goals to which an agent

can commit. Then plans are selected for each of these intentions (and checked for consis

tency with each other), before forming intentions. The algorithm for intention adoption is

shown in Table 4.8. We do not include a specification of the relevance conditions since they

are dependent on the domain and situation, and so cannot be specified.
5Such elaboration would also place a significant burden on the agent’s resources, and may prevent it from

making a timely decision.

87

Inputs:
motivations — the agent’s motivations
intentions — the agent’s intentions
goals — the agent’s goals
beliefs — the agent’s beliefs

Outputs:
intendedgoals' — an updated set of intended goals
intentions' — an updated set of intentions

Algorithm:
activeM = empty
activegoals = empty
intendedgoals = empty
fo r m in motivations do

i f intensity(w) > threshold(w) th en
activeM = union{activeM, {m})

fo r m in activeM do
fo r g in goals do

i f mitigationalValue(g, m) > 0 th en
isactive = true
f o r g1 in goals do

i f mitigationalValue(g, m) <
mitigationalValuefg', m) th en
isactive = false

i f isactive th en
activegoals - \mion(activegoals, { g })

fo r i in intentions do
intendedgoals = \mion(intendedgoals, { achieves(i) })

intendedgoals' = resolveIncompatibilities(mie«deJgotf/.s', activegoals)
intentions' = intentions
f o r g in intendedgoals' do

i f n o t g i n intendedgoals do
p - planForGoal(6e//e/S, intentions, planlib, g)
newintention = adopt(p)
intentions' = union (intentions', { newintention })

r e tu r n intendedgoals', intentions'

Table 4.8: Algorithm for intention adoption

88

Formally, we specify the stages of intention adoption in the schema IntentionAdoption.

The set of active motivations is used to determine the set of active goals, which is con

structed such that for each motivation the goal that is of the most motivational value is a

member of the set of active goals. Before adopting intentions for active goals (that are not

already committed to), any inconsistencies with the agent’s current intentions must be re

solved, and the set newIntendedGoals represents the resulting set of goals, for which the

agent must have corresponding intentions. Intentions are then formed for any goals in this

set that are not already committed to, using the plan returned by the planForGoal function.

__IntentionAdoption___
AAgent
activeMotivations : IP Motivation
activeGoals : F Goal
currentlntendedGoals : P Goal
newIntendedGoals : P Goal
resolvelncompatibilities : P Goal —> P Goal —>• P Goal

activeMotivations =
{m : Motivation \ m G motivations A m.intensity > m.threshold}

activeGoals = {g : Goal \ g G goals A
(3 m : Motivation \ m G activeMotivations A mitigation m g > 0 •

(Vg7 : Goal \ g1 G goals A g ' ^ g *
(mitigation mg) > (mitigation mg')))}

currentlntendedGoals =
(g : Goal | (3 i : Intention | i G intentions • i.satisfies = g)}

newIntendedGoals = resolvelncompatibilities
currentlntendedGoals activeGoals

intentions' = {/ : Intention \ i.satisfies G newIntendedGoals A
/ G intentions} U {/ : Intention | i.satisfies G newIntendedGoals A

i & intentions A head(i.plans) =
planForGoal beliefs intentions planLibrary i.satisfies}

There are two possible strategies that the agent could adopt to forming an intention, de

pending on the point at which it commits itself to a particular course of action, and chooses

a particular plan. The simplest strategy is for the agent to select the most appropriate plan

from its plan library given its current situation, and use that plan to form its intention. We

call this an immediate elaboration strategy, since the agent commits itself to a particular

89

plan at the point of intention formation. Alternatively, it can form an intention using an

abstract plan, which is one that contains the single step of a subgoal. Thus, the agent is able

to form an intention without elaborating its plan, and since the agent postpones committing

to a particular course of action (namely, a particular elaboration of its plan) we call this a

delayed elaboration strategy.

4.8.2 Immediate Elaboration

Based on its motivations, an agent selects a goal (and therefore an intention) to act upon,

which is to be achieved by executing the plan described in the corresponding intention. If

the selected intention was formed using an immediate elaboration strategy then the agent

is able to begin execution of the plan immediately. Where the first step of the plan is an

action, the agent can perform it (if its preconditions are met) and where it is a subgoal the

agent can elaborate its plan by selecting a subplan for the subgoal.

If the agent is the only entity able to act in its environment, and is constrained so that

it is prevented from having more than a single goal (or intention) at any one time, then the

immediate elaboration strategy is adequate. However, typically an agent has more than one

goal (and corresponding intentions), and shares its environment with other acting entities, so

that plans elaborated at the point of intention formation may not be executable by the time

the agent chooses to act upon them, since the environment may have changed. Suppose

an agent has two goals, g\ and gi, and uses an immediate elaboration strategy to form

respective intentions, z'i and ii, which contain (at least partially) elaborated plans. Based

upon its motivations the agent chooses an intention to act upon, say i\, and begins to execute

the plan contained in that intention. Now, suppose that the agent’s motivations are such that

z'l remains the chosen intention until it is completed (and gi is achieved), at which point

z'l and gi are dropped (assuming it was successfully achieved). Thus, on achieving gi the

agent is left with a single goal and intention, gi and ii respectively. However, since the plan

in ii was chosen before g\ was achieved, it may not be relevant in the current environment,

90

(a) s a t i s f i e s :

relevance:
plans :

[(pos l o c a t i o n , [a g e n t i , l o c 2] >]

achieves :
preconditions :
body:

[(pos location,
[(pos location,
[. . .
action <(moveTo,

[agenti, loc2])]
[agenti, loci])]

[loc2], agenti)>

(b) satisfies:
relevance:
plans :

[(pos holding, [agenti, b])]

achieves: [(pos holding, [agentl, b])]
preconditions: [(pos location [agentl, loci])]
body: [...

action <(pickup, [b], agentl)>
. . .]

Figure 4.2: The problem of plan over-commitment

and therefore ii may be unachievable (unless the environment changes). We say that an

agent in this situation suffers from the problem of plan over-commitment.

This problem can be seen more clearly with a simple example, where an agent (with

agent identifier agentl) is situated in some location loc\, in which there is a box b. Suppose

that gi corresponds to being in another location loci written location(agent, loci)> and gi to

holding the box written holding(agent, b). Suppose that the agent forms intentions, j'i and

ii, for these goals, and uses an immediate elaboration strategy to select plans that require

the environment to be in this situation for their execution, as shown in Figure 4.2 (a) and (b)

respectively. Once the agent has executed the plan in i'i , the environment will have changed

such that the agent is in location loci. Since ii is now the agent’s sole intention it will try to

act to achieve it. However, since the plan component of ii was selected, the environment has 6
6This is analogous to the problem of g o a l c lo b b e r in g in planning [86],

91

changed and the plan is no longer applicable (since it requires the agent to be in the same

location as the box, namely loc\). Thus, the agent is forced to either drop this intention, and

form a new one with a new plan, or wait until it is in loc\ again. As there is no guarantee

that the environment will return to its previous state, the most viable approach is to drop ¡2 ,

and form a new intention given the current situation.

4.8.3 Delayed Elaboration

If the agent were to use a delayed elaboration strategy instead, then the risk of plan over

commitment is reduced, since the elaboration of the plan component of an intention is

delayed until the agent comes to execute the plan. In the example above, delayed elabora

tion would entail using abstract plans rather than elaborated plans, and on completion of j'i

and gi the agent is again left with a single intention, ¿2, but with a corresponding abstract

plan that must be elaborated before the agent can act. The agent can now select a plan for

¿2 (based on the current state of the environment) and execute it, without the need to drop

the existing intention. Thus, the problem of plan over-commitment is avoided in this simple

scenario.

The example above is simplified in that we assume that there is only one agent acting

in the environment, and that once it begins to act on an intention it will continue until the

intention is complete. Where the environment is more dynamic, or there is more than one

agent active in it, the problem of plan over-commitment is more likely to occur (regard

less of whether the agent uses an immediate or a delayed elaboration strategy), since the

environment will change of its own accord, or as a result of others’ actions. During the

execution of a plan, such changes may render the remainder of the plan not executable. For

example, if an agent adopts a plan to pick up a box, another agent might pick it up before

it executes its plan, thereby preventing execution of the plan. Similarly, if the agent’s moti

vations are such that its attention changes between different partially completed intentions,

the agent itself may cause a plan in one of its intentions no longer to be executable, due

92

to changes it has made in the environment. In these more complex situations there are too

many factors involved to estimate the risk of plan over-commitment for either strategies.

In terms of this thesis, we consider cooperation resulting from agents soliciting assis

tances with respect to a particular plan, as we describe in Chapter 7. It is simpler for an

agent to solicit assistance with respect to a particular plan, and therefore where cooperation

is needed, the immediate elaboration approach is used. Moreover, since we are concerned

with cooperation rather than the construction of an optimal mechanism for intention adop

tion, we assume that agents always use the immediate elaboration approach. In the worst

case scenario, this choice means that the agent will have to re-adopt its intention with a

different plan, and we consider this cost to be relatively low given the added simplicity of

always using the same approach to form an intention.

4.9 Intention Selection

In order to act, an agent must select an intention to focus upon. As before, motivations

play a fundamental role here in that the intention whose achievement is of the most value

in motivational terms is selected. As we described in Section 3.13, motivational value is

dependent on the intensity of the motivation concerned, and an intention that is of high

relevance for a motivation with minimal intensity might be said to have less motivational

value than an intention with relevance for a motivation of large intensity. Therefore, the in

tensity of the agent’s motivations is crucial in selecting an intention to focus on — the agent

should select an intention that favours its most significant motivation. The most significant

motivation is defined as being the active motivation with the highest intensity if any active

motivations exist, otherwise it is simply the motivation with the highest intensity (recall

that a motivation is said to be active if its intensity is greater than or equal to its threshold).

Once the agent has determined its most significant motivation, it must then select which

of its intentions contribute the most to it. This is determined by the motivational effect

the achievement of an intention would have on the motivation, and the agent should select

93

Inputs:
motivations — the agent’s motivations
intentions — the agent’s intentions

Outputs:
chosenintention — the selected intention

Algorithm:
activeM = empty
fo r m in motivations do

i f intensity(m) > threshold(w) th en
activeM = vmion(activeM, {m})

i f activeM = empty th en
M = motivations

e ls e
M = activeM

m = selectRandom(M)
f o r m' in M do

i f intensity(m') > intensity(m) th en
m = m'

highestM = m
chosenintention = selectRandom(mienrioni)

f o r i in intentions do
i f mitigationalValue(z, highestM) >

mitigationa\Va\ue(chosenintention, highestM) th en
chosenintention = i

r e tu r n chosenintention

Table 4.9: Algorithm for intention selection

the intention that has the most motivational effect on its most significant motivation. We

call this intention the chosen intention. This algorithm for intention selection is shown in

Table 4.9.

We specify this below in the schema IntentionSelection, where the first three predicates

in the schema determine the most significant motivation. The final predicate specifies that

the agent should select the intention that is of the most motivational value to the most

significant motivation.

94

__IntentionSelection__
EAgent
activeMotivations : IP Motivation
chosenMotivation : Motivation
chosenlntention : Intention

activeMotivations —
{m : Motivation \ m G motivations A m.intensity > m.threshold}

activeMotivations / 0 => (3 m : Motivation \ m G activeMotivations •
(V m! : Motivation | m' G activeMotivations Am ' ^ m •

m.intensity — m.threshold > m!.intensity — m'.threshold A
chosenMotivation — m))

activeMotivations — 0 =y (3 m : Motivation \ m G motivations •
(V m! : Motivation | m' G motivations A ra' / m •

m.intensity — m.threshold > m'.intensity — m'.threshold A
chosenMotivation = m))

(3X i : Intention | / G intentions • (V /' : Intention | i' G intentions A
i ^ /' • mitigation chosenMotivation i.satisfies >

mitigation chosenMotivation i' .satisfies A
chosenlntention = /))

4.10 Action and Deliberation

After determining its chosen intention, an agent acts towards it, but the way in which the

agent does this depends on the contents on the intention or, more specifically, on the plan

component of the intention. If the first step in the plan is an individual action contribution

then the agent can execute that action. If the step is a subgoal then the agent must elaborate

the plan, and choose a subplan for that subgoal — we call this process deliberation. How

ever, if the first step is a joint or concurrent action then the agent must seek assistance from

others, and this is covered in detail in Chapter 7.

If the first step in the body of the plan at the top of the intention stack is an action, then

the agent executes this action, and the action is removed from the plan. On executing an ac

tion the environment is changed in the manner defined by the function contributionEffects,

as introduced in Section 3.9. The agent’s beliefs are also updated, since it can infer that

95

the environment has changed in the manner defined by contributionEffects. For the purpose

of the specification, we assume the existence of the function believedChanges which takes

a contribution and an environment, and returns a set of beliefs representing the changes

to the environment that performing the contribution produces. We also introduce in the

AgentHistory schema a sequence of contributions that records the contributions performed

by a particular agent. An agent acts by performing the first contribution step in chosen inten

tion, changing the environment and appending this contribution to its history. The agent’s

beliefs are updated to include information about the effects of performing this contribution,

as determined by believedChanges.

| believedChanges : Contribution —> Environment -» IP Belief

_AgentHistory___
history : seq Contribution

__AgentAction---
AAgent
AEnv
AAgentHistory
EIntentionSelection
E UpdateBeliefs
nextStep : PlanStep

nextStep = head(last chosenlntention.plans).body
3 a : Contribution • Individual(a) = nextStep

history1 = history ^ (a) A environment1 —
contributionEffects a environment A

beliefs' — reviseBeliefs beliefs (believedChanges
a environment)

If the first step in the body of the plan at the top of the intention stack is a goal, then

the agent selects a subplan to achieve it from its plan library. This process is the same as

that for forming an intention, except that once the agent has selected an appropriate plan

it is then pushed onto the intention stack, rather than a new intention being formed. In the

following schema we specify that where the next step of an intention is a subgoal, the best

96

plan is selected for that goal using planForGoal, and pushed onto the intention stack. The

relevance condition and the goal the intention satisfies are unchanged.

__AgentDeliberation__
AAgent
'EIntentionSelection
nextStep : PlanStep

nextStep = head(last chosenlntention.^plans).body
3 g : Goal • Subgoal(g) — nextStep

<̂> chosenlntention' .plans = chosenlntention.plans
^{{planForGoal beliefs intentionsplanLibrary g))

A chosenlntention' .relevance = chosenlntention.relevance
A chosenlntention' .satisfies = chosenlntention.satisfies

4.11 Summary

In this chapter we have completed our description of Senara, our BDI-based architecture

for cooperation between autonomous agents. The BDI model, as exemplified by Bratman et

al. [5], does not directly support the mechanisms required for agents to be truly autonomous

and have full control over the direction of their own behaviour. Additionally, it does not

provide a mechanism for an agent’s plans to include cooperative actions that are to be

performed in conjunction with other agents. Therefore, we have described extensions to

this BDI model in two key areas: the addition of motivations to agents, and the addition of

joint and concurrent actions.

The first significant extension is the addition of the mental component of motivations to

the existing ones of beliefs, desires (i.e. goals), and intentions. Motivations serve to allow

an agent to guide its behaviour, both through the generation and adoption of appropriate

goals, and through influencing the decisions an agent makes in the course of its operation.

For example, an agent must consider its motivations in choosing a plan for a goal, and in

choosing which agents to cooperate with, thereby ensuring that is always acts to afford itself

the greatest motivational value. A result of introducing motivations into the architecture is

97

that the agent reasoning cycle must be extended. In this chapter we have described the ex

tensions necessary to allow an agent to update the intensities of its motivations according to

its beliefs, generate goals from these motivations, choose a goal to pursue, adopt an appro

priate intention from its goals, and select an intention to act towards. These mechanisms are

brought together in the following schema, which specifies an agent’s control mechanisms.

__AgentControl___
EAgent
AgentPerception
UpdateBeliefs
UpdateMotivations
DropUnmotivatedGoals
GoalGeneration
Droplnappropriatelntentions
IntentionAdoption
IntentionSelection
AgentAction
AgentDeliberation

Joint and concurrent actions provide a mechanism for representing composite actions

made up of contributions that are to be performed by individual agents. These compos

ite actions can be included as steps in an agent’s plans, and so allow agents to be given

predetermined plans of how to achieve goals through cooperation. In Bratman et al.' s BDI

abstract architecture an agent’s plans are only able to represent the actions it should perform

individually, rather than those it should perform as part of a cooperative activity.

98

Chapter 5

Autonomous Cooperation in Open

Environments

5.1 Introduction

In the preceding chapters we introduced the mental components and control mechanisms

that comprise the agent architecture upon which we base our framework of cooperation.

However, we have not yet considered the process of cooperation amongst such agents. A-

gents act according to their motivations and therefore will only cooperate if they receive

motivational value from doing so. Cooperation between autonomous agents involves cer

tain choices about when to cooperate, with whom, and for how long, and the outcome of

these choices is determined by an agent’s motivations. Consequently cooperation implies

an inherent degree of risk, since where a group of agents cooperate towards achieving a

particular goal, any one of them may cease to cooperate if it is no longer of motivational

value, regardless of the effect this has on the achievement of the goal. In order to cooperate

effectively, an agent must be able to make appropriate choices about cooperation and man

age the associated risk. This chapter seeks to provide the context for the instantiation of the

architecture presented in the preceding chapters to address these issues.

99

Specifically, we start this chapter by describing the nature of the commitments required

by a group of agents to cooperatively execute a plan, and we introduce the stages involved

in such cooperation activity. We then introduce the notion of trust as a means of modelling

the perceived risk associated with other agents. Finally, for ease of understanding, it is

useful to have a particular domain to provide a context for discussing our framework, and

in which we can give an example instantiation; we end this chapter by describing such a

domain.

5.2 Cooperative Intention

Cooperative action by a group of agents consists of the individual actions of its members

and, because the actions of individuals are determined by their intentions (according to

the Senara control cycle), those agents must adopt appropriate intentions before acting

cooperatively. However, it is not sufficient for each agent simply to adopt an intention to

achieve the cooperative goal, since each agent’s intention is independent of the others, and

the success of one agent is unrelated to the success of another. Cohen and Levesque il

lustrate this though the example of a group of people running for shelter under a tree in

a rainstorm [19] — they all have the same goal and intention (to run under the tree), but

there is no cooperation amongst them. Indeed, if there is limited shelter under the tree, their

intentions may actually lead to competitive behaviour. Therefore, as is widely recognised

(e.g. [4, 58, 100, 102]), cooperation requires some form of group commitment towards the

cooperative goal, that is more than just a collection of individual intentions and embodies

the notion of agents acting together. We call our notion of this group commitment a coop

erative intention (thereby distinguishing it from other related work on group commitments,

such as that of Cohen and Levesque [58], and Bratman [4]), and discuss its requirements

and definition in this section.

10 0

5.2.1 Requirements of a Model of Cooperation

Cooperation involves more than just the simultaneous actions of a group of individuals, as

illustrated above, and some form of cooperative intention is required. However, since a

group of agents may diverge in their beliefs, a group’s intention to cooperate cannot simply

be a version of individual intention where the group is taken to be the agent. It is suggested

by Bratman [4] that agents are rational entities, and must not be committed to achieving

a goal that they believe unachievable (or already achieved, or irrelevant). Therefore, if a

cooperating agent comes to believe that one of these conditions is the case with respect

to the goal for which it is cooperating, then it will cease to cooperate, and should inform

others. We concur with this view, and adopt it as one of the key requirements for a group’s

cooperative intention. Moreover, in our view, agents act according to their motivations,

and if cooperation is of motivational value they will cooperate, otherwise they will not.

Thus, if the motivations of a member of a cooperating group change such that cooperation

is no longer of motivational value, then that agent will cease to cooperate since it is not

motivationally beneficial to continue, and it must inform others.

Even where agents take diverse roles in the achievement of their goal, the commitments

they hold should still be towards a common course of action. Commitment alone is insuffi

cient for cooperation; it must be towards a specific (possibly partially determined) course o f

action, otherwise agents could be committed to achieving a goal through conflicting means.

Cooperation, therefore, requires agents to act together through a common approach towards

a common goal. For example, if two agents are committed to achieving the goal of moving

a table together from one room to another, they must be committed to using a particular

approach — if one agent is committed to performing the action of lifting one end of the

table and carrying it, while the other is committed to dragging the table then their actions

will not result in cooperation, and they will not achieve their goal.

Agents should not be forced into commitment; in our view, agents are autonomous

entities and have control over their own behaviour, and while an agent may attempt to gain

101

the assistance of another (for example by offering to reciprocate) it cannot force another

to cooperate. Consequently, agents should only enter into cooperative activity, and commit

to a cooperative intention if it is in their own interests to do so — if it is of motivational

benefit. Furthermore, the intention must be common knowledge amongst the group, thereby

allowing agents to reason about their commitments in the light of others’ corresponding

commitments. In particular, before performing its part of a cooperative interaction an agent

needs to know that others will do likewise.

We can summarise these requirements for cooperation as follows, based on those given

by Bratman [4]. The key difference between our view and Bratman’s is that we require a

cooperative intention to be motivated on behalf of the agents concerned.

Commitment to openness There must be some mechanism for an agent to inform others

if it comes to believe that cooperation is no longer appropriate — when the goal is

believed to be achieved, unachievable, irrelevant, or unmotivated.

Commitment to a common means A group’s commitment must be towards a specific cou

rse of action, otherwise agents might become committed to achieving a goal through

conflicting means.

Common Knowledge A group’s commitment must be common knowledge amongst its

members.

Motivated commitment Commitments must be motivated on the behalf of the cooperating

agents.

In addition to these requirements it is also desirable that cooperating agents guide their

behaviour in response to others’ intentions and actions, and are committed to supporting

others; cooperative intention should lead to mutual responsiveness and mutual support be

tween agents. For example, if a group member cannot perform its contribution to a joint

action, and a second member is in a position to perform some action after which the con

tribution could be performed, then the second agent’s commitment to the joint intention

102

should lead it to act so as to enable the cooperative action to proceed (assuming it is of

motivational value to do so).

5.2.2 Conventions for Cooperative Intention

In Chapter 2 we identified two main views on the nature of cooperative intention, where

it is either viewed as being irreducible, or as comprising an appropriate combination of

individual intentions, mutual beliefs, and a set of mechanisms describing how it should be

maintained [4, 58, 100]. In both approaches, action is seen as governed by intention, and

so some relationship between cooperative and individual intention must exist, otherwise no

action would be performed. However, the former approach views the required individual

intentions as arising out of the cooperative intention, while the latter approach views these

individual intentions, in part, as defining the cooperative intention. It is our view that since

cooperative intention can arise only from the interaction of individuals, the components that

comprise it must be formed from the mental components and attitudes of those individuals.

In this thesis, therefore, we adopt the view that a cooperative intention comprises a set of

individual intentions, mutual beliefs, and mechanisms describing its operation. A useful

consequence of taking this approach is that it is consistent with the majority of existing

computational work, with the alternative generally confined to philosophical investigations.

Our model of cooperation can, therefore, be more easily compared, and integrated, with

other existing computationally-oriented work.

Recall from Section 2.5.3 that a convention specifies the conditions under which a

commitment can be abandoned, and how an agent should behave in such a circumstance.

We follow Wooldridge and Jennings’ notion of cooperative intention as a commitment to

a course of action with associated conventions (as introduced in Chapter 2). However,

Wooldridge and Jennings’ associated model of cooperation is somewhat abstract, and they

do not, therefore, give the details of such issues as how agents should form and represent

plans [102, 104]. Our concern in this thesis is cooperation between motivated BDI-like

103

re-evaluation condition goal
believe that goal is achieved establish mutual belief that goal is

achieved
establish mutual belief that goal is
unachievable
establish mutual belief that goal
is no longer relevant
establish mutual belief that goal
is not of motivational value

believe that goal is unachievable

believe that goal is no longer relevant

believe that goal is not of
motivational value

Table 5.1: Conventions for motivated cooperation

agents, and we must consider these architecture-specific details. In the case where plan

execution requires cooperation, the commitment involved is a group commitment amongst

agents, initiated by the agent that selected the plan. In contrast to the notion of joint inten

tion as a commitment towards a particular fully-elaborated sequence of actions, we are con

cerned with commitment to a partial plan containing subgoals. Thus, we relax Wooldridge

and Jennings’ definition slightly, so that joint intention is viewed as a joint commitment

towards a partial plan, rather than a specific action sequence.

More importantly, since agents are guided by their motivations, our notion of cooper

ative intention must reflect the importance of an agent’s motivations, in that agents must

ensure that their actions and commitments are of motivational value, i.e. agents engage in

motivated cooperation. Thus, an agent should only form an intention, whether individual

or cooperative, if its formation gives rise to motivational benefit. In other words, an agent

should only commit to executing a particular plan to achieve a goal if the achievement of

the goal offers motivational value, or if the execution of the plan itself provides motivational

benefit. For example, achieving the goal of emptying a glass by drinking the beer in it rather

than throwing the beer away offers motivational value through the action of drinking beer,

rather than actually emptying the glass. The notion of motivational benefit is also important

in defining the duration of a cooperative intention, since an agent should drop any intention

104

1. All agents initially believe that the goal is not satisfied, and that it is
achievable.

2. Each agent has the goal until the termination condition is satisfied.
3. Until the termination condition is satisfied,

(a) if any agent believes the goal is achieved, it should adopt the new
goal of making this mutually believed, and keep this new goal until
the termination condition is satisfied;

(b) if any agent believes the goal is unachievable, then it should adopt
the goal of making this mutually believed, and keep this new goal
until the termination condition is satisfied;

(c) if any agent believes the goal is no longer relevant, then it should
adopt the goal of making this mutually believed, and keep this new
goal until the termination condition is satisfied; and

(d) if any agent believes the goal is no longer of motivational value, then
it should adopt the goal of making this mutually believed, and keep
this new goal until the termination condition is satisfied.

4. The termination condition is that it is mutually believed that the goal is
achieved, unachievable, is no longer relevant, or the goal is no longer of
motivational value to one or more of the agents in the group.

Table 5.2: Observations about group mental state after Wooldridge and Jennings

that is not of motivational benefit, as per an individual intention (described in Section 4.7

where we discuss the conditions under which an individual intention is discharged). If an

agent’s cooperative intention ceases to be of motivational value, it should drop that intention

(informing the other members of the group that it is doing so).

With this in mind, we can consider the conventions defined by Wooldridge and Jennings

for joint intention, which include the requirement that the goal should be justified. This is a

broader condition than the goal being of motivational value, since there is no constraint on

what may be used as justification; although requiring a goal to be motivationally valuable is

valid justification, such a justification need not necessarily refer to an agent’s motivations.

Therefore, we modify Wooldridge and Jennings’ notion of cooperative intention to require

that a goal be relevant and of motivational value to an agent committed to it. This can be

105

thought of as decomposing the convention requiring a goal to be justified into two separate

conventions requiring it to be both relevant and of motivational value. The resultant con

ventions for a cooperative intention are shown in Table 5.1 where for each row, if an agent

comes to believe the re-evaluation condition it should adopt the corresponding goal. Such

a cooperative intention is only terminated when a re-evaluation condition is believed to be

true and the corresponding goal is achieved. For example, if an agent believes that the goal

is achieved and has made others aware of this, then the cooperative intention is dissolved.

The termination condition and mental state of a group that has a cooperative intention is

described in Table 5.2.

5.2.3 Formalising Cooperative Intention

We can formalise the notion of a convention as the Cartesian product of a set of beliefs

that represent a particular situation, and a goal that an agent must adopt if it believes that

situation to be the case.

Convention = = ¥ Belief x Goal

We formalise the notion of a cooperative intention in the following schema, which

contains the goal and plan to which the commitment is towards, the identifiers of the agents

who have the commitment, and a set of conventions (i.e. those given in Table 5.1) defining

the duration of this commitment. The predicate part of the schema specifies, firstly, that

the plan must achieve the goal, and each agent in the cooperative intention must have a

corresponding individual intention towards the execution of the plan. Secondly, if a re-

evaluation condition of a convention is believed by some agent, then the agent should adopt

the corresponding goal defined in that convention.

106

__Cooperativelntention__
goal : Goal
plan : Plan
agents : P AgentID
conventions : P Convention

V id : AgentID \ id G agents •

(3 ag : Agent • ag.agentID — id A goal G ag.goals A
(3 i : Intention \ i G ag.intentions •

i.plans 1 = plan A i.satisfies = goal)) V
(3 ag : Agent • ag.agentID — id A (3 c : Convention \

c G conventions • believes ag (first c) = true A
second c G ag.goals A (3 i : Intention \ i G ag.intentions •

i.satisfies = second c)))

5.3 Stages in Cooperation

There are a number of stages that occur in cooperation that surround the formation of a

cooperative intention, which we introduce in this section. Given the Senara reasoning

cycle described in the previous chapter, cooperation can arise with respect to a particular

agent for one main reason. When selecting a plan to achieve the most motivated of its goals,

an agent might be faced with one or more plans that involve joint or concurrent actions, or

an individual contribution that is beyond its capabilities. If the agent chooses such a plan, it

must seek assistance from others before that plan can be achieved, and form an appropriate

cooperative intention. This, however, gives rise to a second reason why an agent might

enter into cooperation, namely in response to another’s request for assistance. In both cases

cooperation arises from a particular agent wishing to adopt a plan that contains actions it

is unable to perform alone — in the first case the agent itself has the plan, while in second

case it is another agent’s plan that leads to the request for assistance. We arrive, therefore,

at the following stages of cooperation.

Plan Selection An agent’s motivations give rise to certain goals that must be adopted as in

tentions, by selecting an appropriate plan and forming a commitment to its execution.

107

Now, the set of applicable plans for a particular goal may include plans containing

actions that are beyond the agent’s capabilities, or joint or concurrent actions. We

refer to such plans as cooperative plans since they can only be executed through co

operation with others. If an agent selects a cooperative plan, it is electing to cooperate

for the achievement of its goal. Cooperation involves an inherent risk since agents

may be unreliable, dishonest, or their motivations may change leading them to cease

to be cooperative, in turn causing plan execution to fail. Therefore, in selecting from

a set of applicable plans for a goal an agent must consider the risk associated with

those plans that are cooperative.

Intention Adoption After selecting a plan for its goal an agent must commit to its execu

tion by forming an intention. If the plan does not require assistance from others then

it can simply be adopted as described in Section 4.8, but if its does require assistance

the agent must solicit assistance from selected agents towards its execution. Note that

for clarity we refer to the agent that selects a cooperative plan, and attempts to gain

assistance for its execution, as the initiating agent, or the initiator. In order to gain

assistance, the initiator must first determine which agents to request assistance from,

and this is achieved by iterating through the steps of the plan, annotating each contri

bution with the identifier of the agent that the initiator considers the best to perform

it, based on knowledge of their capabilities, and their believed honesty, reliability,

etc. These agents can then be sent a request for assistance, to which they will agree

if they consider cooperation to be of motivational value. If sufficient agents agree

the initiator can form a commitment in the form of a cooperative intention amongst

them.

Group Action Once a group of agents have formed a cooperative intention they can exe

cute it. Execution of a cooperative intention is similar to that of an individual inten

tion — each step of the plan in turn is either performed or elaborated according to

whether it is an action, or a subgoal respectively. On the successful completion of the

cooperative intention, the agents concerned dissolve their commitment and coopera

108

tion is finished. Alternatively, if execution of the intention fails, the agent that first

comes to believe this informs the others, and again their commitments are dissolved.

In both cases agents can update the information they store about others to aid future

decisions about cooperation. For example, if cooperation failed due to the behaviour

of a particular agent, the others involved may be more wary of cooperating with that

agent in future.

These stages are related to Wooldridge and Jennings’ four stage model of cooperation

which (as described in Section 2.7) contains the stages of: recognition of the potential for

cooperation, team formation, plan formation, and team action. Their model is relatively

abstract and, as they recognise, is intended to provide a top-level specification for a system,

requiring more detail before it can be implemented. Our approach is based on their model,

and we view it as providing an instantiation for some of the details that were left abstract.

Wooldridge and Jennings also recognise that although the four stages in their model are pre

sented as being sequential, in practice they may not occur strictly in the order they describe.

Indeed, this is a significant difference between our model and theirs; in our approach an

individual agent selects a plan that requires cooperation, and then seeks assistance, while in

their approach an agent recognises the potential for cooperation, seeks assistance, and then

the agents as a group form a plan.

This difference arises from our alternative view of the potential for cooperation, which

in turn is a result of the nature of our agent architecture. They view the potential for coop

eration as being where an agent has a goal that it is unable to achieve in isolation, or has

a goal that it is able to achieve alone, but does not want to use the resources required to

achieve it. Alternatively, in our framework the recognition of the potential for cooperation

is implicit in an agent’s choice of how to achieve its goal — an agent simply selects a plan to

achieve its goal, and this plan may or may not require cooperation to execute. Therefore, in

our model an agent seeks assistance after a plan has been selected, rather than before, since

unless an agent knows how to achieve the goal it cannot consider the nature of cooperation

109

that may occur for that goal. We are specifically concerned with why an agent might enter

into cooperation, in additon to the process of cooperation itself.

5.4 Risk in Cooperation

In interacting with others, an agent places itself open to a certain degree of risk. In par

ticular, there are two main areas through which risk is introduced. Firstly, there is a risk

that agents will not agree to cooperate for a given goal and plan to achieve it and, secondly,

there is the risk that even if agents do agree and commit to cooperating, they may not fulfill

their commitments at execution time.

How then to assess risk in interaction? Fortunately, as recognised by several research

ers, this has a relatively simple solution in the form of trust [13, 23, 37, 65, 67]. The risk of

whether to cooperate and with whom, may be determined by, among other things, the degree

of confidence or trust in other agents. Despite the notion of trust being commonplace in our

everyday interactions, there are few formal definitions. However, it is generally accepted

that trust implies some form of risk, and that entering into a trusting relationship is choosing

to take an uncertain path that can lead to either benefit or cost depending on the behaviour

of others [69].

In this thesis, we view trust as the means through which an agent can approximate the

risk involved in cooperation, in terms of an estimation of the degree of expectation that

others will do what they agree to do, i.e. an expectation o f risk. This is a synthetic notion of

trust since, unlike Deutsch [23] and Luhmann [65], for example, we are not concerned with

how trust operates in humans, but with how the concept of trust can be used in relation to

cooperation between artificial agents. We are also primarily concerned with how an agent

can use the degree of trust it has in another in reasoning about cooperation, rather than how

an agent determines this degree of trust in the first place.

110

5.4.1 Trust

The perceived risk of cooperating with a particular agent is determined by that agent’s

reliability, honesty, etc., embodied by the notion of trust. Thus an agent can use its trust in

others as a means of assessing the risk involved in cooperating with them. Describing trust

in terms of risk allows us to consider the limits of trust more precisely, and to quantify it.

An agent with a high trust value is more trusted than an agent with a low trust value, and

represents less risk in terms of cooperation. This suggests an inverse relationship between

trust and risk.

An agent’s trust of another is dependent on a variety of factors, including the other’s

believed reliability, honesty, veracity, etc. However, modelling all such potentially relevant

factors is excessive, and can add to the complexity of the solution, when typically they will

not be needed. Consequently, we base our model of trust upon Marsh’s formalism [67]

and the work of Gambetta [37], and define the trust in an agent a, to be a value from

the interval between 0 and 1: Ta e [0,1]. The numbers merely represent comparative

values, and are not meaningful in themselves. Values approaching 0 represent complete

distrust, and those approaching 1 represent complete, blind trust. In this thesis we are not

concerned with how an agent should update its trust of others, but Marsh [67] describes a

possible approach that will suffice, which we introduce below. This representation of trust

corresponds to Marsh’s notion of general trust. However, Marsh also introduces situational

trust, where an agent’s trust in another is dependent on the importance of the situation being

considered. For example, while an agent may trust another to extract product information

from a database, it might not trust it to determine which product represents the best value for

money. Although conceptually situational trust is a more powerful mechanism that general

trust, the computational overhead involved in identifying trust in tasks can be prohibitive,

and so we do not use it here.

In order for this notion of trust to be useful to an agent, in its decisions about cooper

111

ation, it must be able to assess what is an acceptable degree of risk. It is clear that if an

agent is completely distrusted (and has a trust value approaching zero) then the risk is con

sidered to be high, and cooperation with that agent must typically be avoided1. However,

some method is needed for determining the point at which an agent is considered sufficient

ly trusted to cooperate with. We address this through the introduction of a minimum trust

threshold, such that agents trusted under that threshold are considered distrusted, and con

versely, those of or above the threshold are trusted. If an agent is faced with the possibility

of cooperating with a group of agents, then it can factor into its reasoning about cooperation

whether or not the members of this group are trusted, as we discuss in the following two

chapters.

5.4.2 Updating Trust of Others

At the end of a cooperative interaction, each agent involved updates its trust of the others.

If the cooperative interaction was successful, and the goal achieved, then the trust an agent

associates with the others involved is likely to increase. Conversely, if the goal was not

achieved then the interaction was unsuccessful, and trust is likely to decrease. Since it is,

in part, an agent’s trust of others that determines whether or not it cooperates in a given

situation, then modifying trust values after each cooperative interaction, ensures that trust

can be used to assess the risk associated with cooperating with others. For example, if

an agent « i has a cooperative intention with another, ¿*2, and the interaction fails through

some action on behalf of a.2 , then a i ’s trust of «2 should decrease, reducing the likelihood

of further interactions with it. The change in trust after each interaction should be relatively

small, such that a single failed interaction will not prevent further interactions with an agent,

but a series of repeated failures will.

Optimism and pessimism are identified by Marsh as two opposing dispositions such
'An exception to this is if an agent’s goal is sufficiently important to it, that it is better to have tried to

achieve it, and failed, than to have not tried at all, even if this means cooperating with an agent of negligible

trust.

112

that, in general, optimists trust others more than pessimists. Moreover, after a successful

interaction with others, optimists increase their trust more than pessimists, and conversely,

after an unsuccessful interaction, pessimists decrease their trust more than optimists [68].

Individual agents lie somewhere in the spectrum of optimism and pessimism, meaning that

in a given situation different agents will change their trust by different degrees. In Marsh’s

view the magnitudes of alteration of trust are decided at run-time, and are dependent on a

variety of factors, such as the existing trust, and cost or benefit of the situation [67, 68]. For

reasons of simplicity, in our framework the magnitude of change in trust is based solely on

the current trust and the agent’s optimistic or pessimistic disposition. We view an agent’s

disposition as represented by two values, trustlncrease and trustDecrease, which determine

the proportion of current trust level to increase or decrease by respectively. All that we

require is that an agent has an instantiation of the following functions, which take the current

trust and a value for trustlncrease or trustDecrease and return the increased or decreased

trust respectively. On completing a cooperative interaction, an agent should update its trust

of the other agents involved using the appropriate one of these functions.

increaseTrust : R —>• R —>• M
decreaseTrust: R —> R —> R * V

V trust, trust1, trustlncrease : M • increaseTrust trust trustlncrease = trust1 =>
trust1 > trust

V trust, trust1, trustDecrease : M • decreaseTrust trust trustDecrease = trust1 =>
trust1 < trust

5.4.3 Agent Models

In addition to associating a trust value with others, an agent needs knowledge about their

capabilities if it is to reason about cooperation effectively. For example, if an agent is trust

ed, it does not mean that it is capable of performing a particular task on behalf of another.

Durfee [28] notes that in order to cooperate effectively an agent needs to know certain

information about others, about themselves, about how they view others and are viewed

themselves, and so on. However, since an agent’s reasoning is resource bounded, if taken to

113

Agent id: a .

Capabilities: pickup(b), putdown(b),
liftend(b), move(dir)

Trust: 0.6

Agent id: cc2

Capabilities: pickup(b), putdown(b),
liftend(b), move(dir)

Trust: 0.3

Figure 5.1: Example agent models

an extreme, the amount of knowledge an agent possesses to facilitate its cooperation might

overwhelm its limited reasoning capabilities. Thus, agents need just enough knowledge

to coordinate well and no more, since any additional knowledge may simply hinder the

reasoning process of the agent.

In our framework we require an agent to have a model of each other agent with which

it may interact, containing its knowledge of the other’s capabilities and the degree to which

it is trusted. These agent models form part of the agent’s wider knowledge base, or beliefs.

The conceptual form such models may take in an agent’s knowledge base is shown in Fig

ure 5.1, which represents an agent’s models of two others, a \ and (*2. For each agent, the

model contains a set of capabilities, and the degree of trust in that agent.

We formalise the notion of an agent model below, such that a model of a particular

agent contains a set of contributions that it is believed capable of performing, and a trust

value representing its perceived trustworthiness.

__AgentModel___
i d : AgentID
capabilities : P Contribution
trust: M

In the remainder of this thesis, we frequently need to refer to the trust of a given agent.

Therefore, we define the following function trustOfAgent which takes an agent identifier,

and a set of agent models, and extracts the trust value associated with that agent.

114

trustOfAgent : AgentID —> IP AgentModel -* R

V agID : AgentID; ms : T AgentModel; r : R •
trustOfAgent agID ro = r r > () A r < 1 A
(3: w : AgentModel \ m e ms • m.id = og/D A m.trust = r)

5.5 Overview of the Warehouse Domain

Now, in order to proceed with our analysis of the details of cooperation, we need a domain

for illustration, implementation, and experimentation. Rather than invent a new scenario

we adopt a variation on Norman’s Warehouse Domain [75], which we consider to be suffi

ciently complex and dynamic to be useful, while being simple enough to discuss easily. In

the remainder of this thesis, we illustrate our discussions by considering agents situated in

an example warehouse domain, which we introduce in this section. The warehouse has four

areas: a delivery area, a standard storage area, a long term storage area, and a waste dis

posal area, such that boxes arrive in the delivery area and must then be moved to one of the

storage areas (or rooms), which for simplicity are arranged linearly as shown in Figure 5.2.

For an agent to move from the delivery area (rooml) to the long term storage area (room3)

it must, therefore, move through the standard storage area (room2). There is also a charge

area (in rooml), where agents can recharge their power, which decreases over time as they

perform actions.

There are two types of box, urgent and non-urgent, which must be stored in the standard

and long term storage areas respectively. Additionally, these boxes may be of different

sizes, small and large, the former of which all agents can lift, while the latter can only be

moved by particular agents, or by a group of agents though cooperation. Boxes leave the

warehouse via the delivery area, and cannot be stored indefinitely — each box arriving in

the warehouse is associated with some expiry time, and if it is not removed by that time

then it must be moved to the waste disposal area.

The warehouse scenario is a complex domain, and so for reasons of simplicity in our

115

room 1 room 2 room 3 room 4

delivery area
charge area standard storage long term storage waste disposal

deliveries in
and boxes out

Figure 5.2: The warehouse environment

discussions of example situations, we consider a small group of four agents, each of which

are given the same three motivations. The first of these, called tidiness, causes an agent

to generate the goal of storing a particular box, and is triggered by a box being perceived in

the delivery area. A vitality motivation generates in an agent the goal of recharging its

power level, and is triggered by the power level dropping below some threshold. Finally, a

maintenance motivation generates the goal of checking that boxes are correctly stored and

have not been stored after their expiry time, and is triggered by an agent being idle.

Agents associate trust values with the others in their environment, enabling them to

assess the risk of cooperating with a particular agent. These trust values are built up over

time and change as a result of interactions with others, and come to represent the nature

of others with a useful degree of accuracy. We provide initial values for an agent’s trust of

others, corresponding to those that might be arrived at through prior interactions, as given in

the following matrix, where each row gives a particular agent’s trust of others (for example

agentl associates a trust value of 0.49 with agent2).

agenti agent2 agent3 agent4
agenti 0.49 0.52 0.55
agent2 0.82 0.13 0.6
agent3 0.78 0.53 0.67
agent4 0.96 0.5 0.2

116

Agents are able to perform certain actions in the warehouse, in particular they are able

to move around, pick up and put down boxes, and check that boxes are stored correctly.

There are three types of lifting action: pickup which operates on small boxes, liftend

which lifts one end of a large box, and pickupBiG which operates on large boxes. All

agents are capable of performing these actions, with the exception of the pickupBiG action,

which can only be performed by a specific agent, agent 3.

For an agent to be able to achieve a goal, it requires a plan specifying the actions that are

needed for its achievement. In Senara, an agent is given a library of plans from which to

select the most appropriate for a particular goal, rather than planning from first principles.

Agents in the warehouse scenario must be able to move around their environment, store

boxes that are delivered, check boxes are correctly stored, move boxes to the waste disposal

area, and recharge their power levels when required, and we provide agents with a plan

library to achieve this. Full details of these plans can be found in Appendix B.

In order to ensure the practicality of the work described in this thesis, and to demon

strate it, a Senara testbed has been developed, based on the warehouse domain described

above. The objective in constructing the testbed is to demonstrate the concepts presented in

this work, and allow simple experimentation, rather than to develop a sophisticated finished

product. Though we have performed a number of experiments using the testbed, and results

of these support our later discussions of the framework, we do not wish to complicate the

presentation of the concepts discussed in this thesis by introducing implementation level

details. More details of the implementation can be found in Appendix B.

5.6 Summary

This chapter began by introducing the need for a group of cooperating agents to have an

appropriate form of commitment to their interaction, which we call a cooperative intention.

We presented a set of conventions that, along with appropriate commitments, form such

117

a cooperative intention and allow a group of agents to cooperate effectively. This was

achieved by modifying the conventions defined by Wooldridge and Jennings to ensure that

cooperation is motivated on behalf of each agent involved.

In Section 5.3 we identified the stages that are involved in motivated cooperation, and

in doing so we provide the context for the following chapters. Where an agent cooperates

with others, it places itself open to a certain degree of risk, and in Section 5.4 we discussed

this risk, and described the notion of trust that can be used by an agent to assess it. Finally,

in Section 5.5 we described the example scenario that we use for illustration throughout the

remainder of this thesis.

118

Chapter 6

Plan Selection

6.1 Introduction

The first of the stages in our framework of motivated cooperation is plan selection; to

achieve its goals an agent must select appropriate plans for them, and then adopt these plans

as intentions. An agent selects a plan for a particular goal by determining the set of appli

cable plans — those plans that achieve the goal, whose preconditions are met — and then

choosing the best one. Some decision mechanism is needed, therefore, for selecting a single

plan from a set of applicable plans. Existing BDI architectures also require agents to select

appropriate plans for their goals, and so include some means for plan selection. However,

they are typically focussed on what might be called standard task planning and execution

for individual agents, rather than for agents situated in a cooperative environment, and so

do not consider the issues arising from cooperation. In particular, the questions of when to

cooperate, with whom, and how, are not addressed. In this chapter we propose a method for

plan selection that accounts for why an agent might choose to achieve such a goal through

cooperation, even if it has an alternative plan it could perform alone.

In a cooperative environment, an agent’s plans can contain individual, joint, and con

current actions and as a consequence may require assistance from others for their execution.

119

An agent can use its beliefs about others to determine the set of agents from whom assis

tance may be required for a given plan and, moreover, can use its trust of them to aid its

choice of plan. We begin in this chapter by describing the problem of plan selection, and

examining the relevant factors that may be used in multi-agent domains, and then proceed

to develop a detailed model of plan selection.

We begin this chapter by discussing the problems associated with plan selection, and

the criteria that can be used to choose between plans. In Section 6.4 we describe our ap

proach to plan selection and give details of how an agent can assess a plan in terms of its

associated risk and cost. The the implications of partial plans on plan selection are dis

cussed in Section 6.5. Finally, we conclude this chapter by giving an example from the

warehouse domain, and discussing the contributions and limitations of our approach.

6.2 Cooperative Plan Selection

In the BDI model expounded by Bratman, and correspondingly in Senara, an agent’s

actions are determined by its intentions. When an agent forms an intention to achieve a

given goal, it does so by committing to a plan to achieve it. However, for any particular

goal there may be several plans to achieve it that are applicable in the current situation,

since their preconditions are satisfied. Some of these plans may contain actions that are

beyond the agent’s capabilities (or may contain joint or concurrent actions) and, if chosen,

will require assistance from another agent for their execution.

Thus, an agent’s choice of plan determines whether it must cooperate to achieve its

goal. If all the applicable plans for a goal contain actions that cannot be performed by the

agent alone, cooperation is necessary, otherwise it is optional. If choosing to cooperate in

this latter case, there must be some inherent advantage to the cooperation, for example by

minimising effort, since the goal can also be achieved by the agent alone.

To formalise this distinction we use the auxiliary function plancontributions (specified

120

in Appendix A), which retrieves all the contributions that are in the current (potentially

partial) elaboration of a plan. Necessary cooperation is defined with respect to a goal and

an agent in the following function, which returns true if cooperation is necessary, and false

otherwise. For a given goal, if all plans in the plan library that achieve it contain one or

more contributions that are beyond the agent’s capabilities then cooperation is considered

necessary.

nesscooperates : Agent —> Goal —» bool

V ag : Agent; g : Goal \ g G ag.goals • nesscooperates agg = true
(y p : Plan \ p G agplanLibrary • p. achieves = g A

(plancontributions p \ ag.capabilities) / 0)

Optional cooperation is defined in a similar manner, again using a function that takes

an agent and a goal as arguments, and returns true if cooperation is optional, and false

otherwise. Cooperation is considered to be optional if, from the set of plans in the plan

library that achieve the goal, there is at least one plan whose component contributions can

be performed by the agent, and one other that contains a contribution that is beyond the

agent’s capabilities.

optcooperates : Agent —> Goal -» bool V

V ag : Agent; g : Goal \ g G ag.goals • optcooperates ag g = true
^ (3 p ,q : Plan | p G ag.planLibrary A q G ag.planLibrary •

p.achieves = g A q.achieves = g A
(plancontributions p \ ag.capabilities ^ 0) A

(plancontributions q \ ag.capabilities = 0))

In existing work, several researchers have considered the situation where cooperation

is necessary. However, the issues involved in determining why an agent might choose to

cooperate when it is optional, have largely been unaddressed. One exception is Wooldridge

and Jennings’ [102, 104] formalisation of cooperative problem-solving introduced in Sec

tion 2.7, which begins with an agent recognising the potential for cooperation. In their

formalisation, the potential for cooperation is said to exist with respect to an agent’s goal if

there is some group known to it that is believed can achieve the goal through cooperation,

121

and either

• the agent cannot achieve its goal alone, or

• it believes that for every action it could perform to achieve the goal, it has an addi

tional goal of not performing it.

Wooldridge and Jennings recognise that this definition is overly strong, since it requires

an agent to know the identity of the group it believes can achieve its goal. This rules out

the situation where an agent attempts to find out the identity of a group by performing

some action, and does not know their identity until after performing that action. However,

in our view there is a second reason why this definition is too strong, namely that it does

not allow for a situation of optional cooperation, where an agent has a choice between two

or more ways of achieving its goal, and based on its preferences selects the one requiring

cooperation, rather than achieving its goal alone.

6.3 Plan Selection Criteria

The problem of plan selection amounts to choosing the best plan — the plan that is most

likely to be successful, with least cost in terms of time and resources, and the least risk.

(While in some circumstances, such as gambling, the influence of these factors may be

contradictory, requiring an agent to make a trade-off between the two, we assume that in

general an agent’s high-level desires are likely to be such as to attempt to minimise both

the risk and the cost of its actions.) When the plans involved do not involve other agents,

standard plan selection criteria, or planning heuristics, can be used to assess cost. However,

when one or more of the agent’s plans do involve others, an element of risk is introduced

by the inherent uncertainty of interaction. A consequence of autonomy is that agents follow

their own individual agendas, as determined by their motivations, and therefore whether

a particular agent is cooperative or not is a direct function of its motivations. Thus, if an

agent’s motivations change during a cooperative interaction, the reason for its cooperation

122

may be removed, and it may drop its involvement in cooperation in favour of some other

activity. In addition to a measure of the cost of a plan, therefore, we need to be able to assess

the likelihood of finding an agent (or agents) for actions that are required for successful plan

execution; the likelihood that once such agents are identified they will agree to cooperate;

and the likelihood that once a commitment has been given, the agents concerned will fulfill

their commitments.

We identify four primary factors relevant in comparing plans in respect of risk: knowl

edge of other’s capabilities, risk from others, knowledge of view of self, and knowledge of

other’s preferences. Certainly, risk may be introduced for any number of other reasons, but

these are the key domain-independent general issues.

Agent Capabilities Knowledge of others’ capabilities helps to determine which agents

might perform the required actions. If many agents are known to have the target

capabilities, then successful execution of the plan is more likely than if fewer or no

agents do so. However, in line with the motivating concerns of dynamic environ

ments and uncertain and incomplete knowledge, we cannot assume that an agent’s

knowledge of others faithfully represents them, and success at execution time may be

possible even if it is not anticipated at evaluation time, just as failure is also possible.

In general, though, we assume that there is sufficient stability for this to be useful in

assessing plans prior to execution.

Risk from Others Once potential cooperating agents are identified, they may be evaluated

in terms of the risk involved in interacting with them. Plans involving agents with

whom interaction is more likely to be successful, should be rated higher than those

involving interactions less likely to be successful.

Risk from View of Self Knowledge of the view of oneself in the eyes of others, in terms of

risk of interaction, may also be useful in assessing plans. It can provide a measure of

the likelihood that another agent will agree to cooperate, since an agent is more likely

to cooperate with another if it has confidence in the success of that interaction. Thus,

123

the agents identified in competing plans can be evaluated in respect of their view of

the risk involved in cooperating with the planning agent. It is, however, difficult to

maintain an assessment of how one is viewed by others.

Agent Preferences It might also be possible to assess plans in relation to the higher-level

motivations of the agents involved in them, and whether cooperation would be likely.

This would require a detailed model of the motivations and goals of other agents,

however, which is unlikely to be accurate.

6.4 A Model of Cooperative Plan Selection

6.4.1 Plan Ratings

The problem of plan-selection is essentially the same as that of finding effective heuristics

for plan construction. In that sense, we can apply standard domain-independent heuristics

for evaluating plans which perform a valuable, if limited, service. These heuristics include,

for example, the length of a plan as the number of its actions, the cost based on the cost

of the actions it contains, and the duration of plan execution based on the duration of in

dividual actions. We will not consider this further in the development of our framework

for cooperation, since these issues are well addressed by textbooks (for example [86]), but

suffice it to state that any such heuristics may be used to arrive at an assessment of a plan in

terms of its standard rating. The heuristics used by a particular agent are embodied in its

implementation of the function sRating, which takes a plan and returns the standard rating

of that plan.

! sRating : Plan -> R

This evaluation of a plan does not, however, address our key concerns of assessing

plans in relation to the dynamic multi-agent nature of the environment. If one or more of

the plans available to an agent requires interaction with another the standard rating is inad

124

equate, because this interaction introduces an element of risk. A second rating is therefore

necessary in these terms, which we call the cooperative rating.

6.4.2 Assessing Contributions

In assessing the merit of a plan (i.e. determining the cooperative rating), an agent must

make a judgement about the risk attached to each action in the plan requiring cooperation,

by examining the trust value in its model of each of the possible cooperating agents. Be

fore describing how to assess the risk involved in a selecting a particular plan, we describe

how an agent can assess the risk attached to actions, starting with an individual action, or

contribution. Suppose that an agent knows of« others, a i , a ^, . . . , an, with the required ca

pabilities for performing a given contribution, and ordered such that Tax- \ > Tax, where

Tax denotes the trust in ax. Several possibilities for assessing the risk involved in cooper

ating with others are discussed below.

We might only consider trust in the most trusted agent involved so that the risk of a

particular contribution would be as follows.
riskC =

Though simple, the problem with this approach is that the most trusted agent might

not be the actual agent involved in the cooperative action, for any number of reasons. In

particular, the autonomous nature of agents underlying this framework suggests that it is

impossible to determine the behaviour of another agent in advance. As a consequence,

cooperation with less trusted others may be needed, and this must be factored into the

measure of risk. Alternatively, then, we might consider a second method in which the

additive total of trust in all agents in the set of potential agents for the action, is considered.

riskC = -jp-i—

E Ta‘
i = 1

This avoids the problem of only considering the most trusted agent, and considers all

agents to an equal extent, but does not address the decreased likelihood of cooperation with

125

less trusted agents. An agent will first try to cooperate with a \ and, if unsuccessful, will

then try «2, and so on, but for each successive agent, the likelihood of actually cooperating

with it decreases (since it will only be asked if all preceding agents have declined). To

address this, we can adjust the formula to increase the significance of more trusted agents,

by dividing the trust of successive agents by a correspondingly increasing factor.

riskC = -jj—i----
Tat

i

To specify this final method of assessing the risk associated with a contribution we use

the functions orderedCapableAgents, orderedTrust, scaleTrustSeq, and sumSeq (defined in

Appendix A). The former of these takes a contribution and a set of agent models and

returns a sequence of agents capable of performing that contribution, ordered according

to their trust. This sequence of agents forms the argument to orderedTrust, which returns

the corresponding sequence of trust values. The function scaleTrustSeq takes such a list

of values, and scales them according to their position in the sequence (i.e. the j’th value is

divided by i), while the remaining function sums the resulting list of values. Combining

these auxiliary functions as follows, in riskC, we specify how to determine the risk associ

ated with a contribution, namely, by obtaining an ordered sequence of values corresponding

to the trust of the agents capable of performing it, and scaling and summing this sequence

appropriately.

riskC : Contribution -> P AgentModel —> R

Vc : Contribution; ms : F AgentModel; r : R • riskC cms = r
<=> 1 /sumSeq (scaleTrustSeq (orderedTrust (

orderedCapableAgents c ms) ms)) = r

Thus, trust in all relevant agents is considered, but only in relation to the likelihood of

cooperation with them. Consider an action for which there are three agents that have the

required capabilities a i , 0:2, and <23, which have associated trust values of 0.3, 0.9, and

0.5 respectively. Thus, using the above method of assessing risk, these agents are ordered

126

a 2 , a 3 and a\ according to the degree they are trusted. The risk associated with action,

according to the above equation, is l/((0 .9 /l) + (0.5/2) + (0.3/3)) = 0.8.

6.4.3 Assessing Joint Actions

We can extend this strategy for assessing the risk involved in a particular contribution to

apply to joint and concurrent actions. For joint actions, we simply replace the agents and

trust of agents in the equation with sets of agents that are capable of performing the action,

and the trust of these sets of agents respectively. A set of agents is capable of performing

a joint action if for each contribution there is exactly one agent capable of performing it,

no agent in the set is required to perform more than one contribution at a given time, and

each agent is required to perform the action. In other words, suppose that for a given action

there are several sets of agents that are capable of performing it, then, in calculating the

risk we would obtain the trust value for each set, and use these in the equation given above

for assessing the risk associated with a contribution. The trust value of a set is determined

by multiplying the trust values of the member agents. Thus, for a set containing n agents,

a i , i*2) • • •, Oin, the trust of that set is given by the following equation.
n

trustSet = J J Tc*i
(=l

In specifying how to assess the risk associated with a joint action, we make use of

the auxiliary functions orderedCapableAgentSets and orderedTrustSet, which we define in

Appendix A. The former of these takes a joint action and a set of agent models, and returns

a sequence of sets of agent identifiers (ordered by trust), such that each set has the required

capabilities to perform the joint action, while the latter takes this sequence and obtains a

sequence of values, where each value represents the combined trust in the set of agents in

the corresponding position in the sequence of capable agent sets. We specify how to assess

the risk associated with a joint action by using these functions to find the set of sets of agents

that are capable of performing the joint action, ordering these sets according to the trust of

127

the agents contained in them, and finally dividing successive trust values by an increasing

factor.

riskJA : P Contribution —> P AgentModel —> R

V cs : P Contribution; ms : ¥ AgentModel-, r : R • riskJA cs ms = r
1 /sumSeq (scaleTrustSeq (orderedTrustSet

(orderedCapableAgentSets cs ms) ms)) = r

6.4.4 Assessing Concurrent Actions

The approach for concurrent actions is an extension of that for joint actions since, instead

of a set of contributions, a concurrent action comprises a set of sequences of steps, each

to be performed concurrently with the others. A set of agents capable of performing each

of the concurrent sequences of steps can be determined by combining the sets of agents

capable of performing the actions in each sequence. The set of agents capable of performing

the concurrent action can then be determined, using the assumption that an agent cannot

perform more than one action simultaneously, and cannot typically not appear in more than

one sequence of steps. Thus, in assessing a concurrent action, each sequence of steps is

analogous to an individual contribution in a joint action.

Since a concurrent action contains a set of individual contributions or joint actions,

we can use the above approach to assess the risk in these components, as specified below

in riskCAcomponent. We can then multiply these values for each component of a given

concurrent action to obtain an estimate of the risk associated with the concurrent action

itself.

riskCAcomponent: CAcomponent —> ¥ AgentModel -> R V

V comp : CAcomponent; ms : ¥ AgentModel; r : R •
riskCAcomponent comp ms = r (3 c : Contribution •

comp = Contrib c A r = riskC c ms) V
(3 cs : P Contribution • comp = JA cs A r = riskJA cs ms)

128

riskCA : P CAcomponent -y P AgentModel —> R

V comps : P CAcomponent] ms : P AgentModel, •
riskCA comps ms — productSet{ca : CAcomponent-, r : R

ca £ comps A r = riskCAcomponent ca ms • r}

6.4.5 Cooperative Rating of a Plan

Using these measures of risk of actions, we can determine the cooperative rating of a plan

by summing the risk associated with each step in it. This risk is additive because each step

offers a new and independent possibility of risk. Thus, a plan with few high risk steps may

be rated better (or less risky) than a plan with many low risk steps. For a plan with m steps,

p s i, ps2 , . . . , psm, the cooperative rating, C, for that plan is given by the following equation,

where Rps is the risk associated with the step ps.
m

C = Y ,R p S i
1=1

The risk for a given plan step can be determined by simply applying the appropriate risk

assessment function, according to whether the step represents an individual contribution, a

joint action, or a concurrent action. Based upon this, the risk for a plan is simply the sum of

the risk associated with the steps in it. We specify this below, where riskPlanStep applies

the corresponding assessment function to a plan step, and cRating takes a plan and applies

riskPlanStep to each of the steps in its body, summing the results.

riskPlanStep : PlanStep —» P AgentModel —> R
Jps : PlanStep; ms : P AgentModel-, r : R • riskPlanStep ps ms = r

(3 c : Contribution • ps = Individual c A r = riskC c ms) V
(3 cs : P Contribution • ps = Joint cs A r = riskJA cs ms) V

(3 cacs : P CAcomponent • ps = Concurrent cacs A r —
riskCA cacs ms)

cRating : Plan —> P AgentModel -» R
J p : Plan; ps : seq PlanStep-, ms : P AgentModel-, r : R •

cRatingp ms = r ps = p.body A (3 ratings : P R • ratings =
{r1 : R | (3 s : PlanStep \ s £ ran p.body • R —

riskPlanStep s ms) • r1} A r = sumSet ratings)

129

6.4.6 Plan Quality

Once both the standard and cooperative ratings of a plan have been determined, they must

be combined to form an overall measure of plan quality to select between alternative ap

plicable plans. It would not be sensible simply to add the two values together, since one

measures the cost of the plan, and the other the risk involved in it, and the relative impor

tance of these may vary for each agent. We therefore include a weighting for these ratings

for a particular agent in the overall quality measure, Q, as follows, where w* and wc rep

resent the influence weighting applied to the standard rating, S, and cooperative rating, C,

respectively.

Q = (w.s * S) + (wc * C)

This is specified in the following function, which takes a plan, a set of agent models,

and weightings for the standard and cooperative ratings, and returns the overall quality of

the plan, as defined by the above equation.

quality : Plan -» P AgentModel —> M —> R -> R

'ip : Plan; ms : P AgentModel-, ws,w c,r : R •
quality p ms ws wc = r r — (sRating p) * w* + (cRating p ms) * wc

Different agents may use different weightings, the values used reflecting, in part, an

agent’s predisposition, since agents that place greater importance on the standard rating

are inclined to minimise the cost of achieving their goals, whether or not this requires

cooperation. Conversely, agents that place most importance on the cooperative rating are

predisposed to minimising the risk involved in cooperating with others, even if this increases

the cost involved in achieving their goals. Thus, agents that place more importance on

the standard rating are more inclined to take risks associated with cooperation in order to

minimise the cost of their plans, when compared to agents that place more importance on

the cooperative rating. The values of the weighting that provide the best selection of plans

depends on an agent’s environment.

130

6.5 Pre-Execution Plan Assessment

A result of the partial nature of an agent’s plans is that the set of applicable plans for a

goal are also partial, and may require further elaboration before they can be fully executed.

Moreover, if a plan contains a subgoal and requires elaboration, then the set of actions

that it will eventually contain are not known until it is actually elaborated (since it is not

known which subplans will be chosen). Therefore, the cooperative rating of a partial plan

cannot be directly assessed as described above, since it is not known what contributions

will be required to achieve any subgoals it contains. A naive solution to assessing a partial

plan would thus be to require an agent to fully elaborate each of its applicable plans in

order to choose between them. While this would indeed allow direct use of the criteria

described above, it also requires a premature commitment to a particular plan. Such a

requirement would negate the benefit of using partial plans in the possibility of interleaving

execution and deliberation to cope with the environmental change that is typical of multi

agent scenarios. More importantly, it demands a search through the entire tree of plans

so that the quality of each possible path solution can be measured. This is prohibitively

expensive to be performed in real-time.

If we are to avoid constructing the entire search tree at the time of plan selection, we

must be able to make a choice based on a limited number of alternatives, such as the top-

level applicable plans. An informed choice at this level is only possible, however, if we

have some measure of the value of plans in terms of the standard and cooperative ratings,

but clearly, this is not possible to do on the fly. Instead, we perform an off-line pre-execution

assessment of the plan library in which all of the plans in it are evaluated in a coarse fashion

with respect to the agents required for successful execution. This approach represents a

compromise between the desire to minimise the computational overhead and that of max

imising the quality of any measure of the value of a plan.

Starting with the plans that require no further elaboration, since these are the only ones

which can be directly evaluated, the standard and cooperative ratings are determined. These

131

ratings must then be fed back into the other plans as values for subgoals within them. For

each plan containing actions that cannot be performed by the planning agent, the set of all

agents known to have the relevant capability is generated through inspection of its agent

models, so that these ratings can be calculated as described earlier.

There are two possible approaches to incorporating these values for fully elaborated

plans into the larger partial plans of which they might form subplans. Firstly, these values

can be used in subsequent levels in the library for which the plans best satisfy subgoals, and

so on until each plan has an overall quality measure. This quality measure is an assessment

of the best-case solution. An alternative approach is to take into account all possible elabo

rations and calculate a mean rating for competing plans, so that there is less reliance on one

individual plan that may not be applicable at execution time. This provides a less sensitive

measure, but one which is more likely to be useful in a dynamic environment, since it does

not rely on a single plan elaboration, but rather on all possible elaborations of the agent’s

plans. In the development of a framework for cooperation, we therefore require that an

agent has an appropriate implementation of the functions for obtaining the best-case and

mean-case ratings of plans.

For the purposes of specification we introduce a number of auxiliary functions: plansub-

goals, possibleSubplans, possibleSubplansRatings, minRating, and meanRating (specified

in Appendix A). The first of these, simply returns the subgoals that are contained within

a plan. Each subgoal in a plan may typically be elaborated by a number of other plans,

and the function possibleSubplans retrieves the possible subplans for a given subgoal in a

particular plan, and checks that these plans are not recursive (for reasons described later in

this section). The function possibleSubplansRatings takes a set of possible subplans, and

returns a set of values corresponding to the plan ratings of those subplans. Finally, the func

tions minRating and meanRating take this set of ratings and return the minimum and mean

values respectively.

Using these auxiliary functions we can specify how to obtain the best-case and mean

132

ratings of a plan. In both cases, if there are no subplans, then the rating is simply equal

to the rating afforded by the plan steps contained in the plan. However, if the plan does

contain subgoals then the best-case rating, bcRating, is obtained by adding the best rating

(i.e. the one with the least numerical value) for each subgoal to the rating given by the plan

steps. The mean rating, mcRating is defined similarly (and specified in Appendix A).

bcRrating : Plan —> F Plan -» P AgentModel -> R —> R -» R

Mp : Plan; pLib : P Plan] ms : P AgentModel; Wj, wc, r : R •
plansubgoals p = 0 bcRating p pLib ms ws wc =

Quality p ms vy* wc
Vp : Plan; pLib : P Plan\ ms : P AgentModel-, ws,wc,r : R •

plansubgoals p ^ 0 bcRating p pLib ms Wy wc =
Quality p ms w* wc + sumSet (r : R; g : Goal \

g € plansubgoals p A r = minRating (
possibleSubplansRatings(possibleSubplans g p pLib)

ms ws wc) • r)

6.5.1 Best-case and Mean-case Advantage

The balance between the best-case and mean ratings amounts to a trade-off between an

agent trying to find the best final plan and minimising the chance of the final plan being

poor due to environmental change (in terms of these ratings). These best-case and mean

ratings for agent plans will need periodic reassessment as the agent’s knowledge of other’s

capabilities (and its trust in them) changes.

The best-case advantage (BCA) of one plan over other applicable plans is the advantage

of that plan over others if its final elaboration has the best quality rating. Thus, for two

applicable plans, p and q, with best-case ratings of Qb(p) and Qb(q) respectively the BCA

is equal to the difference between the quality rating for p and that for q, as follows.

I Qbip) ~ Qb{q) |

If there are more than two applicable plans, as is typical, then the BCA is equal to the

difference between the minimum and maximum best-case ratings. Thus with applicable

plans p ,q , . . . , z the BCA is determined by the following equation.

133

bca = max{Qb(p), Qb(g) , Q b{z) } - min{Qb(p), Qb{q) , . . . , Qb(z)}

To specify this we use the functions maxRating and minRating (defined in Appendix A),

which take a set of ratings and return the least and greatest values respectively. From

the maximum and minimum ratings the best-case advantage can be determined as defined

above.

bca : ¥ Plan —> IP Plan -> P AgentModel -» R —>• R —> R

Vps,pLib : P Plan-, ms : P AgentModel; rs : PM; ws,wc,r : R •
bca ps pLib ms ws wc = r

rs = {V : R | (3p : Plan | p £ ps • r1 =
bcRatingppLib ms ws wc)} A

r = maxRating rs — minRating rs

The mean-case advantage (MCA) of one plan over other applicable plans is the typical

(or mean) extra advantage. This is a general case measure that incorporates more informa

tion, since it takes into account all possible elaborations of the applicable plans. With mean

ratings forp and q of Qm(p) and Qm(q), the MCA is equal to | Qm{p) - Qm(q) |. As above,

if there are more than two applicable plans, the MCA is equal to the difference between the

minimum and maximum mean ratings. Thus with plans p ,q , . . . , z the MCA is as follows,

and can be specified similarly to the BCA (as defined in Appendix A).

mca = max{Qm(p), Qm(q) , Q m(z)} - min{Qm(p), Qm(q) , Q m(z)}

6.5.2 Recursion

A problem arises with this approach when a plan is recursive, or a set of plans are mutually

recursive, since it is not possible to obtain a rating for a subplan to feed into a higher level

plan with respect to which it is recursive. The only solution to this is to use domain specific

knowledge about the typical application of the plans, to estimate the limit of the recursion.

Despite the recursion, a partial rating can be obtained for the plan in terms of the cost and

risk of the actions it contains. We can then use the domain knowledge to estimate the limit

134

of the recursion, i.e. the number of times the plan will executed, and we call this a recursive

multiplier for the plan. The partial rating of the plan is multiplied by this value to obtain

an estimated rating, since the plan is estimated to be used that number of times. Thus, if a

particular recursive plan is on average called five times before the recursion terminates, then

we would multiply the rating obtained from the actions in the plan and the non-recursive

subgoals by five to estimate a cooperative rating for that plan.

To formalise this we use the function existsRecursiveElaboration (specified in Ap

pendix A) which takes a plan and a library of plans and returns true if the plan can be

elaborated recursively (i.e. using itself), and false otherwise. We use this to specify the

function scaleForRecursion, which multiplies the rating of a plan by a recursive multiplier

if a recursive elaboration exists for that plan.

scaleForRecursion : Plan —> F Plan -> FAgentModel -» R -> R -» R —»• R

Vp : Plan; pLib : P Plan; ms : FAgentModel; ws,wc,r,m : R •
existsRecursiveElaboration p pLib = false

<=> scaleForRecursion p pLib ms ws wc m —
BCrating p pLib ms Wy wc A

existsRecursiveElaboration p pLib — true
<=> scaleForRecursion p pLib ms ws wc m =

BCrating p pLib ms ws wc *m

6.5.3 Selecting Between Partial Plans

There is a trade-off between maximising the best-case and mean-case advantage. If the

best-case advantage of a plan, p, over another, q, outweighs the mean-case advantage of q

over p, then p should be selected; similarly if the mean-case advantage of q over p is greater

than the best-case advantage ofp over q, then q should be selected.

More generally, the advantage should be maximised, regardless of whether it is best-

case or mean-case. If BCA > MCA then the best-case rating should be used to select plan

x, such that Qb(x) <Qb(p) A Qb(x) <Qb{q) A . . . A Qb(x) < Qb{z). Alternatively, if

MCA > BCA then the mean-case rating of the applicable plans should be used.

135

The following function, useBCA, formalises this and specifies the conditions under

which the best-case ratings should be used to select a plan (i.e. whenever they offer the

greater advantage). The conditions under which the mean-case ratings should be used can

be defined similarly (as specified in Appendix A).

useBCA : ¥ Plan —> ¥ Plan -> P AgentModel —>• R -> R -> bool

Vps,pLib : F Plan] ms : ¥ AgentModel] ws,wc : R •
useBCA ps pLib ms vv5 wc = true

BCA ps pLib ms ws wc > MCA ps pLib ms ws wc A
useBCA ps pLib ms ws wc = false

<3- BCA ps pLib ms w* wc < MCA ps pLib ms ws wc

Once the mean-case and best-case advantages have been considered a plan can be cho

sen using that criterion. We define a functions selectByBCA which selects the plan with

the best (i.e. least numerical) rating using the best-case rating. An analogous function,

selectByMCA, can be defined similarly (as specified in Appendix A). Using these functions,

we also define selectBestPlan, that takes a set of applicable plans and returns the best one,

using either the best-case or mean-case rating as appropriate.

selectByBCA : F Plan -* F Plan —> F AgentModel —» R —> R —> Plan

Vps,pLib : P Plan] ms : P AgentModel] w,, wc : R; chosen : Plan •
selectByBCA ps pLib ms wc = chosen

<=> (V// : Plan \p ' e p s • BCrating chosen pLib ms ws wc >
BCrating p' pLib ms w* wc)

selectBestPlan : P Plan —> P Plan —> P AgentModel —> R —* R —> Plan

Vps,pLib : F Plan] ms : P AgentModel] ws,wc : R; chosen : Plan •
selectBestPlan ps pLib ms ws wc = chosen

(useBCA ps pLib ms w, wc -- true A
chosen = selectByBCA ps pLib ms vy* wc) V

(useMCA ps pLib ms Wy wc = true A
chosen = selectByMCA ps pLib ms ws wc)

The plan selection mechanism described in this chapter provides an instantiation of the

function planForGoal introduced in Section 4.8.1. To select the best plan for a given goal,

136

the agent must first determine the set of applicable plans, using the function planSetForGoal

(again introduced in Section 4.8.1). A plan can then be selected from this set using the

function selectBestPlan described above.

planForGoal: P Belief —> ¥ Intention -> P Plan —» Goal -+» Plan

V b e l: ¥ Belief] I : F Intention; plib : P Plan; g : Goal; vy5, wc : R; p : Plan
• planForGoal bel I plib g = p

selectBestPlan (planSetForGoal g bel plib) plib
(extractAHModels bel) ws wc = p

6.6 Warehouse Example

To illustrate this scheme, we use the example of the warehouse domain, introduced in

Section 5.5, and we consider plan selection from the point of view of a individual agent,

agent l. The sets of plans in this domain are those defined in Tables B. 1 and B.2, which can

be assessed as described above. Assessment begins with stayputpian since it contains no

subgoals. However, it also contains no actions and so it is of zero risk.

The plan for staying in the current location may be used in the elaboration of the plans

for moving right and left, and so its rating is used in determining their ratings. To obtain the

rating for moveRightPian, each of the steps in its body is considered in turn. Firstly, the

rating for the step corresponding to the action of moving right is obtained by considering

its standard cost and the trust of the agents that might perform it. Secondly, the subgoal of

being in a particular location is assessed by considering the ratings of its possible elabora

tions. Two possible plans (apart from the plan for moving right itself) might be used in its

elaboration: stayputpian and moveLeftPian. The rating for the former of these can be

incorporated, but the latter cannot since moveLeftPian and moveRightPian are mutually

recursive meaning each might be a subplan of the other and therefore their ratings must be

scaled for recursion. Thus moveRightPian is assessed as follows.

assessing moveRightPian
current step: <action (move, [_agent, right])=_agent>

137

step is action, assessing... value is 1.03
current step: <goal [$(location, [_agent, _y])$]>
step is goal, finding BC and MC rating

poss elaborations: [moveLeftPlan, stayPutPlan]
considering subplan moveLeftPlan:

plans are mutually recursive
considering subplan StayPutPlan

BC value is 0.0 MC value is 0.0
scaling for recursion... factor is 3.0

plan's cooperative rating assessed as
3.08 (BC) 3.08 (MC)

plan's quality assessed as
6.08 (BC) 6.08 (MC)

We give full details of this pre-execution assessment in Section B.5.2 where we describe

our demonstration of the model, and here we simply give the results of this assessment,

which are as follows.

plan best-case rating mean-case rating
stayPutPlan 0 0
moveRightPlan 6.08 6.08
moveLeftPlan 6.08 6.08
storeSmallPlan 10.05 18.16
storeLargePian 23.82 23.82
storeLargePlanCheap 13.85 21.96
checkPlan 6.08 6.08
rechargePlan 7.0 11.05

Now, since the trust placed in agents changes over time, these ratings may become out

of step with the current situation, and so they must be reassessed periodically. For example,

if agentl ’s trust of agent3 changes from 0.52 to 0.1, i.e. from a high to a low level of

trust, then the ratings of risk associated with plans that might involve agent 3 will increase

when reassessed, to reflect the increased risk. For example, the actions in storeLargePian

must be performed by agent3 because it is the only agent capable of moving such a box.

Therefore, if the plan library is reassessed the ratings of this plan will increase, giving

best-case and mean ratings of 30.0 and 38.83 respectively.

138

Selecting a Plan

The ratings determined by an agent’s pre-execution assessment of its plan library are used

to select the best plan to achieve a goal. In the case where there is only one applicable

plan, which can be performed individually, then plan selection is trivial — the applicable

plan is selected. For example, if a small box is delivered to the warehouse, and agentl

perceives this, it will form the goal of storing the box as a result of its tidiness motivation.

In order to form an intention it must select a plan for this goal, and the only applicable plan

is storeSmallPlan. Thus, the agent selects this plan, and forms an intention towards its

execution.

However, where there are a number of applicable plans, which require cooperation to

perform, then plan selection is more complex. For example, consider the situation where

agentl perceives that a large box, boxi, has arrived in the delivery area, and adopts the

goal of moving it to the storage area. There are two applicable plans in this situation,

storeLargePian and storeLargePiancheap; the former uses joint actions of two agents

lifting the box and moving it, while the latter must be executed by an individual agent

with the ability to lift a large box. Any of the other agents can assist for the execution

of the former plan (since all agents have the required capabilities), but only agent 3 can

assist for the latter, since it is the only agent able to perform the action of lifting a large

box individually. The best plan should be selected based on the best-case and mean-case

advantage as discussed in Section 6.5. Using the ratings calculated above, the best-case

advantage of choosing storeLargePian over storeLargePiancheap is 9.97, and the mean-

case advantage is 1.86. Thus, the best-case advantage is greater and so the plan with the

lowest best-case rating should be selected, namely storeLargePiancheap1. The agent can

then begin the procedures required to adopt this plan as an intention.

Alternatively, if the agent had a different level of trust in the others, then a different
1 In this case, s to r e L a r g e P ia n c h e a p would also have been chosen using the mean-case rating, but this

is not always the case.

139

plan might have been chosen. For example, if agent 3 is little trusted and associated with

a trust value of 0.1, instead of being trusted, then the rating for the storeLargePlanCheap

changes as given above. The ratings for the other plans also change; in particular, the

best-case and mean-case ratings for storeLargePlan both become 33.53. Here, the risk

associated with storeLargePlanCheap is significantly increased, and the best-case and

mean-case advantages become 3.53 and 5.3 respectively and therefore the mean-case rating

should be used to select the best plan. The plan storeLargePlan has the lowest mean-case

rating, and so is selected.

6.7 Summary

Plan selection is fundamental to our framework of cooperation, since an agent’s chosen plan

determines whether it must cooperate to achieve a particular goal or not. In this chapter we

have presented a mechanism for plan selection, through which an agent can decide whether

to cooperate even when it is optional, unlike other models which tend to concentrate on

necessary cooperation.

Plan selection in other approaches, even in a cooperative domain, typically only con

siders the cost of a plan and not the risk associated with it. In practice an agent is often

faced with a choice of two or more applicable plans for a given goal, where cooperation is

required to execute those plans. Assistance is typically required for different actions, and

so plans involve different agents, which in turn pose varying degrees of risk, as reflected

in their trust values. Similarly, plans typically have different costs associated with them,

according to the actions they contain. Using existing plan selection mechanisms of only

considering the cost of a plan, an agent will always select the plan with the least cost, re

gardless of the risk from cooperation. However, using our approach this risk is factored into

the plan selection process, and provided an agent’s trust of others is broadly accurate2 then

2Trust is not guaranteed to be accurate for two main reasons. Firstly, it is based on observation and is only

intended to be an estimate. Secondly, it evolves over time and takes several interactions to reflect another’s

140

the agent will avoid choosing a plan that requires cooperation with distrusted agents.

The main limitation to our method of plan selection arises from the reliance on the pre

execution assessment of the plan library (with periodic reassessment). In particular, because

an agent’s assessment will generally not be completely up to date with the changes in its

trust of others, an agent may choose a plan that it perhaps would not have done, were its

plan ratings reassessed. The implication of this is that if an agent goes from being reliable to

unreliable (i.e. trusted to distrusted) then the agent will still rate plans involving that agent

as low risk, and may select them, even though they are actually now of high risk.

An additional limitation arises from the cost of assessing the plan library, since although

we reduce the computational cost of assessment by performing it off-line (or when the agent

is idle in the case of re-assessment), there is still a significant cost involved, proportional to

the number of plans in the library, the actions in them, and the number of agents with whom

cooperation may occur. While this suggests a theoretical bound on the applicability of the

method there are no practical problems with moderate numbers of plans and agents3.

Certainly, more sophisticated mechanisms involving the likelihood of particular elabo

rations of individual plans are possible, but these require much more extensive knowledge

of the relationship of plans and environments, and the nature of change in environments,

as well as significantly more costly computation. Given that the environment is largely

unpredictable, there is unlikely to be any significant advantage, however.

This approach is suited to situations in which the likelihood of the environment and the

agent models remaining the same is high, so that plan elaboration at execution time is likely

to reflect the plan quality values determined in advance for the overall partial plans con

cerned. Reassessment of these quality measures will be required periodically to ensure they

are consistent with the changes in trust of others. Although we do not address this issue in

this chapter, a simple strategy is for an agent to perform this reassessment when it is not oth
nature, thus if an agent has had few previous interactions with another then its trust of that agent may not give

an accurate representation.
3 We have run example scenarios with 30 plans and 30 agents.

141

erwise occupied, or when the change in its trust of others exceeds some threshold. Despite

there being some significant computation involved, it is limited in the number of capable

agents, the number of plans, and the number of actions in those plans. Moreover, since

assessment is carried out in a pre-execution strategy combined with periodic reassessment,

the overhead placed on an agent for plan selection at run time is relatively low, especially if

computation relating to plan reassessment is performed when the agent is idle.

142

Chapter 7

Cooperative Intention Formation

7.1 Introduction

Once an appropriate plan has been selected for its goal, an agent must adopt it as an in

tention. The manner in which an intention is adopted is dependent on whether the plan

requires cooperation. If the plan contains a joint or concurrent action, an action the agent

cannot perform, or an action it would simply prefer to be performed by another agent, then

the plan requires cooperation. Where the chosen plan is not cooperative then no further

processing is required and the agent can adopt it as an intention using the mechanism de

scribed in Chapter 4. In the case where an agent’s chosen plan is cooperative (as determined

from its current elaboration) more processing is required before it can be fully executed; in

particular, before an agent can act with others it must obtain some form of commitment

from them, and it is the formation of this commitment that we discuss in this chapter.

We begin this chapter by giving an overview of the process of forming a cooperative

intention. Sections 7.3 and 7.4 describe how an agent can annotate its plan with the iden

tifiers of those with whom it wishes to cooperate. After plan annotation an agent attempts

to gain the assistance of others, by requesting their cooperation as we describe in Section-

s 7.6 and 7.7. Those agents whose assistance is requested decide whether to accede to the

143

request based on their motivations and knowledge of the other agents involved and, if ac

cepting, form a commitment to cooperation, as discussed in Sections 7.8 and 7.9. We then

in Section 7.10 consider the formation of a full cooperative intention amongst a group of

willing agents. In Section 7.11 we give an example of cooperative intention formation in

the warehouse domain. Finally, we consider the two main strategies to forming a cooper

ative intention, in terms of the point at which formation occurs (namely, plan selection or

execution time).

7.2 Overview

If a plan is non-cooperative then an agent can simply commit to its execution and form an

intention. However, if the plan is cooperative then a cooperative intention must be formed.

The establishment of a cooperative intention involves three distinct stages.

• Firstly, an agent (which we call the initiating agent, or initiator) must determine

which agents it wishes to cooperate with, and then ask them for assistance. To decide

which agents to ask the initiating agent iterates through the steps in its plan, anno

tating each one with the identifiers of the agents it wishes to perform it, based on its

trust and knowledge of others.

• Secondly, on receiving a request for assistance, these agents inspect their own mo

tivations and intentions to decide whether or not to agree, and send an appropriate

response to the requesting agent; an agent’s motivations determine whether it wants

to cooperate, and its existing intentions determine whether it can cooperate (since

intentions must be consistent).

• Finally, depending on the responses the initiating agent receives, it will either be able

to establish a cooperative intention and begin executing it, need to find another group

of agents to ask for assistance, or it will fail to establish a cooperative intention. If

144

sufficient agents agree to assist then a cooperative intention is formed with those

agents. However, if insufficient agents agree there are two possibilities:

- if it is possible to choose another group of agents to ask, the initiator chooses

such a group and asks them for assistance, and

- if it is not possible to choose another group, failure is conceded, and any agents

that have already agreed to assist are informed.

This process is repeated until either a cooperative intention has been formed, or it is

neither possible to reassign agents to actions, nor to request another group.

If sufficient agents agree to cooperate then a cooperative intention can be formed. For

individual actions there simply has to be at least one agent agreeing to perform the action.

For joint and concurrent actions there must be at least one agent that agrees to perform each

contribution and, for the former, that agent must not be required for another simultaneous

contribution. This second clause is a result of the possibility of redundant annotation, where

an agent might be assigned more than one contribution, and may accept both, but cannot

actually perform both (as described later in this chapter). The algorithm for determining

whether sufficient agents have responded to a request is given in Table 7.1, which takes an

annotated plan and a set of responses, and returns true if sufficient agents have agreed to

cooperate. In the algorithm the function accepted returns the agents that have agreed to

perform a particular action.

Assuming sufficient agents accept, the next step in forming a cooperative intention is

to select which agents out of the positive responses will actually be part of the coopera

tion (since redundant annotation may have caused multiple agents to agree to cooperate for

each action). In this case, the only basis for distinguishing between agents is their trust

worthiness, and so the most trusted are chosen. The chosen agents are sent a confirmation

message to inform them that enough agents have agreed to assist, and cooperation is pro

ceeding. Agents that are not chosen but agreed to cooperate are sent a cancel message and

the nominal commitment towards them is dropped.

145

Inputs:
plan — the plan for which cooperation is required
responses — the set of responses agreeing to cooperate

Outputs:
true if sufficient agents have agreed to cooperate, false otherwise

Algorithm:
actions = extractActions(p/an)
fo r act in actions do

acceptedAgents = accepted(acf, responses)
i f individualAction(acO th en

i f n o t sizeOf{acceptedAgents) > 1 th en
r e tu r n false

e ls e
f o r c in contributions(act) do

acceptedC = accepted(c, responses)
i f n o t sizeOf{acceptedC) > 1 th en

r e tu r n false
r e tu r n true

Table 7.1: Algorithm to determine whether responses are sufficient to enter into cooperation

146

Although we assume that agents are willing communicators, it is still possible for coop

erative intention formation to fail due to communication problems. For example, an agent

might not respond within a reasonable time, or a response may not be received due to com

munication errors. A timeout mechanism is therefore incorporated into the process, so that

if no response is received from a given agent before the timeout, the agent is taken to be

refusing. The algorithm for generating full commitment is part of the initiator’s overall

algorithm for forming a cooperative intention, as given in Table 7.2. The corresponding

algorithm for a participant is described later in Section 7.9.

On receiving a confirmation message, an agent knows that sufficient agents have agreed

to cooperation, and a cooperative intention has been formed. It can, therefore, begin per

forming the actions required of it. Conversely, if a cancel message is received then an

agent’s assistance is no longer required, and it can drop its nominal commitment, and re

duce its trust of the requesting agent (as described in Section 5.4.1). However, if for some

reason neither a confirmation nor a cancel message is received (after some timeout period),

then the agent assumes that its assistance is no longer required, and behaves as though it

received a cancel message, i.e. it drops its nominal commitment, and updates its trust of the

requester.

7.3 Annotation Strategies

In order to determine which agents to ask for cooperation, the initiating agent must consider

each of the contributions in its plan and determine which is the best agent to perform it.

The chosen agent is associated with the contribution by annotating the contribution with

the identifier of that agent. The initiator must annotate each cooperative action in its plan

with the identifiers of the agents it will ask to perform it. For any given contribution several

agents may be asked for assistance if they can all perform the required contribution, and

more than one may be listed in the annotation, providing a degree of redundancy in case

some decline to cooperate. We call such annotation of a contribution with more agents than

147

Inputs:
plan — the plan for which cooperation is needed
agentModels — the initiating agent’s models of others

Outputs:
a cooperative intention if successful, otherwise nothing

Algorithm:
re p e a t :

i f canAnnotate(p/<2«, agentModels) th en
plan = annotatePlan(p/an, agentModels)

e ls e
r e tu r n

requestAssistance(p/««)
responses = waitforResponses()
i f sufficientfras'poH.s'es, plan) th en

cooperativelntention = formCooperativeIntention(p/nn)
r e tu r n cooperativelntention

Table 7.2: The initiator’s algorithm for cooperative intention formation

are required redundant annotation. Alternatively, annotating each contribution with just

one agent we refer to as minimal annotation, since the plan is annotated with the minimum

number of agents required for its execution.

With redundant annotation, even if some of the chosen agents decline to cooperate, co

operation may still be successful. For example, suppose that for each action three agents

are asked for assistance. If all three agents accept then the initiator can simply enter into

cooperation with the most trusted agent. However, if two agents decline, then cooperation

can still go ahead with the third agent. This redundancy, however, comes at a price, pri

marily that the cost of communication and processing the responses will be increased over

minimal annotation where a single agent might be asked for each action, in the ideal case of

that agent accepting. Indeed, even if using minimal annotation when some actions need to

be reassigned, the communication cost may still be less, since there may be fewer agents in

total to send requests to. Note, however, that at a lower level, redundant annotation offers

more scope for optimisation, for example through the use of targeted broadcast messages

148

(which may be cheaper than communicating with several agents individually), so that the

cost of communication for each agent may be reduced if a relatively large number of agents

are asked. Thus, it is not necessarily true to say that redundant annotation, where n agents

are asked for each action, is equivalent in communication cost to minimal annotation where

the n’th agent agrees, since it may be cheaper to send a single broadcast than to send n

individual messages.

7.3.1 Choice of Annotation Strategy

At this point, it is useful to introduce the notion of a closely coupled and loosely coupled

view of agent systems. Where we are concerned with the behaviour and performance of a

multi-agent system as a whole rather than with a specific individual in that system, as in a

multi-agent system to perform a particular task, we say that we are taking a closely coupled

view. Conversely, where we are concerned with maximising the performance of a particular

agent, without concern for the effect on the system as a whole, as with an agent designed to

compete against others, such as an auction agent, this is a loosely coupled view.

Now, in the closely coupled view, redundant annotation may have negative effects on

the group’s efficiency since there will obviously be some overhead involved in agents agree

ing to cooperate. In particular an agent may be unnecessarily constrained while committed

to cooperating in this way (though perhaps not actually being needed), which may have

prevented it from doing something else beneficial to itself or the group as a whole. Thus,

although redundant annotation increases the likelihood of getting agreement to cooperate

without reassigning actions, it may be counter-productive in this respect.

In the loosely coupled view, when concerned with maximising individual performance

without consideration of others, redundant annotation may not be successful over a period

of time. If an agent is asked for assistance and agrees to provide it, only to be turned

down later, its trust of the requesting agent will tend to decrease, since the requester did

not honour the request and may have cost the provider time and caused it to constrain its

149

actions unnecessarily, etc. While the effect may be negligible in the short term, over an

extended period the decreased trust may cause the provider to decline to cooperate. Thus,

if at a later point there is only one agent with the appropriate capabilities, that agent may

refuse to cooperate because it does not trust the requester; it has been inconvenienced too

many times.

Ultimately, the best strategy in terms of redundant or minimal annotation is determined

by both the domain itself and the overall perspective (of maximising system or individu

al performance). For example, if communication is relatively inexpensive and the aim is

to maximise the individual performance of the agent seeking assistance in the short term,

redundant annotation is sensible, whereas expensive communication and concern over un

necessarily constraining the actions of others suggests that minimal annotation be used.

Overarching these issues, however, is the importance to the initiator of its goal, since

if a goal is important, redundant annotation may be justified despite any concern for the

performance of the overall system. It is, therefore, desirable for an agent to be able to choose

between these strategies dynamically, according to the current situation, and we consider

both possibilities in the remainder of this chapter. In order to deal with this, we introduce

the notion of a redundancy threshold to determine whether to use redundant annotation. If

the motivational value of a goal is greater than this threshold then redundant annotation is

used. However, since the redundant approach should only be used sparingly this threshold

must be sufficiently high that the redundant approach is only occasionally used.

7.3.2 Pre-annotated Plans

In Chapter 6 we described how an agent chooses between applicable plans for its goal

based, in part, on the agent’s trust of the participants capable of performing actions in its

plan. Since these are factors that must be considered again for plan annotation, it might be

more efficient for an agent to store this information when selecting its plan, and reuse it

at annotation time. Several issues affect whether this mechanism is appropriate, which we

150

discuss below.

Typically, an agent will have several intentions at any given time, the execution of

which can be interleaved according to the intensities of its motivations. An agent acts

upon the intention that is of most motivational importance and, as the intensities of its

motivations fluctuate, the intention fitting this criterion may change. Hence, there may

be a delay between selecting a plan and establishing a cooperative intention in its favour,

during Which time the must of others may have changed. Also, if die seleeted plan is partial

and contains subgoals then these subgoals are not deal, with until necessary, and there will

certainly be a delay between selecting a plan, and satisfying any subgoals contained in it.

The longer the delay, the higher the likelihood that an agent's trust in another will have

, . timp Anv information stored at plan selection time aboutchanged, since trust changes over time. Any
. „Apr such a delay. In addition to an agent’s trust of the trust of others may not be correct alter sucn a uciay

, . -x u .-„A. oVantit their capabilities can also change. For example,others changing over time, its beliefs about tneir capaui
artion that was not known to be within its capabilities, if an agent is observed performing an actio

then the model of that agent can be updated to include it

* ctnre information at plan selection time to use forIn deciding whether an agent should store mromuu f

. . hpfween the computation saved at annotation time onplan annotation, there is a trade-on oetweei f

the one hand, and the overhead of storing it and the cost of using outdated information on

the outer. I, is our view that since such information is likely to change, the disadvantages
„ . , .. „„tpntial advantages, and we do not consider thiso f using stored information outweigh the potential aavamag

option turUier. Certainly, however, the model of cooperation we present can be changed to

include this possibility while remaining within our underlying ftamework.

7.4 Plan Annotation

An agent annotates its plan by considering in turn the steps contained within it that require

actions to be performed. There are three categories of action step that a plan might contain

(individual, joint, and concurrent) and we discuss each of these later in this section, but first

we dicuss the agents with which a plan can be annotated.

7.4.1 Agents to Annotate

The simplest method for annotating a plan with agents is for the initiating agent to choose

agents for each contribution in turn. Since it is important to minimise the risk involved in

interaction this annotation uses the most trusted agent (or agents) capable of performing an

action.

If a plan contains only individual actions, and not joint or concurrent actions, then each

action can be annotated with the most trusted agents that are believed to have the appropriate

capabilities. The number of agents to be asked depends on whether redundant or minimal

annotation is being used. In general, each action is annotated with the n most trusted agents,

where n is an integer. With minimal annotation, n — 1, whereas in redundant annotation,

n > 1. Note that if n > 1 and the number of agents having the required capabilities is

less than n (but more than 1) the agent must simply annotate the plan with all those agents,

rather than trying to find others with the required capabilities in order to annotate the plan

with n agents. If no agents are known to have the required capabilities then plan annotation

fails.

Although this considers whether agents are trusted, it does not consider whether they

are distrusted (i.e. are trusted below a minimum trust threshold as discussed in Section 5.4).

If the only agents that are believed to have the required capabilities are distrusted, then it

may be better for the assignment of agents to actions to fail, rather than enter into cooper

ation with a group of distrusted agents, since they are considered likely to renege on their

commitments. It is possible, therefore, for plan annotation to fail because all the agents

having the required capabilities for a given action are not sufficiently trusted. In Section 5.4

we introduced the notion of a minimum trust threshold, such that agents trusted under that

threshold are considered distrusted. Agents that are distrusted are not annotated to a plan;

152

thus if all the agents capable of performing a particular action are distrusted then plan an

notation fails (since none of them can be annotated).

We formalise whether a particular agent should be considered for annotation as follows

— if it is trusted above the minimum trust threshold then it is considered for annotation,

otherwise it is not, as specified below.

considerForAnnotation : AgentID —> IP AgentModel —> R —> bool

V id : AgentID; ms : IP AgentModel, t : M •
(tmstOfAgent id ms > t) => considerForAnnotation id ms t = true A

(,tmstOfAgent id ms < t) => considerForAnnotation id ms t = false

7.4.2 Individual Action Annotation

Recall that a contribution is defined to be an action, along with the identifier of the agent

that is to perform it. Where we are concerned with minimal annotation this is sufficient

to represent the agent annotated to a contribution. However, when we consider redundant

annotation, this is insufficient, since we need to associate a set of agent identifiers with

a particular action. Therefore, before we can specify the function for annotating a con

tribution we must introduce the notion of an AnnotatedContribution, where an action is

annotated with a set of identifiers. We formalise the annotation of a contribution in the

schema AnnotateContribution, in which n and t represent the number of agents to annotate

a contribution with, and the minimum thrust threshold respectively. This function specifies

that an individual contribution is annotated with the n most trusted agents, provided then-

associated trust values are greater than t.

__AnnotatedContribution ---
symbol: ActSym
terms : seq Term
agents : P AgentID

153

— AmwtateContribution--
annotateContribution : Contribution —» P AgentModel —> Z —> R

-> AnnotatedContribution

V c : Contribution; ms : ¥ AgentModel] n : Z; t : M;
ac : AnnotatedContribution • c.symbol = ac.symbol A

c.terms = ac.terms A ac.agents = {id : AgentID |
id € ran({/ : Z | / < «} 1 orderedCapableAgents c ms) A

considerForAnnotation id ms t = true • id}

7.5 Annotating Simultaneous Actions

The approach described above is only applicable for plans that do not contain joint or con

current actions. Recall that joint and concurrent actions are made up of a set of contri

butions, each of which is an individual action that must be annotated with agents. The

main consideration in annotating a plan containing such actions is that an agent must not

be required to execute two or more contributions simultaneously, since we assume that

agents can only perform one action at a given time. In minimal annotation this is simply

achieved by not annotating an agent to more than one simultaneous contribution. Redun

dant annotation, however, is more complex, because an agent might be annotated to several

simultaneous contributions, and its assistance requested for all of them.

Since an agent can only perform one action at a time, and its intentions must be consis

tent, an agent asked to assist for several simultaneous contributions can only agree to one

of them at most (according to its motivations and intentions), or its intentions would be

come inconsistent. Redundant annotation of an agent to several simultaneous contributions

allows that agent a choice about which, if any, of the contributions it performs. The key

requirement when annotating the same agent to more than one simultaneous contribution is

that agreement is necessary for at most one of them. For example, a joint action comprising

two contributions each annotated with the same two agents is a valid annotation, because

either agent can perform either contribution, as illustrated by the annotation on the left in

154

Contribution Annotation Contribution Annotation

contribution i a i, £*2
contribution 2 a 1, a2

contribution 1 a i , a 2
contribution2 a i , a 2
contribution^ a 1,0 1 2

valid annotation invalid annotation

Table 7.3: Valid and invalid annotations

Table 7.3. Alternatively, a joint action comprising three contributions, each annotated with

the same two agents, is not a valid annotation, since even if both agents agree to perform

a contribution, there will be a third contribution for which no agent has agreed (illustrat

ed by the annotation on the right in Table 7.3). Where we are concerned with annotating

concurrent actions it is possible for an agent to be annotated to more than one thread of

execution since synchronisation is only required at the beginning and end of a concurrent

action block, and all contributions do not necessarily have to be performed simultaneously.

7.5.1 Joint Actions

In formalising the annotation of joint actions we rely on a number of auxiliary functions,

the specification of which can be found in Appendix A. Firstly, contribSeq takes a joint

action as its argument and extracts the contributions that it comprises, returning them as

a sequence. In turn, the function allPossibleAnnotations takes such a sequence of con

tributions, and determines the set of all possible minimal annotations, where an agent is

associated with a contribution if it is capable of performing it and is trusted above the mini

mal trust threshold. We refer to these possible annotations as candidate assignments. Since

the contributions in a joint action must be performed simultaneously, an agent must not be

assigned to more than one contribution in a candidate assignment. If in a given candidate

assignment no agent is assigned to more than one contribution it is said to be valid and,

conversely, if a candidate assignment assigns an agent to more than one contribution, then

155

it is invalid. The function validAssignments takes the set of candidate assignments, and re

moves those that are not valid. Finally, the function orderedAnnotations takes the resulting

set, and orders them according to the combined trust of the agents involved.

We can now introduce the notion of an AnnotatedJointAction, as a set of annotated

contributions, and specify how to annotate a joint action. The function annotateJointAction

takes a joint action, a set of agent models, an integer representing the number of agents

to annotate each contribution with, and a minimum trust threshold and returns an anno

tated joint action. The annotation is determined by extracting the appropriate number of

assignments from the front of the ordered list possible valid candidate assignments, using

the auxiliary functions introduced above. Each of these assignments associates one agent

with each contribution, and they are combined into a single (possibly redundant) annotation

using the auxiliary function annotate.

__AnnotatedJointAction-------- —--
contributions : P AnnotatedContribution

contributions > 2

— AnnotateJointAction---
ELAnnotateJointActionAuxiliary
annotateJointAction : JointAction —> P AgentModel —> Z —* R

—> AnnotatedJointAction
annotate : seq(P(Contribution x AgentID)) —> AnnotatedJointAction

\/ja : JointAction; ms : ¥ AgentModel] n : Z; / : R •
annotateJointAction ja ms n t = annotate ({* : Z | / < w}j

(orderedAnnotations (validAnnotations (allPossibleAnnotations
(contribSeq ja) ms t)) ms))

Ms : seq(F (Contribution x AgentID))] aja : AnnotatedJointAction \
annotate s = aja • V c : Contribution • c 6 extractContributions (s 1)

O (3j ac : AnnotatedContribution • ac e aja.contributions A
c.symbol = ac.symbol A c.terms = ac.terms A

ac.agents = agentsOfContributionAs (ran 5) c)

156

7.5.2 C oncurren t Actions

In a similar manner, we can specify that an annotated concurrent action comprises a set of

annotated contributions and joint actions. Annotation of a concurrent action involves anno

tating each of its components, and including the result in the annotated concurrent action, as

specified below in the schema AnnotateConcurrentAction. The function annotateCAcom-

ponent takes a component of a concurrent action (a contribution, or set of contributions

representing a joint action) and annotates it using the mechanisms described above for ac

tions and joint actions, as specified by annotateConcurrentAction.

ACAcomponent ::= AContrib((AnnotatedContribution))
| AJA ((IP AnnotatedContribution))

__AnnotatedConcurrentAction--
contributions : ¥ ACAcomponent

contributions > 2

__AnnotateConcurrentAction-- ------------
EAnnotateContribution
EAnnotateJhintAction
annotateConcurrentAction : ConcurrentAction -> ¥ AgentModel -> Z -> R

—» AnnotatedConcurrentAction
annotateCAcomponent : CAcomponent —> P AgentModel —> Z —> R

—> ACAcomponent * V

V cac : CAcomponent; ms : ¥ AgentModel] n : Z; t : R
acac : ACAcomponent • annotateCAcomponent cac ms n t = acac

& (3 c : Contribution | Contribue) = cac •
acac — AContrib(annotateContribution c ms nt)) V

(3 cs : ¥ Contribution] ja : JointAction | JA(cs) = cac •
ja.contributions = cs A acac =

AJA((annotateJointAction ja ms n t).contributions))
V ca : ConcurrentAction] ms : ¥ AgentModel] n : Z; t : R

aca : AnnotatedConcurrentAction •
annotateConcurrentAction ca ms n t = aca A

aca.contributions = {cac : CAcomponent |
cac G ca.contributions •

annotateCAcomponent cac ms n r}

157

7.5.3 A nnotated Plans

The notion of an annotated plan is formalised below in the schema AnnotatedPlan, in which

all contributions are annotated with a set of agents. Each contribution is annotated with a

set, rather than the individual agent that will execute it since, at this stage, the annotation

represents the agents to request assistance from. Thus, to allow for redundant annotation, a

contribution is associated with a set of agents rather than an individual. However, before a

cooperative intention can be formed, an agent must select one agent for each contribution

and modify the annotated plan accordingly. The schema AnnotatePlan contains two func

tions, annotateStep and annotatePlan, the first of which takes a plan step and applies the

appropriate annotation function (unless the step is a goal in which case it is not changed),

and the second takes a plan and annotates each step in that plan, returning the corresponding

annotated plan.

APlanStep ::= AIndividual({AnnotatedContribution))
| AJoint((F AnnotatedContribution))
j AConcurrent((F ACAcomponent))
| ASubgoal((Goal))

— AnnotatedPlan--------- -- ---------
achieves : Goal
preconditions : IP Literal
body : seq APlanStep

158

— AnnotatePlan--
EAnnotateContribution
EAnnotateJointAction
EA nnotateConcurrentA ction
annotatePlan : Plan —» IP AgentModel —> Z —> M —> AnnotatedPlan
annotateStep : PlanStep —> P AgentModel —> Z —>■ R —> APlanStep

V p : Plan] ms : ¥ AgentModel] n : Z; / : K; ap : AnnotatedPlan •
annotatePlan p m s n t = ap <=> p.achieves = ap.achieves A

p.preconditions = ap.preconditions A
(V n : Z | n < ftp.body • ap.body n =

annotateStep (p.body n) ms n t)
Vps : PlanStep] ms : ¥ AgentModel] n : Z; t : R; ops : APlanStep •

annotateStep p s m s n t = aps
(3 c : Contribution • Individual(c) = ps A ¿2/w =

AIndividual(annotateContribution cm s n t)) V
(3cs : ¥ Contribution] ja : JointAction \ja.contributions = cs •

Joint(cs) = ps A aps = AJoint((
annotateJointAction ja ms n t).contributions)) V

(3 cac : P CAcomponent] ca : ConcurrentAction |
ca.contributions = cac • Concurrent(cac) = ps A aps =

AConcurrent((annotateConcurrentAction
ca ms n ^.contributions)) V

(3g : Goa/ • Subgoal(g) — ps A aps = ASubgoal(g))

An agent can represent an annotated plan, by simply associating the identifiers of the

appropriate agents with each contribution in the body of the plan. For example, if the actions

in the plan for storing a small box in the warehouse domain were assigned to agent2, then

an agent might represent this as follows.

name: storeSmallPlan
achieves: [$(location, [box, room]),

not (holding, [agent2, box])$]
preconditions: [(location, [box, loc]),

(type, [box, small, shortTerm])]
body: [<goal [$(location, [agent2, loc])$]>,

<action (pickup, [agent, box])=agent2>,
<goal [$(location, [agent2, room])$]>,
<action (putdown, [agent, box])=agent2>]

159

ftp://ftp.body

7.6 Soliciting Commitment to Cooperate

After deciding which agents to try to cooperate with (by annotating its plan), an agent must

request assistance from the agents with whose identifiers the plan is annotated. There are

several options for how much information to include in a request for assistance. In particular

an agent attempting to initiate cooperation can communicate either

1. the whole plan, but without annotations,

2. just the actions it wants the potential participant to perform,

3. the goal for which assistance is required, along with the actions it wishes the potential

participant to perform,

4. the whole plan, annotated only with the actions it wishes the potential participant to

perform, or

5. the whole annotated plan.

These options provide varying degrees of information to the receiver, and support different

objectives, represented by the loosely coupled and closely coupled views, as we discuss

below.

• The first alternative of communicating the whole plan without annotations, does not

in general give sufficient information for the participant to make a decision about

whether or not to cooperate, since it does not specify which actions it should perform.

Without knowing which actions are requested of it, an agent cannot determine whether

they will conflict with its intentions or their motivational value. There are a small

number of exceptional circumstances in which an agent could make a decision; for

example, if all actions in the plan, and the goal it achieves, are of motivational value,

and the agent has no other intentions, then it can decide to cooperate. In general,

160

however, this is not the case, and more information is required in a request. Thus, we

reject the first alternative.

• Remember that there must be some motivational justification for an agent choosing

to perform a particular action, and although the overall goal must be of motivational

value (or it would not have merited committing to), the particular actions required to

achieve it might not be. For example, achieving the goal of getting a paper accepted

for a conference is likely to have motivational value, but the actions involved in proof

reading and correcting are less likely to be valuable in themselves. Thus, while the

end may have motivational value the means may not, if considered out of the context

of the overall goal. In practice an agent’s motivations are typically mitigated by the

achievement of goals, rather than the performance of particular actions, although

there are exceptions. Thus, an agent is unlikely to gain assistance for its goal if its

request contains only the actions that it wishes to be performed, and not the goal that

they achieve (as in the second alternative above). The exception to this is if the action

is valued by the potential participant and the goal is not. For example, if you gain

value from performing the action of driving, and I wish you to drive a getaway car in

a robbery for me, then the negative motivational effect of achieving the goal would

outweigh the benefit obtained from driving (assuming you are a law-abiding citizen).

Thus, in this situation if I know that the goal is of zero or negative motivational value,

then I might make my request giving only the action for which assistance is sought.

• The third alternative requests assistance from the potential participant for a particular

set of contributions, and towards a particular goal. This allows an agent to consider

both the motivational value of the actions it is requested to perform, and the value it

would gain if the overall goal is achieved.

• The fourth alternative also includes the complete plan, without the annotations related

to other agents. This additional information can influence the potential participant’s

decision about whether to cooperate. If the participant is informed of the plan then it

161

knows what other actions will be performed in the achievement of the goal. If it has

a goal or intention that some action in the plan is not performed (by any agent), then

it may refuse even if it would otherwise have accepted, based solely on the goal and

actions it is to perform.

• The final alternative includes both the plan, and the complete set of annotations, if

the participant is informed of the other annotations in the plan, it is given information

about which agents are likely to be involved in the cooperative interaction. If it has a

goal or intention of not cooperating with another of the annotated agents then it may

also refuse, even if would accept were its choice based only on the goal and actions it

is to perform. Note that as discussed earlier, communicating redundant annotations

makes recipients aware of the redundancy and the potential unnecessary constraints

this may impose upon them. Thus, if the fifth alternative is used, the requesting agent

must process the annotations contained in the request to remove redundant annotation

of the potential participant1.

In our framework, therefore, an agent has a choice of the latter four options. The

choice about which of these approaches to use is a macro level consideration determined by

whether a loosely or closely coupled approach is being taken. We therefore simply assume

that an agent uses one of these mechanisms, without specifying which. Formally, there are

four possible types of request, containing the actions for which assistance is required, the

actions and the overall goal, the plan annotated only with the requestee’s actions, or the

whole annotated plan. We specify this as follows, where the actual request types (shown

within “ ((” and “))”) are specified in Appendix A.

Request ::= ActionRequest((RequestActions))
| GoalActionRequest((RequestGoalActions))
| PartiallyAnnotatedPlanRequest{(RequestPartiallyAnnotatedPlan))
| AnnotatedPlanRequest((RequestAnnotatedPlan))

'i t could be argued that all redundant annotations should be removed in case an agent infers that if another

is redundantly annotated, it may be treated similarly. However, we do not consider the case where an agent has

such inference abilities, and so do not consider this situation.

162

As discussed above, an agent’s request for assistance should include only the actions

for which it needs help if it believes that the goal is of zero or negative motivational value

to the provider. This is specified in the function useActionRequest below, which takes an

annotated plan and set of agent models, and returns true if the goal is believed to be of

zero or negative motivational value to one or more of the agents being requested, and the

agent’s request should be of this form. Our specification of the function relies upon auxiliary

functions allAgents and believedMV, the former of which extracts the agents annotated in

a given plan, and the latter of which returns the believed motivational value of a goal to

another agent, based on information from the agent’s models of others. These auxiliary

function are also specified in Appendix A.

__UseActionRequest -------------- ---
EAnnotatedPlanAuxiliary
useActionRequest: AnnotatedPlan -> FAgentModel -> bool

V ap : AnnotatedPlan; ms : P AgentModel •
useActionRequest ap ms = true

<=> (3 id: AgentID \ id G allAgents ap •
believedMV ap.achieves id ms < 0) A

useActionRequest ap ms = false
O- (V id : AgentID \ id G allAgents ap •

believedMV ap.achieves id ms > 0)

7.7 Requesting Assistance

As described above, there are two steps in requesting assistance: first, for every agent anno

tated to each contribution in a plan, determine how much information to give them (about

the goal, plan, and members of the proposed group), and secondly make the request itself.

Since cooperative intention establishment may involve several rounds of requesting, some

agents may have already been asked for assistance for a previous action, in which case it is

possible that an agent may have already accepted a request. Here, some form of commit

ment to perform the (previously requested) action will have been formed, and if an agent

163

Inputs:
agent — the agent to request assistance from
plan — the plan for which cooperation is needed
acceptedAgents — the set of agents that have already agreed to cooperate

Outputs:
requests sent to the agents annotated in plan

Algorithm:
if agent in acceptedAgents then

for act in actionsAccepted(age/tf) do
if notAssigned(uge/ji, act, plan) then

cancel {agent, act)
else

if participantsChanged(<2cf, p lan) then
if informed(qge/if, particpants(act, p la n)) then

re-Tequest(agent, act)
for a c t in assigned(<2g<?«/, p la n) do

if act not in actionsAccepted(age«/) then
request(age/tf, action, plan)

else
request(age«/, plan)

return

Table 7.4: The initiator’s algorithm for requesting assistance

has agreed to perform some action to which it is no longer annotated in the latest plan an

notation, it must be informed that its commitment is unnecessary. Similarly, if the agent has

already agreed to perform the same action that it is currently annotated to then there is no

need to ask it again

If the action is part of a joint or concurrent action which is currently annotated with a

different group of agents, and the agent was informed of the original annotation, its decision

to cooperate may be affected by the composition of the group, and the agent must be in

formed of the changes. Finally, note that if a previous request for assistance was refused, it

does not affect subsequent requests, since no commitment will have been formed. Table 7.4

presents the algorithm for requesting (or re-requesting assistance) from a particular agent.

164

If the agent has already agreed to cooperate then the actions for which it has agreed to co

operate are considered. If it is no longer assigned an action it has agreed to perform, then

it is informed that cooperation is no longer required (for that action). Similarly, if the par

ticipants of a joint or concurrent action have changed, then it is informed of these changes.

Finally, it is sent a request for any actions that it has not already agreed to perform.

7.8 Nominal Commitment

If an agent changes its mind after requesting assistance (for example if its motivations

change and it drops its goal) other agents may have formed a commitment to assist and

have constrained their actions unnecessarily — potentially causing their trust of the initi

ating agent to decrease when they discover this. Informing agents of such changes after

a request is a means to safeguard against becoming distrusted. This issue arises only be

tween requesting assistance and the formation of a cooperative intention (assuming others

accept), since once a cooperative intention is formed, the agents involved are required to

inform others as a consequence of their commitment.

To achieve this commitment to informing others we introduce the notion of a nominal

commitment with respect to a set of agents such that, in the case of it dropping its goal,

an agent will inform all other agents in that set. A nominal commitment, therefore, acts

as a placeholder commitment until a full cooperative intention is established. Before re

questing assistance, therefore, a nominal commitment must be formed with respect to the

agents whose assistance is sought, ensuring that the initiating agent will inform the request

ed agents if it changes its mind about about requiring assistance. The process of establishing

a cooperative intention may involve several rounds of plan annotation before it is success

ful, in that others will be asked for assistance and may refuse, leading to another set of

agents being chosen and asked. For example, suppose an agent annotates its plan with three

other agents, a i , ot ,̂ and «3 and requests assistance from them, then it must form a nominal

commitment towards those agents, to inform them if assistance is no longer required. If a \

165

Inputs:
plan — the plan to which nominal commitment is required
participants — the participants in plan

Outputs:
a nominal commitment towards the agents annotated in plan

Algorithm:
i f n o t commitedTofjP/aw) th en

form(nominalCommitment(/?/art, participants))
e ls e

currentCommitment = retrieveCommitment(p/an)
existingParticipants = extractAgents(currentCommitment)
f o r a in (existingParticipants \ participants) do

remove(a, currentCommitment)
f o r a in {participants \ existingParticipants) do

add(a, currentCommitment)
r e tu r n

Table 7.5: Algorithm for updating nominal commitment

and a 2 accept, but a 3 declines to assist then the initiating agent must select another set of

agents to cooperate with — it must re-annotate its plan, and request assistance from this

new set of agents.

Each round of plan annotation involves forming a nominal commitment and requesting

assistance. Therefore, if assistance has already been requested for a previous annotation of

the plan, a nominal commitment will exist toward the agents whose assistance was request

ed. A new nominal commitment does not need to be formed; instead, the annotation of

agents to whom the commitment is made towards are updated. Those agents that are not in

the current annotation are removed from the commitment, since there is no need to inform

them if assistance is no longer required, and any newly annotated agents are added. If no

requests have previously been made for (a prior annotation of) the plan, then a new nominal

commitment is formed to the agents contained in the current annotation. Consider the ex

ample of an agent requesting assistance, and forming a nominal commitment towards, three

agents, ot\, a 2, and a 3. Now, suppose a 3 declines and the agent re-annotates its plan with

166

agents a \, a?, and c*4, such that the former two are given the same tasks and a 4 assigned

to the task for which a 3 declined. The initiator must update its nominal commitment to

be towards this new set of agents, i.e. it must modify its commitment to a 3 to be towards

a 4. This process is described by the algorithm for updating nominal commitment, given in

Table 7.5.

We formalise the formation of a nominal commitment by first defining the represen

tation of such a commitment as a plan and a set of agents to whom the commitment is

made, as specified below in the schema NominalCommitment. The formation of a nominal

commitment itself is specified in the schema FormNominalCommitment, which is based on

the algorithm in Table 7.5. Additionally, we define the function commitedTo, which takes

an annotated plan and returns true if the agent already has a nominal commitment towards

that plan, and false otherwise. This function is used to determine whether a new nominal

commitment is be adopted, or whether to update the agents in the existing commitment.

__NominalCommitment----- --—
plan : AnnotatedPlan
agents : P AgentID

167

__FormNominalCommitment---
AAgent
EAnnotatedPlanAuxiliary
newPlan : AnnotatedPlan
commitedTo : AnnotatedPlan —> bool

yap : AnnotatedPlan • 3 c : NominalCommitment |
c G nominalCommitments • c.plan.achieves — ap.achieves

commitedTo ap = true
V ap : AnnotatedPlan • V c : NominalCommitment \

c G nominalCommitments • c.plan.achieves ^ ap.achieves
<=> commitedTo ap — false

commitedTo newPlan = false
=> (3 c : NominalCommitment • c.plan = newPlan A

c.agents = allAgents newPlan A
nominalCommitments' = nominalCommitments U {c})

commitedTo newPlan = true
=> (3 c, c' : NominalCommitment \ c G nominalCommitments •

c.plan.achieves = newPlan.achieves A
c ^ nominalCommitments' A c' G nominalCommitments1 A

c'.plan = newPlan A d.agents = allAgents newPlan)

7.9 Committing to Cooperate

In this section we consider the criteria by which a participant decides whether or not to

cooperate after receiving a request for assistance. There are two key factors in this decision

that arise from the autonomous nature of the agents involved. Firstly, the trust ascribed to

the requester determines the perceived risk of interacting with it and, secondly, the motiva

tional value that would be attained from cooperating determines the potential benefit to the

providing agent.

An agent receiving a request for assistance with respect to a set of actions must deter

mine whether the requesting agent is sufficiently trusted before entering into a cooperative

intention and, if it is, it must determine the motivational value of the actions it is asked

to perform. If the request also includes information about the overall goal and plan for

168

which cooperation is required, the value of that goal and plan must also be considered. If

the request has no motivational value then the agent will not cooperate and must inform

the requester that it is declining, otherwise it must check whether the requested actions are

compatible with its existing intentions.

An agent’s intentions must be consistent, and if an agent receives a request for assis

tance from a trusted agent that carries some positive motivational value but would lead to

an intention conflict, it must choose between existing intentions and the request. Such a

conflict may be an explicit conflict of goals, or it may be that a known effect of performing

the requested actions conflicts with an existing intention. Therefore, an agent must select

which of the conflicting intentions it will discard. One possibility is to consider how much

effort has already been invested in attempting to achieve the existing intention, how much

is still required, and the trust in others expected to be involved. However, the computational

cost it requires in itself, in particular with respect to estimating how much effort is still re

quired, is prohibitive because it involves considering all possible plan elaborations. A more

useful (and simple) alternative is to select the intention with the highest motivational value.

Thus, if the existing intention has a higher value, the agent will decline to cooperate for the

new request. Otherwise, the agent will drop its existing intention and agree to cooperate

and form a nominal commitment.

An agent accepts a request, allowing cooperation to ensue only if

• the requester is considered trusted,

• there is no conflict with existing intentions, and

• the request is of positive motivational value.

As described in Section 7.8, when accepting a request an agent forms a nominal commit

ment, in that it becomes committed to informing others if it rescinds its acceptance. The

algorithm for a recipient to process a request for assistance is shown in Table 7.6, which

states that an agent must first consider the trust of the requester, then the motivational value

169

Inputs:
request — the request for assistance
trustThreshold — the threshold under which agents are considered distrusted
intentions — the agent’s intentions

Outputs:
a message accepting or declining to cooperate, and
a nominal commitment if accepting

Algorithm:
initiator = sendev(request)
i f tmst(initiator) < trustThreshold th en

décline(initiator, request)
r e tu r n false

e l s e
i f motivationalValue(ra7H£sO < 0 th en

decline(m/h'ator, request)
r e tu r n false

e ls e
i f confl\c\(request, intentions) th en

i f higherMotivationalValue(re^Meit,
conflicting(re#wes/, intentions)) th en
drop(conflicting(ra7«est, intentions))

e ls e
decline(/«ifta/or, request)
r e tu r n false

formNommalCommitment(/w7/afor, request)
accept (initiator, request)

r e tu r n true

Table 7.6: The recipient’s algorithm for processing a request

170

of the request, and finally whether the request conflicts with its existing intentions. If the

conditions described above are met then the agent sends an acceptance message, and forms

an appropriate nominal commitment, otherwise a message declining to assist is sent. We

describe below how an agent considers the trust of the requester, and how it determines the

motivational value of a request.

7.9.1 Trust in Requesting Agent

Before checking the motivational value of the request, and whether it conflicts with existing

intentions, the requesting agent must be checked for adequate trustworthiness. The trust of

the requester is checked before determining the motivational value of the request, since it is

much cheaper in computational terms to check trustworthiness than to assess motivational

value.

Cooperation should be avoided if the requester is not trusted, since if it drops its part

of a cooperative intention, any commitment and action on behalf of the participant is likely

to have been wasted. To determine whether the requester is trustworthy, its associated trust

value must be assessed, with respect to a cooperation threshold over which (for this pur

pose) it is considered sufficiently trusted, and under which it is not. Note that this threshold

is distinct from that described in Section 7.4 which is concerned with the notions of trust

and distrust with respect to plan annotation; here we are concerned with ensuring an agent is

sufficiently trusted to consider expending effort in assisting it — an agent might be trusted

in the context of plan annotation, but not be sufficiently trusted to offer assistance to it. An

agent will not assist another that is not sufficiently trusted, even if the request might appear

to have positive motivational value. The function consideredTrusted below formalises this,

and takes an agent, a set of agent models, and a cooperation threshold, and returns true if

the trust of the agent is greater than the threshold.

171

consideredTrusted : AgentID —> P AgentModel —> R -» bool

V requester : AgentID; ms : P AgentModel; t : R •
trustO/Agent requester ms > t

=>• consideredTrusted requester ms t — true A
trustOfAgent requester ms < t

=> consideredTrusted requester ms t = false

7.9.2 Commitment to Actions

After checking that the requester is trusted, the motivational value of the request is deter

mined. The minimum information that can be included in a request is the set of actions

for which assistance is required (as described in Section 7.6). On receiving such a request,

an agent can assess the motivational value that it would get from performing the requested

actions. Where the request does not contain information about the overall goal or plan, the

agent must base its decision to cooperate on the motivational value of these actions. Each

action is considered in turn and assessed according to the motivational value associated

with it, to decide whether to cooperate for that action. Those actions that are of motivation

al value (assuming the requesting agent is trusted) are candidates for cooperation, and are

considered further to check that they do not conflict with existing intentions (as described

below). Actions that are not of motivational value are rejected, and assistance is not offered.

We formalise this below, where we define the function considerFurtherContribution, which

takes a contribution, the identifier of the requesting agent, and a cooperation threshold and

returns true if the requesting agent is sufficiently trusted, and the contribution is of positive

motivational value.

172

__ConsiderFurtherContribution-- -----
H Agent
ConsiderFurtherContribution : Contribution -> AgentID -» R -> ¿00/

V c : Contribution; requester : AgentID; i : M •
ConsiderFurtherContribution c requester t = true

consideredTrusted requester (extractAUModels beliefs) t —
true A (3 m : Motivation | m G motivations •

mvContribution m c > 0) A
ConsiderFurtherContribution c requester t = false

O consideredTrusted requester (extractAUModels beliefs) t =
false V (V m : Motivation | m G motivations •

mvContribution m c < 0)

7.9.3 Commitment to Goals

A request for assistance may also include details of the overall goal in addition to the set

of actions for which cooperation is required. It is possible that this goal may not be in

the interests of the agent, so it must consider the motivational value that would arise from

achieving it in addition to that associated with the actions it is requested to perform in its

pursuit. Each action is considered in turn, with respect to the goal. If the goal’s achievement

has no value (or is negative) then the agent will not cooperate, unless the positive effects of

performing the actions outweigh the negative influence of the goal. Conversely, an agent

will agree to perform an action in favour of a goal with a positive value if this outweighs

any negative value associated with the action.

Before formalising how to make this decision, recall from Chapter 3 that an agent

has a set of mitigation functions that determine the motivational value (i.e. the amount

by which the motivation is mitigated) of actions and goals to the motivation. In schema

ConsiderFurtherContributionGoal, we define a function that embodies the decision about

whether to consider further a request to cooperate for a contribution and a goal — if the

combined motivational value of the contribution and the goal is positive, then the agent

must consider the request further.

173

__ConsiderFurtherContributionGoal--_ _
"Agent
considerFurtherContributionGoal : Contribution -» Goal -» AgentID —>■ R

—» 600/
Vc : Contribution; g : Goa/; requester : AgentID; f : R •

considerFurtherContributionGoal c g requester t = true
O consideredTrusted requester (extractAUModels beliefs) t =

true A (3 m : Motivation | m G motivations •
mvContribution m c > 0) A (3 m : Motivation |

m G motivations • mitigation m g > 0) A
considerFurtherContributionGoal c g requester t = false

O consideredTrusted requester (extractAHModels beliefs) t =
false V (V m : Motivation | m G motivations •

mvContribution m c < 0) A (V m : Motivation \
m G motivations • mitigation m g < 0)

7.9.4 Commitment to Plans

The final type of request for assistance comprises the annotated plan for which cooperation

is needed and, to decide whether to cooperate in this case, an agent must assess the value

of the plan as a whole. The decision to cooperate is not made for individual actions, rather

a choice is made for the plan as a single indivisible whole. Thus, the motivational value of

the plan as a whole must be assessed.

The pre-execution assessment method used in plan selection, in which an agent consid

ers all possible plan elaborations cannot be used here because the agent is being asked to

cooperate for another agent's plan and cannot know how the plan will be elaborated, since

elaboration will use plans from the other agent’s plan library. Therefore, rather than try

ing to determine the value associated with any subgoals in the plan based on their possible

elaboration, we can only consider the subgoals themselves. The motivational value of the

request is then calculated simply by summing the values of the overall goal of the plan,

the actions in it (to which the agent is assigned), and the value of any subgoals contained

in it. If the plan has a positive motivational value associated with it (and the requester is

174

trusted), then it is considered further for cooperation. Otherwise, cooperation is rejected,

and no further consideration is given to the request, as formalised below in the function

considerFurtherPlan.

__ConsiderFurtherPlan —--- ---------- -
EAgent
considerFurtherPlan : Plan —> AgentID —> M —> bool

Vp : Plan] requester : AgentID; t : M •
considerFurtherPlan p requester t — true «=>

consideredTrusted requester (extractAUModels beliefs) t =
true A (3 m : Motivation | m € motivations •

mvPlan m p > 0) A
considerFurtherPlan p requester t — false <i=>

consideredTrusted requester (extractAUModels beliefs) t =
false V (V m : Motivation | m G motivations •

mvPlan m p < 0)

7.10 Generating Full Commitment to Cooperation

When insufficient agents agree to cooperate a new set of agents can be chosen to ask for

assistance, or failure can simply be accepted for the goal and plan concerned. In the former

case, previously generated nominal commitments to actions may still be used, and only

those where no agent agreed to cooperate need be pursued. Reassignment is performed in

exactly the same manner as for the initial assignment.

Reassignment, however, raises the question of whether to assign an agent who has al

ready declined one action to another action it is capable of performing. Clearly, this depends

on the reason for declining originally. If an action was declined because the overall goal

was not sufficiently valued, then reassignment in this way will have the same result, since

the overall goal is the same (unless the new action has a significantly larger motivational

value, but this unlikely). If the action was declined due to its motivational value, however,

reassignment with a different action may be acceptable. Unfortunately, it is not generally

possible to determine another’s reason for declining without explicit explanation for de

175

dining being provided. Thus, we must assume that reassignment of a declining agent to

another action is not a valid option without such an explanation. If it is not possible to

reassign because, for example, the initiator does not know of any other agents with required

capabilities, then it must admit failure.

In principle, an initiating agent might attempt to negotiate assistance from agents that

decline. However, negotiation is a large area of research in its own right, and it is not

the focus of the work described in this thesis. Nevertheless, the result of any negotiation

strategy is ultimately that an agent will agree or disagree, so that the inputs and outputs

of this phase remain unchanged if more sophisticated negotiation is introduced. It should

therefore be straightforward to incorporate such mechanisms if required for a particular

application.

We can specify a response as a tuple comprising an agent identifier, contribution, and

a boolean representing whether the response is accepting or declining to cooperate. The

function checkResponses takes an annotated plan and a set of responses and returns true if

sufficient agents have responded with an acceptance message, and false otherwise.

Response = = AgentID x Contribution x bool

__CheckResponses___ _____________________________________ ______
S UseActionRequest
EExtractlnfoJointAction
checkResponses : AnnotatedPlan -> ¥ Response —> bool

\/ap : AnnotatedPlan; rs : P Response; cid : P (Contribution x AgentID) |
cid = extractAgentsPlan ap • checkResponses ap rs = true

(Vc : Contribution \ c G (extractContributions cid) •
(3 id : AgentID • (id, c, true) G rs)) A

checkResponses ap rs = false
O (Vc : Contribution | c G (extractContributions cid) •

(Vid : AgentID • (id, c, true) £ rs))

If sufficient agents agree to assistance, then a cooperative intention is formed. The

function formFinalPlan takes an annotated plan, a set of accepting agents, and a set of

176

agent models and modifies the annotated plan such that only one agent (from the accepting

agents) is annotated to each contribution. Where there is more than one agent accepting for

a given contribution, the one that is the most trusted is selected. This specification relies

on the auxiliary functions, processStep, which selects the most trusted agents that agree to

cooperate for a plan step (and is defined in Appendix A).

__FormFinalPlan — --- ---------
HConstructConfirmationsAuxiliary
S UseActionRequest
responses : P Response
accepts : P AgentID
formFinalPlan : AnnotatedPlan —> ¥ AgentID -» P AgentModel

—> AnnotatedPlan

accepts = {r : Response | r € responses A Third(r) = true • First(r)}
Vap,ap' : AnnotatedPlan ; ms : ¥ AgentModel •

formFinalPlan ap accepts ms = ap'
O- (Vm : Z | n < #ap.body • ap'.body n =

processStep (ap.body n) accepts ms)

7.11 Cooperative Intentions in the Warehouse Domain

We can illustrate the process of cooperative intention formation by returning to the Ware

house example. Suppose that an agent, agenti, has selected a particular plan, storeLarge-
Plan, to achieve its goal of storing a box. Before a cooperative intention can be formed,

this plan must be annotated; to annotate its plan the agent considers each action step in the

plan in turn, and annotates it with the appropriate agents, based on its trust of them. Of

course, annotating a contribution to itself avoids the risk associated with cooperation, and

so is better from a risk perspective, but it does require the agent to act and so will have an

associated cost. Thus, an agent must decide whether to annotate itself to a contribution by

balancing the risk and cost. After deciding which contributions in the plan to perform itself

the agent goes through the remaining steps, annotating them with the most trusted agent (or

set of agents in the case of joint and concurrent actions) that have the required capabilities.

177

In our example, suppose that agenti annotates itself to one of the contributions in the joint

actions of picking up, moving, and putting down the box. The remaining contributions in

the joint actions are annotated to the most trusted agent, in this case agent4. Thus, the

resultant annotated plan is as follows.

name: storeLargePlan
achieves: [$(location, [boxl, room2]),

not (holding, [agenti, boxl])$]
preconditions: [(location, [boxl, loci]),

(type, [boxl, large, type2])]
body: [

<goal
[$(location, [agenti, rooml)),
(location, [agent4, rooml])$]>,

<joint-action
[<action (liftend, [agenti, boxl])=agentl>,
<action (liftend, [agent4, boxl])=agent4>]>,

<goal
[$(location, [agenti, room2]),
(location, [agent4, room2])$]>,

<joint-action
[<action (placeend, [agenti, boxl])=agentl>,
<action (placeend, [agent4, boxl])=agent4>]>]

Once the plan is annotated, the agent sends a request for assistance to agent4 and forms

a nominal commitment. For simplicity, and since we are taking a closely coupled view,

requests for assistance in the warehouse scenario are based upon communication of the

complete annotated plan. Thus, agenti’s request message to agent4 includes the complete

plan.

At this stage of execution agenti has sent a request, and formed a nominal commit

ment, and agent4 must process this request. Now, agent4 will also have perceived the

environment and the box in the delivery area, and so the intensity of its tidiness motiva

tion will also be high. The plan contained in the request mitigates this motivation, and is

considered to be of motivational value (the motivational effect outweighs the cost of per

forming the contributions). If agenti is trusted by agent4, which according to the trust

matrix given earlier it is (with a trust value of 0.96), then it accepts the request, and forms a

corresponding nominal commitment.

178

On receiving the acceptance message the initiating agent (agenti) can form a full com

mitment, since agent 4 is the only other agent involved, and send a confirmation message.

When agent4 receives this confirmation, it too can adopt a full commitment, and execution

can begin.

7.12 Commitment Strategies

Cooperation as described here, involves a certain degree of cost and risk. The formation

of a cooperative intention has computational costs associated with determining the agents

to cooperate with, communicating with them, processing their responses, and forming the

actual cooperative intention. In addition, there is an inherent cost in the limiting nature of

cooperative intention that constrains future intentions (and therefore actions). In general,

the longer the delay between obtaining commitments and relying upon them at execution

time, the more time there is for an agent’s motivations to change, and so the risk is increased.

When an agent adopts a plan containing an action for which cooperation is sought, it

can solicit assistance and initiate the formation of the required cooperative intention

• as soon as the plan is selected, using an immediate commitment strategy (ICS), or

• later at execution time, using a delayed commitment strategy (DCS).

Both these strategies require an agent to request assistance from others and elicit com

mitments from them in the form of a cooperative intention, as described earlier. The choice,

therefore, is between when to perform the tasks of assigning agents to actions, establish

ing commitments, and so on, rather than whether to perform them. If an ICS is chosen,

then these tasks are performed at the time of plan adoption, while they are undertaken at

execution time with a DCS.

Since plans are typically partial, they may be elaborated with a subplan that requires

cooperation. If the parent plan is also cooperative then an agent must already have chosen a

179

strategy when adopting it. Continually re-evaluating which strategy to use for subplans may

be prohibitively expensive when elaborating sophisticated plans, and is in any case unlikely

also to provide a different answer. Consequently, the same strategy as for the parent plan is

used, which has a lower overhead, leaving an agent more time to act. If a parent plan is not

cooperative, but is elaborated with a cooperative subplan, the situation is no different from

the general case, requiring a choice that can then be used subsequently.

7.12.1 Minimising Risk and Cost

In choosing between an ICS and a DCS, the aim is to minimise as much as possible both

the risk and cost associated with cooperation. However, although the choice of strategy

will certainly affect the cost of cooperation, since one strategy may result in the immediate

establishment of a cooperative intention while the other may involve several failed attempts

before successful establishment, it is not generally possible to determine this cost at the time

of choosing, or which strategy offers the least cost. An estimate of the minimal cost can be

obtained from the number of contributions in the plan that requires assistance, since assis

tance must be obtained for each of them. The final cost, however, is likely to be more than

this estimate, since not all agents might initially agree to cooperate, and communication

errors might occur.

Determining the exact cost of establishing a cooperative intention, requires knowledge

of how agents will respond to requests for assistance. Responses are determined by the mo

tivations of the individual agents, however, and since motivations are private any estimates

can only be based on observed behaviour. Not only is this likely to be expensive when

many agents are involved, due to the resource demands of observing and reasoning about

behaviour and motivation, but even with sufficient computational resources the resulting

information is likely to be inaccurate. Since there is, therefore, no practical means of deter

mining which strategy will have the least cost, an agent should concentrate on minimising

the risk of a plan failing through the actions of others. We now consider the factors that

180

affect the risk of failure under both an ICS and a DCS.

7.12.2 Choice Factors

When using an ICS, failure is most likely as a result of failing to secure commitments from

others at plan adoption time (if they might be obtained at execution time2), or of agents

not fulfilling commitments at execution time. The main potential failure point in a DCS

arises through failing to secure commitments from others at execution time (possibly after

performing part of the plan individually). Thus, the choice between an ICS and a DCS

corresponds to a tradeoff between the risk of wasting effort acting on the individual part of

the plan only to fail to get assistance subsequently for the cooperative part, and failing to

obtain commitments at adoption time when commitment would have been obtained later.

If there are insufficient agents with the relevant capabilities, the plan will certainly fail.

Conversely, the more agents with these capabilities, the more likely it is that enough of

them will cooperate or will provide adequate cover for those reneging on their commit

ments at execution time. Since agents act for motivational benefit, any plan in which they

cooperate must also be motivationally valued. Now since motivation, at least in part, is

determined by the environment, environmental change also results in motivational change,

and an agent that agrees to cooperate at adoption time may not do so by execution time if

there is no longer any motivational benefit. Thus, the extent to which the environment is

dynamic influences the choice of strategy, and in a dynamic environment it may be better

to postpone the establishment of commitments until execution time. Finally, the trustwor

thiness of others can be used as an indication of the likelihood that their commitments will

be fulfilled. Higher trust suggests a greater perceived likelihood of fulfilling commitments.

If other agents are generally distrusted, therefore, obtaining commitments at adoption time

may be too expensive since they are more likely to renege on them.
2For example, a change in motivations between plan adoption and execution may result in positive motiva

tional value for cooperation, or a conflicting intention at adoption time may no longer exist.

181

Trust in Choosing a Strategy

At the time of choosing between an ICS and a DCS (the point of plan adoption), it is not

known which agents will be requested for assistance, since the plan has yet to be annotated.

Consequently, it is not possible to consider only the trustworthiness of the agents whose

assistance will be requested. Instead, the trust of all capable agents must be considered.

Although the trust values may change between choosing between commitment strategies,

these changes cannot be predicted and so a decision must be based on the current trust val

ues. In Section 6.4, we discussed assessing the cooperative rating for a plan by ordering

the capable agents for each action according to trust, and weighting the influence of succes

sively less trusted agents by a corresponding increasing factor. We use this rating here as

an estimate of the risk arising from the trust of others.

Environmental Dynamism

Both the number of agents with the requisite capabilities and trustworthiness are easily

determined from agent models, but environmental dynamism is less immediately easy to

assess. However, the relationship between the changes to the environment and changes to

beliefs and motivations points to a solution. On each iteration through its control cycle,

an agent perceives the environment and updates its beliefs and motivations to reflect any

changes. The degree of dynamism in an agent’s beliefs and motivations are therefore both

candidates for estimating the environmental dynamism.

The number of beliefs that change at a given time correspond to the number of per

ceived changes in the environment. Similarly, the number of changes over a period of time

characterise the degree of environmental dynamism, so the number of changes in beliefs

can be averaged over a period to form an estimate of change per iteration. The length of the

period determines the persistence of the effects of peaks and troughs, and can be regarded

as the extent of an agent’s environmental memory. Calculating the degree of dynamism in

this manner is requires only minor extra effort, and by concentrating on changes in beliefs

182

no assumption is made about the nature of motivations of others. Where an agent has no

knowledge of the motivations of others, it is better to consider all changes in the environ

ment, rather than to assume that if its own motivations changes, then so do those of others.

Domain Dependence

The levels of importance placed on the various factors to be considered in choosing between

an ICS and a DCS, however, will vary according to the domain. For example, in a domain

where there are few other agents, the number of agents with the required capabilities may

be more important than their trust, since if there are only a few agents having the required

capabilities, then cooperation must be attempted with them, regardless of their trust (unless

they are completely distrusted). Similarly, a highly dynamic environment is more important

than agent trust, since trust may change between execution time and adoption time. It is

therefore not possible to provide a (computationally realistic) strategy for choosing between

an ICS and a DCS, that will give the best result in all domains. Indeed, even in a specific

domain, the degree to which it is dynamic may change over time, and individuals may join

or leave the system so that the number of agents with a given capability may also change.

To address this, an agent must choose dynamically which strategy to use for a particular

plan, based on its knowledge of the current situation. This choice is embodied in a decision

function that takes relevant factors as input, and which must be instantiated according to the

individual agent and its domain.

7.12.3 Strategy Choice

The input to the decision function includes threshold values representing when the environ

ment is considered too dynamic to use an ICS, or there are too few trusted agents able to

assist. In the majority of situations an ICS is suitable for establishing cooperative intention;

it is only in the circumstances identified above that a DCS should be used. For this reason,

we make an ICS the default choice of strategy, and provide an agent with a decision function

183

for choosing whether to override this default with a choice to use a DCS. A consequence

of this is that since an ICS corresponds to the approach taken in the majority of existing

models of cooperation, our model can be viewed as extending the general solution to cope

with extreme conditions. We can now give the instantiation of this decision function, as

follows, where dT and rT are the dynamism and risk (arising from trust) thresholds respec

tively. From the pre-execution assessment of its plan library an agent has an estimate of the

risk arising from its trust of others, and if this value is less than the risk threshold, or if the

perceived environmental dynamism exceeds the dynamism threshold, then a DCS should

be used. We formalise this below in the function useDCS.

UseDCS___ ____
useDCS : FAgentID -> F AgentModel -> Plan - > R - » R - » R - * R

—> R -> bool

V capable : FAgentID-, ms : FAgentModel-,
p : Plan; dynamism, dT, rT, Wy, wc : R •

useDCS capable ms p dynamism dT rT Wj wc = true
(quality p ms w* wc) > rT V dynamism > dT A

useDCS capable ms p dynamism dT rT w* wc = false
<=> (quality p ms ws wc) <rT\ J dynamism < dT

Note that if the number of capable agents is less than is required, then both strategies

fail immediately. The effectiveness of this mechanism relies on judicious choice of the

dynamism and risk thresholds. However, as the nature of the system may change over

time, the ideal threshold values may also change, and to cope with such environmental

change, an agent might dynamically modify these thresholds. For example, if an ICS is

used and agents frequently break commitments, thresholds can be increased. Similarly, if

a DCS is used without obtaining commitment at execution time, thresholds can be lowered

to encourage use of an ICS. We do not, however, consider such matters further here.

184

7.13 Intention Execution

After forming a cooperative intention, the final stage of cooperation is for the agents to ac

tually execute the plan to which they are committed. Each agent is committed to performing

a particular contribution, either individually or as part of a joint or concurrent action. Now,

in order for the execution of a plan to be successful, the steps in it must be performed in

the correct order. For an individual agent executing an individual plan by itself, ensuring

the steps in the plan are performed in order is trivial — the agent simply works through the

plan step by step, performing each action as it is reached. When a group of agents act to

gether towards the achievement of some goal, however, their individual contributions must

be coordinated. Successful execution of a cooperative plan requires agents to perform then-

contributions according to a particular ordering, namely that specified by the plan.

We do not discuss how to achieve such ordering, since it is beyond the scope of this

thesis. However, Kinny et al. offer a simple solution in their model of Planned Team Ac

tivity [55], which we adopt for completeness. Their solution is to require that the agent

executing a given action informs the agent of the following action when execution is suc

cessfully performed. Correspondingly, the agent of the following action must not perform

its contribution until it is informed that the previous action has been completed. In the case

of joint and concurrent actions we extend this solution such that the set of agents perform

ing joint or concurrent actions must inform the agent(s) of the following action when their

contributions are complete. Similarly, each agent involved in the execution of the following

action must wait until it has been informed of completion by each of the agents performing a

contribution in the previous action. Action ordering can be achieved, therefore, by inserting

appropriate communication and waiting actions into the plan prior to its execution. More

details of this approach to constraining the ordering of actions are given in Appendix B

where we describe our implementation of the framework.

At execution time, when a subgoal is reached it must be elaborated by selecting an

appropriate plan, and incorporating it into the agent’s existing intention. The mechanism

185

for plan selection described in Chapter 6 can also be used at execution time, along with

the mechanisms for intention adoption described in this chapter. However, our earlier con

sideration of intention adoption was with respect to adopting a plan for a goal, rather than

adopting a subplan for a subgoal. Although many of the issues described earlier are the

same, the manner in which the intention adoption mechanisms are used will vary depend

ing on whether the intention concerned is individual or cooperative. In particular, when

elaborating a plan for which there already exists a cooperative intention, the intentions and

motivations of the agents concerned must be considered.

The elaboration of an individual plan is straightforward, since there is no pre-existing

cooperative intention. If the selected subplan is also individual, then it is simply insert

ed into the intention as described in Chapter 4. Alternatively, if the chosen plan requires

cooperation, the agent must decide when to solicit commitments from others towards co

operation — it must choose between using an ICS or a DCS. If a DCS is chosen then the

formation of a cooperative intention is delayed until execution reaches the cooperative part

of the plan, and adoption occurs as for an individual subplan. If an immediate commitment

strategy is chosen, then the agent attempts to establish a cooperative intention towards the

subplan, before adding it to its intentions. The mechanisms used for cooperative intention

establishment and adoption are as described in this chapter.

7.13.1 Cooperative Plan Elaboration

As with individual plans, elaborating a subgoal in a cooperative plan involves selecting an

appropriate plan, and forming a corresponding intention. However, for a cooperative plan

there is typically already a group of agents having a cooperative intention. Only if the plan

was adopted using a DCS, and no cooperative actions have yet been executed, will there

not be a such a group of agents. In this case, the plan can be elaborated as though it were

an individual plan, and a DCS must be used for the subplan (since the strategy used for a

parent plan should be used for its subplans). There are two main options for plan selection

186

for a cooperative plan where a cooperative intention already exists:

• elaboration can be centralised and the task of plan selection given to a particular

individual, or

• it can be decentralised and the group can form a plan together.

In this thesis, we are concerned, with cooperation arising from individual agents, rather

than individual action resulting from some social mental state. In other words, our focus

is on the development of a framework for cooperation resulting from an individual agent

wishing to gain assistance for a particular goal. Decentralised plan formation requires some

mechanism through which members of the group offer potential plans, or assist in the con

struction of a plan. Some planning ability, is required, on behalf of the agents involved,

along with some form of negotiation. However, we are concerned with agents whose plan

ning is restricted to selecting from a predefined plan library, rather than planning from first

principles. Decentralised planning is addressed elsewhere (for example in the notion of

Shared Plans [42, 43]) and, although we do not give it further consideration here, it would

be a relatively simple extension to our framework to incorporate one of the group planning

mechanisms described elsewhere.

Therefore, we consider a centralised approach to planning in which the task of plan

selection is assigned to an individual member of the group. This approach is analogous

to that taken by Kinny et al. in their work on Planned Team Activity [55]. There are two

options in centralised planning: assign the role of plan selection to the initiating agent,

or assign it to some other agent. Since cooperation, in our framework, arises from the

initiator’s desire for assistance in achieving a goal, we assign the role of plan elaboration to

the initiating agent. There are, however, two situations in which the initiator might prefer

plan selection to be performed by an agent other than itself. Firstly, if there is some other

agent with more knowledge of the problem that is better placed to choose an appropriate

plan, or secondly, if the initiator has no applicable plans for the subgoal or those that it does

have are of zero or negative motivational value, then plan elaboration should be assigned to

187

another agent. We formalise this below in the following schema, by defining the function

delegateElaboration which returns true if the elaboration of a particular subgoal should be

assigned to another agent.

__DelegateElaboration----- .---
EAgent
delegateElaboration : Goal —> bool

V subgoal: Goal • delegateElaboration subgoal = true
(planSetForGoal subgoal beliefs planLibrary) = 0 V
(Vp : Plan; m : Motivation | m 6 motivations A

p £ {planSetForGoal subgoal beliefs planLibrary) •
mvPlan m p < 0)

V subgoal: Goal • delegateElaboration subgoal = false
(planSetForGoal subgoal beliefs planLibrary) / 0 A
(3p ; P/tf«; m : Motivation | m € motivations A

p € {planSetForGoal subgoal beliefs planLibrary) •
mvPlan m p > 0)

A group’s cooperative intention is relative to the initiating agent’s goal, since it is the

reason for their cooperation. Therefore, even if another agent selects a plan, that plan must

be accepted by the initiating agent and it must not conflict with the initiator’s intentions,

and must be of motivational value. The initiating agent, therefore, has a supervisory role

in the process of plan elaboration. Where the initiating agent is responsible for selecting

the plan to be used in elaboration, it must find the plan acceptable, otherwise it would not

have chosen it. However, where plan selection is performed through another method, some

check is need to ensure the initiator accepts the selected plan.

7.13.2 Centralised Elaboration

Using the mechanisms described in Chapter 6 the initiating agent selects the best plan for

the subgoal. There are two main options for adopting this plan. Firstly, the plan could

be communicated to the group, and adopted if it is of sufficient motivational value to each

member of the group. This mechanism, however, requires that the group are informed of

188

the complete plan which, as described earlier in this chapter, is not necessarily the best ap

proach. Secondly, the adoption of the subplan could be achieved through the application

of the mechanisms for the adoption of a (parent) plan. Recall that this involves annotating

the plan with agents to ask for assistance, requesting assistance, and then forming a com

mitment once assistance is offered. The advantage of using these mechanisms is that the

group is not informed of the complete plan where it is not appropriate to do so, and we

therefore use this latter option for the adoption of the selected plan. If the initiating agent

has no appropriate plan, then it can ask for assistance, in the form of an appropriate plan

being offered.

There is, however, one key difference between adopting a subplan of a cooperative

intention, and adopting a plan for a goal, namely, that for the intention to be a cooperative

intention some group of agents must already be committed to its achievement, or at the

very least to performing certain actions in its favour. The implication of this is that these

agents may be more likely to agree to assist in the performance of the subplan. If a given

member of the cooperative intention was informed of the goal for which assistance was

requested, then it is likely that the goal has motivational value, and so the subgoal may

also have motivational value. However, if the agent was only asked to perform a particular

action, and was not informed of the goal then its existing commitment does not indicate

that the request is likely to be motivationally valuable. It does, however, indicate that the

agent considered the initiating agent sufficiently trusted, and will not decline to cooperate

on the basis of trust (unless its trust has changed). Therefore, annotating with agents that are

already committed to the cooperative intention of which the subgoal is a part is, in general,

likely to arrive at a commitment sooner than annotating with agents with whom there is no

pre-existing commitment. This can be factored into the process of adopting a subplan if, at

the annotation stage, the initiator first tries to annotate the plan with agents that are already

part of the cooperative intention. Only if a commitment has not been established, and there

are no more agents to ask that are part of the cooperative intention, are other agents asked.

189

7.14 Summary

In this chapter we have described a set of procedures through which an agent can establish

a cooperative intention towards a plan, such that agents will only form and retain a cooper

ative intention if they expect to gain motivational value from doing so. Additionally, should

an agent’s motivations change in such a way as to make the cooperative intention no longer

of motivational value, then the commitment is dissolved, keeping all agents informed.

The first stage in the formation of a cooperative intention is for the initiating agent to

annotate its chosen plan with the agents whose assistance it will request. Plan annotation

can be minimal or redundant as determined by the importance of the agent’s goal. By

default the minimal annotation strategy is used and the redundant approach is only used if

the motivational value associated with the goal is over a particular threshold. In cases where

the redundant approach is used, the initiating agent requests assistance from several agents

for each action, and each agent that agrees forms a nominal commitment to perform that

action. Once the initiator has received responses from the requested agents, one particular

agent (the most trusted) is chosen for each contribution, and the others are informed that

their assistance is no longer required. These agents then drop their nominal commitment,

and reduce their trust of the initiator, since they have unnecessarily constrained their actions

though the nominal commitment adopted on its behalf.

In general, cooperative intentions are discharged successfully if one of the agents in

volved changes its motivations such that the cooperative activity is no longer of value (or

its commitment is dropped for some other reason). However, if an agent does not adhere

to the appropriate conventions and simply drops its commitment without informing others,

then they are left with commitments to a cooperative intention that will not be fulfilled.

Until one of the remaining agents discovers that their intention is unachievable, or drops

its commitment and informs others, the remaining members of the group will keep their

commitment, thereby constraining their actions unnecessarily. However, provided agents

follow the conventions given in Section 5.2 this problem is avoided.

190

The formation and maintenance of a cooperative intention requires agents to communi

cate certain information to each other. In order for communication to take place the agents

concerned must have a commonly understood agent communication language (ACL). There

are several existing ACLs such as KQML [47] and the FIPA ACL [33], and consideration

of such languages is beyond the scope of this thesis. Instead, an instantiation of our frame

work can use one of the existing ACLs. All that is required is that agents are able to request

assistance or information from another, accept a request for assistance, decline a request for

assistance, and inform another of something.

Related Work

The process for establishing cooperative intention outlined above is related to the work of

Cohen and Levesque, Kinny el al., and Wooldridge and Jennings, and since our view of

cooperative intention is based on their work it is useful to compare it with our approach.

All of these models aim to establish some form of group commitment to a goal and, with the

exception of Cohen and Levesque’s work, to eventually obtain a commitment from agents

to performing particular actions. Each of these approaches is based on the notion of some

initiating agent having a goal for which it desires assistance, and this agent then requesting

the cooperation of others. The details of how this is performed, however, are different in

each approach.

Recall that Cohen and Levesque’s notion of a group’s commitment (or joint intention

in their terminology) is based on the members committing to a particular goal, rather than

to a goal and a specific plan to achieve it. As we discussed in Section 5.2, this view of joint

commitment is insufficient for cooperation, because there is no requirement for agents to

be committed to performing compatible plans to achieve their goal. Moreover, Cohen and

Levesque do not consider the motivational reasons an agent might have for entering into a

cooperative interaction.

Planned Team Activity (PTA) is a related approach (introduced in Chapter 2) to cooper

191

ation which, unlike Cohen and Levesque’s model, is concerned with obtaining commitment

towards a specific plan. There are a number of differences between our approach and that

of PTA. The most significant difference is that our model is based on the assumption that

agents are motivated, whereas in PTA the issue of autonomy (and in particular motivation)

is not addressed. Although Kinny et al. state that in deciding whether to agree to coop

erate or not, agents should check their current commitments and preferences, they are not

concerned with how this happens, or the form such preferences might take, whereas for

us cooperation must be motivated on the behalf of the agents concerned. Similarly, PTA

does not consider the potential risk of interacting with others, which we address through

the notion of trust.

The final related work that we identify here is Wooldridge and Jennings’ formalisation

of the cooperative problem solving process [102, 104], in which cooperation is divided into

the four stages of recognition, team formation, plan formation, and team action as described

in Sections 2.7 and 5.3. Their work is especially relevant since we adopt an extended version

of their notion of cooperative intention. However, their formalisation is an abstract model

of cooperation and, as they themselves recognise, is idealised in the sense that it provides

a top-level specification for a system, requiring more detail before it can be implemented.

Our approach is based on their model, and we view it as instantiating some of the details that

were previously left abstract. Their model, although concerned with autonomous agents,

does not consider why an agent might enter into a cooperative intention, i.e. the reasons for

doing so, and we address this through the introduction of motivational value.

192

Chapter 8

Conclusions

8.1 Introduction

Cooperation is fundamental to the operation of multi-agent systems in which a collection of

autonomous agents interact to achieve their goals. Existing models of cooperation, however,

are limited in that they typically do not consider the need for cooperation to be motivated

on behalf of the agents involved, nor do they provide agents with a means to manage the

risk involved in interacting with others. Of the few models that do consider the notion of

motivation or of risk, they typically focus on one of these, leaving the issues arising from

the (potentially conflicting) influences of each unexplored.

Those models that take the view that an agent should have some reason, or motivation,

to cooperate tend not to give details of the form such a reason might take; instead they

simply assume that agents check their preferences before cooperating, without defining

what these preferences are, or how they operate (for example, [55,104]). Similar limitations

arise in work where the risk from cooperation is considered, in that either insufficient detail

is given about the mechanisms involved [54], such as how risk is assessed and how it can

be used in decision making, or the agents concerned are not motivated, and their decisions

regarding cooperation are based primarily on an assessment of risk without consideration of

193

the potential benefits to be obtained from different (possibly risky) courses of action [69],

For any given goal, there are often several courses of action to achieve it, from which an

agent must select the best. An agent may be faced with a choice about whether or not to

achieve its goal through cooperation, and although achieving a goal cooperatively may be

of a lower cost than achieving it alone, it is likely to have a higher risk of failure, due to the

reliance on the actions others.

In our view, as argued in Chapter 6, the choice between courses of action in a coopera

tive environment, should consider both the cost and the risk associated with these options,

and make an appropriate trade-off between them. Similarly, where an agent is asked to

assist in the achievement of another’s goal, it should consider both the motivational benefit

of doing so, and the potential risk of failure in deciding whether to accede to the request.

In this thesis we have described how an agent can make such judgements, and the process

es that are involved in cooperating if a cooperative course of action is chosen. We give

more detail of these contributions in the following section, and in Section 8.3 describe the

relation of our framework to existing work. In Section 8.4 we discuss the limitations of

our approach, and provide pointers to potential future work, and finally, in Section 8.5 we

conclude this thesis.

8.2 Contributions

The contributions made in this thesis can be divided into three significant areas: the con

struction of a framework for cooperation, and the development of detailed models of plan

selection and cooperative intention formation within that framework, as we describe in this

section.

Framework for motivated cooperation We have presented a framework for motivated

cooperation, in which an agent’s motivations guide its behaviour, and govern any

interactions it might have with others. The framework defines the form that cooper

194

ation takes and the decision mechanisms that lead to it; where appropriate, however,

the details are left open allowing it to be tailored and instantiated in a particular model

for a specific domain.

Our framework is based on the notions of BDI [3], which are widely used to provide

a balance between reactivity and deliberation. The BDI architecture alone, though,

does not account for the reasons an agent might have for adopting particular goals,

or choosing to cooperate with others. However, the additional mental component

of motivation provides a suitable means for accounting for these reasons, as argued

by Luck and d’Invemo [61]. Therefore, in our framework we extend the notions of

BDI to include motivations, and define the Senara motivated agent architecture.

Motivations give flexibility, especially in areas such as choosing a course of action

when there are multiple conflicting options. Similarly, motivations provide a means

through which agents can choose when to cooperate, i.e. when to ask for assistance,

and when to offer it. Existing work has not considered motivations in this context,

and in this thesis we have accounted for the roles that they play.

Our framework also provides a method for dealing with the risk that arises where

autonomous agents cooperate. In particular, we describe how the notion of trust can

be used by an agent to manage the risk that arises from cooperation.

Plan Selection In our view, plan selection is a fundamental component of cooperation,

since it embodies the choice of whether to cooperate or not. The process of plan

selection addresses the problem of how to choose between (and elaborate) plans in

a cooperative environment. Existing models of cooperation are limited, however,

and tend to focus on situations where cooperation is necessary, and do not consider

optional cooperation (or at least, not in sufficient detail). We present an approach

to plan selection that is appropriate in situations where cooperation is necessary or

optional, and we describe how a combination of standard planning heuristics and

an assessment of the risk associated with each plan can be used to choose a plan

to pursue. The notion of trust is introduced and, along with knowledge of agents’

195

capabilities, is used to determine the risk associated with a plan.

Cooperative Intention Formation The process of cooperative intention formation is con

cerned with forming a commitment between a group of agents to achieving a particu

lar goal cooperatively, through the execution of a specific plan. In our view this com

mitment must be motivated on behalf of the agents involved, that is to say, an agent

will only cooperate if it is in its own interest to do so, and this aspect of cooperation

is also typically not considered in existing work. There are two sides to cooperative

intention formation in our framework: soliciting commitment and offering it.

• When an agent selects a plan that requires cooperation for its successful exe

cution, it solicits commitment from others towards assisting in the execution of

the plan. We describe how an agent can assess others in terms of their capabil

ities and, more importantly, their trustworthiness in order to minimise the risk

of failure at plan execution time.

• Those agents whose assistance is requested, must decide whether to cooperate

or not. We propose a mechanism through which such agents can choose, based

on an assessment of the value of cooperation in motivational terms, and of the

risk of cooperating in terms of the trustworthiness of the other agents involved.

Our framework also defines the procedure through which a cooperative intention is

formed, where sufficient agents offer assistance. In order to be applicable in dynamic

environments, agents are given a choice about when to form such a commitment: at

plan selection time, or at plan execution time.

8.3 Relation to Existing Work

The contributions described above correspond to the key areas in which this thesis addresses

limitations in existing work on cooperation. There are, however, a number of other areas

196

that this thesis is related to, and in which it extends existing work, and we consider these in

this section.

Our framework is based on the Senara agent architecture which extends the BDI mod

el to include the additional mental component of motivation, based on Luck and d’Invemo’s

work on agent autonomy [61, 62]. Luck and d’Invemo, however, are concerned with the

development of a general framework for autonomous agency based on the notion of motiva

tion, rather than with the development of a specific agent architecture, and therefore some

details of their model are left abstract. For example, they do not specify precisely how to

instantiate the mechanisms for assessing the motivational value of generating, satisfying,

and removing goals. Senara, however, is a complete implemented architecture and can be

seen as an instantiation of their model, in which we provide the details that were previously

left abstract.

Together with motivation, trust is a fundamental component of our framework, provid

ing agents with a means to manage the risk associated with interacting with others. Our

view of trust is derived from Marsh’s work [67] and we incorporate it into our framework

of cooperation. Unlike us, however, Marsh is concerned with the issues surrounding trust

itself, rather than with its relation to cooperation as a whole or with the development of

a model of cooperation using the notion trust, and in that sense our work can be seen as

providing the details that are needed to incorporate this notion of trust into a framework for

cooperation.

Our view of cooperation is loosely based on Wooldridge and Jennings’ four stage ap

proach comprising: recognition, group formation, deciding on a course of action, and group

action. Their model is abstract and intended as a high-level specification rather than a com

plete model, and therefore requires some of the details to be instantiated before it can be

used practically in an implemented system. They also recognise that although the four

stages in their model are presented as being sequential, in practice they may not occur

strictly in the order they describe. Indeed, as discussed in Chapter 5 this is the key differ

197

ence between our model and theirs; in our approach an individual agent selects a plan that

requires cooperation and then seeks assistance, whilst in their approach an agent recognises

the potential for cooperation, seeks assistance, and then the agents as a group form a plan.

Plan selection in our model is analogous to deciding on a course of action, and recognis

ing whether this requires cooperation. If so, then a cooperative intention is formed (group

formation in Wooldridge and Jennings’ terms), and this intention can then be executed (i.e.

group action).

There are other existing models of cooperation, such as STEAM [98] and Planned Team

Activity [55], but these also do not consider either trust or motivations, and in this respect

our framework can again be seen as extending existing models such as these.

8.4 Limitations and Future Work

In the development of our framework we have made certain assumptions and decisions,

which not only shape the framework, but also give rise to limitations within it, which in

turn indicate areas of potential future work. In particular we concentrate on motivated

agents, as embodied by the Senara architecture, and we assume that these agents have

knowledge of others’ capabilities and trustworthiness. Trust, in particular, is fundamental

to our view of cooperation, and we assume that agents have appropriate estimates of the

trustworthiness of others, which are used to determine when to cooperate, and with whom.

While in general this assumption, and our use of these trust values, is effective, there are

certain aspects in which the framework is limited, in particular with respect to updating trust

values, plan assessment (for selecting between plans), and plan annotation (for choosing

agents to request assistance from).

In this thesis, we are concerned with the use of trust in making decisions about coop

eration, rather than with obtaining and maintaining trust values in themselves, and we use

a simple procedure for updating trust values after interactions. However, this procedure is

198

limited in that once an agent becomes distrusted to the extreme in the eyes of another it re

mains distrusted, and it cannot regain trust. Typically, this issue does not arise since it only

occurs with extreme distrust, and agents that are distrusted to the extreme are unlikely to

change their nature. However, there are exceptional cases in which this is a problem, such

as if an agent experiences some temporary difficulty that causes it to renege on its commit

ments, and become distrusted. If this difficulty is later addressed, there is no mechanism

through which the agent can regain the trust of others. Thus, future work might consider

the development of a more sophisticated mechanism for updating trust, such that agents can

regain trust.

The procedures for plan assessment and plan annotation are the two most computa

tionally expensive areas of the framework, and may cause problems with large numbers of

agents. The computational cost of plan assessment to an agent is proportional to the number

of plans in its library and the number of agent models, while the cost of plan annotation is

proportional to the number of agents. Both areas require further investigation, with the aim

of improving their efficiency.

The initial assessment of plans is performed off-line prior to execution, and so its cost

does not directly affect an agent. However, the environment changes over time and with

interactions, and therefore so does an agent’s trust of others, requiring new judgements to

be made about appropriate plans, i.e. re-assessment of the plan library is needed. Such

re-assessment, however, despite being performed at run-time, can be carried out while the

agent is idle, thereby reducing the effect of the computational cost on the agent’s operation.

Plan annotation, on the other hand, must be performed at execution time, since before an

agent can request assistance it must annotate its chosen plan. Therefore, although plan

assessment is more costly than plan annotation, it is plan annotation that is most significant,

since an agent has no choice about when to perform it, and cannot wait until it is idle.

In our framework, decisions about cooperation are made on the basis of motivations

and trust, and in particular, the motivational value of a given course of action to the agent

199

making the choice, and the expected risk. Where an agent solicits assistance for a plan,

others’ decisions about whether to cooperate are based on their motivations and the degree

to which they trust the requester. Now, as discussed in Chapter 6, we do not consider others’

motivations as a factor in decisions about cooperation, since an agent does not have direct

access to information about them. However, if the framework is extended to incorporate

learning based on observation, then others’ motivations could be factored into the decision

making process. If an agent is observed performing a given action, then that action must

be of motivational benefit to it, either indirectly through the goal for which the action is

performed, or directly from the action itself. Over time, an agent can build up a picture

of the actions that others are seen to perform, and can use this to estimate the likelihood

of particular agents agreeing to cooperate for the actions in a plan. Similarly, an agent’s

estimate of others’ trustworthiness can be improved by observation. For example, if an

agent is seen to renege on its commitments to another, then the trust associated with it

might be decreased, since it is observed to be untrustworthy.

There are certain aspects that are commonly associated with the cooperative process

that our framework does not consider, in particular the issues relating to negotiation and

group planning. When soliciting assistance for a goal an agent might enter into negotiation

with another in order to persuade it to offer its assistance. In our framework, when a group

of agents that are executing a cooperative plan reach a subgoal in that plan, the elaboration

of the subgoal is performed by an individual agent, using its individual plan library. Multi

agent planning [41, 42] offers an alternative approach where a group of agents construct a

plan together, by pooling their knowledge about how to achieve a goal. Both of these areas

provide scope for incorporating other existing work into our framework.

8.5 Summary

Cooperation is fundamental to multi-agent systems, and is the building block that allows

a loose collection of individuals to act together and achieve goals that might otherwise be

200

unachievable. This thesis can be seen as extending existing work in a number of areas, as

follows. In particular,

• the BDI approach has been extended by giving agents motivations, which provide the

reasons for their behaviour, and allows them to be more flexible,

• we have instantiated previous work on motivation in a complete framework for coop

eration, and accounted for the roles that motivations play in the cooperative process,

• cooperation with autonomous agents involves an inherent risk, and we have extended

previous work on trust to provide means for managing this risk, and

• we have addressed some of the limitations in existing models of cooperation, in par

ticular with respect to motivation and trust.

We focus in particular on the problems of risk, flexibility, and dynamism, and we use

the notions of trust and motivation to address the issues that arise, and we do not address

certain other aspects, such as negotiation and multi-agent planning. In that sense, while the

work has moved the state of the art forwards a substantial amount, just as in any significant

and valuable endeavour, the path ahead offers opportunity for further work.

201

References

[1] L. P. Beaudoin and A. Sloman. A study of motive processing and attention. In

A. Sloman, D. Hogg, G. Humphreys, D. Partridge, and A. Ramsay, editors, Prospects

fo r Artificial Intelligence, pages 229-238, Amsterdam, 1993. IOS Press.

[2] M. E. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,

1987.

[3] M. E. Bratman. What is intention? In P. R. Cohen, J. Morgan, and M. E. Pollack,

editors, Intentions in Communication, pages 15-32. MIT Press, 1990.

[4] M. E. Bratman. Shared cooperative activity. Philosphical Review, 101(2):327—341,

April 1992.

[5] M. E. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical

reasoning. Computational Intelligence, 4:349-355, 1988.

[6] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal o f

Robotics and Automation, 2(1): 14-23, 1986.

[7] R. A. Brooks. Elephants don’t play chess. In P. Maes, editor, Designing Autonomous

Agents. MIT Press, 1990.

[8] R. A. Brooks. Intelligence without reason. In Proceedings o f the Twelfth Internation

al Joint Conference on Artificial Intelligence (IJCAI-91), pages 569-595, Sydney,

Australia, 1991.

202

[9] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139-

159, 1991.

[10] C. Castelfranchi. Social power. In Y. Demazeau and J.-R Muller, editors, Decentral

ized A.I.: Proceedings o f the First European Workshop on Modelling Autonomous

Agents in a Multi-Agent World (MAAMAW-89), pages 49-62. Elsevier Science Pub

lishers B.V., 1990.

[11] C. Castelfranchi. Guarantees for autonomy in cognitive agent architecture. In M. J.

Wooldridge and N. R. Jennings, editors, Intelligent Agents: Proceedings o f the First

International Workshop on Agent Theories, Architectures and Languages (ATAL-94),

pages 56-70. Springer-Verlag, 1995.

[12] C. Castelfranchi and R. Conte. Distributed artificial intelligence and social science:

Critical issues. In G. M. P. O’Hare and N. R. Jennings, editors, Foundations o f

Distributed Artificial Intelligence, pages 527-542. John Wiley & Sons, 1996.

[13] C. Castelffanchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy,

social importance, and quantification. In Proceedings o f the Third International Con

ference on Multi-Agent Systems (ICMAS-98), pages 72-79, Paris, France, 1998.

[14] C. Castelffanchi, M. Miceli, and A. Cesta. Dependence relations among autonomous

agents. In E. Werner and Y. Demazeau, editors, Decentralized A.I. 3: Proceedings

o f the Third European Workshop on Modelling Autonomous Agents in a Multi-Agent

World (MAAMAW-91), pages 215-227. Elsevier Science Publishers B.V., 1992.

[15] P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial

Intelligence, 42:213-261, 1990.

[16] P. R. Cohen and H. J. Levesque. Persistence, intention, and commitment. In P. R.

Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in Communication, pages

33-69. MIT Press, 1990.

203

[17] P. R. Cohen and H. J. Levesque. Confirmations and joint action. In Proceedings

o f the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91),

pages 951-957, Sydney, Australia, 1991.

[18] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25:487-512, 1991.

[19] P. R. Cohen, H. J. Levesque, and I. Smith. On team formation. In J. Hintikka and

R. Tuomela, editors, Contemporary Action Theory. Synthese, 1997.

[20] R. Conte, M. Miceli, and C. Castelffanchi. Limits and levels of cooperation: Dis

entangling various types of prosocial interaction. In Y. Demazeau and J.-P. Muller,

editors, Decentralized A.I. 2: Proceedings o f the Second European Workshop on

Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-90), pages 147—

157. Elsevier Science Publishers B.V., 1990.

[21] I. Craig. Formal Specification o f Advanced AI Architectures. Ellis Horwood, 1991.

[22] D. C. Dennett. Brainstorms: Philosophical essays on mind and psychology. Har

vester Press, Hassocks, Sussex, 1978.

[23] M. Deutsch. Cooperation and trust: Some theoretical notes. In M. R. Jones, editor,

Nebraska Symposium on Motivation, pages 275-319. University of Nebraska Press,

1962.

[24] M. d’Invemo, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of

dMARS. In M. P. Singh, A. Rao, and M. J. Wooldridge, editors, Intelligent Agents IV:

Proceedings o f the Fourth International Workshop on Agent Theories, Architectures

and Languages (ATAL-97), pages 155-176. Springer-Verlag, 1998.

[25] M. d’Invemo and M. Luck. Engineering AgentSpeak(L): A formal computational

model. Journal o f Logic and Computation, 8(3):233-260, 1998.

[26] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231-272, 1979.

204

[27] A. F. Dragoni. A model for belief revision in a multi-agent environment. In E. Werner

and Y. Demazeau, editors, Decentralized A.I. 3: Proceedings o f the Third European

Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-91),

pages 103-112. Elsevier Science Publishers B.V., 1992.

[28] E. H. Durfee. Blissful ignorance: Knowing just enough to coordindate well. In

Proceedings o f the First International Conference on Multi-Agent Systems (ICMAS-

95), pages 406-413, San Francisco, CA, 1995.

[29] I. A. Ferguson. TouringMachines: An architecture for dynamic, rational, mobile

agents. PhD thesis, University of Cambridge, November 1992. Technical Report

No. 273.

[30] I. A. Ferguson. Integrated control and coordinated behaviour: A case for agent mod

els. In M. J. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Proceedings

o f the First International Workshop on Agent Theories, Architectures and Languages

(ATAL-94), pages 203-218. Springer-Verlag, 1995.

[31] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2(3—4): 189-208, 1971.

[32] K. Fischer, Müller J. R, and M. Pischel. A pragmatic BDI architecture. In Intelligent

Agents II: Proceedings o f the Second International Workshop on Theories, Architec

tures and Languages (ATAL-95), pages 203-218, Wooldridge, M. J. and Müller, J. P.

and Tambe, M., 1996. Springer-Verlag.

[33] Foundation for Intelligent Physical Agents (FIPA). Agent communication language,

April 1999.

[34] S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy for

autonomous agents. In J. P. Müller, M. J. Wooldridge, and N. R. Jennings, editors,

Intelligent Agents III: Proceedings o f the Third International Workshop on Agent

205

Theories, Architectures and Languages (ATAL-96), pages 21-35. Springer-Verlag,

1997.

[35] N. Friedman and J. Y. Halpem. Modeling belief in dynamic systems, Part I: Founda

tions. Artificial Intelligence, 95(2):257-316, 1997.

[36] J. R. Galliers. Autonomous belief revision and communication. In P Gardenfors,

editor, Belief Revision, pages 220-246. Cambridge University Press, 1992.

[37] D. Gambetta. Can we trust trust? In D. Gambetta, editor, Trust: Making and

Breaking Cooperative Relations, pages 213-237. Basil Blackwell, 1988.

[38] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings o f

the Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677-682,

Seattle, WA, 1987.

[39] R. Goodwin. Formalizing properties of agents. Technical report, Carnegie Mellon

University, 1993.

[40] N. Griffiths and M. Luck. Cooperative plan selection through trust. In F. J. Gar-

ijo and M. Boman, editors, Multi-Agent System Engineering: Proceedings o f the

Ninth European Workshop on Modelling Autonomous Agents in a Multi-Agent World

(MAAMAW’99). Springer-Verlag, 1999.

[41] B. Grosz. Collaborative systems. AIMagazine, 17(2):67-85, 1996.

[42] B. Grosz and S. Kraus. Collaborative plans for complex group actions. Artificial

Intelligence, 86:269-358, 1996.

[43] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R. Cohen, J. Morgan, and

M. E. Pollack, editors, Intentions in Communication, pages 417-444. MIT Press,

1990.

206

[44] A. Haddadi and K. Sundermeyer. Belief-Desire-Intention agent architectures. In

G. M. P. O’Hare and N. R. Jennings, editors, Foundations o f Distributed Artificial

Intelligence, pages 169—185. John Wiley & Sons, 1996.

[45] J. R. P. Halperin. Machine motivation. In J.-A. Meyer and H. Roitblat, editors, From

Animals to Animats, Proceedings o f the First International Conference on Simulation

o f Adaptive Behavior, pages 213-221. MIT Press, 1991.

[46] J. Y. Halpem and Y. Moses. Knowledge and common knowledge in a distributed

environment. Journal o f the Association for Computing Machinery, 37(3):549-587,

1990.

[47] ARPA Knowledge Sharing Initiative. Specification of the KQML agent-

communication language. ARPA Knowledge Sharing Initiative, External Interfaces

Working Group working paper, July 1993.

[48] N. R. Jennings. On being responsible. In E. Werner and Y. Demazeau, editors,

Decentralized A.I. 3: Proceedings o f the Third European Workshop on Modelling

Autonomous Agents in a Multi-Agent World (MAAMAW-91), pages 93-102. Elsevier

Science Publishers B.V., 1992.

[49] N. R. Jennings. Commitments and conventions: The foundation of coordination in

multi-agent systems. Knowledge Engineering Review, 8(3):223-250, 1993.

[50] N. R. Jennings. Specification and implementation of a Belief-Desire-Joint-Intention

architecture for collaborative problem solving. International Journal o f Intelligent

and Cooperative Information Systems, 2(3):289-318, 1993.

[51] N. R. Jennings. Cooperation in industrial multi-agent systems, volume 43 of World

Scientific series in computer science. World Scientific, Singapore, 1994.

[52] N. R. Jennings and E. H. Mamdani. Using joint responsibility to coordinate collab

orative problem solving in dynamic environments. In Proceedings o f the Tenth Na

207

tional Conference on Artificial Intelligence (AAAI-92), pages 269-275, San Diego,

CA, 1992.

[53] N. R. Jennings, K. R Sycara, and M. Wooldridge. A roadmap of agent research and

development. Journal o f Autonomous Agents and Multi-Agent Systems, 1(1):7—36,

1998.

[54] C. M. Jonker and J. Treur. Formal analysis of models for the dynamics of trust based

on experiences. In F. G. Garijo and M. Boman, editors, Multi-Agent System Engi

neering: Proceedings o f the Ninth European Workshop on Modelling Autonomous

Agents in a Multi-Agent World (MAAMAW-99), pages 221-231, 1999.

[55] D. Kinny, M. Ljungberg, A. Rao, E. Sonenberg, G. Tidhar, and E. Werner. Planned

team activity. In Proceedings o f the Forth European Workshop on Modelling Au

tonomous Agents in a Multi-Agent World (MAAMAW-92), pages 227-256, 1992.

[56] J. E. Laird, A. Newell, and P.S. Rosenbloom. SOAR: an architecture for general

intelligence. Artificial Intelligence, 33(1): 1-64, 1987.

[57] V. R. Lesser and D. D. Corkill. The distributed vehicle monitoring testbed: A tool for

investigating distributed problem solving networks. In AI Magazine, pages 15-33,

Fall 1983.

[58] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On acting together. In Proceedings

o f the Eighth National Conference on Artificial Intelligence (AAAI-90), pages 94-99,

Boston, MA, 1990.

[59] M. Luck. Motivated Inductive Discovery. PhD thesis, UCL, University of London,

1993.

[60] M. Luck. Foundations of multi-agent systems: Issues and directions. Knowledge

Engineering Review, 12(3):307-308, 1997.

208

[61] M. Luck and M. d’Invemo. A formal framework for agency and autonomy. In

Proceedings o f the First International Conference on Multi-Agent Systems, pages

254-260. AAAI Press/The MIT Press, 1995.

[62] M. Luck and M. d’Invemo. Structuring a Z specification to provide a formal frame

work for autonomous agent systems. In J. P. Bowen and M. G. Hinchey, editors,

Proceedings o f the Ninth International Conference o fZ Users (ZUM-95), pages 47-

62, Heidelberg, 1995. Springer-Verlag.

[63] M. Luck and M. d’Invemo. Motivated behaviour for goal adoption. In C. Zhang and

D. Lukose, editors, Multi-Agent Systems Methodologies and Applications: Proceed

ings o f the Fourth Australian Workshop on Distributed Artificial Intelligence, pages

53-73. Springer-Verlag, 1998.

[64] M. Luck, N. Griffiths, and M. d’Invemo. From agent theory to agent construction:

A case study. In J. P. Müller, M. J. Wooldridge, and N. R. Jennings, editors, Intelli

gent Agents III: Proceedings o f the Third International Workshop on Agent Theories,

Architectures and Languages (ATAL-96), pages 49-63. Springer-Verlag, 1997.

[65] N. Luhmann. Familiarity, confidence, trust: Problems and alternatives. In D. Gam-

betta, editor, Trust: Making and Breaking Cooperative Relations, pages 94-107.

Basil Blackwell, 1988.

[66] P. Maes. How to do the right thing. Connection Science, 1(3):291—323, 1989.

[67] S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, University of

Stirling, 1994.

[68] S. Marsh. Optimism and pessimism in trust. In Proceedings o f the Ibero-American

Conference on Artificial Intelligence (IBERAMIA ’94), 1994.

[69] S. Marsh. Trust in distributed artificial intelligence. In C. Castelfranchi and E. W-

emer, editors, Artificial Social Systems, pages 94-112. Springer-Verlag, 1994.

209

[70] A. R. Mele. Motivational intemalism: The powers and limits of practical reasoning.

Philosophia, 19(4), 1989.

[71] B. G. Milnes. A specification of the Soar architecture in Z. Technical report, Carnegie

Mellon University, 1992.

[72] B. Moulin and B. Chaib-Draa. An overview of distributed artificial intelligence. In

G. M. R O’Hare and N. R. Jennings, editors, Foundations o f Distributed Artificial

Intelligence, pages 3—55. John Wiley & Sons, 1996.

[73] J. P. Müller. Architectures and applications of intelligent agents: A survey. Knowl

edge Engineering Review, 13(4):353-380, 1998.

[74] J. P. Müller and M. Pischel. Modelling interacting agents in dynamic environments.

In A. Cohn, editor, Proceedings o f the Eleventh European Conference on Artificial

Intelligence (ECAI-94), pages 709-713. John Wiley & Sons, 1995.

[75] T. J. Norman. Motivation-based direction o f planning attention in agents with goal

autonomy. PhD thesis, University of London, 1996.

[76] T. J. Norman and D. Long. Goal creation in motivated agents. In M. J. Wooldridge

and N. R. Jennings, editors, Intelligent Agents: Proceedings o f the First International

Workshop on Agent Theories, Architectures and Languages (ATAL-94), pages 277-

290. Springer-Verlag, 1995.

[77] T. J. Norman and D. Long. Alarms: An implementation of motivated agency. In M. J.

Wooldridge, J. P. Müller, and M. Tambe, editors, Intelligent Agents II: Proceedings

o f the Second International Workshop on Theories, Architectures and Languages

(ATAL-95), pages 219-234. Springer-Verlag, 1996.

[78] H. S. Nwana. Software agents: An overview. Knowledge Engineering Review,

11(3):205-244, 1996.

210

[79] H. S. Nwana and M. Wooldridge. Software agent technologies. BT Technology

Journal, 14(4):68-78, October 1996.

[80] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification and Z.

Prentice Hall, 1996.

[81] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.

In Walter Van de Velde and J. W. Perram, editors, Agents Breaking Away: Pro

ceedings o f the Seventh European Workshop on Modelling Autonomous Agents in a

Multi-Agent World (MAAMAW-96), pages 42-55. Springer-Verlag, 1996.

[82] A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of

situated reasoning systems. In Proceedings o f the Thirteenth International Joint

Conference on Artificial Intelligence (IJCAI-93), pages 318-324, Chambéry, France,

1993.

[83] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In Proceedings

o f the First International Conference on Multi-Agent Systems (ICMAS-95), pages

312-319, San Francisco, 1995. AAAI Press/The MIT Press.

[84] A. S. Rao, M. P. Georgeff, and E. A. Sonenberg. Social plans. In E. Werner and

Y. Demazeau, editors, Decentralized A.I. 3: Proceedings o f the Third European

Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-91),

pages 57-76. Elsevier Science Publishers B.V., 1992.

[85] J. S. Rosenschein and M. R. Genesereth. Deals among rational agents. In Proceed

ings o f the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85),

pages 91-99, Los Angeles, CA, 1985.

[86] S. Russell and P. Norvig. Artificial intelligence: A modem approach. Prentice Hall,

1995.

[87] J. R . Searle. Intentionality: An essay in the philosophy o f mind. Cambridge Univer

sity Press, 1983.

211

[88] J. R . Searle. Collective intentions and actions. In R R. Cohen, J. Morgan, and M. E.

Pollack, editors, Intentions in Communication, pages 401-415. MIT Press, 1990.

[89] J. S. Sichman and Y. Demazeau. Exploiting social reasoning to deal with agency level

inconsistency. In Proceedings o f the First International Conference on Multi-Agent

Systems (ICMAS-95), pages 352-359, San Francisco, CA, 1995. AAAI Press/The

MIT Press.

[90] J. S. Sichman, Y. Demazeau, R. Conte, and C. Castelfranchi. A social reasoning

mechanism based on dependence networks. In A. Cohn, editor, Proceedings o f the

Eleventh European Conference on Artificial Intelligence (ECAI-94), pages 188-192,

Amsterdam, The Netherlands, 1995. John Wiley & Sons.

[91] H. Sidgwick. The methods o f ethics. Macmillan, London, 1966.

[92] H. A. Simon. Motivational and emotional controls of cognition. Psychological Re

view, 74:29-39, 1967.

[93] A. Sloman. Motives mechanisms and emotions. Cognition and Emotion, 1(3):217—

234, 1987.

[94] R. G. Smith. The contract net: A formalism for the control of distributed problem

solving. In Proceedings o f the Fifth International Joint Conference on Artificial

Intelligence, page 472, Cambridge, MA, 1977.

[95] R. G. Smith and R. Davis. Frameworks for cooperation in distributed problem solv

ing. IEEE Transactions on Systems, Man, and Cybernetics, 11(1):61—70, 1981.

[96] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, Hemel Hemp

stead, 2nd edition, 1992.

[97] M. Tambe. Agent architectures for flexbile, practical teamwork. In Proceedings

o f the Fourteenth National Conference on Artificial Intelligence (AAAI-97), Rhode

Island, Providence, 1997.

212

[98] M. Tambe. Towards flexible teamwork. Journal o f Artificial Intelligence Research,

7:83-124, 1997.

[99] M. Tambe and W. Zhang. Towards flexible teamwork in persistent teams. In Pro

ceedings o f the Third International Conference on Multi-Agent Systems (ICMAS-98),

Paris, France, 1998.

[100] R. Tuomela and K. Miller. We-intentions. Philosophical Studies, 53:367-389, 1988.

[101] B. Williams. Formal structures and social reality. In D. Gambetta, editor, Trust:

Making and Breaking Cooperative Relations, pages 3-13. Basil Blackwell, 1988.

[102] M. Wooldridge and N. R. Jennings. Formalizing the cooperative problem solving

process. In Proceedings o f the Thirteenth International Workshop on Distributed

Artificial Intelligence (IWDAI-94), pages 403-417, Lake Quinhalt, WA, 1994.

[103] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. Knowl

edge Engineering Review, 10(2): 115-152, 1995.

[104] M. Wooldridge and N. R. Jennings. Cooperative problem-solving. Journal o f Logic

and Computation, 9(4):563-592, 1999.

[105] M. J. Wooldridge. The Logical Modelling o f Computational Multi-Agent Systems.

PhD thesis, University of Manchester, August 1992.

[106] J. B. Wordsworth. Software Developement with Z. Addison-Wesley, 1992.

213

Appendix A

Specification

A .l Introduction

In this appendix we present the complete specification of the framework developed in this

thesis, and give examples of how particular parts of it can be instantiated. The purpose

of this appendix is to give the supporting specification for the parts of the framework that

are specified elsewhere in the relevant chapters, where the components they specify are

introduced. In view of this aim, we let the specification in this chapter stand for itself, and

give only a brief supporting text indicating the purpose of each part of the specification.

A.2 Primitives

In this section we define the primitive types on which the specification is based, namely the

notions of terms and predicates.

[Const, Var, PredSym]

Term const((Const))
| var ((Var))

214

— Predicate______
symbol : PredSym
terms : seq Term

A.3 Environment

An environment comprises a set of perceivable features, or attributes, where an attribute is

simply represented as a predicate. The schema Env represents the particular environment in

which an agent is situated.

Attribute =— Predicate
Environment =— P Attribute

__Env____ ______________________________ .____________ ______ _
environment: Environment

A.4 Perceptions

A view is a set of perceivable features, or attributes, and a perception action is a function that

takes an environment and returns a view, corresponding to the features in the environment

that an agent perceives.

View = = P Attribute
PerceptionAction = = Environment —> View

A.5 Beliefs

We define a literal as a predicate or its negation. A belief is then defined as a single literal,

and an agent’s beliefs as a set of such beliefs.

Literal pos({Predicate))
I not ((Predicate))

215

Belief == Literal
Beliefs = = ¥ Belief

A.6 Goals

A goal is a situation that an agent wishes to bring about, and is defined to be a set of literals.

Goal = = ¥ Literal

A.7 Actions

A contribution is an action that can be performed by an individual agent, and is defined

to comprise an action symbol, a sequence of terms (representing the parameters of the

action), and an agent identifier that corresponds to the agent that should perform it. The

effects of performing a contribution are defined by the function contributionEffects, and its

preconditions by the function contributionPreconditions.

[ActSym, AgentID]

__Contribution__ __
symbol: ActSym
terms : seq Term
agentID : AgentID * I

| contributionEffects : Contribution -> Environment —> Environment

Precondition = = Literal

I contributionPreconditions : Contribution -» ¥ Precondition

216

A.8 Joint and Concurrent Actions

In this section we define joint and concurrent actions, both of which are composite actions

made up of individual contributions; the contributions in a joint action must be synchronised

and performed together, while those in a concurrent action do not require such synchroni

sation.

__JointAction------------ -- ----------
contributions : P Contribution

contributions > 2

CAcomponent Contrib((Contribution))
| JA ((P Contribution))

__ConcurrentAction----------------
contributions : P CAcomponent

contributions > 2

A.9 Plans

In order to specify a plan, we first specify that a step in a plan is either an individual, joint

or concurrent action, or a subgoal. We then specify a plan to comprise a sequence of steps

to achieve a goal, under a particular set of preconditions.

PlanStep ::= Individual ({Contribution))
| Joint {{F Contribution))
| Concurrent((P CAcomponent))
| Subgoal ((Goal))

Plan_______________
achieves : Goal
preconditions : P Belief
body : seq PlanStep

217

A.10 Intentions

In this section we define an intention as containing a stack of plans (represented by a se

quence), a relevance condition, and the goal to which the intention is towards. The sequence

of plans are constrained such that the plan at position / + 1 is a subplan of that at position i.

bool ::= true | false

isSubPlanOf : Plan —> Plan —> bool

Vp,q : Plan • isSubPlanOf p q = true
<=> (3g : Goal • Subgoal(g) = head(q.body) A p.achieves = g)

extractPlan : (Ni x seq Plan) -+> Plan

V» : Ni; pseq : seq Plan | i < fipseq •
3xp : Plan • extractPlan (i,pseq) = p A {p} = ran({/} 1 pseq)

__Intention------ ---
plans : seq Plan
relevance : IP Belief
satisfies : Goal

V / : Ni | / < fiplans - 1 •
isSubPlanOf (extractPlan (i + 1,/Va«s)) (extractPlan (i,plans))

= true

A. 11 Motivations

We introduce a given set to represent the set of motivation symbols, and define a motivation

to have a name (in the form of a motivation symbol), intensity, threshold, and a set of goals

that it can generate.

[MotiveSym]

218

— Motivation_____
name : MotiveSym
intensity : R
threshold : R
goals : P Goal

The following functions are applied to motivations. The first determines the intensity

that the motivation should take in a given believed situation, while the latter four return the

motivational value of a goal, contribution, plan, and intention respectively.

assessSituation : Motivation —> P Belief —> R
mitigation : Motivation -> Goal —> R
mvContribution : Motivation —> Contribution -» R
mvPlan : Motivation —» Plan —> R
mvlntention : Motivation -> Intention —>• R

A.12 Agent Mental Components

Before specifying the mental components that comprise a S e n a r a agent, we introduce a

given set to represent a nominal commitment; we define nominal commitment later, and so

this is simply a forward definition. We specify an agent as having an unique identifier and a

set of capabilities, perceiving capabilities, beliefs, goals, intentions, motivations, and nom

inal commitments, along with a plan library from which it can select the most appropriate

for its goals.

[NominalCommitment]

219

agentID : AgentID
capabilities : P Contribution
perceivingCapabilities : P PerceptionAction
beliefs : ¥ Belief
goals : P Goal
intentions : P Intention
motivations : ¥ Motivation
planLibrary : P Plan
nominalCommitments : P NominalCommitment

motivations f 0
V c : Contribution • c € capabilities c.agentID = agentID

__Agent__

A. 13 Perceiving the Environment

In the following schema we specify perception by defining an agent’s current view to be the

combined result of applying its perceiving capabilities to the current environment.

__AgentPerception--- ----------
EEnv
5Agent
view : View

view — U{v : View | (3pA ct: PerceptionAction |
pAct G perceivingCapabilities • v — pAct environment)}

A. 14 Updating Beliefs

An agent updates its beliefs in the light of its perceptions, by translating the attributes in its

current view into a set of candidate beliefs, and then it revising its beliefs to include those

candidate beliefs that are appropriate.

220

AAgent
SA gen tPerception
interpretView : View —> F Belief
reviseBeliefs : P Belief -* P Belief —» P Belief
candidateBeliefs : P Belief

candidateBeliefs = interpretView view
beliefs' = reviseBeliefs beliefs candidateBeliefs
goals' = goals
intentions' = intentions
motivations? = motivations

__UpdateBeliefs___________________________

A. 15 Updating Motivations

In this section we formalise the process through which an agent updates the intensities

of its motivations. We define the notion of an intensity association, which is a 3-tuple

containing a set of beliefs, a motivation, and an intensity change, such that the motivation’s

intensity should change proportionally by the specified amount if the agent holds the beliefs

The schema UpdateMotivations, defines how an agent should update the intensity of its

motivations using a set of intensity associations.

r [y v y l
First: X x Y x Z -> X
Second : X x Y x Z -» Y
Third : X x Y x Z - > Z

Vx : X\ y : Y; z : Z • First(x,y,z) = x A
Second(x,y, z) —y f \ Third(x,y,z) = z

iAssociation = = ¥ Belief x Motivation x M

221

— IntensityAssociation____________________________
iAssociations : IP ¿Association

V B : P Belief ; m : Motivation; / : R; a : iAssociation •
a — (B,m,i) A a E iAssociations

=> (V/ : R; a' : iAssociation | a' = (5, m j) A
a' G iAssociations • i = j)

__UpdateMotivations--- ---------
AAgent
EIntensityAssociation
getlntensity : P iAssociation —> P Belief —> Motivation —> R

V7v4 : ¥ iAssociation-, B : ¥ Belief-, m : Motivation-, i : R •
getlntensity IAB m = i

<(=> (3 iA : iAssociation • iA G IA A B = First(iA) A
m = Second(iA) A i — Third(iA))

Vm : Motivation | m 6 motivations • (3j m' : Motivation |
m! E motivations' • m!.name = m.name A

m! .intensity = m.intensity*
{getlntensity iAssociations beliefs m) A

m!.threshold = m.threshold A m!.goals = m.goals)
beliefs' = beliefs
goals' — goals
intentions' = intentions

A. 16 Ensuring Goals are Motivated

An agent’s goals must be of motivational value, and we formalise this in the following

schema.

222

__DropJJnmotivatedGoals--
AAgent

\/g : Goal | g G goals • g G goals' <=> (3 m : Motivation |
m G motivations • (mitigation mg) > 0 A m.intensity > 0)

Mg : Goal \ g G goals • g & goals' (Mm : Motivation |
m G motivations • mitigation m g = 0 V m.intensity = 0)

beliefs' = beliefs
intentions' = intentions
motivations' = motivations

A. 17 Goal Generation

In this section we specify how an agent generates new goals according to its motivations.

The function generateGoals, takes a particular motivation, an agent’s beliefs and its other

motivations, and returns a set of goals that are generated by that motivation given the current

believed situation.

| generateGoals : Motivation —> ¥ Belief -» ¥ Motivation —> ¥ Goal

Now, different agents may utilise different strategies for generating goals, meaning that

agents may have different instantiations of the above function. However, a simple approach

is to mirror that taken in assessing the intensity of motivations, such that agents have a set

of associations (in the form of a set of 3-tuples) that determine the goals that are generated

in a particular situation.

gAssociation = = ¥ Belief x Motivation x IP Goal

__GoalGenerationAssociation_________________ ________________ __
gAssociations : ¥ gAssociation

MB : ¥ Belief m : Motivation; G : P Goal] a : gAssociation •
a — (B,m,G) A a G gAssociations

=>► (MH : P Goal-, a' : gAssociation | a' = (B,m ,H) A
a' G gAssociations • G = H)

223

__GoalGeneration--
AAgent
activeMotivations : P Motivation
generatedGoals : P Goal

activeMotivations —
{m : Motivation | m £ motivations A m.intensity > m.threshold}

generatedGoals =
U fG : P Goal | (3 w : Motivation | m € activeMotivations •

G = generateGoals m beliefs motivations)}
goals' = goals U generatedGoals
beliefs' = beliefs
intentions' = intentions
motivations' = motivations

A.18 Ensuring Intentions are Appropriate

In the same way that an agent’s goals must be of motivational value, so must its intentions.

However, an intention should also be dropped if it is believed to be achieved, unachievable,

or irrelevant, and we formalise this below.

224

__Droplnappropriatelntentions________________________ ________
A Agent
is Achieved : Intention —> ¥ Belief —> bool
isAchievable : Intention —> ¥ Belief -> bool
isRelevant : Intention —> bool
isMotivated : Intention —> bool

V / : Intention | t G intentions • isRelevant i = true
(V : Belief | b £ i.relevance » b e beliefs) A

isRelevant i = false <=> (3 b : Belief | b € i.relevance • b £ beliefs)
V i : Intention | i £ intentions • isMotivated i = true

O ’ (3 m : Motivation | m £ motivations •
m.intensity > 0 A (mitigation m i.satisfies) > 0) A

isMotivated i = false O (V m : Motivation | m £ motivations •
mitigation m (i.satisfies) = 0V m.intensity = 0)

V i : Intention \ i £ intentions • i £ intentions'
0 isAchieved i beliefs = false A isAchievable i beliefs = true A

isRelevant i = true A isMotivated i = true A
1 0 intentions'
O isAchieved i beliefs = true V isAchievable i beliefs = false V

isRelevant i = false V isMotivated i = false
beliefs' = beliefs
goals' = goals
motivations' = motivations

A. 19 Intention Adoption

For each of its active motivations an agent should attempt to adopt an intention for the goal

generated by that motivation, or the most motivated goal if more than one goal is generated.

When incompatibilities are found they should be resolved in such a way as to afford the

highest motivational value to the agent.

225

preconMet : P Literal —► Beliefs —> bool
pMet : Literal —» Beliefs -» bool

V / : Literal, bel \ Beliefs • pA/e/ / bel = true
O (3p : Predicate • l = pos{p) A pos(p) G />e/) V

(3p : Predicate • l = MO/(p) A pos(p) 0 Z>e/)
V / : Literal, bel : Beliefs • pMet 1 bel = false

O (3p : Predicate • / = pos(p) A pos(p) 0 /><?/) V
(3p : Predicate • l = not(p) A pos(p) e bel)

VZ, : F Literal; bel : Beliefs • preconMet L bel = true
(V / : Literal \ l 6 L » pMet l bel = true)

VZ : F Literal; bel : Beliefs • preconMet L bel — false
O (3 / : Literal \ l G L • pMet l bel = false)

planSetForGoal : Goal —> P Belief —> P Plan -+> P Plan

V g : Goa/; bel : F Belief ; plib : P Plan • planSetForGoal g bel plib
= {p : Plan | p G plib A p.achieves = g A

preconMetp.preconditions bel = true}

| planForGoal : P Belief —> P Intention —> P Plan —> Goal -+> Plan

__IntentionAdoption -- -- ----------------
AAgent
activeMotivations : F Motivation
activeGoals : P Goal
currentlntendedGoals : P Goal
newIntendedGoals : P Goal
resolvelncompatibilities : P Goa/ —* P Goal —> P Goal

activeMotivations =
(w : Motivation | m G motivations A m.intensity > m.threshold}

activeGoals = {g : Goal | g G goals A
(3m : Motivation | m G activeMotivations A mitigation m g > 0 •

(Vg7 : Goa/1 g7 G goals A g7 f g •
(mitigation mg) > (mitigation mg7)))}

currentlntendedGoals =
(g : Goal | (3 / : Intention \ i G intentions • i.satisfies = g)}

newIntendedGoals = resolvelncompatibilities
currentlntendedGoals activeGoals

intentions' = {/ : Intention | ¡.satisfies G newIntendedGoals A
i G intentions} U {/ : Intention | i.satisfies G newIntendedGoals A

i £ intentions A head(i.plans) =
planForGoal beliefs intentions planLibrary ¡.satisfies}

226

A.20 Intention Selection

In order to act, an agent must select an intention to focus upon, as determined by its motiva

tions. To select an intention, an agent selects the motivation that is currently of the highest

importance, and selects an intention to pursue, by choosing the one that currently offers the

greatest motivational value to this motivation.

__IntentionSelection-- —-----------
EAgent
activeMotivations : P Motivation
chosenMotivation : Motivation
chosenlntention : Intention

activeMotivations =
{m : Motivation | m G motivations A m.intensity > m.threshold}

activeMotivations 0 => (3 m : Motivation | m G activeMotivations •
(V m! : Motivation | m! G activeMotivations A m! m •

m.intensity - m.threshold > m!.intensity - m!.threshold A
chosenMotivation = m))

activeMotivations = 0 => (3 m: Motivation \ m G motivations •
(V m' : Motivation | m! G motivations A m! m •

m.intensity - m.threshold > m!.intensity - m'.threshold A
chosenMotivation = m))

(3j i : Intention | i G intentions • (Mi' : Intention | i! G intentions A
i ^ • mitigation chosenMotivation ¡.satisfies >

mitigation chosenMotivation i'.satisfies A
chosenlntention = i))

A.21 Action and Deliberation

After determining its chosen intention, an agent works towards it — if the next step in the

intention is an individual contribution then an agent can execute it, if the step is a subgoal

then the agent must elaborate the plan, otherwise if the step is a cooperative action the

agent must initiate cooperation. In this section we give specification for the former two

cases, action and deliberation.

I believedChanges : Contribution —> Environment —> P Belief

227

,— AgentHistory--------------
history : seq Contribution

— AgentAction__
AAgent
A Env
AAgentHistory
EIntentionSelection
EUpdateBeliefs
nextStep : PlanStep

nextStep = head(last chosenlntention.plans).body
3 a : Contribution • Individual(a) = nextStep

history1 - history ^ (a) A environment1 =
contributionEffects a environment A beliefs' —

reviseBeliefs beliefs (believedChanges a environment)

__AgentDeliberation-- -------
A A gent
EIntentionSelection
nextStep : PlanStep

nextStep = head (last chosenlntention.plans).body
3 g : Goal • Subgoal(g) = nextStep

«=> chosenlntention' .plans = chosenlntention.plans
^ ((planForGoal beliefs intentions planLibrary g))

A chosenlntention' .relevance = chosenlntention.relevance
A chosenlntention' .satisfies = chosenlntention.satisfies

The following schema brings together the various functions described above, and cor

responds to the agent control mechanisms in the S e n a r a architecture.

228

— AgentControl___________
EAgent
AgentPerception
UpdateBeliefs
UpdateMotivations
Drop UnmotivatedGoals
GoalGeneration
Droplnappropriatelntentions
IntentionAdoption
IntentionSelection
AgentAction
AgentDeliberation

A.22 Necessary and Optional Cooperation

In this section we formalise the notions of necessary and optional cooperation.

stepcontributions : PlanStep -» (P Contribution)
CAcomponentcontributions : CAcomponent -> (P Contribution)
p/ancontributions : Plan -» (P Contribution) * V

V c : Contribution; es : P Contribution; cacs : P CAcomponent; g : Goal •
stepcontributions (Individual c) = {c} A
stepcontributions (Joint cs) — cs A
stepcontributions (Concurrent cacs) =

(J {cs1 : P Contribution; cac : CAcomponent \ cac G cacs A
cs' = CAcomponentcontributions cac • cs?} A

stepcontributions (Subgoal g) — 0
V com/? : CAcomponent; es : P Contribution •

CAcomponentcontributions comp = cs <£>
(3 c : Contribution • comp = (Contrib c) A

cs = stepcontributions (Individual c)) V
(3 os' : ¥ Contribution • com/? = (.Z4 cs) A

cy = stepcontributions (Joint cs))
Vp : Plan • plancontributions p =

U {y : PlanStep | y e (ran p.body) • stepcontributions y}

229

nesscooperates : Agent —> Goal -> bool

V ag : Agent; g : Goal | g E ag.goals • nesscooperates ag g = true
<=> (V/? : Plan \ p E ag.planLibrary • p.achieves = g A

(plancontributions p \ ag.capabilities) ± 0)

optcooperates : Agent —> Goal —> bool

M ag : Agent; g : Goa/ | g G ag.goals • optcooperates agg = true
«=> (3/?, g : Plan | p E ag.planLibrary A q E ag.planLibrary •

p.achieves — g A q.achieves = g A
(plancontributions p \ ag.capabilities / 0) A

(plancontributions q \ ag.capabilities = 0))

A.23 A Model of Cooperative Plan Selection

In Chapter 6 we described a procedure for plan selection in a cooperative environment,

based on standard planning heuristics and knowledge of others capabilities and trustworthi

ness. We introduce two ratings for plans, a standard rating arrived at by applying standard

heuristics, and a cooperative rating that is based on the risk associated with cooperation.

In this section we formalise the procedure for assessing the quality of a plan, using these

ratings.

The following function represents the heuristic for determining the standard rating of a

plan.

| sRating : Plan —► R

The cooperative rating of a plan is based on an agent’s knowledge of others’ capabilities

and its trust of them, and so before formalising the procedure for obtaining the cooperative

rating of plan we introduce the notion of an agent model, and formalise how to extract the

trust associated with a particular agent from a set of such models.

__AgentModel--- —----------------
id : AgentID
capabilities : P Contribution
trust : R

230

extractAUModels : P Belief -» P AgentModel
extractModel : P Belief —> AgentID —> AgentModel

trustOfAgent : AgentID -» ¥ AgentModel —>• R

M agID : AgentID; /wi : ¥ AgentModel, r : R •
trustOfAgent agID ms = r = > r > O A r < l A
(3j w : AgentModel | m € ms • m.id = ag/D A m.trust = r)

sumSeq : seq R —>• R

Vi : seq R; n : R • sumSeq s = n <3-
(# i = 1 A n = i l) V (# i > 1 A n = i l + sumSeq(tail s))

scaleTrustSeq : seq R —> seq R

V ts, scaledTs : seq R • scaleTrustSeq ts — scaledTs «=>
fits = j^scaledTs A(V/ j : Z | h > O A w < # ts •
scaledTs n = (ts n)/n)

capableAgents : Contribution —> ¥ AgentModel -* ¥ AgentID
orderedCapableAgents : Contribution -»• ¥ AgentModel -» seq AgentID
orderedTrust : seq AgentID -¥ ¥ AgentModel -> seqR

Vc : Contribution; /Mi : ¥ AgentModel • (capableAgents c ms) =
{a : AgentID-, m : AgentModel | (m 6 ms) A

(a = w./V) A (c G m.capabilities) • a}
Vc : Contribution-, ms : ¥ AgentModel-, orderedCapable : seq AgentID •

orderedCapableAgents c ms = orderedCapable A

ran orderedCapable = (capableAgents c ms) A

(V « : Z | « > 2 A n < #orderedCapable •
trustOfAgent (orderedCapablen) ms >

trustOfAgent (orderedCapable(n - 1)) ms)
V orderedC : seq AgentID-, ms : ¥ AgentModel-, orderedT : seqR •

orderedTrust orderedC ms — orderedT
#orderedC = ftorderedT A

(V n : Z | « > O A « < ftorderedC •
orderedT n — trustOfAgent (orderedC n) ms)

We can now formalise the risk associated with a particular contribution — determined

by considering the risk associated with each of the capable agents, such that the risk from

less trusted agents is divided by a correspondingly increasing factor.

231

riskC : Contribution —» IP AgentModel —> R

V c : Contribution; ms : ¥ AgentModel] r : R • riskC c ms = r
<=> 1 /sumSeq (scaleTrustSeq (orderedTrust (

orderedCapableAgents c ms) ms)) = r

A.23.1 Assessing Joint Actions

In this section we extend this strategy to apply to joint actions, by simply replacing the

agents and trust of an agent in the equation with sets of agents that are capable of performing

the action, and the trust of these sets of agents respectively.

capableAgentSets : P Contribution -> ¥ AgentModel -» P(P AgentID)

V cs : ¥ Contribution] ms : ¥ AgentModel • capableAgentSets cs ms =
{agis : ¥ AgentID] c : Contribution | c G cs A
(3 a : AgentID • a G agis A a 6 capableAgents c ms A
(V a' : AgentID | a! ^ a A a' 6 agis •

a' £ capableAgents c ms)) • agts}

trustO/AgentSet : ¥ AgentID -» ¥ AgentModel —> R
productSet : PR —> R V

V agIDs : ¥ AgentID] ms : ¥ AgentModel •
trustOfAgentSet agIDs ms = productSet
{r : R; a : AgentID | a € agIDs A r = trustOfAgent a ms • r)

Vs : PR; n : R • productSet s = n<^-
(# s = 1 A s = {«}) V
(# s > 1 A (3 r : R | r 6 i » n = r * productSet(s \ {r})))

232

orderedCapableAgentSets : P Contribution —> P AgentModel
—> seq(P^e«/ZD)

orderedTrustSet : seq(P/tgem/D) -> ¥ AgentModel
-> seq R

Vcs : ¥ Contribution] ms : ¥ AgentModel]
orderedCapable : seq (¥AgentID) •

orderedCapableAgentSets cs ms = orderedCapable A
ran orderedCapable = (capableAgentSets cs ms) A
(V / z : Z | « > 2 A « < ftorderedCapable •

trustOfAgentSet (orderedCapablen) ms >
trustOfAgentSet (orderedCapable(n — 1)) ms)

V orderedAgts : seq(¥ AgentID)] ms : ¥ AgentModel] orderedT : seqM •
orderedTrustSet orderedAgts ms = orderedT

O ftorderedAgts = ftorderedT A
(V « : Z | « > 0 A n < # orderedAgts •

orderedT n = trustOfAgentSet (orderedAgts n) ms)

riskJA : ¥ Contribution —» ¥ AgentModel —> R

Vcs : ¥ Contribution] ms : ¥ AgentModel] r : R • riskJA cs ms = r
1 /sumSeq (scaleTrustSeq (orderedTrustSet

(orderedCapableAgentSets cs ms) ms)) = r

A.23.2 Assessing Concurrent Actions

The mechanism for concurrent actions is an extension of that for joint actions since, instead

of a set of contributions, a concurrent action comprises a set of sequences of steps, each to

be performed concurrently with the others.

riskCAcomponent : CAcomponent -> ¥ AgentModel —> R
V comp : CAcomponent] ms : ¥ AgentModel] r : R •

riskCAcomponent comp ms = r O (3 c : Contribution •
comp = Contrib c A r = râ£C c ms) V

I (3 cs : P Contribution • comp = J A c s A r = riskJA cs ms)

riskCA : ¥ CAcomponent —>• ¥ AgentModel -* R V
V comps : P CAcomponent] ms :P AgentModel] •

riskCA comps ms = productSet{ca : CAcomponent] r : R |
ca & comps A r — riskCAcomponent ca ms • r}

233

A.23.3 Cooperative R ating of a Plan

Using this measure of risk of actions, we can determine the cooperative rating of a plan by

summing the risk associated with each step in it.

riskPlanStep : PlanStep -> P AgentModel -» R
Vps : PlanStep; ms : P AgentModel; r : R • riskPlanStep ps ms = r <$■

(3 c : Contribution • ps — Individual c A r — riskC c ms) V
(3 es : P Contribution • ps = Joint es A r = riskJA es ms) V

(3 cacs : P CAcomponent • ps — Concurrent cacs A r =
riskCA cacs ms)

cRating : Plan -> ¥ AgentModel —» R
sumSet : P R —> R
Vp : Plan; ps : seq PlanStep] ms : P AgentModel] r : R •

cRating p ms — r <=> ps = p.body A (3 ratings : P R • ratings =
{V : R | (3 i : PlanStep | s G ran p.body • r1 =

riskPlanStep s ms) • P) A r = sumSetratings)
Vs1 : P R; n : R • sumSet s = n <=>

(# i = 1 A i = W) V
(#£ > l A (3 r : R | r G . s « n = r + sumSet(s \ {/*})))

A.23.4 Plan Quality

Once both the standard and cooperative ratings of a plan have been determined, they are

combined to form an overall measure of plan quality.

quality : Plan —> ¥ AgentModel —>• R —ì R —> R

Vp : Plan; ms : ¥ AgentModel; Wy, wc, r : R •
quality p ms ws wc = r r = (sRating p) * ws + (cRating p ms) * wc

A.24 Cooperation in Partial Plans

In Section 6.5 we described the pre-execution assessment mechanism for dealing with par

tial plans, where each plan is assessed prior to execution time. Since it is not known how a

234

partial plan will later be elaborated, two ratings are associated with each plan, a best-case

and a mean-case rating.

plansubgoals : Plan —> P Goal

Vp : Plan • plansubgoals p
= {g : Goal | (3 s : PlanStep | s 6 (ranp.body) • s = Subgoal g) • g}

| recursive : Plan —> Plan —» bool

possibleSubplans : Goal —> Plan P Plan -* ¥ Plan

V g : Goo/; : Plan; /w : P Plan • possibleSubplans g p p s =
{// : Plan | p' E ps A p'.achieves = g A (recursivepp' = false)}

possibleSubplansRatings : PP/an P AgentModel R R -> PK

V/w : P Plan] ms : P AgentModel] Wy, wc, r : R
• possibleSubplansRatings ps ms ws wc =
{r : R | (3/?: Plan \ p e p s • quality p ms ws wc = r) • r}

minRating : P R -> R
Vri, : P R » (3 r : R | r G / ' 5 « minRating rs = r A

(Vr7 : R | r7 € rs • r < r7))

meanRating : P R —> R
Vrs : P R • meanRating rs = sumSet rs/#rs

bcRating : Plan -» P Plan -> P AgentModel -> R —► R -» R

Vp : P/<3«; pLib : PPlan] ms : P AgentModel] wSt wc, r : R •
plansubgoals p = 0 <=> bcRating p pLib ms Wj wc =

quality p ms ws wc
Vp : Plan] pLib : P Plan] ms : P AgentModel] ws, wc, r : R •

plansubgoals p ̂0 bcRating p pLib ms Wy wc =
quality p ms w* wc + sumSet (r : R; g : Goal |

g G plansubgoals p A r — minRating (
possibleSubplansRatingsfpossibleSubplans g p pLib)

ms tv* wc) • r)

235

mcRating : Plan -4 IP Plan —> P AgentModel -4 R —> R —>• R

Vp : Plan] pLib : ¥ Plan] ms : ¥ AgentModel] ws,wc,r : R •
plansubgoals p = 0

O mcRating p pLib ms ws wc = quality p ms Wj wc
Vp : Plan] pLib : P Plan] ms : ¥ AgentModel] ws, wc, r : R •

plansubgoals p ^ 0
O ’ mcRating p pLib ms ws wc = p wi w* wc +

sumSet {r : M; g : Goal | g 6 plansubgoals p A r =

meanRating (possibleSubplansRatings(
possibleSubplans g p pLib) ms w,j wc) • r}

A.24.1 Best-case and Mean-case Advantage

The balance between the best-case and mean rating amounts to a trade-off between an agent

trying to find the best final plan and minimising the chance of the final plan being poor due

to environmental change (in terms of these ratings). We define the best-case advantage of

one plan over the other applicable plans to be advantage of that plan over others if its final

elaboration has the best quality rating, and define mean-case advantage similarly.

maxRating : P R -4 M

Vra : P R • (3 r : R | r G rs • maxRatingrs = r A
(VV : R | r* 6 rs • r > r1))

bca : P Plan -4 ¥ Plan -4 ¥ AgentModel -4 R -4 R 4 R

'dps,pLib : P Plan] ms : ¥ AgentModel] rs : PR; ws,wc,r : R •
bca ps pLib ms ws wc = r

& rs = (r7 : R | (3p : Plan \ p Eps • r1 =
bcRating p pLib ms ws wc)} A

r = maxRating rs — minRating rs

mca : ¥ Plan -4 ¥ Plan -4 ¥ AgentModel 4 R 4 R 4 R

dps, pLib : ¥ Plan] ms : ¥ AgentModel] rs : PR; ws,wc,r : R •
mca ps pLib ms ws wc = r

O rs = (r7 : R | (3p : Plan \ p E ps • P
= mcRatingp pLib ms ws wc)} A

r = maxRating rs - minRating rs

236

A.24.2 Recursion

Where a plan is recursive it is not possible to obtain a rating for a subplan to feed into a

higher level plan with respect to which it is recursive. Our solution to this is to use domain

specific knowledge to estimate the limit of the recursion.

| existsRecursiveElaboration : Plan —> P Plan —> bool

scaleForRecursion : Plan —> P Plan —> P AgentModel - * R —> R —> R —>R

Vp : Plan; pLib : P Plan] ms : P AgentModel, ws,wc,r,m : R •
existsRecursiveElaboration p pLib = false

& scaleForRecursion p pLib ms ws wc m —
bcRating p pLib ms w* wc A

existsRecursiveElaboration p pLib = true
& scaleForRecursion p pLib ms ws wc m =

bcRating p pLib ms ws wc *m

A.24.3 Selecting Between Partial Plans

In selecting a plan, the advantage should be maximised, regardless of whether it is best-case

or mean-case. The following functions, useBCA and useMCA, formalise this and specify the

conditions under which the best-case and mean-case ratings should be used (i.e. whichever

offers the greater advantage).

useBCA : F Plan —> P Plan -> P AgentModel -» R ->• R -» bool

Vps,pLib : FPlan; ms : P AgentModel; ws,wc : R •
useBCA ps pLib ms w* wc - true

<=> bca ps pLib ms ws wc > mca ps pLib ms wc A
useBCA ps pLib ms ws wc = false

O bca ps pLib ms w* wc < mca ps pLib ms vvj wc

useMCA : FPlan -A FPlan -A P AgentModel -> R -> R -» bool

Vps,pLib : FPlan; ms : P AgentModel; ws, wc : R •
useMCA ps pLib ms Wy wc = true

«=> mca ps pLib ms Wy wc > bca ps pLib ms vvy wc
yps, pLib : P Plan; ms : P AgentModel; vv*, wc : R •

useMCA ps pLib ms Wy wc — false
O mca ps pLib ms Wy wc < bca ps pLib ms vv* wc

237

Once the mean-case and best-case advantages have been considered to decide which

criteria to use for plan selection, a plan can be chosen using that criteria.

selectByBCA : P Plan -> F Plan -» FAgentModel ->• R -* R -» Plan

\/ps,pLib : FPlan; ms : FAgentModel; ws,wc : R; chosen : Plan •
selectByBCA ps pLib ms Wy wc = chosen

(V// : Plan | p' £ ps • bcRating chosen pLib ms Wy wc >
bcRating p' pLib ms Wy wc)

selectByMCA : P Plan —>• FPlan -> FAgentModel -> R -» R ->■ Plan

\/ps,pLib : P Plan; ms : FAgentModel; Wy, wc : R; chosen : Plan •
selectByMCA ps pLib ms Wy w: = chosen

<=> (\/p' : Plan \p ' £ ps • mcRating chosen pLib ms Wy wc >
mcRating p' pLib ms Wy wc)

selectBestPlan : P Plan -» P Plan -> FAgentModel -> R -> R -4 Plan

Vps,pLib : P Plan; ms : FAgentModel; Wy,wc : R; chosen : Plan •
selectBestPlan ps pLib ms Wy wc = chosen ^

(useBCA ps pLib ms Wy wc = true A
chosen = selectByBCA ps pLib ms xvs wc) V

(;useMCA ps pLib ms Wy wc -- true A
chosen = selectByMCA ps pLib ms Wy wc)

The plan selection mechanism described in this chapter provides an instantiation of the

function planForGoal introduced in Section A. 19.

planForGoal: P Belief -* P Intention -> F Plan -> Goal -+> Plan

Mbel: P Belief; I : P Intention; plib : P Plan;
g : Goal; ws, wc : R; p : Plan • planForGoal bel L plib g = p

& selectBestPlan (planSetForGoal g bel plib) plib
(extractAUModels bel) ws wc = p

A.25 Cooperative Intention

In this section we specify the notion of a cooperative intention — a group’s commitment

to a particular course of action. A convention specifies the conditions under which a com

mitment can be abandoned, and how an agent should behave in such a circumstance. A

238

cooperative intention is specified to contain the goal and plan to which the commitment is

towards, the identifiers of the agents who have the commitment, and a set of conventions

defining the duration of this commitment.

Convention = = P Belief x Goal

believes : Agent -» P Belief -* bool

V ag : Agent; s i t : IP Belief •
(V b : Belief • b G sit A b G ag.beliefs => believes agsit = true)

V ag : Agent; s i t : P Belief •
(3 b : Belief • b G sit A b g ag.beliefs => believes agsit = false)

__Cooperativelntention--- ------------
goal : Goal
plan : Plan
agents : ¥ Agent ID
conventions : P Convention

y id : AgentID | id € agents •
(3 ag: Agent • ag.agentID = id A goal 6 ag.goals A

(3 / : Intention | i G ag.intentions •
i.plans 1 = plan A i.satisfies = goal)) V

(3 ag : Agent • ag.agentID — id A (3 c : Convention |
c e conventions • believes ag (first c) = true A

second c 6 ag.goals A (3 / : Intention | i e ag.intentions •
¡.satisfies = second c)))

A.26 Cooperative Plans

In this section we formalise the circumstances in which an agent might decide to allocate

an action in a plan to another agent, when that action is within the agent’s capabilities.

| costC : Contribution —> M

239

allocateContribution : Contribution —> ¥ Belief —> R —» R —> bool

Vc : Contribution; bel : P Belief ; vvc, vvy : R •
wc * costC c > riskC c (extractAUModels bel) * wr

=y allocateContribution c bel wc wr = true A
wc * costC c < riskC c (extractAUModels bel) * wr

=> allocateContribution c bel wc wr — false

isCooperativePlan : Agent —>■ Plan —> M —>• R —» bool

y ag : Agent; p : Plan\ wc, wr : R •
(3 c : Contribution • c € plancontributions p A c g ag.capabilities) V
(3 c : Contribution • c 6 plancontributions p A

allocateContribution c ag.beliefs wc wr = true) V
(3 cs : ¥ Contribution • (Joint es) G ranp.body) V
(3 cas : ¥ CAcomponent • (Concurrent cas) G ranp.body)

=>■ isCooperativePlan ag p w c wr = true
V ag : Agent; p : /Yaw; wc, wr : R •

(Vc : Contribution • c G plancontributions p A c G ag.capabilities) A
(V c : Contribution • c G plancontributions p A

allocateContribution c ag.beliefs wc wr = false) A
(Vcy : ¥ Contribution • (Joint es) g ranp.body) A
(Vcos : ¥ CAcomponent • (Concurrent cas) 0 ranp.body)

isCooperativePlan ag p w c wr = false

A.27 Plan Annotation

In order to determine which agents to ask for cooperation, the initiating agent must consider

each of the contributions in its plan and determine which is the best agent to perform it.

The chosen agent is associated with the contribution by annotating the contribution with

the identifier of that agent. In this section we consider the annotation of the different action

types that a plan can contain, along with the annotation of a complete plan.

A.27.1 Action Annotation

The simplest action type to annotate is an individual contribution; an agent should be con

sidered for annotation to a contribution if it is trusted above a minimum trust threshold, as

240

specified below.

considerForAnnotation : AgentID —> P AgentModel —> K —> bool

V id : AgentID; ms : P AgentModel; t : M •
[trustOfAgent id ms > t) => considerForAnnotation id ms t = true A

(,trustOfAgent id ms < t) => considerForAnnotation id ms t = false

— A nnotatedContribution
symbol : ActSym
terms : seq Term
agents : P AgentID

__AnnotateContribution-- -—
annotateContribution : Contribution —> ¥ AgentModel -» Z -» R

—► AnnotatedContribution

Me : Contribution; ms : ¥ AgentModel; n : Z; t : R;
ac : AnnotatedContribution • c.symbol = ac.symbol A

c.terms = ac.terms A ac.agents = {¿<i : AgentID |
id 6 ran({/ : Z | / < «} 1 orderedCapableAgents c ms) A

considerForAnnotation id ms t = true • id}

A.27.2 Joint Action Annotation

A joint action comprises a set of individual contributions, and so an annotated joint action,

AnnotatedJointAction, is simply defined to be a set of annotated contributions. To annotate

a joint action, the agent must determine which sets of agents are capable of performing it,

and then select the most trusted, as formalised below.

__AnnotatedJointAction________________ ________ _________________
contributions : ¥ AnnotatedContribution

contributions > 2

241

— ValidityCheckJointAction________________________ _______ _
validAssignments : ¥(¥(Contribution x AgentID))

—7 IP (IP (Contribution x AgentID))
is Valid : P (Contribution x AgentID) —> bool

y annotations : P (P (Contribution x AgentID)) •
validAssignments annotations =

(a : P {Contribution x AgentID) | a G annotations A
is Valid a = true • a}

y annotation : P(Contribution x AgentID) •
(Vc/i/ : (Contribution x AgentID) | cid G annotation •

(V cid' : (Contribution x AgentID) | cid' G annotation A
cid / cid! • second cid f second cid'

=> is Valid annotation = true))
y annotation : ¥ (Contribution x AgentID) •

(V cid : (Contribution x AgentID) j cid G annotation •
(3 cid' : (Contribution x AgentID) | cid' G annotation A

cid f c/i/' • second cid = second cid'
=> is Valid annotation = false))

— ExtractlnfoJointAction---
extractAgents : P (Contribution x AgentID) -> P AgentID
extractContributions : P(Contribution x AgentID) -» ¥ Contribution
agentsOfContributionA : ¥ (Contribution x AgentID) -> Contribution

—> ¥ AgentID
agentsOfContributionAs : ¥(¥(Contribution x AgentID)) -7 Contribution

-7 ¥ AgentID

y annotation : (¥(Contribution x AgentID)) • extractAgents annotation =
{a : (Contribution x AgentID) | a € annotation • second a}

y annotation : (¥ (Contribution x AgentID)) •
extractContributions annotation =

{a : (Contribution x AgentID) | a 6 annotation • yfar a}
y annotation : ¥ (Contribution x AgentID); c : Contribution •

agentsOfContributionA annotation c =
{cz'i/ : (Contribution x AgentID) | cid G annotation A

yzrs/ cid = c • second cid}
y annotations : ¥(¥ (Contribution x AgentID)); c : Contribution •

agentsOfContributionAs annotations c =
(J {annotation : ¥ (Contribution x AgentID) |

annotation G annotations •
agentsOfContributionA annotation c}

242

W
 [i] [T]

Î
— GenerateAnnotationsJointAction___________________________ _

P-ExtractlnfoJointAction

orderedAnnotations : P{P{Contribution x AgentlD)) —> PAgentModel
-» seq(P(Contribution x AgentlD))

allPossibleAnnotations : seq Contribution -> PAgentModel -» K
—> P{P {Contribution x AgentlD))

combine : P{P {Contribution x AgentlD)) -> P {Contribution x AgentlD)
—» P{P{Contribution x AgentlD))

contribSeq : JointAction -» seq Contribution

Vunordered : P{P{Contribution x AgentlD)); nw : PAgentModel;
ordered : seq {P{Contribution x AgentlD)) •

orderedAnnotations unordered ms = ordered A
ran ordered = unordered A
(Vn : Z | w > 2 A n < # ordered •
trustO/AgentSet {extractAgents {orderedn)) ms

> trustOfAgentSet {extractAgents
{ordered{n — 1))) m)

Vi : seq Contribution; ms : PAgentModeb, t : R •
(s = () A allPossibleAnnotations s ms t =) V
(i ^ ()) a allPossibleAnnotations s ms t = combine

{allPossibleAnnotations {tails) ms t)
{c : Contribution• «£ : AgentlD | c = Aeat/ i A

ag 6 capableAgents c ms A
considerForAnnotation ag ms t = true • (c, ag)}

Vs 1 : P(P(Contribution x AgentlD)); s2 : P {Contribution x AgentlD) •
combine si s2 = {working : P {Contribution x AgentlD);

new : {Contribution x AgentlD) | working 6 i l A new € i2 •
{working U {new})}

Vja : JointAction • # {contribSeq ja) =
ja. contributions A ran {contribSeq ja) = ja. contributions

- AnnotateJointActionAuxiliary-----
ValidityCheckJointAction
GenerateAnnotationsJointAction
ExtractlnfoJointAction

243

__AnnotateJointAction__
EAnnotateJointActionAuxiliary
annotateJointAction : JointAction -> P AgentModel -> Z -» K

—> AnnotatedJointAction
annotate : seq(P(Contribution x AgentlD)) —» AnnotatedJointAction

Vja : JointAction; ms : P AgentModel-, n : Z; i : R •
annotateJointAction ja ms n t = annotate ({/ : Z | i < n}j

(iorderedAnnotations (validAssignments (allPossibleAnnotations
(contribSeq ja) ms t)) ms))

V5 : seq(P(Co«ir/ÒMi/o« x AgentlD))] aja : AnnotatedJointAction \
annotate s = aja • V c : Contribution • c G extractContributions (5 1)

(3X £zc : AnnotatedContribution • ac € aja.contributions A
c.symbol = ac.symbol A c.terms = ac.terms A

ac.agents = agentsOfContributionAs (rani) c)

A.27.3 Concurrent Action Annotation

In a similar manner, we can specify that an annotated concurrent action comprises a set

of annotated contributions and joint actions. Annotation of a concurrent action involves

annotating each of its components, and including the result in the annotated concurrent

action.

ACAcomponent ::= AContrib((AnnotatedContribution))
| AZ4((P AnnotatedContribution))

__AnnotatedConcurrentAction----------------------------- ---------- ----------------
contributions : P ACAcomponent

contributions > 2

244

__AnnotateConcurrentAction____________ __________________________
EAnnotateContribution
EA nnotateJointA ction
annotateConcurrentAction : ConcurrentAction -> ¥ AgentModel —> Z —> M

—» AnnotatedConcurrentAction
annotateCAcomponent : CAcomponent -A ¥ AgentModel -» Z -> R

ACAcomponent

M cac : CAcomponent; mi : ¥ AgentModel] n : Z; / : M;
acac : ACAcomponent • annotateCAcomponent cac ms n t = acac

<*=*> (3 c : Contribution \ Contrib(c) = cac •
acac = AContrib(annotateContribution cms n t)) V

(3 cs : ¥ Contribution] ja : JointAction \ JA(cs) = cac •
ja.contributions = cs A acac =

AJA((annotateJointAction ja ms n t).contributions))
Vca : ConcurrentAction] ms : ¥ AgentModel] n : Z; f : R;

aca : AnnotatedConcurrentAction •
annotateConcurrentAction ca ms n t — aca A

aca.contributions — {cac : CAcomponent \
cac G ca.contributions •

annotateCAcomponent cac ms n /} * I

A.27.4 Annotated Plans

The notion of an annotated plan is formalised below in the schema AnnotatedPlan, in which

all contributions are annotated with a set of agents. Each contribution is annotated with a

set, rather than the individual agent that will execute it since, at this stage, the annotation

represents the agents to request assistance from.

APlanStep ::= AIndividual{(AnnotatedContribution))
| AJoint((¥ AnnotatedContribution))
I AConcurrent{(¥ ACAcomponent))
| ASubgoal((Goal))

__AnnotatedPlan -- --—------------- --------
achieves : Goal
preconditions : ¥ Literal
body : seq APlanStep

245

__AnnotatePlan---
EAnnotateContribution
EAnnotateJointAction
EAnnotateConcurrentAction
annotatePlan : Plan -> P AgentModel -» Z -> R -* AnnotatedPlan
annotateStep : PlanStep -» P AgentModel -> Z -> R -» APlanStep

Vp : P/an; ws : ¥ AgentModel-, n : Z; f : R; ap : AnnotatedPlan •
annotatePlan p ms n t = ap <3- p.achieves = ap.achieves A

p.preconditions = ap.preconditions A
(V « : Z | n < jjp.body • ap.body n =

annotateStep (p.body n) ms n t)
Vps : PlanStep; ms : ¥ AgentModel-, n : Z; t : R; aps : APlanStep •

annotateStep ps ms n t = aps
O (3 c : Contribution • Individual(c) = ps A aps =

AIndividual(annotateContribution c ms n t)) V
(3cs : ¥ Contribution-, ja : JointAction \ja.contributions — cs •

Joint(cs) —ps A a/« = AJoint({
annotatedbintAction ja ms n t).contributions)) V

(3 cac : P CAcomponent; ca : ConcurrentAction |
ca.contributions = cac • Concurrent(cac) = ps A aps =

AConcurrent((annotateConcurrentAction
ca ms n t).contributions)) V

(3 g : Goal • Subgoal(g) = ps A aps = ASubgoal(g))

A.28 Soliciting Commitment to Cooperate

After annotating its plan, an agent must request assistance from the annotated agents, and

there are four possible types of request, each giving different degrees of information to the

participants.

__RequestActions____________________ _______________
to : AgentID
from : AgentID
contributions : P Contribution

246

__RequestGoalActions_______
to : AgentID
from : AgentID
goal: Goal
contributions : P Contribution

__RequestPartiallyAnnotatedPlan
to : AgentID
from : AgentID
plan : AnnotatedPlan

— RequestAnnotatedPlan
to : AgentID
from : AgentID
plan : AnnotatedPlan

Request ActionRequest {{RequestA ctions))
GoalActionRequest{{RequestGoalActions))
PartiallyAnnotatedPlanRequest{{RequestPartiallyAnnotatedPlan))
AnnotatedPlanRequest{{RequestAnnotatedPlan))

As discussed in Section 7.6 an agent’s request for assistance should include only the

actions for which it needs help if it believes that the goal is of zero or negative motivational

value to the provider. This is specified in the schema UseActionRequest below, which takes

an annotated plan and set of agent models, and returns true if the goal is believed to be of

zero or negative motivational value to one or more of the agents being requested, and the

agent’s request should be of this form.

247

__AnnotatedPlanAuxiliary______________ ___________________________
believedMV : Goal -> AgentID -> F AgentModel -> R
extractAgentsACAcomponent : ACAcomponent

—» P (Contribution x AgentID)
extractAgentsStep : APlanStep ->■ P (Contribution x AgentID)
extractAgentsPlan : AnnotatedPlan -» P (Contribution x AgentID)
allAgents : AnnotatedPlan —> P/lgeni/D
agentContributions : AgentID P(CWr/Z?wi/o« x AgentID)

-» P Contribution

V acac : ACAcomponent •
(3 ac : AnnotatedContribution | AContrib(ac) = acac •

extractAgentsACAcomponent acac =
{ii/ : AgentID; c : Contribution \ id G ac.agents

A c.symbol = ac.symbol A c.terms = ac.terms • (c, id)}) V
(3aci : P AnnotatedContribution | AJA(acs) = acac •

extractAgentsACAcomponent acac =
{ac : AnnotatedContribution; id : AgentID; c : Contribution |

ac G acs A W G ac.agents A c.symbol = ac.symbol A
c.terms = ac.terms • (c, /(/)})

V aps : APlanStep •
(3ac : AnnotatedContribution | AIndividual(ac) = a/w •

extractAgentsStep aps =
{id : AgentID] c : Contribution | id G ac.agents

A c.symbol = ac.symbol A c.terms = ac.terms • (c, à/)}) V
(3acs : F AnnotatedContribution \ AJoint(acs) = aps •

extractAgentsStep aps =
{ac : AnnotatedContribution] id : AgentID] c : Contribution |

ac G acs A id G ac.agents A c.symbol = ac.symbol A
c.terms = ac.terms • {c,id)}) V

(3 acacs : F ACAcomponent \ AConcurrent(acacs) = aps •
extractAgentsStep aps =

|J{acac : ACAcomponent \ acac G acacs •
extractAgentsACAcomponent acac})

Map : AnnotatedPlan • extractAgentsPlan ap =
(J{aps : APlanStep | aps G ran ap.body • extractAgentsStep aps}

Mid : AgentID] cids : P (Contribution x AgentID) •
agentContributions id cids = {c : Contribution | (c, /¿/) G c/'ife • c}

Vap : AnnotatedPlan • allAgents ap =
{id : AgentID] cid : (Contribution x AgentID) \

cid G extractAgentsPlan ap A id = second cid • id}

248

EAnnotatedPlanAuxiliary
UseActionRequest : AnnotatedPlan —» P AgentModel —> bool

Map : AnnotatedPlan; ms : P AgentModel •
UseActionRequest ap ms = true

<=> (3 id : AgentID \ id E allAgents ap •
believedMV ap.achieves id ms < 0) A

UseActionRequest ap ms = false
(V id : AgentID \ id E allAgents ap •

believedMV ap.achieves id ms > 0)

__UseActionRequest___________________________________

A.29 Nominal Commitment

The process of forming a cooperative intention requires agents to form a nominal com

mitment to informing others if they agree to cooperate, only later change their decision.

Before requesting assistance a nominal commitment is formed with respect to the agents

whose assistance is sought.

__NominalCommitment-- ---------------------
plan : AnnotatedPlan
agents : P AgentID

249

__FormNominalCommitment__________ ___________________________
AAgent
"EAnnotatedPlanAuxiliary
newPlan : AnnotatedPlan
commitedTo : AnnotatedPlan —>• bool

V ap : AnnotatedPlan • 3 c : NominalCommitment |
c G nominalCommitments • c.plan.achieves = ap.achieves

«=> commitedTo ap = true
Map : AnnotatedPlan • Me : NominalCommitment \

c G nominalCommitments • c.plan.achieves ap.achieves
O commitedTo ap — false

commitedTo newPlan = false
=> (3 c : NominalCommitment • c.plan = newPlan A

c. agents — all Agents newPlan A
nominalCommitments' — nominalCommitments U {c})

commitedTo newPlan = true
=> (3 c, d : NominalCommitment | c G nominalCommitments •

c.plan.achieves = newPlan.achieves A
c & nominalCommitments1 A c' G nominalCommitments1 A

d.plan = newPlan A d.agents = allAgents newPlan)

A.30 Committing to Cooperate

On receiving a request for assistance an agent decides whether or not to cooperate, based on

the trust ascribed to the requester, which determines the perceived risk of interacting with it

and the motivational value that would be attained (by the providing agent) in cooperating

We formalise these factors below.

consideredTrusted : AgentID —> F AgentModel -> R -> bool V

V requester : AgentID; ms : P AgentModel; t : R •
trustOfAgent requester ms > t

=> consideredTrusted requester ms t = true A
trustOf Agent requester ms < t

=> consideredTrusted requester ms t = false

250

__ConsiderFurtherContribution_________________________________
EAgent
ConsiderFurtherContribution : Contribution —> AgentID —» R -> bool

V c : Contribution-, requester : AgentID; t : R •
ConsiderFurtherContribution c requester t = true

consideredTrusted requester (extractAllModels beliefs) t =
true A (3 m : Motivation \ m € motivations •

mvContribution m c > 0) A
ConsiderFurtherContribution c requester t — false

O consideredTrusted requester (extractAllModels beliefs) t =
false V (V m : Motivation \ m 6 motivations •

mvContribution m e < 0)

. ConsiderFurtherContributionGoal________________________________
EAgent
considerFurtherContributionGoal : Contribution —> Goal —> AgentID —»• R

—> bool V

V c : Contribution; g : Goal; requester : AgentID; / : R •
considerFurtherContributionGoal c g requester t = true

consideredTrusted requester (extractAllModels beliefs) t =
true A (3 m : Motivation \ m € motivations •

mvContribution m c > 0) A (3 m : Motivation \
m e motivations • mitigation m g > 0) A

considerFurtherContributionGoal c g requester t = false
<i=> consideredTrusted requester (extractAllModels beliefs) t =

false V (V m : Motivation \ m € motivations •
mvContribution m c < 0) A (V m : Motivation \

m € motivations • mitigation m g < 0)

251

__ConsiderFurtherPlan______________________________________
EAgent
ConsiderFurtherPlan : Plan —> AgentID —> M - > bool

Vp : Plan; requester : AgentID; t : R •
ConsiderFurtherPlan p requester t = true

consideredTrusted requester (extractAHModels beliefs) t =
true A (3 m : Motivation | m G motivations •

mvPlan m p > 0) A
ConsiderFurtherPlan p requester t = false O

consideredTrusted requester (extractAl¡Models beliefs) t —
false V (Vm : Motivation \ m G motivations •

mvPlan m p < 0)

A.31 Generating Full Commitment to Cooperation

Each of the requested agents makes an appropriate response, either accepting or declining

to cooperate. Then, if sufficient agents accept, a cooperative intention can be formed.

Response = = AgentID x Contribution x bool

__CheckResponses-- ----------
E UseActionRequest
E Extra ctlnfoJo intAction
checkResponses : AnnotatedPlan -> P Response —► bool

yap : AnnotatedPlan; rs : PÆespom'e; cid : P (Contribution x AgentID) |
cid = extractAgentsPlan ap • checkResponses ap rs = true

(V c : Contribution | c € (extractContributions cid) •
(9 id : AgentID • (id, c, true) G rs)) A

checkResponses ap rs = false
(V c : Contribution \ c G (extractContributions cid) •

(Vii/ : AgentID • (zc/,c, true) £ rs))

If sufficient agents accept, the initiating agent selects the particular agents to cooperate

with (since the plan may have been redundantly annotated) and sends a confirmation, and a

cooperative intention is formed.

252

__Confirmation_____________
to : AgentID
from : AgentID
contributions : P Contribution

253

__ConstructConfirmationsAuxiliary________________________________
processACAcomponent : ACAcomponent —> IP AgentID -> IP AgentModel

—> ACAcomponent
process Step : APlanStep -> IP^ge/Ji/Z) -> P AgentModel —> APlanStep
orderedAgents : P AgentID -> P AgentModel —>• seq AgentID
filterAccepted : P AgentID —> P AgentID -» P AgentID

V requested, accepted : P AgentID • filterAccepted requested accepted =
{/d : AgentID \ id G requested A /</ G accepted}

Vas : ¥ AgentID] mi : ¥ AgentModel] as' : seq AgentID •
orderedAgents as ms — as' <4- ran as' = as A
(V « : Z | m > 2 A h < •

trustOfAgent (as'n) ms > trustOfAgent (as'(n - 1)) /as)
Vacac : ACAcomponent] accepted : ¥ AgentID] ms : ¥ AgentModel •

(3 ac, ac' : AnnotatedContribution | AContrib(ac) = acac •
processACAcomponent acac accepted ms = AContrib(ac')

ac.symbol = ad .symbol A ac.terms = ac' .terms
A ac'.agents —
{orderedAgents (filterAccepted ac.agents accepted) ms 1}) V

(3 aas : ¥ AnnotatedContribution \ AJA(acs) = acac •
processACAcomponent acac accepted ms =
/Lt4({ac,ac' : AnnotatedContribution \ ac G ac^ A
ac.symbol = ad .symbol A ac.terms = ad. terms A
ad .agents = {orderedAgents
(filterAccepted ac.agents accepted) ms 1} • ac'}))

Vaps : APlanStep] accepted : ¥ AgentID] ms : ¥ AgentModel •
(3ac,ad : AnnotatedContribution \ AIndividual(ac) = aps •

process Step aps accepted ms = Alndividual(ad)
& ac.symbol = ad .symbol A ac.terms = ad .terms
A ac'.agents =
{orderedAgents (filterAccepted ac.agents accepted) ms 1}) V

(3acs : ¥ AnnotatedContribution | AJoint(acs) = aps •
processStep aps accepted ms = AJoint(
{ac, ac' : AnnotatedContribution | ac G acs A
ac.symbol — ad .symbol A ac.terms = ad .terms A
ac'.agents = {orderedAgents (
filterAccepted ac.agents accepted) ms 1} • ac'})) V

(3 acacs : ¥ ACAcomponent \ AConcurrent(acacs) = aps •
processStep aps accepted ms = AConcurrent(
{acac : ACAcomponent \ acac G acacs •
processACAcomponent acac accepted ms}))

254

__FormFinalPlan__
EConstructConfirmationsAuxiliary
S UseActionRequest
responses : P Response
accepts : F AgentID
formFinalPlan : AnnotatedPlan -A P AgentID -A FAgentModel

-A AnnotatedPlan

accepts — {r : Response | r G responses A Third(r) = true • First(r)}
V ap, ap' : AnnotatedPlan; ms : P AgentModel •

formFinalPlan ap accepts ms — ap'
(V n : Z | n < #ap.body • ap'.body n =

processStep (ap.body n) accepts ms)

__ConstructConfirmations_____________________ ____________________
E ConstructConfirmationsAuxiliary
S UseActionRequest
responses : P Response
accepts : P AgentID
constructConfirmation : AgentID -A AgentID -A AnnotatedPlan

-A Confirmation
ConstructConfirmations : AgentID -A AnnotatedPlan -A P Confirmation

accepts = {r : Response \ r G responses A Thirdly) = true • First(r)}
Vfrom, to : AgentID; ap : AnnotatedPlan; c : Confirmation •

constructConfirmation from to ap = c & cfrom - from A
c.to = to A c.contributions =

agentContributions to (extractAgentsPlan ap)
V from : AgentID; ap : AnnotatedPlan • ConstructConfirmations from ap =

{id : AgentID | id G allAgents ap • constructConfirmation from id ap}

A.32 Strategy Choice

When an agent adopts a plan containing an action for which cooperation is sought, it can

solicit assistance and initiate the formation of the required cooperative intention as soon

as the plan is selected using an immediate commitment strategy, or later at execution time,

using a delayed commitment strategy. The choice between these strategies is based on the

degree of dynamism in the environment, and the overall trust of others, as formalised below.

255

UseDCS___
useDCS : P AgentID -» P AgentModel —» Plan — » M—

—̂ R —y bool

V capable : ¥ AgentID] ms : P AgentModel]
p : Plan] dynamism, dT,rT,ws,wc : R •

useDCS capable ms p dynamism dT rT ws wc = true
^ {quality p ms w, wc) > rT V dynamism > dT A

useDCS capable ms p dynamism dT rT vvj wc = false
<!=> {quality p ms w, wc) < rT V dynamism < dT

A.33 Cooperative Plan Elaboration

Once a cooperative intention has been formed, the agents involved can execute it, by per

forming the contributions to which they are annotated. When a subgoal is reached it must

be elaborated, and in general the subgoal is elaborated by the agent that initiated coopera

tion. The situations in which the initiator might prefer plan selection to be performed by an

agent other than itself are formalised below.

DelegateElaboration---
EAgent
delegateElaboration : Goal —> bool * V

V subgoal: Goal • delegateElaboration subgoal = true
(planSetForGoal subgoal beliefs planLibrary) = 0 V
(\/p : Plan] m : Motivation \ m £ motivations A

p e {planSetForGoal subgoal beliefs planLibrary) •
mvPlan m p < 0)

V subgoal: Goal • delegateElaboration subgoal = false <=>
(planSetForGoal subgoal beliefs planLibrary) f 0 A
(3p : Plan] m : Motivation \ m G motivations A

p £ {planSetForGoal subgoal beliefs planLibrary) •
mvPlan m p > 0)

256

A.34 Updating Trust of Others

At the end of a cooperative interaction, each agent involved updates its trust of the others.

If the cooperative interaction was successful, and the goal achieved, then the trust an agent

associates with the others involved is likely to increase. Conversely, if the goal was not

achieved then the cooperative intention was unsuccessful, and trust is likely to decrease.

increaseTrust : R —> R —> R
decreaseTrust: R -> R —> K * V

V trust, trust1, trustlncrease : R • increaseTrust trust trustlncrease =
trust1 =>• trust! > trust

V trust, trust1, trustDecrease : R • decreaseTrust trust trustDecrease =
trust! =>■ trust1 < trust

257

Appendix B

Implementation of the Senara

Testbed

B.l Introduction

The appropriateness of any design or model is dependent on the environment in which it is

situated. Our architecture and model of cooperation is intended for complex domains, in

which agents are situated in a dynamic, unpredictable environment. S e n a r a agents them

selves are complex entities, and the interaction of a group of agents situated in a complex

environment is virtually unpredictable, and an external high-level analysis is too complex

to be practical. Therefore, to assist the understanding of the work described in this thesis, a

S e n a r a testbed has been developed to provide a platform for empirical investigation. The

objective in constructing the testbed is to demonstrate the concepts presented in this work,

and allow simple experimentation, rather than to develop a sophisticated finished product.

258

B.2 Overview of the Testbed

The domain in which our testbed is grounded is the warehouse domain introduced in Chap

ter 51. Agents are situated in a warehouse comprising three areas: a delivery area, a standard

storage area, and a long term storage area. Boxes arrive in the delivery area and must be

moved to one of the storage areas (or rooms), which for simplicity are arranged linearly as

shown earlier in Figure 5.2.

The testbed itself is constructed in Java, and comprises a set of distributed autonomous

agents of the form specified in Chapters 3 and 4, and able to perform the tasks required for

cooperation in our model. Since we are concerned with software agents, the environment

in which they are situated also exists in software only. Agents are able to perceive and act

upon the environment using Java’s Remote Method Invocation mechanism, and the Internet

acts as a communication channel. Each agent is constructed as a stand-alone application

having a distinct thread of execution. Indeed, in our investigations each agent is invoked

on different machine, ensuring they are asynchronous, and providing an easy mechanism

for adjusting the relative speed of an agent’s reasoning — we can make an agent relatively

faster or slower by simply artificially decreasing or increasing the load of the processor on

which it is running. The results that we describe in this appendix have been obtained using

a selection of platforms2 with agents and the environment running on different, geographi

cally distributed, machines. This demonstrates both the platform independent nature of the

implementation, and moreover, the ability of the cooperation framework to cope with the

lack of synchronisation, and the communication delays resulting from such a situation.

Interaction with the testbed is via command a prompt interface, presented by each entity

in the environment, and the environment representation itself. Through this interface users
'Although we concentrate here on them warehouse domain, the testbed has also been tested on the rubbish

collecting environment used in Rao’s discussion of AgentSpeak(L) [81], where agents must collect rubbish that

appears in one of a number of lanes of traffic, whilst avoiding collisions.
2 In particular we have tested the implementation using various combinations of Linux, Solaris, and Win

dows 98/2000 machines.

259

can invoke a variety of functions that change the state of an agent, such as changing the

intensity of its motivations, or its trust of others, or even forcing it to drop a particular

intention. The user can also manually invoke the agent’s reasoning cycle, and thus have

extra control over the relative speed of agent’s reasoning. The environment allows the

user to add and remove objects, change the power level of an agent, and intercept and

remove messages between agents. By intercepting a message (and removing it) the user can

simulate a broken communication link between the agents, allowing the model to be tested

in situations where communications are unreliable. In addition to being run interactively,

experiments in the testbed can also be automated, with the user specifying the number

of cycles, and delay between them, on start up. An initial situation can be specified for

the environment, along with specifying a set of predefined paths that define when certain

events occur in the environment. For example, a path may specify that a box appears in the

delivery area at a particular point in time, and another appears a certain number of cycles

later. The interaction windows for a group of four agents, and the environment can be seen

in Figure B.l, which shows the beginning of a potential interaction between agentl and

agent4, where agentl has requested assistance from agent4 in storing a large box.

Output from the testbed is in the form of a trace of the mental state and actions (includ

ing any commitments) of the agents in the environment, along with a trace of the changes in

environment itself. Since the agents and environment are distributed, each entity produces

its own trace, and this requires some analysis to determine the order of events and state

changes in the testbed, and to understand the circumstances that led to a particular situa

tion To aid this analysis a local time stamp is printed on the output of each iteration of an

agent’s control cycle, and before beginning an experiment we synchronise the local times

on the machines involved.

The warehouse scenario is a complex and dynamic domain — communications are

not guaranteed (since users can intercept messages) and execution is asynchronous and

distributed. Thus, it offers a approximation of the issues faced in a real-world multi-agent

domain. However, a number of simplifications are made, since we are concerned with

260

Figure B.l: The interface to the Sen
a

r
a testbed

envi rorwent 69e»
Interactive node.
Press return to iterate, q to quit
perceive request from agent1810.1.1.3
perceive request from agent2@10.1.1.3
perceive request from agent4@10.1.1.3
perceive request from agent3@10.1.1.3
a
Add what?
the options are:

1 small box
2 large box

l2
tick«):
env;
[(isRoom, Eroomll), (isDeliveryArea, trooml]), (isRoom, [room2]>, (isRoom, [r̂
31), (isChargeArea, [rooml]), {isAgent, Eagentll), (location, [agentl, roo«2]
(isAgent, [agent2]>, (location, [agent2, room3]>, (isAgent, [agent31>, (locat:
, Iagent3, room33>, (isAgent, Eagent43), (location, Eagent4, roo«33>, (isBox,
oxl3>, (type, [boxl, large, type23>, (location, [boxl, rooml3>, (charge, tageil
', 93), (charge, Eagent2, 93), (charge, [agent3, 93), (charge, Eagent4, 93)3
perceive request from agentlB10.1.1.3
sent message to agent2 from agentl of type annotated3lan id Iagentl_2

Fdro
<st dropping obsolete intentions...

: <er> generating goals...
i sel <start generateGoals(>>
< pro- <end generateGoals()>
< adq selecting most motivated goal...

<st processing requests for assistance...
ii <err adopting intentions...
5 sell <start adopt I ntent ions(»< wor <end adoptIntentions(>>
: end selecting intention to work on...

<- working on intention...
bel end of workOnlntentionO
(1 <— start: agent4 —
(is beliefs: [(isAgent, tagentll), (location, [agentl, roo«23>, (isAger
mot (location, [agent2, room33>, (isAgent, [agent33>, (location, Eager
id: (isAgent, Eagent43), (location, Eagent4, room33>3
goa motivations: [< charge intensity: 0 threshold: 1 >, < store intensi
m os Id: 1 >3
int goals: [3 «
don most motivated goal: null

- — intentions: [3
done this cycle:
— end: agent4 — >
[TestAgent (id: agent4> - use ? for command list3 $ 0

CratingBC: 2.181818181818182
CratingMC: 2.181818181818182 >

agents to request: [agentl, agent23
sending requests

to agent2
¡done requests
|<end adoptIntentions(>>
selecting intention to work on.*,
working on intention...
jworkOnlntention
intention status is 3
|purging plans
end of workOnlntentionO
|<— start: agentl —
beliefs: [(isAgent, [agentl]), (location, [agentl, room23>, (isAgent, [agent23>,|
(location, [agent2, room33>, (isAgent, [agent33>, (location, [agent3, room33>,
(isAgent, [agent43>, (location, [agent4, room33>, (isBox, [boxl3>, (type, [boxl,
large, t«#)e23>, (location, [boxl, rooml3>3

Imotivations: [< charge intensity: 0 threshold: 1 >, < store intensity: 1 threshol
Id: 1 >3
jgoals: [[$not (holding, [agentl, boxl3>, (location, [boxl, room23>$33
¡most motivated goal: [Snot (holding, [agentl, boxl3>, (location, [boxl, room23>$|
3
intentions: [< achieves: [Snot (holding, [agentl, boxll), (location, [boxl, rooml
23>S3
status: 3 id: Iagentl_2
plans: [< name: storeLargePlan
achieves: [Sdocation, [boxl, roo«23>, not (holding, [agentl, boxl3>S3
preconditions: [(location, [boxl, roo«13>, (type, [boxl, large, type23>3
body: [<goal [Sdocation, [agentl, rooml3>, (location, [agent2, rooml3>S3>, <c|

|oncurrent_action [<action (inform, Eagent2, inposition3>=agentl>, <action (infor|
[agentl, inposition3)=agent2>3>, <concurrent_action [<action (wait, [agent2,

inposition3)=agentl>, <action (wait, [agentl, inposition3)=agent2>3>, <joint_act
ion [<action (liftend, [agentl, boxll>=agentl>, <action <1 iftend, [agent2, boxll
>=agent2>3>, <concurrent_action [<action (inform, [agent2, lifted3)=agentl>, <ac
tion (inform, [agentl, Iifted3)=agent2>3>, <concurrent_action Kaction (wait, [a
gent2, lifted3>=agentl>, <action (wait, [agentl, lifted!>=agent2>3>, <goal [S(lo
jcation, [agentl, room23>, (location, [agent2, roo«23>S3>, <concurrent_action [<a
Iction (inform, [agent2, inposition3)=agentl>, <action (inform, [agentl, inpositi
on3)=agent2>3>, <concurrent_action [<action (wait, [agent2, inposition3)=agentl>
<action (wait, [agentl, inposition3)=agent2>3>, <joint_action [<action (placee

nd, [agentl, boxl3)=agentl>, <action (placeend, ¿agent2, boxl3)=agent2>3>3
Srating: 8.0
CratingBC: 2.181818181818182
CratingHC: 2.181818181818182 >3 >3

[done this cycle: Sent request message to agent2 for assistance in achieving
[Sdocation, [boxl, room23>, not (holding, [agentl, boxll>S3
and formed corresponding nominal commitment

— end: agentl — >
[TestAgent (id: agentl) - use ? for command list! $ 0

Wed Hay 2<l 1 0 :5 7 :4 7 2W 0

demonstrating and increasing our understanding of the model, and not with developing a

product. In particular we make the following simplifying assumptions.

• Rooms in the warehouse are laid out linearly, requiring movement along one axis

only.

• Agents are able to perceive the whole environment.

• Agents do not enter or leave the system while it is in operation

• Communication is via a simplified agent communication language, containing only

performatives for requesting assistance, declining a request, accepting a request, and

informing an agent of something.

• No errors or losses occur in communication, unless explicitly caused by user interac

tion with the environment.

Although this environment is simple, agents in it must still cooperate with others that

are potentially unreliable to achieve certain goals. They must select the best plan for a

given situation based on both the cost and risk associated with plans. Cooperative plans

must be annotated with agents to request assistance from, and a cooperative intention must

be formed before cooperation can actually occur. Therefore, it represents a balance be

tween being rich enough to demonstrate the model, and simple enough to understand the

interactions that occur and the reasons for them.

The remaining sections of this appendix can be divided into two categories. Firstly, in

the following section we give the details of the plan library given to agents in the testbed,

and then in Section B.4 we discuss how agents can order the execution of their actions.

Secondly, in the final section of this appendix we give a brief walk-through of the testbed

in operation in a specific situation, demonstrating the mechanisms and processes described

in the earlier chapters of this thesis. For ease of understanding we take a simple example of

two agents forming a cooperation intention and jointly performing the actions involved in

moving a box from the delivery area to a storage area.

262

name: moveRightPlan
achieves: [$(location, [_agent, _y])$]
preconditions: [(location, [.agent, _?c]) , (isRightOf, [_y, _x])]
body: [<action (move, [.agent, right]) =_agent>,

<goal [$(location, [.agent, _y])$]>]
name: moveLeftPlan

achieves: [$(location, [.agent, _y])$]
preconditions: [(location, [.agent, _x]), (isLeftOf, [_y, _x])]
body: [<action (move, [.agent, left])=_agent>,

<goal [$(location, [.agent, .y])$]>]
name: stayPutPlan

achieves: [$(location, [.agent, _x])$]
preconditions: [(location, [.agent, _x])]
body: []

name: rechargePlan
achieves: [$(location, [.agent, _y]), (charge, [.agent, 10])$]
preconditions: []
body: [<goal [$(location, [.agent, _y])$]>,

<action (recharge, [.agent])=_agent>]

Table B.l: Plans for moving and recharging in the warehouse domain

B.3 Plan Library

We introduced the Warehouse domain in Section 5.5, however, so as not to complicate

our earlier discussions we did not give details of the plans given to agents. Thus, before

considering a sample interaction we briefly describe the set of plans given to agents in the

testbed.

Agents are able to perform certain actions in the warehouse, in particular they are able

to move around, pick up and put down boxes, and check that boxes are stored correctly.

There are three types of lifting action: pickup which operates on small boxes, lif tend

which lifts one end of a large box, and pickupBiG which operates on large boxes. All

agents are capable of performing these actions, with the exception of the pickupBiG action,

which can only be performed by a specific agent, agent3.

For an agent to be able to achieve a goal, it requires a plan specifying the actions that

263

are needed for its achievement. In Sen ara , an agent is given a library of plans from which

it selects the most appropriate for a particular goal, as described in Chapter 3, rather than

planning from first principles. Agents in the warehouse scenario must be able to move

around their environment, store boxes that are delivered, check boxes are correctly stored,

move boxes to the waste disposal area, and recharge their power levels when required, and

we provide agents with a plan library to achieve this.

We begin by defining three plans for moving around their environment, i.e. achieving

the goal of being in a particular location; agents are given a plan for moving right, moving

left, and staying in their current location. The latter is required so that an agent has a plan

to achieve the goal of being in specific room when it is already there. These plans, along

with a plan defining how an agent can recharge its power, are shown in Table B.l, in which

_t denotes a variable and g denotes a goal.

Along with the ability to move around in the warehouse, agents must be able to store

boxes that are delivered. Now, there are two sizes of box, small and large, and small boxes

can be stored by individuals, while large boxes must be stored by a specific agent, or through

cooperation — agents need appropriate plans to represent this. The plans associated with

storing boxes are shown in Table B.2, which contains plans for an individual storing a

small box, two agents storing a large box together, and an agent storing a large box alone.

Table B.2 also contains a plan for checking that a box is correctly stored — an agent must

move to the location of the box, and check it has not been stored beyond its expiry time. We

do not need to define additional plans for moving boxes to the waste disposal area, since

the storage plans can be used (with the target room set appropriately). These plans, taken

in conjunction with those described earlier, comprise the agent’s plan library.

264

name: storeSmallPlan
achieves: [$(location, [_box, _room]), not (holding, [_agent, _box])$]
preconditions: [(location, [_box, _loc]), (type, [_box, _size, -type])]
body: [<goal [$(location, [_agent, _loc])$]>,

<action (pickup, [_agent, -box])=_agent>,
<goal [$(location, [_agent, .room])$]>,
<action (putdown, [_agent, -box]) =_agent>]

name: storeLargePlan
achieves: [$(location, [_box, -room]), not (holding, [_agent, _box])$]
preconditions: [(location, [_box, _loc]), (type, [_box, -size, type])]
body: [

<goal
[$(location, [_agentl, _loc]),
(location, [_agent2, _loc])$]>,

<joint-action
[<action (liftend, [_agentl, -box])=_agentl>,
<action (liftend, [_agent2, -box])=_agent2>]>,

<goal
[$(location, [_agentl, -room]),
(location, [_agent2, _room])$]>,

<joint-action
[<action (placeend, [_agentl, -box])=_agentl>,
<action (placeend, [_agent2, -box])=_agent2>]>]

name: storeLargePlanCheap
achieves: [$(location, [_box, -room]), not (holding, [-agent, _box])$]
preconditions: [(location, [-box, _loc]), (type, [_box, -size, -type])]
body: [<goal [$(location, [_agent, _loc])$]>,

<action (pickupBIG, [-agent, -box]) =_agent>,
<goal [$(location, [_agent, _room])$]>,
<action (putdownBIG, [_agent, -box]) =_agent>]

name: checkPlan
achieves: [$(checked, [_agent, _box])$]
preconditions: [(location, [_box, _loc])]
body: [<goal [$(location, [.agent, _loc])$]>,

<action (check, [.agent, -box])=_agent>]

Table B.2: Plans for storing and checking boxes in the warehouse domains

265

B.4 Synchronising and Ordering Action Execution

In executing a cooperative intention agents must ensure that their actions are performed in

the correct order, and that the performance of contributions comprising any joint actions

are synchronised. Recall from Chapter 7 that we adopt Kinny el al. ’s solution to ordering

and synchronising actions. For completeness we give more details of this approach in this

section.

B.4.1 Synchronisation

Solutions to the problem of synchronisation of the contributions comprising a joint action

tend to be domain specific. For example, in the Warehouse Domain all the possible joint

actions are related to lifting boxes. This requires agents to be in the same area of the

warehouse, meaning that synchronisation of contributions can be achieved through simply

observing the behaviour of the other agents of the joint actions. However, this method is

not applicable where agents are not in the same location as each other. Other types of joint

action exist where agents do not need to be in the same place. For example, performing an

update operation on a distributed database can be considered to be a joint action requiring

several local updates (the contributions) simultaneously. In this case agents must use some

other method for achieving synchronisation, through communication. However, the details

of how this is best achieved will depend on the nature of their communication. If agents are

relatively close in geographic terms, then they may be able to synchronise using the Internet.

However, if they are distributed across different continents then the communication delay is

likely to be too great, and unpredictable3, to achieve synchronisation over the Internet, and

another method must be found.

No general solution that works for all domains exists for synchronisation of joint ac

tions. Solutions can be achieved through communication i f agents have access to a global
3The delay will be unpredictable since it will depend how messages are routed

266

clock, know when messages are sent, know the communication delay, and communication

is reliable [46]. For example, agents might agree to perform their contributions at a specific

time. However, the details of such approaches are beyond the scope of this thesis.

B.4.2 Action Ordering

Similarly to the problem of synchronising joint actions, the most efficient mechanism for

constraining the order of actions is dependent of the domain concerned. For example, if it

is possible for agents to perceive the actions of others then, before performing its part of a

plan, an agent can simply observe whether the preceding action is complete. However, in

general, it is not possible for agents to perceive the actions of others, and indeed, even if it

were possible, there is the additional problem of ensuring the action observed is part of the

plan concerned, and not independent of it4.

Unlike the problem of synchronisation, however, it is possible to offer a general solution

to the problem of ordering actions based on communication. Although this solution is

certainly not the most efficient in all domains, it is straightforward, and provides a base from

which to develop a more efficient solution for a given application domain. The problem of

action ordering arises from the need for an agent to know that the execution of the previous

contribution is complete before beginning the execution of the following action. Kinny et

al. offer a simple solution in their model of Planned Team Activity [55], which we adopt in

this thesis.

The solution is to require that the agent executing a given action informs the agent

of the following action when execution is successfully performed. Correspondingly, the

agent of the following action must not perform its contribution until it is informed that

the previous action has been completed. In the case of joint and concurrent actions we

extend this solution such that the set of agents performing joint or concurrent actions must
4This is a problem since although the action observed might be the same, if it is not part of the same plan

the preceding actions in the plan will not have been performed.

267

inform the agent(s) of the following action when their contributions are complete. Similarly,

each agent involved in the execution of the following action must wait until it has been

informed of completion by each of the agents performing a contribution in the previous

action. Action ordering can be achieved, therefore, by inserting appropriate communication

and waiting actions into the plan prior to its execution. In general, only the initiating agent

has knowledge of the complete plan, and therefore the actions required for ordering must

be added by the initiator.

Recall from Chapter 7 that a cooperative intention can be established though either an

immediate or a delayed commitment strategy5. If an ICS was used, then commitments

have been obtained for all of the appropriate actions in the current elaboration of the plan.

Conversely, if a DCS is used, then each action is treated in turn, with a cooperative intention

being established on an action by action basis. This has a bearing on the achievement of

action ordering, since the steps in the plan are treated in different ways. Where the ICS is

used then action ordering can be achieved as outlined above, with the agents of an action

informing the agents of the following action when its execution is complete. If a DCS is

used then it is not known at the time of executing an action which agents will perform

the following one, unless it is an individual action to be performed by the initiating agent.

Therefore, if a DCS is used, all that is required is that the agents performing a cooperative

action inform the initiating agent when their contributions are complete. The initiating agent

can then bring about execution of the following action, by forming a cooperative intention

or by performing it itself.

We now give the algorithm the initiator uses to insert the appropriate actions into its

plan. We concentrate on the case where an ICS has been used to establish a cooperative

intention. The algorithm is to step through the actions in the plan, and wherever an action is

followed by an another that is to be performed by different agents, two actions are inserted.

The first is an action for the agents of the current action to inform the agents of the following

action as soon as it is complete. The second is an action for the agents of the following

5ICS and DCS respectively

268

Inputs:
plan — the plan for which action ordering is needed

Outputs:
plan' — the plan with appropriate ordering action inserted

Algorithm:
plan' = plan
f o r action in plan do

i f n o t ftna\(act, plan) and no t agentsOf(next(acP'o«)) =
agentsOf(acho«)) then
informAct = inform(agentsOf(next(achcw)), don enaction))
araioia\e{informAct, agentsOf(ac//o«))
insertAfter(act/0«, informAct)
waitAct = informed(agentsOf(0c//on), done(action))
annoXate(waitAct, agentsOf(next(<2cr/o/j)))
insertBefore(next(ncP'o/j), waitAct)

r e tu r n plan'

Figure B.2: Algorithm for inserting ordering actions based on Kinny et al. ’s work

action to wait until they have been informed of the previous action’s completion, as shown

in Figure B.2.

B.5 Example Interaction

In this section we describe a simple cooperative interaction between two agents in the ware

house domain. A complete trace of the output from the testbed for even a simple example

is rather large (in the order of 3000 lines for 40 cycles of an agent’s control cycle), and so

for brevity we only include extracts of the trace here.

B.5.1 Plan selection

In order to achieve a particular goal, an agent must select an appropriate plan from its plan

library, and commit to its achievement through the formation of an intention. Where there

269

is only one plan in the library that achieves the goal and has its preconditions satisfied, then

plan selection is a trivial, since that plan is selected. However, if there is more than one

plan that achieves the goal (and has its preconditions satisfied) then the agent must choose

between them. In Chapter 6 we proposed an approach to plan selection in this situation that

takes into account both the cost of a plan, using standard planning heuristics, and the risk

associated with it with respect to cooperation. The plan selection process consists of two

key components: an assessment of this cost and risk, and the choice between plans for a

given goal.

B.5.2 Pre-execution Assessment

All plans in an agent’s library are assessed to arrive at a standard rating based on standard

planning heuristics such as length and cost, and a cooperative rating based on the estimated

risk arising from cooperation. To arrive at these ratings an agent must consider the actions

contained in a plan, along with the set of possible elaborations of any subgoals it contains.

However, because constructing the entire plan tree at plan selection time is too expensive,

agents perform an off-line pre-execution assessment of the plan library. As described in

Section 6.5 agents start by assessing plans that require no further elaboration, since these

can be directly evaluated without considering subplans. These ratings are then fed into other

plans in the library as values for subgoals within them, and so on in subsequent levels of

elaboration.

We illustrate this process by considering the assessment of the plan library introduced

above, from the perspective of a particular agent, agenti. Assessment begins with the

plan for staying in the current location, since this is the only plan that does not require

further elaboration. However, since it does not contain any actions either, its standard and

cooperative rating are both zero.

start assessPlanLib
assessing stayPutPlan

plan's cooperative rating assessed as

270

0 . 0 (B C) 0 . 0 (MC)

The plan for staying in the current location may be used in the elaboration of the plans

for moving right and left, and so its rating is used in determining their ratings. To obtain the

rating for moveRightPlan, each of the steps in its body is considered in turn. Firstly, the

rating for the step corresponding to the action of moving right is obtained by considering its

standard cost and the trust of the agents that might perform it, since the plan, and therefore

the action of moving right, may be performed by another agent. Secondly, the subgoal of

being in a particular location is assessed by considering the ratings of its possible elabora

tions. Two possible plans (apart from the plan for moving right itself) might be used in its

elaboration: stayPutPlan and moveLeftPian. The rating for the former of these can be

incorporated, but the latter cannot since moveLeftPian and moveRightPlan are mutually

recursive meaning each might be a subplan of the other. Therefore, their ratings must be

scaled for recursion, as described in Chapter 6. The plan for moving left is assessed in a

similar manner, giving the following results.

assessing moveRightPlan
current step: <action (move, [_agent, right])=_agent>
step is action, assessing... value is 1.03
current step: <goal [$(location, [_agent, _y])$]>
step is goal, finding BC and MC rating

poss elaborations: [moveLeftPian, stayPutPlan]
considering subplan moveLeftPian:

plans are mutually recursive
considering subplan stayPutPlan

BC value is 0.0 MC value is 0.0
scaling for recursion... factor is 3.0

plan's cooperative rating assessed as
3.08 (BC) 3.08 (MC)

plan's quality assessed as
6.08 (BC) 6.08 (MC)

assessing moveLeftPian

plan's cooperative rating assessed as
6.08 (BC) 6.08 (MC)

Likewise, these ratings are used in assessing the subsequent level of plans in the library,

271

which in this case corresponds to all the remaining plans. Firstly, consider the plan for

storing small boxes. The body of this plan contains the steps of moving to the location of

the box (for which one of the above three plans will be used), picking up the box, moving to

the storage location (again using one of the above plans), and finally putting down the box.

The assessment of this plan is therefore achieved by considering the ratings of the actions

of picking up and putting down a box, along with the ratings of the three plans already

assessed. As described in Section 6.5, when considering a set of plans for the elaboration of

a subgoal, the best-case and mean-case ratings are determined, and used to arrive at a best-

case and mean-case rating for the plan itself. The result of assessing the plan for storing a

small box is as follows.

assessing storeSmallPlan
current step: <goal [$(location, [_agent, -loc])$]>
step is goal, finding BC and MC rating

poss elaborations: [stayPutPlan, moveRightPlan,
moveLeftPlan]

considering subplan stayPutPlan
BC value is 0.0 MC value is 0.0

considering subplan moveRightPlan
BC value is 6.08 MC value is 6.08

considering subplan moveLeftPlan
BC value is 6.08 MC value is 6.08

current step: <action (pickup, [_agent, _box]) =_agent>
step is action, assessing... value is 1.03
current step: <goal [$(location, [_agent, -room])$]>
step is goal, finding BC and MC rating

poss elaborations: [stayPutPlan, moveRightPlan,
moveLeftPlan]

considering subplan stayPutPlan
BC value is 0.0 MC value is 0.0

considering subplan moveRightPlan
BC value is 6.08 MC value is 6.08

considering subplan moveLeftPlan
BC value is 6.08 MC value is 6.08

current step: <action (putdown, [_agent, _box]) =_agent>
step is action, assessing... value is 1.03
plan's cooperative rating assessed as

2.05 (BC) 10.16 (MC)
plan's quality assessed as

10.05 (BC) 18.16 (MC)

In this manner the remaining plans are assessed, resulting in the following best-case

272

and mean-case ratings.

assessing storeLargePlan
plan's quality assessed as

23.82 (BC) 23.82 (MC)
name: storeLargePlanCheap

plan's quality assessed as
13.85 (BC) 21.96 (MC)

assessing rechargePlan
plan's quality assessed as

7.0 (BC) 11.05 (MC)

Now, since the trust placed in agents changes over time, these ratings may become out

of step with the current situation, and so they must be reassessed periodically. For example,

if agentl ’s trust of agent3 changes from 0.52 to 0.1, i.e. from a high to a low level of

trust, then the ratings of risk associated with plans that might involve agent3 will increase

when reassessed, to reflect the increased risk. For example, the actions in the plan for an

individual agent storing a large box must be performed by agent3 because it is the only

agent capable of moving such a box. Therefore, if the plan library is reassessed the ratings

of this plan will increase, giving the following new rating.

name: storeLargePlanCheap
plan's cooperative rating assessed as

30.0 (BC) 38.83 (MC)

B.5.3 Plan Selection

The ratings determined by an agent’s pre-execution assessment of its plan library are used

to select the best plan to achieve a goal. In the case where there is only one applicable plan,

and that plan can be performed individually, then plan selection is a trivial — the applicable

plan is selected. For example, if a small box is delivered to the warehouse, and agenti

perceives this, it will form the goal of storing the box, as a result of its tidiness motivation.

In order to form an intention it must select a plan for this goal, and the only applicable plan

273

is s t o r e s m a i i p i a n . Thus, the agent selects this plan, and forms an intention towards its

execution.

However, where there are a number of applicable plans, and these plans require cooper

ation to perform, then plan selection is more complex. For example, consider the situation

where agenti perceives that a large box has arrived in the delivery area, and adopts the

goal of moving it to the storage area. There are two applicable plans in this situation,

storeLargePlan and storeLargePlanCheap, the former uses joint actions of two agents

lifting the box and moving it, while the latter must be executed by an individual agent with

the ability to lift a large box. Any of the other agents can assist for the execution of the

former plan (since all agents have the required capabilities), but only agent3 can assist for

the latter, since it is the only agent able to perform the action of lifting a large box indi

vidually. The best plan should be selected based on the best-case and mean-case advantage

as discussed in Section 6.5. Using the ratings calculated above, the best-case advantage

of choosing storeLargePlan over storeLargePlanCheap is 9.97, and the mean-case ad

vantage is 1.86. Thus, the best-case advantage is greater and so the plan with the lowest

best-case rating should be selected, namely storeLargePlanCheap6. The agent can then

begin the procedures required to adopt this plan as an intention.

Alternatively, if the agent had a different level of trust in the others, then a different

plan might have been chosen. For example, if agent3 is little trusted and associated with

a trust value of 0.1, instead of being trusted, then the rating for the storeLargePlanCheap
changes as given above. The ratings for the other plans also change; in particular, the

best-case and mean-case ratings for storeLargePlan both become 33.53. Here, the risk

associated with storeLargePlanCheap is significantly increased, and the best-case and

mean-case advantages become 3.53 and 5.3 respectively and therefore the mean-case rating

should be used to select the best plan. The plan storeLargePlan has the lowest mean-case

rating, and so is selected.
6In this case, s to r e L a r g e P la n C h e a p would also have been chosen using the mean-case rating, but this

is not always the case.

274

B.5.4 Intention Adoption

Returning to our example interaction, the chosen plan is then used to adopt an appropriate

intention, as described in Chapter 7. For individual plans, intention adoption is a trivial

matter of committing to a the chosen plan. Where the plan requires cooperation, however, a

cooperative intention must be formed (unless a delayed commitment strategy is used). If we

take the above example of the agent selecting storeLargePian for its goal of storing a large

box, then it must annotate that plan, request assistance, and form a cooperative intention if

sufficient agents accept.

To annotate its plan the agent considers each action step in the plan in turn (excluding

the synchronisation actions introduced earlier in this section), and annotates it with the

appropriate agents, based on its trust of them. Of course, annotating a contribution to itself

avoids the risk associated with cooperation, and so is better from a risk perspective, but it

does require the agent to act and so will have an associated cost. Thus, an agent must decide

whether to annotate itself to a contribution by balancing the risk and cost. After deciding

which contributions in the plan to perform itself the agent should go through the remaining

steps, annotating them with the most trusted agent (or set of agents in the case of joint and

concurrent actions) that have the required capabilities. In our example, suppose that agenti

annotates itself to one of the contributions in the joint actions of picking up, moving, and

putting down the box. The remaining contributions in the joint actions are annotated to the

most trusted agent, in this case agent4. Finally, the communication actions are annotated

by substituting the bindings of agent identifiers to variables that were selected for the other

actions.

chosenPlan is cooperative
chosenPlan: name: storeLargePian
current step:

<goal [$(location, [.agenti, rooml]),
(location, [_agent2, rooml])$]>

current step:
<concurrent_action [<action (inform, [_agent2,

inposition])=_agentl>,
<action (inform, [.agenti, inposition])=_agent2>]>

275

current step:
<concurrent_action [<action (wait, [_agent2,

inposition])=_agentl>,
<action (wait, [_agentl, inposition])=_agent2>]>

current step:
<joint_action [<action (liftend, [_agentl, boxl])=_agentl>,
<action (liftend, [_agent2, boxl])=_agent2>]>
<start minAnnotateJointAction()>

act (liftend, [_agentl, boxl])
assigning self to (liftend, [_agentl, boxl])
(liftend, [agentl, boxl]) agentl
act (liftend, [_agent2, boxl])
assigned []
capable [agent2, agent3, agent4]
chosen agent4
(liftend, [agent4, boxl]) agent4
<end minAnnotateJointAction()>

annotated step:
<joint-action [<action (liftend, [agentl, boxl])=agentl>,
<action (liftend, [agent4, boxl])=agent4>]>

current step:
<concurrent_action [<action (inform, [_agent2,

lifted])=_agentl>,
<action (inform, [_agentl, lifted])=-agent2>]>

current step:
<concurrent_action [<action (wait, [_agent2,

lifted])=_agentl>,
<action (wait, [_agentl, lifted])=_agent2>]>

current step:
<goal [$(location, [_agentl, room2]),
(location, [_agent2, room2])$]>

current step:
<concurrent_action [<action (inform, [_agent2,

inposition])=_agentl>,
<action (inform, [_agentl, inposition])=_agent2>]>

current step:
<concurrent_action [<action (wait, [_agent2,

inposition])=_agentl>,
<action (wait, [-agentl, inposition]) =_agent2>]>

current step:
<joint-action [<action (placeend, [_agentl, boxl])=_agentl>,
<action (placeend, [_agent2, boxl]) =_agent2>] >
<start minAnnotateJointAction()>

act (placeend, [_agentl, boxl])
assigning self to (placeend, [_agentl, boxl])
(placeend, [agentl, boxl]) agentl
act (placeend, [_agent2, boxl])
assigned []
capable [agent2, agent3, agent4]
chosen agent4
(placeend, [agent4, boxl]) agent4
<end minAnnotateJointAction()>

276

annotated step:
<joint-action [<action (placeend, [agentl, boxl])=agentl>,
<action (placeend, [agent4, boxl])=agent4>]>

Once the plan is annotated, the agent sends a request for assistance to agent4 and forms

a nominal commitment. For simplicity, and since we are taking a closely coupled view,

requests for assistance in the warehouse scenario are based upon communication of the

complete annotated plan. Thus, agentl’s request message to agent4 includes the complete

plan.

At this stage of execution agentl has sent a request, and formed a nominal commit

ment, and agent4 must process this request. Now, agent4 will also have perceived the

environment and the box in the delivery area, and so the intensity of its tidiness motiva

tion will also be high. The plan contained in the request mitigates this motivation, and is

considered to be of motivational value (the motivational effect outweighs the cost of per

forming the contributions). If agentl is trusted by agent4, which according to the trust

matrix given earlier it is (with a trust value of 0.96), then it accepts the request, and forms a

corresponding nominal commitment.

On receiving the acceptance message the initiating agent (agentl) can form a full com

mitment, since agent4 is the only other agent involved, and send a confirmation message.

When agent4 receives this confirmation, it too can adopt a full commitment, and execution

can begin.

B.5.5 Intention Execution

After the establishment of a cooperative intention, the agents concerned can begin their

execution. The main issue in execution of a cooperative intention is the correct ordering

of actions in the plan, which can be achieved by inserting communication actions. Inform

actions are inserted after the joint (or concurrent) actions in the plan and after the subgoals,

since their achievement may involve a number of agents, and corresponding wait actions

277

are inserted after these inform actions. Thus, the body of the storeLargePlan becomes as
follows.

>e: storeLargePlan
body: [

<goal
[$(location, [_agentl, _loc]),
(location, [_agent2, _loc])$]>,

<concurrent_action
[<action (inform, [_agent2, inposition]) =_agentl>,
<action (inform, [_agentl, inposition]) =_agent2>] >,

<concurren t_ac t i on
[<action (wait, [_agent2, inposition])=_agentl>,

<action (wait, [_agentl, inposition])=_agent2>]>,
<joint_action

[<action (liftend, [_agentl, -box])=_agentl>,
<action (liftend, [_agent2, _box])=_agent2>]>,

< c oncurr en t_a c t i on
[<action (inform, [_agent2, lifted]) =_agentl>,
<action (inform, [_agentl, lifted]) =_agent2>]>,

<concurrent_action
[<action (wait, [_agent2, lifted])=_agentl>,
<action (wait, [_agentl, lifted])=_agent2>]>,

<goal
[$(location, [_agentl, .room]),
(location, [_agent2, _room])$]>,

<concurrent_action
[<action (inform, [_agent2 , inposition]) =_agentl>,
<action (inform, [_agentl, inposition])=_agent2>]>,

<concurrent_action
[<action (wait, [_agent2, inposition]) =_agentl>,
<action (wait, [_agentl, inposition]) =_agent2>]>,

<joint_action
[<action (placeend, [_agentl, _box]) =_agentl>,
<action (placeend, [_agent2, -box]) =_agent2>] >]

This plan transformation is performed before the initiating agent communicates the plan

to the potential participants in order to reduce the communication overhead of communi

cating the plan twice (once without ordering actions to gain commitment, and once with

them prior to execution). In our prototypical implementation we are not concerned with in

vestigating synchronisation mechanisms, and so we take a simplistic, but functional, view.

Synchronisation is required for each joint action in a plan, and our approach is that agents

should simply wait a specified time after receiving the inform messages from the agents of

278

the previous action before performing their contribution. This mechanism is sufficient if the

communication delays are negligible, and in our test environment this is the case.

If both agents perform the contributions contained in the plan, and the environment does

not change adversely, then plan execution will successful, and the agents should increase

their trust of each other. Conversely, if cooperation fails for some reason, for example, if

the intention ceases to be of motivational value to agent4, and it drops its intention, then

agentl should reduce its trust of agent4.

279

	Insert from: "WRAP_Coversheet_Theses_new1.pdf"
	http://wrap.warwick.ac.uk/170616

