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a b s t r a c t

We consider the reduced density matrix ρ
(m)
a of a bipartite sys-

tem AB of dimensionality mn (n ⩾ m without loss of generality)
in a Gaussian ensemble of random, complex pure states of the
composite system. For a given dimensionality m of the subsystem
A, the eigenvalues λ

(m)
1 , . . . , λ

(m)
m of ρ

(m)
a are correlated random

variables because their sum equals unity. The following quan-
tities are known, among others: The joint probability density
function (PDF) of the eigenvalues λ

(m)
1 , . . . , λ

(m)
m of ρ

(m)
a , the PDFs

of the smallest eigenvalue λ
(m)
min and the largest eigenvalue λ

(m)
max,

and the family of average values
⟨
Tr

(
ρ
(m)
a

)q⟩ parametrized by
q. Using these as inputs, we find the exact eigenvalue order
statistics for any arbitrary value of m and n, i.e., explicit analytic
expressions for the PDFs of each of the m eigenvalues arranged
in ascending order from the smallest to the largest one. For the
sake of clarity, we first present the eigenvalue order statistics
for values of m running from 2 to 6, before going on to the
general expressions. When m = n (respectively, m < n) these
PDFs are polynomials of order m2

− 2 (respectively, mn − 2)
with support in specific sub-intervals of the unit interval, demar-
cated by appropriate unit step functions. Our exact results are
fully corroborated by numerically generated histograms of the
ordered set of eigenvalues corresponding to ensembles of over
105 random complex pure states of the bipartite system.
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1. Introduction

A basic motif in the study of entanglement involves a bipartite system AB comprising subsystems
and B with Hilbert space dimensions m and n(⩾ m), respectively. Given a specified Gaussian

ensemble of random pure states of the composite system, the task is to deduce the statistical
properties of the reduced density matrix ρ

(m)
a . A fairly extensive literature exists in this regard

(see Refs. [1–32] and references therein). The properties investigated include the joint probability
density function (PDF) of the set of eigenvalues {λ

(m)
k } (1 ⩽ k ⩽ m) of ρ

(m)
a [2,3], the leading

large-m behaviour of the average values of the set of eigenvalues [12], the PDFs of the smallest
and largest eigenvalues λ

(m)
min [4,12,14,20] and λ

(m)
max [22], their mean values and higher moments⟨

(λ(m)
min)

q
⟩
and

⟨
(λ(m)

max)q
⟩
, the average ⟨Tr (ρ(m)

a )q⟩ where q is any positive integer [14,22,32], and the
associated entropies that quantify the extent of entanglement of A and B such as the average
subsystem von Neumann entropy (SVNE) −

⟨
Tr(ρ(m)

a ln ρ
(m)
a )

⟩
[5–8] and the subsystem linear entropy

− ⟨Tr (ρ(m)
a )2⟩ [2]. The main technical complication in these studies arises from the fact that the

eigenvalues are correlated random variables.
The studies listed in the foregoing deal, by and large, with the set of eigenvalues of ρ

(m)
a rather

than individual ones, with the exception of the extreme values λ
(m)
min and λ

(m)
max as already stated.

The natural extension of extreme value statistics is the order statistics of the eigenvalues, the task
being to deduce the PDFs of the individual eigenvalues identified by their positions in an ordered
sequence. The complications involved in the statistics of extreme values in the case of correlated
random variables persist, of course, for order statistics as well.

In a different but related context, extensive investigations have been carried out on the eigen-
value order statistics of similar random matrix ensembles, however, without imposing the trace
condition

∑m
i=1 λi = 1 (see, for instance, [16] and the references therein). Analytical expressions

for the PDFs of the order statistics in such ensembles have also been obtained [17]. Further,
in [25,26,28], the large deviations of the bulk and the extreme eigenvalues, and the order statistics
of the eigenvalues, have been explained using a rate function in the limit of infinitely large
random Gaussian matrices without imposing the trace condition. As an aside, we also note that
a similar investigation has been carried out in the context of Cauchy random matrices [24]. The
statistical properties of the eigenvalues corresponding to different random matrix ensembles such
as the Bures ensemble [10] and the polynomial ensemble [29] have also been investigated. Order
statistics in such random matrix ensembles have widespread applications, e.g., in data processing
techniques such as the principal component analysis [23], in obtaining an optimal linear processing
structure in multicarrier multiple-input multiple-output channels [9], in evaluating the statistical
properties of the information flowing processes in multicarrier continuous-variable quantum key
distribution [33], in testing the equality of two covariance matrices when the number of potentially
dependent data vectors is large and proportional to the size of the vectors [34], and in multivariate
time-series analysis [30]. Further, the order statistics of eigenvalues of covariance matrices [1] and
the order statistics arising from a sample of random variables with random sample size [35] have
applications in curve fitting, regression and financial modelling. Imposing the trace condition causes
interesting and nontrivial correlations between the eigenvalues and therefore affects its statistical
properties significantly.

The motivation for our investigation is two-fold. First, to obtain the PDFs of the full set of ordered
eigenvalues of ρ

(m)
a with the trace condition imposed, which is the task carried out in this paper.

This is very different from earlier works [16,17,30], where such a condition is not imposed as
the authors examine the PDFs of eigenvalues of measurable observables. Imposition of the trace
condition allows for an elegant procedure, which we report in this paper, for finding the PDFs of
not merely the extremal eigenvalues, but all the eigenvalues of the subsystem density matrix. We
present the general solution of the PDFs of the full set of ordered eigenvalues, for arbitrary values of
the subsystem dimensions m and n ⩾ m. However, it is instructive to first illustrate our procedure
for values of m running from 2 to 6 in subsequent sections, before presenting the general solution.

The second aspect of our calculation is the following. The importance of PDFs of all eigenvalues

has been emphasized in the context of observables. However, we note that in several physical
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applications, particularly in hybrid quantummodels of atom–field interaction, the extent of bipartite
entanglement (always defined in terms of the subsystem density matrix) is mimicked to a great
extent by the dynamics of a suitably chosen observable. For instance, when a three-level Λ atom
nteracts with two radiation fields which are initially in a coherent state, the dynamics of the mean
hoton number of either field mimics that of the extent of atomic entanglement with the fields, to
uch a degree that even the appearance of a bifurcation cascade is reflected in the dynamics of SVNE,
hich is the entanglement measure considered (see, for instance, [27,36]). Hence, the importance
f the PDFs of all eigenvalues of observables gets translated to the PDFs of the full set of ordered
igenvalues of the subsystem density matrix. For arbitrarily large but finite number of atomic levels,
s is relevant for real experiments, we have obtained PDFs of the full ordered set of eigenvalues of
he subsystem density matrix.

In order to avoid any confusion, we shall denote the eigenvalues λ
(m)
1 , λ

(m)
2 , . . . , λ

(m)
m arranged in

scending order by the sequence

Λ
(m)
1 , Λ

(m)
2 , . . . , Λ(m)

m . (1)

hus Λ
(m)
1 ≡ λ

(m)
min and Λ

(m)
m ≡ λ

(m)
max. We seek the normalized PDF p(m)

k (x) (where x ∈ [0, 1])
corresponding to each kth-order statistic Λ

(m)
k , where 1 ⩽ k ⩽ m. The investigations cited in the

opening paragraph above rely on the following basic result [3]. Let λ
(m)
1 , . . . , λ

(m)
m be the eigenvalues

of ρ
(m)
a (listed in no particular order). Their joint PDF is then given by

P(λ(m)
1 , λ

(m)
2 , . . . , λ(m)

m ) = C (β)
m,n δ

( m∑
i=1

λ
(m)
i − 1

) m∏
i=1

(
λ
(m)
i

)α

×

∏
j<k

|λ
(m)
j − λ

(m)
k |

β
. (2)

Here the Dyson index β = 2 (respectively, 1) for a Gaussian ensemble of complex (respectively,
real) pure states,

α = (β/2)(n − m + 1) − 1, (3)

and the normalization constant is

C (β)
m,n =

Γ (mnβ/2) [Γ (1 + (β/2))]m∏m−1
j=0 Γ ((n − j)β/2)Γ (1 + (m − j)β/2)

. (4)

As is well known in random matrix theory, the eigenvalues {λ
(m)
k } form a set of correlated random

variables both because of the bunching effect arising from the requirement that their sum be equal
to unity, as well as the level repulsion implied by the presence of the factor |λ

(m)
j − λ

(m)
k |

β
in the

joint PDF of Eq. (2). In principle, the PDF p(m)
k (x) of the kth eigenvalue in the ordered eigenvalue

sequence can be found by multiplying the joint PDF in Eq. (2) by the product of step functions
k−2∏
j=1

Θ(λj+1 − λj)Θ(x − λk−1)Θ(λk+1 − x)
m−1∏
l=k+1

Θ(λl+1 − λl), (5)

ntegrating over λ1, . . . , λk−1, λk+1, . . . , λm, and normalizing the resulting function of x to unity.
his approach, however, presents formidable technical problems, and is not feasible. We shall see
hat there is an alternative, simpler procedure to arrive at the result sought.

It is evident from Eqs. (2) and (4) that some simplification occurs when β = 2 (complex pure
states), and we shall consider this case. While we shall finally present exact expressions for the
PDFs of the ordered eigenvalues for arbitrary subsystem dimensions m and n, those expressions are
somewhat complicated. The manner in which the structure of the solutions arises is best elucidated
by explicit illustration for small values of m. Accordingly, we shall start with m = 2 and increase
it step by step up to m = 6, to demonstrate how the PDFs build up. In the interests of clarity, we
3
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shall further set n = m for the most part in this demonstration, in order to take advantage of the
simplification that ensues from the fact that α = 0 in this case.

The plan of the paper is as follows. In Section 2, we write down the ranges of the random
variables {Λ

(m)
k }, followed by some properties of Mellin transforms that will be used in the sequel.

We also list three specific, already known results that will be used to deduce the PDFs of the ordered
eigenvalues. Next, in Section 3 we state (for the sake of completeness) the existing results in the
trivial case m = n = 2. We then discuss in Section 4 the case m = n = 3, which is again special
because there is just one eigenvalue in between the smallest and largest eigenvalues. In Sections 5
and 6, we illustrate our procedure to obtain the analytical expressions for PDFs corresponding to
m = 4, 5, and 6 when m = n. We also show that our procedure works for the case m ̸= n by
considering the case m = 4, n = 5. Finally, in Section 7 we present the solution for the PDFs
{p(m)

k (x)}, 1 ⩽ k ⩽ m, for arbitrary values of the subsystem dimensions m and n ⩾ m. We conclude
with brief remarks on the behaviour of the PDFs at the end points of their domains.

2. Preliminaries

Integrating P(λ(m)
1 , . . . , λ

(m)
m ) over all but any one of the set {λ

(m)
k } is a technically complicated

task. It yields a so-called ‘single-particle’ PDF for a single eigenvalue [18]. But this procedure
automatically averages over the location of the eigenvalue in the ordered set of eigenvalues. Thus,
it leads, for instance, to the expected result that the average value

⟨
λ
(m)
k

⟩
is just 1/m. It is evident

hat this single-particle PDF is quite different from the individual PDFs corresponding to the ordered
igenvalues.
We start with some general properties of the ordered set of eigenvalues {Λ

(m)
k } that will be

eeded to identify and isolate the corresponding set of PDFs of the individual members of the
et. Since Tr ρ

(m)
a = 1, the ordered set of non-negative numbers {Λ

(m)
k } satisfies the relation

m
k=1 Λ

(m)
k = 1. It follows at once that Λ

(m)
1 cannot exceed 1/m, while Λ

(m)
2 cannot exceed 1/(m−1),

nd so on. That is,

0 ⩽ Λ
(m)
k ⩽ 1/(m + 1 − k), k = 1, 2, . . . ,m − 1. (6)

In particular, Λ(m)
m−1 ⩽ 1/2. Moreover, it is evident that the largest eigenvalue cannot be smaller than

1/m, so that its range is given by

1/m ⩽ Λ(m)
m ⩽ 1. (7)

The ranges in Eqs. (6) and (7) therefore specify the support I (m)
k of the normalized PDF p(m)

k (x) of
each Λ

(m)
k , for 1 ⩽ k ⩽ m.

As we shall also be concerned with the higher moments of the eigenvalues Λ
(m)
k , it is helpful

to recall very briefly some properties of Mellin transforms. The Mellin transform f̃ (q) of a function
f (x) (x ∈ [0, 1]) and its inverse are defined as

f̃ (q) =

∫ 1

0
xqf (x)dx, f (x) =

1
2π i

∫
C
x−q−1̃f (q)dq, (8)

here the Bromwich contour C runs from c − i∞ to c + i∞ to the right of all the singularities of
f (q). The following easily established results will be used in the sequel:
(a) If f̃ (q) is a rational function of q with simple poles at the negative integers q = −1, . . . ,−ν,

then f (x) is a polynomial in x of order ν − 1, multiplied by the unit step function Θ(1 − x).
(b) Let r be a positive integer > 1. If f̃ (q) is r−q times a rational function of q with simple poles at

he negative integers q = −1, . . . ,−ν, then f (x) is a polynomial in x of order ν − 1, multiplied by
the unit step function Θ(1 − rx). In the present context, we note that the PDF p(m)

k (x) and the qth
moment of Λ

(m)
k , namely,⟨

(Λ(m)
k )q

⟩
≡

∫
I(m)
k

xqp(m)
k (x)dx, (9)

comprise a Mellin transform pair.
4
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We turn now to the three known results that we require to deduce the PDFs of the ordered

igenvalues, setting β = 2 and m = n.
(i) The PDF p(m)

1 (x) of the smallest eigenvalue Λ
(m)
1 is given by [14]

p(m)
1 (x) = m(m2

− 1)(1 − mx)m
2
−2Θ(1 − mx), (10)

where Θ denotes the unit step function. The corresponding moments of the smallest eigenvalue
are then given by⟨

(Λ(m)
1 )q

⟩
=

Γ (q + 1)Γ (m2)
mq Γ (m2 + q)

. (11)

(ii) The average
⟨
Tr(ρ(m)

a )q
⟩
is given by [32]

⟨
Tr(ρ(m)

a )q
⟩
=

Γ (m2)
Γ (m2 + q)

m−1∑
i,p=0

Γ (p + q + 1)[Γ (q + 1)]2

[Γ (1 + i − p)Γ (1 + q + p − i)]2 p!
. (12)

We note that this average is the Mellin transform of the sum of PDFs,
∑m

k=1 p
(m)
k (x). Inverting the

transform will therefore yield that sum.
(iii) The third and most crucial ingredient is the PDF p(m)

m (x) of the largest eigenvalue Λ
(m)
m , for which

an implicit formula has been derived in Ref. [22]. As pointed out therein, the determination of p(m)
m (x)

involves several technical complications that are not present in the determination of p(m)
1 (x). The

procedure [22] leading to the result sought may be summarized in the following sequence of steps.
First, one defines the set of m2 functions

Ψjl(s) =

∫ 1

0
e−suuj+ldu (j, l = 0, 1, . . . ,m − 1) (13)

and evaluates the (m × m) determinant

P̃(s) = det
[
Ψjl(s)

]
j,l=0,1,...,m−1 . (14)

The inverse Laplace transform P(t) of P̃(s) is then obtained, and t is set equal to 1/x in the result.
Then, the quantity

Qm(x) = (m2
− 1)!

m−1∏
j=0

(j + 1)!(j!)2

(m − 1 − j)!(m − j)!(m + j)!
xm

2
−1P(1/x) (15)

is the cumulative distribution function of Λ
(m)
m , from which its PDF follows according to

p(m)
m (x) = dQm(x)/dx. (16)

The Mellin transform of p(m)
m (x) yields the moment

⟨
(Λ(m)

m )q
⟩
.

We note, for future reference, that the counterparts of Eq. (12) and Eqs. (13)–(15) to general
values of m and n (⩾ m) are also available (Refs. [22,32], respectively). We proceed now to find the
full set of PDFs {p(m)

k (x)} for different values of m. Symbolic manipulation in Mathematica 11 has
been used to carry out all the calculations in what follows.

3. Two qubits: m = n = 2

A bipartite system of two qubits is a trivial case as far as order statistics are concerned, since
there are only two eigenvalues Λ

(2)
1 and Λ

(2)
2 = 1 − Λ

(2)
1 . Setting m = 2 in Eq. (10), the PDF of the

smaller eigenvalue is given, in this case, by

p(2)(x) = 6(1 − 2x)2 Θ(1 − 2x). (17)
1

5
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Fig. 1. PDFs p(2)k (x) of the ordered eigenvalues in the case m = n = 2 with k = 1 (black) and k = 2 (red). In this figure
nd in all the figures that follow, the solid-line curves correspond to the exact analytical expressions derived. The dots
epresent numerical histograms obtained from an ensemble of over 105 random pure states. (Color figure online).

orking out the steps outlined in Eqs. (13) to (16) with m set equal to 2, we obtain

p(2)2 (x) = 6(1 − 2x)2 [Θ(1 − x) − Θ(1 − 2x)] . (18)

Apart from the step functions, these are polynomials of order m2
− 2 = 2, with support in [0, 1/2]

and [1/2, 1] respectively. The expression for p(2)2 (x) could have been written down from that for
p(2)1 (x) in this case: Since Λ

(2)
1 + Λ

(2)
2 = 1, it follows that p(2)2 (x) = p(2)1 (1 − x).

In order to verify the expressions above and those to be obtained for p(m)
k (x) in subsequent

sections, we generate the histograms of Λ
(m)
k computed from an ensemble of random complex pure

states of the composite system. We consider a randomly chosen pure state of the full system AB to be
an mn-dimensional column vector, with the real and imaginary parts of each element of the vector
drawn from a standard normal distribution. The state is then normalized. The moments (and hence
the cumulants) of the numerically generated histograms, obtained with 1.001 × 105 random pure
states, agree up to the third decimal place with those computed from the analytical expressions.
We have also verified that this agreement improves on increasing the number of random pure
states in the ensemble to 106. These statements remain valid in all the cases to be considered in
the sections that follow. Fig. 1 shows that there is excellent agreement between the numerically
generated histograms of Λ

(2)
1 and Λ

(2)
2 , and the analytical expressions of Eqs. (17) and (18) for the

corresponding PDFs. We note that the histograms in this figure and in subsequent figures have been
normalized in order to enable direct comparison with the calculated PDFs.

The average values of the two eigenvalues are
⟨
Λ

(2)
1

⟩
= 1/8 and

⟨
Λ

(2)
2

⟩
= 7/8, while the variance

is 3/320 in both cases. From the Mellin transforms of the PDFs in Eqs. (17) and (18) we get, for the
qth moments of the eigenvalues,⟨

(Λ(2)
1 )q

⟩
= 3!q!2−q/(q + 3)! (19)

and ⟨
(Λ(2)

2 )q
⟩
= 3!q!(q2 + q + 2 − 2−q)

/
(q + 3)! (20)

Their sum⟨
(Λ(2)

1 )q
⟩
+

⟨
(Λ(2)

2 )q
⟩
= 3!q!

(
q2 + q + 2

) /
(q + 3)! (21)

tallies with the corresponding expression for
⟨
Tr (ρ(2)

a )q
⟩
obtained from Eq. (12). A similar agreement

with the known result for
⟨
Tr (ρ(m)

a )q
⟩
will serve as a further check on the correctness of all the PDFs

to be derived in what follows.

4. Two qutrits: m = n = 3

A bipartite system of two qutrits is the first non-trivial case owing to the existence of an
intermediate eigenvalue Λ

(3) in between the smallest and largest eigenvalues Λ
(3) and Λ

(3). There
2 1 3

6
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is, however, a simple strategy to find the PDF of Λ
(3)
2 in this instance. In brief, we first find

⟨
(Λ(3)

1 )q
⟩

nd
⟨
(Λ(3)

3 )q
⟩
, and use these results along with that for

⟨
Tr (ρ(3)

a )q
⟩
to deduce

⟨
(Λ(3)

2 )q
⟩
. The inverse

ellin transform of the latter then yields the PDF p(3)2 (x).
When m = n = 3, Eq. (10) gives for the PDF of the smallest eigenvalue the expression

p(3)1 (x) = 24(1 − 3x)7Θ(1 − 3x). (22)

s before, working through the steps in Eqs. (13) to (16) with m = 3, we obtain

p(3)3 (x) = 24(1 − 3x)7Θ(1 − 3x)
− 48(1 − 2x)3(156x4 − 165x3 + 87x2 − 15x + 1)Θ(1 − 2x)
+ 24(1 − x)3(309x4 − 354x3 + 132x2 − 18x + 1)Θ(1 − x). (23)

he Mellin transforms of the two PDFs in Eqs. (22) and (23) yield, respectively,⟨
(Λ(3)

1 )q
⟩
=

8!q!3−q

(q + 8)!
(24)

and ⟨
(Λ(3)

3 )q
⟩
=

8!q!
26(q + 8)!

{
24(q4 + 2q3 + 11q2 + 10q + 12)

− 2−q(q4 + 14q3 + 83q2 + 70q + 192) + 263−q
}
. (25)

n the other hand, setting m = 3 in Eq. (12) gives⟨
Tr(ρ(3)

a )q
⟩
=

8!q!
4(q + 8)!

(q4 + 2q3 + 11q2 + 10q + 12). (26)

n important point that we note here for future reference is the following. After the ratio q!/(q+8)!
is simplified, the expression on the right-hand side of Eq. (26) is a rational function of q. There are
o transcendental functions like r−q present in

⟨
Tr(ρ(3)

a )q
⟩
. Hence its inverse Mellin transform does

not have any step functions of the form Θ(1 − rx) where r > 1.
It follows from Eqs. (24)–(26) that⟨

(Λ(3)
2 )q

⟩
=

⟨
Tr(ρ(3)

a )q
⟩
−

⟨
(Λ(3)

1 )q
⟩
−

⟨
(Λ(3)

3 )q
⟩

=
8!q!

26(q + 8)!

{
2−q(q4 + 14q3 + 83q2 + 70q + 192) − 273−q

}
. (27)

nverting the Mellin transform, we obtain for the PDF of the middle eigenvalue the explicit
xpression

p(3)2 (x) = 48(1 − 2x)3(156x4 − 165x3 + 87x2 − 15x + 1)Θ(1 − 2x)

− 48(1 − 3x)7Θ(1 − 3x). (28)

Fig. 2 again shows that the three PDFs p(3)k (x), k = 1, 2, 3 are in excellent agreement with the
numerically generated histograms.

As the PDFs are essentially polynomials with compact support in ranges whose end-points
are rational numbers, all the moments of these PDFs (and hence their cumulants) are rational
numbers. (This feature remains valid for all values of m and n.) Table 1 lists the values of the basic
descriptors of the distributions concerned in terms of the corresponding cumulants κr : the mean
1, the variance κ2, the skewness κ2

3/κ
3
2 , and the excess of kurtosis κ4/κ

2
2 . Here

κ4

κ2
2

=
C4 − 3C2

2

C2
2

(29)

with C being the k-central moment. Also, we note that κ = C and κ = C
k 3 3 2 2

7
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Fig. 2. PDFs of the ordered eigenvalues for m = n = 3. Solid curves: analytical expressions; dots: histograms from a
aussian ensemble of random pure states.

Table 1
Values of the descriptors corresponding to the PDFs p(3)k (x).

p(3)1 (x) p(3)2 (x) p(3)3 (x)

κ1
1
27

103
432

313
432

κ2
4

3645
6499

933120
8179

933120

κ2
3 /κ3

2
245
121

241916407220
33214290609379

80059327220
66204269040019

κ4/κ
2
2

201
88 −

248949138
464607011 −

387186258
735856451

5. The case m = n = 4

It is clear that the simple argument used in the case m = 3 is no longer applicable when there
is more than a single intermediate eigenvalue, i.e., for any m ⩾ 4. There is, however, a way to
educe the PDF p(m)

k (x) for every one of these eigenvalues. The case m = 4 serves as the simplest
illustration of this method. As before, we start with the PDF of the smallest eigenvalue, obtained by
setting m = n = 4 in Eq. (10). We have

p(4)1 (x) = 60(1 − 4x)14Θ(1 − 4x). (30)

Next, we find the explicit expression for the PDF p(4)4 (x) of the largest eigenvalue from Eqs. (13)–(16)
for m = 4. It is convenient to introduce the notation A(4,4)(x) (j = 1, 2, 3, 4) for the polynomial that
j

8
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W
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q
S
t
w
u

1

is the coefficient of Θ(1 − jx) in this expression. (The superscripts indicate the values of m and n.)
e then find that

p(4)4 (x) = −A(4,4)
4 (x)Θ(1 − 4x) + A(4,4)

3 (x)Θ(1 − 3x)

− A(4,4)
2 (x)Θ(1 − 2x) + A(4,4)

1 (x)Θ(1 − x), (31)

where

A(4,4)
4 (x) = 60(1 − 4x)14,

A(4,4)
3 (x) = 60(1 − 3x)8

(
3 − 96x + 1308x2 − 6128x3 + 29818x4

−70160x5 + 67812x6
)
,

A(4,4)
2 (x) = 30(1 − 2x)6

(
6 − 264x + 5208x2 − 45920x3 + 229936x4

−859040x5 + 2706592x6 − 5570528x7 + 5517256x8
)
,

A(4,4)
1 (x) = 60(1 − x)8

(
1 − 48x + 1044x2 − 9904x3 + 44934x4

−94128x5 + 73116x6
)
. (32)

We observe that

−A(4,4)
4 (x) + A(4,4)

3 (x) − A(4,4)
2 (x) + A(4,4)

1 (x) = 0, (33)

ensuring that p(4)4 (x) vanishes identically for x < 1/4, (As we know, its support is [1/4, 1]). Next,
setting m = 4 in Eq. (12), we get⟨

Tr(ρ(4)
a )q

⟩
=

15!q!
36(q + 15)!

(
144 + 156q + 184q2 + 57q3 + 31q4 + 3q5 + q6

)
. (34)

nce again, we note that the expression on the right-hand side of Eq. (34) is a rational function of
(after the ratio q!/(q+15)! is simplified). Hence, by the property (a) of Mellin transforms noted in
ection 2, the step functions Θ(1−4x), Θ(1−3x) and Θ(1−2x) cannot appear in its inverse Mellin
ransform

∑4
k=1 p

(4)
k (x). The coefficients of these step functions must therefore vanish identically

hen the individual PDFs are added up. Note also that p(4)1 (x) = A(4,4)
4 (x)Θ(1− 4x). These facts lead

s naturally to the ansatz that p(4)2 (x) and p(4)3 (x) must have the forms

p(4)2 (x) = −c1A
(4,4)
4 (x)Θ(1 − 4x) + c2A

(4,4)
3 (x)Θ(1 − 3x), (35)

p(4)3 (x) = c1A
(4,4)
4 (x)Θ(1 − 4x) − (c2 + 1)A(4,4)

3 (x)Θ(1 − 3x)

+ A(4,4)
2 (x)Θ(1 − 2x), (36)

where c1 and c2 are constants. They are determined from the normalization (to unity) of p(4)2 (x)
and p(4)3 (x) in the ranges [0, 1/3] and [0, 1/2], respectively. Using the fact that

∫ 1/4
0 A(4,4)

4 (x)dx =

,
∫ 1/3
0 A(4,4)

3 (x)dx = 4,
∫ 1/2
0 A(4,4)

2 (x)dx = 6 and
∫ 1
0 A(4,4)

1 (x)dx = 4, we get c1 = 3, c2 = 1. Hence

p(4)2 (x) = −3A(4,4)
4 (x)Θ(1 − 4x) + A(4,4)

3 (x)Θ(1 − 3x), (37)

p(4)3 (x) = 3A(4,4)
4 (x)Θ(1 − 4x) − 2A(4,4)

3 (x)Θ(1 − 3x)

+ A(4,4)
2 (x)Θ(1 − 2x). (38)

We observe from the foregoing (and from all the cases to be considered in the sequel) that the
constants multiplying the coefficients A(m,n)

j (x) for a given j in the different PDFs p(m)
k (x) (m− j+1 ⩽

k ⩽ m) are the binomial coefficients
( j−1
m−k

)
with alternating signs. This fact also guarantees that

the step functions (other than Θ(1 − x)) do not appear in
∑4

k=1 p
(4)
k (x), and more generally in∑m

k=1 p
(m)
k (x).

The four PDFs p(4)k (x), 1 ⩽ k ⩽ 4, are plotted in Fig. 3. Once again, there is excellent agreement
with the numerically generated histograms of the ordered eigenvalues. The mean values of the four
9
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G

e

Fig. 3. PDFs of the ordered eigenvalues for m = n = 4. Solid curves: analytical expressions; dots: histograms from a
aussian ensemble of random pure states.

igenvalues are found to be⟨
Λ

(4)
1

⟩
=

1
64 ,

⟨
Λ

(4)
2

⟩
=

13727
139968 ,

⟨
Λ

(4)
3

⟩
=

617057
2239488 ,

⟨
Λ

(4)
4

⟩
=

1367807
2239488 . (39)

The higher cumulants can also be calculated, and they are all rational numbers. We have also verified
that the sum of the qth moments of the eigenvalues tallies with the known expression for

⟨
Tr(ρ(4)

a )q
⟩
.

6. Other cases

As further checks of the method used, we have carried out similar calculations to determine
the PDFs of the ordered eigenvalues in the cases m = n = 5, 6 and 7, respectively. The algebraic
expressions become considerably more lengthy as m increases. The expressions for the PDFs when
m = n = 5 are given in Appendix A, and these expressions agree very well with the numerically
generated histograms, as shown in Fig. 4. As already pointed out, we find that the constants
multiplying the coefficient functions A(5,5)

j (x) are appropriate binomial coefficients with alternating
signs.

The expressions obtained for the PDFs in the case m = n = 6 are also recorded in Appendix A.
Once again, we have also verified that there is very good agreement between the analytical
expressions for the PDFs and the numerically generated histograms. Similarly, the expressions for
m = n = 7 are also precisely along expected lines, and will not be given here. To illustrate the
close match between our analytical results and numerical simulation for relatively large values of

(7)
m, Fig. 5 depicts the PDFs pk (x) in the case m = n = 7.

10
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Fig. 4. PDfs of the ordered eigenvalues for m = n = 5.

Finally, in order to show that our method works even when m ̸= n, we have found the analytical
xpressions for the PDFs when m = 4 and n = 5. We must now take into account the fact that the
ndex α = 1 in this case, and use the corresponding generalizations of Eqs. (12)–(16). The details
re given in Appendix B. Once again, the plots of the calculated PDFs are in complete agreement
ith the numerical histograms, as shown in Fig. 6. Table 2 lists the averages

⟨
Λ

(m)
k

⟩
for the three

ases considered in this section.

. Solution for general m and n

We now proceed to the exact formal expression for the PDF p(m,n)
k (x) of the kth eigenvalue order

tatistic Λ
(m)
k , 1 ⩽ k ⩽ m, for general values of the subsystem dimensions m and n ⩾ m. The

rocedure followed is the same as that for the case m = n. As already mentioned, the counterparts
f Eqs. (12) [32] and Eqs. (13)–(15) [22] for the case n ⩾ m are now required. The pattern in the
tructure of the PDFs found in the foregoing sections aids us considerably in deducing the structure
or general m and n. We obtain, finally,

p(m,n)
k (x) =

1
N

m∑
(−1)m−k+j+1( j−1

m−k

)
A(m,n)
j (x)Θ(1 − jx), (40)
j=m−k+1

11



B. Sharmila, V. Balakrishnan and S. Lakshmibala Annals of Physics 446 (2022) 169107

i

Fig. 5. PDFs of the ordered eigenvalues for m = n = 7.

Table 2
Mean values of the ordered eigenvalues for m = 4, n = 5; m = n = 5; and
m = n = 6.
Mean m = 4, n = 5 m = n = 5 m = n = 6⟨
Λ

(m)
1

⟩ 125
4096

1
125

1
216⟨

Λ
(m)
2

⟩ 3188009
26873856

813587
16384000

301301927
10546875000⟨

Λ
(m)
3

⟩ 7552985
26873856

1182578796887
8707129344000

873543307049548733
11324620800000000000⟨

Λ
(m)
4

⟩ 15312737
26873856

2440637328617
8707129344000

75602489231060183229976073
487487792008396800000000000⟨

Λ
(m)
5

⟩ 4581882694877
8707129344000

132969850997476498208010743
487487792008396800000000000⟨

Λ
(m)
6

⟩ 225128892964655720357665283
487487792008396800000000000

where A(m,n)
j (x) is a polynomial in x of order mn−1, to be specified in Eqs. (41)–(43). The constant N

s determined by normalizing p(m,n)
k (x) to unity in the sub-interval I (m)

k of the unit interval in which
it has a support.

Let σ = (σ0, σ1, . . . , σm−1) be a permutation of the sequence {0, 1, . . . ,m− 1), with sgn σ = ±1
depending on whether σ is an even or odd permutation of the natural order, and let S denote the
12
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s

Fig. 6. PDFs of the ordered eigenvalues when m = 4, n = 5.

et of all permutations σ. Setting a = m − j where 1 ⩽ j ⩽ m, we have

A(m,n)
j (x) = −(mn − 1)!

m−1∏
u=0

(u + 1)!u!(n − m + u)!
(n − 1 − u)!(m − u)!(n + u)!

×

(d/dx)
[
xmn−1

∑
σ∈S

(sgn σ)
{m−a∑
k1=0

m−a+1∑
k2=k1+1

· · ·

m−1∑
ka=ka−1+1

×

m−1∏
i=0

n−m+i+σi∑
ℓi=0

ξ
(
x−1

− j
)η

/η!

}]
, (41)

where

ξ =
(n−m+i+σi

ℓi

)
ℓi!

(
1 −

a∑
b=1

δi,kb

)
+

a∑
c=1

δi,kc δℓi,0 (n − m + i + σi)! (42)

and

η = m − 1 +

m−1∑
i=0

{(
1 −

a∑
b=1

δi,kb

)
ℓi +

a∑
c=1

δi,kc (n − m + i + σi)
}
. (43)

It is evident that the general solution for the PDF p(m,n)
k (x), while exact and explicit, is algebraically

quite involved. This fact further corroborates the usefulness of displaying in detail the results for
several small values of m, as has been done in the foregoing.
13



B. Sharmila, V. Balakrishnan and S. Lakshmibala Annals of Physics 446 (2022) 169107

s

a

To summarize: We have obtained the probability density functions of the eigenvalue order
tatistics Λ

(m)
k (1 ⩽ k ⩽ m) corresponding to the reduced density matrices for a Gaussian ensemble of

random complex pure states of a bipartite system, wherem is the smaller subsystem dimensionality.
The PDF p(m,n)

k (x) of the ordered eigenvalue Λ
(m)
k is a linear combination of unit step functions

Θ(1−mx), . . . , Θ
(
1− (m+1− k)x

)
, each multiplied by a polynomial of order m2

−2 when n = m,
and of order mn−2 when n > m. The support of p(m,n)

k (x) is [0, 1/(m−k+1)] for 1 ⩽ k ⩽ m−1, and
[1/m, 1] for k = m. In all the cases considered, the analytic expressions obtained for the PDFs are in
excellent agreement with the numerically generated histograms of the eigenvalues concerned. As
further corroboration, we also find that, in every case, the Mellin transform of the sum of the qth
moments of these PDFs matches the known expression [32] for

⟨
Tr

(
ρ
(m)
a

)q⟩.
Based on the explicit analytic solutions in the casesm = 3, 4, 5, 6 and 7, we deduce the following

general properties. When m = n, the PDF p(m)
1 (x) of the smallest eigenvalue decreases monotonically

from the value p(m)
1 (0) = m(m2

− 1) to the value p(m)
1 (1/m) = 0 as x increases from 0 to 1/m. When

m < n, however, p(m)
1 (0) = 0. Reverting to m = n, every p(m)

k (x) (where 2 ⩽ k ⩽ m − 1) vanishes

like xk
2
−1 as x → 0. In the limit x → 1/(m − 1), p(m)

2 (x) vanishes like
(
1 − (m − 1)x

)m2
−2m. The PDF

p(m)
k (x) for both k = 2 + j and k = m − j (j = 1, 2, . . . , ⌊m

2 ⌋ − 1) vanishes like
(
1 − (m + 1 − k)x

)r
s x → 1/(m + 1 − k), where r = m2

− 2m − 2
∑j

i=1(m − 2i − 1). The PDF p(m)
m (x) of the largest

eigenvalue Λ
(m)
m vanishes like (1−mx)m

2
−2 as x → 1/m from above, and like (1− x)m

2
−2m as x → 1

from below.
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Appendix A

We first present the analytic expressions of the PDFs of the ordered eigenvalues {Λ
(5)
k } for

m = n = 5. The PDFs p(5)k (x) (k = 1, 2, . . . , 5) are written in terms of the functions A(5,5)
j (x)

(j = 1, 2, . . . , 5) that are the coefficients of the respective step functions Θ(1− jx). These coefficient
functions are as listed below.

A(5,5)
5 (x) = 120 (1 − 5x)23,

A(5,5)
4 (x) = 240 (1 − 4x)15

(
2 − 110x + 2690x2 − 20600x3 + 304595x4

−1558835x5 + 4852905x6 − 10365975x7 + 11082660x8
)
,

A(5,5)
3 (x) = 720 (1 − 3x)11

(
1 − 82x + 3124x2 − 55528x3 + 656656x4

− 6833200x5 + 60965520x6 − 390601200x7 + 1733312295x8

− 5065359970x9 + 10140970180x10 − 13794793180x11
14
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+11635970460x12
)
,

A(5,5)
2 (x) = 240 (1 − 2x)11

(
2 − 186x + 8118x2 − 167464x3 + 2021877x4

− 18428355x5 + 161532525x6 − 1281331755x7 + 7805513430x8

− 33503168380x9 + 94797708060x10 − 158275026540x11

+119326518320x12
)
,

A(5,5)
1 (x) = 120 (1 − x)15

(
1 − 100x + 4720x2 − 104200x3 + 1215160x4

−7812880x5 + 27619440x6 − 49896300x7 + 35838555x8
)
. (A.1)

In terms of these polynomials, the PDFs {p(5)k (x)} are found to be

p(5)1 (x) = A(5,5)
5 (x)Θ(1 − 5x), (A.2)

p(5)2 (x) = −4A(5,5)
5 (x)Θ(1 − 5x) + A(5,5)

4 (x)Θ(1 − 4x), (A.3)

p(5)3 (x) = 6A(5,5)
5 (x)Θ(1 − 5x) − 3A(5,5)

4 (x)Θ(1 − 4x)

+ A(5,5)
3 (x)Θ(1 − 3x), (A.4)

p(5)4 (x) = −4A(5,5)
5 (x)Θ(1 − 5x) + 3A(5,5)

4 (x)Θ(1 − 4x)

− 2A(5,5)
3 (x)Θ(1 − 3x) + A(5,5)

2 (x)Θ(1 − 2x), (A.5)

p(5)5 (x) = A(5,5)
5 (x)Θ(1 − 5x) − A(5,5)

4 (x)Θ(1 − 4x)

+A(5,5)
3 (x)Θ(1 − 3x) − A(5,5)

2 (x)Θ(1 − 2x)

+ A(5,5)
1 (x)Θ(1 − x). (A.6)

As before, the constants multiplying A(m,n)
j (x) for a given j in different PDFs p(m)

k (x) (1 ⩽ k ⩽ m) are
the binomial coefficients

( j−1
m−k

)
with alternating signs.

We also report the analytic expressions of the PDFs of the ordered eigenvalues {Λ
(6)
k } for m =

n = 6. As before, the PDFs p(6)k (x) (k = 1, 2, . . . , 6) are written in terms of the functions A(6,6)
j (x)

(j = 1, 2, . . . , 6), which are listed below.

A(6,6)
6 (x) = 210 (1 − 6x)34,

A(6,6)
5 (x) = 210 (1 − 5x)24

(
5 − 420x + 16080x2 − 160680x3 + 6469230x4

−40658112x5 + 261366628x6 − 1595391672x7 + 5683720173x8

−11348219292x9 + 11273058660x10
)
,

A(6,6)
4 (x) = 420 (1 − 4x)18

(
5 − 660x + 41220x2 − 1199200x3

+26188080x4 − 541359744x5 + 9132924768x6 − 109228380096x7

+969229595664x8 − 6384003186176x9 + 35245566675264x10

−168039178157376x11 + 674535601042864x12 − 2058660341189376x13

+4315240551175584x14 − 5476040960131392x15 + 3527358922055856x16
)
,

A(6,6)
3 (x) = 420 (1 − 3x)16

(
5 − 780x + 58140x2 − 2125680x3

+50119740x4 − 1004003136x5 + 19201278456x6 − 311887564848x7

+3949780543830x8 − 38228455420056x9 + 283595869865088x10

−1648254166845840x11 + 7876735652844396x12 − 32847798731822496x13

+122296710227124168x14 − 385032778740807120x15 + 925473909342876741x16

−1465716247992173916x17 + 1154580059692232388x18
)
,

A(6,6)
2 (x) = 210 (1 − 2x)18

(
5 − 840x + 67680x2 − 2641760x3 + 60875040x4

−1041040128x5 + 17346863424x6 − 289429058688x7 + 4135247214912x8

−46316923954048x9 + 395768314525056x10 − 2538512485868160x11
15
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+11970268586045536x12 − 40164721924654464x13 + 90652008902870976x14

−123384033397219200x15 + 76712186285087664x16
)
,

A(6,6)
1 (x) = 210 (1 − x)24

(
1 − 180x + 15600x2 − 657000x3 + 15307350x4

−210235104x5 + 1758025460x6 − 8979492600x7 + 27172972425x8

−44490525420x9 + 30241971348x10
)
. (A.7)

In terms of these polynomials, the PDFs {p(6)k (x)} are found to be

p(6)1 (x) = A(6,6)
6 (x)Θ(1 − 6x), (A.8)

p(6)2 (x) = −5A(6,6)
6 (x)Θ(1 − 6x) + A(6,6)

5 (x)Θ(1 − 5x), (A.9)

p(6)3 (x) = 10A(6,6)
6 (x)Θ(1 − 6x) − 4A(6,6)

5 (x)Θ(1 − 5x)

+ A(6,6)
4 (x)Θ(1 − 4x), (A.10)

p(6)4 (x) = −10A(6,6)
6 (x)Θ(1 − 6x) + 6A(6,6)

5 (x)Θ(1 − 5x)

− 3A(6,6)
4 (x)Θ(1 − 4x) + A(6,6)

3 (x)Θ(1 − 3x), (A.11)

p(6)5 (x) = 5A(6,6)
6 (x)Θ(1 − 6x) − 4A(6,6)

5 (x)Θ(1 − 5x)

+3A(6,6)
4 (x)Θ(1 − 4x) − 2A(6,6)

3 (x)Θ(1 − 3x)

+ A(6,6)
2 (x)Θ(1 − 2x). (A.12)

p(6)6 (x) = −A(6,6)
6 (x)Θ(1 − 6x) + A(6,6)

5 (x)Θ(1 − 5x) − A(6,6)
4 (x)Θ(1 − 4x)

+A(6,6)
3 (x)Θ(1 − 3x) − A(6,6)

2 (x)Θ(1 − 2x)

+ A(6,6)
1 (x)Θ(1 − x). (A.13)

As already pointed out, we find that the constants multiplying the coefficient functions A(6,6)
j (x) are

appropriate binomial coefficients with alternating signs.

Appendix B

We consider the case m = 4 and n = 5, in order to show that our method works even when
m ̸= n. We must take into account the fact that the index α, defined in Eq. (3), is now equal to 1.
Using the corresponding generalizations of Eqs. (12)–(16), we find the explicit expression for the
PDF p(4,5)4 (x) of the largest eigenvalue [22]. (In the general case m < n, this PDF is found to be a
linear combination of polynomials of order mn − 2 multiplied by appropriate step functions.) We
use the notation A(4,5)

j (x) (j = 1, 2, 3, 4) for the polynomial that is the coefficient of Θ(1− jx) in this
expression. We then find that

p(4,5)4 (x) = −A(4,5)
4 (x)Θ(1 − 4x) + A(4,5)

3 (x)Θ(1 − 3x)

− A(4,5)
2 (x)Θ(1 − 2x) + A(4,5)

1 (x)Θ(1 − x), (B.14)

where each A(4,5)
j (x) is a polynomial of order mn − 2 = 18, given by

A(4,5)
4 (x) = 3420 x(1 − 4x)14(1 + 5x − 20x2 + 4x3),

A(4,5)
3 (x) = 3420 x(1 − 3x)9

(
3 − 72x + 552x2 + 360x3 − 19846x4

+145224x5 − 430948x6 + 580728x7 − 188941x8
)
,

A(4,5)
2 (x) = 3420 x(1 − 2x)8

(
3 − 105x + 1452x2 − 8340x3 + 8632x4 + 174904x5

−1372976x6 + 5366608x7 − 11247836x8 + 10332628x9
)
,

A(4,5)
1 (x) = 3420 x(1 − x)11

(
1 − 40x + 661x2 − 5256x3 + 21231x4

−41520x5 + 31111x6
)
. (B.15)
16
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As in the case m = n, the PDFs p(4,5)k (x) is written in terms of A(4,5)
j (x) (j, k = 1, 2, 3, 4) where

he constants multiplying these coefficient functions are appropriate binomial coefficients with
lternating signs. We get

p(4,5)1 (x) = A(4,5)
4 (x)Θ(1 − 4x), (B.16)

p(4,5)2 (x) = −3A(4,5)
4 (x)Θ(1 − 4x) + A(4,5)

3 (x)Θ(1 − 3x), (B.17)

p(4,5)3 (x) = 3A(4,5)
4 (x)Θ(1 − 4x) − 2A(4,5)

3 (x)Θ(1 − 3x)

+ A(4,5)
2 (x)Θ(1 − 2x) (B.18)

The manifest agreement between the plots of the calculated PDFs and the numerical histograms
validates these expressions. We have also verified that the analytical expression of the sum of the
qth moments of the eigenvalues matches the known expression [32] for

⟨
Tr(ρ(4)

a )q
⟩
in this case.

References

[1] M.A. Stephens, Biometrika 62 (1975) 23–28.
[2] E. Lubkin, J. Math. Phys. 19 (1978) 1028–1031.
[3] S. Lloyd, H. Pagels, Ann. Phys., NY 188 (1988) 186–213.
[4] A. Edelman, Math. Comp. 58 (1992) 185–190.
[5] D.N. Page, Phys. Rev. Lett. 71 (1993) 1291–1294.
[6] S.K. Foong, S. Kanno, Phys. Rev. Lett. 72 (1994) 1148–1151.
[7] J. Sánchez-Ruiz, Phys. Rev. E 52 (1995) 5653–5655.
[8] S. Sen, Phys. Rev. Lett. 77 (1996) 1–3.
[9] D.P. Palomar, J.M. Cioffi, M.A. Lagunas, IEEE Trans. Signal Process. 51 (2003) 2381–2401.

[10] H.-J. Sommers, K. Zyczkowski, J. Phys. A: Math. Gen. 37 (2004) 8457–8466.
[11] I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge

University Press, Cambridge, 2006.
[12] M. Žnidarič, J. Phys. A 40 (2006) F105–F111.
[13] O. Giraud, J. Phys. A 40 (2007) F1053–F1062.
[14] S.N. Majumdar, O. Bohigas, A. Lakshminarayan, J. Stat. Phys. 131 (2008) 33–49.
[15] H. Kubotani, S. Adachi, M. Toda, Phys. Rev. Lett. 100 (2008) 240501.
[16] L.G. Ordonez, D.P. Palomar, J.R. Fonollosa, IEEE Trans. Signal Process. 57 (2009) 672–689.
[17] A. Zanella, M. Chiani, M.Z. Win, IEEE Trans. Commun. 57 (2009) 1050–1060.
[18] S. Adachi, M. Toda, H. Kubotani, Ann. Phys., NY 324 (2009) 2278–2358.
[19] D.-Z. Liu, D.-S. Zhou, Int. Math. Res. Not. 2011 (2010) 725–766.
[20] Y. Chen, D.-Z. Liu, D.-S. Zhou, J. Phys. A 43 (2010) 315303.
[21] P. Vivo, J. Phys. A 43 (2010) 405206.
[22] P. Vivo, J. Stat. Mech.: Theory E. 2011 (2011) P01022.
[23] S.N. Majumdar, P. Vivo, Phys. Rev. Lett. 108 (2012) 200601.
[24] R. Marino, S.N. Majumdar, G. Schehr, P. Vivo, J. Phys. A 47 (2014) 055001.
[25] R. Marino, S.N. Majumdar, G. Schehr, P. Vivo, Phys. Rev. Lett. 112 (2014) 254101.
[26] I.P. Castillo, Phys. Rev. E 90 (2014) 040102.
[27] P. Laha, B. Sudarsan, S. Lakshmibala, V. Balakrishnan, Internat. J. Theoret. Phys. 55 (2016) 4044–4059.
[28] I.P. Castillo, J. Stat. Mech. 2016 (2016) 063207.
[29] Y. Wang, Electron. Commun. Probab. 23 (2018) 1–14.
[30] M. Vyas, T. Guhr, T.H. Seligman, Sci. Rep. 8 (2018) 14620.
[31] P.J. Forrester, S. Kumar, J. Phys. A 52 (2019) 42LT02.
[32] E. Bianchi, P. Donà, Phys. Rev. D 100 (2019) 105010.
[33] L. Gyongyosi, Int. J. Commun. Syst. 33 (2020) e4314.
[34] R. Mariétan, S. Morgenthaler, 2020, arXiv:2002.12741.
[35] V.M. Koutras, M.V. Koutras, Methodol. Comput. Appl. Probab. 22 (2020) 1539–1558.
[36] P. Laha, S. Lakshmibala, V. Balakrishnan, Phys. Lett. A 384 (2020) 126565.
17

http://refhub.elsevier.com/S0003-4916(22)00210-X/sb1
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb2
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb3
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb4
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb5
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb6
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb7
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb8
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb9
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb10
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb11
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb11
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb11
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb12
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb13
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb14
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb15
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb16
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb17
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb18
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb19
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb20
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb21
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb22
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb23
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb24
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb25
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb26
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb27
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb28
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb29
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb30
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb31
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb32
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb33
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://arxiv.org/abs/2002.12741
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb35
http://refhub.elsevier.com/S0003-4916(22)00210-X/sb36

	Exact eigenvalue order statistics for the reduced density matrix of a bipartite system
	Introduction
	Preliminaries
	Two qubits: m = n = 2
	Two qutrits: m = n = 3
	The case m = n = 4
	Other cases
	Solution for general m and n
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A
	Appendix B
	References


