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Abstract
Multi-agent systems are underpinned by the notion of cooperation -  the process by 

which independent agents act together to achieve particular goals. Cooperation between 

autonomous agents requires appropriate motivations on behalf of those agents, since an 

agent’s behaviour is guided by its motivations. Interaction with others involves an inherent 

risk and, to manage this risk, an agent must consider its trust of others in conjunction with 

its motivations in entering into, and continuing in, cooperative activity. The aim of this 

thesis is to develop a framework for motivated cooperation, focusing in particular on the 

motivational reasons an agent might have for cooperating, and how it can use the informa

tion it has about others (such as their capabilities and trustworthiness) to make informed 

judgements about the risk involved in cooperating.

The main body of this thesis can be decomposed into four parts. First, we introduce 

the issues associated with motivated cooperation, identify the outstanding problems, and 

discuss the key related work that gives a context to the thesis. Second, we present the mo-
.. . , „ , .  t c cm a d a which forms the foundation of our framework. Third,tivated agent architecture, SENARA, wnicu iu im a u

we introduce the framework itself, drawing out the details related to motivation and risk, 

and describing how this framework can be instantiated in particular applications. Final

ly, we conclude the thesis by considering the contributions it has made, and identifying

potential areas for future work.
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Chapter 1

Introduction

1.1 Introduction

Artificial intelligence (AI) is a relatively young field, having been established for little more

than half a century. Early research in AI, around the 1960s and 1970s, was concerned 

with solving isolated problems such as storing information effectively for fiiture processing 

(knowledge representation), and finding an appropriate sequence of actions to achieve a 

given task (planning). The next stage of AI research in the 1980s and 1990s saw expansion 

into many threads, encompassing neural networks, machine learning, computer vision, and 

many others. Until this point AI research had concentrated on the individual, but from 

the early 1990s onward researchers began to consider groups of entities. Indeed, one of 

the strongest areas of recent growth has been distributed problem solving (DPS), which is 

concerned with developing mechanisms for a collection of problem solving nodes, working 

together to perform a particular task. Nodes in a DPS system are typically based upon the 

earlier products of AI, in particular with respect to their local problem solving abilities. 

There are many examples of DPS systems, such as Smith’s cooperating experts model [95], 

which is based around the Contract Net protocol [94], and Lesser and Corkill’s Distributed 

Vehicle Monitoring Testbed [57] both of which have led to extensive further work.
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Recent work in the area of artificial intelligence has seen significant development of ear

lier ideas on DPS. Problem solving nodes have become more sophisticated, both in terms 

of their capabilities and their reasoning power, and are now typically viewed as agents — 

independent entities, capable of acting in their environment according to their perception- 

s, based on their own decision-making processes and objectives [60]. Perhaps the single 

most significant development, however, is that agents typically have some degree of au

tonomy, in that they are able to guide their own behaviour and function effectively without 

outside intervention. Systems containing a group of such problem solving agents are called 

multi-agent systems, and form part of the now established subfield of AI, distributed ar

tificial intelligence (DAI). However, DAI is still young, and comprises much diverse and 

sometimes contradictory work.

In this thesis we consider multi-agent systems, and in particular we develop a model of 

cooperation between autonomous agents. Cooperation is the foundation upon which multi

agent systems are built; groups of agents cooperate to achieve goals that they would not be 

able to achieve alone.

1.2 Agents

Over the last decade or so, the question of what constitutes an agent has been the subject 

of much discussion [34, 78], with various camps making different claims about what is 

required from an entity for it to be considered an agent. In this section we introduce the 

notion of agency, and the characteristics that agents typically exhibit, in particular the qual

ity of autonomy. Two general uses of the term agent are distinguished by Wooldridge and 

Jennings [103], the first of which is a weak notion in which agents are viewed as having the 

following properties.

Autonomy: agents are able to operate without external intervention, and should have some 

degree of control over their own behaviour.
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Social ability: agents are able to interact with others.

Reactivity: in a dynamic environment, agents perceive relevant changes in the environ

ment and are able to react appropriately in a timely fashion.

Pro-activeness: in addition to responding to their environment, agents exhibit goal-directed 

behaviour and act under their own volition.

Secondly, Wooldridge and Jennings recognise that for some researchers the term agent 

imports a stronger notion so that, in addition to the properties outlined above, agents are 

conceived as intentional systems in terms of mentalistic notions, such as belief, knowledge, 

intention, and motivation [103]. Several proposed sets of mental components exist but the 

combination of beliefs, desires and intentions is arguably the most widespread [44] in terms 

of agent characterisation. Beliefs are those propositions about the environment and itself 

that an agent takes to be true. An agent’s desires are the situations that it wishes to bring 

about, and its intentions are those desires to which it has committed to achieving.

In broad terms, the debate has recently settled, marked by the general acceptance of 

this weak definition of agency.

1.2.1 Autonomy

Autonomy is an important quality of an agent, and can be viewed along two complementary 

dimensions that are really two aspects of the same characteristic. Firstly, if an agent is 

autonomous it is able to act, at least to some extent, without external intervention either 

from a human user or another agent. Secondly, an autonomous agent is able to guide its own 

behaviour and act according to its own priorities, rather than being under the direct control 

of another. Although the importance of autonomy in agents is widely alluded to [1,11,45], 

there are few explicit detailed models, and autonomy does not form an explicit part of the 

common view of agents as intentional systems. Of those explicit models that do exist, some 

model autonomy through the provision of additional mental components (e.g. [61, 77]).

3



The outstanding problem, however, is integrating these additional components seamlessly 

with the agent’s other mental components, such as its beliefs, desires, and intentions.

1.2.2 Other Characteristics

Despite the general acceptance of Wooldridge and Jennings’ weak definition of agency1, 

there are still a few small areas of debate left open. For example, there is no consensus 

over whether temporal continuity, learning, and mobility are required characteristics for 

agents [34]. Rosenschein and Genesereth identify benevolence as another important area 

of contention by noting that many early DAI systems make the benevolent agent assump

tion [85], by which the agents in a given domain have common or non-conflicting goals. A 

consequence of this is that agents are often assumed to aid one another through providing 

information and performing tasks requested of them. Rosenschein and Genesereth were 

amongst the first to argue that this is unrealistic in many real world situations, and in situ

ations where agents are autonomous, since the behaviour of autonomous agents cannot be 

guaranteed. DAI is underpinned by the notion of cooperation, through which a collection of 

agents achieve their goals together; in the following section we introduce cooperation and 

its relation to agent autonomy.

1.3 Cooperation

A group of agents cooperate when they engage in a joint activity for which the actions 

of each are needed for a successful outcome, and where agents’ actions are not under the 

direct control of another [101]. Individual agents have limited capabilities and resources, 

and consequently the tasks they are able to achieve are also limited. Cooperation allows 

agents to transcend these limitations and achieve tasks that they would not be able to achieve 
i0 f course, while DAI remains a relatively young and active research area there will not be complete

acceptance of such definitions.
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alone. By pooling their resources and capabilities, a group of agents may be able to achieve 

many more tasks than any individual in the group. Consider the oft cited example of two 

agents wishing to move a heavy piece of furniture, where each agent does not have the 

strength to move it alone. By acting together and assisting each other they are able to move 

the object [67]. Similarly, in a situation where individual agents do not possess sufficient 

information to perform some task, then by cooperating and sharing information they are 

able to draw on the collective knowledge of the group members and perform the task.

1.3.1 Autonomous Cooperation

When autonomous agents cooperate in a dynamic environment, uncertain behaviour may 

arise as a result of their autonomy, or from changes in the environment. An agent acts 

according to its own individual high-level desires, which may change over time. Conse

quently, even though an agent might initially agree to contribute to achieving some objec

tive through cooperation, there is no guarantee that its attitude will not change during the 

course of the interaction. If the agent’s individual high-level desires change such that the 

reason for its cooperation is removed, then it is likely to stop cooperating, and not perform 

any additional actions in pursuit of the group objective. This can have repercussions for 

the other agents involved, since, if they are not aware that one of their number has ceased 

to cooperate, they may continue to act assuming that others are acting accordingly. Thus, 

if an action relies on a previous action that should have been performed by an agent that 

is no longer cooperating, this latter action will fail. In such a situation the group can ei

ther determine another course of action to complete the achievement of their goal, or they 

can concede failure. Indeed, there may be no choice but to allow their cooperation to fail, 

depending on the circumstances and the manner in which cooperation broke down. Regard

less of whether the group later goes on to achieve its objective or concede failure, it has 

been negatively affected by the agent that left the group, since the members have invested 

time and effort in their contributions to the objective, only to have to reconsider their plans, 

or for the objective to fail.
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Cooperation between autonomous agents, therefore, implies an element of risk since 

agents may rescind their cooperation at any point, as their desires change. In order for 

agents to make informed decisions about when to cooperate with others, some means of 

assessing and managing this risk is needed.

1.3.2 Agent Architectures for Cooperation

There is a plethora of architectures ranging from deliberative agents, which have some 

mechanism for constructing plans to achieve their goals (e.g. [5, 38]), to reactive agents 

where the emphasis is on the agent’s ability to react in a timely manner to changes in its 

environment (e.g. [6, 66]). Since agents generally need both the problem solving abilities 

that arise from deliberation, and the ability to react quickly to their environment, a number 

of hybrid agent architectures have also been suggested (e.g. [30, 32]). Existing architectures 

are generally designed with a specific task in mind, and so will tend to emphasise some 

characteristic such as problem solving ability, reactivity, or autonomy, according to the 

requirements of the task. Where cooperation is investigated without reference to a specific 

agent architecture, any resulting model will be abstract and can only serve as a high-level 

specification, since it will not give details of how cooperation arises with respect to an 

agent’s mental components. While the relationships and high-level mechanisms involved 

in cooperation can be investigated without reference to a particular agent architecture, we 

cannot look at how cooperation arises from individuals without knowing the details of their 

individual architecture. Any model of cooperation must, therefore, give consideration to the 

details of the architecture on which it is based; in particular it must account for how agents 

are made autonomous. Autonomous agents act according to their high-level desires, which 

provide the reason for their actions, and a model of cooperation must also account for how 

an autonomous agent can come to have appropriate reasons to cooperate. We discuss these 

issues within this thesis in Chapters 3, 4, and 6, where the former two chapters present 

our autonomous agent architecture, and the latter describes the reasons why such an agent 

might cooperate.
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1.4 Aims and Principles

Several factors affect the nature of a cooperative interaction among a group of agents, in

cluding the details of the agent architecture, how autonomy is achieved, and whether agents 

have an appropriate mechanism for managing the risk arising from cooperation. Cooper

ation involves all of these, and a model of cooperation between autonomous agents must 

include them all. Existing models, however, typically do not sufficiently address these ar

eas. In this thesis, we aim to provide a theory of cooperation that encapsulates all of the 

relevant factors, with a particular focus on those identified above, namely the need for au

tonomy and risk management. Additionally, this theory must not fall foul of the benevolent 

agent assumption where the agents in a system are fundamentally assumed to be helping 

each other, and will cooperate regardless of the benefit they themselves will receive from 

the cooperation. Rather, we assume that agents are fundamentally autonomous, and are 

self-interested. In summary, the aim of this thesis is to develop a principled theory of co

operation grounded in a specific architecture for a dynamic environment where agents are 

potentially unreliable. This can be instantiated more precisely as follows.

• We aim to construct a general framework within which to consider the general issues 

surrounding cooperation in multi-agent systems. This framework must identify the 

key areas of relevance for examination, the structure within which to organise them, 

and the broad-based mechanisms required. It should not be tied to particular domains 

or applications, and any mechanisms described must be generic and abstract, to apply 

across the spectrum of cooperative activity.

• Within this framework, we aim to develop the particular models and mechanisms 

needed for agents to establish and perform cooperative interactions. This can be 

regarded as instantiating the broad-based framework described above, tailoring ab

stract mechanisms to particular well-defined sub-areas. In so doing, we do not intend 

to restrict the applicability of the work, but to ensure that applicability is instead well- 

recognised, and that points of variance for different sub-areas may be identified with

7



potential alternative strategies fitting in.

In particular we aim to explicitly consider the development of mechanisms for the 

following stages in cooperation.

-  Agents must be able to recognise when the potential for cooperation exists, and 

when it is the most appropriate way of achieving their goals.

-  Once an agent has determined that the best method to achieve its goal is through 

cooperation, it needs some mechanisms through which it can elicit assistance 

from others.

-  Conversely, when requested to offer assistance to another, an agent needs some 

means of determining whether to accede to the request.

-  Finally, assuming sufficient agents agree to assist, the group of agents concerned 

must be able to execute the required actions in a coordinated and synchronised 

fashion to achieve their objective.

• In line with the previous point, we aim to develop a prototypical implementation of 

the developed model of cooperation as a demonstration, and in order to perform ex

periments, to investigate, test and analyse the algorithms and mechanisms developed, 

to provide empirical understanding, and to provide indicative ways for the work to 

be used in practice. We view this implementation as of secondary importance, in that 

while it offers a useful demonstration the model, it not central to our analysis.

• In considering cooperation of any kind, it is important to pay attention to the reasons 

why cooperation arises. These can constrain or bias cooperative activity significantly. 

In the development of the two tiers of analysis above (i.e. the framework and model), 

we aim to include an explicit recognition of the reasons an agent might have for 

entering into cooperation, through the notion of some internal desire or motivation 

for doing so. Where cooperation occurs as a result of, and is constrained by, agents’ 

motivations, we say that it is motivated cooperation — it is motivated cooperation,
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which is the specific focus of this thesis. Thus, we aim to provide an account of how 

motivations provide reasons for

-  an agent deciding to request assistance for one of its own objectives;

-  an agent agreeing to cooperate with another in achieving an objective that might 

not be of direct benefit to itself; and

-  an agent continuing to cooperate until the objective is achieved, or deciding that 

cooperation is no longer in its best interest, and so terminating its involvement.

• Similarly, it is important to consider the consequences of agents’ autonomy on the 

cooperative process. In particular, autonomy implies that agents follow their own 

individual high-level desires, and consequently, whether a given agent is cooperative 

or not is a direct function of them. If an agent’s high-level desires change during 

cooperation, that agent may drop its involvement in cooperation in favour of some 

other activity, even if this is detrimental to the remaining agents. Thus, there is a risk 

of cooperative activity breaking down due to changes in agents’ desires, potentially 

to the cost of those involved. We aim, therefore, to provide a mechanism for agents 

to assess and manage the risk of such situations occurring.

We intend the work contained in this thesis to be as general as possible, without over

complication, and easily applicable. In pursuit of these aims, there are a number of prin

ciples that we adopt and use to guide our work. These principles are based on those first 

articulated by Luck [59].

• Simplicity contributes to ease of development, evaluation and refinement. The vast 

amount of research in AI has led to an ever growing variety of tools, and method

ologies for using those tools, of ever increasing complexity. Arguments for what has 

been called ‘minimalist AI’ suggest that there should be a limited range of tools and 

methodologies which should only be added to when they can be shown to be inad

equate. This is based on the premise that advances are not made by increasing the
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number or complexity of tools, but from a small range of simpler tools applied in 

useful ways. An important consequence of this approach is that it allows the merit 

of such simple tools and methodologies to be evaluated easily and the tools to be re

vised as appropriate. Thus, where existing solutions suffice for particular problems, 

we aim to use them in an effort to prevent duplication, to better relate our framework 

to existing work in the area, and to frame the work in a context (that already exists) 

in which it can be understood.

• Similarly, simplicity also counsels against the imposition of unnecessary constraints 

and for the adoption of more general and more applicable solutions. Despite the 

inevitable need to focus on details of domains and applications, the more general 

relevance in this research must be made clear. Our solution is twofold: we provide 

at least two levels of analysis through the general framework and its instantiation 

as a model, and we avoid making premature commitments to particular instantiated 

solutions wherever possible. In this way, we avoid contributing only in the narrowest 

of areas, and also avoid a level of abstraction that tends toward the meaningless.

• One of the most significant problems faced by researchers in the field of multi-agent 

systems, and which threatened to limit its development, relates to the vagueness and 

ambiguity of much early work. We recognise the need to be careful and precise 

in relation to our work, especially in this rapidly moving area, and aim to achieve 

that precision through the use of formal specification techniques. Thus, the agent 

architecture on which the theory is built and the theory itself, are formally specified 

to aid understanding, analysis, and critical comparison with other architectures and 

models.
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1.5 Structure of Thesis

Before we begin to address the aims described above, in Chapter 2 we set the context for 

our work by considering related research. Since there is a wide body of work relating to 

agency, agent architectures, and cooperation, we select the most significant with respect to 

this thesis.

Chapters 3 and 4 describe the architecture on which we base our framework of mo

tivated cooperation. The former of these introduces the mental components required of a 

motivated agent situated in a cooperative environment, while the latter details the control 

processes that act on these components. Then, in Chapter 5, we give an overview of the 

cooperative process, describing the stages it comprises — we discuss how the need for co

operation arises, and how it can be established. In this chapter we also introduce some 

of the key concepts that the remainder of the thesis relies on (specifically the notions of 

commitment and risk with respect to cooperation).

In Chapter 6 we describe in more detail the situations under which the need for coop

eration arises and, in particular, we discuss the reasons an agent might have for choosing 

to achieve its goals cooperatively. Where an agent wishes to cooperate for the achievement 

of a particular goal, there are a number of steps that it must take to gain the assistance of 

others, and these are described in Chapter 7. Finally, Chapter 8 identifies the contributions 

made in this thesis, and areas of possible future extension.
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Chapter 2

Related Work

2.1 Introduction

Motivated by the need for the work contained in this thesis to be generally applicable, 

it must be seen within the wider context of related research. There is, however, a vast 

array of related literature — too much to include an exhaustive summary within the con

straints of this thesis. Furthermore, several other researchers have produced extensive re

views (e.g. [53, 72, 73, 78, 79, 103]) which, taken together, offer a broad coverage of the 

state of the art in multi-agent systems research. We avoid duplicating such work here, and 

instead introduce only the most directly relevant material. The objective of this chapter is 

to set the context for the subsequent chapters, rather than to provide a detailed description 

of specific theories and models and, as a consequence, we give a precis of the relevant 

work, and offer pointers to the appropriate literature. Four broad areas stand out for dis

cussion as directly relevant to motivated cooperation: agency and the notions of autonomy 

and intention, agent architectures, theories of social agency, and existing multi-agent sys

tems. Sections 2.2 and 2.3 introduce the notions of agents, autonomy and intention, and 

outline the prevailing views in these areas. In Section 2.4 we describe some of the more 

significant agent architectures arising from these views. The key theories of social agency
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are discussed in Section 2.5, and Section 2.6 introduces selected multi-agent systems that 

these theories give rise to. Finally, Section 2.7 gives an overview of the stages involved in 

cooperation between autonomous agents.

2.2 Agency and Autonomy

In Chapter 1 we noted that most researchers concur with the view of an agent as an indepen

dent entity, capable of acting in its environment according to its perceptions, based upon 

its own decision-making processes and objectives. This corresponds to Wooldridge and 

Jennings’ weak notion of an agent as an entity that possesses the properties of autonomy, 

social ability, reactivity, and proactiveness. Recall also, from Chapter 1, that Wooldridge 

and Jennings observe that some researchers use the term agent to import a stronger notion 

of intentionality, conceived in mentalistic terms, with notions such as belief and intention. 

We adopt this intentional view of agency, and in the remainder of this section we introduce 

the foundational work on which it is based. It should be noted that there are many other 

notions of agency, and corresponding architectures arising from them, of which the most 

significant are briefly introduced in the final part of Section 2.4.

In our view there are a number of fundamental characteristics to autonomy, as identified 

below.

• Autonomous agents follow their own desires, are not under the control of others, and 

are able to adjust their behaviour in response to their current situation.

• Autonomy allows agents to function effectively when situated in an environment that 

is unpredictable due to its complexity and dynamic nature. An agent’s environment 

may change through the effects of others’ actions, and it must be able to respond to 

the changes that occur. In particular, it must be able to recognise when the goals it 

is pursuing are no longer relevant, or when the course of action it is following needs 

modification in the light of change.
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• Finally, in order to react appropriately to changes in the environment an agent must 

be able to generate and adopt new goals, according to the current situation, and au

tonomy provides a means to achieve this.

There are several theories of autonomy in agents, ranging from the philosophical and 

psychological which aim to further our understanding of autonomy in humans, to those 

that are firmly part of DAI. In relation to this thesis, and our investigation of motivated 

cooperation, the most significant models are those that discuss autonomy in relation to the 

notion of motivation and we introduce these in the remainder of this section.

2.2.1 Autonomy Through Motivations

According to Luck and d’Invemo, autonomous agents possess goals that are generated in

ternally, rather than being adopted from an external source [61, 62]. These goals are gener

ated from a set of motivations, which are high-level desires or preferences that characterise 

an agent’s purpose. In addition to causing the generation and subsequent adoption of goals, 

motivations also direct an agent’s reasoning and action.

An agent has a given set of motivations, each with a particular intensity, which may be 

variable dependent on the current situation. Motivations are represented as triples (m, v, b) 

where m is the kind of motivation, v its intensity (as a real number), and b a boolean which 

is true if the intensity is fixed, and false otherwise [63]. Luck and d’Invemo suggest that, in 

order to achieve action, a threshold value for intensity may be introduced, such that if the 

intensity of a particular motivation exceeds this threshold, action towards it is necessary.

Motivations are mitigated by agents selecting an action to achieve an existing goal, or 

by retrieving a goal from a repository of known goals. In order to retrieve goals, an agent 

must have some means of assessing the alternatives, and should select the set of goals that 

affords it the highest motivational benefit. If generating a goal would cause a conflict with 

an existing goal, then agents should only generate that goal (and remove the existing one) if 

the motivational value of doing so is greater than that of not doing so. Agents are therefore
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assumed to have appropriate mechanisms for assessing the motivational value of generat

ing, satisfying, and removing goals. However, Luck and d’Invemo do not give details of 

how to instantiate these mechanisms, since they are concerned with the development of a 

framework for motivated agency, rather than the development of a particular agent archi

tecture.

2.2.2 Motivated Goal Creation

Norman and Long have a related view of motivation to that described above, which focuses 

on goal creation in agents [75, 76, 77]. They claim that agents situated in a realistic domain 

must be able to generate goals on the fly, limit the goals that are considered for action 

(in order to manage the reasoning overhead), and direct attention to the most appropriate 

goals for the current situation. Agents are given a set of motives, the function of which is 

to monitor the environment and the internal state of the agent, and ensure that a particular 

objective is served. Motives ensure that any significant changes to the environment or to the 

agent’s internal state are detected and acted upon, and are defined as a function that maps 

a set of beliefs to a set of motivated goals. These motivated goals are tuples containing a 

goal and a motivation, where a motivation is a heuristic function that maps beliefs to an 

intensity used to select between motivated goals. The final component that is needed for 

goal generation and goal activation is a set of triggers. A trigger takes a set of motivated 

goals and a set of beliefs and causes each goal whose motivation exceeds a certain threshold 

to be a candidate for consideration by a deliberative process that decides whether to adopt 

the goal. The resultant set of goals is then passed to a planner that directs action in pursuit 

of them.

Figure 2.1 illustrates the key parts of this motivated agent architecture. In particular, 

motivated goals are generated on the basis of an agent’s motives and beliefs, and are added 

to the set of goals considered for activation. If the intensity of the motivation associated with 

a goal is greater than some threshold (determined by the planner) then the goal is activated,
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action

Figure 2.1: Norman and Long’s motivated agent architecture (from [77])

and passed to the planner, which determines how it should be achieved. Despite differences 

in terminology, Norman and Long’s view of autonomy is broadly analogous to Luck and 

d’Invemo’s — the goals an agent can generate are associated with some intensity based on 

its beliefs1, and should this intensity exceed some threshold then the goal is adopted, or

generated.

2.2.3 Autonomy as a Dependence Relationship

In collaboration with others, Castelfranchi [11, 14] proposes a view of autonomy as a rela

tional notion, in that an agent is autonomous for  a given action or goal if it is able to perform 

the action or achieve the goal without assistance, and is autonomous from some agent or re

source if it can act without reliance on that agent or resource. This view comprises two 

distinct categories of autonomy: executive and social. Executive autonomy refers to an 

agent’s ability to follow its own initiative and preferences, and guide its own behaviour in *
'This association is indirect in Luck and d’lnvemo’s approach, since motivations have an intensity, and for 

each motivation there is a particular set of goals that affords it motivational benefit.
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terms of the goals it adopts and the actions it performs. In a multi-agent environment, au

tonomy is a social notion, and social autonomy has two complementary aspects. Firstly, 

the less an agent is dependent on the actions of others, or the resources they control, for 

the achievement of its goals, then the more autonomous it is. Secondly, if an agent is not 

dependent on others for its goals, and is able to generate its own goals according to its own 

desires, then it is goal autonomous. A goal autonomous agent should have complete control 

over which goals it adopts. This does not mean that it cannot adopt a goal on the basis of 

a request from another agent, rather that it should have the option of refusing to do so. In 

other words, an agent is goal autonomous if it decides to do something for its own reasons, 

regardless of whether or not this involves complying with others’ requests.

Castelfranchi is not concerned with providing a model of autonomy at the level of 

the data structures and functions required, but with the investigation of the various types 

of autonomy that can be distinguished, and extending the notions of executive and social 

autonomy; thus Castelifanchi’s work is more abstract than that of Luck and d’Invemo or 

Norman and Long.

In this thesis we accept the notions introduced in this section (and adopt Luck and 

d’Invemo’s terminology). However, none of this work investigates how autonomy relates to 

cooperation amongst agents with respect to a particular architecture, in terms of accounting 

for the reasons an agent might have for entering into cooperation, and the processes through 

which cooperation arises from agents’ behaviour, and as stated in Chapter 1 we aim to 

address this. Other models of autonomy exist, such as (e.g. [1, 45, 70, 92, 93]), but a 

discussion of these is beyond the scope of this chapter.

2.3 Individual Intentionality

In our everyday activities it is common for us to make use of such notions as belief, hope, 

desire and intention in reasoning about ourselves and others. As Wooldridge points out,
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these mental states, or intentional attitudes, are part of a well established folk psycholo

gy in which human behaviour can be investigated and forecast [105]. Intentional systems 

are those whose behaviour can (at least sometimes) be explained and predicted by the as

cription of intentional attitudes [22], It is clear that agents can be viewed as intentional 

systems, and it is commonplace for researchers to couch descriptions of agents in terms of 

intentional attitudes. However, it should be noted that it is generally not claimed that inten

tional systems must have beliefs, desires, intentions, and so on, rather that ascribing such 

attitudes provides a useful abstraction for investigating agents, and for comprehending and 

managing their complexity. The exact composition of the set of attitudes that are required 

to explain and predict individual behaviour has been, and will almost certainly continue 

to be, the subject of debate for philosophers, cognitive scientists, and artificial intelligence 

researchers alike. However, many researchers agree that the notions of belief, desire, and 

intention are broadly sufficient (e.g. [2, 3,15,22, 51, 87]). Recall from the previous chapter 

that an agent’s beliefs are those propositions about the environment and itself that it takes 

to be true, and its desires are the situations that it wishes to bring about in the environment. 

Intentions are more complex, and represent the goals to which an agent has committed.

Philosophers have often drawn a distinction between future-directed and present-direc

ted intentions, where the former guide agents’ planning and constrain their adoption of other 

intentions, while the latter function causally in producing behaviour [15]. For example, a 

future-directed intention may be to go to London tomorrow, while a present-directed inten

tion may be the action of standing up now. It is the notion of future-directed intentions that 

we are concerned with in this thesis, since we are concerned with how agents guide their 

actions, form plans, and commit to the achievement of their goals. For clarity, we here

after use the term intention to refer to future-directed intentions, unless explicitly specified 

otherwise.
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2.3.1 The Need for Intention

An intention is a commitment to the achievement of a particular goal. Bratman [2, 3] offers 

three reasons why intentions are needed to explain and predict agent behaviour. Firstly, 

since agents are resource-bounded, and deliberation uses resources, there are limits to the 

extent of deliberation possible at the time of action. Agents cannot continually consider 

their competing goals and beliefs in deciding what action to take. Eventually an agent must 

settle on a particular goal, and establish a commitment towards achieving that goal, there

by balancing deliberation and acting. Secondly, by adopting intentions, an agent is able to 

coordinate its present and future actions. Once committed to achieving a given state, an 

agent can consider what to do after that state has been established based on the expectation 

that its commitment will result in it being achieved. Current intentions, therefore, constrain 

the future intentions an agent can adopt. Thirdly, intentions are a commitment to achieve 

a particular goal, without specifying how that goal should be achieved; as a result, inten

tions require deliberation, since an agent must determine how to achieve them. Moreover, 

since it is not rational for an agent to be committed to achieving conflicting goals, i.e. hold 

conflicting intentions, its current intentions establish standards of relevance against which 

future options can be judged.

From this description of the functional role of intentions, Bratman [3] identifies two 

important desirable properties. Firstly, to prevent agents becoming committed to conflicting 

goals, intentions should be consistent in that they should not conflict with each other or with 

the agent’s beliefs. Secondly, intentions should have a degree of stability and resist being 

reconsidered or abandoned, but should not be completely irrevocable, otherwise an agent 

would not be able to adapt to changes in its environment.

2.3.2 Cohen and Levesque’s Model of Intention

Cohen and Levesque offer one of the most influential models of intention, which forms the 

base for many theories relating to agents and, in particular, multi-agent cooperation. Build-
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mg on the ideas of Bratman they add the following desirable properties of intention [15]. 

An autonomous agent should act upon its intentions and not regardless of them, adopt in

tentions it believes are possible, and forego those believed unachievable. It should commit 

to intentions, but not indefinitely, and discharge those intentions believed to have been sat

isfied. Finally, intentions should be modified when relevant beliefs change, and an agent 

should adopt subsidiary intentions in favour of achieving existing ones.

These properties give rise to a set of seven criteria that Cohen and Levesque claim 

must be satisfied by any reasonable theory of intention. The first three criteria represent the 

functional roles of intention, while the remaining four represent its desirable characteristics.

1. Intentions require deliberation since agents must determine ways to achieve them.

2. Intentions constrain the adoption of further intentions, since an agent should not adopt 

an intention that is inconsistent with existing ones.

3. Agents must track the success of their intentions, and be disposed to re-planning if 

their attempts to achieve their intentions fail.

4. Agents must believe their intentions are possible.

5. Agents must not believe that they will not bring about their intentions. If an agent 

believed it would not achieve its intention, then it would not be rational to plan past 

it; thus, without this property, agents would not be able to plan to do certain actions 

in the future based on achieving their existing intentions.

6. Under certain circumstances, agents must believe that they will bring about their 

intentions, meaning that they believe a situation will eventually arise in which they 

can bring about their intentions.

7. Agents need not intend all the expected side-effects of their intentions.

These criteria are accepted by many, but there are certain researchers who reject specific 

ones. In particular, the final criterion that agents need not intend the expected side effects
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of their intentions has been the subject of debate. For example, Sidgwick [91] claims that if 

an agent has a particular intention and knows that achieving this intention will bring about 

some other side-effect in the environment, then we must say that the agent intends this side- 

effect. This debate, however, has largely been of a philosophical nature and is beyond the 

scope of this thesis.

Now, if, as desired, intentions are to be relatively persistent, but not completely irrevo

cable, the key question that arises is when it is acceptable for an agent to drop an intention. 

Cohen and Levesque answer this in their model of intention. Building on the seven cri

teria above, they propose a formal theory in which intention is modelled as a composite 

concept specifying the goal an agent has chosen, and how it is committed to achieving that 

goal [15, 16]. An agent’s chosen goals (i.e. its intentions) are assumed to be consistent, 

achieved by requiring that an intention will not be adopted if it would be inconsistent with 

existing ones. (An agent’s desires, or goals, may be inconsistent, but an agent cannot simul

taneously pursue contradictory desires.) Cohen and Levesque also assume that an agent’s 

beliefs can be incorrect and can be revised, and that the agent may drop its chosen goals 

before they have been achieved.

The foundation of their model is the notion of a persistent goal, where persistence is de

fined in terms of an internal commitment to a particular course of events or the achievement 

of a particular goal (see Table 2.1 for this definition). Building on this definition Cohen 

and Levesque introduce two forms of intention, depending on whether the object of the 

intention is an action or a goal. The difference between these forms is that when an agent 

intends to achieve a particular goal, it may not know how it will achieve it, as opposed to 

when it intends to perform a particular action, which is defined as a primitive level (again 

see Table 2.1 for the definition). Cohen and Levesque’s notion of intention, despite having 

certain problems (which we address in Chapter 3), is one of the most widely used [44].
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Definition 1 An intention is a persistent goal to have knowingly performed 
an action, or to have knowingly performed a sequence o f events after which a 
goal is achieved.

Definition 2 A persistent goal is a goal that is retained until an agent believes 
that it is satisfied, can never be satisfied, or is no longer justified, so that in all 
these cases it is irrelevant.

Table 2.1: Cohen and Levesque’s definitions of intentions and persistent goals

2.4 BDI-based Architectures

The Belief-Desire-Intention (BDI) architecture [2, 5] is an abstract model, which forms the 

basis of numerous agent theories and systems and, since it is one of the earliest and sim

plest architectures, provides a useful reference for discussing other agent systems. Agents 

are based around the mental attitudes of beliefs, desires and intentions, which have been 

introduced above.

A BDI agent operates by reasoning about its current beliefs and desires, to determine 

one or more desires to make active. Once made active, these desires are committed to and 

added to the agent’s current intentions, which in turn define its behaviour. The agent then 

acts upon one of these intentions, and updates its beliefs and desires as appropriate. We 

describe this process in more detail below, where we consider instantiations of the BDI 

architecture.

Though this architecture specifies a generic control mechanism it is nevertheless ab

stract, and needs to be instantiated in detailed architectures for specific applications. There 

are many BDI-based systems (see [44] for a description of the most significant architec

tures), along with several logics for reasoning about BDI agents and their behaviour (for 

example [82, 83]). In the remainder of this section we describe the archetypal BDI-based 

systems, IRMA and PRS.
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intentions

Figure 2.2: The IRMA architecture (from [5])

2.4.1 IRMA

IRMA (Intelligent Resource-bounded Machine Architecture) shown in Figure 2.2, is the 

earliest BDI implementation, in which information stores are shown as rounded boxes, and 

processes as rectangles. There are four information repositories in the IRMA architecture 

for storing beliefs, desires, intentions, and a plan library.

Beliefs An agent’s beliefs represent the information it has about itself and its environment.

Desires The set of situations an agent wishes to bring about are its desires.

Intentions The goals to which the agent is committed to achieving correspond to its inten

tions, but rather than being stored as goals, they are stored as the plans that have been 

chosen to achieve those goals.

Plan library The plan library stores the set of plans from which an agent can select the
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most appropriate to achieve its goals.

In IRMA, therefore, intentions represent a commitment to a particular course of action, 

rather than just to a goal. In addition to these repositories there are a number of processes, 

the most significant being a means-end reasoner, an opportunity analyser, a filtering mech

anism, and a deliberation process. An IRMA agent’s beliefs change with its environment, 

and different plans become applicable in those environments. The opportunity analyser 

proposes plans in the light of changes in the agent’s beliefs that may lead to previously 

unexpected opportunities for satisfying desires (or provide means for avoiding unexpected 

problems). Plans that may be used as subplans in the elaboration of partial plans are also 

proposed by the means-end reasoner, which is invoked for each of the agent’s intentions 

that contains partial plans. The plans proposed by the opportunity analyser and the means- 

end reasoner are passed through the filtering mechanism, which checks for compatibility 

with existing intentions, rejecting plans that are incompatible. There is also a filter override 

mechanism through which plans that are incompatible with existing ones can be deemed to 

have passed the filtering process and considered by the deliberation process. After filtering, 

the remaining plans are passed to the deliberation process, where they are considered and 

a subset committed to and added to the agent’s intentions. Finally, the agent performs the 

plans that are specified by its intentions.

2.4.2 PRS

PRS (Procedural Reasoning System) [38] is another implemented architecture based on the 

BDI model. It is also based around four main repositories: a belief database, a goal stack, 

an intention stack and a plan (or Knowledge Area) library, as follows.

Belief database The belief database stores the system’s beliefs about its environment, whi

ch are generally based on its perceptions, but may also comprise pre-compiled knowl

edge.
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Goal stack The goals of the system correspond to its current desires, i.e. a set of situations 

the system wishes to be brought about, which are stored on the goal stack.

Intention stack The contents of the intention stack represent the goals to which the system 

is currently committed and it is these goals, or intentions, which control the actions 

of the system.

Plan library An agent’s plan library is a collection of partial plans from which the agent 

can select the most appropriate for its current goal.

The system is controlled by a reasoner, known as the interpreter, which uses the belief 

database, goal stack, intention stack and plan library to determine behaviour. At any partic

ular time, the system has a set of beliefs, stored in the belief database, and a set of active 

goals. Based on these, the interpreter determines a set of plans that are potentially relevant 

(in that they contribute to the active goals) and applicable based on the current beliefs. One 

of these plans is activated by placing it on top of the intention stack as a course of action 

the system is committed to executing. During the execution of a plan, the environment may 

change, new goals or subgoals can arise, and the interpreter monitors the environment in 

order to update its beliefs. The new goals are placed on the goal stack, at which point the in

terpreter checks to see which plans are relevant in the light of the updated beliefs and goals. 

This amounts to a continual process of interleaving planning and execution. Figure 2.3 

illustrates the PRS architecture, and again information stores are represented as rounded 

boxes, and processes as rectangles.

Since plans (or knowledge areas) in PRS are not necessarily complete and can be par

tially elaborated, the top of the intention stack may be a partial plan, leading to partial 

execution. In turn, this can lead to new information being obtained and, as a result, PRS 

can plan with incomplete information. A consequence of the cycle of partial execution, 

updating the beliefs and choosing a new plan, is that PRS is reactive. This is because after 

each stage of execution any changes in the environment will be reflected by changes in the 

beliefs, which in turn influence the reasoning. A change in beliefs does not directly cause
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Figure 2.3: The PRS architecture (from [38])

a change in the current goals, and so the system continues to work towards its high level 

goals i.e. it is goal-oriented.

2.4.3 Alternative Architectures

Many other agent architectures exist, and there are a number of alternatives to the BDI ap

proach, such as SOAR [56], TouringMachines [29, 30] and InteRRap [32, 74], of which the 

latter two can be categorised as hybrid systems that attempt to combine reactivity with a 

classical planning approach. TouringMachines has a layered architecture, comprising a re

active layer for responding to events in the environment, a layer for planning that constructs 

plans and focuses the agent’s attention and, finally, a modelling layer for constructing in

formation about others. Each of these layers is passed information from perceptions, and 

can cause actions through a control framework that mediates between the three layers.
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InteRRap also has a layered architecture with behaviour-based, planning, and cooper

ative planning layers, roughly analogous to the layers in TouringMachines. Each of these 

layers is divided into sublayers containing knowledge bases and control units specifically 

for that layer. Thus, each layer contains the information and control structures needed at that 

level. For example, the behaviour-based layer contains knowledge about the environment 

and the control mechanisms for acting and perceiving in that environment.

Alternatively, some researchers, most notably Brooks, view agents from a primarily 

reactive viewpoint. Brooks [7, 9] eschews symbolic AI in favour of situating, in a complex 

environment, autonomous robots without explicit representations of their environment or 

reasoning ability. In his view, intelligent behaviour emerges from a subsumption architec

ture in which a hierarchy of behaviours for specific tasks compete with each other to obtain 

control of the robot (or agent) [8].

2.5 Social Intentionality

Cooperation underpins multi-agent systems in which individual agents must interact for 

the overall system to function effectively and perform tasks that otherwise might not be 

achieved, or at least not achieved as easily. Now, an agent’s actions are determined by its 

intentions, regardless of whether these actions are cooperative or not. Thus, where a group 

of agents cooperate, their behaviour and therefore their cooperation, is at some level defined 

by their intentions. In this section we discuss the nature of the commitments required from 

a group of agents to act cooperatively, and introduce the notion of social intentionality. We 

begin by describing Cohen and Levesque’s theory of group intention, which extends their 

individual model described in Section 2.3. In a cooperative environment, agents may be 

unable to achieve their goals without drawing on the knowledge or actions of another, i.e. 

agents may depend on each other. Castelfranchi’s Social Power Theory is concerned with 

the influence of such dependencies, as we discuss later in this section. We end this section 

by introducing the notion of joint responsibility, which offers a practical approach to social
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intentionality.

It is generally accepted that cooperation involves more than just the coordinated simul

taneous actions of a group of individuals, and that it involves some form of group intention 

towards the cooperative activity (e.g. [4, 58, 100, 102]). Such a group intention cannot 

simply be a version of individual intention where the group is considered to be an agent 

itself, since group members may diverge in their beliefs, and there is no obvious coherent 

set of beliefs that correspond to the group’s beliefs. This leads to problems in situations 

where an individual comes to believe that its intended goal is unachievable and so cannot 

remain committed to it, causing it to drop its intention. If such an individual is a member 

of a group, then the group should drop its intention. However, not all members of the group 

necessarily know that the goal is unachievable and that the intention should be dropped. 

Thus, a group’s commitment to cooperate must incorporate some mechanism for an agent 

to become committed to informing others if it comes to believe that the intended goal is 

unachievable (or should be dropped for some other reason). Bratman [4] identifies this 

and a set of other requirements that he claims characterise a group’s cooperative activity as 

follows.

• A degree of mutual responsiveness is needed, and each participant should guide its 

behaviour in response to others’ intentions and actions.

• This mutual responsiveness should be driven by agents’ commitment and so some 

form of commitment to joint activity, or cooperative intention, is necessary.

• Agent’s should be committed to supporting the efforts of others when making their 

contributions to the cooperative activity, and so some form of commitment to mutual 

support is also required.

• Intentions should not be coerced, and any agents involved in a cooperative intention 

must have chosen to cooperate without force from others. This is not to say that 

agents should not try somehow to persuade others, merely that they should not use
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force.

• Cooperative intentions should be common knowledge amongst the participants.

Existing work investigating what is required from a notion of cooperative intention 

can be divided into two categories. Firstly, there is the view that cooperative intention 

is irreducible, in that it cannot be reduced to a set of individual intentions and mutual 

beliefs [88]. Secondly, the more popular view is that cooperative intention is a combination 

of individual intentions, mutual beliefs, and a set of mechanisms describing how it should 

be maintained [84, 98].

Much of the existing work on cooperation in DAI is based on, or at least influenced 

by, the work of philosophers and psychologists such as Bratman [3] (as described above), 

Searle [88], and Tuomela and Miller [100],

Tuomela and Miller’s model is one of the more influential models of commitment to 

cooperate, or joint intention — the notion of shared plans [42, 43], for example, is based 

upon it. In their model, for a group of agents to have a joint intention towards some group 

action there are three requirements. Firstly, each agent must have an intention to do its part 

of the action. Secondly, agents must believe that eventually suitable conditions will arise 

for them to successfully perform their group action and, finally, agents mutually believe 

that each agent will do its part as long as the others do likewise. However, as recognised 

by Cohen and Levesque, if one agent comes to privately believe the joint intention is no 

longer appropriate (i.e. is achieved, unachievable, or not justified) then, assuming the agent 

is rational, it must drop its intention [17, 19]. This, however, leaves the rest of the group 

abandoned, which is clearly undesirable. There is nothing in Tuomela and Miller’s approach 

that requires an agent to stay committed to the group if it comes to have such a private belief.
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Definition 3 A joint intention is a joint persistent goal by a group to have 
knowingly performed an action, or to have knowingly performed a sequence 
o f events after which a goal is achieved.

Definition 4 A joint persistent goal is a goal that is held, and mutually be
lieved to be held, by two or more agents, such that until the goal is mutually 
believed to be irrelevant the agents have a corresponding weak goal.

Definition 5 An agent has a weak goal i f  either it has the goal, or believes the 
goal to be irrelevant and has the goal o f making this mutually believed.

Table 2.2: Cohen and Levesque’s definitions ofjoint intentions and joint persistent goals

2.5.1 Joint Intention Theory

According to Cohen and Levesque, a theory of joint intention must take into account that 

agents’ beliefs may be divergent since, if an individual comes to privately believe that the 

group’s goal is no longer appropriate and should be dropped, the other members of the group 

may not hold such a belief, and so do not know they should drop their goal. Therefore, a 

joint intention must include some mechanism through which an agent that privately comes 

to hold such a belief makes it known to the whole group, rather than simply abandoning 

the group action, leaving the others with inappropriate commitments. Cohen and Levesque 

introduce the notion of a weak goal to embody this commitment to informing others (see 

Table 2.2 for its definition).

In Section 2.3 we introduced Cohen and Levesque’s model of intention, upon which 

their model of cooperation is based by generalising their definitions to the case where two 

or more agents act as a team. A team is considered to be a group of agents having a shared 

objective and a shared mental state. Cohen and Levesque distinguish between a shared and 

common goal, in that a shared goal is with respect to a group who collectively have the 

goal, while a common goal occurs where a group of agents have the same individual goal 

and any one agent’s success is independent of others achieving their goal. Joint intention
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is based on the premise that if a group member comes to privately believe that it should 

drop its intention it should adopt the (private) goal of making this known to the other group 

members before it can drop its own commitment. This is achieved through the concept 

of mutual belief, which is defined to be an infinite conjunction of beliefs about another’s 

beliefs.

Based on the definition of a weak goal, Cohen and Levesque introduce the notion of 

a joint persistent goal, in which agents have appropriate mutual beliefs and weak goals 

towards some group goal (again see Table 2.2). For a group of agents to be jointly com

mitted to a goal, each member of the group must initially be committed to the goal, and 

later believe that the other members have a corresponding weak goal. After the initial com

mitment, others can only be believed to have a weak goal (rather that the main goal itself) 

because they might have discovered the goal to be inappropriate and so have dropped their 

goal in favour of a secondary goal to establish mutual belief in the original goal’s status. A 

joint intention is defined in turn, in Table 2.2, by generalising the definition of individual 

intention.

Under normal circumstances, a group’s joint intention will eventually lead to one mem

ber of the group adopting the private goal to establish mutual belief (since the goal will 

eventually be considered inappropriate). This establishment of mutual belief can be viewed 

as the team overhead that arises from a joint intention and, moreover, Cohen and Levesque 

claim that joint intention will lead to communication between agents to establish mutual 

belief. An agent can therefore rely on others in the group to inform it when the goal is no 

longer appropriate.

2.5.2 Social Power Theory

In a series of collaborations with other researchers [10, 12,14, 20], Castelffanchi presents a 

model of social action and cooperation stemming from Social Power Theory, which serves 

as the base for computational work known as Social Dependence Networks [89,90]. Castel-
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franchi approaches the subject from the point of view of psychology and sociology, rather 

than computer science per se, and as such many of his comments are concerned with the 

lack of DAI models to contribute to the understanding of human interaction. While our 

enterprise is not to develop a theory of human interaction, many of his observations are still 

relevant.

In Castelfranchi’s view, cooperation implies a common goal shared by agents, so that 

goal adoption is necessary as a fundamental aspect of autonomous pro-social behaviour. 

Agents form a collective entity when they share a common goal, each agent is required to 

do its share of the common goal, and adopts an intention to do so.

A common goal is a goal with respect to which there is mutual dependence between 

agents [20], An agent is said to adopt another’s goal if it forms the goal that eventually 

the other agent should obtain its goal (where obtaining a goal implies the goal is eventually 

achieved and is believed to be achieved). Goal adoption may occur through influencing 

another, such as by offering a reward or issuing a threat, but it is assumed that agents cannot 

directly modify another’s goals, and instead can communicate with them in an attempt to 

change their mental state. Also, an autonomous agent will only adopt a goal if it is useful 

with respect to fulfilling its desires. The notion of social power is key to the way in which 

agents get others to adopt their goals.

• An agent is said to have the power of a goal if it can ultimately achieve it.

• An agent depends on another for a goal if it does not have the power of achieving 

it and the other agent does; or if it has the power of the goal unless the other agent 

prevents it.

• An agent is said to have power over another agent for a goal if the other agent depends 

on it for that goal.

• An agent is said to have power to influence another for a goal, if it can perform some 

action that makes the other agent have the goal as a goal of its own.
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These notions of social power form the base for Sichman and Demazeau’s computa

tional model of Social Dependence Networks, which are concerned with social reasoning 

of autonomous agents [90], Each agent is assumed to have an external description of all 

the agents in the group (including itself), which contains details of their goals, actions, re

sources, and plans. These descriptions correspond to the agent’s beliefs about others and, 

since beliefs are not guaranteed to be accurate, can be incorrect or incomplete.

The reasoning mechanism proposed relies on the following three types of autonomy.

1. An agent is a-autonomous with respect to a goal and a set of plans if it has the goal, 

a plan (in that set of plans) to achieve it, and all actions in that plan are within the 

agent’s capabilities.

2. Similarly, an agent is r-autonomous if it controls all the resources required to execute 

the plan.

3. Finally, an agent is s-autonomous if it is both a-autonomous and r-autonomous.

If an agent is not autonomous for a given goal, it may depend on others. Corresponding 

definitions of a-dependence, r-dependence, s-dependence are given for dependence on an 

action, resource, or both. Using these notions of dependence and its descriptions of others 

an agent can construct a dependence network to represent all of its action and resource 

dependencies regarding others. These dependencies can be used in the agent’s reasoning 

process, in particular to identify dependence situations. A key assumption here is that dif

ferent agents’ external descriptions are identical [90]. Based on this assumption an agent 

is said to locally believe a given dependence if it uses its own plans when reasoning about 

others. If it uses its own plans and those of others, there is said to be a mutually believed 

dependence between them. Using these notions it is possible to describe a number of oth

er possible situations such as locally believed independence, mutual dependence, etc. In 

more recent work, Sichman and Demazeau extend Social Dependence Networks to include 

inconsistencies between agents, i.e. difference in agents’ external descriptions [89].
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2.5.3 Com m itm ents and Conventions

Wooldridge and Jennings (with others) [48, 52, 102] attempt to begin to bridge the gap 

between theory and practice in DAI through the notion of joint responsibility, which is a 

mental and behavioural state that they claim captures and formalises many of the intuitive 

underpinnings of cooperative problem-solving. In their view a practically applicable theo

ry of social activity among autonomous agents must address how team activity should be 

initiated, how to assemble a team, how to plan and distribute work, how to behave once 

team activity is initiated, and how to complete the team activity. A framework for co

operation is developed based on joint responsibility, which aims to address these aspects. 

The mechanisms on which cooperative interactions are based can be described in terms of 

commitments and conventions [49]. A commitment is a pledge or promise to undertake 

a specified course of action, and a convention is a means of monitoring commitments in 

changing circumstances. Conventions specify the conditions under which a commitment 

might be abandoned, and how an agent should behave in such a circumstance.

A common objective is not sufficient for realizing a collective goal — agents must 

agree upon a means of achieving it. According to Wooldridge and Jennings much of the 

other existing work on team activity has concentrated on joint intentionality in terms of 

goals, and has not considered how such goals will be achieved. The first step to achieving 

joint action is for a group of agents to have a common objective, or intention, that can only 

be achieved through collaboration (where intention is taken to be a goal without a specified 

means of achieving it). Agents can then form a commitment to this objective by forming 

a joint persistent goal (in the sense of Cohen and Levesque). However, a joint persistent 

goal does not specify how to achieve the objective. Wooldridge and Jennings suggest that 

agents should agree a strategy by which the objective will be achieved, and then develop 

and agree on a plan to achieve the common goal. Their framework is not concerned with 

the mechanisms for constructing the common plan, rather that agents agree in principle that 

such a plan is needed to achieve the objective.
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The idea that joint action requires agents to agree to a common plan can be expressed 

implicitly through the definition of agents’ roles, or explicitly in the definition of joint 

intention. The notion of commitment to a plan defines how an agent should behave once a 

plan has been developed — under what conditions it should follow the agreed plan, and how 

it should behave if it is no longer rational to do so, i.e. the conventions it should follow. It 

would be irrational for an agent to remain committed to a plan if it is invalid, unattainable, 

or violated, or if the objective is already achieved or another team member is no longer 

committed. If an agent comes to believe that it is irrational to remain committed to the joint 

solution, it should become committed to informing other team members.

2.6 Multi-Agent Systems and Architectures

In this section we briefly review some of the most significant multi-agent systems with 

respect to the development of our framework. Firstly, we introduce GRATE*, which is 

a BDI-based architecture specifically designed for cooperation. We then introduce two 

models of cooperation, Planned Team Activity and STEAM, both of which are based on 

the notion of joint intentions, as described above.

2.6.1 GRATE*

GRATE* is a layered BDI-based architecture with the addition of joint intentions (as de

scribed in Section 2.5) specifically intended for multi-agent environments where coopera

tion is important [50], Agents are divided into two layers: a cooperative layer and a domain- 

specific layer. The function of the domain-specific layer is to determine how to achieve the 

agent’s tasks, as defined by its desires or objectives. The cooperation layer operates above 

the domain layer, and is given the role of choosing the tasks that should be achieved locally 

and those that require cooperation, as well as ensuring that the agent’s actions are coordi

nated with other agents. Three key components provide control in the cooperation layer: a
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Figure 2.4: The GRATE* architecture for cooperation (based on [50])

domain-interface module that connects the cooperation layer to the domain-specific layer, 

a situation-assessment module, and a cooperation module.

Changes in the environment are represented by events, which are monitored by the 

situation-assessment module to determine whether a new objective is needed, to find a 

means for achieving them, and to check which of them require cooperation. The coop

eration module determines potential participants in achieving objectives that require coop

eration, attempts to form a joint intention with them, and oversees execution of these joint 

intentions.

The components of the GRATE* architecture are shown in Figure 2.4, which shows the 

two layers, along with the domain-interface, situation-assessment, and cooperation modules 

(in boxes). The figure also shows the information repositories (in rounded boxes) that 

these modules require, namely, acquaintance and self models that store information about
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others and the agent itself, and a general information store for other information. Finally, 

the figure includes the additional component of a communication manager, to facilitate 

communication between the agent and others.

2.6.2 Planned Team Activity

Planned team activity (PTA) is the model of cooperation developed by Kinny et al. [55] 

for cooperation among BDI-like agents, building on previous work on BDI agents where 

agents are supplied with a repository of partial plans in advance, rather than being required 

to plan from first principles [38, 84], An individual’s repository of plans is its plan library, 

and the plan library of a group is taken to be the intersection of its members’ plan libraries.

Cooperation in PTA is based upon the group mental states of mutual beliefs, joint 

goals, and joint intentions, which are similar to the notions introduced by Cohen and 

Levesque [18]. Distinct from Cohen and Levesque’s notion, however, is that joint inten

tion in PTA is a commitment to a joint plan or action, rather than to a goal. Consequently, a 

group of agents that have a joint intention also have a commitment to a common course of 

action, rather than just to a common goal, thereby avoiding the problem of different agents 

being committed to incompatible plans to achieve a jointly intended goal.

Cooperation requires joint commitment to a common course of action, together with 

coordination and synchronisation of that action, which is achieved in PTA through com

municative actions. When an agent has a goal that it is unable to achieve alone, it takes 

on the role of team leader and attempts to form a team. The first step is to choose a set of 

agents with whom it can cooperate and to request their assistance. Once the team agrees to 

cooperate and a joint goal has been formed, the team must choose a plan to achieve its goal. 

PTA uses a centralised approach where the team leader chooses a plan and informs the rest 

of the team of the joint goal, the plan to achieve it, and an assignment of agents to actions 

(or role assignment) in that plan.

37



2.6.3 STEAM

STEAM (Shell for TEAMwork) [97, 98, 99] is another implemented model of cooperation 

founded upon Cohen and Levesque’s notion of joint intentions. Cooperation in STEAM is 

based upon agents building a partial hierarchy of joint and individual intentions, and beliefs 

about others’ intentions.

This hierarchy is designed to parallel Grosz and Kraus’ notion of partial shared plan- 

s [42]. To achieve coherent cooperation, team members must follow a common approach 

to achieving their joint intentions. Grosz and Kraus’ SharedPlan theory requires that agents 

have a mutual belief in a common plan, and shared plans for the individual steps in that 

plan. STEAM parallels this, in requiring that agents have a mutual belief in a common 

plan, and joint intentions for the individual steps in that plan, leading to a recursive hier

archy of joint intentions that ensure team coherence. For each step contained in a jointly 

intended plan the team must form a joint intention to execute it, and so on recursively. Such 

joint intention hierarchies can evolve dynamically, as partial plans are elaborated. A result 

of the commitment implied by joint intentions, is that team members track the subteam’s 

joint intention in order to monitor the state of the team activity.

2.7 Stages in Cooperative Problem Solving

Leading on from the work described in Section 2.5, Wooldridge and Jennings [102, 104] 

offer one of the few formalised models of cooperation. Their model draws on the notions of 

commitments and conventions, and describes cooperation in these terms. Before describing 

their model of cooperation, it is necessary to introduce some of the concepts and assump

tions on which it is based. Firstly, the mutual mental states of joint beliefs and joint goals 

are used to describe the attitudes of a group. Mutual belief is taken to be the usual infinite 

recursion of beliefs about others’ beliefs, and joint goals are based on the corresponding 

individual goals, along with a belief about others holding the same goal. Wooldridge and
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Jennings recognise that such mutual mental states are idealised and are typically not realis

able in real systems. However, they assert that such mental states provide a useful tool for 

understanding cooperation between agents.

The primary mental attitude that is used in the development of the model is that of joint 

commitment (or joint intention). Wooldridge and Jennings give a definition that is broader 

that Cohen and Levesque’s and is defined in terms of commitments and conventions. In

deed, they recast Cohen and Levesque’s definition in their own terms, by describing the 

appropriate commitments and conventions that are otherwise implicit. A convention is rep

resented as a tuple comprising a re-evaluation condition and a goal such that, if an agent 

comes to believe the re-evaluation condition it should adopt the corresponding goal.

A group is defined to have a joint commitment to a goal, with respect to some motiva

tion, precondition, and convention if and only if,

• the precondition is initially satisfied, and

• until a termination condition is satisfied (as defined by the convention) every agent 

in the group either has the appropriate goal or believes the re-evaluation condition of 

the convention is satisfied, and has the goal defined by that convention.

The process of cooperation is divided into four phases, as follows.

Recognition Cooperation begins with an individual agent recognising the potential for co

operation.

Team formation The agent that recognised the potential for cooperation requests assis

tance from others and, if successful, obtains a joint commitment from the group of 

agents that agree.

Plan formation The agents that have the joint commitment attempt to negotiate a mutually 

acceptable plan to achieve their goal.

Team action The agreed plan is executed by the agents.
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2.8 Summary

In this chapter we have introduced the context for the remainder of the thesis; we have 

introduced both the notions of agency and cooperation. In particular we have discussed 

motivations and intentions, and presented the abstract BDI architecture, upon which we 

build. We have discussed social intentionality, and Cohen and Levesque’s extension of 

individual intention to be a group notion.

Each of the theories and architectures described in this chapter are valuable, and make 

useful contributions that we incorporate into our framework. However, a number of issues 

are unaddressed in existing work, in particular the reasons why agents perform certain ac

tions are often not accounted for. Furthermore, the relation of these reasons, or motivations, 

to cooperation in terms of the reasons why agents cooperate and the way in which they 

manage the cooperative process are not sufficiently explored. Similarly, the risk that arises 

from cooperation with autonomous agents is not considered. It is our aim to address these 

issues in the following chapters, in our framework for motivated cooperation.

Our view of autonomy, which is described in Chapters 3 and 4, is based upon Luck and 

d’Inverno’s model. However, we instantiate details that are abstract in their model, such 

as the mechanisms for assessing the motivational value of a particular situation, goal, or 

plan. In Section 2.2 we also introduced Norman and Long’s view of motivation, which is 

broadly compatible with Luck and d’Invemo’s. The terminology differs between the two 

views, however, and we adopt that given by Luck and d’Invemo’s and base our approach 

upon theirs. Castelfranchi’s work on autonomy is concerned with a general investigation of 

autonomy and how the dependencies between agents can be used to account for interactions. 

Unlike us, Castelfranhi is not concerned with the role an individual’s autonomy plays with 

respect to cooperation. Therefore, while we concur with Castelfranchi’s observations we 

do not make further use of them in the developement of our framework.

In Section 2.3 we described the notion of intentionality, and introduced Cohen and 

Levesque’s widely accepted view of intention. The agent architecture that we describe in
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the following two chapters is, in part, based upon Cohen and Levesques view of intention. 

There is, however, one key difference since their model is focused on a commitment to a 

particular goal, whereas we are concerned with commitment to a particular course of action 

in pursuit of a goal (as we describe in Section 3.12).

The BDI architecture introduced in Section 2.4 forms the base of our agent architec

ture, which in turn is the foundation upon which our framework is built. We introduced 

the archetypical instantiations of the BDI model in the form of IRMA and PRS, and our 

architecture broadly corresponds to these, with one very significant difference, namely the 

incorporation of motivations. We provide the mechanisms required for an agent to be ful

ly autonomous and yet cooperate with others, through the additional mental component of 

motivation.

It is widely accepted that cooperation amongst individuals involves some form of group 

commitment, and Cohen and Levesque’s notion of joint intention described in Section 2.5 

is used by many researchers as the base for further work. We are no exception in that the 

precise nature of group commitment in our framework is based upon Cohen and Levesque’s 

notions, as we discuss in Chapter 5. Our framework also utilises Wooldridge and Jennings’ 

notions of commitment and conventions, and (again in Chapter 5) we extend their formula

tion of joint intention to include the key additional factor of motivation.

The multi-agent architectures introduced in this chapter do not consider motivations or 

risk, and in this respect our framework is fundamentally different to them. However, re

gardless of how cooperation arises, the actions involved must be synchronised and ordered, 

and we use the mechansims for this defined by PTA.

Finally, the framework of cooperation contained within this thesis can be seen as instan

tiating Wooldridge and Jennings’ stages as described in Section 2.7, and we view Chapters 5 

to 7 as providing this instantiation.
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Chapter 3

Motivated BDI Agents

3.1 Introduction

Early work on cooperation in DAI was concerned with non-autonomous agents, and the 

mechanisms used to achieve cooperation often presupposed benevolence on their behalf. 

Additionally, it has often been assumed that some, possibly external, entity exists that has 

knowledge of the complete system, and which is given both the ability and the authority to 

dictate the actions of agents in terms of their interactions with others. In our work, however, 

we are concerned with autonomous agents that have complete control of their own actions 

and cannot have their cooperative activity externally controlled. Instead, cooperation be

tween a group of autonomous agents must arise from the mental attitudes of the individuals 

concerned. Typically, one member of the group has an objective that it is unable to achieve 

alone and attempts to gain cooperation from other agents which, in turn, will only enter into 

a cooperative interaction if it is of benefit to themselves as individuals. A practically appli

cable theory of cooperation, therefore, must provide details both of how agents can assess 

when they require assistance in achieving their objectives, and also when it is of benefit 

to themselves to enter into a particular cooperative interaction in pursuit of another’s ob

jective. The details of these mechanisms depend on the specific architecture of the agents
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concerned, since behaviour is determined by agents’ mental components. Thus, as we ar

gued in Chapter 1, it is important for us to have a full understanding of the specific nature 

of the agent architecture upon which we are grounding the development of a framework for 

cooperative interaction.

In this and the following chapter, before focusing on the issues involved in coopera

tion, we present the agent architecture, which we call Senara, on which we base our later 

model. Senara is centred around the BDI abstract architecture [5] discussed in Chapter 2, 

and draws upon existing work on achieving agent autonomy through the ascription of mo

tivations (e.g. [61, 62, 76, 77]). An agent architecture can be seen as containing two related 

parts: the mental components it comprises, and the control mechanisms that act upon those 

components. Whether or not a particular architecture is intended to be situated in a coop

erative environment influences the set of mental components required. If an agent is to be 

cooperative, then it will typically require some means of representing actions or plans that 

involve others and have some model of others’ capabilities, reliability etc. These require

ments are relatively easy to incorporate into Senara. Cooperation also has a significant 

influence on the nature of the control mechanisms that guide an agent’s behaviour, since 

cooperation must arise from an agent’s control mechanisms and there is no external force 

imposing cooperation.

In this chapter we introduce the mental components that Senara contains, which are 

those defined in the BDI model (as discussed in Section 2.4), with the addition of moti

vations to achieve autonomy. We also introduce a few small extensions to the BDI model 

to allow for cooperation; in particular, joint and concurrent actions as described in Sec

tion 3.10. In the following chapter, we describe the control mechanisms that act on these 

mental components.
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3.2 The Z Specification Language

In keeping with the principles outlined in Chapter 1, we aim to ensure clarity and preci

sion in our description of the architecture through the use of formal specification. There 

are many specification languages that we might use, ranging from relatively abstract but 

expressive logics, to more implementation-oriented approaches. In this thesis we use the Z 

notation [96] to formalise Senara’s components, since we consider it sufficiently expres

sive to represent the concepts we discuss, and close enough to the level of implementation 

to ensure that an implementation of the specification is essentially a programming exercise 

of creating the appropriate data types and interactions. Z is also widely used generally, and 

increasingly so in AI (e.g. [21, 39, 61, 71]). In this section we give a brief introduction to Z, 

borrowing heavily from that provided by d’Invemo and Luck in [25], and then in remaining 

sections describe Senara’s mental components.

The Z specification language is based on set theory and first order predicate logic, 

along with the additional concept of a schema type. Schemas comprise two parts: an upper 

declarative part that defines a set of variables and their types, and a lower predicate part 

that defines the relationships between, and the constraints on, these variables. For example, 

the following schema contains two variables, x and y, both natural numbers, such that y  is 

defined to be the square of jc.

__Example_____________________________________________________
x,y  : N

y  = x * x

The type of a Z schema can be thought of as the Cartesian product of its variables (in no 

particular order) constrained by the predicates. Any given variable in a schema can be re

ferred to in Z by giving the schema name and variable name in the form schema-name.var

iable-name. Thus, with respect to the above schema, Examples refers to the variable x. 

To facilitate modularity and decomposition in specifications, a schema can include other 

schemas and inherit the variables and predicates defined therein. There are two types of
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schema inclusion, Delta (A) inclusion, in which the variables of the included schema can 

be changed, allowing the specification of operations, and Xi (S) inclusion where the includ

ed schema is unchanged. A schema is included using one of these conventions using the 

notation Aschema^name (or Eschema^name) in the declarative part.

If we wish to introduce a new type, without specifying its details, we are able to intro

duce it as a given set. For example, we might introduce the set of all agent identifiers using 

the following given set.

[.AgentID]

We can now define a variable to be of type agent identifier, a set of identifiers, or an 

ordered pair as x : AgentID, x : ¥  AgentID, and x : AgentID x AgentID respectively.

A relation between two types, a source and a target type, is defined to be a set of 

ordered pairs P ( I x  Y) for source and target types X  and Y. If there is no element in the 

source type that is related to more than one element in the target type, the relation is a 

function. A function is partial if not all elements in the source type are related, and is total 

if all elements of the source type are related. The domain of a relation, or function, is the 

particular set of elements of the source type that are related. Correspondingly, the range 

is the set of elements in the target type that are related. A sequence is a particular type of 

function whose domain is the set of natural numbers (from 1 to the number of elements in 

the sequence), and range is the set of elements in the sequence. For example, the following 

relation defines a sequence of three agent identifiers (although we would typically write 

such a sequence as (agent!, agentl, agentZ)).

agentIDseq =  {(1, agentl), (2, agent2), (3, agentS)}

A  set of values can be constructed using set comprehension where, for example, we 

can specify the set of squares of natural numbers between 5 and 10 as {« : N | n > 5 A 

n < 10 • n * «}. Predicates in Z can be written using the usual universal and existential 

quantification operators. For example, we can write that the squares of the natural numbers
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between 5 and 10 are between 25 and 100 as follows.

Vn : N | (n > 5) A (n < 10) • (n * n > 25) A (n* n < 100)

If we do not need to constrain the variable being quantified, then we can omit the 

constraint part of the predicate (i.e. the expressions between “|” and “• ”). For example, we 

can write that all natural numbers are greater than zero, as V n : N • n > 0.

A summary of the Z notation is shown in Table 3.1. We do not, however, discuss the 

details of the language further in this thesis, instead we refer the reader to one of the many 

texts on the subject, such as [80, 106].

The specification contained in this and the following chapter is based upon the work 

of Luck and d’Invemo, who propose a formal model of agency and autonomy [61, 62]. In 

their work, an agent’s autonomy is characterised by the ability to generate goals, and select 

which goal is of the most benefit to the agent individually. We follow this approach, and 

base our notion of autonomous agency upon it. However, Luck and d’Invemo’s work is 

concerned with a discussion of autonomy and motivation rather than with the development 

of a particular agent architecture. We view the architecture presented in this and the fol

lowing chapter as an instantiation of their work, with the required details filled in. It should 

be noted that there are generally several, equally valid, ways in which we could specify 

a particular notion in Z, without changing the meaning of the specification. Our criteria 

for choosing one approach over another is how well it integrates into the specification as a 

whole, the ease of understanding and the extent to which it lends itself to implementation.

3.3 Overview of Senara

The key mental components of a Senara agent are beliefs, goals, intentions, motivations, 

and a plan library. Recall from Chapter 1 that beliefs are the propositions about the environ

ment and itself that an agent takes to be true. Goals are the situations that an agent wishes 

to bring about, intentions are the goals to which it has committed to achieving, and moti-
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Definitions and declarations
a,b Identifiers
p,q Predicates
s,t Sequences
x,y Expressions
A,B Sets
R,S Relations
d; e Declarations
a ==  x Abbreviated definition
M
A ::= b((B))

Given set

1 c((C>) Free type declaration

Logic
Logical negation

p A q Logical conjunction
p \/ q Logical disjunction
p ^ q Logical implication
p & q Logical equivalence

Universal quantification
Existential quantification

Sets
a: G y Set membership
0 Empty set
A C B Set inclusion
{x,y, • • •} Set of elements
(*,>>,...) Ordered tuple
A x  B x ... Cartesian product
P A Power set
P1A Non-empty power set
A n B Set intersection
AUB Set union
A \B Set difference
UA Generalised union
*A Size of a finite set
[d] e . . . \  p » x ) Set Comprehension

Relations and Functions
A ^ B Relation
domi? Domain of a relation
ranÄ Range of a relation
A -A B Partial function
A ->B Total function

Sequences
seq̂ 4 Set of finite sequences
seqj A Non-empty set 

of sequences
0 Empty sequence
(x,y,...) Sequence
s ^ t Sequence concatenation
head s First element of sequence
tail s All but first element

Schema notation

r—S
d Vertical schema

P

d

P
Axiomatic definition

s
T
d

P

Schema inclusion

__AS___
S Operation schema
S'

z.a Component selection

Conventions
a? Input to an operation
a State component

a'
before operation 

State component

S
after operation 

State schema

S'
before operation 

State schema

AS
after operation 

Change of state (S A S
ES No change of state

Table 3.1: Summary of the Z notation (taken from [25])
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vations are the high-level desires that guide its behaviour. A control cycle brings together 

these mental components, which we describe in detail in following chapter, but first we give 

a brief overview in this section.

Firstly, an agent perceives its environment and updates its beliefs, since in order to 

act appropriately in a given situation it needs information about that situation. In the light 

of these new beliefs the importance of the current situation to each of its motivations is 

assessed, and those motivations to which the situation is important are made active. Ac

cording to these active motivations the agent generates a set of goals, and adds them to its 

existing goals. The agent then selects one of these goals to work on according to its motiva

tions, and commits to performing a particular course of action (or plan) for the achievement 

of this goal by forming an intention (unless it is already committed to its achievement). 

Finally, the agent acts towards the intention that is currently considered the most important, 

based on the agent’s motivation. An overview of the architecture is illustrated in Figure 3.1, 

in which rounded boxes represent the mental components, the central box contains the con

trol mechanisms, and solid and dashed arrows represent the flow of information and control 

respectively.

The Senara architecture can be compared with the BDI-based IRMA and PRS ar

chitectures described in Sections 2.4.1 and 2.4.2, and illustrated in Figures 2.2 and 2.3 

respectively. The overall form of Senara is broadly similar to these architectures, with 

beliefs determining the goals to pursue, which in turn determine the intentions to adopt 

and the actions to perform. The key different between Senara and IRMA or PRS is the 

addition of motivations. In the remainder of this chapter we describe in detail the mental 

components of a Senara agent, and then in the following chapter the control cycle that 

acts upon them.

In the specification of Senara that follows we closely follow the work of Luck and 

d’Invemo, who have also provided formal Z specifications of AgentSpeak(L) and dMARS, 

both of which are more recent incarnations of the PRS architecture to which Senara is
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Figure 3.1: Overview of the Senara architecture

closely related [24, 25]. Where appropriate in the following sections we utilise their speci

fications in our work. In particular our definitions of beliefs, goals and intentions are based 

on Luck and d’Invemo’s specifications.

3.4 Primitives

In this section we define the primitive types that are required to build the formal model of the 

Senara agent architecture. We begin by introducing given sets to represent all constants 

and variables, denoted by Const and Var respectively, and define a Term as being either a 

constant or a variable.

[Const, Var]

Term ::= const ((Const))
| var(( Var))

The set of all possible predicate symbols is also represented by a given set denoted by 

PredSym, while a Predicate is a predicate symbol followed by a possibly empty sequence
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of terms. For the purposes of specification we are not concerned with the contents of these 

given sets, since we can use them directly.

[PredSym]

__Predicate______
symbol: PredSym 
terms : seq Term

3.5 Environment

Agents can only function within the context of an environment, and before we begin to 

specify the components of the agent architecture, we must first consider the environment in 

which it is to be situated. There are several levels of abstraction at which the environment 

could be specified. For example, from an external viewpoint it can be seen as a collection 

of objects and agents, while to an agent situated in the environment it can be considered 

to be a collection of features that can potentially be perceived and acted upon. Since we 

are concerned with the agent level, we adopt this latter view of an environment as a set of 

perceivable features, or attributes, in the same way as Luck and d’Invemo [61]. Objects in 

the environment, including agents, are viewed as those clusters of attributes that characterise 

them. An agent is able to perceive objects, and other agents, by perceiving the appropriate 

clusters of attributes, which might include the size, colour, and location of objects.

Formally, an attribute is represented by a predicate, and an environment as a set of 

attributes. The schema Env is introduced to represent the particular environment in which 

an agent (or group of agents) is situated1.

Attribute = =  Predicate
Environment = =  P Attribute *

'Specifying the environment as a schema, rather than a global variable, makes it easier to specify the oper

ations an agent can perform in it, using the Z notation’s A convention.
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environment : Environment
__Env____________________

As an example, suppose that the environment contains a white cardboard box and a 

wooden table such that the box is on the table. Using our definition of an Environment we 

might represent this situation by the following set of attributes.

[ (colour, [box, white]), (madeFrom, [box, cardboard]), 
(colour, [table, brown]), (madeFrom, [table, wood]), 
(on, [box, table]) ]

This set of attributes represents the predicates that are true in the environment, and so 

are potentially perceivable as attributes by agents, such as the predicate that the cup is red 

or the predicate that it is made from porcelain. However, if a particular predicate is not 

contained in the set representing an environment then we may take this to mean either that 

the predicate must be false, or alternatively that we have no information about its truth or 

falsity. This is a well known problem, and can be thought of as there existing two kinds 

of negation [86], and can be addressed by making the assumption, as we do in this thesis, 

that since it is unrealistic to require a representation of the environment to include all true 

predicates, the absence of a predicate in the set representing the environment does not mean 

it is false.

3.6 Perceptions

In order to reason about its environment, and act appropriately in it, an agent must be able 

to perceive to determine its current state. In the Senara architecture, an agent’s ability to 

perceive its environment is determined by its set of perceiving capabilities, or perception 

actions. Perception actions operate on the agent’s environment, leaving it unchanged, and 

return an appropriate set of percepts corresponding to the agent’s perceptions. The details 

of the perception actions that comprise an agent’s perception capabilities are related to its
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domain. For example, a physically situated robot might have visual and auditory sensors, 

while a software agent may be able to determine the contents of certain data structures, 

such as the names of the files in a particular directory. We formally define a View to be 

a set of perceivable features, or attributes, and a perception action, PerceptionAction, as a 

function that takes an environment as its argument and returns a View, corresponding to 

those features that the agent perceives.

View == ¥  Attribute
PerceptionAction = =  Environment —> View

3.7 Beliefs

An agent’s beliefs are those propositions about its environment, itself, and others that it takes 

to be true, and can be thought of as representing the information it has about its environment. 

They are not necessarily verifiably true facts about the environment, rather they are the 

propositions that the agent considers to be true. Beliefs are typically a combination of a 

priori knowledge (such as information about capabilities, attributes, and the domain) and 

propositions obtained through perception of the environment and interactions with other 

agents.

Beliefs persist until an agent obtains new information from perception that contradicts 

them (as described later in Section 4.3). Since beliefs persist, they allow an agent to keep 

track of information over time, without which an agent would have available only the infor

mation from its immediate perceptions. It would have no access to information about the 

previous states of its environment, and would be unable to reason about previous events, 

making it difficult to achieve consistent behaviour over time.

Before we define beliefs we must define a literal as a predicate or its negation. A belief 

can then be defined as a single literal. Thus, we can define an agent’s beliefs as a set of 

beliefs, which we interpret as the conjunction of all its elements, meaning that if the set 

contains the beliefs b\ and Z>2 the agent believes b\ A ¿2.

52



Literal pos{{Predicate)) 
| not {{Predicate))

Belief = =  Literal 
Beliefs —— P Belief

As an example, consider an agent situated in the environment given in Section 3.5, 

such an agent represent its beliefs about the environment as follows, where pos signifies a 

predicate and not its negation.

[ (pos colour, [box, white]), (pos madeFrom, [box, cardboard]),
(pos colour, [table, brown]), (pos madeFrom, [table, wood]),
(pos on, [box, table]), (not empty, [table]) ]

3.8 Goals

An agent must have some means of guiding its behaviour and choosing between actions; 

it must have direction. Goals give an agent a purpose and allow it to select between the 

courses of action open to it. We take the common view of goals as being those situations 

that an agent wishes to bring about. Through perceiving its environment the agent is able to 

determine which of its goals are currently relevant, and then choose a course of action that 

contributes to the achievement of these goals. Consequently, an agent’s goals influence how 

it will react to any given situation. Furthermore, where an agent is capable of performing 

problem-solving, its goals pose problems for it in that it must choose or construct plans 

about how best to achieve them. A goal is just a description of a situation, and can be 

formally specified as a set of literals.

Goal ==  P Literal

For example, if in the situation given above an agent has the goal of the tabletop being 

cleared and the box being moved to the floor, it might represent this as follows.

[ (pos empty, [table]), (pos on, [box, floor]) ]
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3.9 Actions

To be useful and to achieve its goals, an agent must be able to interact with its environment, 

i.e. it must be able to perform actions, which correspond to its capabilities. Now, since 

we are concerned with cooperation, we must also consider an agent acting as part of some 

more complex group action, which might be constructed out of multiple individual actions. 

For reasons of terminological clarity, therefore we introduce the term contribution to refer 

to the action of an individual, and the term action to refer to the wider set of both individual 

and group actions. In order to formally specify a contribution we first introduce a given set 

to represent the set of all possible action symbols.

[ActSym]

Since we are concerned with cooperation and group actions, we require that a contri

bution includes information about the agent who performs it. A contribution is therefore 

specified as an action symbol, a possibly empty sequence of terms (representing the param

eters of the action), and a unique agent identifier that refers to the agent who performs it. 

We introduce a given set to represent the possible agent identifiers, each of which refers to 

precisely one agent.

[AgentlD]

__Contribution---------------------------------------------------------------------- —-
symbol: ActSym 
terms : seq Term 
agentID : AgentlD

By way of example, consider the action of picking up a box; we can represent this as 

follows, where agent l is the agent that performs the action and boxi is a box.

(pickup, [agentl, boxl], agentl)
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In order for an agent to reason about the contributions it can perform, it must have some 

mechanism for determining their effects. The function contributionEffects, takes a contri

bution and an environment, and returns that environment having had the action performed 

upon it.

| contributionEffects : Contribution -> Environment —> Environment

This could be implemented through the use of add and delete lists, in a similar man

ner to Fikes and Nilsson’s STRIPS system [31]. The add and delete lists contain those 

predicates that should be added and deleted respectively from the state representation on 

execution of the action.

An agent also needs to know when a contribution can be performed. For example it 

may only be possible to pick up a box if there is nothing on top of it. We therefore require 

that agents have an appropriate instantiation of the function contributionPreconditions be

low, which takes a contribution as its argument, and returns the preconditions that must be 

satisfied to perform it.

Precondition = =  Literal

| contributionPreconditions : Contribution —» ¥  Precondition

3.10 Joint and Concurrent Actions

Cooperation may take the form of an agent performing an action on behalf of another, 

a group of agents performing an action together, or different agents performing a set of 

actions at the same time in pursuit of a common aim. Thus, along with the notion of an 

individual contribution described above, we can identify two additional action types: joint 

actions and concurrent actions.

A joint action is a composite action, made up of individual contributions that must be 

performed together by a group of agents. Each agent involved in executing a joint action
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makes a simultaneous contribution to the joint action, corresponding to the component ac

tion that it performs. For example, if agents a\ and c*2 perform the joint action of lifting a 

table together, then «i must make the contribution of lifting one end of the table simultane

ously with a2 lifting the other. A joint action is formally specified as a set of actions, to be 

performed simultaneously.

__JointAction___________________________________________________
contributions : IP Contribution

# contributions > 2

As an example, suppose there is a box that is too large to be lifted by an individual 

agent, but can be lifted if two agents each lift one end of it. This can be represented as a 

joint action as follows, where agent2 and agent3 are variables corresponding to the agents 

that will perform the action.

[ (liftend, [agent2, box2], agent2),
(liftend, [agent3, box2], agent3) ]

Concurrent actions are those that can be performed in parallel by different agents, with

out the need for synchronisation (except at the beginning and end of a set of concurrent 

actions). As with joint actions, agents perform contributions as part of a set of concurrent 

actions. For example, if agents a\ and a 2 each write a chapter for a book, and they perform 

their actions in parallel, then ot\ and e*2 perform the concurrent contributions of writing 

their respective chapters. Concurrent actions can comprise both individual contributions 

and joint actions that are to be performed simultaneously.

CAcomponent ::= Contrib((Contribution))
| JA((P Contribution))

__ConcurrentAction______________________________________________
contributions : P CAcomponent

# contributions > 2
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As an example, consider the concurrent action comprising the individual contribution 

of lifting a box, boxl, and the joint action of two agents lifting a second box, box2, which 

can be represented as follows.

[ (pickup, [agentl, boxl], agentl),
(liftend, [agent2, box2], agent2),

(liftend, [agent3, box2], agent3) ]

Our definitions of joint and concurrent actions are extensions to the BDI model de

scribed in Section 2.4, and are respectively related to the notions of “black-box” and weak 

parallelism described by Kinny et al. [55], where “black-box” parallelism refers to an ac

tion that must be executed by more than one agent, and weak parallelism refers to a set of 

actions that may be performed simultaneously without constraint on their ordering. The key 

difference, however, is that while we consider the component actions, or contributions, that 

make up a joint or concurrent action, Kinny represents joint actions as primitive, without 

consideration or representation of the individual contributions that comprise it. By repre

senting the components of joint and concurrent actions, agents are given more scope for 

reasoning about how to establish cooperation for them, as we discuss later in Chapter 7. In 

particular, by representing the contributions in a joint action, we are able to develop mech

anisms for requesting assistance for a contribution, rather than for a joint action as a whole 

(see Section 7.6).

3.11 Plans

In addition to the abilities of acting an agent must be able to perform some degree of 

problem-solving, or planning, which is concerned with determining a sequence of action- 

s, or plan, to transform the environment into a desired state. Planning is an established 

subfield of artificial intelligence in its own right, and is not the focus of our work; rather 

than focusing on sophisticated techniques for planning, therefore, we adopt the simplified
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plan

Key:

•  intermediate states

; rf
p3 p4

0 subgoals

Figure 3.2: An example partial plan

approach taken in many existing BDI-based architectures, where agents are provided with 

a library of predefined plans from which they can select (e.g. [38, 83]). If a plan is defined 

solely in terms of a sequence of actions then it can be executed by an agent without the 

need for further reasoning, and is said to be fully elaborated. However, if all of an agent’s 

plans are fully elaborated then its plan library would have to contain a plan to cover every 

eventuality, making it too large to be manageable. A common solution to this problem is to 

allow plans to be partially elaborated, meaning that they can be further refined to specific 

situations, and contain subgoals in addition to actions (e.g. [5, 38]). Before a partial plan 

can be executed, therefore, subplans must be found for the subgoals it contains; this process 

is called elaboration and is discussed later in Section 4.10. In addition to making the plan 

library more manageable, partial plans provide a simple means of interleaving planning and 

acting — an agent is able to execute the actions in a plan until it reaches a subgoal, at which 

point it must select a subplan before performing further actions.

Figure 3.2 shows a graphical representation of a partial plan that includes all possible 

elaborations, where the edges represent actions, solid bullets correspond to intermediate 

states between actions, and outline bullets correspond to subgoals. For each subgoal in the 

plan, there is a set of applicable plans, each of which forms a branch of possible elaboration 

from that subgoal. The set of plan elaborations is the set of paths from the root of the graph 

to the leaves. Thus, for plan p, possible elaborations are paths from the root to the nodes
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labelled p i, p2, p3, p4, and pb. Note that this graphical representation is limited and does 

not allow certain types of plan to be illustrated; it is, however, sufficient for our purposes.

Now, since there may be several plans in a library that achieve a given goal, some way 

of choosing between them is needed. Different plans may be applicable in different situ

ations, and we introduce the notion of a plan’s preconditions to represent the situations in 

which it is applicable, to enable an agent to select an appropriate plan for a given situation. 

This is different to the approach taken in dMARS and AgentSpeak(L), where plans are as

sociated with a trigger event, which corresponds to a particular change in the environment 

(or the agent’s goals). Such trigger events cause the plan to be adopted and an appropriate 

intention formed. In our approach to formalising plans we are concerned with specifying 

the conditions under which a plan can be selected, rather than when it will be selected since 

this will be determined by the goals generated by the agent’s motivations. The precondi

tions of a plan define what must be believed by the agent for the plan to be applicable, and 

are represented by a set of beliefs.

For agents to be able to interact effectively with others, their plans must be able to rep

resent a group of agents performing actions together; they must have the facility to include 

joint and concurrent actions. Thus, a step in a plan is defined to be either an individual 

contribution, a joint action, a concurrent action, or a subgoal, and we arrive at the following 

specification for a plan, defined as a sequence of steps to achieve a particular goal in a given 

context.

PlanStep ::= Individual{(Contribution))
| Jointly IP Contribution))
I Concurrent((P CAcomponent))
| Subgoal ((Goal))

__Plan________________________________________________________
achieves : Goal 
preconditions : IP Belief 
body: seq PlanStep

To illustrate the form a plan takes, consider an agent with the goal of moving a box b

59



onto another a, where initially both boxes are on the floor and neither have anything on top 

of them. This can be represented as on(a,floor) A on(b, floor) A clear(a) A clear(b), and 

the desired situation can be represented as on(a,floor) A on(b,a). Since there is a simple 

action that transforms the initial state into the desired state, no subgoals are required, and 

the plan can be represented as a list of action steps, as follows. As described in Section 3.7 

a literal is a predicate or its negation, which we represent as pos and not respectively.

[(pos on, [a, floor]), (pos on, [b, a]),
(pos clear, [b])],
[(pos on, [a, floor]), (pos on, [b, floor]), 
(pos clear, [a]), (pos Clear, [b])],
[action <(move, [b, floor, a], agentID)>]

3.12 Intentions

Plan: 
achieves :

preconditions :

body:

Intentions represent the plans that an agent is currently committed to executing in order to 

achieve particular goals. As we discussed in Section 2.3, there are two justifications for 

introducing the mental component of intention. Firstly, since an agent has finite resources, 

it cannot continually consider its competing goals in deciding its actions, and must even

tually settle on a particular goal and establish some form of commitment to that objective. 

Secondly, an agent must coordinate its present and future actions; once a future action has 

been decided on, and the intention to do it has been formed, an agent should be able to 

determine further actions on the assumption that the intended action will be performed.

For an agent’s intentions to be useful they must be internally consistent and not conflict 

with other intentions, or with the agent’s beliefs. They should also have a degree of stability 

in that they resist being reconsidered or abandoned. We take consistency and stability to be 

fundamental properties of intentions.

An intention is a plan to achieve a goal, together with commitment to its achievement. 

Thus, to represent intentions we must first find a way to represent commitment, which can

60



be thought of as defining the period over which an agent must pursue a particular intention, 

and the time at which it is appropriate to drop that intention. As described in Section 2.3 

Cohen and Levesque offer an approach to representing commitment by requiring intentions 

to include a relevance condition that describes the circumstances under which the agent 

must keep its intention, in addition to the intuitive conditions that the intended goal has 

been achieved or can never be achieved.

In addition to these conditions, motivations (which we describe in the following section) 

are a key factor in determining when to drop an intention, since they determine how valuable 

a given goal (and corresponding intention) is to an agent at a particular time. In Senara 

an agent’s motivations provide (at least in part) the reason for its intentions, and so an 

agent’s motivations play a role in determining when to drop an intention. If an intention 

ceases to be motivationally valuable to an agent then it should discharge its commitment to 

it. Therefore, we extend Cohen and Levesque’s notion of commitment by requiring that an 

intended goal be of motivational value to the agent holding that commitment.

When executing an intention, if the first step of the plan at the top of stack is an action, 

the agent can execute it as soon as the action’s preconditions are met, and once an action 

is performed it can be removed from the head of the plan. However, if the first step of 

the plan is a goal, the agent must choose a subplan to achieve it. Now, since plans may 

be partial, subplans may be required for intention execution, and we need to extend our 

notion of intention to be a stack of plans, along with some associated commitment. As 

in dMARS and AgentSpeak(L), each plan on the stack is a subplan of the one below it. 

The chosen subplan is pushed onto the stack of plans, since the agent must execute it and 

achieve the subgoal before continuing with the remainder of the plan. Both of these plans, 

however, are part of the same intention; the same course of action to achieve the same goal. 

Once all the steps of a subplan are executed it is removed from the stack. An intention, 

therefore, is defined as a stack of plans, a relevance condition, and the goal it satisfies. We 

can represent a stack as a sequence of plans, with the head of the sequence at the base of 

the stack. The following schema, Intention, uses two auxiliary functions isSubPlanOf and
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extractPlan defined in Appendix A, which check whether a plan is a subplan of another, 

and extract a particular plan from a sequence of plans respectively.

__Intention________________________________________________
plans : seq Plan 
relevance : P Belief 
satisfies : Goal

V i : Ni | i < fiplans — 1 •
isSubPlanOf (extractPlan (i + l,plans)) (extractPlan (i,plans)) 

=  true

This schema describes how all plans in the sequence are subplans of the plan at the head 

of the sequence or, more strictly, that the plan at position i + 1 in the sequence is a direct 

subplan of the plan at position i. Consider the example of an agent having the intention of 

moving a box from one room to another in a warehouse, with the body of the plan from 

which this intention was formed containing the three steps of: lifting the box, achieving the 

goal of being in the desired location, and putting the box down. If b represents the box, and 

loc\ , loc<i the initial and target locations of the box respectively, this plan body might be 

written as follows.

body: [action <(lift, [b], agentID)>,
subgoal <[ (pos location, [agentID, loci] ) ]>, 
action <(putdown, [b], agentID)>]

The corresponding intention is represented graphically as (a) in Figure 3.3, which shows 

the components of the intention: the goal it achieves, its preconditions, and the stack of 

plans which achieve the goal. After performing the first action, the plan body is left con

taining the second two steps, i.e. (b) in Figure 3.3. Since the first step is now a subgoal, a 

subplan must be chosen for this and pushed onto the intention stack. If the chosen subplan 

contains the single action of moving right, the resultant intention is as shown in (c).
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(a)
relevance: ...
s a t i s f i e s :  [ ( pos  l o c a t i o n ,  [ b , l o c 2 ] ) ]

achieves : [(pos location, [b,loc2])]
preconditions :
body: [action <(lift, [b], agentID)>

subgoal <[(pos location, [agentID, loc2])]>
action <(putdown, [b], agentID)>]

(b) satisfies: [(pos location, [b,loc2])]
relevance: ...

achieves: [(pos location, [b,loc2])]
preconditions:
body: [subgoal <[(pos location, [agentID, loc2])]> 

action <(putdown, [b], agentID)>]

(c) satisfies: [(pos location, [b,loc2])
relevance: ... 
plans: achieves : [ (pos location, [agentID, loc2])]

preconditions :
body: [action <(move, [right], agentID)»]

achieves: [(pos location, [b,loc2])]
preconditions: ...
body: [subgoal <[(pos location, [agentID, loc2])]>

action <(putdown, [b], agentID)>]

Figure 3.3: The use of a stack of plans in an intention
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3.13 Motivations

Thus far in this section we have introduced the standard components of a BDI agent: be

liefs, desires (or goals in our terminology), and intentions, as well as the common notion 

of a plan library. However, in order to include the notion of motivation, which as described 

in Chapter 2 can be used to achieve agent autonomy, we depart from this standard BDI ap

proach. Motivations provide a mechanism for goal generation and adoption, thus allowing 

an agent to have control over its own behaviour, i.e. be autonomous.

We adopt Luck and d’Invemo’s view that a motivation has an intensity, a threshold 

value, a set of goals it can generate, and a mitigation function (as reviewed in Section 2.2). 

The intensity of a motivation changes according to the state of the agent and its environment 

and, if it exceeds the associated threshold then a response is triggered. This response is to 

choose the most applicable goals from the associated set of goals and add them to the agent’s 

existing goals; we say that these goals have been generated. For example, the intensity of a 

hunger motivation may rise above the associated threshold if an agent’s energy level drops 

below a certain value, and cause the generation of a goal to eat a snack. Note that while 

the intensity of a given motivation fluctuates with time, motivations themselves are not 

transient, and the set of motivations a particular agent has does not change, but rather it is 

their intensity that changes.

When a generated goal is satisfied, the intensity of the motivation is reduced by the 

amount determined by a mitigation function, which takes a motivation and a goal, and 

returns the amount by which the achievement of the goal mitigates the motivation. Different 

agents may have different mitigation functions and place different motivational values on a 

given goal. The mitigation function may place the same value on achieving a particular goal 

regardless of the intensity of the motivation, or the motivational effect may be determined 

by the current intensity. In our model we view the motivational effect of achieving a goal 

as dependent on the motivation’s intensity.

[MotiveSym]
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__Motivation_____
name : MotiveSym 
intensity : R 
threshold : R 
goals : P Goal

Motivations also aid an agent in choosing which of its current intentions to pursue, 

when there are more than one. By choosing the intention whose completion will mitigate the 

highest motivation by the largest amount, the agent ensures that it always acts appropriately. 

Thus, motivations provide a mechanism by which attention and conduct can be directed.

An agent determines the intensity of its motivations according to the believed state of 

the environment. Associated with each motivation is a function that defines the intensity of 

the motivation in terms of the environment, and we describe this function in Section 4.4.

When adopting a goal, an agent may be faced with a number of applicable plans, and 

its motivations can help in choosing between them. As with choosing between intentions, 

an agent should choose, from its set of applicable plans for a given goal, the one that offers 

the highest motivational value.

In addition to a mitigation function determining the value of a goal, each of an agent’s 

motivations also has a complementary mitigation function that determines the motivational 

value of an action to the motivation. The value returned by a mitigation function is de

pendent on the current intensity of the motivation with which it is associated. Thus, if a 

motivation is of low intensity (relative to other motivations), and of little relevance to the 

agent, then its associated mitigation function will return low values, since even actions that 

have a large motivational effect on that motivation are of relatively low importance to the 

agent overall. For example, suppose an agent has a hunger motivation and the action of 

eating mitigates it. If the hunger motivation is high, then the action of eating is of high mo

tivational importance and the mitigation function should reflect this. Similarly, if the hunger 

motivation is low, then eating is less important and will be of less motivational value to the 

motivation.
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To determine the overall motivational value that would arise from performing an action, 

the agent must consider the value of the action to each of its motivations, since the action 

may be of value to more than one motivation. These values can then be combined by sum

ming them into a single value representing the motivational value of the action concerned.

The motivational value of a plan is influenced firstly by the value that would arise 

from the achievement of the goal that the plan is intended to achieve and, secondly, by the 

motivational value that is associated with the actions and subgoals contained in the plan. 

However, determining the motivational value of a plan is complicated by the partial nature 

of plans, and we postpone our discussion of the issues involved until Chapter 6, in which 

we describe the process of plan selection.

As stated already, an agent’s actions are governed by the intensities of its motivations, 

since they determine the goal that is of the highest importance to the agent. Recall from 

earlier in this section the notion of an intention as a commitment to a particular goal, along 

with a stack of (partial) plans to achieve it. Since action arises from the execution of the 

plan component of an intention, and agents should act towards the goal that is of the high

est motivational value, some mechanism is required to determine which intention is of the 

highest motivational value. In other words, an agent must be able to determine which in

tention is of the most importance, and consequently, which plan to execute. In ascertaining 

the motivational value of a particular intention, an agent should consider both the value 

arising from the goal the intention is towards, and the plans and action contributions that it 

contains.

Thus, an agent requires an instantiation of the following functions, where assessSitua- 

tion, generateGoals, and mitigation correspond to the mechanisms for assessing the current 

believed situation with respect to the motivation, generating an appropriate response in 

terms of a set of goals, and determining the motivational value of a goal respectively. The 

latter three functions in the schema below take a contribution, plan, and intention as argu

ments and return the motivational value associated with the contribution, plan or intention
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respectively.

assessSituation : Motivation —> P Belief —> E 
mitigation : Motivation —> Goal —> E 
mvContribution : Motivation —> Contribution E 
mvPlan : Motivation —> P/an —> E 
mvlntention : Motivation —> Intention —>• E

3.14 Summary

We have now introduced the set of mental components that comprise the agent architec

ture. These mental components are a standard part of a BDI-based architecture, with the 

exception of motivations which are an extension of the BDI approach. An agent has a cer

tain set of capabilities, or action contributions, that it can perform, along with a certain set 

of perception capabilities. In addition to these the agent has sets of beliefs, goals, inten

tions, and motivations, along with a particular identifier that is unique to each agent. The 

agent also has a library of plans which it is able to use in determining how to achieve its 

goals. When an agent cooperates with others it forms a commitment to inform them if it 

should later cease its cooperative action, as we describe in Chapter 7; we call this a nominal 

commitment, and a set of such commitments is the final mental component of a Senara 

agent.

[.NominalCommitment]
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agentID : AgentID
capabilities : P Contribution
perceivingCapabilities : P PerceptionAction
beliefs : P Belief
goals : P Goal
intentions : ¥  Intention
motivations : ¥  Motivation
planLibrary : ¥  Plan
nominalCommitments : P NominalCommitment 

motivations f  0
V c : Contribution • c 6 capabilities c.agentID = agentID

__Agent________________________________________________
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Chapter 4

A Motivated BDI Agent Architecture

4.1 Introduction

The interplay between an agent’s mental components, are defined by a set of control mecha

nisms, which in turn determine the behaviour an agent exhibits. In order to act autonomous

ly, an agent must react to the changes in its environment, and adopt goals in response to 

them; the manner in which a motivated agent responds to such changes is determined by its 

motivations. The significance of a given motivation is dependent on the current state of the 

environment and, at any one time, the most significant of an agent’s motivations determine 

the goals that it should pursue. In this chapter we present the control mechanisms, in the 

form of a reasoning cycle, that act on the mental components of a Senara agent, complet

ing the architecture. The reasoning cycle can be broken down into the nine stages shown in 

Table 4.1, each of which we describe in detail in the remainder of this chapter.

The Senara architecture is illustrated in Figure 4.1, where the agent’s mental compo

nents are represented by rounded boxes, which in turn are within the central dashed box. 

Control processes that operate on these components are represented by rectangular boxes, 

and arrows correspond to the flow of control.
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Figure 4.1: The Senara architecture
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1. Perceive the environment.
2. Update beliefs in accordance with current perceptions.
3. Update motivations in the light of these new beliefs.
4. Generate a set of new goals from the updated motivations.
5. Select an appropriate plan for the most motivated of these newly generat

ed goals.
6. Adopt that plan as an intention to achieve the corresponding goal.
7. Select one of the current intentions to pursue.
8. If the first step in the body of the chosen intention is an action then execute 

it and remove it from the intention body, otherwise, the first step must be 
a subgoal, in which case attempt to elaborate the intention by selecting a 
subplan for the subgoal.

9. Perceive the appropriate changes in the environment, as a result of any 
actions performed, and return to the beginning of the cycle.

Table 4.1: The stages in the Senara reasoning cycle

In Sections 4.2 and 4.3 we describe how an agent perceives its environment, and up

dates its beliefs to represent the current situation. As an agent’s beliefs change, so does 

the relative importance of its motivations, and in Section 4.4 we describe how an agent 

assesses its motivations in the light of its beliefs. Since an agent’s behaviour is guided by 

its motivations, an agent must ensure that its goals and intentions are of motivational value. 

We describe in Sections 4.5 and 4.6 how an agent checks that its goals are of motivational 

value, and generates new goals where appropriate, and in Section 4.7 we describe how an 

agent ensures that its intentions are of value. Once an agent has dropped inappropriate goals 

and intentions, it must adopt new intentions for the goals is has generated, and we describe 

this process in Section 4.8. In order to act, an agent must select an intention to focus upon 

based on its motivations and then act towards it. Finally, Sections 4.9 and 4.10 discuss how 

to select an intention and how to act towards it respectively.
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Inputs:
env — the agent’s environment 
ps — the agent’s perception capabilities 

Outputs:
view — the agent’s current perceptions

Algorithm:
view = empty 
for p  in ps do

view = union(v/ew, (p(env))) 
return view

Table 4.2: Algorithm for agent perception

4.2 Perceiving the Environment

In what follows we give Z specification and algorithms for the various mechanisms that 

comprise the Senara reasoning cycle. The first step in reasoning is for an agent to perceive 

its environment by executing its perception actions, as outlined in Table 4.2. When the 

outputs of these perception functions are taken together, they result in a set of percepts of 

the current environment represented by a set of attributes. An agent must decide whether 

or not to incorporate these percepts into its beliefs, since they may conflict with existing 

beliefs, and we call these percepts its candidate beliefs. Note that the perceptions of a 

socially situated agent may also include information about others and their actions.

We formalise the perception process in the following schema, in which we include the 

schemas representing an agent and its environment (we use the 2  convention to signify that 

there is no change of state to these). We then specify an agent’s view to be the generalised 

union of the sets of percepts resulting from applying the agent’s perception capabilities in 

the current environment.
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__AgentPerception____________________________________
EEnv 
EA gent 
view : View

view =  U{v : View | (3p A c t: PerceptionAction \
pAct € perceivingCapabilities • v =  pAct environment)}

4.3 Updating Beliefs

Beliefs persist until an agent obtains new information contradicting them. Typically, such 

information will be the result of the agent perceiving its environment, although it may al

so arise from communication with other agents or a human user. An agent’s beliefs are 

required to be consistent with each other, that is, if an agent believes p  it should not also be

lieve -ip. If an agent were to have inconsistent beliefs it might exhibit irrational behaviour, 

since this might lead to incompatible goals. For example, if I were to simultaneously be

lieve that “it is raining” and “it is not raining” then I might come to have the incompatible 

goals (and attempt to adopt incompatible intentions) of “staying indoors” and “going out

side”. An agent cannot, therefore, simply add its candidate beliefs to its existing beliefs 

because inconsistencies may result. Instead, agents must introduce new beliefs into their 

belief set using some consistency maintaining mechanism.

Although belief revision (e.g. [27, 35]), which is concerned with determining how an 

agent should revise its beliefs in the light of contradictory information, is not directly rele

vant to this thesis, an agent must have some mechanism for updating its beliefs. If an agent’s 

candidate beliefs include information that contradicts its existing beliefs then it must deter

mine which information to drop. It can either keep its existing beliefs and discard the new 

information, or it can drop the existing beliefs and include the new information. Sever

al strategies for belief revision have been suggested, such as Doyle’s Truth Maintenance 

System [26], and Galliers’ model of autonomous belief revision [36], but in this work we 

simply assume that agents have a mechanism for ensuring their beliefs are kept consistent,
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Inputs:
bel — the agent’s beliefs 
view — the current perceptions 

Outputs:
bel' — a revised set of beliefs 

Algorithm:
candidateBeliefs = view
bel' = reviseBeliefs(èe/, candidateBeliefs)
return bel'

Table 4.3: Algorithm for updating beliefs

which we call a consistency maintainer, without elaborating further. Using this consisten

cy maintainer, an agent is able to incorporate its set of candidate beliefs into its existing 

beliefs using the algorithm given in Table 4.3, and formally specified below, by which the 

conflicting is information dropped.

In this table, and the following specification, the function reviseBeliefs takes an agent’s 

beliefs and a set of candidate beliefs, and returns the agent’s updated beliefs, and corre

sponds to the consistency maintenance mechanism. The specification includes the schemas 

Agent and AgentPerception, the former using Z’s A convention meaning its state (in partic

ular the agent’s beliefs) can change, while the state of the latter is unchanged. The function 

interpretView forms a set of candidate beliefs from the set of attributes that comprise a view.

__UpdateBeliefs--------------------------------------------------------------------------
AAgent
EAgentPerception 
interpretView : View —> P Belief 
reviseBeliefs : P Belief —> ¥  Belief —> ¥ Belief 
candidateBeliefs : ¥  Belief

candidateBeliefs — interpretView view 
beliefs' =  reviseBeliefs beliefs candidateBeliefs 
goals' =  goals 
intentions/ =  intentions 
motivations' = motivations
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4.4 Updating Motivations

Once an agent has perceived its environment and modified its beliefs accordingly, it must 

update the intensity levels of its motivations in the light of its changed beliefs. The inten

sity of a motivation is determined (at least in part) by the agent’s beliefs about its current 

environment. For example, if I am crossing a road and believe that a car is heading towards 

me, the intensity of my motivation for survival is likely to increase, and similarly, once the 

car has passed by, it is likely to decrease.

Agents are guided by their motivations, and therefore, do not hold goals that are not 

motivated. Thus, after updating the intensities of its motivations an agent checks that its 

goals are still appropriate. In other words, if the intensity of the agent’s motivations change 

in such a way as to make a particular goal unmotivated, then the agent drops it. For example, 

if I see a car heading towards me while crossing a road, my survival motivation may cause 

me to have the goal of running the across the rest of the road. However, if I then notice 

that the car has stopped and parked, the intensity of my survival motivation will decrease, 

and it may no longer be appropriate to keep the goal of running the rest of the way. In the 

remains of this section we discuss in more detail how an agent should alter the intensity of 

its motivations, and when it should drop goals due to lack of motivation.

An agent must have some means of assessing the current (believed) situation and ad

justing the intensity of its motivations accordingly. We require agents in the SENARA ar

chitecture to have an instantiation of the situation assessment mechanism, introduced in 

Section 3.13.

Direct-association

The simplest approach, which we call direct-association, is for an agent to have for each of 

its motivations an association between a particular set of beliefs, and a predetermined pro

portional change of intensity (positive or negative). Whenever the set of beliefs associated
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Inputs:
bel — the agent’s beliefs 
motivations — the agent’s motivations 

Outputs:
the intensities of the agent’s motivations are updated 

Algorithm:
fo r  m in  motivations do

/«.intensity = /«.intensity x assessSituation(/n, bel)

Table 4.4: Algorithm for updating the intensity of motivations

with a motivation are believed to be true by the agent, it should change the motivation’s 

intensity by the specified level, as illustrated by the algorithm in Table 4.4.

In Senara, the direct-association approach is represented as a set of tuples of the form 

(b, m, i), where b is a set of beliefs, m a motivation, and i the proportional change that 

motivation’s intensity should take, should the beliefs b be held by the agent. We assume 

that there is at most one tuple for given sets of beliefs and motivations, otherwise it would 

be ambiguous and unclear which intensity change the agent should implement. As an ex

ample, suppose that if the agent’s energy level drops below some threshold, its tiredness 

motivation should be triggered and change intensity by «. Then we would represent this 

using a tuple of the form (lessThan(energy, threshold), tiredness, n). To specify this we 

use the supplementary functions, First, Second and Third that return the first, second and 

third components of a Cartesian product respectively, as defined in Appendix A. We de

fine a direct association tuple to contain a set of beliefs, a motivation, and a real number. 

The schema IntensityAssociation contains a set of direct association tuples, and specifies 

that an agent should not have ambiguous tuples for a given motivation and set of beliefs, 

i.e. for each motivation and set of beliefs any direct association with matching beliefs and 

motivation yields the same change of intensity.

Finally, we specify (in the schema UpdateMotivations) that an agent should update the 

intensity of its motivations by the proportion defined by the direct association tuple that
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corresponds to the agents current beliefs and the motivation concerned. We specify this 

though the use of an auxiliary function getlntensity, which takes a set of association tuples, 

a set of beliefs, and a motivation and returns the degree of intensity change obtained from 

the matching tuple. The predicate part of the schema first specifies this auxiliary function, 

and then specifies that it should be applied to each of the agent’s motivations (using its 

current beliefs).

iAssociation = =  ¥ Belief x Motivation x R

__IntensityAssociation____________________________________________
iAssociations : P iAssociation

V B : P Belief; m : Motivation; i : P; a : iAssociation • 
a = (B, m, i) A a G iAssociations

=> (V /: M; a! : iAssociation \ a! =  (B ,m ,j) A 
a' G /'Associations • i = j)

__UpdateMotivations_______________________ __________________
AAgent
^IntensityAssociation
getlntensity : P iAssociation -» ¥ Belief —> Motivation —> R

VIA : ¥  iAssociation] B : ¥  Belief] m : Motivation] i : R • 
getlntensity IA B m = i

o  (3 iA : iAssociation •  iA G IA A B = First(iA) A 
m =  Second(iA) A i = Third(iA))

V m : Motivation \ m G motivations • (3t w ': Motivation \ 
m! G motivations' • m!.name =  m.name A 

m! .intensity =  m.intensity*
(,getlntensity iAssociations beliefs m) A

m'.threshold = m.threshold A m'.goals =  m.goals)
beliefs' — beliefs 
goals' = goals 
intentions' = intentions

It is worth noting that there are several other strategies for changing the levels of moti

vations that may be explored in further work. For example, agents might learn to associate 

new sets of beliefs with appropriate motivation intensities, and modify the levels associated 

with the sets of beliefs in the light of experience.
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4.5 Ensuring Goals are Motivated

A motivated agent must always act according to its motivations, and therefore each of its 

goals and intentions must be of motivational value. Before considering how to ensure that 

goals are motivated, we first describe what we mean by a goal being motivated or unmoti

vated. As an initial attempt we might propose that a goal is motivated while the intensity of 

the motivation that caused its generation is greater than its associated threshold, and if this 

intensity falls below the threshold the goal becomes unmotivated. However, this would be 

too simplistic since a single goal may be of motivational value to more than one motivation, 

and the achievement of the goal may mitigate more than one motivation. For example, if I 

have the goal of eating a meal its achievement may mitigate both my hunger and my greed 

motivations, even if it was my hunger motivation that caused its generation in the first in

stance. A consequence of this is that if my hunger motivation drops below its associated 

threshold it is not true to say that my goal is unmotivated, since it is still of motivational 

value to my greed motivation.

This issue can be addressed by saying that a goal is motivated if it mitigates one of 

the agents motivations, i.e. if the achievement of the goal would reduce the intensity of the 

motivation. Thus in the above example, my goal of eating a meal would be considered 

to have motivational value because its achievement would mitigate my greed motivation. 

However, suppose that my greed motivation’s intensity was zero, and therefore I am cur

rently placing no importance on it. In this case the goal cannot be said to be motivationally 

beneficial, since a motivation’s intensity cannot be reduced below zero — a motivation with 

zero intensity cannot be mitigated. Therefore, we arrive at a comprise approach, and say 

that a goal is motivated if and only if its achievement would mitigate a motivation whose 

intensity is greater than zero.

As we describe in the following section, an agent’s goals are generated as a result of a 

motivation’s intensity rising above a certain threshold. Thus, at the time of generation it is 

clear that the goal is motivated, i.e. is the result of a particular motivation having a positive
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Inputs:
goals — the agent’s goals 
motivations — the agent’s motivations 

Outputs:
goals' — an updated set of goals, such that unmotivated goals are removed

Algorithm:
goals' = goals 
f o r  g  in  goals do 

keepgoal = false 
f o r  m in  motivations do

i f  mitigationalValue(g, m) > 0 and intensity(w) > 0 th en  
keepgoal = true 

i f  n o t keepgoal th en  
drop(g, goals') 

r e tu r n  goals'

Table 4.5: Algorithm for dropping unmotivated goals

intensity. Since we require an agent to act in a motivated fashion, it should drop any goals 

that are no longer motivated. After updating the intensities of its motivation an agent should 

check which of its goals are appropriate and it should drop any that are not motivated1.

The algorithm for dropping unmotivated goals is given in Table 4.5, which shows how 

an agent should check each of its goals against its motivations, and discard those that are 

not of motivational value to a single motivation with intensity greater than zero1 2. Formally, 

we can write this as follows in the schema DropUnmotivatedGoals, which describes the 

change in state of an agent’s goals after dropping unmotivated goals. A goal remains after 

dropping those that are unmotivated, if and only if there exists a motivation with positive 

intensity that is mitigated by that goal. Conversely, a goal is discarded if for all motivations 

(of positive intensity) it is of no motivational value.

1 We assume here that any unmotivated goals have not been adopted as intentions, since any unmotivated 

adopted goals, i.e. intentions, will also be dropped because they are not of motivational value, as described in 

Section 4.7.
2We refer to motivational value as mitgation in our formal specification and algorithms.
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__Drop UnmotivatedGoals________________________________
AAgent

y  g : Goal | g G goals • g  G goals' (3 m : Motivation \
m G motivations • (mitigation m g) > 0 A m.intensity > 0) 

Vg : Goal \ g G goals • g 0 goals' (Vm : Motivation |
m G motivations • mitigation m g =  0 V m.intensity — 0) 

beliefs' — beliefs 
intentions' — intentions 
motivations' =  motivations

4.6 Goal Generation

Senara is an architecture for autonomous agents and we consider the ability of an agent 

to generate its own goals to be a fundamental consequence of its autonomy; the process 

of goal generation, however, is typically omitted in existing BDI-based architectures. An 

agent’s motivations provide a mechanism for the generation of goals, and an agent should 

perform goal generation as soon as it has updated the intensities of its motivations. In order 

to generate its goals, an agent must determine which of its motivations are active, i.e. which 

have intensities greater than their associated thresholds. Thus, the first step in goal genera

tion is for an agent to check which of its motivations are active. Each active motivation will 

cause the generation of one or more goals, and the agent must have some mechanism for 

determining what these will be. Recall from our definition of a motivation, in Section 3.13, 

that each motivation has an associated set of goals it can generate, from which the most ap

plicable is selected in a given situation. Formally, we introduce a function, generateGoals, 

that determines the goal a particular motivation generates in a given situation. The inputs 

to this function are the motivation concerned, the agent’s beliefs and its other motivations, 

and the output is the set of goals that are generated.

j generateGoals : Motivation -» P Belief -> P Motivation -> P Goal

For example, if my motivation of hunger is active and I believe that it is lunch time, 

then I might generate the goal of eating a meal. However, if I believe that it is evening I
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Inputs:
gAssociations — the agent’s goal generation associations 
motivations — the agent’s motivations 
goals — the agent’s goals 
beliefs — the agent’s beliefs 

Outputs:
goals' — an updated set of goals, including newly generated goals

Algorithm:
activeM = empty
goals' = goals
fo r  m in  motivations do

i f  intensity(m) > threshold(w) th en  
activeM = union(activeM, {m}) 

f o r  m in  activeM do
fo r  ga in  gAssociations do

i f  first(ga) = beliefs and second(ga) = m th en  
goals' = union (goals', third(ga))

r e tu r n  goals'

Table 4.6: Algorithm for goal generation

may generate the goal of eating a light snack. In addition to beliefs, other motivations such 

as that of being healthy, may affect the goal that I generate, such as generating the goal of 

eating a low fat meal rather than a high fat meal.

The choice of which particular goal to generate should consider how motivationally 

valuable each goal is to a particular motivation, namely, how much the achievement of 

the goal would mitigate the motivation. Since we do not require that an agent’s goals are 

consistent, because it is not committed to achieving all its goals, any goals that the agent 

generates can simply be added to its existing goals.

As with the mechanism an agent uses to update its motivations, different agents may 

utilise different strategies. However, one possible implementation of this goal selection 

mechanism is for the agent to associate a set of beliefs with a particular set of goals and 

a motivation. This can be represented as a tuple, as per the direct association mechanism
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described in Section 4.4. Such a tuple would be of the form (b,m ,g), where b is a set 

of beliefs, m a motivation, and g  the set of goals that are generated by an agent with the 

motivation and the set of beliefs Although this method is very simple, and does not consider 

the agent’s other motivations, it is adequate for our purposes of investigating cooperation 

— provided the agent’s designer has chosen appropriate associations. More complex agents 

may use heuristics that consider such issues as the intensity of other motivations, and any 

past experience of the agent.

The algorithm for goal generation is given in Table 4.6, which shows that for each 

of its active motivations the agent should generate the goals defined by the corresponding 

goal generation association tuple. Formally, we define a goal association tuple to contain 

a set of beliefs, a motivation and a set of goals. The schema GoalGenerationAssociation 

specifies that there should be no ambiguity in an agent’s set of goal associations — for 

a given motivation and set of beliefs there should be exactly one set of generated goals, 

according to the set of goal associations. An agent’s active motivations are specified, in 

the GoalGeneration schema, to be those whose intensity is greater than or equal to the 

associated threshold. The set of generated goals is obtained by applying the generateGoal 

function for each active motivation, and the resultant set is added to the agent’s existing 

goals.

gAssociation == IP Belief x Motivation x P Goal

__GoalGenerationAssociation______________________________________
gAssociations : P gAssociation

\/B  : P Belief] m : Motivation; G : P Goal-, a : gAssociation • 
a =  (B,m,G) A a G gAssociations

=$> (V// : P Goal; a' : gAssociation \ a' = (B,m ,H ) A 
a' 6 gAssociations •  G = H)

82



__GoalGeneration___________________________________________
AAgent
activeMotivations : ¡P Motivation 
generatedGoals : P Goal

activeMotivations =
{m : Motivation | m G motivations A m.intensity > m.threshold} 

generatedGoals =
|J{G : P Goal | (3 m : Motivation \ m G activeMotivations •

G =  generateGoals m beliefs motivations)} 
goals' — goals U generatedGoals 
beliefs' — beliefs 
intentions' =  intentions 
motivations' = motivations

4.7 Ensuring Intentions are Appropriate

Just as an agent drops unmotivated goals, it must also drop any commitment to achieving 

unmotivated intentions. Recall that according to our definition of intention, an agent should 

drop its intentions should they become achieved, unachievable, irrelevant, or of no motiva

tional value. Now, since the information the agent has about its environment, i.e. its beliefs, 

may have changed, the agent must check to see which, if any, of these drop conditions apply. 

It is a straightforward task for an agent to check whether its intentions, or rather the goals 

they achieve, have been achieved. The agent must simply check whether the situation it 

intends to bring about is achieved, either by its own action, or through some other agent. If 

the intention is achieved the agent should drop it3. Checking to see whether an intention is 

unachievable is more difficult, since a greater amount of reasoning is required. If the agent 

explicitly believes that its goal can never be achieved, then it clearly must drop its intention. 

An example of how this might occur is if an agent acquires information provided by another 

about the futility of one of its goals. However, if an agent has no explicit beliefs about the 

unachievability of its intentions, then it must perform further reasoning about its beliefs and
3Note that if an agent drops an intention because it has been achieved though the actions of another, we 

would not say that the agent necessarily achieved its goal intentionally.
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Inputs:
intentions —  the agent’s intentions 
motivations — the agent’s motivations 

Outputs:
intentions' — an updated set of intentions

Algorithm:
intentions' = intentions 
f o r  i in  intentions do 

keepintention = false
i f  n o t achieved(i) and n o t unachievable(z) and relevant(z') th en  

fo r  m in  motivations do
i f  mitigationalValue(z, m) > 0 and intensity^) > 0 th en  

keepgoal = true 
i f  n o t keepgoal th en  

drop(z, intentions' ) 
r e tu r n  intentions'

Table 4.7: Algorithm for dropping inappropriate intentions

the inferences it can make from them, to determine whether its goal is unachievable. As we 

are not concerned with how an agent should reason about inferences from its beliefs in our 

system, we take the simplistic approach of checking explicit beliefs. However, should an 

agent be given such reasoning abilities, it would be a trivial matter to integrate them into 

the agent architecture, since it does not affect the form of the agents reasoning cycle.

If an intention is not achieved or believed unachievable, then its relevance condition 

must be checked, and to do this the agent must simply check that the relevance condition is 

still believed. If it is not believed then the agent must drop its intention as being irrelevant. 

Finally, an agent must ensure that its intention is still motivated, i.e. is of value to at least 

one active motivation, since motivations determine how valuable a given goal is to the 

agent at a particular time. If an intention is not motivationally valuable then it should be 

dropped, along with the goal that it achieves — the algorithm for ensuring that intentions 

are appropriate is given in Table 4.7.
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In the following schema, Droplnappropriatelntentions, we specify the conditions un

der which an agent should drop an intention. The predicate part specifies, firstly, that an 

intention is relevant only while the relevance condition is believed and, secondly, that an 

intention is motivated if and only if it is of value to a motivation of positive intensity. An 

agent’s intentions are updated such that any that are achieved, unachievable, irrelevant, or 

unmotivated are dropped.

Droplnappropriatelntentions____________________________________
AAgent
is Achieved : Intention —> ¥  Belief —> bool 
isAchievable : Intention —> P Belief -* bool 
isRelevant: Intention —> bool 
isMotivated : Intention —> bool

V i : Intention \ i G intentions • isRelevant i =  true
(V b : Belief | b G i.relevance • b G beliefs) A 

isRelevant i = false <=> (3 b : Belief | b G i.relevance • b beliefs)
V i : Intention \ i G intentions • isMotivated i =  true

O  (3m : Motivation \ m G motivations •
m.intensity > 0 A (mitigation m i.satisfies) > 0) A 

isMotivated i = false ^  (Vm : Motivation | m G motivations • 
mitigation m (i.satisfies) — 0 V m.intensity =  0)

V i : Intention \ i G intentions •  i G intentions'
«=> isAchieved i beliefs = false A isAchievable i beliefs =  true A 

isRelevant i = true A isMotivated i = true A 
/ 0 intentions'

isAchieved i beliefs — true V isAchievable i beliefs =  false V 
isRelevant i = false V isMotivated i = false 

beliefs' =  beliefs 
goals' =  goals 
motivations/ =  motivations

4.8 Intention Adoption

Once the agent has dropped inappropriate intentions, it must determine whether to adopt 

new intentions for the goals to which it is not committed, and if so, it must create suitable 

intentions for them. Now, one of the requirements of intentions described by Bratman [2]
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and Cohen and Levesque [15] is that intentions should be consistent, or rather, they should 

not knowingly be inconsistent. For example, I should not intend to eat out tonight and not 

eat out tonight, while I might intend to eat out tonight and write a paper, even if these later 

turned out to be incompatible. Thus, an agent cannot simply adopt intentions for its newly 

generated goals, since they may contain inconsistencies. As we require our agents to be 

driven by their motivations, these motivations play a key role in determining which inten

tions it adopts. For each of its active motivations an agent attempts to adopt an intention 

for the goal generated by that motivation, or for the most motivated goal if more than one 

goal is generated. When incompatibilities are found they must be resolved in such a way 

as to afford the highest motivational value to the agent. This can be determined simply by 

considering which motivation has the highest intensity (although an alternative approach 

would be to consider a combination of motivational effect and motivational intensity).

4.8.1 Selecting and Adopting a Plan

To adopt an intention an agent must select a plan to use to achieve its goal. From its plan 

library an agent selects the set of applicable plans to achieve each of its chosen goals4. 

The set of applicable plans for a goal is defined to be those plans that achieve the goal 

whose preconditions are met, as specified below in function planSetForGoal. We define 

planSetForGoal though the use of a subsidiary function, preconMet, which takes a set of 

preconditions and a set of beliefs, and returns true if and only if the preconditions are 

believed to be true (as described in Appendix A).

planSetForGoal: Goal —> P Belief —> P Plan -+> ¥ Plan

Vg : Goal; b e l: ¥  Belief-, plib : P Plan • planSetForGoal gbelplib  
= {p : Plan | p  G plib A p. achieves = g  A 

preconMet p.preconditions bel =  true}
4Note that we assume there is at least one plan in the plan library for each of the goals that an agent might 

generate. This is the responsibility of the agent designer, and we do not consider how an agent should behave 

if it cannot find at least one applicable plan for a given goal.

86



Once an agent has obtained the set of applicable plans for a given goal and context, 

it must choose one, and there are many possible criteria for selecting a plan from a set 

of applicable plans. For example, the agent may choose the plan containing the minimum 

number of subgoals or the one with the minimum number of actions, i.e. the plan that seems 

to require the least further reasoning or action respectively. Alternatively, it may select from 

a set of plans by considering the joint and concurrent actions they contain and the agents 

with whom cooperation may occur. Without fully elaborating the applicable plans, however, 

an agent cannot be certain about its choice, since it does not know which subplans will be 

used in the plan’s elaboration. Moreover it is also unable to predict the way the environment 

may change, so cannot elaborate the applicable plans to select between them5 and must, 

therefore, use some heuristic to choose between plans. We discuss in detail how agents can 

choose between applicable plans in the Chapter 6. However, in order to continue with our 

specification of the agent architecture, we introduce the function planForGoal that takes a 

set of applicable plans and chooses the most appropriate depending on the agent’s current 

beliefs and intentions. Beliefs and intentions constrain the plans that are applicable, since 

a chosen plan must be consistent both with the agent’s beliefs and its existing intentions. 

Since we describe in Chapter 6 the mechanisms an agent might use to chose a particular 

plan, we simply specify a function signature here, and describe its instantiation later.

| planForGoal: ¥  Belief —» ¥  Intention -» ¥  Plan -» Goal -+> Plan

Thus, intention adoption comprises the two stages of first determining which goals to 

adopt intentions for, and then selecting plans for those goals. This is done by resolving in

compatibilities between goals to get a set of compatible motivated goals to which an agent 

can commit. Then plans are selected for each of these intentions (and checked for consis

tency with each other), before forming intentions. The algorithm for intention adoption is 

shown in Table 4.8. We do not include a specification of the relevance conditions since they 

are dependent on the domain and situation, and so cannot be specified.
5Such elaboration would also place a significant burden on the agent’s resources, and may prevent it from 

making a timely decision.
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Inputs:
motivations — the agent’s motivations 
intentions — the agent’s intentions 
goals — the agent’s goals 
beliefs — the agent’s beliefs 

Outputs:
intendedgoals' — an updated set of intended goals 
intentions' — an updated set of intentions

Algorithm:
activeM = empty 
activegoals = empty 
intendedgoals = empty 
fo r  m in  motivations do

i f  intensity(w) > threshold(w) th en  
activeM = union{activeM, {m}) 

fo r  m in  activeM do 
fo r  g in  goals do

i f  mitigationalValue(g, m) > 0 th en  
isactive = true 
f o r  g1 in  goals do

i f  mitigationalValue(g, m) <
mitigationalValuefg', m) th en  
isactive = false 

i f  isactive th en
activegoals -  \mion(activegoals, { g  }) 

fo r  i in  intentions do
intendedgoals = \mion(intendedgoals, { achieves(i) }) 

intendedgoals' = resolveIncompatibilities(mie«deJgotf/.s', activegoals) 
intentions' = intentions 
f o r  g  in  intendedgoals' do

i f  n o t g i n  intendedgoals do
p  -  planForGoal(6e//e/S, intentions, planlib, g) 
newintention = adopt(p)
intentions' = union (intentions', { newintention }) 

r e tu r n  intendedgoals', intentions'

Table 4.8: Algorithm for intention adoption
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Formally, we specify the stages of intention adoption in the schema IntentionAdoption. 

The set of active motivations is used to determine the set of active goals, which is con

structed such that for each motivation the goal that is of the most motivational value is a 

member of the set of active goals. Before adopting intentions for active goals (that are not 

already committed to), any inconsistencies with the agent’s current intentions must be re

solved, and the set newIntendedGoals represents the resulting set of goals, for which the 

agent must have corresponding intentions. Intentions are then formed for any goals in this 

set that are not already committed to, using the plan returned by the planForGoal function.

__IntentionAdoption_____________________________________________
AAgent
activeMotivations : IP Motivation 
activeGoals : F Goal 
currentlntendedGoals : P Goal 
newIntendedGoals : P Goal
resolvelncompatibilities : P Goal —> P Goal —>• P Goal 

activeMotivations =
{m : Motivation \ m G motivations A m.intensity > m.threshold} 

activeGoals =  {g : Goal \ g G goals A
(3 m : Motivation \ m G activeMotivations A mitigation m g > 0 •

(Vg7 : Goal \ g1 G goals A g ' ^ g *
(mitigation mg) > (mitigation mg')))} 

currentlntendedGoals =
(g  : Goal | (3 i : Intention | i G intentions • i.satisfies =  g)} 

newIntendedGoals =  resolvelncompatibilities 
currentlntendedGoals activeGoals 

intentions' =  {/ : Intention \ i.satisfies G newIntendedGoals A
/ G intentions} U {/ : Intention | i.satisfies G newIntendedGoals A 

i & intentions A head(i.plans) =
planForGoal beliefs intentions planLibrary i.satisfies}

There are two possible strategies that the agent could adopt to forming an intention, de

pending on the point at which it commits itself to a particular course of action, and chooses 

a particular plan. The simplest strategy is for the agent to select the most appropriate plan 

from its plan library given its current situation, and use that plan to form its intention. We 

call this an immediate elaboration strategy, since the agent commits itself to a particular
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plan at the point of intention formation. Alternatively, it can form an intention using an 

abstract plan, which is one that contains the single step of a subgoal. Thus, the agent is able 

to form an intention without elaborating its plan, and since the agent postpones committing 

to a particular course of action (namely, a particular elaboration of its plan) we call this a 

delayed elaboration strategy.

4.8.2 Immediate Elaboration

Based on its motivations, an agent selects a goal (and therefore an intention) to act upon, 

which is to be achieved by executing the plan described in the corresponding intention. If 

the selected intention was formed using an immediate elaboration strategy then the agent 

is able to begin execution of the plan immediately. Where the first step of the plan is an 

action, the agent can perform it (if its preconditions are met) and where it is a subgoal the 

agent can elaborate its plan by selecting a subplan for the subgoal.

If the agent is the only entity able to act in its environment, and is constrained so that 

it is prevented from having more than a single goal (or intention) at any one time, then the 

immediate elaboration strategy is adequate. However, typically an agent has more than one 

goal (and corresponding intentions), and shares its environment with other acting entities, so 

that plans elaborated at the point of intention formation may not be executable by the time 

the agent chooses to act upon them, since the environment may have changed. Suppose 

an agent has two goals, g\ and gi, and uses an immediate elaboration strategy to form 

respective intentions, z'i and ii, which contain (at least partially) elaborated plans. Based 

upon its motivations the agent chooses an intention to act upon, say i\, and begins to execute 

the plan contained in that intention. Now, suppose that the agent’s motivations are such that 

z'l remains the chosen intention until it is completed (and gi is achieved), at which point 

z'l and gi are dropped (assuming it was successfully achieved). Thus, on achieving gi the 

agent is left with a single goal and intention, gi and ii respectively. However, since the plan 

in ii was chosen before g\ was achieved, it may not be relevant in the current environment,
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(a) s a t i s f i e s :

relevance:
plans :

[ (pos  l o c a t i o n ,  [ a g e n t i ,  l o c 2 ] > ]

achieves : 
preconditions : 
body:

[(pos location,
[(pos location,
[ . .  .
action <(moveTo,

[agenti, loc2])] 
[agenti, loci])]

[loc2], agenti)>

(b) satisfies:
relevance:
plans :

[(pos holding, [agenti, b])]

achieves: [(pos holding, [agentl, b])]
preconditions: [(pos location [agentl, loci])]
body: [...

action <(pickup, [b], agentl)>
. . . ]

Figure 4.2: The problem of plan over-commitment

and therefore ii may be unachievable (unless the environment changes). We say that an 

agent in this situation suffers from the problem of plan over-commitment.

This problem can be seen more clearly with a simple example, where an agent (with 

agent identifier agentl) is situated in some location loc\, in which there is a box b. Suppose 

that gi corresponds to being in another location loci written location(agent, loci)> and gi to 

holding the box written holding(agent, b). Suppose that the agent forms intentions, j'i and 

ii, for these goals, and uses an immediate elaboration strategy to select plans that require 

the environment to be in this situation for their execution, as shown in Figure 4.2 (a) and (b) 

respectively. Once the agent has executed the plan in i'i , the environment will have changed 

such that the agent is in location loci. Since ii is now the agent’s sole intention it will try to 

act to achieve it. However, since the plan component of ii was selected, the environment has 6
6This is analogous to the problem of g o a l  c lo b b e r in g  in planning [86],
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changed and the plan is no longer applicable (since it requires the agent to be in the same 

location as the box, namely loc\). Thus, the agent is forced to either drop this intention, and 

form a new one with a new plan, or wait until it is in loc\ again. As there is no guarantee 

that the environment will return to its previous state, the most viable approach is to drop ¡2 , 

and form a new intention given the current situation.

4.8.3 Delayed Elaboration

If the agent were to use a delayed elaboration strategy instead, then the risk of plan over

commitment is reduced, since the elaboration of the plan component of an intention is 

delayed until the agent comes to execute the plan. In the example above, delayed elabora

tion would entail using abstract plans rather than elaborated plans, and on completion of j'i 

and gi the agent is again left with a single intention, ¿2, but with a corresponding abstract 

plan that must be elaborated before the agent can act. The agent can now select a plan for 

¿2 (based on the current state of the environment) and execute it, without the need to drop 

the existing intention. Thus, the problem of plan over-commitment is avoided in this simple 

scenario.

The example above is simplified in that we assume that there is only one agent acting 

in the environment, and that once it begins to act on an intention it will continue until the 

intention is complete. Where the environment is more dynamic, or there is more than one 

agent active in it, the problem of plan over-commitment is more likely to occur (regard

less of whether the agent uses an immediate or a delayed elaboration strategy), since the 

environment will change of its own accord, or as a result of others’ actions. During the 

execution of a plan, such changes may render the remainder of the plan not executable. For 

example, if an agent adopts a plan to pick up a box, another agent might pick it up before 

it executes its plan, thereby preventing execution of the plan. Similarly, if the agent’s moti

vations are such that its attention changes between different partially completed intentions, 

the agent itself may cause a plan in one of its intentions no longer to be executable, due

92



to changes it has made in the environment. In these more complex situations there are too 

many factors involved to estimate the risk of plan over-commitment for either strategies.

In terms of this thesis, we consider cooperation resulting from agents soliciting assis

tances with respect to a particular plan, as we describe in Chapter 7. It is simpler for an 

agent to solicit assistance with respect to a particular plan, and therefore where cooperation 

is needed, the immediate elaboration approach is used. Moreover, since we are concerned 

with cooperation rather than the construction of an optimal mechanism for intention adop

tion, we assume that agents always use the immediate elaboration approach. In the worst 

case scenario, this choice means that the agent will have to re-adopt its intention with a 

different plan, and we consider this cost to be relatively low given the added simplicity of 

always using the same approach to form an intention.

4.9 Intention Selection

In order to act, an agent must select an intention to focus upon. As before, motivations 

play a fundamental role here in that the intention whose achievement is of the most value 

in motivational terms is selected. As we described in Section 3.13, motivational value is 

dependent on the intensity of the motivation concerned, and an intention that is of high 

relevance for a motivation with minimal intensity might be said to have less motivational 

value than an intention with relevance for a motivation of large intensity. Therefore, the in

tensity of the agent’s motivations is crucial in selecting an intention to focus on — the agent 

should select an intention that favours its most significant motivation. The most significant 

motivation is defined as being the active motivation with the highest intensity if any active 

motivations exist, otherwise it is simply the motivation with the highest intensity (recall 

that a motivation is said to be active if its intensity is greater than or equal to its threshold). 

Once the agent has determined its most significant motivation, it must then select which 

of its intentions contribute the most to it. This is determined by the motivational effect 

the achievement of an intention would have on the motivation, and the agent should select
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Inputs:
motivations — the agent’s motivations 
intentions — the agent’s intentions 

Outputs:
chosenintention — the selected intention

Algorithm:
activeM = empty
fo r  m in  motivations do

i f  intensity(m) > threshold(w) th en  
activeM = vmion(activeM, {m}) 

i f  activeM = empty th en  
M  = motivations

e ls e
M  = activeM 

m = selectRandom(M) 
f o r  m' in  M  do

i f  intensity(m') > intensity(m) th en  
m = m'

highestM = m
chosenintention = selectRandom(mienrioni) 

f o r  i in  intentions do
i f  mitigationalValue(z, highestM) >

mitigationa\Va\ue(chosenintention, highestM) th en  
chosenintention = i 

r e tu r n  chosenintention

Table 4.9: Algorithm for intention selection

the intention that has the most motivational effect on its most significant motivation. We 

call this intention the chosen intention. This algorithm for intention selection is shown in 

Table 4.9.

We specify this below in the schema IntentionSelection, where the first three predicates 

in the schema determine the most significant motivation. The final predicate specifies that 

the agent should select the intention that is of the most motivational value to the most 

significant motivation.
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__IntentionSelection__________________________________________
EAgent
activeMotivations : IP Motivation 
chosenMotivation : Motivation 
chosenlntention : Intention

activeMotivations —
{m : Motivation \ m G motivations A m.intensity > m.threshold} 

activeMotivations /  0  => (3 m : Motivation \ m G activeMotivations • 
(V m! : Motivation | m' G activeMotivations Am ' ^  m •

m.intensity — m.threshold > m!.intensity — m'.threshold A 
chosenMotivation — m))

activeMotivations — 0  =y (3 m : Motivation \ m G motivations •
(V m! : Motivation | m' G motivations A ra' /  m •

m.intensity — m.threshold > m'.intensity — m'.threshold A 
chosenMotivation = m))

(3X i : Intention | / G intentions • (V /' : Intention | i' G intentions A 
i ^  /' • mitigation chosenMotivation i.satisfies > 

mitigation chosenMotivation i' .satisfies A 
chosenlntention =  /))

4.10 Action and Deliberation

After determining its chosen intention, an agent acts towards it, but the way in which the 

agent does this depends on the contents on the intention or, more specifically, on the plan 

component of the intention. If the first step in the plan is an individual action contribution 

then the agent can execute that action. If the step is a subgoal then the agent must elaborate 

the plan, and choose a subplan for that subgoal — we call this process deliberation. How

ever, if the first step is a joint or concurrent action then the agent must seek assistance from 

others, and this is covered in detail in Chapter 7.

If the first step in the body of the plan at the top of the intention stack is an action, then 

the agent executes this action, and the action is removed from the plan. On executing an ac

tion the environment is changed in the manner defined by the function contributionEffects, 

as introduced in Section 3.9. The agent’s beliefs are also updated, since it can infer that
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the environment has changed in the manner defined by contributionEffects. For the purpose 

of the specification, we assume the existence of the function believedChanges which takes 

a contribution and an environment, and returns a set of beliefs representing the changes 

to the environment that performing the contribution produces. We also introduce in the 

AgentHistory schema a sequence of contributions that records the contributions performed 

by a particular agent. An agent acts by performing the first contribution step in chosen inten

tion, changing the environment and appending this contribution to its history. The agent’s 

beliefs are updated to include information about the effects of performing this contribution, 

as determined by believedChanges.

| believedChanges : Contribution —> Environment -» IP Belief

_AgentHistory_________________________________________________
history : seq Contribution

__AgentAction-------------------------------------------------------------
AAgent 
AEnv
AAgentHistory 
EIntentionSelection 
E UpdateBeliefs 
nextStep : PlanStep

nextStep =  head(last chosenlntention.plans).body 
3 a : Contribution • Individual(a) =  nextStep

history1 = history ^  (a) A environment1 — 
contributionEffects a environment A

beliefs' — reviseBeliefs beliefs (believedChanges 
a environment)

If the first step in the body of the plan at the top of the intention stack is a goal, then 

the agent selects a subplan to achieve it from its plan library. This process is the same as 

that for forming an intention, except that once the agent has selected an appropriate plan 

it is then pushed onto the intention stack, rather than a new intention being formed. In the 

following schema we specify that where the next step of an intention is a subgoal, the best

96



plan is selected for that goal using planForGoal, and pushed onto the intention stack. The 

relevance condition and the goal the intention satisfies are unchanged.

__AgentDeliberation____________________________________________
AAgent
'EIntentionSelection 
nextStep : PlanStep

nextStep = head(last chosenlntention.^plans).body 
3 g  : Goal • Subgoal(g) — nextStep

<̂> chosenlntention' .plans =  chosenlntention.plans
^{{planForGoal beliefs intentionsplanLibrary g))

A chosenlntention' .relevance =  chosenlntention.relevance 
A chosenlntention' .satisfies =  chosenlntention.satisfies

4.11 Summary

In this chapter we have completed our description of Senara, our BDI-based architecture 

for cooperation between autonomous agents. The BDI model, as exemplified by Bratman et 

al. [5], does not directly support the mechanisms required for agents to be truly autonomous 

and have full control over the direction of their own behaviour. Additionally, it does not 

provide a mechanism for an agent’s plans to include cooperative actions that are to be 

performed in conjunction with other agents. Therefore, we have described extensions to 

this BDI model in two key areas: the addition of motivations to agents, and the addition of 

joint and concurrent actions.

The first significant extension is the addition of the mental component of motivations to 

the existing ones of beliefs, desires (i.e. goals), and intentions. Motivations serve to allow 

an agent to guide its behaviour, both through the generation and adoption of appropriate 

goals, and through influencing the decisions an agent makes in the course of its operation. 

For example, an agent must consider its motivations in choosing a plan for a goal, and in 

choosing which agents to cooperate with, thereby ensuring that is always acts to afford itself 

the greatest motivational value. A result of introducing motivations into the architecture is
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that the agent reasoning cycle must be extended. In this chapter we have described the ex

tensions necessary to allow an agent to update the intensities of its motivations according to 

its beliefs, generate goals from these motivations, choose a goal to pursue, adopt an appro

priate intention from its goals, and select an intention to act towards. These mechanisms are 

brought together in the following schema, which specifies an agent’s control mechanisms.

__AgentControl_________________________________________________
EAgent
AgentPerception
UpdateBeliefs
UpdateMotivations
DropUnmotivatedGoals
GoalGeneration
Droplnappropriatelntentions
IntentionAdoption
IntentionSelection
AgentAction
AgentDeliberation

Joint and concurrent actions provide a mechanism for representing composite actions 

made up of contributions that are to be performed by individual agents. These compos

ite actions can be included as steps in an agent’s plans, and so allow agents to be given 

predetermined plans of how to achieve goals through cooperation. In Bratman et al.' s BDI 

abstract architecture an agent’s plans are only able to represent the actions it should perform 

individually, rather than those it should perform as part of a cooperative activity.
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Chapter 5

Autonomous Cooperation in Open 

Environments

5.1 Introduction

In the preceding chapters we introduced the mental components and control mechanisms 

that comprise the agent architecture upon which we base our framework of cooperation. 

However, we have not yet considered the process of cooperation amongst such agents. A- 

gents act according to their motivations and therefore will only cooperate if they receive 

motivational value from doing so. Cooperation between autonomous agents involves cer

tain choices about when to cooperate, with whom, and for how long, and the outcome of 

these choices is determined by an agent’s motivations. Consequently cooperation implies 

an inherent degree of risk, since where a group of agents cooperate towards achieving a 

particular goal, any one of them may cease to cooperate if it is no longer of motivational 

value, regardless of the effect this has on the achievement of the goal. In order to cooperate 

effectively, an agent must be able to make appropriate choices about cooperation and man

age the associated risk. This chapter seeks to provide the context for the instantiation of the 

architecture presented in the preceding chapters to address these issues.
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Specifically, we start this chapter by describing the nature of the commitments required 

by a group of agents to cooperatively execute a plan, and we introduce the stages involved 

in such cooperation activity. We then introduce the notion of trust as a means of modelling 

the perceived risk associated with other agents. Finally, for ease of understanding, it is 

useful to have a particular domain to provide a context for discussing our framework, and 

in which we can give an example instantiation; we end this chapter by describing such a 

domain.

5.2 Cooperative Intention

Cooperative action by a group of agents consists of the individual actions of its members 

and, because the actions of individuals are determined by their intentions (according to 

the Senara control cycle), those agents must adopt appropriate intentions before acting 

cooperatively. However, it is not sufficient for each agent simply to adopt an intention to 

achieve the cooperative goal, since each agent’s intention is independent of the others, and 

the success of one agent is unrelated to the success of another. Cohen and Levesque il

lustrate this though the example of a group of people running for shelter under a tree in 

a rainstorm [19] — they all have the same goal and intention (to run under the tree), but 

there is no cooperation amongst them. Indeed, if there is limited shelter under the tree, their 

intentions may actually lead to competitive behaviour. Therefore, as is widely recognised 

(e.g. [4, 58, 100, 102]), cooperation requires some form of group commitment towards the 

cooperative goal, that is more than just a collection of individual intentions and embodies 

the notion of agents acting together. We call our notion of this group commitment a coop

erative intention (thereby distinguishing it from other related work on group commitments, 

such as that of Cohen and Levesque [58], and Bratman [4]), and discuss its requirements 

and definition in this section.
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5.2.1 Requirements of a Model of Cooperation

Cooperation involves more than just the simultaneous actions of a group of individuals, as 

illustrated above, and some form of cooperative intention is required. However, since a 

group of agents may diverge in their beliefs, a group’s intention to cooperate cannot simply 

be a version of individual intention where the group is taken to be the agent. It is suggested 

by Bratman [4] that agents are rational entities, and must not be committed to achieving 

a goal that they believe unachievable (or already achieved, or irrelevant). Therefore, if a 

cooperating agent comes to believe that one of these conditions is the case with respect 

to the goal for which it is cooperating, then it will cease to cooperate, and should inform 

others. We concur with this view, and adopt it as one of the key requirements for a group’s 

cooperative intention. Moreover, in our view, agents act according to their motivations, 

and if cooperation is of motivational value they will cooperate, otherwise they will not. 

Thus, if the motivations of a member of a cooperating group change such that cooperation 

is no longer of motivational value, then that agent will cease to cooperate since it is not 

motivationally beneficial to continue, and it must inform others.

Even where agents take diverse roles in the achievement of their goal, the commitments 

they hold should still be towards a common course of action. Commitment alone is insuffi

cient for cooperation; it must be towards a specific (possibly partially determined) course o f 

action, otherwise agents could be committed to achieving a goal through conflicting means. 

Cooperation, therefore, requires agents to act together through a common approach towards 

a common goal. For example, if two agents are committed to achieving the goal of moving 

a table together from one room to another, they must be committed to using a particular 

approach — if one agent is committed to performing the action of lifting one end of the 

table and carrying it, while the other is committed to dragging the table then their actions 

will not result in cooperation, and they will not achieve their goal.

Agents should not be forced into commitment; in our view, agents are autonomous 

entities and have control over their own behaviour, and while an agent may attempt to gain

101



the assistance of another (for example by offering to reciprocate) it cannot force another 

to cooperate. Consequently, agents should only enter into cooperative activity, and commit 

to a cooperative intention if it is in their own interests to do so — if it is of motivational 

benefit. Furthermore, the intention must be common knowledge amongst the group, thereby 

allowing agents to reason about their commitments in the light of others’ corresponding 

commitments. In particular, before performing its part of a cooperative interaction an agent 

needs to know that others will do likewise.

We can summarise these requirements for cooperation as follows, based on those given 

by Bratman [4]. The key difference between our view and Bratman’s is that we require a 

cooperative intention to be motivated on behalf of the agents concerned.

Commitment to openness There must be some mechanism for an agent to inform others 

if it comes to believe that cooperation is no longer appropriate — when the goal is 

believed to be achieved, unachievable, irrelevant, or unmotivated.

Commitment to a common means A group’s commitment must be towards a specific cou

rse of action, otherwise agents might become committed to achieving a goal through 

conflicting means.

Common Knowledge A group’s commitment must be common knowledge amongst its 

members.

Motivated commitment Commitments must be motivated on the behalf of the cooperating 

agents.

In addition to these requirements it is also desirable that cooperating agents guide their 

behaviour in response to others’ intentions and actions, and are committed to supporting 

others; cooperative intention should lead to mutual responsiveness and mutual support be

tween agents. For example, if a group member cannot perform its contribution to a joint 

action, and a second member is in a position to perform some action after which the con

tribution could be performed, then the second agent’s commitment to the joint intention
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should lead it to act so as to enable the cooperative action to proceed (assuming it is of 

motivational value to do so).

5.2.2 Conventions for Cooperative Intention

In Chapter 2 we identified two main views on the nature of cooperative intention, where 

it is either viewed as being irreducible, or as comprising an appropriate combination of 

individual intentions, mutual beliefs, and a set of mechanisms describing how it should be 

maintained [4, 58, 100]. In both approaches, action is seen as governed by intention, and 

so some relationship between cooperative and individual intention must exist, otherwise no 

action would be performed. However, the former approach views the required individual 

intentions as arising out of the cooperative intention, while the latter approach views these 

individual intentions, in part, as defining the cooperative intention. It is our view that since 

cooperative intention can arise only from the interaction of individuals, the components that 

comprise it must be formed from the mental components and attitudes of those individuals. 

In this thesis, therefore, we adopt the view that a cooperative intention comprises a set of 

individual intentions, mutual beliefs, and mechanisms describing its operation. A useful 

consequence of taking this approach is that it is consistent with the majority of existing 

computational work, with the alternative generally confined to philosophical investigations. 

Our model of cooperation can, therefore, be more easily compared, and integrated, with 

other existing computationally-oriented work.

Recall from Section 2.5.3 that a convention specifies the conditions under which a 

commitment can be abandoned, and how an agent should behave in such a circumstance. 

We follow Wooldridge and Jennings’ notion of cooperative intention as a commitment to 

a course of action with associated conventions (as introduced in Chapter 2). However, 

Wooldridge and Jennings’ associated model of cooperation is somewhat abstract, and they 

do not, therefore, give the details of such issues as how agents should form and represent 

plans [102, 104]. Our concern in this thesis is cooperation between motivated BDI-like
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re-evaluation condition goal
believe that goal is achieved establish mutual belief that goal is 

achieved
establish mutual belief that goal is 
unachievable
establish mutual belief that goal 
is no longer relevant 
establish mutual belief that goal 
is not of motivational value

believe that goal is unachievable

believe that goal is no longer relevant

believe that goal is not of 
motivational value

Table 5.1: Conventions for motivated cooperation

agents, and we must consider these architecture-specific details. In the case where plan 

execution requires cooperation, the commitment involved is a group commitment amongst 

agents, initiated by the agent that selected the plan. In contrast to the notion of joint inten

tion as a commitment towards a particular fully-elaborated sequence of actions, we are con

cerned with commitment to a partial plan containing subgoals. Thus, we relax Wooldridge 

and Jennings’ definition slightly, so that joint intention is viewed as a joint commitment 

towards a partial plan, rather than a specific action sequence.

More importantly, since agents are guided by their motivations, our notion of cooper

ative intention must reflect the importance of an agent’s motivations, in that agents must 

ensure that their actions and commitments are of motivational value, i.e. agents engage in 

motivated cooperation. Thus, an agent should only form an intention, whether individual 

or cooperative, if its formation gives rise to motivational benefit. In other words, an agent 

should only commit to executing a particular plan to achieve a goal if the achievement of 

the goal offers motivational value, or if the execution of the plan itself provides motivational 

benefit. For example, achieving the goal of emptying a glass by drinking the beer in it rather 

than throwing the beer away offers motivational value through the action of drinking beer, 

rather than actually emptying the glass. The notion of motivational benefit is also important 

in defining the duration of a cooperative intention, since an agent should drop any intention
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1. All agents initially believe that the goal is not satisfied, and that it is 
achievable.

2. Each agent has the goal until the termination condition is satisfied.
3. Until the termination condition is satisfied,

(a) if any agent believes the goal is achieved, it should adopt the new 
goal of making this mutually believed, and keep this new goal until 
the termination condition is satisfied;

(b) if any agent believes the goal is unachievable, then it should adopt 
the goal of making this mutually believed, and keep this new goal 
until the termination condition is satisfied;

(c) if any agent believes the goal is no longer relevant, then it should 
adopt the goal of making this mutually believed, and keep this new 
goal until the termination condition is satisfied; and

(d) if any agent believes the goal is no longer of motivational value, then 
it should adopt the goal of making this mutually believed, and keep 
this new goal until the termination condition is satisfied.

4. The termination condition is that it is mutually believed that the goal is 
achieved, unachievable, is no longer relevant, or the goal is no longer of 
motivational value to one or more of the agents in the group.

Table 5.2: Observations about group mental state after Wooldridge and Jennings

that is not of motivational benefit, as per an individual intention (described in Section 4.7 

where we discuss the conditions under which an individual intention is discharged). If an 

agent’s cooperative intention ceases to be of motivational value, it should drop that intention 

(informing the other members of the group that it is doing so).

With this in mind, we can consider the conventions defined by Wooldridge and Jennings 

for joint intention, which include the requirement that the goal should be justified. This is a 

broader condition than the goal being of motivational value, since there is no constraint on 

what may be used as justification; although requiring a goal to be motivationally valuable is 

valid justification, such a justification need not necessarily refer to an agent’s motivations. 

Therefore, we modify Wooldridge and Jennings’ notion of cooperative intention to require 

that a goal be relevant and of motivational value to an agent committed to it. This can be
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thought of as decomposing the convention requiring a goal to be justified into two separate 

conventions requiring it to be both relevant and of motivational value. The resultant con

ventions for a cooperative intention are shown in Table 5.1 where for each row, if an agent 

comes to believe the re-evaluation condition it should adopt the corresponding goal. Such 

a cooperative intention is only terminated when a re-evaluation condition is believed to be 

true and the corresponding goal is achieved. For example, if an agent believes that the goal 

is achieved and has made others aware of this, then the cooperative intention is dissolved. 

The termination condition and mental state of a group that has a cooperative intention is 

described in Table 5.2.

5.2.3 Formalising Cooperative Intention

We can formalise the notion of a convention as the Cartesian product of a set of beliefs 

that represent a particular situation, and a goal that an agent must adopt if it believes that 

situation to be the case.

Convention = =  ¥  Belief x Goal

We formalise the notion of a cooperative intention in the following schema, which 

contains the goal and plan to which the commitment is towards, the identifiers of the agents 

who have the commitment, and a set of conventions (i.e. those given in Table 5.1) defining 

the duration of this commitment. The predicate part of the schema specifies, firstly, that 

the plan must achieve the goal, and each agent in the cooperative intention must have a 

corresponding individual intention towards the execution of the plan. Secondly, if a re- 

evaluation condition of a convention is believed by some agent, then the agent should adopt 

the corresponding goal defined in that convention.
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__Cooperativelntention__________________________________________
goal : Goal 
plan : Plan 
agents : P AgentID 
conventions : P Convention

V id : AgentID \ id G agents •

(3 ag : Agent • ag.agentID — id A goal G ag.goals A 
(3 i : Intention \ i G ag.intentions •

i.plans 1 = plan A i.satisfies =  goal)) V 
(3 ag : Agent • ag.agentID — id A (3 c : Convention \ 

c G conventions • believes ag (first c) =  true A
second c G ag.goals A (3 i : Intention \ i G ag.intentions • 

i.satisfies = second c)))

5.3 Stages in Cooperation

There are a number of stages that occur in cooperation that surround the formation of a 

cooperative intention, which we introduce in this section. Given the Senara reasoning 

cycle described in the previous chapter, cooperation can arise with respect to a particular 

agent for one main reason. When selecting a plan to achieve the most motivated of its goals, 

an agent might be faced with one or more plans that involve joint or concurrent actions, or 

an individual contribution that is beyond its capabilities. If the agent chooses such a plan, it 

must seek assistance from others before that plan can be achieved, and form an appropriate 

cooperative intention. This, however, gives rise to a second reason why an agent might 

enter into cooperation, namely in response to another’s request for assistance. In both cases 

cooperation arises from a particular agent wishing to adopt a plan that contains actions it 

is unable to perform alone — in the first case the agent itself has the plan, while in second 

case it is another agent’s plan that leads to the request for assistance. We arrive, therefore, 

at the following stages of cooperation.

Plan Selection An agent’s motivations give rise to certain goals that must be adopted as in

tentions, by selecting an appropriate plan and forming a commitment to its execution.
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Now, the set of applicable plans for a particular goal may include plans containing 

actions that are beyond the agent’s capabilities, or joint or concurrent actions. We 

refer to such plans as cooperative plans since they can only be executed through co

operation with others. If an agent selects a cooperative plan, it is electing to cooperate 

for the achievement of its goal. Cooperation involves an inherent risk since agents 

may be unreliable, dishonest, or their motivations may change leading them to cease 

to be cooperative, in turn causing plan execution to fail. Therefore, in selecting from 

a set of applicable plans for a goal an agent must consider the risk associated with 

those plans that are cooperative.

Intention Adoption After selecting a plan for its goal an agent must commit to its execu

tion by forming an intention. If the plan does not require assistance from others then 

it can simply be adopted as described in Section 4.8, but if its does require assistance 

the agent must solicit assistance from selected agents towards its execution. Note that 

for clarity we refer to the agent that selects a cooperative plan, and attempts to gain 

assistance for its execution, as the initiating agent, or the initiator. In order to gain 

assistance, the initiator must first determine which agents to request assistance from, 

and this is achieved by iterating through the steps of the plan, annotating each contri

bution with the identifier of the agent that the initiator considers the best to perform 

it, based on knowledge of their capabilities, and their believed honesty, reliability, 

etc. These agents can then be sent a request for assistance, to which they will agree 

if they consider cooperation to be of motivational value. If sufficient agents agree 

the initiator can form a commitment in the form of a cooperative intention amongst 

them.

Group Action Once a group of agents have formed a cooperative intention they can exe

cute it. Execution of a cooperative intention is similar to that of an individual inten

tion — each step of the plan in turn is either performed or elaborated according to 

whether it is an action, or a subgoal respectively. On the successful completion of the 

cooperative intention, the agents concerned dissolve their commitment and coopera
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tion is finished. Alternatively, if execution of the intention fails, the agent that first 

comes to believe this informs the others, and again their commitments are dissolved. 

In both cases agents can update the information they store about others to aid future 

decisions about cooperation. For example, if cooperation failed due to the behaviour 

of a particular agent, the others involved may be more wary of cooperating with that 

agent in future.

These stages are related to Wooldridge and Jennings’ four stage model of cooperation 

which (as described in Section 2.7) contains the stages of: recognition of the potential for 

cooperation, team formation, plan formation, and team action. Their model is relatively 

abstract and, as they recognise, is intended to provide a top-level specification for a system, 

requiring more detail before it can be implemented. Our approach is based on their model, 

and we view it as providing an instantiation for some of the details that were left abstract. 

Wooldridge and Jennings also recognise that although the four stages in their model are pre

sented as being sequential, in practice they may not occur strictly in the order they describe. 

Indeed, this is a significant difference between our model and theirs; in our approach an 

individual agent selects a plan that requires cooperation, and then seeks assistance, while in 

their approach an agent recognises the potential for cooperation, seeks assistance, and then 

the agents as a group form a plan.

This difference arises from our alternative view of the potential for cooperation, which 

in turn is a result of the nature of our agent architecture. They view the potential for coop

eration as being where an agent has a goal that it is unable to achieve in isolation, or has 

a goal that it is able to achieve alone, but does not want to use the resources required to 

achieve it. Alternatively, in our framework the recognition of the potential for cooperation 

is implicit in an agent’s choice of how to achieve its goal — an agent simply selects a plan to 

achieve its goal, and this plan may or may not require cooperation to execute. Therefore, in 

our model an agent seeks assistance after a plan has been selected, rather than before, since 

unless an agent knows how to achieve the goal it cannot consider the nature of cooperation
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that may occur for that goal. We are specifically concerned with why an agent might enter 

into cooperation, in additon to the process of cooperation itself.

5.4 Risk in Cooperation

In interacting with others, an agent places itself open to a certain degree of risk. In par

ticular, there are two main areas through which risk is introduced. Firstly, there is a risk 

that agents will not agree to cooperate for a given goal and plan to achieve it and, secondly, 

there is the risk that even if agents do agree and commit to cooperating, they may not fulfill 

their commitments at execution time.

How then to assess risk in interaction? Fortunately, as recognised by several research

ers, this has a relatively simple solution in the form of trust [13, 23, 37, 65, 67]. The risk of 

whether to cooperate and with whom, may be determined by, among other things, the degree 

of confidence or trust in other agents. Despite the notion of trust being commonplace in our 

everyday interactions, there are few formal definitions. However, it is generally accepted 

that trust implies some form of risk, and that entering into a trusting relationship is choosing 

to take an uncertain path that can lead to either benefit or cost depending on the behaviour 

of others [69].

In this thesis, we view trust as the means through which an agent can approximate the 

risk involved in cooperation, in terms of an estimation of the degree of expectation that 

others will do what they agree to do, i.e. an expectation o f risk. This is a synthetic notion of 

trust since, unlike Deutsch [23] and Luhmann [65], for example, we are not concerned with 

how trust operates in humans, but with how the concept of trust can be used in relation to 

cooperation between artificial agents. We are also primarily concerned with how an agent 

can use the degree of trust it has in another in reasoning about cooperation, rather than how 

an agent determines this degree of trust in the first place.
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5.4.1 Trust

The perceived risk of cooperating with a particular agent is determined by that agent’s 

reliability, honesty, etc., embodied by the notion of trust. Thus an agent can use its trust in 

others as a means of assessing the risk involved in cooperating with them. Describing trust 

in terms of risk allows us to consider the limits of trust more precisely, and to quantify it. 

An agent with a high trust value is more trusted than an agent with a low trust value, and 

represents less risk in terms of cooperation. This suggests an inverse relationship between 

trust and risk.

An agent’s trust of another is dependent on a variety of factors, including the other’s 

believed reliability, honesty, veracity, etc. However, modelling all such potentially relevant 

factors is excessive, and can add to the complexity of the solution, when typically they will 

not be needed. Consequently, we base our model of trust upon Marsh’s formalism [67] 

and the work of Gambetta [37], and define the trust in an agent a, to be a value from 

the interval between 0 and 1: Ta e  [0,1]. The numbers merely represent comparative 

values, and are not meaningful in themselves. Values approaching 0 represent complete 

distrust, and those approaching 1 represent complete, blind trust. In this thesis we are not 

concerned with how an agent should update its trust of others, but Marsh [67] describes a 

possible approach that will suffice, which we introduce below. This representation of trust 

corresponds to Marsh’s notion of general trust. However, Marsh also introduces situational 

trust, where an agent’s trust in another is dependent on the importance of the situation being 

considered. For example, while an agent may trust another to extract product information 

from a database, it might not trust it to determine which product represents the best value for 

money. Although conceptually situational trust is a more powerful mechanism that general 

trust, the computational overhead involved in identifying trust in tasks can be prohibitive, 

and so we do not use it here.

In order for this notion of trust to be useful to an agent, in its decisions about cooper
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ation, it must be able to assess what is an acceptable degree of risk. It is clear that if an 

agent is completely distrusted (and has a trust value approaching zero) then the risk is con

sidered to be high, and cooperation with that agent must typically be avoided1. However, 

some method is needed for determining the point at which an agent is considered sufficient

ly trusted to cooperate with. We address this through the introduction of a minimum trust 

threshold, such that agents trusted under that threshold are considered distrusted, and con

versely, those of or above the threshold are trusted. If an agent is faced with the possibility 

of cooperating with a group of agents, then it can factor into its reasoning about cooperation 

whether or not the members of this group are trusted, as we discuss in the following two 

chapters.

5.4.2 Updating Trust of Others

At the end of a cooperative interaction, each agent involved updates its trust of the others. 

If the cooperative interaction was successful, and the goal achieved, then the trust an agent 

associates with the others involved is likely to increase. Conversely, if the goal was not 

achieved then the interaction was unsuccessful, and trust is likely to decrease. Since it is, 

in part, an agent’s trust of others that determines whether or not it cooperates in a given 

situation, then modifying trust values after each cooperative interaction, ensures that trust 

can be used to assess the risk associated with cooperating with others. For example, if 

an agent « i has a cooperative intention with another, ¿*2, and the interaction fails through 

some action on behalf of a.2 , then a i ’s trust of «2 should decrease, reducing the likelihood 

of further interactions with it. The change in trust after each interaction should be relatively 

small, such that a single failed interaction will not prevent further interactions with an agent, 

but a series of repeated failures will.

Optimism and pessimism are identified by Marsh as two opposing dispositions such 
'An exception to this is if an agent’s goal is sufficiently important to it, that it is better to have tried to 

achieve it, and failed, than to have not tried at all, even if this means cooperating with an agent of negligible 

trust.
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that, in general, optimists trust others more than pessimists. Moreover, after a successful 

interaction with others, optimists increase their trust more than pessimists, and conversely, 

after an unsuccessful interaction, pessimists decrease their trust more than optimists [68]. 

Individual agents lie somewhere in the spectrum of optimism and pessimism, meaning that 

in a given situation different agents will change their trust by different degrees. In Marsh’s 

view the magnitudes of alteration of trust are decided at run-time, and are dependent on a 

variety of factors, such as the existing trust, and cost or benefit of the situation [67, 68]. For 

reasons of simplicity, in our framework the magnitude of change in trust is based solely on 

the current trust and the agent’s optimistic or pessimistic disposition. We view an agent’s 

disposition as represented by two values, trustlncrease and trustDecrease, which determine 

the proportion of current trust level to increase or decrease by respectively. All that we 

require is that an agent has an instantiation of the following functions, which take the current 

trust and a value for trustlncrease or trustDecrease and return the increased or decreased 

trust respectively. On completing a cooperative interaction, an agent should update its trust 

of the other agents involved using the appropriate one of these functions.

increaseTrust : R —>• R —>• M
decreaseTrust: R —> R —> R * V

V trust, trust1, trustlncrease : M • increaseTrust trust trustlncrease =  trust1 =>
trust1 > trust

V trust, trust1, trustDecrease : M • decreaseTrust trust trustDecrease =  trust1 =>
trust1 < trust

5.4.3 Agent Models

In addition to associating a trust value with others, an agent needs knowledge about their 

capabilities if it is to reason about cooperation effectively. For example, if an agent is trust

ed, it does not mean that it is capable of performing a particular task on behalf of another. 

Durfee [28] notes that in order to cooperate effectively an agent needs to know certain 

information about others, about themselves, about how they view others and are viewed 

themselves, and so on. However, since an agent’s reasoning is resource bounded, if taken to
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Agent id: a .

Capabilities: pickup(b), putdown(b), 
liftend(b), move(dir)

Trust: 0.6

Agent id: cc2

Capabilities: pickup(b), putdown(b), 
liftend(b), move(dir)

Trust: 0.3

Figure 5.1: Example agent models

an extreme, the amount of knowledge an agent possesses to facilitate its cooperation might 

overwhelm its limited reasoning capabilities. Thus, agents need just enough knowledge 

to coordinate well and no more, since any additional knowledge may simply hinder the 

reasoning process of the agent.

In our framework we require an agent to have a model of each other agent with which 

it may interact, containing its knowledge of the other’s capabilities and the degree to which 

it is trusted. These agent models form part of the agent’s wider knowledge base, or beliefs. 

The conceptual form such models may take in an agent’s knowledge base is shown in Fig

ure 5.1, which represents an agent’s models of two others, a \ and (*2. For each agent, the 

model contains a set of capabilities, and the degree of trust in that agent.

We formalise the notion of an agent model below, such that a model of a particular 

agent contains a set of contributions that it is believed capable of performing, and a trust 

value representing its perceived trustworthiness.

__AgentModel___________________________________________________
i d : AgentID
capabilities : P Contribution 
trust: M

In the remainder of this thesis, we frequently need to refer to the trust of a given agent. 

Therefore, we define the following function trustOfAgent which takes an agent identifier, 

and a set of agent models, and extracts the trust value associated with that agent.
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trustOfAgent : AgentID —> IP AgentModel -* R

V agID : AgentID; ms : T AgentModel; r : R •
trustOfAgent agID ro  =  r  r  > () A r  <  1 A
(3: w : AgentModel \ m e ms • m.id =  og/D A m.trust = r)

5.5 Overview of the Warehouse Domain

Now, in order to proceed with our analysis of the details of cooperation, we need a domain 

for illustration, implementation, and experimentation. Rather than invent a new scenario 

we adopt a variation on Norman’s Warehouse Domain [75], which we consider to be suffi

ciently complex and dynamic to be useful, while being simple enough to discuss easily. In 

the remainder of this thesis, we illustrate our discussions by considering agents situated in 

an example warehouse domain, which we introduce in this section. The warehouse has four 

areas: a delivery area, a standard storage area, a long term storage area, and a waste dis

posal area, such that boxes arrive in the delivery area and must then be moved to one of the 

storage areas (or rooms), which for simplicity are arranged linearly as shown in Figure 5.2. 

For an agent to move from the delivery area (rooml) to the long term storage area (room3) 

it must, therefore, move through the standard storage area (room2). There is also a charge 

area (in rooml), where agents can recharge their power, which decreases over time as they 

perform actions.

There are two types of box, urgent and non-urgent, which must be stored in the standard 

and long term storage areas respectively. Additionally, these boxes may be of different 

sizes, small and large, the former of which all agents can lift, while the latter can only be 

moved by particular agents, or by a group of agents though cooperation. Boxes leave the 

warehouse via the delivery area, and cannot be stored indefinitely — each box arriving in 

the warehouse is associated with some expiry time, and if it is not removed by that time 

then it must be moved to the waste disposal area.

The warehouse scenario is a complex domain, and so for reasons of simplicity in our
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room 1 room 2 room 3 room 4

delivery area
charge area standard storage long term storage waste disposal

deliveries in 
and boxes out

Figure 5.2: The warehouse environment

discussions of example situations, we consider a small group of four agents, each of which 

are given the same three motivations. The first of these, called tidiness, causes an agent 

to generate the goal of storing a particular box, and is triggered by a box being perceived in 

the delivery area. A vitality motivation generates in an agent the goal of recharging its 

power level, and is triggered by the power level dropping below some threshold. Finally, a 

maintenance motivation generates the goal of checking that boxes are correctly stored and 

have not been stored after their expiry time, and is triggered by an agent being idle.

Agents associate trust values with the others in their environment, enabling them to 

assess the risk of cooperating with a particular agent. These trust values are built up over 

time and change as a result of interactions with others, and come to represent the nature 

of others with a useful degree of accuracy. We provide initial values for an agent’s trust of 

others, corresponding to those that might be arrived at through prior interactions, as given in 

the following matrix, where each row gives a particular agent’s trust of others (for example 

agentl  associates a trust value of 0.49 with agent2).

agenti agent2 agent3 agent4
agenti 0.49 0.52 0.55
agent2 0.82 0.13 0.6
agent3 0.78 0.53 0.67
agent4 0.96 0.5 0.2
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Agents are able to perform certain actions in the warehouse, in particular they are able 

to move around, pick up and put down boxes, and check that boxes are stored correctly. 

There are three types of lifting action: pickup which operates on small boxes, liftend 

which lifts one end of a large box, and pickupBiG which operates on large boxes. All 

agents are capable of performing these actions, with the exception of the pickupBiG action, 

which can only be performed by a specific agent, agent 3.

For an agent to be able to achieve a goal, it requires a plan specifying the actions that are 

needed for its achievement. In Senara, an agent is given a library of plans from which to 

select the most appropriate for a particular goal, rather than planning from first principles. 

Agents in the warehouse scenario must be able to move around their environment, store 

boxes that are delivered, check boxes are correctly stored, move boxes to the waste disposal 

area, and recharge their power levels when required, and we provide agents with a plan 

library to achieve this. Full details of these plans can be found in Appendix B.

In order to ensure the practicality of the work described in this thesis, and to demon

strate it, a Senara testbed has been developed, based on the warehouse domain described 

above. The objective in constructing the testbed is to demonstrate the concepts presented in 

this work, and allow simple experimentation, rather than to develop a sophisticated finished 

product. Though we have performed a number of experiments using the testbed, and results 

of these support our later discussions of the framework, we do not wish to complicate the 

presentation of the concepts discussed in this thesis by introducing implementation level 

details. More details of the implementation can be found in Appendix B.

5.6 Summary

This chapter began by introducing the need for a group of cooperating agents to have an 

appropriate form of commitment to their interaction, which we call a cooperative intention. 

We presented a set of conventions that, along with appropriate commitments, form such
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a cooperative intention and allow a group of agents to cooperate effectively. This was 

achieved by modifying the conventions defined by Wooldridge and Jennings to ensure that 

cooperation is motivated on behalf of each agent involved.

In Section 5.3 we identified the stages that are involved in motivated cooperation, and 

in doing so we provide the context for the following chapters. Where an agent cooperates 

with others, it places itself open to a certain degree of risk, and in Section 5.4 we discussed 

this risk, and described the notion of trust that can be used by an agent to assess it. Finally, 

in Section 5.5 we described the example scenario that we use for illustration throughout the 

remainder of this thesis.
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Chapter 6

Plan Selection

6.1 Introduction

The first of the stages in our framework of motivated cooperation is plan selection; to 

achieve its goals an agent must select appropriate plans for them, and then adopt these plans 

as intentions. An agent selects a plan for a particular goal by determining the set of appli

cable plans — those plans that achieve the goal, whose preconditions are met — and then 

choosing the best one. Some decision mechanism is needed, therefore, for selecting a single 

plan from a set of applicable plans. Existing BDI architectures also require agents to select 

appropriate plans for their goals, and so include some means for plan selection. However, 

they are typically focussed on what might be called standard task planning and execution 

for individual agents, rather than for agents situated in a cooperative environment, and so 

do not consider the issues arising from cooperation. In particular, the questions of when to 

cooperate, with whom, and how, are not addressed. In this chapter we propose a method for 

plan selection that accounts for why an agent might choose to achieve such a goal through 

cooperation, even if it has an alternative plan it could perform alone.

In a cooperative environment, an agent’s plans can contain individual, joint, and con

current actions and as a consequence may require assistance from others for their execution.
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An agent can use its beliefs about others to determine the set of agents from whom assis

tance may be required for a given plan and, moreover, can use its trust of them to aid its 

choice of plan. We begin in this chapter by describing the problem of plan selection, and 

examining the relevant factors that may be used in multi-agent domains, and then proceed 

to develop a detailed model of plan selection.

We begin this chapter by discussing the problems associated with plan selection, and 

the criteria that can be used to choose between plans. In Section 6.4 we describe our ap

proach to plan selection and give details of how an agent can assess a plan in terms of its 

associated risk and cost. The the implications of partial plans on plan selection are dis

cussed in Section 6.5. Finally, we conclude this chapter by giving an example from the 

warehouse domain, and discussing the contributions and limitations of our approach.

6.2 Cooperative Plan Selection

In the BDI model expounded by Bratman, and correspondingly in Senara, an agent’s 

actions are determined by its intentions. When an agent forms an intention to achieve a 

given goal, it does so by committing to a plan to achieve it. However, for any particular 

goal there may be several plans to achieve it that are applicable in the current situation, 

since their preconditions are satisfied. Some of these plans may contain actions that are 

beyond the agent’s capabilities (or may contain joint or concurrent actions) and, if chosen, 

will require assistance from another agent for their execution.

Thus, an agent’s choice of plan determines whether it must cooperate to achieve its 

goal. If all the applicable plans for a goal contain actions that cannot be performed by the 

agent alone, cooperation is necessary, otherwise it is optional. If choosing to cooperate in 

this latter case, there must be some inherent advantage to the cooperation, for example by 

minimising effort, since the goal can also be achieved by the agent alone.

To formalise this distinction we use the auxiliary function plancontributions (specified
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in Appendix A), which retrieves all the contributions that are in the current (potentially 

partial) elaboration of a plan. Necessary cooperation is defined with respect to a goal and 

an agent in the following function, which returns true if cooperation is necessary, and false 

otherwise. For a given goal, if all plans in the plan library that achieve it contain one or 

more contributions that are beyond the agent’s capabilities then cooperation is considered 

necessary.

nesscooperates : Agent —> Goal —» bool

V ag : Agent; g : Goal \ g  G ag.goals • nesscooperates agg = true
(y p  : Plan \ p  G agplanLibrary • p. achieves = g  A 

(plancontributions p  \  ag.capabilities) /  0 )

Optional cooperation is defined in a similar manner, again using a function that takes 

an agent and a goal as arguments, and returns true if cooperation is optional, and false 

otherwise. Cooperation is considered to be optional if, from the set of plans in the plan 

library that achieve the goal, there is at least one plan whose component contributions can 

be performed by the agent, and one other that contains a contribution that is beyond the 

agent’s capabilities.

optcooperates : Agent —> Goal -» bool V

V ag : Agent; g : Goal \ g  G ag.goals • optcooperates ag g = true
^  (3 p ,q  : Plan | p  G ag.planLibrary A q G ag.planLibrary • 

p.achieves = g  A q.achieves = g  A
(plancontributions p  \  ag.capabilities ^  0 ) A 

(plancontributions q \  ag.capabilities =  0))

In existing work, several researchers have considered the situation where cooperation 

is necessary. However, the issues involved in determining why an agent might choose to 

cooperate when it is optional, have largely been unaddressed. One exception is Wooldridge 

and Jennings’ [102, 104] formalisation of cooperative problem-solving introduced in Sec

tion 2.7, which begins with an agent recognising the potential for cooperation. In their 

formalisation, the potential for cooperation is said to exist with respect to an agent’s goal if 

there is some group known to it that is believed can achieve the goal through cooperation,
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and either

• the agent cannot achieve its goal alone, or

• it believes that for every action it could perform to achieve the goal, it has an addi

tional goal of not performing it.

Wooldridge and Jennings recognise that this definition is overly strong, since it requires 

an agent to know the identity of the group it believes can achieve its goal. This rules out 

the situation where an agent attempts to find out the identity of a group by performing 

some action, and does not know their identity until after performing that action. However, 

in our view there is a second reason why this definition is too strong, namely that it does 

not allow for a situation of optional cooperation, where an agent has a choice between two 

or more ways of achieving its goal, and based on its preferences selects the one requiring 

cooperation, rather than achieving its goal alone.

6.3 Plan Selection Criteria

The problem of plan selection amounts to choosing the best plan — the plan that is most 

likely to be successful, with least cost in terms of time and resources, and the least risk. 

(While in some circumstances, such as gambling, the influence of these factors may be 

contradictory, requiring an agent to make a trade-off between the two, we assume that in 

general an agent’s high-level desires are likely to be such as to attempt to minimise both 

the risk and the cost of its actions.) When the plans involved do not involve other agents, 

standard plan selection criteria, or planning heuristics, can be used to assess cost. However, 

when one or more of the agent’s plans do involve others, an element of risk is introduced 

by the inherent uncertainty of interaction. A consequence of autonomy is that agents follow 

their own individual agendas, as determined by their motivations, and therefore whether 

a particular agent is cooperative or not is a direct function of its motivations. Thus, if an 

agent’s motivations change during a cooperative interaction, the reason for its cooperation
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may be removed, and it may drop its involvement in cooperation in favour of some other 

activity. In addition to a measure of the cost of a plan, therefore, we need to be able to assess 

the likelihood of finding an agent (or agents) for actions that are required for successful plan 

execution; the likelihood that once such agents are identified they will agree to cooperate; 

and the likelihood that once a commitment has been given, the agents concerned will fulfill 

their commitments.

We identify four primary factors relevant in comparing plans in respect of risk: knowl

edge of other’s capabilities, risk from others, knowledge of view of self, and knowledge of 

other’s preferences. Certainly, risk may be introduced for any number of other reasons, but 

these are the key domain-independent general issues.

Agent Capabilities Knowledge of others’ capabilities helps to determine which agents 

might perform the required actions. If many agents are known to have the target 

capabilities, then successful execution of the plan is more likely than if fewer or no 

agents do so. However, in line with the motivating concerns of dynamic environ

ments and uncertain and incomplete knowledge, we cannot assume that an agent’s 

knowledge of others faithfully represents them, and success at execution time may be 

possible even if it is not anticipated at evaluation time, just as failure is also possible. 

In general, though, we assume that there is sufficient stability for this to be useful in 

assessing plans prior to execution.

Risk from Others Once potential cooperating agents are identified, they may be evaluated 

in terms of the risk involved in interacting with them. Plans involving agents with 

whom interaction is more likely to be successful, should be rated higher than those 

involving interactions less likely to be successful.

Risk from View of Self Knowledge of the view of oneself in the eyes of others, in terms of 

risk of interaction, may also be useful in assessing plans. It can provide a measure of 

the likelihood that another agent will agree to cooperate, since an agent is more likely 

to cooperate with another if it has confidence in the success of that interaction. Thus,
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the agents identified in competing plans can be evaluated in respect of their view of 

the risk involved in cooperating with the planning agent. It is, however, difficult to 

maintain an assessment of how one is viewed by others.

Agent Preferences It might also be possible to assess plans in relation to the higher-level 

motivations of the agents involved in them, and whether cooperation would be likely. 

This would require a detailed model of the motivations and goals of other agents, 

however, which is unlikely to be accurate.

6.4 A Model of Cooperative Plan Selection

6.4.1 Plan Ratings

The problem of plan-selection is essentially the same as that of finding effective heuristics 

for plan construction. In that sense, we can apply standard domain-independent heuristics 

for evaluating plans which perform a valuable, if limited, service. These heuristics include, 

for example, the length of a plan as the number of its actions, the cost based on the cost 

of the actions it contains, and the duration of plan execution based on the duration of in

dividual actions. We will not consider this further in the development of our framework 

for cooperation, since these issues are well addressed by textbooks (for example [86]), but 

suffice it to state that any such heuristics may be used to arrive at an assessment of a plan in 

terms of its standard rating. The heuristics used by a particular agent are embodied in its 

implementation of the function sRating, which takes a plan and returns the standard rating 

of that plan.

! sRating : Plan -> R

This evaluation of a plan does not, however, address our key concerns of assessing 

plans in relation to the dynamic multi-agent nature of the environment. If one or more of 

the plans available to an agent requires interaction with another the standard rating is inad
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equate, because this interaction introduces an element of risk. A second rating is therefore 

necessary in these terms, which we call the cooperative rating.

6.4.2 Assessing Contributions

In assessing the merit of a plan (i.e. determining the cooperative rating), an agent must 

make a judgement about the risk attached to each action in the plan requiring cooperation, 

by examining the trust value in its model of each of the possible cooperating agents. Be

fore describing how to assess the risk involved in a selecting a particular plan, we describe 

how an agent can assess the risk attached to actions, starting with an individual action, or 

contribution. Suppose that an agent knows of« others, a i ,  a ^, . . . ,  an, with the required ca

pabilities for performing a given contribution, and ordered such that Tax- \  > Tax, where 

Tax denotes the trust in ax. Several possibilities for assessing the risk involved in cooper

ating with others are discussed below.

We might only consider trust in the most trusted agent involved so that the risk of a 

particular contribution would be as follows. 
riskC =

Though simple, the problem with this approach is that the most trusted agent might 

not be the actual agent involved in the cooperative action, for any number of reasons. In 

particular, the autonomous nature of agents underlying this framework suggests that it is 

impossible to determine the behaviour of another agent in advance. As a consequence, 

cooperation with less trusted others may be needed, and this must be factored into the 

measure of risk. Alternatively, then, we might consider a second method in which the 

additive total of trust in all agents in the set of potential agents for the action, is considered. 

riskC =  -jp-i—

E Ta‘
i =  1

This avoids the problem of only considering the most trusted agent, and considers all 

agents to an equal extent, but does not address the decreased likelihood of cooperation with
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less trusted agents. An agent will first try to cooperate with a \ and, if unsuccessful, will 

then try «2, and so on, but for each successive agent, the likelihood of actually cooperating 

with it decreases (since it will only be asked if all preceding agents have declined). To 

address this, we can adjust the formula to increase the significance of more trusted agents, 

by dividing the trust of successive agents by a correspondingly increasing factor.

riskC =  -jj—i----
Tat

i

To specify this final method of assessing the risk associated with a contribution we use 

the functions orderedCapableAgents, orderedTrust, scaleTrustSeq, and sumSeq (defined in 

Appendix A). The former of these takes a contribution and a set of agent models and 

returns a sequence of agents capable of performing that contribution, ordered according 

to their trust. This sequence of agents forms the argument to orderedTrust, which returns 

the corresponding sequence of trust values. The function scaleTrustSeq takes such a list 

of values, and scales them according to their position in the sequence (i.e. the j’th value is 

divided by i), while the remaining function sums the resulting list of values. Combining 

these auxiliary functions as follows, in riskC, we specify how to determine the risk associ

ated with a contribution, namely, by obtaining an ordered sequence of values corresponding 

to the trust of the agents capable of performing it, and scaling and summing this sequence 

appropriately.

riskC : Contribution -> P AgentModel —> R

Vc : Contribution; ms : F AgentModel; r : R • riskC cms = r 
<=> 1 /sumSeq (scaleTrustSeq (orderedTrust ( 

orderedCapableAgents c ms) ms)) = r

Thus, trust in all relevant agents is considered, but only in relation to the likelihood of 

cooperation with them. Consider an action for which there are three agents that have the 

required capabilities a i ,  0:2, and <23, which have associated trust values of 0.3, 0.9, and

0.5 respectively. Thus, using the above method of assessing risk, these agents are ordered
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a 2 , a 3 and a\ according to the degree they are trusted. The risk associated with action, 

according to the above equation, is l/( (0 .9 /l)  +  (0.5/2) +  (0.3/3)) =  0.8.

6.4.3 Assessing Joint Actions

We can extend this strategy for assessing the risk involved in a particular contribution to 

apply to joint and concurrent actions. For joint actions, we simply replace the agents and 

trust of agents in the equation with sets of agents that are capable of performing the action, 

and the trust of these sets of agents respectively. A set of agents is capable of performing 

a joint action if for each contribution there is exactly one agent capable of performing it, 

no agent in the set is required to perform more than one contribution at a given time, and 

each agent is required to perform the action. In other words, suppose that for a given action 

there are several sets of agents that are capable of performing it, then, in calculating the 

risk we would obtain the trust value for each set, and use these in the equation given above 

for assessing the risk associated with a contribution. The trust value of a set is determined 

by multiplying the trust values of the member agents. Thus, for a set containing n agents, 

a i ,  i*2) • • •, Oin, the trust of that set is given by the following equation.
n

trustSet = J J  Tc*i 
(=l

In specifying how to assess the risk associated with a joint action, we make use of 

the auxiliary functions orderedCapableAgentSets and orderedTrustSet, which we define in 

Appendix A. The former of these takes a joint action and a set of agent models, and returns 

a sequence of sets of agent identifiers (ordered by trust), such that each set has the required 

capabilities to perform the joint action, while the latter takes this sequence and obtains a 

sequence of values, where each value represents the combined trust in the set of agents in 

the corresponding position in the sequence of capable agent sets. We specify how to assess 

the risk associated with a joint action by using these functions to find the set of sets of agents 

that are capable of performing the joint action, ordering these sets according to the trust of
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the agents contained in them, and finally dividing successive trust values by an increasing 

factor.

riskJA : P Contribution —> P AgentModel —> R

V cs : P Contribution; ms : ¥  AgentModel-, r : R • riskJA cs ms = r
1 /sumSeq (scaleTrustSeq (orderedTrustSet 

(orderedCapableAgentSets cs ms) ms)) =  r

6.4.4 Assessing Concurrent Actions

The approach for concurrent actions is an extension of that for joint actions since, instead 

of a set of contributions, a concurrent action comprises a set of sequences of steps, each 

to be performed concurrently with the others. A set of agents capable of performing each 

of the concurrent sequences of steps can be determined by combining the sets of agents 

capable of performing the actions in each sequence. The set of agents capable of performing 

the concurrent action can then be determined, using the assumption that an agent cannot 

perform more than one action simultaneously, and cannot typically not appear in more than 

one sequence of steps. Thus, in assessing a concurrent action, each sequence of steps is 

analogous to an individual contribution in a joint action.

Since a concurrent action contains a set of individual contributions or joint actions, 

we can use the above approach to assess the risk in these components, as specified below 

in riskCAcomponent. We can then multiply these values for each component of a given 

concurrent action to obtain an estimate of the risk associated with the concurrent action 

itself.

riskCAcomponent: CAcomponent —> ¥  AgentModel -> R V

V comp : CAcomponent; ms : ¥  AgentModel; r : R •
riskCAcomponent comp ms = r (3 c : Contribution • 

comp =  Contrib c A r =  riskC c ms) V
(3 cs : P Contribution • comp =  JA cs A r = riskJA cs ms)
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riskCA : P CAcomponent -y  P AgentModel —> R

V comps : P CAcomponent] ms : P AgentModel, •
riskCA comps ms — productSet{ca : CAcomponent-, r : R 

ca £ comps A r  =  riskCAcomponent ca ms • r}

6.4.5 Cooperative Rating of a Plan

Using these measures of risk of actions, we can determine the cooperative rating of a plan 

by summing the risk associated with each step in it. This risk is additive because each step 

offers a new and independent possibility of risk. Thus, a plan with few high risk steps may 

be rated better (or less risky) than a plan with many low risk steps. For a plan with m steps, 

p s i, ps2 , . . . ,  psm, the cooperative rating, C, for that plan is given by the following equation, 

where Rps is the risk associated with the step ps.
m

C = Y ,R p S i
1=1

The risk for a given plan step can be determined by simply applying the appropriate risk 

assessment function, according to whether the step represents an individual contribution, a 

joint action, or a concurrent action. Based upon this, the risk for a plan is simply the sum of 

the risk associated with the steps in it. We specify this below, where riskPlanStep applies 

the corresponding assessment function to a plan step, and cRating takes a plan and applies 

riskPlanStep to each of the steps in its body, summing the results.

riskPlanStep : PlanStep —» P AgentModel —> R
Jps  : PlanStep; ms : P AgentModel-, r : R • riskPlanStep ps ms = r 

(3 c : Contribution • ps = Individual c A r  =  riskC c ms) V
(3 cs : P Contribution • ps =  Joint cs A r = riskJA cs ms) V 

(3 cacs : P CAcomponent • ps = Concurrent cacs A r — 
riskCA cacs ms)

cRating : Plan —> P AgentModel -» R
J p  : Plan; ps : seq PlanStep-, ms : P AgentModel-, r : R •

cRatingp ms = r ps = p.body A (3 ratings : P R • ratings =
{r1 : R | (3 s : PlanStep \ s £ ran p.body • R —

riskPlanStep s ms) • r1} A r = sumSet ratings)
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6.4.6 Plan Quality

Once both the standard and cooperative ratings of a plan have been determined, they must 

be combined to form an overall measure of plan quality to select between alternative ap

plicable plans. It would not be sensible simply to add the two values together, since one 

measures the cost of the plan, and the other the risk involved in it, and the relative impor

tance of these may vary for each agent. We therefore include a weighting for these ratings 

for a particular agent in the overall quality measure, Q, as follows, where w* and wc rep

resent the influence weighting applied to the standard rating, S, and cooperative rating, C, 

respectively.

Q =  (w.s * S) + (wc * C)

This is specified in the following function, which takes a plan, a set of agent models, 

and weightings for the standard and cooperative ratings, and returns the overall quality of 

the plan, as defined by the above equation.

quality : Plan -» P AgentModel —> M —> R -> R

'ip  : Plan; ms : P AgentModel-, ws,w c,r  : R •
quality p  ms ws wc =  r r — (sRating p) * w* +  (cRating p  ms) * wc

Different agents may use different weightings, the values used reflecting, in part, an 

agent’s predisposition, since agents that place greater importance on the standard rating 

are inclined to minimise the cost of achieving their goals, whether or not this requires 

cooperation. Conversely, agents that place most importance on the cooperative rating are 

predisposed to minimising the risk involved in cooperating with others, even if this increases 

the cost involved in achieving their goals. Thus, agents that place more importance on 

the standard rating are more inclined to take risks associated with cooperation in order to 

minimise the cost of their plans, when compared to agents that place more importance on 

the cooperative rating. The values of the weighting that provide the best selection of plans 

depends on an agent’s environment.
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6.5 Pre-Execution Plan Assessment

A result of the partial nature of an agent’s plans is that the set of applicable plans for a 

goal are also partial, and may require further elaboration before they can be fully executed. 

Moreover, if a plan contains a subgoal and requires elaboration, then the set of actions 

that it will eventually contain are not known until it is actually elaborated (since it is not 

known which subplans will be chosen). Therefore, the cooperative rating of a partial plan 

cannot be directly assessed as described above, since it is not known what contributions 

will be required to achieve any subgoals it contains. A naive solution to assessing a partial 

plan would thus be to require an agent to fully elaborate each of its applicable plans in 

order to choose between them. While this would indeed allow direct use of the criteria 

described above, it also requires a premature commitment to a particular plan. Such a 

requirement would negate the benefit of using partial plans in the possibility of interleaving 

execution and deliberation to cope with the environmental change that is typical of multi

agent scenarios. More importantly, it demands a search through the entire tree of plans 

so that the quality of each possible path solution can be measured. This is prohibitively 

expensive to be performed in real-time.

If we are to avoid constructing the entire search tree at the time of plan selection, we 

must be able to make a choice based on a limited number of alternatives, such as the top- 

level applicable plans. An informed choice at this level is only possible, however, if we 

have some measure of the value of plans in terms of the standard and cooperative ratings, 

but clearly, this is not possible to do on the fly. Instead, we perform an off-line pre-execution 

assessment of the plan library in which all of the plans in it are evaluated in a coarse fashion 

with respect to the agents required for successful execution. This approach represents a 

compromise between the desire to minimise the computational overhead and that of max

imising the quality of any measure of the value of a plan.

Starting with the plans that require no further elaboration, since these are the only ones 

which can be directly evaluated, the standard and cooperative ratings are determined. These
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ratings must then be fed back into the other plans as values for subgoals within them. For 

each plan containing actions that cannot be performed by the planning agent, the set of all 

agents known to have the relevant capability is generated through inspection of its agent 

models, so that these ratings can be calculated as described earlier.

There are two possible approaches to incorporating these values for fully elaborated 

plans into the larger partial plans of which they might form subplans. Firstly, these values 

can be used in subsequent levels in the library for which the plans best satisfy subgoals, and 

so on until each plan has an overall quality measure. This quality measure is an assessment 

of the best-case solution. An alternative approach is to take into account all possible elabo

rations and calculate a mean rating for competing plans, so that there is less reliance on one 

individual plan that may not be applicable at execution time. This provides a less sensitive 

measure, but one which is more likely to be useful in a dynamic environment, since it does 

not rely on a single plan elaboration, but rather on all possible elaborations of the agent’s 

plans. In the development of a framework for cooperation, we therefore require that an 

agent has an appropriate implementation of the functions for obtaining the best-case and 

mean-case ratings of plans.

For the purposes of specification we introduce a number of auxiliary functions: plansub- 

goals, possibleSubplans, possibleSubplansRatings, minRating, and meanRating (specified 

in Appendix A). The first of these, simply returns the subgoals that are contained within 

a plan. Each subgoal in a plan may typically be elaborated by a number of other plans, 

and the function possibleSubplans retrieves the possible subplans for a given subgoal in a 

particular plan, and checks that these plans are not recursive (for reasons described later in 

this section). The function possibleSubplansRatings takes a set of possible subplans, and 

returns a set of values corresponding to the plan ratings of those subplans. Finally, the func

tions minRating and meanRating take this set of ratings and return the minimum and mean 

values respectively.

Using these auxiliary functions we can specify how to obtain the best-case and mean
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ratings of a plan. In both cases, if there are no subplans, then the rating is simply equal 

to the rating afforded by the plan steps contained in the plan. However, if the plan does 

contain subgoals then the best-case rating, bcRating, is obtained by adding the best rating 

(i.e. the one with the least numerical value) for each subgoal to the rating given by the plan 

steps. The mean rating, mcRating is defined similarly (and specified in Appendix A).

bcRrating : Plan —> F Plan -» P AgentModel -> R —> R -» R

Mp : Plan; pLib : P Plan] ms : P AgentModel; Wj, wc, r : R • 
plansubgoals p  = 0  bcRating p  pLib ms ws wc =

Quality p  ms vy* wc
Vp : Plan; pLib : P Plan\ ms : P AgentModel-, ws,wc,r  : R • 

plansubgoals p  ^  0  bcRating p  pLib ms Wy wc =
Quality p  ms w* wc +  sumSet ( r  : R; g : Goal \ 

g  € plansubgoals p  A r =  minRating (
possibleSubplansRatings(possibleSubplans g p  pLib) 

ms ws wc) • r)

6.5.1 Best-case and Mean-case Advantage

The balance between the best-case and mean ratings amounts to a trade-off between an 

agent trying to find the best final plan and minimising the chance of the final plan being 

poor due to environmental change (in terms of these ratings). These best-case and mean 

ratings for agent plans will need periodic reassessment as the agent’s knowledge of other’s 

capabilities (and its trust in them) changes.

The best-case advantage (BCA) of one plan over other applicable plans is the advantage 

of that plan over others if its final elaboration has the best quality rating. Thus, for two 

applicable plans, p  and q, with best-case ratings of Qb(p) and Qb(q) respectively the BCA 

is equal to the difference between the quality rating for p  and that for q, as follows.

I Qbip) ~ Qb{q) |

If there are more than two applicable plans, as is typical, then the BCA is equal to the 

difference between the minimum and maximum best-case ratings. Thus with applicable 

plans p ,q , . . . , z  the BCA is determined by the following equation.
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bca = max{Qb(p), Qb( g ) , Q b{z) }  -  min{Qb(p), Qb{q) , . . . ,  Qb(z)}

To specify this we use the functions maxRating and minRating (defined in Appendix A), 

which take a set of ratings and return the least and greatest values respectively. From 

the maximum and minimum ratings the best-case advantage can be determined as defined 

above.

bca : ¥ Plan —> IP Plan -> P AgentModel -» R —>• R —> R

Vps,pLib : P Plan-, ms : P AgentModel; rs : PM; ws,wc,r  : R • 
bca ps pLib ms ws wc = r

rs =  {V : R | (3p :  Plan | p  £ ps • r1 = 
bcRatingppLib ms ws wc)} A

r = maxRating rs — minRating rs

The mean-case advantage (MCA) of one plan over other applicable plans is the typical 

(or mean) extra advantage. This is a general case measure that incorporates more informa

tion, since it takes into account all possible elaborations of the applicable plans. With mean 

ratings forp  and q of Qm(p) and Qm(q), the MCA is equal to | Qm{p) -  Qm(q) |. As above, 

if there are more than two applicable plans, the MCA is equal to the difference between the 

minimum and maximum mean ratings. Thus with plans p ,q , . . . , z  the MCA is as follows, 

and can be specified similarly to the BCA (as defined in Appendix A).

mca = max{Qm(p), Qm( q ) , Q m(z)} -  min{Qm(p), Qm( q ) , Q m(z)}

6.5.2 Recursion

A problem arises with this approach when a plan is recursive, or a set of plans are mutually 

recursive, since it is not possible to obtain a rating for a subplan to feed into a higher level 

plan with respect to which it is recursive. The only solution to this is to use domain specific 

knowledge about the typical application of the plans, to estimate the limit of the recursion. 

Despite the recursion, a partial rating can be obtained for the plan in terms of the cost and 

risk of the actions it contains. We can then use the domain knowledge to estimate the limit

134



of the recursion, i.e. the number of times the plan will executed, and we call this a recursive 

multiplier for the plan. The partial rating of the plan is multiplied by this value to obtain 

an estimated rating, since the plan is estimated to be used that number of times. Thus, if a 

particular recursive plan is on average called five times before the recursion terminates, then 

we would multiply the rating obtained from the actions in the plan and the non-recursive 

subgoals by five to estimate a cooperative rating for that plan.

To formalise this we use the function existsRecursiveElaboration (specified in Ap

pendix A) which takes a plan and a library of plans and returns true if the plan can be 

elaborated recursively (i.e. using itself), and false otherwise. We use this to specify the 

function scaleForRecursion, which multiplies the rating of a plan by a recursive multiplier 

if a recursive elaboration exists for that plan.

scaleForRecursion : Plan —> F Plan -> FAgentModel -» R -> R -» R —»• R

Vp  : Plan; pLib : P Plan; ms : FAgentModel; ws,wc,r,m  : R • 
existsRecursiveElaboration p  pLib = false

<=> scaleForRecursion p  pLib ms ws wc m —
BCrating p  pLib ms Wy wc A 

existsRecursiveElaboration p pLib — true
<=> scaleForRecursion p  pLib ms ws wc m =

BCrating p  pLib ms ws wc *m

6.5.3 Selecting Between Partial Plans

There is a trade-off between maximising the best-case and mean-case advantage. If the 

best-case advantage of a plan, p, over another, q, outweighs the mean-case advantage of q 

over p, then p  should be selected; similarly if the mean-case advantage of q over p  is greater 

than the best-case advantage ofp  over q, then q should be selected.

More generally, the advantage should be maximised, regardless of whether it is best- 

case or mean-case. If BCA > MCA then the best-case rating should be used to select plan 

x, such that Qb(x) <Qb(p) A Qb(x) <Qb{q) A . . .  A Qb(x) < Qb{z). Alternatively, if 

MCA > BCA then the mean-case rating of the applicable plans should be used.
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The following function, useBCA, formalises this and specifies the conditions under 

which the best-case ratings should be used to select a plan (i.e. whenever they offer the 

greater advantage). The conditions under which the mean-case ratings should be used can 

be defined similarly (as specified in Appendix A).

useBCA : ¥  Plan —> ¥  Plan -> P AgentModel —>• R -> R -> bool

Vps,pLib : F Plan] ms : ¥  AgentModel] ws,wc : R • 
useBCA ps pLib ms vv5 wc =  true

BCA ps pLib ms ws wc > MCA ps pLib ms ws wc A 
useBCA ps pLib ms ws wc =  false

<3- BCA ps pLib ms w* wc < MCA ps pLib ms ws wc

Once the mean-case and best-case advantages have been considered a plan can be cho

sen using that criterion. We define a functions selectByBCA which selects the plan with 

the best (i.e. least numerical) rating using the best-case rating. An analogous function, 

selectByMCA, can be defined similarly (as specified in Appendix A). Using these functions, 

we also define selectBestPlan, that takes a set of applicable plans and returns the best one, 

using either the best-case or mean-case rating as appropriate.

selectByBCA : F Plan -* F Plan —> F AgentModel —» R —> R —> Plan

Vps,pLib : P Plan] ms : P AgentModel] w,, wc : R; chosen : Plan • 
selectByBCA ps pLib ms wc = chosen

<=> (V// : Plan \p ' e p s  • BCrating chosen pLib ms ws wc >
BCrating p' pLib ms w* wc)

selectBestPlan : P Plan —> P Plan —> P AgentModel —> R —* R —> Plan

Vps,pLib : F Plan] ms : P AgentModel] ws,wc : R; chosen : Plan • 
selectBestPlan ps pLib ms ws wc = chosen 

(useBCA ps pLib ms w, wc -- true A
chosen = selectByBCA ps pLib ms vy* wc) V 

( useMCA ps pLib ms Wy wc = true A
chosen = selectByMCA ps pLib ms ws wc)

The plan selection mechanism described in this chapter provides an instantiation of the 

function planForGoal introduced in Section 4.8.1. To select the best plan for a given goal,
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the agent must first determine the set of applicable plans, using the function planSetForGoal 

(again introduced in Section 4.8.1). A plan can then be selected from this set using the 

function selectBestPlan described above.

planForGoal: P Belief —> ¥  Intention -> P Plan —» Goal -+» Plan

V b e l: ¥  Belief] I : F Intention; plib : P Plan; g : Goal; vy5, wc : R; p  : Plan 
• planForGoal bel I  plib g = p

selectBestPlan (planSetForGoal g bel plib) plib 
(extractAHModels bel) ws wc = p

6.6 Warehouse Example

To illustrate this scheme, we use the example of the warehouse domain, introduced in 

Section 5.5, and we consider plan selection from the point of view of a individual agent, 

agent l. The sets of plans in this domain are those defined in Tables B. 1 and B.2, which can 

be assessed as described above. Assessment begins with stayputpian since it contains no 

subgoals. However, it also contains no actions and so it is of zero risk.

The plan for staying in the current location may be used in the elaboration of the plans 

for moving right and left, and so its rating is used in determining their ratings. To obtain the 

rating for moveRightPian, each of the steps in its body is considered in turn. Firstly, the 

rating for the step corresponding to the action of moving right is obtained by considering 

its standard cost and the trust of the agents that might perform it. Secondly, the subgoal of 

being in a particular location is assessed by considering the ratings of its possible elabora

tions. Two possible plans (apart from the plan for moving right itself) might be used in its 

elaboration: stayputpian and moveLeftPian. The rating for the former of these can be 

incorporated, but the latter cannot since moveLeftPian and moveRightPian are mutually 

recursive meaning each might be a subplan of the other and therefore their ratings must be 

scaled for recursion. Thus moveRightPian is assessed as follows.

assessing moveRightPian
current step: <action (move, [_agent, right])=_agent>
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step is action, assessing... value is 1.03 
current step: <goal [$(location, [_agent, _y])$]> 
step is goal, finding BC and MC rating

poss elaborations: [moveLeftPlan, stayPutPlan] 
considering subplan moveLeftPlan: 

plans are mutually recursive 
considering subplan StayPutPlan 

BC value is 0.0 MC value is 0.0 
scaling for recursion... factor is 3.0 

plan's cooperative rating assessed as
3.08 (BC) 3.08 (MC) 

plan's quality assessed as
6.08 (BC) 6.08 (MC)

We give full details of this pre-execution assessment in Section B.5.2 where we describe 

our demonstration of the model, and here we simply give the results of this assessment, 

which are as follows.

plan best-case rating mean-case rating
stayPutPlan 0 0
moveRightPlan 6.08 6.08
moveLeftPlan 6.08 6.08
storeSmallPlan 10.05 18.16
storeLargePian 23.82 23.82
storeLargePlanCheap 13.85 21.96
checkPlan 6.08 6.08
rechargePlan 7.0 11.05

Now, since the trust placed in agents changes over time, these ratings may become out 

of step with the current situation, and so they must be reassessed periodically. For example, 

if agentl ’s trust of agent3 changes from 0.52 to 0.1, i.e. from a high to a low level of 

trust, then the ratings of risk associated with plans that might involve agent 3 will increase 

when reassessed, to reflect the increased risk. For example, the actions in storeLargePian 

must be performed by agent3 because it is the only agent capable of moving such a box. 

Therefore, if the plan library is reassessed the ratings of this plan will increase, giving 

best-case and mean ratings of 30.0 and 38.83 respectively.
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Selecting a Plan

The ratings determined by an agent’s pre-execution assessment of its plan library are used 

to select the best plan to achieve a goal. In the case where there is only one applicable 

plan, which can be performed individually, then plan selection is trivial — the applicable 

plan is selected. For example, if a small box is delivered to the warehouse, and agentl 

perceives this, it will form the goal of storing the box as a result of its tidiness motivation. 

In order to form an intention it must select a plan for this goal, and the only applicable plan 

is storeSmallPlan. Thus, the agent selects this plan, and forms an intention towards its 

execution.

However, where there are a number of applicable plans, which require cooperation to 

perform, then plan selection is more complex. For example, consider the situation where 

agentl perceives that a large box, boxi, has arrived in the delivery area, and adopts the 

goal of moving it to the storage area. There are two applicable plans in this situation, 

storeLargePian and storeLargePiancheap; the former uses joint actions of two agents 

lifting the box and moving it, while the latter must be executed by an individual agent 

with the ability to lift a large box. Any of the other agents can assist for the execution 

of the former plan (since all agents have the required capabilities), but only agent 3 can 

assist for the latter, since it is the only agent able to perform the action of lifting a large 

box individually. The best plan should be selected based on the best-case and mean-case 

advantage as discussed in Section 6.5. Using the ratings calculated above, the best-case 

advantage of choosing storeLargePian over storeLargePiancheap is 9.97, and the mean- 

case advantage is 1.86. Thus, the best-case advantage is greater and so the plan with the 

lowest best-case rating should be selected, namely storeLargePiancheap1. The agent can 

then begin the procedures required to adopt this plan as an intention.

Alternatively, if the agent had a different level of trust in the others, then a different
1 In this case, s to r e L a r g e P ia n c h e a p  would also have been chosen using the mean-case rating, but this 

is not always the case.
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plan might have been chosen. For example, if agent 3 is little trusted and associated with 

a trust value of 0.1, instead of being trusted, then the rating for the storeLargePlanCheap 

changes as given above. The ratings for the other plans also change; in particular, the 

best-case and mean-case ratings for storeLargePlan both become 33.53. Here, the risk 

associated with storeLargePlanCheap is significantly increased, and the best-case and 

mean-case advantages become 3.53 and 5.3 respectively and therefore the mean-case rating 

should be used to select the best plan. The plan storeLargePlan has the lowest mean-case 

rating, and so is selected.

6.7 Summary

Plan selection is fundamental to our framework of cooperation, since an agent’s chosen plan 

determines whether it must cooperate to achieve a particular goal or not. In this chapter we 

have presented a mechanism for plan selection, through which an agent can decide whether 

to cooperate even when it is optional, unlike other models which tend to concentrate on 

necessary cooperation.

Plan selection in other approaches, even in a cooperative domain, typically only con

siders the cost of a plan and not the risk associated with it. In practice an agent is often 

faced with a choice of two or more applicable plans for a given goal, where cooperation is 

required to execute those plans. Assistance is typically required for different actions, and 

so plans involve different agents, which in turn pose varying degrees of risk, as reflected 

in their trust values. Similarly, plans typically have different costs associated with them, 

according to the actions they contain. Using existing plan selection mechanisms of only 

considering the cost of a plan, an agent will always select the plan with the least cost, re

gardless of the risk from cooperation. However, using our approach this risk is factored into 

the plan selection process, and provided an agent’s trust of others is broadly accurate2 then

2Trust is not guaranteed to be accurate for two main reasons. Firstly, it is based on observation and is only 

intended to be an estimate. Secondly, it evolves over time and takes several interactions to reflect another’s
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the agent will avoid choosing a plan that requires cooperation with distrusted agents.

The main limitation to our method of plan selection arises from the reliance on the pre

execution assessment of the plan library (with periodic reassessment). In particular, because 

an agent’s assessment will generally not be completely up to date with the changes in its 

trust of others, an agent may choose a plan that it perhaps would not have done, were its 

plan ratings reassessed. The implication of this is that if an agent goes from being reliable to 

unreliable (i.e. trusted to distrusted) then the agent will still rate plans involving that agent 

as low risk, and may select them, even though they are actually now of high risk.

An additional limitation arises from the cost of assessing the plan library, since although 

we reduce the computational cost of assessment by performing it off-line (or when the agent 

is idle in the case of re-assessment), there is still a significant cost involved, proportional to 

the number of plans in the library, the actions in them, and the number of agents with whom 

cooperation may occur. While this suggests a theoretical bound on the applicability of the 

method there are no practical problems with moderate numbers of plans and agents3.

Certainly, more sophisticated mechanisms involving the likelihood of particular elabo

rations of individual plans are possible, but these require much more extensive knowledge 

of the relationship of plans and environments, and the nature of change in environments, 

as well as significantly more costly computation. Given that the environment is largely 

unpredictable, there is unlikely to be any significant advantage, however.

This approach is suited to situations in which the likelihood of the environment and the 

agent models remaining the same is high, so that plan elaboration at execution time is likely 

to reflect the plan quality values determined in advance for the overall partial plans con

cerned. Reassessment of these quality measures will be required periodically to ensure they 

are consistent with the changes in trust of others. Although we do not address this issue in 

this chapter, a simple strategy is for an agent to perform this reassessment when it is not oth
nature, thus if an agent has had few previous interactions with another then its trust of that agent may not give 

an accurate representation.
3 We have run example scenarios with 30 plans and 30 agents.
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erwise occupied, or when the change in its trust of others exceeds some threshold. Despite 

there being some significant computation involved, it is limited in the number of capable 

agents, the number of plans, and the number of actions in those plans. Moreover, since 

assessment is carried out in a pre-execution strategy combined with periodic reassessment, 

the overhead placed on an agent for plan selection at run time is relatively low, especially if 

computation relating to plan reassessment is performed when the agent is idle.

142



Chapter 7

Cooperative Intention Formation

7.1 Introduction

Once an appropriate plan has been selected for its goal, an agent must adopt it as an in

tention. The manner in which an intention is adopted is dependent on whether the plan 

requires cooperation. If the plan contains a joint or concurrent action, an action the agent 

cannot perform, or an action it would simply prefer to be performed by another agent, then 

the plan requires cooperation. Where the chosen plan is not cooperative then no further 

processing is required and the agent can adopt it as an intention using the mechanism de

scribed in Chapter 4. In the case where an agent’s chosen plan is cooperative (as determined 

from its current elaboration) more processing is required before it can be fully executed; in 

particular, before an agent can act with others it must obtain some form of commitment 

from them, and it is the formation of this commitment that we discuss in this chapter.

We begin this chapter by giving an overview of the process of forming a cooperative 

intention. Sections 7.3 and 7.4 describe how an agent can annotate its plan with the iden

tifiers of those with whom it wishes to cooperate. After plan annotation an agent attempts 

to gain the assistance of others, by requesting their cooperation as we describe in Section- 

s 7.6 and 7.7. Those agents whose assistance is requested decide whether to accede to the
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request based on their motivations and knowledge of the other agents involved and, if ac

cepting, form a commitment to cooperation, as discussed in Sections 7.8 and 7.9. We then 

in Section 7.10 consider the formation of a full cooperative intention amongst a group of 

willing agents. In Section 7.11 we give an example of cooperative intention formation in 

the warehouse domain. Finally, we consider the two main strategies to forming a cooper

ative intention, in terms of the point at which formation occurs (namely, plan selection or 

execution time).

7.2 Overview

If a plan is non-cooperative then an agent can simply commit to its execution and form an 

intention. However, if the plan is cooperative then a cooperative intention must be formed. 

The establishment of a cooperative intention involves three distinct stages.

• Firstly, an agent (which we call the initiating agent, or initiator) must determine 

which agents it wishes to cooperate with, and then ask them for assistance. To decide 

which agents to ask the initiating agent iterates through the steps in its plan, anno

tating each one with the identifiers of the agents it wishes to perform it, based on its 

trust and knowledge of others.

• Secondly, on receiving a request for assistance, these agents inspect their own mo

tivations and intentions to decide whether or not to agree, and send an appropriate 

response to the requesting agent; an agent’s motivations determine whether it wants 

to cooperate, and its existing intentions determine whether it can cooperate (since 

intentions must be consistent).

• Finally, depending on the responses the initiating agent receives, it will either be able 

to establish a cooperative intention and begin executing it, need to find another group 

of agents to ask for assistance, or it will fail to establish a cooperative intention. If
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sufficient agents agree to assist then a cooperative intention is formed with those 

agents. However, if insufficient agents agree there are two possibilities:

-  if it is possible to choose another group of agents to ask, the initiator chooses 

such a group and asks them for assistance, and

-  if it is not possible to choose another group, failure is conceded, and any agents 

that have already agreed to assist are informed.

This process is repeated until either a cooperative intention has been formed, or it is 

neither possible to reassign agents to actions, nor to request another group.

If sufficient agents agree to cooperate then a cooperative intention can be formed. For 

individual actions there simply has to be at least one agent agreeing to perform the action. 

For joint and concurrent actions there must be at least one agent that agrees to perform each 

contribution and, for the former, that agent must not be required for another simultaneous 

contribution. This second clause is a result of the possibility of redundant annotation, where 

an agent might be assigned more than one contribution, and may accept both, but cannot 

actually perform both (as described later in this chapter). The algorithm for determining 

whether sufficient agents have responded to a request is given in Table 7.1, which takes an 

annotated plan and a set of responses, and returns true if sufficient agents have agreed to 

cooperate. In the algorithm the function accepted returns the agents that have agreed to 

perform a particular action.

Assuming sufficient agents accept, the next step in forming a cooperative intention is 

to select which agents out of the positive responses will actually be part of the coopera

tion (since redundant annotation may have caused multiple agents to agree to cooperate for 

each action). In this case, the only basis for distinguishing between agents is their trust

worthiness, and so the most trusted are chosen. The chosen agents are sent a confirmation 

message to inform them that enough agents have agreed to assist, and cooperation is pro

ceeding. Agents that are not chosen but agreed to cooperate are sent a cancel message and 

the nominal commitment towards them is dropped.
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Inputs:
plan — the plan for which cooperation is required 
responses — the set of responses agreeing to cooperate 

Outputs:
true if sufficient agents have agreed to cooperate, false otherwise 

Algorithm:
actions = extractActions(p/an) 
fo r  act in  actions do

acceptedAgents = accepted(acf, responses) 
i f  individualAction(acO th en

i f  n o t sizeOf{acceptedAgents) > 1 th en  
r e tu r n  false

e ls e
f o r  c in  contributions(act) do

acceptedC = accepted(c, responses) 
i f  n o t sizeOf{acceptedC) > 1 th en  

r e tu r n  false
r e tu r n  true

Table 7.1: Algorithm to determine whether responses are sufficient to enter into cooperation
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Although we assume that agents are willing communicators, it is still possible for coop

erative intention formation to fail due to communication problems. For example, an agent 

might not respond within a reasonable time, or a response may not be received due to com

munication errors. A timeout mechanism is therefore incorporated into the process, so that 

if no response is received from a given agent before the timeout, the agent is taken to be 

refusing. The algorithm for generating full commitment is part of the initiator’s overall 

algorithm for forming a cooperative intention, as given in Table 7.2. The corresponding 

algorithm for a participant is described later in Section 7.9.

On receiving a confirmation message, an agent knows that sufficient agents have agreed 

to cooperation, and a cooperative intention has been formed. It can, therefore, begin per

forming the actions required of it. Conversely, if a cancel message is received then an 

agent’s assistance is no longer required, and it can drop its nominal commitment, and re

duce its trust of the requesting agent (as described in Section 5.4.1). However, if for some 

reason neither a confirmation nor a cancel message is received (after some timeout period), 

then the agent assumes that its assistance is no longer required, and behaves as though it 

received a cancel message, i.e. it drops its nominal commitment, and updates its trust of the 

requester.

7.3 Annotation Strategies

In order to determine which agents to ask for cooperation, the initiating agent must consider 

each of the contributions in its plan and determine which is the best agent to perform it. 

The chosen agent is associated with the contribution by annotating the contribution with 

the identifier of that agent. The initiator must annotate each cooperative action in its plan 

with the identifiers of the agents it will ask to perform it. For any given contribution several 

agents may be asked for assistance if they can all perform the required contribution, and 

more than one may be listed in the annotation, providing a degree of redundancy in case 

some decline to cooperate. We call such annotation of a contribution with more agents than
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Inputs:
plan — the plan for which cooperation is needed 
agentModels — the initiating agent’s models of others 

Outputs:
a cooperative intention if successful, otherwise nothing

Algorithm: 
re p e a t  :

i f  canAnnotate(p/<2«, agentModels) th en  
plan = annotatePlan(p/an, agentModels)

e ls e
r e tu r n

requestAssistance(p/««) 
responses = waitforResponses() 
i f  sufficientfras'poH.s'es, plan) th en

cooperativelntention = formCooperativeIntention(p/nn) 
r e tu r n  cooperativelntention

Table 7.2: The initiator’s algorithm for cooperative intention formation

are required redundant annotation. Alternatively, annotating each contribution with just 

one agent we refer to as minimal annotation, since the plan is annotated with the minimum 

number of agents required for its execution.

With redundant annotation, even if some of the chosen agents decline to cooperate, co

operation may still be successful. For example, suppose that for each action three agents 

are asked for assistance. If all three agents accept then the initiator can simply enter into 

cooperation with the most trusted agent. However, if two agents decline, then cooperation 

can still go ahead with the third agent. This redundancy, however, comes at a price, pri

marily that the cost of communication and processing the responses will be increased over 

minimal annotation where a single agent might be asked for each action, in the ideal case of 

that agent accepting. Indeed, even if using minimal annotation when some actions need to 

be reassigned, the communication cost may still be less, since there may be fewer agents in 

total to send requests to. Note, however, that at a lower level, redundant annotation offers 

more scope for optimisation, for example through the use of targeted broadcast messages

148



(which may be cheaper than communicating with several agents individually), so that the 

cost of communication for each agent may be reduced if a relatively large number of agents 

are asked. Thus, it is not necessarily true to say that redundant annotation, where n agents 

are asked for each action, is equivalent in communication cost to minimal annotation where 

the n’th agent agrees, since it may be cheaper to send a single broadcast than to send n 

individual messages.

7.3.1 Choice of Annotation Strategy

At this point, it is useful to introduce the notion of a closely coupled and loosely coupled 

view of agent systems. Where we are concerned with the behaviour and performance of a 

multi-agent system as a whole rather than with a specific individual in that system, as in a 

multi-agent system to perform a particular task, we say that we are taking a closely coupled 

view. Conversely, where we are concerned with maximising the performance of a particular 

agent, without concern for the effect on the system as a whole, as with an agent designed to 

compete against others, such as an auction agent, this is a loosely coupled view.

Now, in the closely coupled view, redundant annotation may have negative effects on 

the group’s efficiency since there will obviously be some overhead involved in agents agree

ing to cooperate. In particular an agent may be unnecessarily constrained while committed 

to cooperating in this way (though perhaps not actually being needed), which may have 

prevented it from doing something else beneficial to itself or the group as a whole. Thus, 

although redundant annotation increases the likelihood of getting agreement to cooperate 

without reassigning actions, it may be counter-productive in this respect.

In the loosely coupled view, when concerned with maximising individual performance 

without consideration of others, redundant annotation may not be successful over a period 

of time. If an agent is asked for assistance and agrees to provide it, only to be turned 

down later, its trust of the requesting agent will tend to decrease, since the requester did 

not honour the request and may have cost the provider time and caused it to constrain its
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actions unnecessarily, etc. While the effect may be negligible in the short term, over an 

extended period the decreased trust may cause the provider to decline to cooperate. Thus, 

if at a later point there is only one agent with the appropriate capabilities, that agent may 

refuse to cooperate because it does not trust the requester; it has been inconvenienced too 

many times.

Ultimately, the best strategy in terms of redundant or minimal annotation is determined 

by both the domain itself and the overall perspective (of maximising system or individu

al performance). For example, if communication is relatively inexpensive and the aim is 

to maximise the individual performance of the agent seeking assistance in the short term, 

redundant annotation is sensible, whereas expensive communication and concern over un

necessarily constraining the actions of others suggests that minimal annotation be used.

Overarching these issues, however, is the importance to the initiator of its goal, since 

if a goal is important, redundant annotation may be justified despite any concern for the 

performance of the overall system. It is, therefore, desirable for an agent to be able to choose 

between these strategies dynamically, according to the current situation, and we consider 

both possibilities in the remainder of this chapter. In order to deal with this, we introduce 

the notion of a redundancy threshold to determine whether to use redundant annotation. If 

the motivational value of a goal is greater than this threshold then redundant annotation is 

used. However, since the redundant approach should only be used sparingly this threshold 

must be sufficiently high that the redundant approach is only occasionally used.

7.3.2 Pre-annotated Plans

In Chapter 6 we described how an agent chooses between applicable plans for its goal 

based, in part, on the agent’s trust of the participants capable of performing actions in its 

plan. Since these are factors that must be considered again for plan annotation, it might be 

more efficient for an agent to store this information when selecting its plan, and reuse it 

at annotation time. Several issues affect whether this mechanism is appropriate, which we
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discuss below.

Typically, an agent will have several intentions at any given time, the execution of

which can be interleaved according to the intensities of its motivations. An agent acts

upon the intention that is of most motivational importance and, as the intensities of its

motivations fluctuate, the intention fitting this criterion may change. Hence, there may

be a delay between selecting a plan and establishing a cooperative intention in its favour,

during Which time the must of others may have changed. Also, if die seleeted plan is partial

and contains subgoals then these subgoals are not deal, with until necessary, and there will

certainly be a delay between selecting a plan, and satisfying any subgoals contained in it.

The longer the delay, the higher the likelihood that an agent's trust in another will have

, . timp Anv information stored at plan selection time aboutchanged, since trust changes over time. Any
. „Apr such a delay. In addition to an agent’s trust of the trust of others may not be correct alter sucn a uciay

, . -x u .-„A. oVantit their capabilities can also change. For example,others changing over time, its beliefs about tneir capaui
artion that was not known to be within its capabilities, if an agent is observed performing an actio

then the model of that agent can be updated to include it

* ctnre information at plan selection time to use forIn deciding whether an agent should store mromuu f

. . hpfween the computation saved at annotation time onplan annotation, there is a trade-on oetweei f

the one hand, and the overhead of storing it and the cost of using outdated information on 

the outer. I, is our view that since such information is likely to change, the disadvantages
„ . , .. „„tpntial advantages, and we do not consider thiso f using stored information outweigh the potential aavamag

option turUier. Certainly, however, the model of cooperation we present can be changed to 

include this possibility while remaining within our underlying ftamework.

7.4 Plan Annotation

An agent annotates its plan by considering in turn the steps contained within it that require 

actions to be performed. There are three categories of action step that a plan might contain



(individual, joint, and concurrent) and we discuss each of these later in this section, but first 

we dicuss the agents with which a plan can be annotated.

7.4.1 Agents to Annotate

The simplest method for annotating a plan with agents is for the initiating agent to choose 

agents for each contribution in turn. Since it is important to minimise the risk involved in 

interaction this annotation uses the most trusted agent (or agents) capable of performing an 

action.

If a plan contains only individual actions, and not joint or concurrent actions, then each 

action can be annotated with the most trusted agents that are believed to have the appropriate 

capabilities. The number of agents to be asked depends on whether redundant or minimal 

annotation is being used. In general, each action is annotated with the n most trusted agents, 

where n is an integer. With minimal annotation, n — 1, whereas in redundant annotation, 

n > 1. Note that if n > 1 and the number of agents having the required capabilities is 

less than n (but more than 1) the agent must simply annotate the plan with all those agents, 

rather than trying to find others with the required capabilities in order to annotate the plan 

with n agents. If no agents are known to have the required capabilities then plan annotation 

fails.

Although this considers whether agents are trusted, it does not consider whether they 

are distrusted (i.e. are trusted below a minimum trust threshold as discussed in Section 5.4). 

If the only agents that are believed to have the required capabilities are distrusted, then it 

may be better for the assignment of agents to actions to fail, rather than enter into cooper

ation with a group of distrusted agents, since they are considered likely to renege on their 

commitments. It is possible, therefore, for plan annotation to fail because all the agents 

having the required capabilities for a given action are not sufficiently trusted. In Section 5.4 

we introduced the notion of a minimum trust threshold, such that agents trusted under that 

threshold are considered distrusted. Agents that are distrusted are not annotated to a plan;
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thus if all the agents capable of performing a particular action are distrusted then plan an

notation fails (since none of them can be annotated).

We formalise whether a particular agent should be considered for annotation as follows 

— if it is trusted above the minimum trust threshold then it is considered for annotation, 

otherwise it is not, as specified below.

considerForAnnotation : AgentID —> IP AgentModel —> R —> bool

V id : AgentID; ms : IP AgentModel, t : M •
(tmstOfAgent id ms > t) => considerForAnnotation id ms t =  true A 

(,tmstOfAgent id ms < t) => considerForAnnotation id ms t =  false

7.4.2 Individual Action Annotation

Recall that a contribution is defined to be an action, along with the identifier of the agent 

that is to perform it. Where we are concerned with minimal annotation this is sufficient 

to represent the agent annotated to a contribution. However, when we consider redundant 

annotation, this is insufficient, since we need to associate a set of agent identifiers with 

a particular action. Therefore, before we can specify the function for annotating a con

tribution we must introduce the notion of an AnnotatedContribution, where an action is 

annotated with a set of identifiers. We formalise the annotation of a contribution in the 

schema AnnotateContribution, in which n and t represent the number of agents to annotate 

a contribution with, and the minimum thrust threshold respectively. This function specifies 

that an individual contribution is annotated with the n most trusted agents, provided then- 

associated trust values are greater than t.

__AnnotatedContribution ---------------------------------------------------------------
symbol: ActSym 
terms : seq Term 
agents : P AgentID
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— AmwtateContribution------------------------------------------------------------
annotateContribution : Contribution —» P AgentModel —> Z —> R 

-> AnnotatedContribution

V c : Contribution; ms : ¥  AgentModel] n : Z; t : M;
ac : AnnotatedContribution • c.symbol =  ac.symbol A 

c.terms = ac.terms A ac.agents = {id : AgentID |
id € ran({/ : Z | / < «} 1 orderedCapableAgents c ms) A 

considerForAnnotation id ms t =  true • id}

7.5 Annotating Simultaneous Actions

The approach described above is only applicable for plans that do not contain joint or con

current actions. Recall that joint and concurrent actions are made up of a set of contri

butions, each of which is an individual action that must be annotated with agents. The 

main consideration in annotating a plan containing such actions is that an agent must not 

be required to execute two or more contributions simultaneously, since we assume that 

agents can only perform one action at a given time. In minimal annotation this is simply 

achieved by not annotating an agent to more than one simultaneous contribution. Redun

dant annotation, however, is more complex, because an agent might be annotated to several 

simultaneous contributions, and its assistance requested for all of them.

Since an agent can only perform one action at a time, and its intentions must be consis

tent, an agent asked to assist for several simultaneous contributions can only agree to one 

of them at most (according to its motivations and intentions), or its intentions would be

come inconsistent. Redundant annotation of an agent to several simultaneous contributions 

allows that agent a choice about which, if any, of the contributions it performs. The key 

requirement when annotating the same agent to more than one simultaneous contribution is 

that agreement is necessary for at most one of them. For example, a joint action comprising 

two contributions each annotated with the same two agents is a valid annotation, because 

either agent can perform either contribution, as illustrated by the annotation on the left in
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Contribution Annotation Contribution Annotation

contribution i a i, £*2
contribution 2 a  1, a2

contribution 1 a i , a 2 
contribution2  a i , a 2 
contribution^ a  1,0 1 2

valid annotation invalid annotation

Table 7.3: Valid and invalid annotations

Table 7.3. Alternatively, a joint action comprising three contributions, each annotated with 

the same two agents, is not a valid annotation, since even if both agents agree to perform 

a contribution, there will be a third contribution for which no agent has agreed (illustrat

ed by the annotation on the right in Table 7.3). Where we are concerned with annotating 

concurrent actions it is possible for an agent to be annotated to more than one thread of 

execution since synchronisation is only required at the beginning and end of a concurrent 

action block, and all contributions do not necessarily have to be performed simultaneously.

7.5.1 Joint Actions

In formalising the annotation of joint actions we rely on a number of auxiliary functions, 

the specification of which can be found in Appendix A. Firstly, contribSeq takes a joint 

action as its argument and extracts the contributions that it comprises, returning them as 

a sequence. In turn, the function allPossibleAnnotations takes such a sequence of con

tributions, and determines the set of all possible minimal annotations, where an agent is 

associated with a contribution if it is capable of performing it and is trusted above the mini

mal trust threshold. We refer to these possible annotations as candidate assignments. Since 

the contributions in a joint action must be performed simultaneously, an agent must not be 

assigned to more than one contribution in a candidate assignment. If in a given candidate 

assignment no agent is assigned to more than one contribution it is said to be valid and, 

conversely, if a candidate assignment assigns an agent to more than one contribution, then
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it is invalid. The function validAssignments takes the set of candidate assignments, and re

moves those that are not valid. Finally, the function orderedAnnotations takes the resulting 

set, and orders them according to the combined trust of the agents involved.

We can now introduce the notion of an AnnotatedJointAction, as a set of annotated 

contributions, and specify how to annotate a joint action. The function annotateJointAction 

takes a joint action, a set of agent models, an integer representing the number of agents 

to annotate each contribution with, and a minimum trust threshold and returns an anno

tated joint action. The annotation is determined by extracting the appropriate number of 

assignments from the front of the ordered list possible valid candidate assignments, using 

the auxiliary functions introduced above. Each of these assignments associates one agent 

with each contribution, and they are combined into a single (possibly redundant) annotation 

using the auxiliary function annotate.

__AnnotatedJointAction-------- —------------------------------------------------------
contributions : P AnnotatedContribution

# contributions > 2

— AnnotateJointAction-----------------------------------------------------------------
ELAnnotateJointActionAuxiliary
annotateJointAction : JointAction —> P AgentModel —> Z —* R 

—> AnnotatedJointAction
annotate : seq(P(Contribution x AgentID)) —> AnnotatedJointAction

\/ja : JointAction; ms : ¥  AgentModel] n : Z; / : R •
annotateJointAction ja  ms n t =  annotate ({* : Z | / < w}j

(orderedAnnotations (validAnnotations (allPossibleAnnotations 
(contribSeq ja) ms t)) ms))

Ms : seq(F (Contribution x AgentID))] aja : AnnotatedJointAction \
annotate s =  aja • V c : Contribution • c 6 extractContributions (s 1) 

O  (3j ac : AnnotatedContribution • ac e  aja.contributions A 
c.symbol =  ac.symbol A c.terms =  ac.terms A 

ac.agents =  agentsOfContributionAs (ran 5) c)
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7.5.2 C oncurren t Actions

In a similar manner, we can specify that an annotated concurrent action comprises a set of 

annotated contributions and joint actions. Annotation of a concurrent action involves anno

tating each of its components, and including the result in the annotated concurrent action, as 

specified below in the schema AnnotateConcurrentAction. The function annotateCAcom- 

ponent takes a component of a concurrent action (a contribution, or set of contributions 

representing a joint action) and annotates it using the mechanisms described above for ac

tions and joint actions, as specified by annotateConcurrentAction.

ACAcomponent ::= AContrib((AnnotatedContribution))
| AJA ((IP AnnotatedContribution))

__AnnotatedConcurrentAction----------------------------------------------------------
contributions : ¥  ACAcomponent

# contributions > 2

__AnnotateConcurrentAction---------------------------------------------- ------------
EAnnotateContribution 
EAnnotateJhintAction
annotateConcurrentAction : ConcurrentAction -> ¥  AgentModel -> Z -> R 

—» AnnotatedConcurrentAction
annotateCAcomponent : CAcomponent —> P AgentModel —> Z —> R 

—> ACAcomponent * V

V cac : CAcomponent; ms : ¥  AgentModel] n : Z; t : R
acac : ACAcomponent • annotateCAcomponent cac ms n t = acac 

&  (3 c : Contribution | Contribue) =  cac •
acac — AContrib(annotateContribution c ms nt))  V 

(3 cs : ¥  Contribution] ja  : JointAction | JA(cs) =  cac • 
ja.contributions = cs A acac =

AJA((annotateJointAction ja  ms n t).contributions))
V ca : ConcurrentAction] ms : ¥  AgentModel] n : Z; t : R

aca : AnnotatedConcurrentAction •
annotateConcurrentAction ca ms n t = aca A 

aca.contributions =  {cac : CAcomponent | 
cac G ca.contributions •

annotateCAcomponent cac ms n r}
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7.5.3 A nnotated  Plans

The notion of an annotated plan is formalised below in the schema AnnotatedPlan, in which 

all contributions are annotated with a set of agents. Each contribution is annotated with a 

set, rather than the individual agent that will execute it since, at this stage, the annotation 

represents the agents to request assistance from. Thus, to allow for redundant annotation, a 

contribution is associated with a set of agents rather than an individual. However, before a 

cooperative intention can be formed, an agent must select one agent for each contribution 

and modify the annotated plan accordingly. The schema AnnotatePlan contains two func

tions, annotateStep and annotatePlan, the first of which takes a plan step and applies the 

appropriate annotation function (unless the step is a goal in which case it is not changed), 

and the second takes a plan and annotates each step in that plan, returning the corresponding 

annotated plan.

APlanStep ::= AIndividual({AnnotatedContribution))
| AJoint((F AnnotatedContribution)) 
j AConcurrent((F ACAcomponent))
| ASubgoal((Goal))

— AnnotatedPlan--------- ------------------------------------------------------ ---------
achieves : Goal 
preconditions : IP Literal 
body : seq APlanStep
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— AnnotatePlan------------------------------------------------------------------------
EAnnotateContribution 
EAnnotateJointAction 
EA nnotateConcurrentA ction
annotatePlan : Plan —» IP AgentModel —> Z —> M —> AnnotatedPlan 
annotateStep : PlanStep —> P AgentModel —> Z —>■ R —> APlanStep

V p : Plan] ms : ¥  AgentModel] n : Z; / :  K; ap : AnnotatedPlan • 
annotatePlan p m s n t  = ap <=> p.achieves =  ap.achieves A 

p.preconditions = ap.preconditions A
(V n : Z | n < ftp.body • ap.body n = 

annotateStep (p.body n) ms n t)
Vps : PlanStep] ms : ¥  AgentModel] n : Z; t : R; ops : APlanStep • 

annotateStep p s m s n t  = aps
(3 c : Contribution • Individual(c) = ps A ¿2/w =  

AIndividual(annotateContribution cm s n t)) V 
(3cs : ¥  Contribution] ja  : JointAction \ja.contributions = cs • 

Joint(cs) =  ps A aps =  AJoint((
annotateJointAction ja  ms n t).contributions)) V 

(3 cac : P CAcomponent] ca : ConcurrentAction |
ca.contributions = cac •  Concurrent(cac) = ps A aps =  

AConcurrent((annotateConcurrentAction 
ca ms n ^.contributions)) V 

(3g : Goa/ • Subgoal(g) — ps A aps = ASubgoal(g))

An agent can represent an annotated plan, by simply associating the identifiers of the 

appropriate agents with each contribution in the body of the plan. For example, if the actions 

in the plan for storing a small box in the warehouse domain were assigned to agent2, then 

an agent might represent this as follows.

name: storeSmallPlan
achieves: [$(location, [box, room]),

not (holding, [agent2, box])$] 
preconditions: [(location, [box, loc]),

(type, [box, small, shortTerm])] 
body: [<goal [$(location, [agent2, loc])$]>,

<action (pickup, [agent, box])=agent2>,
<goal [$(location, [agent2, room])$]>,
<action (putdown, [agent, box])=agent2>]
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7.6 Soliciting Commitment to Cooperate

After deciding which agents to try to cooperate with (by annotating its plan), an agent must 

request assistance from the agents with whose identifiers the plan is annotated. There are 

several options for how much information to include in a request for assistance. In particular 

an agent attempting to initiate cooperation can communicate either

1. the whole plan, but without annotations,

2. just the actions it wants the potential participant to perform,

3. the goal for which assistance is required, along with the actions it wishes the potential 

participant to perform,

4. the whole plan, annotated only with the actions it wishes the potential participant to 

perform, or

5. the whole annotated plan.

These options provide varying degrees of information to the receiver, and support different 

objectives, represented by the loosely coupled and closely coupled views, as we discuss 

below.

• The first alternative of communicating the whole plan without annotations, does not 

in general give sufficient information for the participant to make a decision about 

whether or not to cooperate, since it does not specify which actions it should perform. 

Without knowing which actions are requested of it, an agent cannot determine whether 

they will conflict with its intentions or their motivational value. There are a small 

number of exceptional circumstances in which an agent could make a decision; for 

example, if all actions in the plan, and the goal it achieves, are of motivational value, 

and the agent has no other intentions, then it can decide to cooperate. In general,
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however, this is not the case, and more information is required in a request. Thus, we 

reject the first alternative.

• Remember that there must be some motivational justification for an agent choosing 

to perform a particular action, and although the overall goal must be of motivational 

value (or it would not have merited committing to), the particular actions required to 

achieve it might not be. For example, achieving the goal of getting a paper accepted 

for a conference is likely to have motivational value, but the actions involved in proof

reading and correcting are less likely to be valuable in themselves. Thus, while the 

end may have motivational value the means may not, if considered out of the context 

of the overall goal. In practice an agent’s motivations are typically mitigated by the 

achievement of goals, rather than the performance of particular actions, although 

there are exceptions. Thus, an agent is unlikely to gain assistance for its goal if its 

request contains only the actions that it wishes to be performed, and not the goal that 

they achieve (as in the second alternative above). The exception to this is if the action 

is valued by the potential participant and the goal is not. For example, if you gain 

value from performing the action of driving, and I wish you to drive a getaway car in 

a robbery for me, then the negative motivational effect of achieving the goal would 

outweigh the benefit obtained from driving (assuming you are a law-abiding citizen). 

Thus, in this situation if I know that the goal is of zero or negative motivational value, 

then I might make my request giving only the action for which assistance is sought.

• The third alternative requests assistance from the potential participant for a particular 

set of contributions, and towards a particular goal. This allows an agent to consider 

both the motivational value of the actions it is requested to perform, and the value it 

would gain if the overall goal is achieved.

• The fourth alternative also includes the complete plan, without the annotations related 

to other agents. This additional information can influence the potential participant’s 

decision about whether to cooperate. If the participant is informed of the plan then it
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knows what other actions will be performed in the achievement of the goal. If it has 

a goal or intention that some action in the plan is not performed (by any agent), then 

it may refuse even if it would otherwise have accepted, based solely on the goal and

actions it is to perform.

• The final alternative includes both the plan, and the complete set of annotations, if 

the participant is informed of the other annotations in the plan, it is given information 

about which agents are likely to be involved in the cooperative interaction. If it has a 

goal or intention of not cooperating with another of the annotated agents then it may 

also refuse, even if would accept were its choice based only on the goal and actions it 

is to perform. Note that as discussed earlier, communicating redundant annotations 

makes recipients aware of the redundancy and the potential unnecessary constraints 

this may impose upon them. Thus, if the fifth alternative is used, the requesting agent 

must process the annotations contained in the request to remove redundant annotation 

of the potential participant1.

In our framework, therefore, an agent has a choice of the latter four options. The 

choice about which of these approaches to use is a macro level consideration determined by 

whether a loosely or closely coupled approach is being taken. We therefore simply assume 

that an agent uses one of these mechanisms, without specifying which. Formally, there are 

four possible types of request, containing the actions for which assistance is required, the 

actions and the overall goal, the plan annotated only with the requestee’s actions, or the 

whole annotated plan. We specify this as follows, where the actual request types (shown 

within “ ((” and “))”) are specified in Appendix A.

Request ::= ActionRequest((RequestActions))
| GoalActionRequest((RequestGoalActions))
| PartiallyAnnotatedPlanRequest{(RequestPartiallyAnnotatedPlan))
| AnnotatedPlanRequest((RequestAnnotatedPlan))

'i t  could be argued that all redundant annotations should be removed in case an agent infers that if another 

is redundantly annotated, it may be treated similarly. However, we do not consider the case where an agent has 

such inference abilities, and so do not consider this situation.
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As discussed above, an agent’s request for assistance should include only the actions 

for which it needs help if it believes that the goal is of zero or negative motivational value 

to the provider. This is specified in the function useActionRequest below, which takes an 

annotated plan and set of agent models, and returns true if the goal is believed to be of 

zero or negative motivational value to one or more of the agents being requested, and the 

agent’s request should be of this form. Our specification of the function relies upon auxiliary 

functions allAgents and believedMV, the former of which extracts the agents annotated in 

a given plan, and the latter of which returns the believed motivational value of a goal to 

another agent, based on information from the agent’s models of others. These auxiliary 

function are also specified in Appendix A.

__UseActionRequest -------------- -------------------------------------------------------
EAnnotatedPlanAuxiliary
useActionRequest: AnnotatedPlan -> FAgentModel -> bool

V ap : AnnotatedPlan; ms : P AgentModel • 
useActionRequest ap ms =  true

<=> (3 id: AgentID \ id G allAgents ap • 
believedMV ap.achieves id ms < 0) A 

useActionRequest ap ms =  false
O- (V id : AgentID \ id G allAgents ap • 

believedMV ap.achieves id ms > 0)

7.7 Requesting Assistance

As described above, there are two steps in requesting assistance: first, for every agent anno

tated to each contribution in a plan, determine how much information to give them (about 

the goal, plan, and members of the proposed group), and secondly make the request itself. 

Since cooperative intention establishment may involve several rounds of requesting, some 

agents may have already been asked for assistance for a previous action, in which case it is 

possible that an agent may have already accepted a request. Here, some form of commit

ment to perform the (previously requested) action will have been formed, and if an agent
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Inputs:
agent — the agent to request assistance from 
plan — the plan for which cooperation is needed 
acceptedAgents — the set of agents that have already agreed to cooperate 

Outputs:
requests sent to the agents annotated in plan 

Algorithm:
if agent in acceptedAgents then

for act in actionsAccepted(age/tf) do
if notAssigned(uge/ji, act, plan) then 

cancel {agent, act)
else

if participantsChanged(<2cf, p lan ) then
if informed(qge/if, particpants(act, p la n )) then 

re-Tequest(agent, act) 
for a c t in assigned(<2g<?«/, p la n ) do

if act not in actionsAccepted(age«/) then 
request(age/tf, action, plan)

else
request(age«/, plan) 

return

Table 7.4: The initiator’s algorithm for requesting assistance

has agreed to perform some action to which it is no longer annotated in the latest plan an

notation, it must be informed that its commitment is unnecessary. Similarly, if the agent has 

already agreed to perform the same action that it is currently annotated to then there is no 

need to ask it again

If the action is part of a joint or concurrent action which is currently annotated with a 

different group of agents, and the agent was informed of the original annotation, its decision 

to cooperate may be affected by the composition of the group, and the agent must be in

formed of the changes. Finally, note that if a previous request for assistance was refused, it 

does not affect subsequent requests, since no commitment will have been formed. Table 7.4 

presents the algorithm for requesting (or re-requesting assistance) from a particular agent.
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If the agent has already agreed to cooperate then the actions for which it has agreed to co

operate are considered. If it is no longer assigned an action it has agreed to perform, then 

it is informed that cooperation is no longer required (for that action). Similarly, if the par

ticipants of a joint or concurrent action have changed, then it is informed of these changes. 

Finally, it is sent a request for any actions that it has not already agreed to perform.

7.8 Nominal Commitment

If an agent changes its mind after requesting assistance (for example if its motivations 

change and it drops its goal) other agents may have formed a commitment to assist and 

have constrained their actions unnecessarily — potentially causing their trust of the initi

ating agent to decrease when they discover this. Informing agents of such changes after 

a request is a means to safeguard against becoming distrusted. This issue arises only be

tween requesting assistance and the formation of a cooperative intention (assuming others 

accept), since once a cooperative intention is formed, the agents involved are required to 

inform others as a consequence of their commitment.

To achieve this commitment to informing others we introduce the notion of a nominal 

commitment with respect to a set of agents such that, in the case of it dropping its goal, 

an agent will inform all other agents in that set. A nominal commitment, therefore, acts 

as a placeholder commitment until a full cooperative intention is established. Before re

questing assistance, therefore, a nominal commitment must be formed with respect to the 

agents whose assistance is sought, ensuring that the initiating agent will inform the request

ed agents if it changes its mind about about requiring assistance. The process of establishing 

a cooperative intention may involve several rounds of plan annotation before it is success

ful, in that others will be asked for assistance and may refuse, leading to another set of 

agents being chosen and asked. For example, suppose an agent annotates its plan with three 

other agents, a i ,  ot ,̂ and «3 and requests assistance from them, then it must form a nominal 

commitment towards those agents, to inform them if assistance is no longer required. If a \
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Inputs:
plan — the plan to which nominal commitment is required 
participants — the participants in plan 

Outputs:
a nominal commitment towards the agents annotated in plan 

Algorithm:
i f  n o t commitedTofjP/aw) th en

form(nominalCommitment(/?/art, participants))
e ls e

currentCommitment = retrieveCommitment(p/an) 
existingParticipants = extractAgents(currentCommitment) 
f o r  a in  (existingParticipants \  participants) do 

remove(a, currentCommitment) 
f o r  a in  {participants \  existingParticipants) do 

add(a, currentCommitment)
r e tu r n

Table 7.5: Algorithm for updating nominal commitment

and a 2 accept, but a 3 declines to assist then the initiating agent must select another set of 

agents to cooperate with — it must re-annotate its plan, and request assistance from this 

new set of agents.

Each round of plan annotation involves forming a nominal commitment and requesting 

assistance. Therefore, if assistance has already been requested for a previous annotation of 

the plan, a nominal commitment will exist toward the agents whose assistance was request

ed. A new nominal commitment does not need to be formed; instead, the annotation of 

agents to whom the commitment is made towards are updated. Those agents that are not in 

the current annotation are removed from the commitment, since there is no need to inform 

them if assistance is no longer required, and any newly annotated agents are added. If no 

requests have previously been made for (a prior annotation of) the plan, then a new nominal 

commitment is formed to the agents contained in the current annotation. Consider the ex

ample of an agent requesting assistance, and forming a nominal commitment towards, three 

agents, ot\, a 2, and a 3. Now, suppose a 3 declines and the agent re-annotates its plan with
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agents a \, a?, and c*4, such that the former two are given the same tasks and a 4 assigned 

to the task for which a 3 declined. The initiator must update its nominal commitment to 

be towards this new set of agents, i.e. it must modify its commitment to a 3 to be towards 

a 4. This process is described by the algorithm for updating nominal commitment, given in

Table 7.5.

We formalise the formation of a nominal commitment by first defining the represen

tation of such a commitment as a plan and a set of agents to whom the commitment is 

made, as specified below in the schema NominalCommitment. The formation of a nominal 

commitment itself is specified in the schema FormNominalCommitment, which is based on 

the algorithm in Table 7.5. Additionally, we define the function commitedTo, which takes 

an annotated plan and returns true if the agent already has a nominal commitment towards 

that plan, and false otherwise. This function is used to determine whether a new nominal 

commitment is be adopted, or whether to update the agents in the existing commitment.

__NominalCommitment----- ----------------------------------------------------------—
plan : AnnotatedPlan 
agents : P AgentID
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__FormNominalCommitment---------------------------------------------------------
AAgent
EAnnotatedPlanAuxiliary 
newPlan : AnnotatedPlan 
commitedTo : AnnotatedPlan —> bool

yap : AnnotatedPlan • 3 c : NominalCommitment |
c G nominalCommitments • c.plan.achieves — ap.achieves 

commitedTo ap =  true
V ap : AnnotatedPlan • V c : NominalCommitment \

c G nominalCommitments • c.plan.achieves ^  ap.achieves 
<=> commitedTo ap — false 

commitedTo newPlan =  false
=> (3 c : NominalCommitment • c.plan = newPlan A 

c.agents = allAgents newPlan A
nominalCommitments' = nominalCommitments U {c}) 

commitedTo newPlan =  true
=> (3 c, c' : NominalCommitment \ c G nominalCommitments • 

c.plan.achieves = newPlan.achieves A
c ^  nominalCommitments' A c' G nominalCommitments1 A 

c'.plan = newPlan A d.agents = allAgents newPlan)

7.9 Committing to Cooperate

In this section we consider the criteria by which a participant decides whether or not to 

cooperate after receiving a request for assistance. There are two key factors in this decision 

that arise from the autonomous nature of the agents involved. Firstly, the trust ascribed to 

the requester determines the perceived risk of interacting with it and, secondly, the motiva

tional value that would be attained from cooperating determines the potential benefit to the 

providing agent.

An agent receiving a request for assistance with respect to a set of actions must deter

mine whether the requesting agent is sufficiently trusted before entering into a cooperative 

intention and, if it is, it must determine the motivational value of the actions it is asked 

to perform. If the request also includes information about the overall goal and plan for
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which cooperation is required, the value of that goal and plan must also be considered. If 

the request has no motivational value then the agent will not cooperate and must inform 

the requester that it is declining, otherwise it must check whether the requested actions are 

compatible with its existing intentions.

An agent’s intentions must be consistent, and if an agent receives a request for assis

tance from a trusted agent that carries some positive motivational value but would lead to 

an intention conflict, it must choose between existing intentions and the request. Such a 

conflict may be an explicit conflict of goals, or it may be that a known effect of performing 

the requested actions conflicts with an existing intention. Therefore, an agent must select 

which of the conflicting intentions it will discard. One possibility is to consider how much 

effort has already been invested in attempting to achieve the existing intention, how much 

is still required, and the trust in others expected to be involved. However, the computational 

cost it requires in itself, in particular with respect to estimating how much effort is still re

quired, is prohibitive because it involves considering all possible plan elaborations. A more 

useful (and simple) alternative is to select the intention with the highest motivational value. 

Thus, if the existing intention has a higher value, the agent will decline to cooperate for the 

new request. Otherwise, the agent will drop its existing intention and agree to cooperate 

and form a nominal commitment.

An agent accepts a request, allowing cooperation to ensue only if

• the requester is considered trusted,

• there is no conflict with existing intentions, and

• the request is of positive motivational value.

As described in Section 7.8, when accepting a request an agent forms a nominal commit

ment, in that it becomes committed to informing others if it rescinds its acceptance. The 

algorithm for a recipient to process a request for assistance is shown in Table 7.6, which 

states that an agent must first consider the trust of the requester, then the motivational value
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Inputs:
request — the request for assistance
trustThreshold — the threshold under which agents are considered distrusted 
intentions — the agent’s intentions 

Outputs:
a message accepting or declining to cooperate, and 
a nominal commitment if accepting

Algorithm:
initiator = sendev(request) 
i f  tmst(initiator) < trustThreshold th en  

décline(initiator, request) 
r e tu r n  false

e l s e
i f  motivationalValue(ra7H£sO < 0 th en  

decline(m/h'ator, request) 
r e tu r n  false

e ls e
i f  confl\c\(request, intentions) th en

i  f  higherMotivationalValue(re^Meit,
conflicting(re#wes/, intentions)) th en  
drop(conflicting(ra7«est, intentions))

e ls e
decline(/«ifta/or, request) 
r e tu r n  false

formNommalCommitment(/w7/afor, request) 
accept (initiator, request) 

r e tu r n  true

Table 7.6: The recipient’s algorithm for processing a request
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of the request, and finally whether the request conflicts with its existing intentions. If the 

conditions described above are met then the agent sends an acceptance message, and forms 

an appropriate nominal commitment, otherwise a message declining to assist is sent. We 

describe below how an agent considers the trust of the requester, and how it determines the 

motivational value of a request.

7.9.1 Trust in Requesting Agent

Before checking the motivational value of the request, and whether it conflicts with existing 

intentions, the requesting agent must be checked for adequate trustworthiness. The trust of 

the requester is checked before determining the motivational value of the request, since it is 

much cheaper in computational terms to check trustworthiness than to assess motivational 

value.

Cooperation should be avoided if the requester is not trusted, since if it drops its part 

of a cooperative intention, any commitment and action on behalf of the participant is likely 

to have been wasted. To determine whether the requester is trustworthy, its associated trust 

value must be assessed, with respect to a cooperation threshold over which (for this pur

pose) it is considered sufficiently trusted, and under which it is not. Note that this threshold 

is distinct from that described in Section 7.4 which is concerned with the notions of trust 

and distrust with respect to plan annotation; here we are concerned with ensuring an agent is 

sufficiently trusted to consider expending effort in assisting it — an agent might be trusted 

in the context of plan annotation, but not be sufficiently trusted to offer assistance to it. An 

agent will not assist another that is not sufficiently trusted, even if the request might appear 

to have positive motivational value. The function consideredTrusted below formalises this, 

and takes an agent, a set of agent models, and a cooperation threshold, and returns true if 

the trust of the agent is greater than the threshold.
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consideredTrusted : AgentID —> P AgentModel —> R -» bool

V requester : AgentID; ms : P AgentModel; t : R • 
trustO/Agent requester ms > t

=>• consideredTrusted requester ms t — true A 
trustOfAgent requester ms < t

=> consideredTrusted requester ms t = false

7.9.2 Commitment to Actions

After checking that the requester is trusted, the motivational value of the request is deter

mined. The minimum information that can be included in a request is the set of actions 

for which assistance is required (as described in Section 7.6). On receiving such a request, 

an agent can assess the motivational value that it would get from performing the requested 

actions. Where the request does not contain information about the overall goal or plan, the 

agent must base its decision to cooperate on the motivational value of these actions. Each 

action is considered in turn and assessed according to the motivational value associated 

with it, to decide whether to cooperate for that action. Those actions that are of motivation

al value (assuming the requesting agent is trusted) are candidates for cooperation, and are 

considered further to check that they do not conflict with existing intentions (as described 

below). Actions that are not of motivational value are rejected, and assistance is not offered. 

We formalise this below, where we define the function considerFurtherContribution, which 

takes a contribution, the identifier of the requesting agent, and a cooperation threshold and 

returns true if the requesting agent is sufficiently trusted, and the contribution is of positive 

motivational value.
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__ConsiderFurtherContribution---------------------------------------------- -----
H Agent
ConsiderFurtherContribution : Contribution -> AgentID -» R -> ¿00/

V c : Contribution; requester : AgentID; i : M •
ConsiderFurtherContribution c requester t =  true

consideredTrusted requester (extractAUModels beliefs) t — 
true A (3 m : Motivation | m G motivations • 

mvContribution m c > 0) A 
ConsiderFurtherContribution c requester t = false

O  consideredTrusted requester (extractAUModels beliefs) t = 
false V (V m : Motivation | m G motivations • 

mvContribution m c < 0)

7.9.3 Commitment to Goals

A request for assistance may also include details of the overall goal in addition to the set 

of actions for which cooperation is required. It is possible that this goal may not be in 

the interests of the agent, so it must consider the motivational value that would arise from 

achieving it in addition to that associated with the actions it is requested to perform in its 

pursuit. Each action is considered in turn, with respect to the goal. If the goal’s achievement 

has no value (or is negative) then the agent will not cooperate, unless the positive effects of 

performing the actions outweigh the negative influence of the goal. Conversely, an agent 

will agree to perform an action in favour of a goal with a positive value if this outweighs 

any negative value associated with the action.

Before formalising how to make this decision, recall from Chapter 3 that an agent 

has a set of mitigation functions that determine the motivational value (i.e. the amount 

by which the motivation is mitigated) of actions and goals to the motivation. In schema 

ConsiderFurtherContributionGoal, we define a function that embodies the decision about 

whether to consider further a request to cooperate for a contribution and a goal — if the 

combined motivational value of the contribution and the goal is positive, then the agent 

must consider the request further.
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__ConsiderFurtherContributionGoal--------------------------------------------_ _
"Agent
considerFurtherContributionGoal : Contribution -» Goal -» AgentID —>■ R 

—» 600/
Vc : Contribution; g : Goa/; requester : AgentID; f : R • 

considerFurtherContributionGoal c g requester t =  true
O  consideredTrusted requester (extractAUModels beliefs) t =  

true A (3 m : Motivation | m G motivations •
mvContribution m c > 0) A (3 m : Motivation | 

m G motivations • mitigation m g  > 0) A 
considerFurtherContributionGoal c g  requester t =  false

O  consideredTrusted requester (extractAHModels beliefs) t =  
false V (V m : Motivation | m G motivations •

mvContribution m c < 0) A (V m : Motivation \ 
m G motivations • mitigation m g < 0)

7.9.4 Commitment to Plans

The final type of request for assistance comprises the annotated plan for which cooperation 

is needed and, to decide whether to cooperate in this case, an agent must assess the value 

of the plan as a whole. The decision to cooperate is not made for individual actions, rather 

a choice is made for the plan as a single indivisible whole. Thus, the motivational value of 

the plan as a whole must be assessed.

The pre-execution assessment method used in plan selection, in which an agent consid

ers all possible plan elaborations cannot be used here because the agent is being asked to 

cooperate for another agent's plan and cannot know how the plan will be elaborated, since 

elaboration will use plans from the other agent’s plan library. Therefore, rather than try

ing to determine the value associated with any subgoals in the plan based on their possible 

elaboration, we can only consider the subgoals themselves. The motivational value of the 

request is then calculated simply by summing the values of the overall goal of the plan, 

the actions in it (to which the agent is assigned), and the value of any subgoals contained 

in it. If the plan has a positive motivational value associated with it (and the requester is
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trusted), then it is considered further for cooperation. Otherwise, cooperation is rejected, 

and no further consideration is given to the request, as formalised below in the function 

considerFurtherPlan.

__ConsiderFurtherPlan —--------------------------------------------------- ---------- -
EAgent
considerFurtherPlan : Plan —> AgentID —> M —> bool

Vp  : Plan] requester : AgentID; t : M •
considerFurtherPlan p  requester t — true «=>

consideredTrusted requester (extractAUModels beliefs) t = 
true A (3 m : Motivation | m € motivations • 

mvPlan m p  > 0) A
considerFurtherPlan p  requester t — false <i=>

consideredTrusted requester (extractAUModels beliefs) t =  
false V (V m : Motivation | m G motivations • 

mvPlan m p < 0)

7.10 Generating Full Commitment to Cooperation

When insufficient agents agree to cooperate a new set of agents can be chosen to ask for 

assistance, or failure can simply be accepted for the goal and plan concerned. In the former 

case, previously generated nominal commitments to actions may still be used, and only 

those where no agent agreed to cooperate need be pursued. Reassignment is performed in 

exactly the same manner as for the initial assignment.

Reassignment, however, raises the question of whether to assign an agent who has al

ready declined one action to another action it is capable of performing. Clearly, this depends 

on the reason for declining originally. If an action was declined because the overall goal 

was not sufficiently valued, then reassignment in this way will have the same result, since 

the overall goal is the same (unless the new action has a significantly larger motivational 

value, but this unlikely). If the action was declined due to its motivational value, however, 

reassignment with a different action may be acceptable. Unfortunately, it is not generally 

possible to determine another’s reason for declining without explicit explanation for de
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dining being provided. Thus, we must assume that reassignment of a declining agent to 

another action is not a valid option without such an explanation. If it is not possible to 

reassign because, for example, the initiator does not know of any other agents with required 

capabilities, then it must admit failure.

In principle, an initiating agent might attempt to negotiate assistance from agents that 

decline. However, negotiation is a large area of research in its own right, and it is not 

the focus of the work described in this thesis. Nevertheless, the result of any negotiation 

strategy is ultimately that an agent will agree or disagree, so that the inputs and outputs 

of this phase remain unchanged if more sophisticated negotiation is introduced. It should 

therefore be straightforward to incorporate such mechanisms if required for a particular 

application.

We can specify a response as a tuple comprising an agent identifier, contribution, and 

a boolean representing whether the response is accepting or declining to cooperate. The 

function checkResponses takes an annotated plan and a set of responses and returns true if 

sufficient agents have responded with an acceptance message, and false otherwise.

Response = =  AgentID x Contribution x bool

__CheckResponses___ _____________________________________ ______
S UseActionRequest 
EExtractlnfoJointAction
checkResponses : AnnotatedPlan -> ¥  Response —> bool

\/ap : AnnotatedPlan; rs : P Response; cid : P (Contribution x AgentID) | 
cid = extractAgentsPlan ap • checkResponses ap rs =  true 

(Vc : Contribution \ c G (extractContributions cid) •
(3 id : AgentID • (id, c, true) G rs)) A 

checkResponses ap rs =  false
O  (Vc : Contribution | c G (extractContributions cid) •

(Vid : AgentID • (id, c, true) £ rs))

If sufficient agents agree to assistance, then a cooperative intention is formed. The 

function formFinalPlan takes an annotated plan, a set of accepting agents, and a set of
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agent models and modifies the annotated plan such that only one agent (from the accepting 

agents) is annotated to each contribution. Where there is more than one agent accepting for 

a given contribution, the one that is the most trusted is selected. This specification relies 

on the auxiliary functions, processStep, which selects the most trusted agents that agree to 

cooperate for a plan step (and is defined in Appendix A).

__FormFinalPlan — ----------------------------------------------------------- ---------
HConstructConfirmationsAuxiliary 
S UseActionRequest 
responses : P Response 
accepts : P AgentID
formFinalPlan : AnnotatedPlan —> ¥  AgentID -» P AgentModel 

—> AnnotatedPlan

accepts =  {r : Response | r € responses A Third(r) =  true • First(r)}
Vap,ap' : AnnotatedPlan ; ms : ¥  AgentModel • 

formFinalPlan ap accepts ms = ap'
O- (Vm : Z  | n < #ap.body • ap'.body n =  

processStep (ap.body n) accepts ms)

7.11 Cooperative Intentions in the Warehouse Domain

We can illustrate the process of cooperative intention formation by returning to the Ware

house example. Suppose that an agent, agenti, has selected a particular plan, storeLarge- 
Plan, to achieve its goal of storing a box. Before a cooperative intention can be formed, 

this plan must be annotated; to annotate its plan the agent considers each action step in the 

plan in turn, and annotates it with the appropriate agents, based on its trust of them. Of 

course, annotating a contribution to itself avoids the risk associated with cooperation, and 

so is better from a risk perspective, but it does require the agent to act and so will have an 

associated cost. Thus, an agent must decide whether to annotate itself to a contribution by 

balancing the risk and cost. After deciding which contributions in the plan to perform itself 

the agent goes through the remaining steps, annotating them with the most trusted agent (or 

set of agents in the case of joint and concurrent actions) that have the required capabilities.
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In our example, suppose that agenti annotates itself to one of the contributions in the joint 

actions of picking up, moving, and putting down the box. The remaining contributions in 

the joint actions are annotated to the most trusted agent, in this case agent4. Thus, the 

resultant annotated plan is as follows.

name: storeLargePlan
achieves: [$(location, [boxl, room2]),

not (holding, [agenti, boxl])$] 
preconditions: [(location, [boxl, loci]),

(type, [boxl, large, type2])] 
body: [

<goal
[$(location, [agenti, rooml)),
(location, [agent4, rooml])$]>,

<joint-action
[<action (liftend, [agenti, boxl])=agentl>,
<action (liftend, [agent4, boxl])=agent4>]>,

<goal
[$(location, [agenti, room2]),
(location, [agent4, room2])$]>,

<joint-action
[<action (placeend, [agenti, boxl])=agentl>,
<action (placeend, [agent4, boxl])=agent4>]>]

Once the plan is annotated, the agent sends a request for assistance to agent4 and forms 

a nominal commitment. For simplicity, and since we are taking a closely coupled view, 

requests for assistance in the warehouse scenario are based upon communication of the 

complete annotated plan. Thus, agenti’s request message to agent4 includes the complete 

plan.

At this stage of execution agenti has sent a request, and formed a nominal commit

ment, and agent4 must process this request. Now, agent4 will also have perceived the 

environment and the box in the delivery area, and so the intensity of its tidiness motiva

tion will also be high. The plan contained in the request mitigates this motivation, and is 

considered to be of motivational value (the motivational effect outweighs the cost of per

forming the contributions). If agenti is trusted by agent4, which according to the trust 

matrix given earlier it is (with a trust value of 0.96), then it accepts the request, and forms a 

corresponding nominal commitment.
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On receiving the acceptance message the initiating agent (agenti) can form a full com

mitment, since agent 4 is the only other agent involved, and send a confirmation message. 

When agent4 receives this confirmation, it too can adopt a full commitment, and execution 

can begin.

7.12 Commitment Strategies

Cooperation as described here, involves a certain degree of cost and risk. The formation 

of a cooperative intention has computational costs associated with determining the agents 

to cooperate with, communicating with them, processing their responses, and forming the 

actual cooperative intention. In addition, there is an inherent cost in the limiting nature of 

cooperative intention that constrains future intentions (and therefore actions). In general, 

the longer the delay between obtaining commitments and relying upon them at execution 

time, the more time there is for an agent’s motivations to change, and so the risk is increased.

When an agent adopts a plan containing an action for which cooperation is sought, it 

can solicit assistance and initiate the formation of the required cooperative intention

• as soon as the plan is selected, using an immediate commitment strategy (ICS), or

• later at execution time, using a delayed commitment strategy (DCS).

Both these strategies require an agent to request assistance from others and elicit com

mitments from them in the form of a cooperative intention, as described earlier. The choice, 

therefore, is between when to perform the tasks of assigning agents to actions, establish

ing commitments, and so on, rather than whether to perform them. If an ICS is chosen, 

then these tasks are performed at the time of plan adoption, while they are undertaken at 

execution time with a DCS.

Since plans are typically partial, they may be elaborated with a subplan that requires 

cooperation. If the parent plan is also cooperative then an agent must already have chosen a
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strategy when adopting it. Continually re-evaluating which strategy to use for subplans may 

be prohibitively expensive when elaborating sophisticated plans, and is in any case unlikely 

also to provide a different answer. Consequently, the same strategy as for the parent plan is 

used, which has a lower overhead, leaving an agent more time to act. If a parent plan is not 

cooperative, but is elaborated with a cooperative subplan, the situation is no different from 

the general case, requiring a choice that can then be used subsequently.

7.12.1 Minimising Risk and Cost

In choosing between an ICS and a DCS, the aim is to minimise as much as possible both 

the risk and cost associated with cooperation. However, although the choice of strategy 

will certainly affect the cost of cooperation, since one strategy may result in the immediate 

establishment of a cooperative intention while the other may involve several failed attempts 

before successful establishment, it is not generally possible to determine this cost at the time 

of choosing, or which strategy offers the least cost. An estimate of the minimal cost can be 

obtained from the number of contributions in the plan that requires assistance, since assis

tance must be obtained for each of them. The final cost, however, is likely to be more than 

this estimate, since not all agents might initially agree to cooperate, and communication 

errors might occur.

Determining the exact cost of establishing a cooperative intention, requires knowledge 

of how agents will respond to requests for assistance. Responses are determined by the mo

tivations of the individual agents, however, and since motivations are private any estimates 

can only be based on observed behaviour. Not only is this likely to be expensive when 

many agents are involved, due to the resource demands of observing and reasoning about 

behaviour and motivation, but even with sufficient computational resources the resulting 

information is likely to be inaccurate. Since there is, therefore, no practical means of deter

mining which strategy will have the least cost, an agent should concentrate on minimising 

the risk of a plan failing through the actions of others. We now consider the factors that
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affect the risk of failure under both an ICS and a DCS.

7.12.2 Choice Factors

When using an ICS, failure is most likely as a result of failing to secure commitments from 

others at plan adoption time (if they might be obtained at execution time2), or of agents 

not fulfilling commitments at execution time. The main potential failure point in a DCS 

arises through failing to secure commitments from others at execution time (possibly after 

performing part of the plan individually). Thus, the choice between an ICS and a DCS 

corresponds to a tradeoff between the risk of wasting effort acting on the individual part of 

the plan only to fail to get assistance subsequently for the cooperative part, and failing to 

obtain commitments at adoption time when commitment would have been obtained later.

If there are insufficient agents with the relevant capabilities, the plan will certainly fail. 

Conversely, the more agents with these capabilities, the more likely it is that enough of 

them will cooperate or will provide adequate cover for those reneging on their commit

ments at execution time. Since agents act for motivational benefit, any plan in which they 

cooperate must also be motivationally valued. Now since motivation, at least in part, is 

determined by the environment, environmental change also results in motivational change, 

and an agent that agrees to cooperate at adoption time may not do so by execution time if 

there is no longer any motivational benefit. Thus, the extent to which the environment is 

dynamic influences the choice of strategy, and in a dynamic environment it may be better 

to postpone the establishment of commitments until execution time. Finally, the trustwor

thiness of others can be used as an indication of the likelihood that their commitments will 

be fulfilled. Higher trust suggests a greater perceived likelihood of fulfilling commitments. 

If other agents are generally distrusted, therefore, obtaining commitments at adoption time 

may be too expensive since they are more likely to renege on them.
2For example, a change in motivations between plan adoption and execution may result in positive motiva

tional value for cooperation, or a conflicting intention at adoption time may no longer exist.
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Trust in Choosing a Strategy

At the time of choosing between an ICS and a DCS (the point of plan adoption), it is not 

known which agents will be requested for assistance, since the plan has yet to be annotated. 

Consequently, it is not possible to consider only the trustworthiness of the agents whose 

assistance will be requested. Instead, the trust of all capable agents must be considered. 

Although the trust values may change between choosing between commitment strategies, 

these changes cannot be predicted and so a decision must be based on the current trust val

ues. In Section 6.4, we discussed assessing the cooperative rating for a plan by ordering 

the capable agents for each action according to trust, and weighting the influence of succes

sively less trusted agents by a corresponding increasing factor. We use this rating here as 

an estimate of the risk arising from the trust of others.

Environmental Dynamism

Both the number of agents with the requisite capabilities and trustworthiness are easily 

determined from agent models, but environmental dynamism is less immediately easy to 

assess. However, the relationship between the changes to the environment and changes to 

beliefs and motivations points to a solution. On each iteration through its control cycle, 

an agent perceives the environment and updates its beliefs and motivations to reflect any 

changes. The degree of dynamism in an agent’s beliefs and motivations are therefore both 

candidates for estimating the environmental dynamism.

The number of beliefs that change at a given time correspond to the number of per

ceived changes in the environment. Similarly, the number of changes over a period of time 

characterise the degree of environmental dynamism, so the number of changes in beliefs 

can be averaged over a period to form an estimate of change per iteration. The length of the 

period determines the persistence of the effects of peaks and troughs, and can be regarded 

as the extent of an agent’s environmental memory. Calculating the degree of dynamism in 

this manner is requires only minor extra effort, and by concentrating on changes in beliefs
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no assumption is made about the nature of motivations of others. Where an agent has no 

knowledge of the motivations of others, it is better to consider all changes in the environ

ment, rather than to assume that if its own motivations changes, then so do those of others.

Domain Dependence

The levels of importance placed on the various factors to be considered in choosing between 

an ICS and a DCS, however, will vary according to the domain. For example, in a domain 

where there are few other agents, the number of agents with the required capabilities may 

be more important than their trust, since if there are only a few agents having the required 

capabilities, then cooperation must be attempted with them, regardless of their trust (unless 

they are completely distrusted). Similarly, a highly dynamic environment is more important 

than agent trust, since trust may change between execution time and adoption time. It is 

therefore not possible to provide a (computationally realistic) strategy for choosing between 

an ICS and a DCS, that will give the best result in all domains. Indeed, even in a specific 

domain, the degree to which it is dynamic may change over time, and individuals may join 

or leave the system so that the number of agents with a given capability may also change. 

To address this, an agent must choose dynamically which strategy to use for a particular 

plan, based on its knowledge of the current situation. This choice is embodied in a decision 

function that takes relevant factors as input, and which must be instantiated according to the 

individual agent and its domain.

7.12.3 Strategy Choice

The input to the decision function includes threshold values representing when the environ

ment is considered too dynamic to use an ICS, or there are too few trusted agents able to 

assist. In the majority of situations an ICS is suitable for establishing cooperative intention; 

it is only in the circumstances identified above that a DCS should be used. For this reason, 

we make an ICS the default choice of strategy, and provide an agent with a decision function
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for choosing whether to override this default with a choice to use a DCS. A consequence 

of this is that since an ICS corresponds to the approach taken in the majority of existing 

models of cooperation, our model can be viewed as extending the general solution to cope 

with extreme conditions. We can now give the instantiation of this decision function, as 

follows, where dT and rT are the dynamism and risk (arising from trust) thresholds respec

tively. From the pre-execution assessment of its plan library an agent has an estimate of the 

risk arising from its trust of others, and if this value is less than the risk threshold, or if the 

perceived environmental dynamism exceeds the dynamism threshold, then a DCS should 

be used. We formalise this below in the function useDCS.

UseDCS_________________________________________________ ____
useDCS : FAgentID -> F AgentModel -> Plan - > R - » R - » R - * R  

—> R -> bool

V capable : FAgentID-, ms : FAgentModel-, 
p  : Plan; dynamism, dT, rT, Wy, wc : R •

useDCS capable ms p  dynamism dT rT Wj wc = true
(quality p  ms w* wc) > rT V dynamism > dT  A 

useDCS capable ms p  dynamism dT rT w* wc =  false 
<=> (quality p  ms ws wc) <rT\ J  dynamism < dT

Note that if the number of capable agents is less than is required, then both strategies 

fail immediately. The effectiveness of this mechanism relies on judicious choice of the 

dynamism and risk thresholds. However, as the nature of the system may change over 

time, the ideal threshold values may also change, and to cope with such environmental 

change, an agent might dynamically modify these thresholds. For example, if an ICS is 

used and agents frequently break commitments, thresholds can be increased. Similarly, if 

a DCS is used without obtaining commitment at execution time, thresholds can be lowered 

to encourage use of an ICS. We do not, however, consider such matters further here.

184



7.13 Intention Execution

After forming a cooperative intention, the final stage of cooperation is for the agents to ac

tually execute the plan to which they are committed. Each agent is committed to performing 

a particular contribution, either individually or as part of a joint or concurrent action. Now, 

in order for the execution of a plan to be successful, the steps in it must be performed in 

the correct order. For an individual agent executing an individual plan by itself, ensuring 

the steps in the plan are performed in order is trivial — the agent simply works through the 

plan step by step, performing each action as it is reached. When a group of agents act to

gether towards the achievement of some goal, however, their individual contributions must 

be coordinated. Successful execution of a cooperative plan requires agents to perform then- 

contributions according to a particular ordering, namely that specified by the plan.

We do not discuss how to achieve such ordering, since it is beyond the scope of this 

thesis. However, Kinny et al. offer a simple solution in their model of Planned Team Ac

tivity [55], which we adopt for completeness. Their solution is to require that the agent 

executing a given action informs the agent of the following action when execution is suc

cessfully performed. Correspondingly, the agent of the following action must not perform 

its contribution until it is informed that the previous action has been completed. In the case 

of joint and concurrent actions we extend this solution such that the set of agents perform

ing joint or concurrent actions must inform the agent(s) of the following action when their 

contributions are complete. Similarly, each agent involved in the execution of the following 

action must wait until it has been informed of completion by each of the agents performing a 

contribution in the previous action. Action ordering can be achieved, therefore, by inserting 

appropriate communication and waiting actions into the plan prior to its execution. More 

details of this approach to constraining the ordering of actions are given in Appendix B 

where we describe our implementation of the framework.

At execution time, when a subgoal is reached it must be elaborated by selecting an 

appropriate plan, and incorporating it into the agent’s existing intention. The mechanism
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for plan selection described in Chapter 6 can also be used at execution time, along with 

the mechanisms for intention adoption described in this chapter. However, our earlier con

sideration of intention adoption was with respect to adopting a plan for a goal, rather than 

adopting a subplan for a subgoal. Although many of the issues described earlier are the 

same, the manner in which the intention adoption mechanisms are used will vary depend

ing on whether the intention concerned is individual or cooperative. In particular, when 

elaborating a plan for which there already exists a cooperative intention, the intentions and 

motivations of the agents concerned must be considered.

The elaboration of an individual plan is straightforward, since there is no pre-existing 

cooperative intention. If the selected subplan is also individual, then it is simply insert

ed into the intention as described in Chapter 4. Alternatively, if the chosen plan requires 

cooperation, the agent must decide when to solicit commitments from others towards co

operation — it must choose between using an ICS or a DCS. If a DCS is chosen then the 

formation of a cooperative intention is delayed until execution reaches the cooperative part 

of the plan, and adoption occurs as for an individual subplan. If an immediate commitment 

strategy is chosen, then the agent attempts to establish a cooperative intention towards the 

subplan, before adding it to its intentions. The mechanisms used for cooperative intention 

establishment and adoption are as described in this chapter.

7.13.1 Cooperative Plan Elaboration

As with individual plans, elaborating a subgoal in a cooperative plan involves selecting an 

appropriate plan, and forming a corresponding intention. However, for a cooperative plan 

there is typically already a group of agents having a cooperative intention. Only if the plan 

was adopted using a DCS, and no cooperative actions have yet been executed, will there 

not be a such a group of agents. In this case, the plan can be elaborated as though it were 

an individual plan, and a DCS must be used for the subplan (since the strategy used for a 

parent plan should be used for its subplans). There are two main options for plan selection
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for a cooperative plan where a cooperative intention already exists:

• elaboration can be centralised and the task of plan selection given to a particular 

individual, or

• it can be decentralised and the group can form a plan together.

In this thesis, we are concerned, with cooperation arising from individual agents, rather 

than individual action resulting from some social mental state. In other words, our focus 

is on the development of a framework for cooperation resulting from an individual agent 

wishing to gain assistance for a particular goal. Decentralised plan formation requires some 

mechanism through which members of the group offer potential plans, or assist in the con

struction of a plan. Some planning ability, is required, on behalf of the agents involved, 

along with some form of negotiation. However, we are concerned with agents whose plan

ning is restricted to selecting from a predefined plan library, rather than planning from first 

principles. Decentralised planning is addressed elsewhere (for example in the notion of 

Shared Plans [42, 43]) and, although we do not give it further consideration here, it would 

be a relatively simple extension to our framework to incorporate one of the group planning 

mechanisms described elsewhere.

Therefore, we consider a centralised approach to planning in which the task of plan 

selection is assigned to an individual member of the group. This approach is analogous 

to that taken by Kinny et al. in their work on Planned Team Activity [55]. There are two 

options in centralised planning: assign the role of plan selection to the initiating agent, 

or assign it to some other agent. Since cooperation, in our framework, arises from the 

initiator’s desire for assistance in achieving a goal, we assign the role of plan elaboration to 

the initiating agent. There are, however, two situations in which the initiator might prefer 

plan selection to be performed by an agent other than itself. Firstly, if there is some other 

agent with more knowledge of the problem that is better placed to choose an appropriate 

plan, or secondly, if the initiator has no applicable plans for the subgoal or those that it does 

have are of zero or negative motivational value, then plan elaboration should be assigned to
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another agent. We formalise this below in the following schema, by defining the function 

delegateElaboration which returns true if the elaboration of a particular subgoal should be 

assigned to another agent.

__DelegateElaboration----- .-----------------------------------------------------------
EAgent
delegateElaboration : Goal —> bool

V subgoal: Goal • delegateElaboration subgoal =  true
(planSetForGoal subgoal beliefs planLibrary) =  0  V 
(Vp  : Plan; m : Motivation | m 6 motivations A

p  £ {planSetForGoal subgoal beliefs planLibrary) • 
mvPlan m p  < 0)

V subgoal: Goal • delegateElaboration subgoal = false
(planSetForGoal subgoal beliefs planLibrary) /  0 A  
(3p  ; P/tf«; m : Motivation | m € motivations A

p  € {planSetForGoal subgoal beliefs planLibrary) • 
mvPlan m p  > 0)

A group’s cooperative intention is relative to the initiating agent’s goal, since it is the 

reason for their cooperation. Therefore, even if another agent selects a plan, that plan must 

be accepted by the initiating agent and it must not conflict with the initiator’s intentions, 

and must be of motivational value. The initiating agent, therefore, has a supervisory role 

in the process of plan elaboration. Where the initiating agent is responsible for selecting 

the plan to be used in elaboration, it must find the plan acceptable, otherwise it would not 

have chosen it. However, where plan selection is performed through another method, some 

check is need to ensure the initiator accepts the selected plan.

7.13.2 Centralised Elaboration

Using the mechanisms described in Chapter 6 the initiating agent selects the best plan for 

the subgoal. There are two main options for adopting this plan. Firstly, the plan could 

be communicated to the group, and adopted if it is of sufficient motivational value to each 

member of the group. This mechanism, however, requires that the group are informed of
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the complete plan which, as described earlier in this chapter, is not necessarily the best ap

proach. Secondly, the adoption of the subplan could be achieved through the application 

of the mechanisms for the adoption of a (parent) plan. Recall that this involves annotating 

the plan with agents to ask for assistance, requesting assistance, and then forming a com

mitment once assistance is offered. The advantage of using these mechanisms is that the 

group is not informed of the complete plan where it is not appropriate to do so, and we 

therefore use this latter option for the adoption of the selected plan. If the initiating agent 

has no appropriate plan, then it can ask for assistance, in the form of an appropriate plan 

being offered.

There is, however, one key difference between adopting a subplan of a cooperative 

intention, and adopting a plan for a goal, namely, that for the intention to be a cooperative 

intention some group of agents must already be committed to its achievement, or at the 

very least to performing certain actions in its favour. The implication of this is that these 

agents may be more likely to agree to assist in the performance of the subplan. If a given 

member of the cooperative intention was informed of the goal for which assistance was 

requested, then it is likely that the goal has motivational value, and so the subgoal may 

also have motivational value. However, if the agent was only asked to perform a particular 

action, and was not informed of the goal then its existing commitment does not indicate 

that the request is likely to be motivationally valuable. It does, however, indicate that the 

agent considered the initiating agent sufficiently trusted, and will not decline to cooperate 

on the basis of trust (unless its trust has changed). Therefore, annotating with agents that are 

already committed to the cooperative intention of which the subgoal is a part is, in general, 

likely to arrive at a commitment sooner than annotating with agents with whom there is no 

pre-existing commitment. This can be factored into the process of adopting a subplan if, at 

the annotation stage, the initiator first tries to annotate the plan with agents that are already 

part of the cooperative intention. Only if a commitment has not been established, and there 

are no more agents to ask that are part of the cooperative intention, are other agents asked.
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7.14 Summary

In this chapter we have described a set of procedures through which an agent can establish 

a cooperative intention towards a plan, such that agents will only form and retain a cooper

ative intention if they expect to gain motivational value from doing so. Additionally, should 

an agent’s motivations change in such a way as to make the cooperative intention no longer 

of motivational value, then the commitment is dissolved, keeping all agents informed.

The first stage in the formation of a cooperative intention is for the initiating agent to 

annotate its chosen plan with the agents whose assistance it will request. Plan annotation 

can be minimal or redundant as determined by the importance of the agent’s goal. By 

default the minimal annotation strategy is used and the redundant approach is only used if 

the motivational value associated with the goal is over a particular threshold. In cases where 

the redundant approach is used, the initiating agent requests assistance from several agents 

for each action, and each agent that agrees forms a nominal commitment to perform that 

action. Once the initiator has received responses from the requested agents, one particular 

agent (the most trusted) is chosen for each contribution, and the others are informed that 

their assistance is no longer required. These agents then drop their nominal commitment, 

and reduce their trust of the initiator, since they have unnecessarily constrained their actions 

though the nominal commitment adopted on its behalf.

In general, cooperative intentions are discharged successfully if one of the agents in

volved changes its motivations such that the cooperative activity is no longer of value (or 

its commitment is dropped for some other reason). However, if an agent does not adhere 

to the appropriate conventions and simply drops its commitment without informing others, 

then they are left with commitments to a cooperative intention that will not be fulfilled. 

Until one of the remaining agents discovers that their intention is unachievable, or drops 

its commitment and informs others, the remaining members of the group will keep their 

commitment, thereby constraining their actions unnecessarily. However, provided agents 

follow the conventions given in Section 5.2 this problem is avoided.
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The formation and maintenance of a cooperative intention requires agents to communi

cate certain information to each other. In order for communication to take place the agents 

concerned must have a commonly understood agent communication language (ACL). There 

are several existing ACLs such as KQML [47] and the FIPA ACL [33], and consideration 

of such languages is beyond the scope of this thesis. Instead, an instantiation of our frame

work can use one of the existing ACLs. All that is required is that agents are able to request 

assistance or information from another, accept a request for assistance, decline a request for 

assistance, and inform another of something.

Related Work

The process for establishing cooperative intention outlined above is related to the work of 

Cohen and Levesque, Kinny el al., and Wooldridge and Jennings, and since our view of 

cooperative intention is based on their work it is useful to compare it with our approach. 

All of these models aim to establish some form of group commitment to a goal and, with the 

exception of Cohen and Levesque’s work, to eventually obtain a commitment from agents 

to performing particular actions. Each of these approaches is based on the notion of some 

initiating agent having a goal for which it desires assistance, and this agent then requesting 

the cooperation of others. The details of how this is performed, however, are different in 

each approach.

Recall that Cohen and Levesque’s notion of a group’s commitment (or joint intention 

in their terminology) is based on the members committing to a particular goal, rather than 

to a goal and a specific plan to achieve it. As we discussed in Section 5.2, this view of joint 

commitment is insufficient for cooperation, because there is no requirement for agents to 

be committed to performing compatible plans to achieve their goal. Moreover, Cohen and 

Levesque do not consider the motivational reasons an agent might have for entering into a 

cooperative interaction.

Planned Team Activity (PTA) is a related approach (introduced in Chapter 2) to cooper
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ation which, unlike Cohen and Levesque’s model, is concerned with obtaining commitment 

towards a specific plan. There are a number of differences between our approach and that 

of PTA. The most significant difference is that our model is based on the assumption that 

agents are motivated, whereas in PTA the issue of autonomy (and in particular motivation) 

is not addressed. Although Kinny et al. state that in deciding whether to agree to coop

erate or not, agents should check their current commitments and preferences, they are not 

concerned with how this happens, or the form such preferences might take, whereas for 

us cooperation must be motivated on the behalf of the agents concerned. Similarly, PTA 

does not consider the potential risk of interacting with others, which we address through 

the notion of trust.

The final related work that we identify here is Wooldridge and Jennings’ formalisation 

of the cooperative problem solving process [102, 104], in which cooperation is divided into 

the four stages of recognition, team formation, plan formation, and team action as described 

in Sections 2.7 and 5.3. Their work is especially relevant since we adopt an extended version 

of their notion of cooperative intention. However, their formalisation is an abstract model 

of cooperation and, as they themselves recognise, is idealised in the sense that it provides 

a top-level specification for a system, requiring more detail before it can be implemented. 

Our approach is based on their model, and we view it as instantiating some of the details that 

were previously left abstract. Their model, although concerned with autonomous agents, 

does not consider why an agent might enter into a cooperative intention, i.e. the reasons for 

doing so, and we address this through the introduction of motivational value.
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Chapter 8

Conclusions

8.1 Introduction

Cooperation is fundamental to the operation of multi-agent systems in which a collection of 

autonomous agents interact to achieve their goals. Existing models of cooperation, however, 

are limited in that they typically do not consider the need for cooperation to be motivated 

on behalf of the agents involved, nor do they provide agents with a means to manage the 

risk involved in interacting with others. Of the few models that do consider the notion of 

motivation or of risk, they typically focus on one of these, leaving the issues arising from 

the (potentially conflicting) influences of each unexplored.

Those models that take the view that an agent should have some reason, or motivation, 

to cooperate tend not to give details of the form such a reason might take; instead they 

simply assume that agents check their preferences before cooperating, without defining 

what these preferences are, or how they operate (for example, [55,104]). Similar limitations 

arise in work where the risk from cooperation is considered, in that either insufficient detail 

is given about the mechanisms involved [54], such as how risk is assessed and how it can 

be used in decision making, or the agents concerned are not motivated, and their decisions 

regarding cooperation are based primarily on an assessment of risk without consideration of
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the potential benefits to be obtained from different (possibly risky) courses of action [69], 

For any given goal, there are often several courses of action to achieve it, from which an 

agent must select the best. An agent may be faced with a choice about whether or not to 

achieve its goal through cooperation, and although achieving a goal cooperatively may be 

of a lower cost than achieving it alone, it is likely to have a higher risk of failure, due to the 

reliance on the actions others.

In our view, as argued in Chapter 6, the choice between courses of action in a coopera

tive environment, should consider both the cost and the risk associated with these options, 

and make an appropriate trade-off between them. Similarly, where an agent is asked to 

assist in the achievement of another’s goal, it should consider both the motivational benefit 

of doing so, and the potential risk of failure in deciding whether to accede to the request. 

In this thesis we have described how an agent can make such judgements, and the process

es that are involved in cooperating if a cooperative course of action is chosen. We give 

more detail of these contributions in the following section, and in Section 8.3 describe the 

relation of our framework to existing work. In Section 8.4 we discuss the limitations of 

our approach, and provide pointers to potential future work, and finally, in Section 8.5 we 

conclude this thesis.

8.2 Contributions

The contributions made in this thesis can be divided into three significant areas: the con

struction of a framework for cooperation, and the development of detailed models of plan 

selection and cooperative intention formation within that framework, as we describe in this 

section.

Framework for motivated cooperation We have presented a framework for motivated 

cooperation, in which an agent’s motivations guide its behaviour, and govern any 

interactions it might have with others. The framework defines the form that cooper
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ation takes and the decision mechanisms that lead to it; where appropriate, however, 

the details are left open allowing it to be tailored and instantiated in a particular model 

for a specific domain.

Our framework is based on the notions of BDI [3], which are widely used to provide 

a balance between reactivity and deliberation. The BDI architecture alone, though, 

does not account for the reasons an agent might have for adopting particular goals, 

or choosing to cooperate with others. However, the additional mental component 

of motivation provides a suitable means for accounting for these reasons, as argued 

by Luck and d’Invemo [61]. Therefore, in our framework we extend the notions of 

BDI to include motivations, and define the Senara motivated agent architecture. 

Motivations give flexibility, especially in areas such as choosing a course of action 

when there are multiple conflicting options. Similarly, motivations provide a means 

through which agents can choose when to cooperate, i.e. when to ask for assistance, 

and when to offer it. Existing work has not considered motivations in this context, 

and in this thesis we have accounted for the roles that they play.

Our framework also provides a method for dealing with the risk that arises where 

autonomous agents cooperate. In particular, we describe how the notion of trust can 

be used by an agent to manage the risk that arises from cooperation.

Plan Selection In our view, plan selection is a fundamental component of cooperation, 

since it embodies the choice of whether to cooperate or not. The process of plan 

selection addresses the problem of how to choose between (and elaborate) plans in 

a cooperative environment. Existing models of cooperation are limited, however, 

and tend to focus on situations where cooperation is necessary, and do not consider 

optional cooperation (or at least, not in sufficient detail). We present an approach 

to plan selection that is appropriate in situations where cooperation is necessary or 

optional, and we describe how a combination of standard planning heuristics and 

an assessment of the risk associated with each plan can be used to choose a plan 

to pursue. The notion of trust is introduced and, along with knowledge of agents’
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capabilities, is used to determine the risk associated with a plan.

Cooperative Intention Formation The process of cooperative intention formation is con

cerned with forming a commitment between a group of agents to achieving a particu

lar goal cooperatively, through the execution of a specific plan. In our view this com

mitment must be motivated on behalf of the agents involved, that is to say, an agent 

will only cooperate if it is in its own interest to do so, and this aspect of cooperation 

is also typically not considered in existing work. There are two sides to cooperative 

intention formation in our framework: soliciting commitment and offering it.

• When an agent selects a plan that requires cooperation for its successful exe

cution, it solicits commitment from others towards assisting in the execution of 

the plan. We describe how an agent can assess others in terms of their capabil

ities and, more importantly, their trustworthiness in order to minimise the risk 

of failure at plan execution time.

• Those agents whose assistance is requested, must decide whether to cooperate 

or not. We propose a mechanism through which such agents can choose, based 

on an assessment of the value of cooperation in motivational terms, and of the 

risk of cooperating in terms of the trustworthiness of the other agents involved.

Our framework also defines the procedure through which a cooperative intention is 

formed, where sufficient agents offer assistance. In order to be applicable in dynamic 

environments, agents are given a choice about when to form such a commitment: at 

plan selection time, or at plan execution time.

8.3 Relation to Existing Work

The contributions described above correspond to the key areas in which this thesis addresses 

limitations in existing work on cooperation. There are, however, a number of other areas

196



that this thesis is related to, and in which it extends existing work, and we consider these in 

this section.

Our framework is based on the Senara agent architecture which extends the BDI mod

el to include the additional mental component of motivation, based on Luck and d’Invemo’s 

work on agent autonomy [61, 62]. Luck and d’Invemo, however, are concerned with the 

development of a general framework for autonomous agency based on the notion of motiva

tion, rather than with the development of a specific agent architecture, and therefore some 

details of their model are left abstract. For example, they do not specify precisely how to 

instantiate the mechanisms for assessing the motivational value of generating, satisfying, 

and removing goals. Senara, however, is a complete implemented architecture and can be 

seen as an instantiation of their model, in which we provide the details that were previously 

left abstract.

Together with motivation, trust is a fundamental component of our framework, provid

ing agents with a means to manage the risk associated with interacting with others. Our 

view of trust is derived from Marsh’s work [67] and we incorporate it into our framework 

of cooperation. Unlike us, however, Marsh is concerned with the issues surrounding trust 

itself, rather than with its relation to cooperation as a whole or with the development of 

a model of cooperation using the notion trust, and in that sense our work can be seen as 

providing the details that are needed to incorporate this notion of trust into a framework for 

cooperation.

Our view of cooperation is loosely based on Wooldridge and Jennings’ four stage ap

proach comprising: recognition, group formation, deciding on a course of action, and group 

action. Their model is abstract and intended as a high-level specification rather than a com

plete model, and therefore requires some of the details to be instantiated before it can be 

used practically in an implemented system. They also recognise that although the four 

stages in their model are presented as being sequential, in practice they may not occur 

strictly in the order they describe. Indeed, as discussed in Chapter 5 this is the key differ
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ence between our model and theirs; in our approach an individual agent selects a plan that 

requires cooperation and then seeks assistance, whilst in their approach an agent recognises 

the potential for cooperation, seeks assistance, and then the agents as a group form a plan. 

Plan selection in our model is analogous to deciding on a course of action, and recognis

ing whether this requires cooperation. If so, then a cooperative intention is formed (group 

formation in Wooldridge and Jennings’ terms), and this intention can then be executed (i.e. 

group action).

There are other existing models of cooperation, such as STEAM [98] and Planned Team 

Activity [55], but these also do not consider either trust or motivations, and in this respect 

our framework can again be seen as extending existing models such as these.

8.4 Limitations and Future Work

In the development of our framework we have made certain assumptions and decisions, 

which not only shape the framework, but also give rise to limitations within it, which in 

turn indicate areas of potential future work. In particular we concentrate on motivated 

agents, as embodied by the Senara architecture, and we assume that these agents have 

knowledge of others’ capabilities and trustworthiness. Trust, in particular, is fundamental 

to our view of cooperation, and we assume that agents have appropriate estimates of the 

trustworthiness of others, which are used to determine when to cooperate, and with whom. 

While in general this assumption, and our use of these trust values, is effective, there are 

certain aspects in which the framework is limited, in particular with respect to updating trust 

values, plan assessment (for selecting between plans), and plan annotation (for choosing 

agents to request assistance from).

In this thesis, we are concerned with the use of trust in making decisions about coop

eration, rather than with obtaining and maintaining trust values in themselves, and we use 

a simple procedure for updating trust values after interactions. However, this procedure is
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limited in that once an agent becomes distrusted to the extreme in the eyes of another it re

mains distrusted, and it cannot regain trust. Typically, this issue does not arise since it only 

occurs with extreme distrust, and agents that are distrusted to the extreme are unlikely to 

change their nature. However, there are exceptional cases in which this is a problem, such 

as if an agent experiences some temporary difficulty that causes it to renege on its commit

ments, and become distrusted. If this difficulty is later addressed, there is no mechanism 

through which the agent can regain the trust of others. Thus, future work might consider 

the development of a more sophisticated mechanism for updating trust, such that agents can 

regain trust.

The procedures for plan assessment and plan annotation are the two most computa

tionally expensive areas of the framework, and may cause problems with large numbers of 

agents. The computational cost of plan assessment to an agent is proportional to the number 

of plans in its library and the number of agent models, while the cost of plan annotation is 

proportional to the number of agents. Both areas require further investigation, with the aim 

of improving their efficiency.

The initial assessment of plans is performed off-line prior to execution, and so its cost 

does not directly affect an agent. However, the environment changes over time and with 

interactions, and therefore so does an agent’s trust of others, requiring new judgements to 

be made about appropriate plans, i.e. re-assessment of the plan library is needed. Such 

re-assessment, however, despite being performed at run-time, can be carried out while the 

agent is idle, thereby reducing the effect of the computational cost on the agent’s operation. 

Plan annotation, on the other hand, must be performed at execution time, since before an 

agent can request assistance it must annotate its chosen plan. Therefore, although plan 

assessment is more costly than plan annotation, it is plan annotation that is most significant, 

since an agent has no choice about when to perform it, and cannot wait until it is idle.

In our framework, decisions about cooperation are made on the basis of motivations 

and trust, and in particular, the motivational value of a given course of action to the agent
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making the choice, and the expected risk. Where an agent solicits assistance for a plan, 

others’ decisions about whether to cooperate are based on their motivations and the degree 

to which they trust the requester. Now, as discussed in Chapter 6, we do not consider others’ 

motivations as a factor in decisions about cooperation, since an agent does not have direct 

access to information about them. However, if the framework is extended to incorporate 

learning based on observation, then others’ motivations could be factored into the decision 

making process. If an agent is observed performing a given action, then that action must 

be of motivational benefit to it, either indirectly through the goal for which the action is 

performed, or directly from the action itself. Over time, an agent can build up a picture 

of the actions that others are seen to perform, and can use this to estimate the likelihood 

of particular agents agreeing to cooperate for the actions in a plan. Similarly, an agent’s 

estimate of others’ trustworthiness can be improved by observation. For example, if an 

agent is seen to renege on its commitments to another, then the trust associated with it 

might be decreased, since it is observed to be untrustworthy.

There are certain aspects that are commonly associated with the cooperative process 

that our framework does not consider, in particular the issues relating to negotiation and 

group planning. When soliciting assistance for a goal an agent might enter into negotiation 

with another in order to persuade it to offer its assistance. In our framework, when a group 

of agents that are executing a cooperative plan reach a subgoal in that plan, the elaboration 

of the subgoal is performed by an individual agent, using its individual plan library. Multi

agent planning [41, 42] offers an alternative approach where a group of agents construct a 

plan together, by pooling their knowledge about how to achieve a goal. Both of these areas 

provide scope for incorporating other existing work into our framework.

8.5 Summary

Cooperation is fundamental to multi-agent systems, and is the building block that allows 

a loose collection of individuals to act together and achieve goals that might otherwise be
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unachievable. This thesis can be seen as extending existing work in a number of areas, as 

follows. In particular,

• the BDI approach has been extended by giving agents motivations, which provide the 

reasons for their behaviour, and allows them to be more flexible,

• we have instantiated previous work on motivation in a complete framework for coop

eration, and accounted for the roles that motivations play in the cooperative process,

• cooperation with autonomous agents involves an inherent risk, and we have extended 

previous work on trust to provide means for managing this risk, and

• we have addressed some of the limitations in existing models of cooperation, in par

ticular with respect to motivation and trust.

We focus in particular on the problems of risk, flexibility, and dynamism, and we use 

the notions of trust and motivation to address the issues that arise, and we do not address 

certain other aspects, such as negotiation and multi-agent planning. In that sense, while the 

work has moved the state of the art forwards a substantial amount, just as in any significant 

and valuable endeavour, the path ahead offers opportunity for further work.

201



References

[1] L. P. Beaudoin and A. Sloman. A study of motive processing and attention. In 

A. Sloman, D. Hogg, G. Humphreys, D. Partridge, and A. Ramsay, editors, Prospects 

fo r Artificial Intelligence, pages 229-238, Amsterdam, 1993. IOS Press.

[2] M. E. Bratman. Intention, Plans, and Practical Reason. Harvard University Press, 

1987.

[3] M. E. Bratman. What is intention? In P. R. Cohen, J. Morgan, and M. E. Pollack, 

editors, Intentions in Communication, pages 15-32. MIT Press, 1990.

[4] M. E. Bratman. Shared cooperative activity. Philosphical Review, 101(2):327—341, 

April 1992.

[5] M. E. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical 

reasoning. Computational Intelligence, 4:349-355, 1988.

[6] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal o f 

Robotics and Automation, 2(1): 14-23, 1986.

[7] R. A. Brooks. Elephants don’t play chess. In P. Maes, editor, Designing Autonomous 

Agents. MIT Press, 1990.

[8] R. A. Brooks. Intelligence without reason. In Proceedings o f the Twelfth Internation

al Joint Conference on Artificial Intelligence (IJCAI-91), pages 569-595, Sydney, 

Australia, 1991.

202



[9] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139- 

159, 1991.

[10] C. Castelfranchi. Social power. In Y. Demazeau and J.-R Muller, editors, Decentral

ized A.I.: Proceedings o f the First European Workshop on Modelling Autonomous 

Agents in a Multi-Agent World (MAAMAW-89), pages 49-62. Elsevier Science Pub

lishers B.V., 1990.

[11] C. Castelfranchi. Guarantees for autonomy in cognitive agent architecture. In M. J. 

Wooldridge and N. R. Jennings, editors, Intelligent Agents: Proceedings o f the First 

International Workshop on Agent Theories, Architectures and Languages (ATAL-94), 

pages 56-70. Springer-Verlag, 1995.

[12] C. Castelfranchi and R. Conte. Distributed artificial intelligence and social science: 

Critical issues. In G. M. P. O’Hare and N. R. Jennings, editors, Foundations o f 

Distributed Artificial Intelligence, pages 527-542. John Wiley & Sons, 1996.

[13] C. Castelffanchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy, 

social importance, and quantification. In Proceedings o f the Third International Con

ference on Multi-Agent Systems (ICMAS-98), pages 72-79, Paris, France, 1998.

[14] C. Castelffanchi, M. Miceli, and A. Cesta. Dependence relations among autonomous 

agents. In E. Werner and Y. Demazeau, editors, Decentralized A.I. 3: Proceedings 

o f the Third European Workshop on Modelling Autonomous Agents in a Multi-Agent 

World (MAAMAW-91), pages 215-227. Elsevier Science Publishers B.V., 1992.

[15] P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial 

Intelligence, 42:213-261, 1990.

[16] P. R. Cohen and H. J. Levesque. Persistence, intention, and commitment. In P. R. 

Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in Communication, pages 

33-69. MIT Press, 1990.

203



[17] P. R. Cohen and H. J. Levesque. Confirmations and joint action. In Proceedings 

o f the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91), 

pages 951-957, Sydney, Australia, 1991.

[18] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25:487-512, 1991.

[19] P. R. Cohen, H. J. Levesque, and I. Smith. On team formation. In J. Hintikka and 

R. Tuomela, editors, Contemporary Action Theory. Synthese, 1997.

[20] R. Conte, M. Miceli, and C. Castelffanchi. Limits and levels of cooperation: Dis

entangling various types of prosocial interaction. In Y. Demazeau and J.-P. Muller, 

editors, Decentralized A.I. 2: Proceedings o f the Second European Workshop on 

Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-90), pages 147— 

157. Elsevier Science Publishers B.V., 1990.

[21] I. Craig. Formal Specification o f Advanced AI Architectures. Ellis Horwood, 1991.

[22] D. C. Dennett. Brainstorms: Philosophical essays on mind and psychology. Har

vester Press, Hassocks, Sussex, 1978.

[23] M. Deutsch. Cooperation and trust: Some theoretical notes. In M. R. Jones, editor, 

Nebraska Symposium on Motivation, pages 275-319. University of Nebraska Press, 

1962.

[24] M. d’Invemo, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of 

dMARS. In M. P. Singh, A. Rao, and M. J. Wooldridge, editors, Intelligent Agents IV: 

Proceedings o f the Fourth International Workshop on Agent Theories, Architectures 

and Languages (ATAL-97), pages 155-176. Springer-Verlag, 1998.

[25] M. d’Invemo and M. Luck. Engineering AgentSpeak(L): A formal computational 

model. Journal o f Logic and Computation, 8(3):233-260, 1998.

[26] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231-272, 1979.

204



[27] A. F. Dragoni. A model for belief revision in a multi-agent environment. In E. Werner 

and Y. Demazeau, editors, Decentralized A.I. 3: Proceedings o f the Third European 

Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-91), 

pages 103-112. Elsevier Science Publishers B.V., 1992.

[28] E. H. Durfee. Blissful ignorance: Knowing just enough to coordindate well. In 

Proceedings o f the First International Conference on Multi-Agent Systems (ICMAS- 

95), pages 406-413, San Francisco, CA, 1995.

[29] I. A. Ferguson. TouringMachines: An architecture for dynamic, rational, mobile 

agents. PhD thesis, University of Cambridge, November 1992. Technical Report 

No. 273.

[30] I. A. Ferguson. Integrated control and coordinated behaviour: A case for agent mod

els. In M. J. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Proceedings 

o f the First International Workshop on Agent Theories, Architectures and Languages 

(ATAL-94), pages 203-218. Springer-Verlag, 1995.

[31] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem 

proving to problem solving. Artificial Intelligence, 2(3—4): 189-208, 1971.

[32] K. Fischer, Müller J. R, and M. Pischel. A pragmatic BDI architecture. In Intelligent 

Agents II: Proceedings o f the Second International Workshop on Theories, Architec

tures and Languages (ATAL-95), pages 203-218, Wooldridge, M. J. and Müller, J. P. 

and Tambe, M., 1996. Springer-Verlag.

[33] Foundation for Intelligent Physical Agents (FIPA). Agent communication language, 

April 1999.

[34] S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy for 

autonomous agents. In J. P. Müller, M. J. Wooldridge, and N. R. Jennings, editors, 

Intelligent Agents III: Proceedings o f the Third International Workshop on Agent

205



Theories, Architectures and Languages (ATAL-96), pages 21-35. Springer-Verlag, 

1997.

[35] N. Friedman and J. Y. Halpem. Modeling belief in dynamic systems, Part I: Founda

tions. Artificial Intelligence, 95(2):257-316, 1997.

[36] J. R. Galliers. Autonomous belief revision and communication. In P Gardenfors, 

editor, Belief Revision, pages 220-246. Cambridge University Press, 1992.

[37] D. Gambetta. Can we trust trust? In D. Gambetta, editor, Trust: Making and 

Breaking Cooperative Relations, pages 213-237. Basil Blackwell, 1988.

[38] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings o f 

the Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677-682, 

Seattle, WA, 1987.

[39] R. Goodwin. Formalizing properties of agents. Technical report, Carnegie Mellon 

University, 1993.

[40] N. Griffiths and M. Luck. Cooperative plan selection through trust. In F. J. Gar- 

ijo and M. Boman, editors, Multi-Agent System Engineering: Proceedings o f the 

Ninth European Workshop on Modelling Autonomous Agents in a Multi-Agent World 

(MAAMAW’99). Springer-Verlag, 1999.

[41] B. Grosz. Collaborative systems. AIMagazine, 17(2):67-85, 1996.

[42] B. Grosz and S. Kraus. Collaborative plans for complex group actions. Artificial 

Intelligence, 86:269-358, 1996.

[43] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R. Cohen, J. Morgan, and 

M. E. Pollack, editors, Intentions in Communication, pages 417-444. MIT Press, 

1990.

206



[44] A. Haddadi and K. Sundermeyer. Belief-Desire-Intention agent architectures. In 

G. M. P. O’Hare and N. R. Jennings, editors, Foundations o f Distributed Artificial 

Intelligence, pages 169—185. John Wiley & Sons, 1996.

[45] J. R. P. Halperin. Machine motivation. In J.-A. Meyer and H. Roitblat, editors, From 

Animals to Animats, Proceedings o f the First International Conference on Simulation 

o f Adaptive Behavior, pages 213-221. MIT Press, 1991.

[46] J. Y. Halpem and Y. Moses. Knowledge and common knowledge in a distributed 

environment. Journal o f the Association for Computing Machinery, 37(3):549-587, 

1990.

[47] ARPA Knowledge Sharing Initiative. Specification of the KQML agent- 

communication language. ARPA Knowledge Sharing Initiative, External Interfaces 

Working Group working paper, July 1993.

[48] N. R. Jennings. On being responsible. In E. Werner and Y. Demazeau, editors, 

Decentralized A.I. 3: Proceedings o f the Third European Workshop on Modelling 

Autonomous Agents in a Multi-Agent World (MAAMAW-91), pages 93-102. Elsevier 

Science Publishers B.V., 1992.

[49] N. R. Jennings. Commitments and conventions: The foundation of coordination in 

multi-agent systems. Knowledge Engineering Review, 8(3):223-250, 1993.

[50] N. R. Jennings. Specification and implementation of a Belief-Desire-Joint-Intention 

architecture for collaborative problem solving. International Journal o f Intelligent 

and Cooperative Information Systems, 2(3):289-318, 1993.

[51] N. R. Jennings. Cooperation in industrial multi-agent systems, volume 43 of World 

Scientific series in computer science. World Scientific, Singapore, 1994.

[52] N. R. Jennings and E. H. Mamdani. Using joint responsibility to coordinate collab

orative problem solving in dynamic environments. In Proceedings o f the Tenth Na

207



tional Conference on Artificial Intelligence (AAAI-92), pages 269-275, San Diego, 

CA, 1992.

[53] N. R. Jennings, K. R Sycara, and M. Wooldridge. A roadmap of agent research and 

development. Journal o f Autonomous Agents and Multi-Agent Systems, 1(1):7—36, 

1998.

[54] C. M. Jonker and J. Treur. Formal analysis of models for the dynamics of trust based 

on experiences. In F. G. Garijo and M. Boman, editors, Multi-Agent System Engi

neering: Proceedings o f the Ninth European Workshop on Modelling Autonomous 

Agents in a Multi-Agent World (MAAMAW-99), pages 221-231, 1999.

[55] D. Kinny, M. Ljungberg, A. Rao, E. Sonenberg, G. Tidhar, and E. Werner. Planned 

team activity. In Proceedings o f the Forth European Workshop on Modelling Au

tonomous Agents in a Multi-Agent World (MAAMAW-92), pages 227-256, 1992.

[56] J. E. Laird, A. Newell, and P.S. Rosenbloom. SOAR: an architecture for general 

intelligence. Artificial Intelligence, 33(1): 1-64, 1987.

[57] V. R. Lesser and D. D. Corkill. The distributed vehicle monitoring testbed: A tool for 

investigating distributed problem solving networks. In AI Magazine, pages 15-33, 

Fall 1983.

[58] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On acting together. In Proceedings 

o f the Eighth National Conference on Artificial Intelligence (AAAI-90), pages 94-99, 

Boston, MA, 1990.

[59] M. Luck. Motivated Inductive Discovery. PhD thesis, UCL, University of London, 

1993.

[60] M. Luck. Foundations of multi-agent systems: Issues and directions. Knowledge 

Engineering Review, 12(3):307-308, 1997.

208



[61] M. Luck and M. d’Invemo. A formal framework for agency and autonomy. In 

Proceedings o f the First International Conference on Multi-Agent Systems, pages 

254-260. AAAI Press/The MIT Press, 1995.

[62] M. Luck and M. d’Invemo. Structuring a Z specification to provide a formal frame

work for autonomous agent systems. In J. P. Bowen and M. G. Hinchey, editors, 

Proceedings o f the Ninth International Conference o fZ  Users (ZUM-95), pages 47- 

62, Heidelberg, 1995. Springer-Verlag.

[63] M. Luck and M. d’Invemo. Motivated behaviour for goal adoption. In C. Zhang and 

D. Lukose, editors, Multi-Agent Systems Methodologies and Applications: Proceed

ings o f the Fourth Australian Workshop on Distributed Artificial Intelligence, pages 

53-73. Springer-Verlag, 1998.

[64] M. Luck, N. Griffiths, and M. d’Invemo. From agent theory to agent construction: 

A case study. In J. P. Müller, M. J. Wooldridge, and N. R. Jennings, editors, Intelli

gent Agents III: Proceedings o f the Third International Workshop on Agent Theories, 

Architectures and Languages (ATAL-96), pages 49-63. Springer-Verlag, 1997.

[65] N. Luhmann. Familiarity, confidence, trust: Problems and alternatives. In D. Gam- 

betta, editor, Trust: Making and Breaking Cooperative Relations, pages 94-107. 

Basil Blackwell, 1988.

[66] P. Maes. How to do the right thing. Connection Science, 1(3):291—323, 1989.

[67] S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, University of 

Stirling, 1994.

[68] S. Marsh. Optimism and pessimism in trust. In Proceedings o f the Ibero-American 

Conference on Artificial Intelligence (IBERAMIA ’94), 1994.

[69] S. Marsh. Trust in distributed artificial intelligence. In C. Castelfranchi and E. W- 

emer, editors, Artificial Social Systems, pages 94-112. Springer-Verlag, 1994.

209



[70] A. R. Mele. Motivational intemalism: The powers and limits of practical reasoning. 

Philosophia, 19(4), 1989.

[71] B. G. Milnes. A specification of the Soar architecture in Z. Technical report, Carnegie 

Mellon University, 1992.

[72] B. Moulin and B. Chaib-Draa. An overview of distributed artificial intelligence. In 

G. M. R O’Hare and N. R. Jennings, editors, Foundations o f Distributed Artificial 

Intelligence, pages 3—55. John Wiley & Sons, 1996.

[73] J. P. Müller. Architectures and applications of intelligent agents: A survey. Knowl

edge Engineering Review, 13(4):353-380, 1998.

[74] J. P. Müller and M. Pischel. Modelling interacting agents in dynamic environments. 

In A. Cohn, editor, Proceedings o f the Eleventh European Conference on Artificial 

Intelligence (ECAI-94), pages 709-713. John Wiley & Sons, 1995.

[75] T. J. Norman. Motivation-based direction o f planning attention in agents with goal 

autonomy. PhD thesis, University of London, 1996.

[76] T. J. Norman and D. Long. Goal creation in motivated agents. In M. J. Wooldridge 

and N. R. Jennings, editors, Intelligent Agents: Proceedings o f the First International 

Workshop on Agent Theories, Architectures and Languages (ATAL-94), pages 277- 

290. Springer-Verlag, 1995.

[77] T. J. Norman and D. Long. Alarms: An implementation of motivated agency. In M. J. 

Wooldridge, J. P. Müller, and M. Tambe, editors, Intelligent Agents II: Proceedings 

o f the Second International Workshop on Theories, Architectures and Languages 

(ATAL-95), pages 219-234. Springer-Verlag, 1996.

[78] H. S. Nwana. Software agents: An overview. Knowledge Engineering Review,

11(3):205-244, 1996.

210



[79] H. S. Nwana and M. Wooldridge. Software agent technologies. BT Technology 

Journal, 14(4):68-78, October 1996.

[80] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification and Z. 

Prentice Hall, 1996.

[81] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. 

In Walter Van de Velde and J. W. Perram, editors, Agents Breaking Away: Pro

ceedings o f the Seventh European Workshop on Modelling Autonomous Agents in a 

Multi-Agent World (MAAMAW-96), pages 42-55. Springer-Verlag, 1996.

[82] A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of 

situated reasoning systems. In Proceedings o f the Thirteenth International Joint 

Conference on Artificial Intelligence (IJCAI-93), pages 318-324, Chambéry, France, 

1993.

[83] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In Proceedings 

o f the First International Conference on Multi-Agent Systems (ICMAS-95), pages 

312-319, San Francisco, 1995. AAAI Press/The MIT Press.

[84] A. S. Rao, M. P. Georgeff, and E. A. Sonenberg. Social plans. In E. Werner and 

Y. Demazeau, editors, Decentralized A.I. 3: Proceedings o f the Third European 

Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-91), 

pages 57-76. Elsevier Science Publishers B.V., 1992.

[85] J. S. Rosenschein and M. R. Genesereth. Deals among rational agents. In Proceed

ings o f the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85), 

pages 91-99, Los Angeles, CA, 1985.

[86] S. Russell and P. Norvig. Artificial intelligence: A modem approach. Prentice Hall, 

1995.

[87] J. R . Searle. Intentionality: An essay in the philosophy o f mind. Cambridge Univer

sity Press, 1983.

211



[88] J. R . Searle. Collective intentions and actions. In R R. Cohen, J. Morgan, and M. E. 

Pollack, editors, Intentions in Communication, pages 401-415. MIT Press, 1990.

[89] J. S. Sichman and Y. Demazeau. Exploiting social reasoning to deal with agency level 

inconsistency. In Proceedings o f the First International Conference on Multi-Agent 

Systems (ICMAS-95), pages 352-359, San Francisco, CA, 1995. AAAI Press/The 

MIT Press.

[90] J. S. Sichman, Y. Demazeau, R. Conte, and C. Castelfranchi. A social reasoning 

mechanism based on dependence networks. In A. Cohn, editor, Proceedings o f the 

Eleventh European Conference on Artificial Intelligence (ECAI-94), pages 188-192, 

Amsterdam, The Netherlands, 1995. John Wiley & Sons.

[91] H. Sidgwick. The methods o f ethics. Macmillan, London, 1966.

[92] H. A. Simon. Motivational and emotional controls of cognition. Psychological Re

view, 74:29-39, 1967.

[93] A. Sloman. Motives mechanisms and emotions. Cognition and Emotion, 1(3):217— 

234, 1987.

[94] R. G. Smith. The contract net: A formalism for the control of distributed problem 

solving. In Proceedings o f the Fifth International Joint Conference on Artificial 

Intelligence, page 472, Cambridge, MA, 1977.

[95] R. G. Smith and R. Davis. Frameworks for cooperation in distributed problem solv

ing. IEEE Transactions on Systems, Man, and Cybernetics, 11(1):61—70, 1981.

[96] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, Hemel Hemp

stead, 2nd edition, 1992.

[97] M. Tambe. Agent architectures for flexbile, practical teamwork. In Proceedings 

o f the Fourteenth National Conference on Artificial Intelligence (AAAI-97), Rhode 

Island, Providence, 1997.

212



[98] M. Tambe. Towards flexible teamwork. Journal o f Artificial Intelligence Research, 

7:83-124, 1997.

[99] M. Tambe and W. Zhang. Towards flexible teamwork in persistent teams. In Pro

ceedings o f the Third International Conference on Multi-Agent Systems (ICMAS-98), 

Paris, France, 1998.

[100] R. Tuomela and K. Miller. We-intentions. Philosophical Studies, 53:367-389, 1988.

[101] B. Williams. Formal structures and social reality. In D. Gambetta, editor, Trust: 

Making and Breaking Cooperative Relations, pages 3-13. Basil Blackwell, 1988.

[102] M. Wooldridge and N. R. Jennings. Formalizing the cooperative problem solving 

process. In Proceedings o f the Thirteenth International Workshop on Distributed 

Artificial Intelligence (IWDAI-94), pages 403-417, Lake Quinhalt, WA, 1994.

[103] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. Knowl

edge Engineering Review, 10(2): 115-152, 1995.

[104] M. Wooldridge and N. R. Jennings. Cooperative problem-solving. Journal o f  Logic 

and Computation, 9(4):563-592, 1999.

[105] M. J. Wooldridge. The Logical Modelling o f Computational Multi-Agent Systems. 

PhD thesis, University of Manchester, August 1992.

[106] J. B. Wordsworth. Software Developement with Z. Addison-Wesley, 1992.

213



Appendix A

Specification

A .l Introduction

In this appendix we present the complete specification of the framework developed in this 

thesis, and give examples of how particular parts of it can be instantiated. The purpose 

of this appendix is to give the supporting specification for the parts of the framework that 

are specified elsewhere in the relevant chapters, where the components they specify are 

introduced. In view of this aim, we let the specification in this chapter stand for itself, and 

give only a brief supporting text indicating the purpose of each part of the specification.

A.2 Primitives

In this section we define the primitive types on which the specification is based, namely the 

notions of terms and predicates.

[Const, Var, PredSym]

Term const((Const))
| var ((Var))
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— Predicate______
symbol : PredSym 
terms : seq Term

A.3 Environment

An environment comprises a set of perceivable features, or attributes, where an attribute is 

simply represented as a predicate. The schema Env represents the particular environment in 

which an agent is situated.

Attribute =— Predicate 
Environment =— P Attribute

__Env____ ______________________________ .____________ ______ _
environment: Environment

A.4 Perceptions

A view is a set of perceivable features, or attributes, and a perception action is a function that 

takes an environment and returns a view, corresponding to the features in the environment 

that an agent perceives.

View = =  P Attribute
PerceptionAction = =  Environment —> View

A.5 Beliefs

We define a literal as a predicate or its negation. A belief is then defined as a single literal, 

and an agent’s beliefs as a set of such beliefs.

Literal pos({Predicate))
I not ((Predicate))
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Belief == Literal 
Beliefs = =  ¥  Belief

A.6 Goals

A goal is a situation that an agent wishes to bring about, and is defined to be a set of literals. 

Goal = =  ¥  Literal

A.7 Actions

A contribution is an action that can be performed by an individual agent, and is defined 

to comprise an action symbol, a sequence of terms (representing the parameters of the 

action), and an agent identifier that corresponds to the agent that should perform it. The 

effects of performing a contribution are defined by the function contributionEffects, and its 

preconditions by the function contributionPreconditions.

[ActSym, AgentID]

__Contribution__ ______________________________________________
symbol: ActSym 
terms : seq Term 
agentID : AgentID * I

| contributionEffects : Contribution -> Environment —> Environment 

Precondition = =  Literal

I contributionPreconditions : Contribution -» ¥  Precondition
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A.8 Joint and Concurrent Actions

In this section we define joint and concurrent actions, both of which are composite actions 

made up of individual contributions; the contributions in a joint action must be synchronised 

and performed together, while those in a concurrent action do not require such synchroni

sation.

__JointAction------------ ------------------------------------------------------ ----------
contributions : P Contribution

#  contributions > 2

CAcomponent Contrib((Contribution)) 
| JA ((P Contribution))

__ConcurrentAction----------------
contributions : P CAcomponent

# contributions > 2

A.9 Plans

In order to specify a plan, we first specify that a step in a plan is either an individual, joint 

or concurrent action, or a subgoal. We then specify a plan to comprise a sequence of steps 

to achieve a goal, under a particular set of preconditions.

PlanStep ::= Individual ({Contribution))
| Joint {{F Contribution))
| Concurrent((P CAcomponent))
| Subgoal ((Goal))

Plan_______________
achieves : Goal 
preconditions : P Belief 
body : seq PlanStep
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A.10 Intentions

In this section we define an intention as containing a stack of plans (represented by a se

quence), a relevance condition, and the goal to which the intention is towards. The sequence 

of plans are constrained such that the plan at position / +  1 is a subplan of that at position i.

bool ::= true | false

isSubPlanOf : Plan —> Plan —> bool

Vp,q : Plan • isSubPlanOf p  q = true
<=> (3g  : Goal • Subgoal(g) =  head(q.body) A p.achieves =  g)

extractPlan : (Ni x seq Plan) -+> Plan

V» : Ni; pseq : seq Plan | i < fipseq •
3xp  : Plan • extractPlan (i,pseq) = p  A {p} =  ran({/} 1 pseq)

__Intention------ -------------------------------------------------------------------
plans : seq Plan 
relevance : IP Belief 
satisfies : Goal

V / :  Ni | / < fiplans -  1 •
isSubPlanOf (extractPlan (i +  1,/Va«s)) (extractPlan (i,plans)) 

=  true

A. 11 Motivations

We introduce a given set to represent the set of motivation symbols, and define a motivation 

to have a name (in the form of a motivation symbol), intensity, threshold, and a set of goals 

that it can generate.

[MotiveSym]
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— Motivation_____
name : MotiveSym 
intensity : R 
threshold : R 
goals : P Goal

The following functions are applied to motivations. The first determines the intensity 

that the motivation should take in a given believed situation, while the latter four return the 

motivational value of a goal, contribution, plan, and intention respectively.

assessSituation : Motivation —> P Belief —> R 
mitigation : Motivation -> Goal —> R 
mvContribution : Motivation —> Contribution -» R 
mvPlan : Motivation —» Plan —> R 
mvlntention : Motivation -> Intention —>• R

A.12 Agent Mental Components

Before specifying the mental components that comprise a S e n a r a  agent, we introduce a 

given set to represent a nominal commitment; we define nominal commitment later, and so 

this is simply a forward definition. We specify an agent as having an unique identifier and a 

set of capabilities, perceiving capabilities, beliefs, goals, intentions, motivations, and nom

inal commitments, along with a plan library from which it can select the most appropriate 

for its goals.

[NominalCommitment]
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agentID : AgentID
capabilities : P Contribution
perceivingCapabilities : P PerceptionAction
beliefs : ¥  Belief
goals : P Goal
intentions : P Intention
motivations : ¥  Motivation
planLibrary : P Plan
nominalCommitments : P NominalCommitment 

motivations f  0
V c : Contribution • c € capabilities c.agentID =  agentID

__Agent______________________________________________

A. 13 Perceiving the Environment

In the following schema we specify perception by defining an agent’s current view to be the 

combined result of applying its perceiving capabilities to the current environment.

__AgentPerception------------------------------------------------------------- ----------
EEnv 
5Agent 
view : View

view — U{v : View | (3pA ct: PerceptionAction |
pAct G perceivingCapabilities • v — pAct environment)}

A. 14 Updating Beliefs

An agent updates its beliefs in the light of its perceptions, by translating the attributes in its 

current view into a set of candidate beliefs, and then it revising its beliefs to include those 

candidate beliefs that are appropriate.
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AAgent
SA gen tPerception 
interpretView : View —> F Belief 
reviseBeliefs : P Belief -* P Belief —» P Belief 
candidateBeliefs : P  Belief

candidateBeliefs = interpretView view 
beliefs' = reviseBeliefs beliefs candidateBeliefs 
goals' =  goals 
intentions' = intentions 
motivations? = motivations

__UpdateBeliefs___________________________

A. 15 Updating Motivations

In this section we formalise the process through which an agent updates the intensities 

of its motivations. We define the notion of an intensity association, which is a 3-tuple 

containing a set of beliefs, a motivation, and an intensity change, such that the motivation’s 

intensity should change proportionally by the specified amount if the agent holds the beliefs 

The schema UpdateMotivations, defines how an agent should update the intensity of its 

motivations using a set of intensity associations.

r [y v y l
First: X  x Y x  Z  -> X  
Second : X  x Y x Z  -» Y 
Third : X x Y x Z - > Z

Vx  : X\ y  : Y; z : Z •  First(x,y,z) =  x  A 
Second(x,y, z) —y f \  Third(x,y,z) = z

iAssociation = =  ¥  Belief x Motivation x  M
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— IntensityAssociation____________________________
iAssociations : IP ¿Association

V B : P Belief ; m : Motivation; / : R; a : iAssociation • 
a — (B,m,i) A a E iAssociations

=> (V/ : R; a' : iAssociation | a' =  (5, m j)  A 
a' G iAssociations •  i = j)

__UpdateMotivations----------------------------------------------------- ---------
AAgent
EIntensityAssociation
getlntensity : P iAssociation —> P Belief —> Motivation —> R

V7v4 : ¥  iAssociation-, B : ¥  Belief-, m : Motivation-, i : R • 
getlntensity IAB m = i

<(=> (3 iA : iAssociation • iA G IA A B = First(iA) A 
m = Second(iA) A i — Third(iA))

Vm : Motivation | m 6 motivations • (3j m' : Motivation | 
m! E motivations' • m!.name = m.name A 

m! .intensity = m.intensity*
{getlntensity iAssociations beliefs m) A

m!.threshold =  m.threshold A m!.goals =  m.goals)
beliefs' =  beliefs 
goals' — goals 
intentions' =  intentions

A. 16 Ensuring Goals are Motivated

An agent’s goals must be of motivational value, and we formalise this in the following 

schema.
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__DropJJnmotivatedGoals------------------------------------------------
AAgent

\/g  : Goal | g  G goals • g  G goals' <=> (3 m : Motivation |
m G motivations • (mitigation mg) > 0 A m.intensity > 0) 

Mg : Goal \ g  G goals • g & goals' (Mm : Motivation |
m G motivations • mitigation m g = 0 V m.intensity =  0) 

beliefs' =  beliefs 
intentions' = intentions 
motivations' = motivations

A. 17 Goal Generation

In this section we specify how an agent generates new goals according to its motivations. 

The function generateGoals, takes a particular motivation, an agent’s beliefs and its other 

motivations, and returns a set of goals that are generated by that motivation given the current 

believed situation.

| generateGoals : Motivation —> ¥  Belief -» ¥  Motivation —> ¥  Goal

Now, different agents may utilise different strategies for generating goals, meaning that 

agents may have different instantiations of the above function. However, a simple approach 

is to mirror that taken in assessing the intensity of motivations, such that agents have a set 

of associations (in the form of a set of 3-tuples) that determine the goals that are generated 

in a particular situation.

gAssociation = =  ¥  Belief x Motivation x IP Goal

__GoalGenerationAssociation_________________ ________________ __
gAssociations : ¥  gAssociation

MB : ¥  Belief m : Motivation; G : P Goal] a : gAssociation • 
a — (B,m,G) A a G gAssociations

=>► (MH : P Goal-, a' : gAssociation | a' = (B,m ,H ) A 
a' G gAssociations • G = H)
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__GoalGeneration----------------------------------------------------------------
AAgent
activeMotivations : P Motivation 
generatedGoals : P Goal

activeMotivations —
{m : Motivation | m £ motivations A m.intensity > m.threshold} 

generatedGoals =
U fG  : P Goal | (3 w : Motivation | m € activeMotivations •

G =  generateGoals m beliefs motivations)} 
goals' =  goals U generatedGoals 
beliefs' =  beliefs 
intentions' = intentions 
motivations' = motivations

A.18 Ensuring Intentions are Appropriate

In the same way that an agent’s goals must be of motivational value, so must its intentions. 

However, an intention should also be dropped if it is believed to be achieved, unachievable, 

or irrelevant, and we formalise this below.
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__Droplnappropriatelntentions________________________ ________
A  Agent
is Achieved : Intention —> ¥  Belief —> bool 
isAchievable : Intention —> ¥  Belief -> bool 
isRelevant : Intention —> bool 
isMotivated : Intention —> bool

V / : Intention | t G intentions • isRelevant i = true
(V : Belief | b £ i.relevance » b e  beliefs) A 

isRelevant i =  false <=> (3 b : Belief | b € i.relevance • b £  beliefs)
V i : Intention | i £ intentions • isMotivated i =  true

O ’ (3 m : Motivation | m £ motivations •
m.intensity > 0 A (mitigation m i.satisfies) > 0) A 

isMotivated i = false O  (V m : Motivation | m £ motivations • 
mitigation m (i.satisfies) =  0V  m.intensity = 0)

V i : Intention \ i £ intentions • i £ intentions'
0  isAchieved i beliefs = false A isAchievable i beliefs =  true A

isRelevant i = true A isMotivated i = true A
1 0 intentions'
O  isAchieved i beliefs = true V isAchievable i beliefs = false V 

isRelevant i = false V isMotivated i = false 
beliefs' = beliefs 
goals' = goals 
motivations' = motivations

A. 19 Intention Adoption

For each of its active motivations an agent should attempt to adopt an intention for the goal 

generated by that motivation, or the most motivated goal if more than one goal is generated. 

When incompatibilities are found they should be resolved in such a way as to afford the 

highest motivational value to the agent.
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preconMet : P Literal —► Beliefs —> bool 
pMet : Literal —» Beliefs -» bool

V / : Literal, bel \ Beliefs • pA/e/ / bel =  true
O  (3p : Predicate •  l =  pos{p) A pos(p) G />e/) V 

(3p  : Predicate • l =  MO/(p) A pos(p) 0 Z>e/)
V / : Literal, bel : Beliefs • pMet 1 bel = false

O  (3p : Predicate • / =  pos(p) A pos(p) 0 /><?/) V 
(3p  : Predicate • l = not(p) A pos(p) e  bel)

VZ, : F Literal; bel : Beliefs • preconMet L bel =  true 
(V / : Literal \ l 6 L »  pMet l bel = true)

VZ : F Literal; bel : Beliefs • preconMet L bel — false 
O  (3 / : Literal \ l G L • pMet l bel = false)

planSetForGoal : Goal —> P Belief —> P Plan -+> P Plan

V g  : Goa/; bel : F Belief ; plib : P Plan • planSetForGoal g  bel plib 
= {p : Plan | p  G plib A p.achieves = g  A 

preconMetp.preconditions bel = true}

| planForGoal : P Belief —> P Intention —> P Plan —> Goal -+> Plan

__IntentionAdoption -- -------------------------------------------- ----------------
AAgent
activeMotivations : F Motivation 
activeGoals : P Goal 
currentlntendedGoals : P Goal 
newIntendedGoals : P Goal
resolvelncompatibilities : P Goa/ —* P Goal —> P Goal 

activeMotivations =
(w : Motivation | m G motivations A m.intensity > m.threshold} 

activeGoals =  {g : Goal | g  G goals A
(3m : Motivation | m G activeMotivations A mitigation m g >  0 • 

(Vg7 : Goa/1 g7 G goals A g7 f  g •
(mitigation mg) > (mitigation mg7)))} 

currentlntendedGoals =
(g  : Goal | (3 / : Intention \ i G intentions • i.satisfies =  g)} 

newIntendedGoals = resolvelncompatibilities 
currentlntendedGoals activeGoals 

intentions' =  {/ : Intention | ¡.satisfies G newIntendedGoals A
i G intentions} U {/ : Intention | i.satisfies G newIntendedGoals A 

i £  intentions A head(i.plans) =
planForGoal beliefs intentions planLibrary ¡.satisfies}
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A.20 Intention Selection

In order to act, an agent must select an intention to focus upon, as determined by its motiva

tions. To select an intention, an agent selects the motivation that is currently of the highest 

importance, and selects an intention to pursue, by choosing the one that currently offers the 

greatest motivational value to this motivation.

__IntentionSelection-------------------------------------------------------- —-----------
EAgent
activeMotivations : P Motivation 
chosenMotivation : Motivation 
chosenlntention : Intention

activeMotivations =
{m : Motivation | m G motivations A m.intensity > m.threshold} 

activeMotivations 0  => (3 m : Motivation | m G activeMotivations •
(V m! : Motivation | m! G activeMotivations A m! m •

m.intensity -  m.threshold > m!.intensity -  m!.threshold A 
chosenMotivation =  m))

activeMotivations = 0  => (3 m: Motivation \ m G motivations •
(V m' : Motivation | m! G motivations A m! m •

m.intensity -  m.threshold > m!.intensity -  m'.threshold A 
chosenMotivation = m))

(3j i : Intention | i G intentions • (Mi' : Intention | i! G intentions A 
i ^  • mitigation chosenMotivation ¡.satisfies >

mitigation chosenMotivation i'.satisfies A 
chosenlntention =  i))

A.21 Action and Deliberation

After determining its chosen intention, an agent works towards it — if the next step in the 

intention is an individual contribution then an agent can execute it, if the step is a subgoal 

then the agent must elaborate the plan, otherwise if the step is a cooperative action the 

agent must initiate cooperation. In this section we give specification for the former two 

cases, action and deliberation.

I believedChanges : Contribution —> Environment —> P Belief
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,— AgentHistory--------------
history : seq Contribution

— AgentAction____________________________________________
AAgent 
A  Env
AAgentHistory 
EIntentionSelection 
EUpdateBeliefs 
nextStep : PlanStep

nextStep = head(last chosenlntention.plans).body 
3 a : Contribution • Individual(a) =  nextStep

history1 - history ^  (a) A environment1 =  
contributionEffects a environment A beliefs' —

reviseBeliefs beliefs (believedChanges a environment)

__AgentDeliberation---------------------------------------------------------- -------
A  A gent
EIntentionSelection 
nextStep : PlanStep

nextStep =  head (last chosenlntention.plans).body 
3 g  : Goal • Subgoal(g) = nextStep

«=> chosenlntention' .plans = chosenlntention.plans
^ ((planForGoal beliefs intentions planLibrary g))

A chosenlntention' .relevance = chosenlntention.relevance 
A chosenlntention' .satisfies = chosenlntention.satisfies

The following schema brings together the various functions described above, and cor

responds to the agent control mechanisms in the S e n a r a  architecture.
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— AgentControl___________
EAgent
AgentPerception
UpdateBeliefs
UpdateMotivations
Drop UnmotivatedGoals
GoalGeneration
Droplnappropriatelntentions
IntentionAdoption
IntentionSelection
AgentAction
AgentDeliberation

A.22 Necessary and Optional Cooperation

In this section we formalise the notions of necessary and optional cooperation.

stepcontributions : PlanStep -» (P Contribution) 
CAcomponentcontributions : CAcomponent -> (P Contribution) 
p/ancontributions : Plan -» (P Contribution) * V

V c : Contribution; es : P Contribution; cacs : P CAcomponent; g : Goal •
stepcontributions (Individual c) = {c} A 
stepcontributions (Joint cs) — cs A 
stepcontributions (Concurrent cacs) =

(J {cs1 : P Contribution; cac : CAcomponent \ cac G cacs A 
cs' =  CAcomponentcontributions cac • cs?} A 

stepcontributions (Subgoal g) — 0
V com/? : CAcomponent; es : P Contribution •

CAcomponentcontributions comp = cs <£>
(3 c : Contribution • comp =  (Contrib c) A 

cs =  stepcontributions (Individual c)) V 
(3 os' : ¥  Contribution • com/? = (.Z4 cs) A 

cy =  stepcontributions (Joint cs))
Vp  : Plan • plancontributions p  =

U {y : PlanStep | y e  (ran p.body) • stepcontributions y}
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nesscooperates : Agent —> Goal -> bool

V ag : Agent; g  : Goal | g E ag.goals • nesscooperates ag g = true 
<=> (V/? : Plan \ p  E ag.planLibrary • p.achieves =  g  A 

(plancontributions p  \  ag.capabilities) ±  0 )

optcooperates : Agent —> Goal —> bool

M ag : Agent; g : Goa/ | g  G ag.goals • optcooperates agg = true 
«=> (3/?, g : Plan | p E ag.planLibrary A q E ag.planLibrary • 

p.achieves — g  A q.achieves = g  A
(plancontributions p  \  ag.capabilities /  0) A 

(plancontributions q \  ag.capabilities =  0))

A.23 A Model of Cooperative Plan Selection

In Chapter 6 we described a procedure for plan selection in a cooperative environment, 

based on standard planning heuristics and knowledge of others capabilities and trustworthi

ness. We introduce two ratings for plans, a standard rating arrived at by applying standard 

heuristics, and a cooperative rating that is based on the risk associated with cooperation. 

In this section we formalise the procedure for assessing the quality of a plan, using these 

ratings.

The following function represents the heuristic for determining the standard rating of a 

plan.

| sRating : Plan —► R

The cooperative rating of a plan is based on an agent’s knowledge of others’ capabilities 

and its trust of them, and so before formalising the procedure for obtaining the cooperative 

rating of plan we introduce the notion of an agent model, and formalise how to extract the 

trust associated with a particular agent from a set of such models.

__AgentModel--------------------------------------------------------- —----------------
id : AgentID
capabilities : P Contribution 
trust : R
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extractAUModels : P Belief -» P AgentModel 
extractModel : P Belief —> AgentID —> AgentModel

trustOfAgent : AgentID -» ¥  AgentModel —>• R

M agID : AgentID; /wi : ¥  AgentModel, r : R • 
trustOfAgent agID ms = r = > r > O A r < l A  
(3j w : AgentModel | m € ms • m.id =  ag/D A m.trust = r)

sumSeq : seq R —>• R

Vi : seq R; n : R • sumSeq s = n <3-
( # i  =  1 A n = i l )  V ( # i  > 1 A n = i l  +  sumSeq(tail s))

scaleTrustSeq : seq R —> seq R

V ts, scaledTs : seq R • scaleTrustSeq ts — scaledTs «=> 
fits = j^scaledTs A(V/ j : Z | h > O A w < # ts  • 
scaledTs n =  (ts n)/n)

capableAgents : Contribution —> ¥  AgentModel -* ¥  AgentID 
orderedCapableAgents : Contribution -»• ¥  AgentModel -» seq AgentID 
orderedTrust : seq AgentID -¥ ¥  AgentModel -> seqR

Vc : Contribution; /Mi : ¥  AgentModel • (capableAgents c ms) =
{a : AgentID-, m : AgentModel | (m 6 ms) A  

(a =  w./V) A (c G m.capabilities) • a}
Vc : Contribution-, ms : ¥  AgentModel-, orderedCapable : seq AgentID • 

orderedCapableAgents c ms = orderedCapable A  

ran orderedCapable = (capableAgents c ms) A  

( V « : Z | « > 2 A n <  #orderedCapable • 
trustOfAgent (orderedCapablen) ms >

trustOfAgent (orderedCapable(n -  1)) ms)
V orderedC : seq AgentID-, ms : ¥  AgentModel-, orderedT : seqR • 

orderedTrust orderedC ms — orderedT 
#orderedC =  ftorderedT A  

( V n : Z | « > O A « <  ftorderedC • 
orderedT n — trustOfAgent (orderedC n) ms)

We can now formalise the risk associated with a particular contribution — determined 

by considering the risk associated with each of the capable agents, such that the risk from 

less trusted agents is divided by a correspondingly increasing factor.
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riskC : Contribution —» IP AgentModel —> R

V c : Contribution; ms : ¥  AgentModel] r : R • riskC c ms =  r 
<=> 1 /sumSeq (scaleTrustSeq (orderedTrust ( 

orderedCapableAgents c ms) ms)) =  r

A.23.1 Assessing Joint Actions

In this section we extend this strategy to apply to joint actions, by simply replacing the 

agents and trust of an agent in the equation with sets of agents that are capable of performing 

the action, and the trust of these sets of agents respectively.

capableAgentSets : P Contribution -> ¥  AgentModel -» P(P AgentID)

V cs : ¥  Contribution] ms : ¥  AgentModel • capableAgentSets cs ms =
{agis : ¥  AgentID] c : Contribution | c G cs A 
(3 a : AgentID • a G agis A a 6 capableAgents c ms A 
(V a' : AgentID | a! ^  a A a' 6 agis • 

a' £ capableAgents c ms)) • agts}

trustO/AgentSet : ¥  AgentID -» ¥  AgentModel —> R 
productSet : PR  —> R V

V agIDs : ¥  AgentID] ms : ¥  AgentModel •  
trustOfAgentSet agIDs ms = productSet 
{r : R; a : AgentID | a € agIDs A r = trustOfAgent a ms • r) 

Vs : PR; n : R • productSet s = n<^- 
(# s  =  1 A s =  {«}) V
(# s  > 1 A ( 3 r : R | r 6 i » n  =  r *  productSet(s \  {r})))
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orderedCapableAgentSets : P Contribution —> P AgentModel 
—> seq(P^e«/ZD)

orderedTrustSet : seq(P/tgem/D) -> ¥  AgentModel 
-> seq R

Vcs : ¥  Contribution] ms : ¥  AgentModel] 
orderedCapable : seq (¥AgentID) •

orderedCapableAgentSets cs ms =  orderedCapable A 
ran orderedCapable =  (capableAgentSets cs ms) A 
( V / z : Z | « > 2 A « <  ftorderedCapable • 

trustOfAgentSet (orderedCapablen) ms >
trustOfAgentSet (orderedCapable(n — 1)) ms)

V orderedAgts : seq(¥ AgentID)] ms : ¥  AgentModel] orderedT : seqM • 
orderedTrustSet orderedAgts ms = orderedT 

O  ftorderedAgts = ftorderedT A
( V « : Z | « > 0 A n <  #  orderedAgts •

orderedT n =  trustOfAgentSet (orderedAgts n) ms)

riskJA : ¥  Contribution —» ¥  AgentModel —> R

Vcs : ¥  Contribution] ms : ¥  AgentModel] r : R • riskJA cs ms = r 
1 /sumSeq (scaleTrustSeq (orderedTrustSet 

(orderedCapableAgentSets cs ms) ms)) = r

A.23.2 Assessing Concurrent Actions

The mechanism for concurrent actions is an extension of that for joint actions since, instead 

of a set of contributions, a concurrent action comprises a set of sequences of steps, each to 

be performed concurrently with the others.

riskCAcomponent : CAcomponent -> ¥  AgentModel —> R
V comp : CAcomponent] ms : ¥  AgentModel] r : R •

riskCAcomponent comp ms = r O  (3 c : Contribution • 
comp =  Contrib c A r =  râ£C c ms) V 

I (3 cs : P Contribution • comp = J A c s A r  = riskJA cs ms)

riskCA : ¥  CAcomponent —>• ¥  AgentModel -* R V
V comps : P CAcomponent] ms :P  AgentModel] •

riskCA comps ms = productSet{ca : CAcomponent] r : R | 
ca & comps A r — riskCAcomponent ca ms • r}
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A.23.3 Cooperative R ating of a Plan

Using this measure of risk of actions, we can determine the cooperative rating of a plan by 

summing the risk associated with each step in it.

riskPlanStep : PlanStep -> P AgentModel -» R
Vps : PlanStep; ms : P AgentModel; r : R • riskPlanStep ps ms =  r <$■

(3 c : Contribution • ps — Individual c A r — riskC c ms) V
(3 es : P Contribution • ps =  Joint es A r =  riskJA es ms) V 

(3 cacs : P CAcomponent • ps — Concurrent cacs A r = 
riskCA cacs ms)

cRating : Plan -> ¥  AgentModel —» R  
sumSet : P R —> R
Vp : Plan; ps : seq PlanStep] ms : P AgentModel] r : R  •

cRating p  ms — r <=> ps = p.body A (3 ratings : P R • ratings =
{V : R  | (3 i : PlanStep | s G ran p.body • r1 =  

riskPlanStep s ms) • P) A r = sumSetratings)
Vs1 : P R; n : R  • sumSet s = n <=>

(# i  = 1 A i  = W )  V
(#£ > l A ( 3 r : R | r G . s « n  =  r + sumSet(s \  {/*})))

A.23.4 Plan Quality

Once both the standard and cooperative ratings of a plan have been determined, they are 

combined to form an overall measure of plan quality.

quality : Plan —> ¥ AgentModel —>• R —ì R —> R

Vp : Plan; ms : ¥  AgentModel; Wy, wc, r : R •
quality p  ms ws wc = r r = (sRating p) * ws +  (cRating p  ms) * wc

A.24 Cooperation in Partial Plans

In Section 6.5 we described the pre-execution assessment mechanism for dealing with par

tial plans, where each plan is assessed prior to execution time. Since it is not known how a
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partial plan will later be elaborated, two ratings are associated with each plan, a best-case 

and a mean-case rating.

plansubgoals : Plan —> P Goal 

Vp  : Plan • plansubgoals p
=  {g : Goal | (3 s : PlanStep | s 6 (ranp.body) • s = Subgoal g) • g}

| recursive : Plan —> Plan —» bool

possibleSubplans : Goal —> Plan P Plan -* ¥  Plan

V g : Goo/; : Plan; /w : P Plan • possibleSubplans g p p s  =
{// : Plan | p' E ps A p'.achieves = g  A (recursivepp' = false)}

possibleSubplansRatings : PP/an P AgentModel R R -> PK

V/w : P Plan] ms : P AgentModel] Wy, wc, r  : R 
• possibleSubplansRatings ps ms ws wc =
{r : R | (3/?: Plan \ p  e p s  • quality p  ms ws wc = r) • r}

minRating : P R  -> R
Vri, : P R » ( 3 r : R | r G / ' 5 «  minRating rs =  r A 

(Vr7 : R  | r7 € rs • r  < r7))

meanRating : P R —> R
Vrs : P R  • meanRating rs =  sumSet rs/#rs

bcRating : Plan -» P Plan -> P AgentModel -> R —► R -» R

Vp : P/<3«; pLib : PPlan] ms : P AgentModel] wSt wc, r : R • 
plansubgoals p  = 0  <=> bcRating p  pLib ms Wj wc =  

quality p  ms ws wc
Vp : Plan] pLib : P Plan] ms : P AgentModel] ws, wc, r : R • 

plansubgoals p   ̂0 bcRating p  pLib ms Wy wc =
quality p  ms w* wc +  sumSet ( r  : R; g : Goal | 

g  G plansubgoals p  A r  — minRating (
possibleSubplansRatingsfpossibleSubplans g p  pLib)

ms tv* wc) • r)
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mcRating : Plan -4  IP Plan —> P AgentModel -4  R —> R —>• R

Vp : Plan] pLib : ¥ Plan] ms : ¥  AgentModel] ws,wc,r  : R • 
plansubgoals p  =  0

O  mcRating p  pLib ms ws wc = quality p  ms Wj wc 
Vp  : Plan] pLib : P Plan] ms : ¥  AgentModel] ws, wc, r : R • 

plansubgoals p  ^  0
O ’ mcRating p  pLib ms ws wc =  p  wi w* wc +

sumSet {r : M; g : Goal | g 6 plansubgoals p  A  r =  

meanRating (possibleSubplansRatings(
possibleSubplans g p  pLib) ms w,j wc) • r}

A.24.1 Best-case and Mean-case Advantage

The balance between the best-case and mean rating amounts to a trade-off between an agent 

trying to find the best final plan and minimising the chance of the final plan being poor due 

to environmental change (in terms of these ratings). We define the best-case advantage of 

one plan over the other applicable plans to be advantage of that plan over others if its final 

elaboration has the best quality rating, and define mean-case advantage similarly.

maxRating : P R -4 M

Vra : P R  • (3 r : R | r G rs •  maxRatingrs = r A 
(VV : R | r* 6 rs • r > r1))

bca : P Plan -4 ¥  Plan -4 ¥ AgentModel -4 R -4 R 4  R

'dps,pLib : P Plan] ms : ¥  AgentModel] rs : PR; ws,wc,r  : R • 
bca ps pLib ms ws wc = r

&  rs =  (r7 : R | (3p  : Plan \ p  Eps • r1 = 
bcRating p  pLib ms ws wc)} A

r = maxRating rs — minRating rs

mca : ¥  Plan -4 ¥  Plan -4 ¥  AgentModel 4 R 4 R 4 R

dps, pLib : ¥  Plan] ms : ¥  AgentModel] rs : PR; ws,wc,r  : R • 
mca ps pLib ms ws wc = r

O  rs =  (r7 : R | (3p : Plan \ p  E ps •  P 
= mcRatingp pLib ms ws wc)} A

r = maxRating rs -  minRating rs
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A.24.2 Recursion

Where a plan is recursive it is not possible to obtain a rating for a subplan to feed into a 

higher level plan with respect to which it is recursive. Our solution to this is to use domain 

specific knowledge to estimate the limit of the recursion.

| existsRecursiveElaboration : Plan —> P Plan —> bool

scaleForRecursion : Plan —> P Plan —> P AgentModel - * R —> R —> R —>R

Vp : Plan; pLib : P Plan] ms : P AgentModel, ws,wc,r,m  : R • 
existsRecursiveElaboration p  pLib =  false

&  scaleForRecursion p  pLib ms ws wc m — 
bcRating p  pLib ms w* wc A 

existsRecursiveElaboration p  pLib =  true
&  scaleForRecursion p  pLib ms ws wc m = 

bcRating p  pLib ms ws wc *m

A.24.3 Selecting Between Partial Plans

In selecting a plan, the advantage should be maximised, regardless of whether it is best-case 

or mean-case. The following functions, useBCA and useMCA, formalise this and specify the 

conditions under which the best-case and mean-case ratings should be used (i.e. whichever 

offers the greater advantage).

useBCA : F Plan —> P Plan -> P AgentModel -» R ->• R -» bool

Vps,pLib : FPlan; ms : P AgentModel; ws,wc : R • 
useBCA ps pLib ms w* wc - true

<=> bca ps pLib ms ws wc > mca ps pLib ms wc A 
useBCA ps pLib ms ws wc =  false

O  bca ps pLib ms w* wc < mca ps pLib ms vvj wc

useMCA : FPlan -A FPlan -A P AgentModel -> R -> R -» bool

Vps,pLib : FPlan; ms : P AgentModel; ws, wc : R • 
useMCA ps pLib ms Wy wc = true

«=> mca ps pLib ms Wy wc > bca ps pLib ms vvy wc 
yps, pLib : P Plan; ms : P AgentModel; vv*, wc : R • 

useMCA ps pLib ms Wy wc — false
O  mca ps pLib ms Wy wc < bca ps pLib ms vv* wc
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Once the mean-case and best-case advantages have been considered to decide which

criteria to use for plan selection, a plan can be chosen using that criteria.

selectByBCA : P Plan -> F Plan -» FAgentModel ->• R -* R -» Plan

\/ps,pLib : FPlan; ms : FAgentModel; ws,wc : R; chosen : Plan • 
selectByBCA ps pLib ms Wy wc =  chosen

(V// : Plan | p' £ ps • bcRating chosen pLib ms Wy wc > 
bcRating p' pLib ms Wy wc)

selectByMCA : P Plan —>• FPlan -> FAgentModel -> R -» R ->■ Plan

\/ps,pLib : P Plan; ms : FAgentModel; Wy, wc : R; chosen : Plan • 
selectByMCA ps pLib ms Wy w: =  chosen

<=> (\/p' : Plan \p ' £ ps • mcRating chosen pLib ms Wy wc > 
mcRating p' pLib ms Wy wc)

selectBestPlan : P Plan -» P Plan -> FAgentModel -> R -> R -4 Plan

Vps,pLib : P Plan; ms : FAgentModel; Wy,wc : R; chosen : Plan • 
selectBestPlan ps pLib ms Wy wc = chosen ^

(useBCA ps pLib ms Wy wc =  true A
chosen = selectByBCA ps pLib ms xvs wc) V 

(;useMCA ps pLib ms Wy wc -- true A
chosen =  selectByMCA ps pLib ms Wy wc)

The plan selection mechanism described in this chapter provides an instantiation of the

function planForGoal introduced in Section A. 19.

planForGoal: P Belief -* P Intention -> F Plan -> Goal -+> Plan

Mbel: P Belief; I : P Intention; plib : P Plan;
g : Goal; ws, wc : R; p :  Plan • planForGoal bel L plib g = p  

&  selectBestPlan (planSetForGoal g  bel plib) plib 
(extractAUModels bel) ws wc = p

A.25 Cooperative Intention

In this section we specify the notion of a cooperative intention — a group’s commitment 

to a particular course of action. A convention specifies the conditions under which a com

mitment can be abandoned, and how an agent should behave in such a circumstance. A
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cooperative intention is specified to contain the goal and plan to which the commitment is 

towards, the identifiers of the agents who have the commitment, and a set of conventions 

defining the duration of this commitment.

Convention = =  P Belief x Goal

believes : Agent -» P Belief -* bool

V ag : Agent; s i t : IP Belief •
(V b : Belief • b G sit A b G ag.beliefs => believes agsit = true)

V ag : Agent; s i t : P Belief •
(3 b : Belief •  b G sit A b g  ag.beliefs => believes agsit = false)

__Cooperativelntention--------------------------------------------- ------------
goal : Goal 
plan : Plan 
agents : ¥  Agent ID 
conventions : P Convention

y  id : AgentID | id € agents •
(3 ag: Agent • ag.agentID = id A goal 6 ag.goals A 

(3 / : Intention | i G ag.intentions •
i.plans 1 =  plan A i.satisfies = goal)) V 

(3 ag : Agent • ag.agentID — id A (3 c : Convention | 
c e conventions • believes ag (first c) =  true A

second c 6 ag.goals A (3 / : Intention | i e ag.intentions • 
¡.satisfies =  second c)))

A.26 Cooperative Plans

In this section we formalise the circumstances in which an agent might decide to allocate 

an action in a plan to another agent, when that action is within the agent’s capabilities.

| costC : Contribution —> M
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allocateContribution : Contribution —> ¥  Belief —> R —» R —> bool

Vc : Contribution; bel : P Belief ; vvc, vvy : R •
wc * costC c > riskC c (extractAUModels bel) * wr 

=y allocateContribution c bel wc wr =  true A 
wc * costC c < riskC c (extractAUModels bel) * wr 

=> allocateContribution c bel wc wr — false

isCooperativePlan : Agent —>■ Plan —> M —>• R —» bool

y  ag : Agent; p  : Plan\ wc, wr : R •
(3 c : Contribution • c € plancontributions p  A c g ag.capabilities) V 
(3 c : Contribution • c 6 plancontributions p  A

allocateContribution c ag.beliefs wc wr = true) V 
(3 cs : ¥  Contribution • (Joint es) G ranp.body) V 
(3 cas : ¥  CAcomponent • (Concurrent cas) G ranp.body)

=>■ isCooperativePlan ag p w c wr = true
V ag : Agent; p  : /Yaw; wc, wr : R •

(Vc : Contribution • c G plancontributions p  A c G ag.capabilities) A 
(V c : Contribution • c G plancontributions p  A

allocateContribution c ag.beliefs wc wr = false) A 
(Vcy : ¥  Contribution • (Joint es) g  ranp.body) A 
(Vcos : ¥ CAcomponent • (Concurrent cas) 0 ranp.body) 

isCooperativePlan ag p w c wr = false

A.27 Plan Annotation

In order to determine which agents to ask for cooperation, the initiating agent must consider 

each of the contributions in its plan and determine which is the best agent to perform it. 

The chosen agent is associated with the contribution by annotating the contribution with 

the identifier of that agent. In this section we consider the annotation of the different action 

types that a plan can contain, along with the annotation of a complete plan.

A.27.1 Action Annotation

The simplest action type to annotate is an individual contribution; an agent should be con

sidered for annotation to a contribution if it is trusted above a minimum trust threshold, as

240



specified below.

considerForAnnotation : AgentID —> P AgentModel —> K —> bool

V id : AgentID; ms : P AgentModel; t : M •
[trustOfAgent id ms > t) => considerForAnnotation id ms t =  true A 

(,trustOfAgent id ms < t) => considerForAnnotation id ms t = false

— A nnotatedContribution 
symbol : ActSym 
terms : seq Term 
agents : P AgentID

__AnnotateContribution-------------------------------------------------------- -—
annotateContribution : Contribution —> ¥  AgentModel -» Z -» R 

—► AnnotatedContribution

Me : Contribution; ms : ¥  AgentModel; n : Z; t : R;
ac : AnnotatedContribution • c.symbol = ac.symbol A 

c.terms = ac.terms A ac.agents =  {¿<i : AgentID |
id 6 ran({/ : Z | / < «} 1 orderedCapableAgents c ms) A 

considerForAnnotation id ms t = true • id}

A.27.2 Joint Action Annotation

A joint action comprises a set of individual contributions, and so an annotated joint action, 

AnnotatedJointAction, is simply defined to be a set of annotated contributions. To annotate 

a joint action, the agent must determine which sets of agents are capable of performing it, 

and then select the most trusted, as formalised below.

__AnnotatedJointAction________________ ________ _________________
contributions : ¥  AnnotatedContribution

# contributions >  2

241



— ValidityCheckJointAction________________________ _______ _
validAssignments : ¥(¥(Contribution x AgentID))

—7 IP (IP ( Contribution x AgentID)) 
is Valid : P (Contribution x AgentID) —> bool

y  annotations : P (P ( Contribution x AgentID)) • 
validAssignments annotations =

(a : P {Contribution x AgentID) | a G annotations A 
is Valid a =  true • a}

y  annotation : P( Contribution x AgentID) •
(Vc/i/ : (Contribution x AgentID) | cid G annotation •

(V cid' : (Contribution x AgentID) | cid' G annotation A 
cid /  cid! • second cid f  second cid'

=> is Valid annotation = true)) 
y  annotation : ¥  (Contribution x AgentID) •

(V cid : (Contribution x AgentID) j cid G annotation •
(3 cid' : (Contribution x AgentID) | cid' G annotation A 

cid f  c/i/' • second cid =  second cid'
=> is Valid annotation =  false))

— ExtractlnfoJointAction-------------------------------------------------------------
extractAgents : P (Contribution x AgentID) -> P AgentID 
extractContributions : P(Contribution x AgentID) -» ¥  Contribution 
agentsOfContributionA : ¥  (Contribution x AgentID) -> Contribution 

—> ¥  AgentID
agentsOfContributionAs : ¥(¥(Contribution x AgentID)) -7 Contribution 

-7 ¥  AgentID

y  annotation : (¥(Contribution x AgentID)) • extractAgents annotation =  
{a : (Contribution x AgentID) | a € annotation • second a} 

y  annotation : (¥ (Contribution x AgentID)) • 
extractContributions annotation =

{a : (Contribution x AgentID) | a 6 annotation • yfar a} 
y  annotation : ¥  (Contribution x AgentID); c : Contribution • 

agentsOfContributionA annotation c =
{cz'i/ : (Contribution x AgentID) | cid G annotation A 

yzrs/ cid = c • second cid}
y  annotations : ¥(¥  (Contribution x AgentID)); c : Contribution • 

agentsOfContributionAs annotations c =
(J {annotation : ¥  (Contribution x AgentID) | 

annotation G annotations •
agentsOfContributionA annotation c}
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 [i] [T]

Î
— GenerateAnnotationsJointAction___________________________ _

P-ExtractlnfoJointAction

orderedAnnotations : P{P{Contribution x AgentlD)) —> PAgentModel 
-» seq(P(Contribution x AgentlD)) 

allPossibleAnnotations : seq Contribution -> PAgentModel -» K 
—> P{P {Contribution x AgentlD))

combine : P{P {Contribution x AgentlD)) -> P {Contribution x AgentlD) 
—» P{P{Contribution x AgentlD)) 

contribSeq : JointAction -» seq Contribution

Vunordered : P{P{Contribution x AgentlD)); nw : PAgentModel; 
ordered : seq {P{Contribution x AgentlD)) •

orderedAnnotations unordered ms = ordered A 
ran ordered =  unordered A 
(Vn : Z | w > 2 A n < # ordered • 
trustO/AgentSet {extractAgents {orderedn)) ms 

> trustOfAgentSet {extractAgents 
{ordered{n — 1))) m )

Vi : seq Contribution; ms : PAgentModeb, t : R •
(s = () A allPossibleAnnotations s ms t =) V 
(i ^  ()) a allPossibleAnnotations s ms t = combine 

{allPossibleAnnotations {tails) ms t)
{c : Contribution• «£ : AgentlD | c =  Aeat/ i  A 

ag 6 capableAgents c ms A
considerForAnnotation ag ms t = true • (c, ag)}

Vs 1 : P(P(Contribution x AgentlD)); s2 : P {Contribution x AgentlD) • 
combine si s2 = {working : P {Contribution x AgentlD);

new : {Contribution x AgentlD) | working 6 i l  A new € i2 • 
{working U {new})}

Vja : JointAction •  #  {contribSeq ja) =
#  ja. contributions A ran {contribSeq ja) = ja. contributions

- AnnotateJointActionAuxiliary-----
ValidityCheckJointAction 
GenerateAnnotationsJointAction 
ExtractlnfoJointAction

243



__AnnotateJointAction____________________________________________
EAnnotateJointActionAuxiliary
annotateJointAction : JointAction -> P AgentModel -> Z -» K 

—> AnnotatedJointAction
annotate : seq(P(Contribution x AgentlD)) —» AnnotatedJointAction

Vja  : JointAction; ms : P AgentModel-, n : Z; i : R •
annotateJointAction ja  ms n t = annotate ({/ : Z | i < n}j

(iorderedAnnotations (validAssignments (allPossibleAnnotations 
(contribSeq ja) ms t)) ms))

V5 : seq(P(Co«ir/ÒMi/o« x AgentlD))] aja : AnnotatedJointAction \
annotate s = aja •  V c : Contribution •  c G extractContributions (5 1) 

(3X £zc : AnnotatedContribution • ac € aja.contributions A 
c.symbol =  ac.symbol A c.terms =  ac.terms A 

ac.agents = agentsOfContributionAs (rani) c)

A.27.3 Concurrent Action Annotation

In a similar manner, we can specify that an annotated concurrent action comprises a set 

of annotated contributions and joint actions. Annotation of a concurrent action involves 

annotating each of its components, and including the result in the annotated concurrent 

action.

ACAcomponent ::= AContrib((AnnotatedContribution))
| AZ4((P AnnotatedContribution))

__AnnotatedConcurrentAction----------------------------- ---------- ----------------
contributions : P ACAcomponent

# contributions > 2
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__AnnotateConcurrentAction____________ __________________________
EAnnotateContribution 
EA nnotateJointA ction
annotateConcurrentAction : ConcurrentAction -> ¥  AgentModel —> Z —> M 

—» AnnotatedConcurrentAction
annotateCAcomponent : CAcomponent -A ¥  AgentModel -» Z -> R 

ACAcomponent

M cac : CAcomponent; mi : ¥  AgentModel] n : Z; / :  M;
acac : ACAcomponent • annotateCAcomponent cac ms n t = acac 

<*=*> (3 c : Contribution \ Contrib(c) = cac •
acac =  AContrib(annotateContribution cms n t)) V 

(3 cs : ¥  Contribution] ja  : JointAction \ JA(cs) =  cac • 
ja.contributions = cs A acac =

AJA((annotateJointAction ja  ms n t).contributions))
Vca : ConcurrentAction] ms : ¥  AgentModel] n : Z; f : R; 

aca : AnnotatedConcurrentAction •
annotateConcurrentAction ca ms n t — aca A 

aca.contributions — {cac : CAcomponent \ 
cac G ca.contributions •

annotateCAcomponent cac ms n /} * I

A.27.4 Annotated Plans

The notion of an annotated plan is formalised below in the schema AnnotatedPlan, in which 

all contributions are annotated with a set of agents. Each contribution is annotated with a 

set, rather than the individual agent that will execute it since, at this stage, the annotation 

represents the agents to request assistance from.

APlanStep ::= AIndividual{(AnnotatedContribution))
| AJoint((¥ AnnotatedContribution))
I AConcurrent{(¥ ACAcomponent))
| ASubgoal((Goal))

__AnnotatedPlan -- ----------------------------------------------—------------- --------
achieves : Goal 
preconditions : ¥  Literal 
body : seq APlanStep
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__AnnotatePlan-------------------------------------------------------------------------
EAnnotateContribution
EAnnotateJointAction
EAnnotateConcurrentAction
annotatePlan : Plan -> P AgentModel -» Z -> R  -* AnnotatedPlan 
annotateStep : PlanStep -» P AgentModel -> Z -> R -» APlanStep

Vp : P/an; ws : ¥  AgentModel-, n : Z; f : R; ap : AnnotatedPlan • 
annotatePlan p ms n t = ap <3- p.achieves = ap.achieves A 

p.preconditions =  ap.preconditions A
(V « : Z | n < jjp.body • ap.body n =  

annotateStep (p.body n) ms n t)
Vps : PlanStep; ms : ¥  AgentModel-, n : Z; t : R; aps : APlanStep • 

annotateStep ps ms n t = aps
O  (3 c : Contribution • Individual(c) = ps A aps = 

AIndividual(annotateContribution c ms n t)) V 
(3cs : ¥ Contribution-, ja  : JointAction \ja.contributions — cs • 

Joint(cs) —ps A a/« =  AJoint({
annotatedbintAction ja  ms n t).contributions)) V 

(3 cac : P CAcomponent; ca : ConcurrentAction |
ca.contributions =  cac • Concurrent(cac) = ps A aps =  

AConcurrent((annotateConcurrentAction 
ca ms n t).contributions)) V 

(3 g : Goal • Subgoal(g) = ps A aps =  ASubgoal(g))

A.28 Soliciting Commitment to Cooperate

After annotating its plan, an agent must request assistance from the annotated agents, and 

there are four possible types of request, each giving different degrees of information to the 

participants.

__RequestActions____________________ _______________
to : AgentID 
from : AgentID 
contributions : P Contribution
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__RequestGoalActions_______
to : AgentID 
from : AgentID 
goal: Goal
contributions : P Contribution

__RequestPartiallyAnnotatedPlan
to : AgentID 
from : AgentID 
plan : AnnotatedPlan

— RequestAnnotatedPlan 
to : AgentID 
from : AgentID 
plan : AnnotatedPlan

Request ActionRequest {{RequestA ctions)) 
GoalActionRequest{{RequestGoalActions)) 
PartiallyAnnotatedPlanRequest{{RequestPartiallyAnnotatedPlan)) 
AnnotatedPlanRequest{{RequestAnnotatedPlan))

As discussed in Section 7.6 an agent’s request for assistance should include only the 

actions for which it needs help if it believes that the goal is of zero or negative motivational 

value to the provider. This is specified in the schema UseActionRequest below, which takes 

an annotated plan and set of agent models, and returns true if the goal is believed to be of 

zero or negative motivational value to one or more of the agents being requested, and the 

agent’s request should be of this form.
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__AnnotatedPlanAuxiliary______________ ___________________________
believedMV : Goal -> AgentID -> F AgentModel -> R 
extractAgentsACAcomponent : ACAcomponent 

—» P (Contribution x AgentID)
extractAgentsStep : APlanStep ->■ P (Contribution x AgentID) 
extractAgentsPlan : AnnotatedPlan -» P (Contribution x AgentID) 
allAgents : AnnotatedPlan —> P/lgeni/D 
agentContributions : AgentID P(CWr/Z?wi/o« x AgentID)

-» P Contribution

V acac : ACAcomponent •
(3 ac : AnnotatedContribution | AContrib(ac) =  acac • 

extractAgentsACAcomponent acac =
{ii/ : AgentID; c : Contribution \ id G ac.agents

A c.symbol =  ac.symbol A c.terms =  ac.terms •  (c, id)}) V 
(3aci : P AnnotatedContribution | AJA(acs) =  acac • 

extractAgentsACAcomponent acac =
{ac : AnnotatedContribution; id : AgentID; c : Contribution | 

ac G acs A W G ac.agents A c.symbol = ac.symbol A 
c.terms =  ac.terms • (c, /(/)})

V aps : APlanStep •
(3ac : AnnotatedContribution | AIndividual(ac) =  a/w • 

extractAgentsStep aps =
{id : AgentID] c : Contribution | id G ac.agents

A c.symbol = ac.symbol A c.terms = ac.terms • (c, à/)}) V 
(3acs : F AnnotatedContribution \ AJoint(acs) = aps • 

extractAgentsStep aps =
{ac : AnnotatedContribution] id : AgentID] c : Contribution | 

ac G acs A id G ac.agents A c.symbol =  ac.symbol A 
c.terms = ac.terms • {c,id)}) V 

(3 acacs : F ACAcomponent \ AConcurrent(acacs) = aps • 
extractAgentsStep aps =

|J{acac : ACAcomponent \ acac G acacs • 
extractAgentsACAcomponent acac})

Map : AnnotatedPlan • extractAgentsPlan ap =
(J{aps : APlanStep | aps G ran ap.body • extractAgentsStep aps}

Mid : AgentID] cids : P (Contribution x AgentID) •
agentContributions id cids =  {c : Contribution | (c, /¿/) G c/'ife • c} 

Vap : AnnotatedPlan • allAgents ap =
{id : AgentID] cid : (Contribution x AgentID) \

cid G extractAgentsPlan ap A id =  second cid • id}
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EAnnotatedPlanAuxiliary
UseActionRequest : AnnotatedPlan —» P AgentModel —> bool

Map : AnnotatedPlan; ms : P AgentModel •
UseActionRequest ap ms = true

<=> (3 id : AgentID \ id E allAgents ap • 
believedMV ap.achieves id ms < 0) A 

UseActionRequest ap ms =  false
(V id : AgentID \ id E allAgents ap • 

believedMV ap.achieves id ms > 0)

__UseActionRequest___________________________________

A.29 Nominal Commitment

The process of forming a cooperative intention requires agents to form a nominal com

mitment to informing others if they agree to cooperate, only later change their decision. 

Before requesting assistance a nominal commitment is formed with respect to the agents 

whose assistance is sought.

__NominalCommitment-------------------------------------------- ---------------------
plan : AnnotatedPlan 
agents : P AgentID
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__FormNominalCommitment__________ ___________________________
AAgent
"EAnnotatedPlanAuxiliary 
newPlan : AnnotatedPlan 
commitedTo : AnnotatedPlan —>• bool

V ap : AnnotatedPlan • 3 c : NominalCommitment |
c G nominalCommitments • c.plan.achieves = ap.achieves 

«=> commitedTo ap = true
Map : AnnotatedPlan • Me :  NominalCommitment \

c G nominalCommitments • c.plan.achieves ap.achieves 
O  commitedTo ap — false 

commitedTo newPlan = false
=> (3 c : NominalCommitment • c.plan = newPlan A 

c. agents — all Agents newPlan A
nominalCommitments' — nominalCommitments U {c}) 

commitedTo newPlan =  true
=> (3 c, d  : NominalCommitment | c G nominalCommitments • 

c.plan.achieves = newPlan.achieves A
c & nominalCommitments1 A c' G nominalCommitments1 A 

d.plan =  newPlan A d.agents =  allAgents newPlan)

A.30 Committing to Cooperate

On receiving a request for assistance an agent decides whether or not to cooperate, based on 

the trust ascribed to the requester, which determines the perceived risk of interacting with it 

and the motivational value that would be attained (by the providing agent) in cooperating 

We formalise these factors below.

consideredTrusted : AgentID —> F AgentModel -> R -> bool V

V requester : AgentID; ms : P  AgentModel; t : R • 
trustOfAgent requester ms > t

=> consideredTrusted requester ms t =  true A 
trustOf Agent requester ms < t

=> consideredTrusted requester ms t =  false
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__ConsiderFurtherContribution_________________________________
EAgent
ConsiderFurtherContribution : Contribution —> AgentID —» R -> bool

V c : Contribution-, requester : AgentID; t : R •
ConsiderFurtherContribution c requester t = true

consideredTrusted requester (extractAllModels beliefs) t =  
true A (3 m : Motivation \ m € motivations • 

mvContribution m c > 0) A 
ConsiderFurtherContribution c requester t — false

O  consideredTrusted requester (extractAllModels beliefs) t = 
false V (V m : Motivation \ m 6 motivations • 

mvContribution m e < 0)

. ConsiderFurtherContributionGoal________________________________
EAgent
considerFurtherContributionGoal : Contribution —> Goal —> AgentID —»• R  

—> bool V

V c : Contribution; g  : Goal; requester : AgentID; / : R  • 
considerFurtherContributionGoal c g requester t =  true

consideredTrusted requester (extractAllModels beliefs) t = 
true A (3 m : Motivation \ m € motivations •

mvContribution m c > 0) A (3 m : Motivation \ 
m e motivations • mitigation m g > 0) A 

considerFurtherContributionGoal c g requester t =  false
<i=> consideredTrusted requester (extractAllModels beliefs) t = 

false V (V m : Motivation \ m € motivations •
mvContribution m c < 0) A (V m : Motivation \ 

m € motivations • mitigation m g  < 0)
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__ConsiderFurtherPlan______________________________________
EAgent
ConsiderFurtherPlan : Plan —> AgentID —> M  - >  bool

Vp  : Plan; requester : AgentID; t : R •
ConsiderFurtherPlan p  requester t = true

consideredTrusted requester (extractAHModels beliefs) t = 
true A (3 m : Motivation | m G motivations • 

mvPlan m p > 0) A
ConsiderFurtherPlan p requester t =  false O

consideredTrusted requester (extractAl¡Models beliefs) t — 
false V (Vm : Motivation \ m G motivations • 

mvPlan m p < 0)

A.31 Generating Full Commitment to Cooperation

Each of the requested agents makes an appropriate response, either accepting or declining 

to cooperate. Then, if sufficient agents accept, a cooperative intention can be formed.

Response = =  AgentID x Contribution x bool

__CheckResponses------------------------------------------------------------ ----------
E UseActionRequest 
E Extra ctlnfoJo intAction
checkResponses : AnnotatedPlan -> P Response —► bool

yap : AnnotatedPlan; rs : PÆespom'e; cid : P (Contribution x AgentID) | 
cid = extractAgentsPlan ap • checkResponses ap rs = true 

(V c : Contribution | c € (extractContributions cid) •
(9 id : AgentID •  (id, c, true) G rs)) A 

checkResponses ap rs = false
(V c : Contribution \ c G (extractContributions cid) •

(Vii/ : AgentID • (zc/,c, true) £  rs))

If sufficient agents accept, the initiating agent selects the particular agents to cooperate 

with (since the plan may have been redundantly annotated) and sends a confirmation, and a 

cooperative intention is formed.
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__Confirmation_____________
to : AgentID 
from : AgentID 
contributions : P Contribution
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__ConstructConfirmationsAuxiliary________________________________
processACAcomponent : ACAcomponent —> IP AgentID -> IP AgentModel 

—> ACAcomponent
process Step : APlanStep -> IP^ge/Ji/Z) -> P AgentModel —> APlanStep 
orderedAgents : P AgentID -> P AgentModel —>• seq AgentID 
filterAccepted : P AgentID —> P AgentID -» P AgentID

V requested, accepted : P AgentID • filterAccepted requested accepted =  
{/d : AgentID \ id G requested A /</ G accepted}

Vas : ¥  AgentID] mi : ¥  AgentModel] as' : seq AgentID • 
orderedAgents as ms — as' <4- ran as' =  as A 
( V « : Z | m > 2 A h < •

trustOfAgent (as'n) ms > trustOfAgent (as'(n -  1)) /as) 
Vacac : ACAcomponent] accepted : ¥  AgentID] ms : ¥  AgentModel •

(3 ac, ac' : AnnotatedContribution | AContrib(ac) =  acac • 
processACAcomponent acac accepted ms = AContrib(ac') 

ac.symbol =  ad .symbol A ac.terms = ac' .terms 
A ac'.agents —
{orderedAgents (filterAccepted ac.agents accepted) ms 1}) V 

(3 aas : ¥ AnnotatedContribution \ AJA(acs) =  acac • 
processACAcomponent acac accepted ms =
/Lt4({ac,ac' : AnnotatedContribution \ ac G ac^ A 
ac.symbol = ad .symbol A ac.terms = ad. terms A 
ad .agents =  {orderedAgents 
(filterAccepted ac.agents accepted) ms 1} • ac'}))

Vaps : APlanStep] accepted : ¥  AgentID] ms : ¥  AgentModel •
(3ac,ad : AnnotatedContribution \ AIndividual(ac) =  aps • 

process Step aps accepted ms = Alndividual(ad)
&  ac.symbol = ad .symbol A ac.terms = ad .terms 
A ac'.agents =
{orderedAgents (filterAccepted ac.agents accepted) ms 1}) V 

(3acs : ¥  AnnotatedContribution | AJoint(acs) = aps • 
processStep aps accepted ms = AJoint(
{ac, ac' : AnnotatedContribution | ac G acs A 
ac.symbol — ad .symbol A ac.terms = ad .terms A 
ac'.agents = {orderedAgents ( 
filterAccepted ac.agents accepted) ms 1} • ac'})) V 

(3 acacs : ¥  ACAcomponent \ AConcurrent(acacs) =  aps • 
processStep aps accepted ms = AConcurrent(
{acac : ACAcomponent \ acac G acacs • 
processACAcomponent acac accepted ms}))
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__FormFinalPlan____________________________________________
EConstructConfirmationsAuxiliary 
S UseActionRequest 
responses : P Response 
accepts : F AgentID
formFinalPlan : AnnotatedPlan -A P AgentID -A FAgentModel 

-A AnnotatedPlan

accepts — {r : Response | r G responses A Third(r) = true • First(r)} 
V ap, ap' : AnnotatedPlan; ms : P AgentModel • 

formFinalPlan ap accepts ms — ap'
(V n : Z | n < #ap.body • ap'.body n =  

processStep (ap.body n) accepts ms)

__ConstructConfirmations_____________________ ____________________
E ConstructConfirmationsAuxiliary 
S UseActionRequest 
responses : P Response 
accepts : P AgentID
constructConfirmation : AgentID -A AgentID -A AnnotatedPlan 

-A Confirmation
ConstructConfirmations : AgentID -A AnnotatedPlan -A P Confirmation

accepts =  {r : Response \ r G responses A Thirdly) = true • First(r)} 
Vfrom, to : AgentID; ap : AnnotatedPlan; c : Confirmation • 

constructConfirmation from to ap =  c &  cfrom - from A 
c.to = to A c.contributions =

agentContributions to (extractAgentsPlan ap)
V from : AgentID; ap : AnnotatedPlan • ConstructConfirmations from ap = 

{id : AgentID | id G allAgents ap • constructConfirmation from id ap}

A.32 Strategy Choice

When an agent adopts a plan containing an action for which cooperation is sought, it can 

solicit assistance and initiate the formation of the required cooperative intention as soon 

as the plan is selected using an immediate commitment strategy, or later at execution time, 

using a delayed commitment strategy. The choice between these strategies is based on the 

degree of dynamism in the environment, and the overall trust of others, as formalised below.
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UseDCS_________________________________________________
useDCS : P AgentID -» P AgentModel —» Plan — » M—

—̂ R —y bool

V capable : ¥  AgentID] ms : P AgentModel] 
p  : Plan] dynamism, dT,rT,ws,wc : R •

useDCS capable ms p  dynamism dT rT ws wc =  true 
^  {quality p  ms w, wc) > rT V dynamism > dT A 

useDCS capable ms p  dynamism dT rT vvj wc =  false 
<!=> {quality p  ms w, wc) < rT V dynamism < dT

A.33 Cooperative Plan Elaboration

Once a cooperative intention has been formed, the agents involved can execute it, by per

forming the contributions to which they are annotated. When a subgoal is reached it must 

be elaborated, and in general the subgoal is elaborated by the agent that initiated coopera

tion. The situations in which the initiator might prefer plan selection to be performed by an 

agent other than itself are formalised below.

DelegateElaboration-----------------------------------------------------------------
EAgent
delegateElaboration : Goal —> bool * V

V subgoal: Goal • delegateElaboration subgoal = true
(planSetForGoal subgoal beliefs planLibrary) =  0  V 
(\/p : Plan] m : Motivation \ m £ motivations A

p  e {planSetForGoal subgoal beliefs planLibrary) • 
mvPlan m p  < 0)

V subgoal: Goal • delegateElaboration subgoal =  false <=>
(planSetForGoal subgoal beliefs planLibrary) f  0  A 
(3p  : Plan] m : Motivation \ m G motivations A

p  £ {planSetForGoal subgoal beliefs planLibrary) • 
mvPlan m p  > 0)
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A.34 Updating Trust of Others

At the end of a cooperative interaction, each agent involved updates its trust of the others. 

If the cooperative interaction was successful, and the goal achieved, then the trust an agent 

associates with the others involved is likely to increase. Conversely, if the goal was not 

achieved then the cooperative intention was unsuccessful, and trust is likely to decrease.

increaseTrust : R —> R —> R 
decreaseTrust: R -> R —> K * V

V trust, trust1, trustlncrease : R • increaseTrust trust trustlncrease =
trust1 =>• trust! > trust

V trust, trust1, trustDecrease : R • decreaseTrust trust trustDecrease =
trust! =>■ trust1 < trust
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Appendix B

Implementation of the Senara 

Testbed

B.l Introduction

The appropriateness of any design or model is dependent on the environment in which it is 

situated. Our architecture and model of cooperation is intended for complex domains, in 

which agents are situated in a dynamic, unpredictable environment. S e n a r a  agents them

selves are complex entities, and the interaction of a group of agents situated in a complex 

environment is virtually unpredictable, and an external high-level analysis is too complex 

to be practical. Therefore, to assist the understanding of the work described in this thesis, a 

S e n a r a  testbed has been developed to provide a platform for empirical investigation. The 

objective in constructing the testbed is to demonstrate the concepts presented in this work, 

and allow simple experimentation, rather than to develop a sophisticated finished product.
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B.2 Overview of the Testbed

The domain in which our testbed is grounded is the warehouse domain introduced in Chap

ter 51. Agents are situated in a warehouse comprising three areas: a delivery area, a standard 

storage area, and a long term storage area. Boxes arrive in the delivery area and must be 

moved to one of the storage areas (or rooms), which for simplicity are arranged linearly as 

shown earlier in Figure 5.2.

The testbed itself is constructed in Java, and comprises a set of distributed autonomous 

agents of the form specified in Chapters 3 and 4, and able to perform the tasks required for 

cooperation in our model. Since we are concerned with software agents, the environment 

in which they are situated also exists in software only. Agents are able to perceive and act 

upon the environment using Java’s Remote Method Invocation mechanism, and the Internet 

acts as a communication channel. Each agent is constructed as a stand-alone application 

having a distinct thread of execution. Indeed, in our investigations each agent is invoked 

on different machine, ensuring they are asynchronous, and providing an easy mechanism 

for adjusting the relative speed of an agent’s reasoning — we can make an agent relatively 

faster or slower by simply artificially decreasing or increasing the load of the processor on 

which it is running. The results that we describe in this appendix have been obtained using 

a selection of platforms2 with agents and the environment running on different, geographi

cally distributed, machines. This demonstrates both the platform independent nature of the 

implementation, and moreover, the ability of the cooperation framework to cope with the 

lack of synchronisation, and the communication delays resulting from such a situation.

Interaction with the testbed is via command a prompt interface, presented by each entity 

in the environment, and the environment representation itself. Through this interface users
'Although we concentrate here on them warehouse domain, the testbed has also been tested on the rubbish 

collecting environment used in Rao’s discussion of AgentSpeak(L) [81], where agents must collect rubbish that

appears in one of a number of lanes of traffic, whilst avoiding collisions.
2 In particular we have tested the implementation using various combinations of Linux, Solaris, and Win

dows 98/2000 machines.
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can invoke a variety of functions that change the state of an agent, such as changing the 

intensity of its motivations, or its trust of others, or even forcing it to drop a particular 

intention. The user can also manually invoke the agent’s reasoning cycle, and thus have 

extra control over the relative speed of agent’s reasoning. The environment allows the 

user to add and remove objects, change the power level of an agent, and intercept and 

remove messages between agents. By intercepting a message (and removing it) the user can 

simulate a broken communication link between the agents, allowing the model to be tested 

in situations where communications are unreliable. In addition to being run interactively, 

experiments in the testbed can also be automated, with the user specifying the number 

of cycles, and delay between them, on start up. An initial situation can be specified for 

the environment, along with specifying a set of predefined paths that define when certain 

events occur in the environment. For example, a path may specify that a box appears in the 

delivery area at a particular point in time, and another appears a certain number of cycles 

later. The interaction windows for a group of four agents, and the environment can be seen 

in Figure B.l, which shows the beginning of a potential interaction between agentl and 

agent4, where agentl has requested assistance from agent4 in storing a large box.

Output from the testbed is in the form of a trace of the mental state and actions (includ

ing any commitments) of the agents in the environment, along with a trace of the changes in 

environment itself. Since the agents and environment are distributed, each entity produces 

its own trace, and this requires some analysis to determine the order of events and state 

changes in the testbed, and to understand the circumstances that led to a particular situa

tion To aid this analysis a local time stamp is printed on the output of each iteration of an 

agent’s control cycle, and before beginning an experiment we synchronise the local times 

on the machines involved.

The warehouse scenario is a complex and dynamic domain — communications are 

not guaranteed (since users can intercept messages) and execution is asynchronous and 

distributed. Thus, it offers a approximation of the issues faced in a real-world multi-agent 

domain. However, a number of simplifications are made, since we are concerned with

260



Figure B.l: The interface to the Sen
a

r
a testbed

envi rorwent 69e»
Interactive node.
Press return to iterate, q to quit 
perceive request from agent1810.1.1.3 
perceive request from agent2@10.1.1.3 
perceive request from agent4@10.1.1.3 
perceive request from agent3@10.1.1.3 
a
Add what? 
the options are:

1 small box
2 large box

l2
tick«): 
env;
[(isRoom, Eroomll), (isDeliveryArea, trooml]), (isRoom, [room2]>, (isRoom, [r̂  
31), (isChargeArea, [rooml]), {isAgent, Eagentll), (location, [agentl, roo«2] 
(isAgent, [agent2]>, (location, [agent2, room3]>, (isAgent, [agent31>, (locat: 
, Iagent3, room33>, (isAgent, Eagent43), (location, Eagent4, roo«33>, (isBox, 
oxl3>, (type, [boxl, large, type23>, (location, [boxl, rooml3>, (charge, tageil 
', 93), (charge, Eagent2, 93), (charge, [agent3, 93), (charge, Eagent4, 93)3 
perceive request from agentlB10.1.1.3
sent message to agent2 from agentl of type annotated3lan id Iagentl_2

Fdro
<st dropping obsolete intentions...

: <er> generating goals...
i sel <start generateGoals(>>
< pro- <end generateGoals()>
< adq selecting most motivated goal...

<st processing requests for assistance...
ii <err adopting intentions...
5 sell <start adopt I ntent ions(»< wor <end adoptIntentions(>>
: end selecting intention to work on...

<- working on intention...
bel end of workOnlntentionO
(1 <—  start: agent4 —
(is beliefs: [(isAgent, tagentll), (location, [agentl, roo«23>, (isAger
mot (location, [agent2, room33>, (isAgent, [agent33>, (location, Eager
id: (isAgent, Eagent43), (location, Eagent4, room33>3
goa motivations: [< charge intensity: 0 threshold: 1 >, < store intensi
m os Id: 1 >3
int goals: [3 «
don most motivated goal: null

- — intentions: [3
done this cycle:
—  end: agent4 — >
[TestAgent (id: agent4> - use ? for command list3 $ 0

CratingBC: 2.181818181818182 
CratingMC: 2.181818181818182 > 

agents to request: [agentl, agent23 
sending requests 

to agent2 
¡done requests 
|<end adoptIntentions(>> 
selecting intention to work on.*, 
working on intention... 
jworkOnlntention 
intention status is 3 
|purging plans 
end of workOnlntentionO 
|<—  start: agentl —
beliefs: [(isAgent, [agentl]), (location, [agentl, room23>, (isAgent, [agent23>,| 
(location, [agent2, room33>, (isAgent, [agent33>, (location, [agent3, room33>, 
(isAgent, [agent43>, (location, [agent4, room33>, (isBox, [boxl3>, (type, [boxl, 
large, t«#)e23>, (location, [boxl, rooml3>3 

Imotivations: [< charge intensity: 0 threshold: 1 >, < store intensity: 1 threshol 
Id: 1 >3
jgoals: [[$not (holding, [agentl, boxl3>, (location, [boxl, room23>$33 
¡most motivated goal: [Snot (holding, [agentl, boxl3>, (location, [boxl, room23>$| 
3
intentions: [< achieves: [Snot (holding, [agentl, boxll), (location, [boxl, rooml 
23>S3
status: 3 id: Iagentl_2 
plans: [< name: storeLargePlan
achieves: [Sdocation, [boxl, roo«23>, not (holding, [agentl, boxl3>S3 
preconditions: [(location, [boxl, roo«13>, (type, [boxl, large, type23>3 
body: [<goal [Sdocation, [agentl, rooml3>, (location, [agent2, rooml3>S3>, <c| 

|oncurrent_action [<action (inform, Eagent2, inposition3>=agentl>, <action (infor| 
[agentl, inposition3)=agent2>3>, <concurrent_action [<action (wait, [agent2, 

inposition3)=agentl>, <action (wait, [agentl, inposition3)=agent2>3>, <joint_act 
ion [<action (liftend, [agentl, boxll>=agentl>, <action <1 iftend, [agent2, boxll 
>=agent2>3>, <concurrent_action [<action (inform, [agent2, lifted3)=agentl>, <ac 
tion (inform, [agentl, Iifted3)=agent2>3>, <concurrent_action Kaction (wait, [a 
gent2, lifted3>=agentl>, <action (wait, [agentl, lifted!>=agent2>3>, <goal [S(lo 
jcation, [agentl, room23>, (location, [agent2, roo«23>S3>, <concurrent_action [<a 
Iction (inform, [agent2, inposition3)=agentl>, <action (inform, [agentl, inpositi 
on3)=agent2>3>, <concurrent_action [<action (wait, [agent2, inposition3)=agentl> 
<action (wait, [agentl, inposition3)=agent2>3>, <joint_action [<action (placee 

nd, [agentl, boxl3)=agentl>, <action (placeend, ¿agent2, boxl3)=agent2>3>3 
Srating: 8.0
CratingBC: 2.181818181818182 
CratingHC: 2.181818181818182 >3 >3

[done this cycle: Sent request message to agent2 for assistance in achieving 
[Sdocation, [boxl, room23>, not (holding, [agentl, boxll>S3 
and formed corresponding nominal commitment 

—  end: agentl — >
[TestAgent (id: agentl) - use ? for command list! $ 0

Wed Hay 2<l 1 0 :5 7 :4 7  2W 0



demonstrating and increasing our understanding of the model, and not with developing a 

product. In particular we make the following simplifying assumptions.

• Rooms in the warehouse are laid out linearly, requiring movement along one axis 

only.

• Agents are able to perceive the whole environment.

• Agents do not enter or leave the system while it is in operation

• Communication is via a simplified agent communication language, containing only 

performatives for requesting assistance, declining a request, accepting a request, and 

informing an agent of something.

• No errors or losses occur in communication, unless explicitly caused by user interac

tion with the environment.

Although this environment is simple, agents in it must still cooperate with others that 

are potentially unreliable to achieve certain goals. They must select the best plan for a 

given situation based on both the cost and risk associated with plans. Cooperative plans 

must be annotated with agents to request assistance from, and a cooperative intention must 

be formed before cooperation can actually occur. Therefore, it represents a balance be

tween being rich enough to demonstrate the model, and simple enough to understand the 

interactions that occur and the reasons for them.

The remaining sections of this appendix can be divided into two categories. Firstly, in 

the following section we give the details of the plan library given to agents in the testbed, 

and then in Section B.4 we discuss how agents can order the execution of their actions. 

Secondly, in the final section of this appendix we give a brief walk-through of the testbed 

in operation in a specific situation, demonstrating the mechanisms and processes described 

in the earlier chapters of this thesis. For ease of understanding we take a simple example of 

two agents forming a cooperation intention and jointly performing the actions involved in 

moving a box from the delivery area to a storage area.
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name: moveRightPlan
achieves: [$(location, [_agent, _y])$]
preconditions: [(location, [.agent, _?c] ) , (isRightOf, [_y, _x] ) ]
body: [<action (move, [.agent, right] ) =_agent>,

<goal [$(location, [.agent, _y])$]>] 
name: moveLeftPlan

achieves: [$(location, [.agent, _y])$]
preconditions: [(location, [.agent, _x]), (isLeftOf, [_y, _x] ) ]
body: [<action (move, [.agent, left])=_agent>,

<goal [$(location, [.agent, .y])$]>] 
name: stayPutPlan

achieves: [$(location, [.agent, _x])$]
preconditions: [(location, [.agent, _x] ) ]
body: []

name: rechargePlan
achieves: [$(location, [.agent, _y]), (charge, [.agent, 10])$]
preconditions: []
body: [<goal [$(location, [.agent, _y])$]>,

<action (recharge, [.agent])=_agent>]

Table B.l: Plans for moving and recharging in the warehouse domain

B.3 Plan Library

We introduced the Warehouse domain in Section 5.5, however, so as not to complicate 

our earlier discussions we did not give details of the plans given to agents. Thus, before 

considering a sample interaction we briefly describe the set of plans given to agents in the 

testbed.

Agents are able to perform certain actions in the warehouse, in particular they are able 

to move around, pick up and put down boxes, and check that boxes are stored correctly. 

There are three types of lifting action: pickup which operates on small boxes, lif tend 

which lifts one end of a large box, and pickupBiG which operates on large boxes. All 

agents are capable of performing these actions, with the exception of the pickupBiG action, 

which can only be performed by a specific agent, agent3.

For an agent to be able to achieve a goal, it requires a plan specifying the actions that
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are needed for its achievement. In Sen ara , an agent is given a library of plans from which 

it selects the most appropriate for a particular goal, as described in Chapter 3, rather than 

planning from first principles. Agents in the warehouse scenario must be able to move 

around their environment, store boxes that are delivered, check boxes are correctly stored, 

move boxes to the waste disposal area, and recharge their power levels when required, and 

we provide agents with a plan library to achieve this.

We begin by defining three plans for moving around their environment, i.e. achieving 

the goal of being in a particular location; agents are given a plan for moving right, moving 

left, and staying in their current location. The latter is required so that an agent has a plan 

to achieve the goal of being in specific room when it is already there. These plans, along 

with a plan defining how an agent can recharge its power, are shown in Table B.l, in which 

_t denotes a variable and $g$ denotes a goal.

Along with the ability to move around in the warehouse, agents must be able to store 

boxes that are delivered. Now, there are two sizes of box, small and large, and small boxes 

can be stored by individuals, while large boxes must be stored by a specific agent, or through 

cooperation — agents need appropriate plans to represent this. The plans associated with 

storing boxes are shown in Table B.2, which contains plans for an individual storing a 

small box, two agents storing a large box together, and an agent storing a large box alone. 

Table B.2 also contains a plan for checking that a box is correctly stored — an agent must 

move to the location of the box, and check it has not been stored beyond its expiry time. We 

do not need to define additional plans for moving boxes to the waste disposal area, since 

the storage plans can be used (with the target room set appropriately). These plans, taken 

in conjunction with those described earlier, comprise the agent’s plan library.
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name: storeSmallPlan
achieves: [$(location, [_box, _room]), not (holding, [_agent, _box])$]
preconditions: [(location, [_box, _loc]), (type, [_box, _size, -type])]
body: [<goal [$(location, [_agent, _loc])$]>,

<action (pickup, [_agent, -box])=_agent>,
<goal [$(location, [_agent, .room])$]>,
<action (putdown, [_agent, -box] ) =_agent>] 

name: storeLargePlan
achieves: [$(location, [_box, -room]), not (holding, [_agent, _box])$]
preconditions: [(location, [_box, _loc]), (type, [_box, -size, type])]
body: [

<goal
[$(location, [_agentl, _loc]),
(location, [_agent2, _loc])$]>,

<joint-action
[<action (liftend, [_agentl, -box])=_agentl>,
<action (liftend, [_agent2, -box])=_agent2>]>,

<goal
[$(location, [_agentl, -room]),
(location, [_agent2, _room])$]>,

<joint-action
[<action (placeend, [_agentl, -box])=_agentl>,
<action (placeend, [_agent2, -box])=_agent2>]>] 

name: storeLargePlanCheap
achieves: [$(location, [_box, -room]), not (holding, [-agent, _box])$]
preconditions: [(location, [-box, _loc]), (type, [_box, -size, -type])]
body: [<goal [$(location, [_agent, _loc])$]>,

<action (pickupBIG, [-agent, -box] ) =_agent>,
<goal [$(location, [_agent, _room])$]>,
<action (putdownBIG, [_agent, -box]) =_agent>] 

name: checkPlan
achieves: [$(checked, [_agent, _box])$]
preconditions: [(location, [_box, _loc])]
body: [<goal [$(location, [.agent, _loc])$]>,

<action (check, [.agent, -box])=_agent>]

Table B.2: Plans for storing and checking boxes in the warehouse domains
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B.4 Synchronising and Ordering Action Execution

In executing a cooperative intention agents must ensure that their actions are performed in 

the correct order, and that the performance of contributions comprising any joint actions 

are synchronised. Recall from Chapter 7 that we adopt Kinny el al. ’s solution to ordering 

and synchronising actions. For completeness we give more details of this approach in this 

section.

B.4.1 Synchronisation

Solutions to the problem of synchronisation of the contributions comprising a joint action 

tend to be domain specific. For example, in the Warehouse Domain all the possible joint 

actions are related to lifting boxes. This requires agents to be in the same area of the 

warehouse, meaning that synchronisation of contributions can be achieved through simply 

observing the behaviour of the other agents of the joint actions. However, this method is 

not applicable where agents are not in the same location as each other. Other types of joint 

action exist where agents do not need to be in the same place. For example, performing an 

update operation on a distributed database can be considered to be a joint action requiring 

several local updates (the contributions) simultaneously. In this case agents must use some 

other method for achieving synchronisation, through communication. However, the details 

of how this is best achieved will depend on the nature of their communication. If agents are 

relatively close in geographic terms, then they may be able to synchronise using the Internet. 

However, if they are distributed across different continents then the communication delay is 

likely to be too great, and unpredictable3, to achieve synchronisation over the Internet, and 

another method must be found.

No general solution that works for all domains exists for synchronisation of joint ac

tions. Solutions can be achieved through communication i f  agents have access to a global
3The delay will be unpredictable since it will depend how messages are routed
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clock, know when messages are sent, know the communication delay, and communication 

is reliable [46]. For example, agents might agree to perform their contributions at a specific 

time. However, the details of such approaches are beyond the scope of this thesis.

B.4.2 Action Ordering

Similarly to the problem of synchronising joint actions, the most efficient mechanism for 

constraining the order of actions is dependent of the domain concerned. For example, if it 

is possible for agents to perceive the actions of others then, before performing its part of a 

plan, an agent can simply observe whether the preceding action is complete. However, in 

general, it is not possible for agents to perceive the actions of others, and indeed, even if it 

were possible, there is the additional problem of ensuring the action observed is part of the 

plan concerned, and not independent of it4.

Unlike the problem of synchronisation, however, it is possible to offer a general solution 

to the problem of ordering actions based on communication. Although this solution is 

certainly not the most efficient in all domains, it is straightforward, and provides a base from 

which to develop a more efficient solution for a given application domain. The problem of 

action ordering arises from the need for an agent to know that the execution of the previous 

contribution is complete before beginning the execution of the following action. Kinny et 

al. offer a simple solution in their model of Planned Team Activity [55], which we adopt in 

this thesis.

The solution is to require that the agent executing a given action informs the agent 

of the following action when execution is successfully performed. Correspondingly, the 

agent of the following action must not perform its contribution until it is informed that 

the previous action has been completed. In the case of joint and concurrent actions we 

extend this solution such that the set of agents performing joint or concurrent actions must
4This is a problem since although the action observed might be the same, if it is not part of the same plan 

the preceding actions in the plan will not have been performed.

267



inform the agent(s) of the following action when their contributions are complete. Similarly, 

each agent involved in the execution of the following action must wait until it has been 

informed of completion by each of the agents performing a contribution in the previous 

action. Action ordering can be achieved, therefore, by inserting appropriate communication 

and waiting actions into the plan prior to its execution. In general, only the initiating agent 

has knowledge of the complete plan, and therefore the actions required for ordering must 

be added by the initiator.

Recall from Chapter 7 that a cooperative intention can be established though either an 

immediate or a delayed commitment strategy5. If an ICS was used, then commitments 

have been obtained for all of the appropriate actions in the current elaboration of the plan. 

Conversely, if a DCS is used, then each action is treated in turn, with a cooperative intention 

being established on an action by action basis. This has a bearing on the achievement of 

action ordering, since the steps in the plan are treated in different ways. Where the ICS is 

used then action ordering can be achieved as outlined above, with the agents of an action 

informing the agents of the following action when its execution is complete. If a DCS is 

used then it is not known at the time of executing an action which agents will perform 

the following one, unless it is an individual action to be performed by the initiating agent. 

Therefore, if a DCS is used, all that is required is that the agents performing a cooperative 

action inform the initiating agent when their contributions are complete. The initiating agent 

can then bring about execution of the following action, by forming a cooperative intention 

or by performing it itself.

We now give the algorithm the initiator uses to insert the appropriate actions into its 

plan. We concentrate on the case where an ICS has been used to establish a cooperative 

intention. The algorithm is to step through the actions in the plan, and wherever an action is 

followed by an another that is to be performed by different agents, two actions are inserted. 

The first is an action for the agents of the current action to inform the agents of the following 

action as soon as it is complete. The second is an action for the agents of the following

5ICS and DCS respectively
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Inputs:
plan — the plan for which action ordering is needed 

Outputs:
plan' — the plan with appropriate ordering action inserted

Algorithm:
plan' = plan
f o r  action in  plan do

i f  n o t ftna\(act, plan) and no t agentsOf(next(acP'o«)) = 
agentsOf(acho«)) then
informAct = inform(agentsOf(next(achcw)), don enaction)) 
araioia\e{informAct, agentsOf(ac//o«)) 
insertAfter(act/0«, informAct) 
waitAct = informed(agentsOf(0c//on), done(action)) 
annoXate(waitAct, agentsOf(next(<2cr/o/j))) 
insertBefore(next(ncP'o/j), waitAct) 

r e tu r n  plan'

Figure B.2: Algorithm for inserting ordering actions based on Kinny et al. ’s work

action to wait until they have been informed of the previous action’s completion, as shown 

in Figure B.2.

B.5 Example Interaction

In this section we describe a simple cooperative interaction between two agents in the ware

house domain. A complete trace of the output from the testbed for even a simple example 

is rather large (in the order of 3000 lines for 40 cycles of an agent’s control cycle), and so 

for brevity we only include extracts of the trace here.

B.5.1 Plan selection

In order to achieve a particular goal, an agent must select an appropriate plan from its plan 

library, and commit to its achievement through the formation of an intention. Where there
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is only one plan in the library that achieves the goal and has its preconditions satisfied, then 

plan selection is a trivial, since that plan is selected. However, if there is more than one 

plan that achieves the goal (and has its preconditions satisfied) then the agent must choose 

between them. In Chapter 6 we proposed an approach to plan selection in this situation that 

takes into account both the cost of a plan, using standard planning heuristics, and the risk 

associated with it with respect to cooperation. The plan selection process consists of two 

key components: an assessment of this cost and risk, and the choice between plans for a 

given goal.

B.5.2 Pre-execution Assessment

All plans in an agent’s library are assessed to arrive at a standard rating based on standard 

planning heuristics such as length and cost, and a cooperative rating based on the estimated 

risk arising from cooperation. To arrive at these ratings an agent must consider the actions 

contained in a plan, along with the set of possible elaborations of any subgoals it contains. 

However, because constructing the entire plan tree at plan selection time is too expensive, 

agents perform an off-line pre-execution assessment of the plan library. As described in 

Section 6.5 agents start by assessing plans that require no further elaboration, since these 

can be directly evaluated without considering subplans. These ratings are then fed into other 

plans in the library as values for subgoals within them, and so on in subsequent levels of 

elaboration.

We illustrate this process by considering the assessment of the plan library introduced 

above, from the perspective of a particular agent, agenti. Assessment begins with the 

plan for staying in the current location, since this is the only plan that does not require 

further elaboration. However, since it does not contain any actions either, its standard and 

cooperative rating are both zero.

start assessPlanLib 
assessing stayPutPlan

plan's cooperative rating assessed as
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0 . 0  ( B C )  0 . 0  (MC)

The plan for staying in the current location may be used in the elaboration of the plans 

for moving right and left, and so its rating is used in determining their ratings. To obtain the 

rating for moveRightPlan, each of the steps in its body is considered in turn. Firstly, the 

rating for the step corresponding to the action of moving right is obtained by considering its 

standard cost and the trust of the agents that might perform it, since the plan, and therefore 

the action of moving right, may be performed by another agent. Secondly, the subgoal of 

being in a particular location is assessed by considering the ratings of its possible elabora

tions. Two possible plans (apart from the plan for moving right itself) might be used in its 

elaboration: stayPutPlan and moveLeftPian. The rating for the former of these can be 

incorporated, but the latter cannot since moveLeftPian and moveRightPlan are mutually 

recursive meaning each might be a subplan of the other. Therefore, their ratings must be 

scaled for recursion, as described in Chapter 6. The plan for moving left is assessed in a 

similar manner, giving the following results.

assessing moveRightPlan
current step: <action (move, [_agent, right])=_agent> 
step is action, assessing... value is 1.03 
current step: <goal [$(location, [_agent, _y])$]> 
step is goal, finding BC and MC rating

poss elaborations: [moveLeftPian, stayPutPlan]
considering subplan moveLeftPian: 

plans are mutually recursive 
considering subplan stayPutPlan 

BC value is 0.0 MC value is 0.0 
scaling for recursion... factor is 3.0 

plan's cooperative rating assessed as
3.08 (BC) 3.08 (MC) 

plan's quality assessed as
6.08 (BC) 6.08 (MC) 

assessing moveLeftPian

plan's cooperative rating assessed as
6.08 (BC) 6.08 (MC)

Likewise, these ratings are used in assessing the subsequent level of plans in the library,
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which in this case corresponds to all the remaining plans. Firstly, consider the plan for 

storing small boxes. The body of this plan contains the steps of moving to the location of 

the box (for which one of the above three plans will be used), picking up the box, moving to 

the storage location (again using one of the above plans), and finally putting down the box. 

The assessment of this plan is therefore achieved by considering the ratings of the actions 

of picking up and putting down a box, along with the ratings of the three plans already 

assessed. As described in Section 6.5, when considering a set of plans for the elaboration of 

a subgoal, the best-case and mean-case ratings are determined, and used to arrive at a best- 

case and mean-case rating for the plan itself. The result of assessing the plan for storing a 

small box is as follows.

assessing storeSmallPlan
current step: <goal [$(location, [_agent, -loc])$]> 
step is goal, finding BC and MC rating

poss elaborations: [stayPutPlan, moveRightPlan,
moveLeftPlan]

considering subplan stayPutPlan 
BC value is 0.0 MC value is 0.0 

considering subplan moveRightPlan 
BC value is 6.08 MC value is 6.08 

considering subplan moveLeftPlan
BC value is 6.08 MC value is 6.08 

current step: <action (pickup, [_agent, _box] ) =_agent> 
step is action, assessing... value is 1.03 
current step: <goal [$(location, [_agent, -room])$]> 
step is goal, finding BC and MC rating

poss elaborations: [stayPutPlan, moveRightPlan,
moveLeftPlan]

considering subplan stayPutPlan 
BC value is 0.0 MC value is 0.0 

considering subplan moveRightPlan 
BC value is 6.08 MC value is 6.08 

considering subplan moveLeftPlan
BC value is 6.08 MC value is 6.08 

current step: <action (putdown, [_agent, _box] ) =_agent> 
step is action, assessing... value is 1.03 
plan's cooperative rating assessed as

2.05 (BC) 10.16 (MC) 
plan's quality assessed as

10.05 (BC) 18.16 (MC)

In this manner the remaining plans are assessed, resulting in the following best-case
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and mean-case ratings.

assessing storeLargePlan
plan's quality assessed as 

23.82 (BC) 23.82 (MC) 
name: storeLargePlanCheap

plan's quality assessed as 
13.85 (BC) 21.96 (MC) 

assessing rechargePlan
plan's quality assessed as 

7.0 (BC) 11.05 (MC)

Now, since the trust placed in agents changes over time, these ratings may become out 

of step with the current situation, and so they must be reassessed periodically. For example, 

if agentl ’s trust of agent3 changes from 0.52 to 0.1, i.e. from a high to a low level of 

trust, then the ratings of risk associated with plans that might involve agent3 will increase 

when reassessed, to reflect the increased risk. For example, the actions in the plan for an 

individual agent storing a large box must be performed by agent3 because it is the only 

agent capable of moving such a box. Therefore, if the plan library is reassessed the ratings 

of this plan will increase, giving the following new rating.

name: storeLargePlanCheap
plan's cooperative rating assessed as 

30.0 (BC) 38.83 (MC)

B.5.3 Plan Selection

The ratings determined by an agent’s pre-execution assessment of its plan library are used 

to select the best plan to achieve a goal. In the case where there is only one applicable plan, 

and that plan can be performed individually, then plan selection is a trivial — the applicable 

plan is selected. For example, if a small box is delivered to the warehouse, and agenti 

perceives this, it will form the goal of storing the box, as a result of its tidiness motivation. 

In order to form an intention it must select a plan for this goal, and the only applicable plan
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is s t o r e s m a i i p i a n .  Thus, the agent selects this plan, and forms an intention towards its 

execution.

However, where there are a number of applicable plans, and these plans require cooper

ation to perform, then plan selection is more complex. For example, consider the situation 

where agenti perceives that a large box has arrived in the delivery area, and adopts the 

goal of moving it to the storage area. There are two applicable plans in this situation, 

storeLargePlan and storeLargePlanCheap, the former uses joint actions of two agents 

lifting the box and moving it, while the latter must be executed by an individual agent with 

the ability to lift a large box. Any of the other agents can assist for the execution of the 

former plan (since all agents have the required capabilities), but only agent3 can assist for 

the latter, since it is the only agent able to perform the action of lifting a large box indi

vidually. The best plan should be selected based on the best-case and mean-case advantage 

as discussed in Section 6.5. Using the ratings calculated above, the best-case advantage 

of choosing storeLargePlan over storeLargePlanCheap is 9.97, and the mean-case ad

vantage is 1.86. Thus, the best-case advantage is greater and so the plan with the lowest 

best-case rating should be selected, namely storeLargePlanCheap6. The agent can then 

begin the procedures required to adopt this plan as an intention.

Alternatively, if the agent had a different level of trust in the others, then a different 

plan might have been chosen. For example, if agent3 is little trusted and associated with 

a trust value of 0.1, instead of being trusted, then the rating for the storeLargePlanCheap 
changes as given above. The ratings for the other plans also change; in particular, the 

best-case and mean-case ratings for storeLargePlan both become 33.53. Here, the risk 

associated with storeLargePlanCheap is significantly increased, and the best-case and 

mean-case advantages become 3.53 and 5.3 respectively and therefore the mean-case rating 

should be used to select the best plan. The plan storeLargePlan has the lowest mean-case 

rating, and so is selected.
6In this case, s to r e L a r g e P la n C h e a p  would also have been chosen using the mean-case rating, but this 

is not always the case.
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B.5.4 Intention Adoption

Returning to our example interaction, the chosen plan is then used to adopt an appropriate 

intention, as described in Chapter 7. For individual plans, intention adoption is a trivial 

matter of committing to a the chosen plan. Where the plan requires cooperation, however, a 

cooperative intention must be formed (unless a delayed commitment strategy is used). If we 

take the above example of the agent selecting storeLargePian for its goal of storing a large 

box, then it must annotate that plan, request assistance, and form a cooperative intention if 

sufficient agents accept.

To annotate its plan the agent considers each action step in the plan in turn (excluding 

the synchronisation actions introduced earlier in this section), and annotates it with the 

appropriate agents, based on its trust of them. Of course, annotating a contribution to itself 

avoids the risk associated with cooperation, and so is better from a risk perspective, but it 

does require the agent to act and so will have an associated cost. Thus, an agent must decide 

whether to annotate itself to a contribution by balancing the risk and cost. After deciding 

which contributions in the plan to perform itself the agent should go through the remaining 

steps, annotating them with the most trusted agent (or set of agents in the case of joint and 

concurrent actions) that have the required capabilities. In our example, suppose that agenti 

annotates itself to one of the contributions in the joint actions of picking up, moving, and 

putting down the box. The remaining contributions in the joint actions are annotated to the 

most trusted agent, in this case agent4. Finally, the communication actions are annotated 

by substituting the bindings of agent identifiers to variables that were selected for the other 

actions.

chosenPlan is cooperative 
chosenPlan: name: storeLargePian
current step:

<goal [$(location, [.agenti, rooml]),
(location, [_agent2, rooml])$]> 

current step:
<concurrent_action [<action (inform, [_agent2, 

inposition] )=_agentl>,
<action (inform, [.agenti, inposition])=_agent2>]>
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current step:
<concurrent_action [<action (wait, [_agent2, 

inposition] )=_agentl>,
<action (wait, [_agentl, inposition] )=_agent2>]> 

current step:
<joint_action [<action (liftend, [_agentl, boxl])=_agentl>, 
<action (liftend, [_agent2, boxl])=_agent2>]>
<start minAnnotateJointAction()> 

act (liftend, [_agentl, boxl]) 
assigning self to (liftend, [_agentl, boxl])
(liftend, [agentl, boxl]) agentl 
act (liftend, [_agent2, boxl]) 
assigned []
capable [agent2, agent3, agent4] 
chosen agent4
(liftend, [agent4, boxl]) agent4 
<end minAnnotateJointAction()> 

annotated step:
<joint-action [<action (liftend, [agentl, boxl])=agentl>, 
<action (liftend, [agent4, boxl])=agent4>]> 

current step:
<concurrent_action [<action (inform, [_agent2, 

lifted])=_agentl>,
<action (inform, [_agentl, lifted])=-agent2>]> 

current step:
<concurrent_action [<action (wait, [_agent2, 

lifted])=_agentl>,
<action (wait, [_agentl, lifted])=_agent2>]> 

current step:
<goal [$(location, [_agentl, room2]),
(location, [_agent2, room2])$]> 

current step:
<concurrent_action [<action (inform, [_agent2, 

inposition] )=_agentl>,
<action (inform, [_agentl, inposition])=_agent2>]> 

current step:
<concurrent_action [<action (wait, [_agent2, 

inposition] )=_agentl>,
<action (wait, [-agentl, inposition] ) =_agent2>]> 

current step:
<joint-action [<action (placeend, [_agentl, boxl])=_agentl>, 
<action (placeend, [_agent2, boxl ] ) =_agent2>] >
<start minAnnotateJointAction()> 

act (placeend, [_agentl, boxl]) 
assigning self to (placeend, [_agentl, boxl])
(placeend, [agentl, boxl]) agentl 
act (placeend, [_agent2, boxl]) 
assigned []
capable [agent2, agent3, agent4] 
chosen agent4
(placeend, [agent4, boxl]) agent4 
<end minAnnotateJointAction()>

276



annotated step:
<joint-action [<action (placeend, [agentl, boxl])=agentl>, 
<action (placeend, [agent4, boxl])=agent4>]>

Once the plan is annotated, the agent sends a request for assistance to agent4 and forms 

a nominal commitment. For simplicity, and since we are taking a closely coupled view, 

requests for assistance in the warehouse scenario are based upon communication of the 

complete annotated plan. Thus, agentl’s request message to agent4 includes the complete 

plan.

At this stage of execution agentl has sent a request, and formed a nominal commit

ment, and agent4 must process this request. Now, agent4 will also have perceived the 

environment and the box in the delivery area, and so the intensity of its tidiness motiva

tion will also be high. The plan contained in the request mitigates this motivation, and is 

considered to be of motivational value (the motivational effect outweighs the cost of per

forming the contributions). If agentl is trusted by agent4, which according to the trust 

matrix given earlier it is (with a trust value of 0.96), then it accepts the request, and forms a 

corresponding nominal commitment.

On receiving the acceptance message the initiating agent (agentl) can form a full com

mitment, since agent4 is the only other agent involved, and send a confirmation message. 

When agent4 receives this confirmation, it too can adopt a full commitment, and execution 

can begin.

B.5.5 Intention Execution

After the establishment of a cooperative intention, the agents concerned can begin their 

execution. The main issue in execution of a cooperative intention is the correct ordering 

of actions in the plan, which can be achieved by inserting communication actions. Inform 

actions are inserted after the joint (or concurrent) actions in the plan and after the subgoals, 

since their achievement may involve a number of agents, and corresponding wait actions

277



are inserted after these inform actions. Thus, the body of the storeLargePlan becomes as 
follows.

>e: storeLargePlan 
body: [

<goal
[$(location, [_agentl, _loc]),
(location, [_agent2, _loc])$]>,

<concurrent_action
[<action (inform, [_agent2, inposition]) =_agentl>, 
<action (inform, [_agentl, inposition] ) =_agent2>] >, 

<concurren t_ac t i on
[<action (wait, [_agent2, inposition])=_agentl>, 

<action (wait, [_agentl, inposition])=_agent2>]>,
<joint_action

[<action (liftend, [_agentl, -box])=_agentl>, 
<action (liftend, [_agent2, _box])=_agent2>]>,

< c oncurr en t_a c t i on
[<action (inform, [_agent2, lifted] ) =_agentl>, 
<action (inform, [_agentl, lifted] ) =_agent2>]>, 

<concurrent_action
[<action (wait, [_agent2, lifted])=_agentl>,
<action (wait, [_agentl, lifted])=_agent2>]>,

<goal
[$(location, [_agentl, .room]),
(location, [_agent2, _room])$]>,

<concurrent_action
[<action (inform, [_agent2 , inposition] ) =_agentl>, 
<action (inform, [_agentl, inposition] )=_agent2>]>, 

<concurrent_action
[<action (wait, [_agent2, inposition] ) =_agentl>, 
<action (wait, [_agentl, inposition] ) =_agent2>]>, 

<joint_action
[<action (placeend, [_agentl, _box] ) =_agentl>,
<action (placeend, [_agent2, -box] ) =_agent2>] >]

This plan transformation is performed before the initiating agent communicates the plan 

to the potential participants in order to reduce the communication overhead of communi

cating the plan twice (once without ordering actions to gain commitment, and once with 

them prior to execution). In our prototypical implementation we are not concerned with in

vestigating synchronisation mechanisms, and so we take a simplistic, but functional, view. 

Synchronisation is required for each joint action in a plan, and our approach is that agents 

should simply wait a specified time after receiving the inform messages from the agents of
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the previous action before performing their contribution. This mechanism is sufficient if the 

communication delays are negligible, and in our test environment this is the case.

If both agents perform the contributions contained in the plan, and the environment does 

not change adversely, then plan execution will successful, and the agents should increase 

their trust of each other. Conversely, if cooperation fails for some reason, for example, if 

the intention ceases to be of motivational value to agent4, and it drops its intention, then 

agentl should reduce its trust of agent4.
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