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1. Introduction

Mean curvature flow is the L2-gradient flow for the area functional. In general, the 
flow from a hypersurface can develop singularities and there are multiple notions of weak 
flow that allow for the continuation of the flow past such singularities. An alternate 
approach is to approximate the flow by a piece-wise smooth flow, known as a mean 
curvature flow with surgery. The surgery procedure for mean curvature flow from a 2-
convex hypersurface of dimension n ≥ 3 was introduced by Huisken–Sinestrari in [25], 
and extended to n = 2 by Huisken–Brendle [5]. Independently, Haslhofer–Kleiner [19,20]
established a surgery procedure that works for all dimensions n ≥ 2. By classifying blow 
ups for a more general class of 2-convex flows, they showed regions of high curvature in 
such flows have a canonical structure.

In both methodologies, existence of 2-convex surgery boils down to the classification of 
regions of high curvature that develop: a canonical neighbourhood theorem for 2-convex 
flow. Canonical neighbourhoods of neck-pinch singularities for unit-regular cyclic (mod 
2) Brakke flows of dimension n = 2 were established in [11] and for n ≥ 3 in [13], as a 
corollary to their resolution of the mean convex neighbourhood conjecture for neck-pinch 
singularities. It is from this result that we can extend the smooth mean curvature flow 
with surgery.

Spherical and generalised cylindrical singularities were conjectured by Huisken to be 
‘generic’, [27, # 8]. The pioneering work of Colding–Minicozzi, [14–16], catalyzed the 
study of generic flows through their introduction of the entropy functional and establish-
ing of Łojasiewicz-type inequalities. Further, they showed spherical and generalised cylin-
drical singularities are the only linearly stable singularity models. The study of generic 
flows has recently been furthered by the work of Chodosh–Choi–Mantoulidis–Schulze, 
[9,10]. They showed that hypersurfaces in R4 with entropy less than that of S1 × R2

can be perturbed such that the weak flow from this perturbed surface encounters only 
spherical and neck-pinch singularities. Such results provide a strong motivation for estab-
lishing a flow with surgery. Recall, a flow with surgery will have finitely many surgeries. 
This provides a simple way for topological information to be tracked. See Section 6, 
where we prove the low-entropy Schoenflies conjecture [10, Conjecture 1.9] in such a 
manner. Indeed finiteness is desirable, as despite the groundbreaking results concerning 
the structure and size of the singular set, see White [32] and Colding–Minicozzi [15], it 
is still unknown if there are finitely many singular times, or if spherical singularities can 
accumulate to a neck-pinch singularity. See the work of B. Choi–Haslhofer–Hershkovits 
[12].

To highlight why existence of a surgical flow is non-trivial, consider a hypersurface, M , 
whose mean curvature flow has only spherical and neck-pinch singularities, and a single 
(non-degenerate) neck-pinch singularity at the first singular time. With the canonical 
neighbourhood theorems of [11,13] in mind, one can follow the arguments of [20] to pick 
surgery parameters suitable for surgical modifications to be made at some time before 
the flow becomes singular. Such a process would construct a new hypersurface M ′. One 
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immediately runs into a problem: without assuming global 2-convexity, we do not have 
any knowledge of how the flow from M ′ will proceed. In the worst case, it may run into 
non-generic singularities. Moreover, the concatenation of these flows is no longer a weak 
flow, so passing to global limits along sequences of modified flows becomes impractical. 
To overcome these difficulties, we develop a technical framework that allows us to pass 
to limits locally. Further, we show the flows converge, in a smooth sense, to the original 
weak flow. This gains control of the flows with surgical modification, allowing for one to 
perform subsequent surgeries.

1.1. Overview

We adapt the definitions of [20] to construct a unit-regular Brakke flow with surgical 
modification. This gives one the freedom to localise the surgery.1

Throughout this work, we will be considering an n-dimensional unit-regular, cyclic 
(mod 2) integral Brakke flow M that encounters only spherical or neck-pinch singularities 
(with multiplicity one), evolving from the smoothly embedded, closed hypersurface Mn ⊂
Rn+1. We recall the definition of such singularities.

Definition 1.1. A (multiplicity-one) singularity is said to be

(a) spherical if it has the shrinking sphere (−∞, 0) � t �→ Sn(
√
−2nt) ×R as a tangent 

flow
(b) a neck-pinch if it has the shrinking cylinder (−∞, 0) � t �→ Sn−1(

√
−2(n− 1)t) ×R

as a tangent flow.

By the work of Hershkovits-White [22], and the resolution of the mean convex neigh-
bourhood conjecture, a level set flow with only these singularities does not fatten. 
Moreover, these results, plus the recent work [10], provide the tools required to prove a 
uniqueness theorem for weak mean curvature flows with only spherical and neck-pinch 
singularities. In Theorem 4.1, we show that if the outer flow from a given hypersurface 
Mn ⊂ Rn+1 encounters only spherical and neck-pinch singularities, then it is the unique, 
unit-regular, cyclic (mod 2), integral Brakke flow starting from M . For readers unfamiliar 
with such terminology, we refer to Section 2.

Our principal result concerns the existence of a smooth flow with surgery from a given 
hypersurface.

The existence of a surgery flow is dependent on two parameters, Hmin and Θ. Recall, 
the parameters of surgery detailed in [20] are: Hth, the scale at which components are 
dropped, Hneck, the scale of the necks which we perform surgery on, and Htrig, the trigger 

1 Ultimately, one will use the maximum principle to show the existence arguments can be applied directly. 
There is no reason that the formalism of [25] and [5] could not be used, however, the formalism of [20] makes 
it very clear what data one has to control on the boundary.
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scale, at which we pause the flow and perform surgery. The parameter Θ governs the 
ratios between these quantities. We say H ≥ Θ if Htrig/Hneck ≥ Θ and Hneck/Hth ≥ Θ. 
We also require Hth > Hmin.

Theorem 1.2 (Existence of a smooth flow with surgery). Let Mn ⊂ Rn+1 be a smoothly 
embedded hypersurface, and M be a unit-regular, cyclic mod 2 integral Brakke flow, 
emerging from M with only spherical and neck-pinch singularities. Then, the parameters 
Hmin(M) < ∞ and Θ(M) < ∞ can be chosen (depending only on the initial hypersur-
face) such that every weak (α, δ, H)-flow, MH, with Hth > Hmin, H > Θ satisfies:

• |H| ≤ Htrig < ∞ everywhere,
• MH vanishes in finite time.

i.e. MH is a smooth mean curvature flow with surgery.

For the precise definition of a weak (α, δ, H)-flow, see Definition 3.17.
Our proof relies on two key ideas. The first is the construction of barriers to flow with 

surgery, Theorem 4.6, to establish Hausdorff convergence of surgical flows to the level 
set flow. Such an idea was first explored by Lauer [29] for 2-convex flows. Their idea is 
not directly applicable, as they take advantage of the set monotonicity of such flows. 
Instead, we consider flows from near-by initial conditions and show they act as barriers 
to surgery flows.

Before detailing the second tool, we make the following observations. Let {N i}i∈N be 
sequence of integral unit-regular Brakke flows, and presume each flow has a singular set 
of small Hausdorff dimension. Suppose the sequence converges in the Hausdorff sense to 
a Brakke flow M. By further assuming N i converge smoothly to M at the initial time, 
the result of [9] allows for Hausdorff convergence to be improved to Brakke convergence. 
Turning our attention back to weak flows with surgery, we observe in regions where no 
surgical modifications take place, a surgical flow is a smooth mean curvature flow. It 
is hence desirable to understand where surgical modifications take place. This is the 
purpose of our second tool, Proposition 4.15, which shows surgeries accumulate in the 
singular set. Moreover, we actually show the smooth convergence of the flows with surgery 
by probing the behaviour of flows with surgery in neighbourhoods of regular points of 
M with a careful combination of pseudolocality for mean curvature flow [28], graphical 
estimates [17] and the curvature estimates of Haslhofer–Kleiner, [20]. This second tool 
requires us to only permit surgery in a set with somewhat technical restrictions on the 
behaviour of the flow along the boundary. These requirements ensure that the hypotheses 
of the curvature estimates are satisfied.

We consider Ω(α,β) - an open neighbourhood of the singular set with finitely many 
connected components, along the boundary of which the flow M behaves in a fashion 
suitable for surgery in the interior. We examine the class of weak flows with surgery, 
derived from M . Surgeries are performed only in the set Ω(α,β).
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As previously noted, a priori little can be known about the long time behaviour of 
modified flows due to the parabolic nature of mean curvature flow. Using the above tools 
we demonstrate the parameters can be chosen suitably such that the surgery flow will be 
a small graph over M along the boundary of Ω(α,β). The existence of suitable parameters 
is shown by a convergence result, Proposition 4.17. It then follows that the weak surgery 
flows are smooth flows with surgery in the sense of Haslhofer–Kleiner inside Ω(α,β), the 
canonical neighbourhoods of the flow M, via the maximum principle, and hence the 
arguments of Haslhofer–Kleiner can be applied to show the existence of a smooth flow 
with surgery.

In addition, we show that such mean curvature flows with surgery approximate the 
weak flow, compare [29,21] in the 2-convex case.

Theorem 1.3. Taking the limit as Hth → ∞, the weak (α, δ, H) surgical flows converge in 
the Hausdorff sense to M. In particular, away from the singular set of M the convergence 
is smooth.

Finally, we combine our proof of the existence of a mean curvature flow with 
surgery with the existence of generic low entropy flows established by Chodosh–
Choi–Mantoulidis–Schulze to get a new bound on entropy for the low-entropy Schoenflies 
conjecture, as conjectured in [10, Conjecture 1.9].

Theorem 1.4 (Low-entropy Schoenflies for R4). Let Σ3 ⊂ R4 be a hypersurface home-
omorphic to S3 with entropy λ(Σ) ≤ λ(S1 × R2). Then M is smoothly isotopic to the 
round S3.

Surgery is used to decompose the surface into spheres and tori, and the topological 
properties of the flow are exploited to rule out tori. The previous best bound was estab-
lished independently by Bernstein–Wang [3] and Chodosh–Choi–Mantoulidis–Schulze [9].

1.2. Organisation

In Section 2, we recap the structure of Haslhofer–Kleiner surgery. In Section 3, we 
discuss the necessary adaptations to the definitions of [20] for our more general setting. 
In Section 4, we construct barriers and detail the structure and stability of weak surgery 
flows. In Section 5, we prove the existence of a smooth mean curvature flow with surgery 
approximating the unit-regular Brakke flow. Finally, in Section 6 we apply the results 
to the low-entropy Schoenflies conjecture.

1.3. Acknowledgements

A great deal of thanks goes to Felix Schulze, the author’s supervisor, for the discussion 
and guidance provided. The author is also grateful to Otis Chodosh and Huy The Nguyen. 
The author would like to thank the referee for their constructive comments.
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2. Preliminaries

For the convenience of the reader, we re-state central definitions and tools from the 
field.

Definition 2.1. The parabolic cylinder of radius r > 0 centred at the space-time point 
X = (x, t) ∈ Rn+1 ×R is defined as

P (X, r) = B(x, r) × (t− r2, t + r2)

We use the terminology ‘backwards (resp. forwards) parabolic cylinder’ for a parabolic 
cylinder with a time interval of the form (t − r2, t], (resp. [t, t + r2)).

Definition 2.2 (Mean curvature flow). Let Mn ⊂ Rn+1 be a smoothly embedded hyper-
surface. A mean curvature flow M = {Mt ⊂ U}t∈[0,t0) in an open subset U ⊂ Rn+1 is a 
smooth family of hypersurfaces such that

M0 = M,(
∂

∂t
x
)⊥

= HMt
(x) ,

where HMt
(x) is the mean curvature vector.

Definition 2.3. Given a choice of unit normal, ν, we fix an orientation, and thus can write

H = −Hν

We refer to H = H(x) as the (scalar) mean curvature.

The flow is non-linear and develops singularities. A rich theory has been developed to 
continue the flow past such singularities.

Definition 2.4 (Integral Brakke flow [4,26]). We follow the formalism of [35]. An (n-
dimensional) integral Brakke flow in Rn+1 is a 1-parameter family of Radon measures 
{μt}t∈I over an interval I ⊂ R such that:

(i) For almost every t there exists and integral n-dimensional varifold V (t) with μt =
μV (t) so that V (t) has locally bounded first variation and has mean curvature H
orthogonal to Tan(V (t), ·) almost everywhere.

(ii) For a bounded interval [t1, t2] ⊂ I and any compact set K

t2∫ ∫
(1 + |H|2) dμt dt < ∞ .
t1 K
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(iii) If [t1, t2] ⊂ I and f ∈ C1
c (Rn+1 × [t1, t2]) has f ≥ 0 then

∫
f(·, t2) dμt2 −

∫
f(·, t1) dμt1 ≤

t2∫
t1

∫
K

(
− |H|2f + H · ∇f + ∂

∂t
f
)
dμt dt

We write M for a Brakke flow {μt}t∈I to refer to the family of measures I � t �→ μt

satisfying Brakke’s inequality.

Definition 2.5 (Density and Huisken’s monotonicity). For X0 := (x0, t0) ∈ Rn+1 × R, 
consider the backward heat kernel based at (x0, t0):

ρX0(x, t) = (4π(t0 − t))−n/2 exp
(
−|x − x0|2

4(t0 − t)

)
,

for x ∈ Rn+1, t < t0. For a Brakke flow M and r > 0 we set

ΘM(X0, r) :=
∫

Rn+1

ρX0(x, t0 − r2) dμt0−r2

ΘM(X0, r) is known as the density ratio at X0 at scale r > 0. Huisken’s monotonicity 
formula [24] implies that

d

dt

∫
ρX0(x, t) dμt ≤ −

∫ ∣∣∣∣H − (x − x0)⊥

2(t− t0)

∣∣∣∣
2

ρX0(x, t) dμt .

In particular, the Gaussian density of M at X0 is defined by

ΘM(X0) := lim
r↘0

ΘM(X0, r) .

Definition 2.6 (Parabolic rescaling). Let M = {Mt}t∈[0,T ) be a mean curvature flow 
(Brakke flow). For any λ > 0, we denote the parabolic rescaling of space-time by λ as 
Dλ : (x, t) �→ (λx, λ2t). We denote by Dλ(M − X0) the mean curvature flow (resp. 
Brakke flow) obtained from M by parabolic dilation around X0 by λ. That is,

Dλ(M−X0) = {μλ
t }t′∈[−λ2t0,λ2(T−t0)),

with μλ
t (A) = λnμt0+λ−2t(λ−1A + x0)

Definition 2.7 (Tangent flow). Let {λi} be a sequence s.t. λi → ∞. We define a tangent 
flow at the space-time point X0 ∈ M as a subsequential limiting Brakke flow of the 
sequence parabolic rescalings of M around X0 by λi.

The monotonicity formula implies that all tangent flows are self-similar, i.e. their time 
−1 slice is given by a (weak) self-shrinker.
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Definition 2.8 (Self-shrinker). A hypersurface Σ ⊂ Rn+1 is called a self-shrinker if

HΣ(x) + x⊥

2 = 0.

We will only be considering Brakke flows with (a) Spherical and (b) Neck-pinch sin-
gularities.

Remark 2.9. Tangent flows are not necessarily unique, however, it follows from [23] that 
at a point with a multiplicity one spherical tangent flow, all tangent flows are spheres. 
For multiplicity one cylindrical tangent flows, uniqueness was established in [15], so the 
above tangent flows are unique, and one can refer to the tangent flow.

Remark 2.10. The structure of the singular set of a Brakke flow M with spherical and 
(generalised) cylindrical singularities is well understood, see [32,15,16].

We will be considering unit-regular and cyclic (mod 2) Brakke flows. The definition of 
an integral Brakke flow permits sudden vanishing; to (partially) avoid this, one can define 
the class of unit-regular Brakke flows. This class forbids vanishing at regular points of 
the flow.

Definition 2.11 (Unit-regular and cyclic Brakke flows [34]). An integral Brakke flow M =
{μt}t∈I is said to be

• unit-regular if M is smooth in some space-time neighbourhood of any space-time 
point X with ΘM(X) = 1;

• cyclic (mod 2) if, for a.e. t ∈ I, μt = μV (t) for an integral varifold V (t) whose unique 
associated rectifiable mod-2 flat chain [V (t)] has ∂[V (t)] = 0.

Finally, we state the following theorem from [9]. The ideas will be used in Section 4
to show convergence properties of the ε-barriers and of flows with surgery.

Definition 2.12. For a Brakke flow M, we define r̂egM to be the set of points X = (x, t)
such that there is an ε > 0 with

M�(Bε(x) × (t− ε2, t] = kHn�M(t),

where k is a positive integer and M(t) is a smooth mean curvature flow. We write regM
as the above set with k = 1; thus, regM ⊂ r̂egM.

Theorem 2.13 ([9, Corollary F.4]). Suppose that M is a unit-regular integral n-
dimensional Brakke flow in Rn+k with μ(t) = Hn�M(t) for t ∈ [0, δ), where M(t) is 
a mean curvature flow of connected, properly embedded submanifolds of Rn+k and δ > 0. 
If
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Hn
P (supp(M)\r̂egM) = 0

Then r̂egM = regM is connected.

Here Hn
P denotes n-dimensional parabolic Hausdorff measure. This theorem provides 

vital information on the behaviour of unit-regular Brakke flows with small singular set.
Another formulation of a weak solution to the mean curvature flow is that of the 

level set flow. It was first introduced as a viscosity solution to the mean curvature flow 
independently by Evans–Spruck [18] and Chen–Giga–Goto [8]. The following geometric 
definition was given by Ilmanen, [26].

Definition 2.14 (Weak and level set flow, [26]). Let K ⊂ Rn+1 be closed. A one-parameter 
family of closed sets, {Kt}t≥0, with initial condition K0 = K is said to be a weak set 
flow for K if for every smooth mean curvature flow Mt of compact hypersurfaces defined 
on [t0, t1], we have

Kt0 ∩Mt0 = ∅ =⇒ Kt ∩Mt = ∅

for all t ∈ [t0, t1].
The level set flow is defined as the maximal weak set flow, i.e. the union of all weak 

set flows from K.

2.1. Overview of 2-convex surgery

The following is a recap of [20].

Definition 2.15 (α-noncollapsed, [1], [19]). Let α > 0. A mean convex hypersurface 
Mn bounding an open region Ω in Rn+1 is α–noncollapsed (on the scale of the mean 
curvature) if for every x ∈ M there are closed balls Bint ⊂ Ω and Bext ⊂ Rn+1\Ω
of radius at least α/H(x) tangential to M at x, from the interior and exterior of M
respectively. A smooth mean curvature flow is said to be α-noncollapsed if every time 
slice is α-noncollapsed.

This definition may be suitably localised. See Definition 3.3.

Definition 2.16 (β-uniformly 2-convex). A mean convex hypersurface M is said to be 
β-uniformly 2-convex, for β > 0, if

λ1 + λ2 > βH.

Where λi are the ordered principal curvatures with λ1 ≤ . . . ≤ λn, and H is the mean 
curvature.
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Recall, ‘α-noncollapsed’-ness is preserved under the mean curvature flow by the maxi-
mum principle, [1]. β-uniform 2-convexity is preserved by the Hamilton tensor maximum 
principle.

Definition 2.17 (Strong δ-neck [20, Definition 2.3]). Let δ > 0. We say a mean curvature 
flow M = {Mt ⊂ U}t∈I has a strong δ-neck with centre p and radius s at time t0 ∈ I if 
M(p,t0),s−1 = Ds−1(M − (p, t0)) is δ-close in C�1/δ� in (BU

1/δ × (−1, 0]) to the evolution 
of a solid round cylinder of radius 1 at t = 0. Here BU

1/δ = s−1((B(p, s/δ) ∩ U) − p) ⊆
B(0, 1/δ) ⊂ Rn+1 and Dλ denotes the parabolic dilation by λ.

Definition 2.18 (Standard cap [20, Definition 2.2]). A standard cap is a smooth convex 
domain Kst ⊂ Rn+1 that coincides with a solid round half-cylinder of radius 1 outside 
a ball of radius 10.

The evolution from such a cap is unique, β-uniformly 2-convex and α-noncollapsed 
for some α, β > 0, [20, Proposition 3.8]. This is a key component of the canonical 
neighbourhood theorem for mean curvature flows with surgery.

A surgery algorithm seeks to replace δ-necks with standard caps, the following is the 
gluing algorithm used.

Definition 2.19 (Replacing a δ-neck by standard caps [20, Definition 2.4]). We say that 
the final time slice of a strong δ-neck with centre p and radius s is replaced by a pair of 
standard caps if the pre-surgery domain K− ⊂ U is replaced by a post-surgery domain 
K# ⊂ K− such that following statements hold.

(1) The modification takes place inside a ball B = B(p, 5Γs)
(2) There are bounds for the second fundamental form and its derivatives

sup
∂K#∩B

|∇�A| ≤ C�s
−1−�

(3) If B from point (1) satisfies B ⊂ U then for every point p# ∈ ∂K# ∩ B with 
λ1(p#) < 0 there is a point p− ∈ ∂K− ∩B with λ1

H (p−) ≤ λ1
H (p#)

(4) If B(p, 10Γs) ⊂ U then s−1(K# − p)) is δ-close in B(0, 10Γ) to a pair of disjoint 
standard caps which are at distance Γ from the origin.

Here, Γ > 0 denotes a cap separation parameter that is fixed later.

Haslhofer–Kleiner begin by defining a broader class of flows, of which mean curvature 
flow with surgery belongs. It is a class of piece-wise smooth, mean convex, α-noncollapsed, 
mean curvature flows with δ-necks replaced by caps. They fix a μ ∈ [1, ∞), used below.
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Definition 2.20 ((α, δ)-flow [20, Definition 1.3]). An (α, δ)-flow K is a collection of 
finitely many smooth α-noncollapsed flows {Ki

t ⊂ U}t∈[ti−1,ti], (i = 1, . . . , k; t0 <

· · · , tk) in an open set U ⊂ Rn+1 such that the following statements hold.

(1) For each i = 1, . . . , k − 1, the final time slices of some collection of disjoint strong 
δ-necks are replaced by pairs of standard caps as described in Definition 2.19, giving 
a domain K#

ti ⊆ Ki
ti =: K−

ti .
(2) The initial time slice of the next flow Ki+1

ti =: K+
ti , is obtained from K#

ti by discarding 
some connected components.

(3) There exists s# = s#(K) > 0, which depends on K, such that all necks in item (1) 
have radius s ∈ [μ−1/2s#, μ1/2s#].

Proposition 2.21 (One-sided minimization, [20, Proposition 2.9]). There exists a δ > 0
and Γ0 < ∞ with the following property. If K is an (α, δ)-flow (δ < δ) in an open set U , 
with cap separation parameter Γ ≥ Γ0 and surgeries at scales between μ−1s and s, and 
if B ⊂ U is a closed ball with d(B, Rn+1\U) ≥ 20Γs, then

|∂Kt1 ∩B| ≤ |∂K ′ ∩B|

for every smooth comparison domain K ′ that agrees with K1 outside B and satisfies 
Kt1 ⊂ K ′ ⊂ Kt0 for some t0 < t1.

Theorem 2.22 (Global curvature estimate [20, Theorem 1.10]). For all Λ < ∞, there 
exists δ(α) > 0, ξ = ξ(α, Λ) < ∞ and C0 = C0(α, Λ) < ∞ with the following property. 
If K is an (α, δ)-flow (δ < δ) in a parabolic ball P (p, t, ξr) centred at p ∈ ∂Kt with 
H(p, t) ≤ r−1, then

sup
P (p,t,Λr)∩∂K′

|A| ≤ C0r
−1

where K′ denotes the connected component of the flow containing p.

Remark 2.23. Of course, this extends to higher derivatives, |∇lA|, as is standard for 
parabolic equations.

Definition 2.24 (α-controlled initial condition [20, Definition 1.15]). Let α = (α, β, γ) ∈
(0, n − 1) × (0, 1

n−1 ) × (0, ∞). A hypersurface Mn ⊂ Rn+1 is said to be α-controlled if it 
is α-noncollapsed, β-uniformly 2-convex: λ1 + λ2 ≥ βH and maxx∈M{H(x)} ≤ γ.

Definition 2.25. The surgery parameter H is defined as the triple

H = {Hth, Hneck, Htrig} ∈ R3,

0 < Hth < Hneck < Htrig < ∞.
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Htrig is the trigger curvature, once achieved the flow is stopped. Hneck is the mean 
curvature of neck points. Hth is the curvature that is used to determine high curvature 
regions of the flow. For Θ < ∞ we say H > Θ if the ratios satisfy

Hneck

Hth
,
Htrig

Hneck
> Θ

We say the ratios degenerate along a sequence if these ratios tend to infinity.

The definition of a mean curvature flow with surgery is made formal in the following 
definition.

Definition 2.26 ((α, δ, H)-flow [20, Definition 1.17]). Let Mn ⊂ Rn+1 be an α = (α, β, γ)
controlled initial condition. An (α, δ, H)-flow is an (α, δ) flow such that:

(1) H ≤ Htrig everywhere. Surgery and/or discarding occurs precisely at times t when 
H = Htrig somewhere.

(2) The collection of necks in Definition 2.20 (1) is a minimal collection of necks with 
curvature H = Hneck which separate the set {H = Htrig} from {H ≤ Hth} in the 
domain K−

t .
(3) K+ is obtained from K#

t by discarding precisely those connected components with 
H > Hth everywhere. In particular, of each pair of facing surgery caps, precisely one 
is discarded.

(4) If a strong δ-neck from item (2) is also a strong δ̂-neck for δ̂ < δ then Definition 2.20
(4) also holds with δ̂ instead of δ.

The above theory is then used to prove existence of the flow, provided one is replacing 
strong enough necks (controlled by δ) that are sufficiently long (controlled by Θ and the 
curvature estimates).

Theorem 2.27 (Existence of mean curvature flow with surgery, [20, Theorem 1.21]). 
There are constants δ = δ(α) > 0 and Θ(δ) = Θ(α, δ) < ∞ (δ ≤ δ̄) with the fol-
lowing significance. If δ ≤ δ̄ and H = (Htrig, Hneck, Hth) are positive numbers with 
Htrig/Hneck, Hneck/Hth ≥ Θ(δ), then there exists an (α, δ, H)-flow {Kt}t∈[0,∞) for every 
α-controlled initial condition K0.

Additionally, a canonical neighbourhood theorem is proved.

Theorem 2.28 (Canonical neighbourhood theorem, [20, Theorem 1.22]). For all ε > 0, 
there exist δ = δ(α) > 0, Hcan(ε) = Hcan(α, ε) < ∞ and Θε(δ) = Θε(α, δ) < ∞
(δ ≤ δ̄) with the following significance. If δ ≤ δ and K is an (α, δ, H)-flow with 
Htrig/Hneck, Hneck/Hth ≥ Θε(δ), then any (p, t) ∈ ∂K with H(p, t) ≥ Hcan(ε) is ε-close 
to either (a) a β-uniformly 2-convex ancient α-noncollapsed flow, or (b) the evolution of 
a standard cap preceded by the evolution of a round cylinder.
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A consequence of the canonical neighbourhood theorem is the classification of dis-
carded components. This result allows one to use surgery to decompose the topology of 
the original hypersurface.

Theorem 2.29 (Discarded components, [20, Corollary 1.25]). For ε > 0 small enough, 
for any (α, δ, H)-flow with Hneck/Hth, Htrig/Hneck > Θε(δ), and Hth > Hcan(ε), all 
discarded components are diffeomorphic to D

n+1 or Dn × S1.

3. Definitions for local surgery

Let M be an n-dimensional unit-regular, cyclic (mod 2) integral Brakke flow that 
encounters only multiplicity one spherical or neck-pinch singularities, evolving from the 
smoothly embedded, closed hypersurface Mn ⊂ Rn+1. We will always presume these 
singularities are multiplicity one. We fix a neck separation parameter Γ0 that satisfies the 
conclusions of Proposition 2.21, and a δ̄ > 0 that satisfies the conclusions of Theorem 2.27
and Theorem 2.28.

All of the above definitions for surgery make use of the ‘fattened’ flow, where at each 
time Kt is defined to be the set such that the boundary ∂Kt = Mt is the motion by mean 
curvature from the initial hypersurface M . Since the flow is mean convex, the direction 
of flow is always into such a K.

With no assumption on the initial mean curvature, M can have ‘outward’ necks, where 
the mean curvature vector (direction of flow) is pointing exterior to the compact set the 
hypersurface bounds. Observe, however, that the mean convex neighbourhood conjecture 
gives a neighbourhood of the singularity in which the mean curvature vector always 
points in the same direction. Recall, we are considering Brakke flows that are cyclic (mod 
2), so the ambient Rn+1 is separated (at almost every time) into two components by the 
support of the Brakke flow. Let Ω be a set such that M ∩Ω is 2-convex. Observe, this gives 
a ‘local orientation’ in the following sense. We say the set Kt, with ∂Kt\∂Ω = Mt ∩Ω is 
the local interior if H points into Kt.

We use the same definition for the local interior of a surgery flow. Such a definition 
will be shown to be well defined in the definition of our flow with surgery.

Definition 3.1 (Neck replacement). We localize Definition 2.19 by using the above ‘local 
interior’ Kt as opposed to the interior of the entire flow.

Remark 3.2. In this local sense, we still have the chain of inclusions

K+
ti ⊆ K#

ti ⊆ K−
ti

This is important for Lemma 4.6 in order to replicate the argument of [29].
Note, we will not have this sequence of inclusions for the interior of the surgery flow. 

Such a statement would not be true for outward necks: the caps are glued inside the 
solid neck, which equates to being exterior of the pre-surgery hypersurface.
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Definition 3.3 (Locally α-noncollapsed). Let Mn ⊂ Rn+1 be a smooth, closed hypersur-
face bounding the region Ω. Suppose M is mean convex in the open balls B(y, 2r). We 
say M is locally α-noncollapsed in B(y, r) if

(a) H(x) > 1/r for x ∈ M ∩B(y, r), and
(b) There is an α > 0 such that the balls Bint ⊂ Ω and Bext ⊂ Rn+1\Ω of radius α/H(x)

situated either side of the hypersurface, with x ∈ ∂Bint, ∂Bext, are contained in 
B(y, 2r) and each ball has no intersection with M ∩B(y, 2r).

Examining the structure of the singular set of the flow M, we can start to build the 
definitions for a more general surgery.

Definition 3.4. We denote the singular set of M as S.

We recall the canonical neighbourhood theorem of [11,13].

Theorem 3.5 (Canonical neighbourhoods [13, Corollary 1.18]). Assume X ∈ S is a neck 
singularity of the flow. Then for every δ > 0 there exists a R(X, δ) > 0 with the following 
significance. For any regular point X ′ ∈ P (X, R) the flow M′ = Dλ(M −X ′), obtained by 
parabolically rescaling the original flow around X ′ by λ = |H(X ′)|, is δ-close in C�1/δ� in 
B1/δ(0) × (−1/δ2, 0] to a round shrinking sphere, round shrinking cylinder, a translating 
bowl soliton or ancient oval.

Motivated by this theorem, we define the following open neighbourhood of the singular 
set of the flow M.

Definition 3.6 ((α, β)-neighbourhood). We fix

(i) α > 0,with α < min{αsphere, αcylinder, αbowl, αoval},

(ii) β > 0,with 0 < β < min{βsphere, βcylinder, βbowl, βoval},

(iii) γ > 0.

Here αsphere, αcylinder, αbowl, αoval and βsphere, βcylinder, βbowl, βoval are the respective 
optimal α > 0 and β > 0 for the shrinking sphere, cylinder, translating bowl and ancient 
oval.

Let α = (α, β, γ). Let Mn ⊂ Rn+1 be a hypersurface with |A| < γ and suppose M is 
a unit-regular, cyclic (mod 2) integral Brakke flow starting from M then encounters only 
(multiplicity-one) spherical and neck-pinch singularities. We fix an additional constant 
Hbdd = Hbdd(α). An (α, β)-neighbourhood, Ω(α,β), is an open space-time neighbour-
hood of the singular set S, composed of finitely many connected components, with the 
following properties.
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(i) For every regular point X ∈ M ∩ Ω(α,β), |H(X)| > Hbdd.
(ii) If X ∈ M ∩∂Ωi, where Ωi is a connected component of Ω(α,β), we require |H(X)| =

Hbdd.
(iii) Furthermore, if X ∈ M ∩ ∂Ωi, then the flow is β-uniformly 2-convex in 

P (X, 2ξ(|H(X)|)−1) and locally α-noncollapsed in P (X, ξ(|H(X)|)−1).
(iv) M is locally α-noncollapsed in Ω(α,β) at regular points.
(v) M is β-uniformly 2-convex in Ω(α,β) at regular points.

The value of ξ = ξ(α, Λ) is that given by the curvature estimates of Haslhofer–Kleiner, 
and depends on some Λ, which will be derived later.

Remark 3.7. Observe, the mean curvature is uniform across the boundary.

Remark 3.8. The choice to have constant mean curvature along the boundary serves a 
practical purpose. Later, we will specify surgeries in a flow approximating M only occur 
as long as said flow is a small graph over M in some neighbourhood of the boundary. 
We will show knowledge of the boundary data of M in the above fashion guarantees in 
the flows with surgery, via the maximum principle, that the hypotheses of the curvature 
estimates (Theorem 2.22) are satisfied in the interior. To be explicit, at interior points 
X, the flow in P (X, ξ(|H(X)|)−1) will be an (α, δ)-flow in the sense of [20].

Lemma 3.9. Let M be a Brakke flow with only spherical and neck-pinch singularities. 
For every α as in Definition 3.6, there is a H0(α, M) < ∞ such that for all Hbdd > H0
an (α, β)-neighbourhood exists.

Proof. Fix α satisfying the assumptions of Definition 3.6, and take ε < (2ξ)−1. Addition-
ally, we take ε small enough that if a flow is ε-close an ancient, asymptotically cylindrical 
flow, then it is β-uniformly 2-convex.

By the canonical neighbourhood theorem, Theorem 3.5, and the compactness of the 
singular set, there is an r > 0 such that any regular point in the parabolic cylinder 
P (Y, r), centred at Y ∈ S is ε-close to one of the ancient, asymptotically cylindrical 
flows (at scale of the mean curvature).

This radius can be taken such that at any interior regular point the flow is locally 
α-noncollapsed.

The union of the above cylinders, ∪Y ∈SP (Y, r), defines a cover of the singular set. 
Observe, in each connected component the mean curvature has a single sign (a local 
orientation). Let {Xi}i∈N be a sequence of regular points contained in a single connected 
component that accumulate in S. It is immediate from the canonical neighbourhood 
theorem that H(Xi) → ∞.

Hence, we can fix a Hbdd sufficiently large that Ω := {X ∈ reg(M) s.t. |H(X)| >
Hbdd} � ∪Y ∈SP (Y, r).

Observe, reg(M) is relatively open in supp(M), so Ω is a relatively open set in 
supp(M). Moreover, the mean convex neighbourhood theorem shows that we can 
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include singular points, provided they are spherical or neck-pinch singularities, i.e. 
Ω′ = {X ∈ reg(M) | |H(X)| > Hbdd} ∪ S is open in supp(M). The topology of 
supp(M) is inherited from the standard parabolic topology of space-time, Rn+1,1. Thus, 
there is an open set U in Rn+1,1 such that U ∩ supp(M) = Ω′. Ω(α,β) can be taken 
as any collection of such open sets in space-time. Hence, Ω(α,β) is an open space-time 
neighbourhood of the singular set. We can assume this neighbourhood has finitely many 
connected components since the singular set is compact.

Finally, the β-uniform 2-convexity and α-noncollapsedness for X ∈ M ∩ ∂Ωi is im-
mediate from the choice of ε in the canonical neighbourhood theorem. QED

Definition 3.10 (Neighbourhood of the boundary). For a connected component Ωi, we 
define

Ni =
⋃

X∈∂Ωi

P (X, 2ξH−1
bdd).

Where P (X, 2ξH−1
bdd) is the backwards parabolic cylinder centred at X. Observe, as 

specified in Definition 3.6, M ∩P (X, 2ξH−1
bdd) will be smooth and β-uniformly 2-convex.

We now define a flow similar to the mean convex (α, δ)-flows of [20]. It is a unit-regular 
cyclic mod 2 Brakke flow with the replacement of (smooth) δ-necks by caps.

Definition 3.11 ((α, δ)-Brakke flow). Compare Definition 2.20.
Let Mn ⊂ Rn+1 be a compact, smoothly embedded hypersurface. Let M a unit-

regular, cyclic (mod 2) Brakke flow emerging from M that encounters only (multiplicity 
one) spherical and neck-pinch singularities.

An (α, δ)-Brakke flow is defined as the collection of unit-regular cyclic (mod 2) Brakke 
flows

{Mi} = {μi
t}t∈[ti−1,ti], (i = 1, . . . , k + 1; 0 = t0 < · · · < tk < tk+1 = tExt),

with the following properties. We adopt the standard notation of ‘calligraphic’ M to 
denote flows, and ‘roman’ Mt the t-time slice of M. Superscripts will remain consistent 
between flows and timeslices in flows with surgery.

(i) Mi is a smooth flow for 1 ≤ i ≤ k. That is, surgery is only performed if the flow is 
smooth.

(ii) For each i = 1, . . . k, we identify in M i
ti =: M−

ti , the final time slice of the smooth 
mean curvature flow Mi, a collection of disjoint strong δ-necks contained in Ω(α,β). 
Each neck is replaced, provided the next point is satisfied, by pairs of standard 
caps as in Definition 2.19, creating the possibly disconnected hypersurface M#

ti .
(iii) Necks at time ti ∈ {t1, . . . , tk} contained in Ωj , a connected component of Ω(α,β), 

are only replaced by caps if the flow Mi can be written as a δ-graph over M in 
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the boundary neighbourhoods Nj at time ti. This is to ensure that the curvature 
estimate of [20] carries over to the surgery flow. See Remarks 3.13 and 3.14. If 
this condition fails, we treat the last time surgeries were successfully performed as 
tk and we continue as in item (vi). Note, we allow the case where being a graph 
over the boundary at time ti is ‘vacuously true’ i.e. Mi ∩ ∂Ωj = ∅, Mi ∩ Ωj �= ∅. 
Indeed, if a component of the flow is contained entirely in Ω(α,β), then it satisfies the 
assumptions of α non-collapsedness and β-uniform 2-convexity by the maximum 
principle.

(iv) The initial timeslice of Mi+1, M i+1
ti := M+

ti is obtained from the post-surgery 
hypersurface M#

ti by dropping some connected components contained in Ω(α,β).
(v) There exists s# > 0 which depends only on the Brakke flow M such that all necks 

in item (i) have radius s ∈ [μ−1/2s#, μ1/2s#].2
(vi) We allow the flow Mk+1 to develop as a unit-regular Brakke flow until its extinction 

at time tk+1 = tExt. Specifically, we choose the integral, unit-regular, cyclic (mod 
2) Brakke flow whose support is the outer flow from the initial condition of Mk. 
See Hershkovits–White, [22], where such a flow is constructed.

Remark 3.12. In item (i), we require that M i
ti is a smooth hypersurface for neck replace-

ment to occur. Thus, after neck replacement the flow can be continued as an integral, 
unit-regular, cyclic (mod 2) Brakke flow by elliptic regularisation. It should be possible 
to weaken this requirement to being an integral current, however, this is not needed 
for the purposes of the current work. The choice of outer flow is important later, for 
understanding barriers to flows with surgical modification.

Remark 3.13. Item (iii) requires the (α, δ)-Brakke flow can be written as a δ-graph over 
M in Ni. By this we mean, the surgery flow is δ-close to M in C� 1

δ �(Ni). Whilst imposing 
such a condition may seem unmotivated, it occurs naturally when considering sequences 
of smooth flows that converge to a smooth limit. We discuss how our flows with surgery 
converge in Section 4.

Remark 3.14. We use the δ-graphical condition to ensure that along the boundary of 
Ω(α,β), the surgery flow is β-uniformly 2-convex and α-noncollapsed, provided δ > 0 is 
taken sufficiently small. The size of the required δ will depend on Hbdd and, of course, 
our choice of α and β. We can then promote this to interior control by the maximum 
principle. Demanding control in a neighbourhood of the boundary (as opposed to just 
on the boundary) addresses two problems. Firstly, we need to use a two point maximum 
principle to show interior α-noncollapsedness as in [1]. We discuss why this graphical 
condition in the boundary provides sufficient control of the geometry of the flows with 
surgery to apply a two point maximum principle in Remark 5.4. Secondly, by enforcing a 

2 μ ∈ [1, ∞) is a constant that quantifies the notation of surgeries at comparable scales. See [20, Convention 
1.2].
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boundary graphical condition in the definition of the (α, δ)-Brakke flows, we ensure the 
hypotheses of the Haslhofer–Kleiner curvature estimate are satisfied at all interior points, 
before the final time of surgery. This follows essentially from the triangle inequality and 
the maximum principle. For details, see Theorem A.4.

Remark 3.15. It is important to stress that the uniform backward control of 2-convexity 
and noncollapsedness along the boundary is fundamental in being able to apply the 
curvature estimate for our choice of Λ. Note, this control is not needed if the mean 
curvature tends to infinity, only when one expects the curvature to remain bounded. 
For example, this argument is not needed when applying the curvature estimates in 
the Canonical Neighbourhood Theorem of Haslhofer–Kleiner, but is needed for showing 
surgery accumulates in the singular set.

Remark 3.16. In the formalism of Haslhofer–Kleiner surgery, α and β are controlled by 
the initial condition. In this flow, these parameters are controlled locally from the values 
on the boundary by the maximum principle.

We now define the weak surgical flows. The key deviations are that (a) the flow can 
become singular, and (b) the requirement that surgery only takes place in a predeter-
mined neighbourhood of the singular set of the flow M. Whilst this initially may feel 
restrictive, it is entirely natural. See Section 4.

Definition 3.17 (Weak (α, δ, H)-flow). Let Mn ⊂ Rn+1 be a compact, smoothly embedded 
hypersurface be a γ-controlled initial condition. Let M be a unit-regular, cyclic (mod 
2) Brakke flow emerging from M that encounters only (multiplicity one) spherical and 
neck-pinch singularities. For a fixed α (as above), δ > 0 and surgery parameters H
we define MH as the weak (α, δ, H)-flow or weak surgery flow derived from M as the 
(α, δ)-Brakke flow that satisfies the following conditions:

(i) All surgeries take place inside the (α, β)-neighbourhood of the singular set of M, 
the region where the original flow is α-noncollapsed and β-uniformly 2-convex.

(ii) Surgeries and/or discarding takes place at times t when |H| = Htrig somewhere in 
Ω(α,β). Note, we actually allow |H| to exceed Htrig in the flow outside the region 
where we perform surgery.

(iii) The collection of necks is minimal, and the necks are of curvature |Hneck|. The 
necks separate the set {|H| = Htrig} from {|H| ≤ Hth}.

(iv) The smooth hypersurface M+
t is obtained from M−

t by dropping some smooth 
components of mean curvature |H| > Hth contained in Ω(α,β). In particular, for 
each pair of facing surgery caps, precisely one is discarded.

(v) If a strong δ-neck is also a strong δ̂ neck for δ̂ < δ then item (iv) of Definition 3.11
holds with δ̂ instead of δ.
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Remark 3.18. Item (v) is the stipulation that if a δ-neck sits inside a stronger δ̂-neck, 
then the surgery is performed in a ‘better’ way, that is closer to the ideal cylinder and 
cap. This is an essential component of self-improvement.

Remark 3.19. We allow the flow to continue as a unit-regular Brakke flow if a (possibly 
non-generic) singularity forms after the last surgery. Note that we cannot be certain 
such a continuation is unique. We gain control of the singular behaviour via the barriers 
constructed in Section 4, in particular showing that any singularities will be spherical or 
neck-pinch singularities (and thus the continuation is well defined). In Section 5, we will 
show that giving control back to Htrig gives a smooth surgery in the same sense as [20].

Consider the following examples of weak surgery flows.

Example 3.20. The shrinking sphere is a weak (α, δ, H)-surgery flow for all values of H, 
if one chooses not to drop components of high curvature.

Example 3.21. Fix H. The shrinking sphere that vanishes once the mean curvature 
reaches Hth is a weak (α, δ, H)-surgery flow.

Example 3.22. Fix α and δ > 0. Let M be an α-controlled initial condition. Then, there 
is a H given by [20] such that the (α, δ, H) mean curvature flow with surgery of [20]
exists. It is a weak (α, δ, H)-surgery flow.

4. Barriers and stability

We now develop the tools for controlling the weak surgery flows. In the first half of 
this section, we show that the unit-regular Brakke flows from hypersurfaces equidistant 
to the initial hypersurface act as barriers to our weak surgery flows, provided the surgery 
scale is large enough. The existence of these barriers requires the recent technical result 
of [9], concerning the connectedness of the singular set for flows with singular set of small 
Hausdorff dimension. Indeed, such a result is critical as one needs a way to show higher 
multiplicities cannot develop. We then tackle the problem of stability of the surgery 
flows. The parabolic nature of mean curvature flow means that changing the flow in 
one location can affect other regions at infinite speed. Whilst this problem cannot be 
completely avoided, showing the surgery parameters can be chosen such that surgeries 
change the flow in a manner that is ‘stable’ with respect to the unmodified flow is 
sufficient. Recalling the definition of the (α, β)-neighbourhood, one can see that if we can 
show suitable control in Ni, a neighbourhood of the boundary of a connected component 
of the (α, β)-neighbourhood, then in the interior our flow with surgery will locally look 
like a (α, δ, H)-flow of Haslhofer—Kleiner. In Section 5, this is precisely how we will 
show that their theory can be applied directly to deduce existence of a smooth flow with 
surgery. Said boundary control is achieved by a local convergence result. In showing this, 
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we additionally prove the stronger result that the weak flows with surgery converge to 
the unmodified flow as Brakke flows away from the singular set.

For the following, we will suppose that Mn ⊂ Rn+1 is a closed, smoothly embedded 
hypersurface and that there is a unit-regular, cyclic (mod 2) Brakke flow M emerging 
from M that encounters only multiplicity one spherical and neck-pinch singularities. A 
priori, such a flow is not unique, however, combining recent results we get the following 
uniqueness result.

Theorem 4.1. Let Mn ⊂ Rn+1 be a closed, smoothly embedded hypersurface. If there is 
a unit-regular cyclic (mod 2) Brakke flow M emerging from M that encounters only 
multiplicity one spherical and neck-pinch singularities, then the level set flow does not 
fatten. In particular, M is unique.

Proof. Recall that the support of M defines a weak set flow, and thus is contained in 
the level set flow of M . Let N be the unit-regular Brakke flow whose support is the outer 
flow {Mt}. The existence of such a flow is proven in [22]. The uniqueness of smooth mean 
curvature flow implies that M and N agree up to the first singular time. Thus, their 
supports agree at the first singular time. Since M has only spherical and neck-pinch 
singularities, the flow N cannot fatten at the first singular time, t0, [22]. Moreover, 
stratification, [32], yields that the singular set of M has parabolic Hausdorff dimension 
at most one. Hence, by Theorem 2.13, ([9, Theorem F.4]), the regular sets of M and N
are connected, and thus we have unit density at smooth points. Thus, the flows agree as 
Brakke flows up to the first singular time. This argument can be iterated since the flow is 
compact. i.e. For the two flows to differ, the outer flow must encounter a non-spherical or 
non-neck-pinch singularity, which cannot happen as the flows agree back in time. Thus, 
M = N . In particular, the outer flow has only spherical and neck-pinch singularities and 
hence does not fatten, [13, Theorem 1.19].

Since the support of any Brakke flow defines a weak set flow, the non-fattening and 
connectedness of the regular set show that M is the unique unit-regular flow. QED

Thus, it is sufficient to suppose M has only spherical and neck-pinch singularities.
We also pick a ε0 = ε0(M) > 0 sufficiently small, such that for −ε0 ≤ ε ≤ ε0 the 

hypersurfaces Mε = {dist(·, M) = ε}, where dist(·, M) is the signed distance function to 
M , are smooth.

Lemma 4.2. Let ε < ε0, and let M±ε be unit-regular cyclic (mod 2) Brakke flows emerging 
from the hypersurfaces M±ε. Then,

lim
ε→0

M±ε = M

as Brakke flows.
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Proof. We prove the statement for the +ε flows, as the proof for the −ε flows will be 
identical.

Smooth convergence of Mε → M holds up to the first singular time of M. For later 
times we consider the following.

Let {εi}i∈N be a positive null sequence, and consider the flows Mεi . By the conver-
gence result of Ilmanen [26], there is a unit-regular flow M̃ such that Mεi ⇀ M̃. In 
particular, since the level set flow from M does not fatten, we have supp(M̃) ⊆ supp(M).

We now proceed via the logic of Theorem 2.13 [9, Appendix F].
Since M has only spherical and neck-pinch singularities, stratification, [32], yields that 

the singular set has parabolic Hausdorff dimension at most one, so by Theorem 2.13 M
has connected regular set. Indeed, by considering paths that connect to the initial time 
avoiding the singular set and noting that M̃ is unit regular, we see that the density of 
M̃ is equal to that of M at all regular points. Since the singular set of M has small 
measure, we have M̃ = M.

This is true for all null sequences {εi}, hence the above argument shows M+ε con-
verges to M. QED

Remark 4.3. Note, for small ε > 0 the barrier flows have only spherical and neck–
pinch singularities. This follows from the resolution of the mean convex neighbourhood 
conjecture, [11,13] and the extension to near-by flows by Schulze–Sesum [31].

Lemma 4.4. Let M, M±ε be as above. Then, for every t where both flows are defined, 
|d(Mt, M±ε,t)| ≥ ε.

Proof. Follows from the standard avoidance principle for Brakke flows, see [26]. QED

Definition 4.5. We will call the unit-regular Brakke flows M±ε the ε-barriers.
We take the convention that M+ε is the hypersurface in the interior of M . M−ε is 

thus in the exterior.

Lemma 4.6. (M±ε as Surgical Barriers) Let M be as above. Fix ε, with 0 < ε < μ(M). 
Then, there exists a H(ε) < ∞ such that any weak (α, δ, H) surgical flow with Hth > H(ε)
avoids M±ε. In particular, the distance between the barriers and surgery flow is non-
decreasing.

Proof. It is well known that the distance between two non-intersecting Brakke flows is 
non-decreasing, (avoidance principle [26]). Provided the distance is not decreased across 
surgery, the claim follows.

We hence check the behaviour at time of surgery. Without loss of generality, we 
consider only one of the barriers at inward and outward necks. The proof for the other 
barrier will follow identically.

Let M+ε be the evolution of the hypersurface in the interior of M . We follow the 
argument as outlined in [20].
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Claim 4.1. Let t be a surgery time at an inward neck for the surgical flow MH. For every 
r > 0, there is a Hmin(r) < ∞ such that if Hth > Hmin and B(p, r) ⊂ int(MH,t−), then 
B(p, r) ⊂ int(MH,t+).

Proof. Fix r > 0. There are two regions one needs to check:

(1) The collection of necks. For each neck we consider its interior K (see Definition 3.1). 
Following the argument of [20, Theorem 1.25], for sufficiently large Hth, a ball of 
radius r cannot be contained in K, as it will be a long and thin neck.

(2) The dropped components. If the ball were contained in the interior of a discarded 
component, then the discarded component would have a point with |H| ≤ nr−1. 
Discarded components have |H| ≥ Hth, thus picking Hth > nr−1 is sufficient to 
prove the claim. QED

Claim 4.2. Let t be a surgery time at an outward neck for the surgical flow MH. For 
every r > 0, there is a Hmin(r) < ∞ such that if Hth > Hmin and B(p, r) ⊂ int(MH,t−), 
then B(p, r) ⊂ int(MH,t+).

Proof. Recall, at outward necks, the ‘interior’ of the neck is exterior to the flow. The 
caps are glued inside the cylinder. Thus, if B(p, r) ⊂ int(MH,t−), then we have B(p, r) ⊂
int(MH,t+) for all values of Hth. QED

For the other barrier, we consider B(p, r) ⊂ ext(MH,t−). The proofs are identical, but 
for the oppositely oriented necks.

To illustrate how the above claims prove the distance is non-decreasing, consider the 
following. Fix ε > 0 and choose the surgery parameter H such that Hth > Hmin(ε). 
Let t be the first time of surgery. We now consider the balls B(x, d(x, MH,t−)), where 
d(·, MH,t−) is the distance of a point to the hypersurface MH,t−, for each point x in the 
t timeslice of M±ε. Clearly any such ball will lie entirely on one side of MH,t− . Since 
flows with surgery are simply smooth flows up to time t, the avoidance principle shows 
that the radius, r = r(x), of each ball must have r ≥ ε. We deduce from the above 
claims that each of the discussed balls in the interior (resp. exterior) of MH,t− will be 
interior (resp. exterior) to MH,t+ after surgery, as Hth > Hmin. Thus, the distance of 
MH,t+ to either barrier at time t cannot be less than that of MH,t− . Since a surgical flow 
is a Brakke flow between surgery times, the avoidance principle allows for the argument 
to be repeated at all later surgery times. We conclude the distance between the barriers 
and the surgical flow is non-decreasing along the entire flow. QED

Remark 4.7. Interior and exterior are well defined because we are considering smooth 
hypersurfaces at times of surgery. Note, the property of ‘separating’ the inner and outer 
barriers is preserved through surgery, in the sense that at any time, any path connecting 
the inner and outer barriers must pass through the flow with surgery. In addition, such a 
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separation property is valid for all times after the last surgery by our choice to continue 
the surgery flow as the unit-regular cyclic (mod 2) Brakke flow whose support is the 
outer flow.

Corollary 4.8 (Hausdorff convergence). Taking the limit as Hth → ∞, the weak flows 
with surgery from M converge to the level set flow from M in the Hausdorff sense.

Proof. Recall, we use the convention that M+ε is interior to M . Let U be the compact 
set bounded by M , and U ′ = U c. Similarly, denote U±ε as the compact sets with ∂U±ε =
M±ε, and U ′

±ε = U c
±ε. It is clear that for all ε1 > ε2 > 0 we have

U−ε1 ⊃ U−ε2 ⊃ U ⊃ U+ε2 ⊃ U+ε1

U ′
+ε1 ⊃ U ′

+ε2 ⊃ U ′ ⊃ U ′
−ε2 ⊃ U ′

−ε2

Using the notation of [22], we denote the space-time track of the level set flow from U, U ′

as U , U ′. We have

U−ε1 ⊃ U−ε2 ⊃ U ⊃ U+ε2 ⊃ U+ε1

U ′
+ε1 ⊃ U ′

+ε2 ⊃ U ′ ⊃ U ′
−ε2 ⊃ U ′

−ε

By Lemma 4.2, we can take ε > 0 small enough such that M±ε has only spherical and 
neck-pinch singularities. Thus, the level set flow from M±ε does not fatten, and hence 
∂U+ε = ∂U ′

+ε = supp(M+ε).
We define the closed sets Kε := U ′

+ε∩U−ε and K(t) := {x ∈ Rn+1 | (x, t) ∈ K}. Note, 
the space-time boundary of Kε is ∂Kε = supp(M+ε) � supp(M−ε). Recall, these flows 
are disjoint by the avoidance principle.

By Lemma 4.6, for every ε > 0, we can find a H(ε) < ∞ such that any weak surgery 
flow MH with Hth > H avoids M±ε. Indeed, we see that MH ⊂ Kε and at every time 
t ≥ 0 where both M±ε are non-empty, MH ‘separates’, in the sense that any (space-
like) curve joining M+ε(t) to M−ε(t) must pass through MH,t. The corollary will follow 
immediately from the following claim.

Claim 4.3. Kε converges to supp(M) = {(x, t) ∈ Rn+1 × R s.t. x ∈ Ft(M)} in the 
Hausdorff sense as ε → 0.

Proof. By construction, supp(M) ⊂ Kε for all ε > 0, i.e. for all ξ > 0, supp(M) is 
always in the ξ neighbourhood of Kε.

Observe, for ε1 > ε2 > 0, we have Kε2 ⊂ Kε1 . Thus, it is sufficient to show supp(M) ⊇
∩ε→0Kε. (Clearly the reverse inclusion is true.) We do this by showing K := ∩ε→0Kε

defines a weak set flow from M .
Observe, at t = 0, we have ∩ε→0Kε(0) = M , as Kε(0) = {x ∈ Rn+1 | d(x, M) ≤ ε}

and M is closed.
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Given any smooth compact hypersurface N that is disjoint from M , we can find an 
ε > 0 such that Kε(0) ∩N = ∅, simply by taking ε ≤ d(M, N). It is immediate from the 
definition of Kε that it will be disjoint from the space-time track of the mean curvature 
flow from N . Indeed, K must avoid every smooth mean curvature flow that is initially 
disjoint with M . Thus, K defines a weak set flow from M . Since supp(M) is the space-
time track of the level set flow, it must contain K. This follows from the definition of the 
level set flow as the maximal weak set flow, see [26]. QED

Indeed, we have shown that the ‘gap’ between M±ε, Kε, Hausdorff converges to 
supp(M) as ε → 0. Since M±ε, the space-time boundary components of Kε, converge 
in the Brakke sense to M, and any surgery flow with Hth > H(ε) will separate M±ε, 
we deduce limHth→∞ MH = supp(M). QED

Having shown Hausdorff convergence, our goal now is to establish graphical control 
of the weak surgery flows in the boundary neighbourhood of the (α, β) neighbourhood. 
This is achieved by establishing Brakke convergence in this region. We will actually 
show Brakke convergence on the full regular set. Consider for a moment a sequence 
of Brakke flows that converge in a Hausdorff sense to another Brakke flow. Improving 
the convergence to Brakke convergence is straightforward provided one can find a way 
to control multiplicity. See the proof of Proposition 4.17, Claim 4.7 onwards. Recalling 
the definition of an (α, δ) Brakke-flow, Definition 3.11, inside any open space-time set 
that does not contain a surgery, an (α, δ)-Brakke flow is a unit-regular, cyclic (mod 
2) Brakke flow. Thus, Brakke convergence will follow from understanding where, in a 
limiting sense, surgeries occur in our weak surgery flows. Indeed, we will show that the 
surgeries accumulate in the singular set of M. Using what has been shown so far we can 
develop some intuition as why this is expected behaviour.

Let Mn ⊂ Rn+1 and M be as stated at the start of the current section. For the 
sake of simplicity, suppose further M encounters an isolated, non-degenerate neck-pinch 
singularity at the first singular time. Let MHi

be a sequence of weak flows with surgery 
starting from M , with Hi

th → ∞. At the first time of surgery in the flow MHi
, we can 

identify a δ-neck with centre Pi and mean curvature HMHi
(Pi) = Hi

neck that is about 
to under-go surgery. The sequence {Pi}∞i=1 can be treated as a sequence of points in 
M since, by definition, the weak flows with surgery must agree with M up to their 
respective first surgery time. Since Hi

neck → ∞, it is clear that the points Pi must 
accumulate in the singular set at the first singular time. Whilst this argument works 
at the first time of surgery, it unfortunately cannot be applied at later surgery times, 
however, we can use the barriers begin to understand what is happening. In the following 
we develop a general intuition, though it may be informative for the reader to keep 
in mind the specific example of the classic 2-convex dumbbell as the initial condition 
M and M the outer flow from M . First, we note ε > 0 can be chosen small enough 
such that the barrier flows M±ε also satisfy the canonical neighbourhood condition 
in our (α, β) neighbourhood. We may assume the barriers are moving monotonically 
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towards their (global) interior inside Ω(α,β); in connected components of Ω(α,β) where 
flows are moving monotonically towards their exterior, simply exchange the roles of 
the inner and outer barriers. Secondly, we note that any weak flow with surgery (with 
sufficiently large Hth) separates M±ε. Indeed, we have the set of inclusions outlined in 
Corollary 4.8. Thus, by our avoidance principle, Lemma 4.6, surgeries can only occur in 
regions where the inner barrier is not present. Conversely, we see the outer barrier M−ε

can only pinch off into a cylindrical singularity or vanish in a spherical singularity in 
regions where the weak surgery flow is not present. From our canonical neighbourhood 
assumption, one expects the inner barrier to vacate the (ambient) interior of a δ-neck 
in the weak surgery flow by translating like a bowl or passing through a singularity. 
Similarly, we expect the weak surgery flow would vacate the interior of a neck-like region 
in the outer barrier developing into a singularity by surgery.3 Indeed, this seems to 
indicate a correspondence of surgeries and singularities and thus one expects, along the 
sequence of weak surgery flows from M , for surgeries to accumulate in the singular set 
of M.

Unfortunately, it is not clear that this picture is entirely correct. One possible issue is 
that there is no way to rule out a surgery neck developing in a weak surgery flow in such 
a way that is completely unrelated to the geometry of the barriers flows. This is possible 
as we have only shown the weak surgery flows (with large Hth) remain Hausdorff-close to 
the original weak flow after the first surgery time. For the above heuristic to have rigorous 
meaning we need to be able to relate the geometry of the weak surgery flows back to 
that of the original flow. Indeed, this would rule out ‘gratuitous’ surgery necks forming 
in regions where we would expect low curvature. One might hope to use pseudolocality 
to control the flow with surgery. Unfortunately, direct application of pseudolocality is 
obstructed by the surgeries, as the caps cannot be written as graphs over the necks they 
replace. We will show in Proposition 4.12 that the pseudolocality result as stated in [28]
can be applied at a space-time point X0 in a weak flow with surgery, with the caveat 
that surgeries must be performed at a scale much larger than the curvature at the point 
X0. In order to repeatedly apply pseudolocality one must introduce further ingredients 
(see Remark 4.16).

The purpose of the following lemma, Lemma 4.10, is to define a scaling factor λ :=
|A|(x0)

C̃2
, such that when the flow is dilated by λ, the hypotheses of the pseudolocality, 

Theorem A.2, are satisfied, see Remark 4.11.

Remark 4.9. In Remark 3.14, we discussed how the canonical neighbourhoods had to 
be chosen careful such that we always satisfy the hypotheses of the Haslhofer–Kleiner 
curvature estimates, Theorem 2.22, in the interior for a particular choice of Λ. We now 
pause to start fixing the value of our constants so we can use them in the following 
arguments. In particular, we fix a value for the required Λ.

3 that is, of course, presuming that surgery is permitted according to the Definition 3.11.
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We fix η > 0 that satisfies the required gradient bound of the Ecker–Huisken graphical 
curvature estimate, Theorem A.1. Taking this value of η into Pseudolocality, Theo-
rem A.2, fixes an initial Lipschitz bound ε = ε(n, η) > 0 and radius ϑ = ϑ(n, η) > 0. We 
hence take ϑ as the radius of the n-ball in the Ecker–Huisken estimate, Theorem A.1, 
giving the constant C̃3 = C̃3(n, θ, ϑ). We will only ever apply this graphical curvature 
bound to a point over the origin of the ball, so the value of θ does not matter, so for the 
sake of simplicity take θ = 1/2. We can now fix Λ = 10n max{C̃3, 1} for application of 
the Haslhofer–Kleiner curvature estimate. As was discussed in Remark 3.14, the value 
of Λ needs to be fixed so it is certain we can apply the estimate at interior points of 
Ω(α,β). The reasoning for this choice of value for Λ will become clear in the following 
theorems. Of course, fixing the value of Λ fixes the value of C̃0 = C̃0(α, Λ) < ∞, the con-
stant from the Haslhofer–Kleiner curvature estimate. Finally, taking ε given to us from 
pseudolocality and this value of C̃0, we fix the value of C̃2 = ε/C̃0, as per Lemma 4.10.

In the following, constants will be denoted C̃k for some integer k and cylinders4 will 
be denoted Cr for some radius r > 0. Note also balls in the (n + 1)-dimensional ambient 
space are denoted B, whilst balls of dimension n in an affine subspace (i.e. a tangent 
space) will be denoted Bn.

Lemma 4.10. Let MH be a weak flow with surgery and suppose X0 = (x0, t0) ∈ MH ∩
Ω(α,β). Suppose further t0 ≤ tF , where tF is the last surgery time.

For every ε > 0, let C̃2(α, Λ, ε) = ε
C̃0(α,Λ) , where C̃0 is the constant from the 

Haslhofer–Kleiner curvature estimate. Then the hypersurface λ(Mt0 − x0), with λ =
|H|(x0)

C̃2
, has

sup
λMt0∩B(0,1)

|A| ≤ ε (1)

sup
λMt0∩B(0,1)

√
1 + |Du|2 < 1 + ε (2)

Where u(x) is a function on the tangent space at 0 such that λ(Mt0 − x0) ∩ C1(0) =
graph(u) and Mt0 is the t = t0 time-slice of MH. In particular, we note that the above 
show that the Lipschitz constant of u is bounded by ε.

Proof. Since t0 ≤ tF , the surgery flow is certainly smooth, and thus we can apply the 
global curvature estimate, Theorem 2.22, with our choice of Λ ≥ 1. The claim follows 
immediately. QED

Remark 4.11. The existence of such a C̃2 is noteworthy, as it is uniform across any (α, δ)-
flow that satisfies the assumptions of Theorem 2.22. Indeed, this shows that the ϑ > 0
given to us in the following pseudolocality theorem (Theorem 4.12) is uniform, when 

4 The cylinder has been defined in the appendix.
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working at the scale of mean curvature, across all weak surgery flows MH that satisfy 
the hypotheses of Theorem 4.12. This is required so limits may be taken.

As mentioned previously, the surgeries obstruct the use of pseudolocality as stated in 
[28]. Following their argument, the result is only valid until the next surgery is performed. 
In addition to their proof, we need to show that if any surgeries are performed in the 
forward time interval, then they are not performed in or near a large neighbourhood of 
the cylinder where we wish to apply pseudolocality. Indeed, this is true provided surgeries 
are done at a sufficiently large scale compared to the mean curvature of the point we 
wish to apply pseudolocality. The central idea is a combination of the Ecker–Huisken 
graphical curvature estimates and the Haslhofer—-Kleiner curvature estimate to bound 
the mean curvature in the cylinder below the surgery scale.

Proposition 4.12. Let X0 ∈ MH ∩ Ω(α,β), |A|(X0) < ∞. Pseudolocality can be ap-
plied to the flow MH around X0, provided the surgery is done with parameter Hneck >
C̃0C̃3
C̃2

n2|H|(X0). That is,

Dλ(MH −X0) ∩ Cϑ(0), t ∈ [0, ϑ2) ∩ [0, tF ] (3)

is a smooth mean curvature flow, and can be written as a graph over Bn
ϑ with Lipschitz 

constant less than η and height bounded by ηϑ. λ = λ(α, Λ, ε, X0) is as in the above 
claim. tF denotes the final time of surgery in the dilated flow. Moreover, since MH is 
continued as a Brakke flow after the final time of surgery, we also deduce

Dλ(MH −X0) ∩ Cϑ(0), t ∈ [0, ϑ2) ∩ [0, tExt] (4)

is a unit-regular, cyclic (mod 2), integral Brakke flow, and can be written as a graph over 
Bn

ϑ with Lipschitz constant less than η and height bounded by ηϑ.

Remark 4.13. C̃0, C̃3 are expected to be large, C̃2 is expected to be small. Thus, C̃0C̃3
C̃2

is 
very large. This may give the impression that the theorem is weak. Its strength will come 
once applied to points with bounded curvature in a sequence of flows with degenerating 
surgery parameters.

Proof. Suppose X0 ∈ MH ∩ Ω(α,β), |A|(X0) < ∞. We fix η > 0, and let ϑ(η), ε(η) be 
those given by the pseudolocality Theorem A.2. Let λ be as in Lemma 4.10 with ε = ε(η).

If the surgery flow is a smooth mean curvature flow in the forward time interval given 
by Theorem A.2, then there is nothing to check. Thus, let M̂H = Dλ(MH −X0), and 
suppose there are surgeries occurring in the time interval [0, ϑ2). Note, there are only 
finitely many times to check in this interval, so we may enumerate them chronologically.

Let t1 be the time of the first surgery in M̂H after time t = 0. It is sufficient to show 
that all surgeries are performed far from the set C1(0) at time t1, as this demonstrates 
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the flow is simply a smooth mean curvature flow in C1(0) × [0, t2) and thus the flow 
remains a graph in the cylinder Cϑ(0) × [0, t2), where t2 is the next surgery time.

Remark 4.14. These times correspond to surgeries in the dilated flow, not the original 
time scale.

Since the flow is a mean curvature flow on [0, t1], we know from the classical pseu-
dolocality result that M̂H ∩ Cϑ(0) can be written as the graph of ut : Bn

ϑ(0) → R, for 
t ∈ [0, ϑ2) ∩ [0, t1].

Applying the Ecker–Huisken interior estimate for graphs, Theorem A.1, to the function 
ut we establish the following bounds on curvature

sup
Bn

θϑ(0)×[0,t1]
|A| ≤ C̃3(n, θ, ϑ) sup

Bn
ϑ (0)×{0}

|A| = C̃3ε (5)

for some constant C̃3 depending only on n, θ, ϑ.
Let X = (0, ut1(0), t1) = (x, t1), i.e. the point in the flow above the origin at time 

t1. Equation (5) shows |A|(X) ≤ C̃3ε. Applying the Haslhofer–Kleiner curvature esti-
mate, Theorem 2.22, at the point X, we deduce that in the backward parabolic cylinder 
P (X, Λr) the curvature is bounded by C̃0r

−1, where r−1 = H(X) ≤ C̃3εn (and thus, 
r ≥ (C̃3εn)−1). Note we have used the standard inequality |H| ≤ n|A|.

As a simple consequence of the estimate in P (X, Λr), we have

sup
BΛr(x)∩M̂t1

|A| ≤ C̃0C̃3εn,

where M̂t1 denotes the t = t1 time slice of M̂H. Moreover, using |H| ≤ n|A| once again, 
we see

sup
BΛr(x)∩M̂t1

|H| ≤ C̃0C̃3εn
2.

We highlight that, since Λ ≥ 10nC̃3, the curvature bound holds in B(x, 10ε−1), moreover 
B(x, 10ε−1) ⊃ C1(0). That is to say, the curvature bound holds for the weak flow with 
surgery contained in the cylinder C1(0) at time t1.

By definition, surgery in MH was done at scale Hneck. Scaling our parame-
ters accordingly, we deduce surgery in M̂H is done at scale Ĥneck = λ−1Hneck =
(C̃2/|H|(x0))Hneck > C̃0C̃3n

2 > C̃0C̃3εn
2. Here, we have used our assumption that 

Hneck > C̃0C̃3
C̃2

n2|H|(X0) and that ε < 1. Observe, from the bound on mean curvature 

in BΛr(x), the mean curvature at every point Y ∈ M̂H ∩ (B10ε−1(x) × {t1}) is below 
the threshold for surgery to be performed. In particular, any changes made at time t1
do not affect the portion of the hypersurface M̂t1 contained in C1(0). Hence, the flow 
M̂H ∩ (C1(0) × [0, t2]) is a smooth mean curvature flow, and the flow is graphical over 
Bn

ϑ(0) in Cϑ(0) × [0, t2].



J.M. Daniels-Holgate / Advances in Mathematics 410 (2022) 108715 29
This argument is then repeated at all future surgery times in [0, ϑ2) ∩ [0, tF ]. The 
second claim follows immediately from the Brakke form of Theorem A.2, as MH is 
continued as a unit-regular integral Brakke flow after the final surgery time tF . QED

We now have the tools necessary to show surgeries accumulate in the singular set.

Proposition 4.15. Let Mn ⊂ Rn+1 and M be as above. Then, for every open neighbour-
hood N of the singular set, there is a Hmin(N) < ∞ such that if H has Hth > Hmin, 
then all surgeries in MH occur inside this neighbourhood.

Proof. The above statement is equivalent to the statement that, across a sequence of 
surgery flows with Hi

th → ∞, any sequence of centres of surgery necks, Xi ∈ MHi
, 

accumulates in the singular set S of M.
Suppose for contradiction that this is not the case. Let MHi

be a sequence of (α, δ, Hi)-
flows evolving from M with Hi

th → ∞. By the assumption we wish to contradict, we can 
find a sequence of points Xi = (pi, ti) ∈ MHi

in δ-necks where surgery is performed, with 
H(Xi) = Hi

neck, that accumulate to some point X∞ = (x∞, t∞) ∈ Sc. It is clear that 
the sequence must accumulate to some point in supp(M) from Hausdorff convergence. 
Note that t∞ �= tExt, as the regular set is empty at time of extinction.

Claim 4.4. X∞ /∈ ∂Ω(α,β)

Proof. Suppose X∞ were in the boundary of the chosen (α, β)-neighbourhood. Item (iii) 
of Definition 3.11 required a backward parabolic cylinder centred at each point in the 
boundary in which the surgery flow is a graph over the original flow. This immediately 
rules out surgeries being performed in this neighbourhood, and thus preventing accu-
mulation forward in time (i.e. ti < t∞, for infinitely many i) or ‘spatially’ (ti = t∞, for 
infinitely many i) within a given time-slice to a point the boundary. Thus, it remains to 
check that surgeries cannot accumulate backward in time (ti > t∞, for infinitely many 
i) to a point in the boundary.

We first prove a smooth convergence result. Again we recall Item (iii) of Defini-
tion 3.11. There is a backwards parabolic cylinder P = P (X∞, 2ξHbdd) centred at X∞ in 
which we can write MHi

as a graph over M. This is true for all i. As mentioned above, 
being a small graph over the original flow rules out surgeries occurring in this parabolic 
cylinder. Clearly MHi

∩ P is a sequence of smooth unit-regular Brakke flows, and thus 
converge to some limiting Brakke flow N in P . Hausdorff convergence shows that the 
support of N is supp(M ∩ P ). Finally, we note that being a small graph controls the 
multiplicity of the flows with surgery and thus the sequence converges locally smoothly 
in P to M ∩ P by White regularity.

The smooth convergence is now used to show pseudolocality can be applied in such a 
way that is comparable across all the flows with surgery for sufficiently large i. Dilating 
by λ = |H|(X∞)/C̃2 around the point X∞, and following the proof of Lemma 4.10, 
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we deduce M̃0, the t = 0 time slice of the dilated flow M̃ = Dλ(M − X∞), can be 
written as the graph of some smooth function u over B = Bn

1 (0), the ball of radius 
1 in the tangent space at 0, with |A| < ε. Similarly, we set M̃i = Dλi

(MHi
− X∞), 

λi = |Hi|(Xi)/C̃2. Since the (un-dilated) flows converged smoothly around X∞, we 
deduce λi → λ. Moreover, the dilated flows M̃i converge smoothly to M̃ in P , thus 
there is an I < ∞ such that for i ≥ I, the time t = 0 time-slice, M̃i,0, can be written 
as a graph of the function ui : B → R, where B is the same ball in the tangent space 
to M̃0 at 0, and ui → u smoothly in B. Thus, by the Brakke form of the pseudolocality 
result for flows with surgery, Proposition 4.12, no surgeries of the flow MHi

occur in 
M̃Hi

∩ Cϑi
(0) × ([0, ϑ2

i ) ∩ [0, tExt)). Recall, ϑi essentially depended on the curvature at 
ui(0) and the dimension. Since the hypersurfaces at time t = 0 converge smoothly in 
some neighbourhood of the origin, there is a uniform ϑ > 0 such that for every flow, 
M̃i∩Cϑ(0)×([0, ϑ2) ∩[0, tExt)) is a unit-regular, cyclic (mod 2) Brakke flow. In particular, 
no surgeries occur. This contradicts our assumption that surgeries were accumulating 
from future times. QED

It remains to check regular points in the interior of Ω(α,β). In order to employ the 
above argument, we require knowledge that the weak surgery flows are graphical over M
in some backwards parabolic cylinder. A priori, we have no control of the flow at points 
in the interior, other than information given by the maximum principle and Hausdorff 
convergence. To find such a neighbourhood, we will start at the boundary of Ω(α,β)
and then repeatedly apply the pseudolocality theorem followed by the Haslhofer–Kleiner 
curvature estimate to work our way into the interior.

Claim 4.5. There is an open space-time neighbourhood of X∞ such that the flows MHi

converge smoothly to M.

Remark 4.16. If one were to just iterate pseudolocality, the forward time interval could 
shrink in a geometric progression. The essence of the argument presented below is, 
given a point of low curvature, we find our forward neighbourhood from pseudolocality. 
We deduce convergence of the sequence of surgery flows to M in this forward neigh-
bourhood. Applying the Haslhofer–Kleiner curvature estimate we show, for large i, no 
surgeries will be performed in a larger backward neighbourhood (centred at some future 
time, compared to the point we applied pseudolocality), and we can deduce conver-
gence on this larger set. One is then in a position to apply pseudolocality at the same 
scale.

Proof. Consider a path γ in reg(M) ∩ Ω(α,β) connecting X∞ to a point X0 ∈ ∂Ω(α,β). 
Say γ : [0, T ] → reg(M), γ(0) = X0, γ(T ) = X∞. Since the flow is locally 2-convex, we 
can pick the point X0 and translate in time such that X0 = (x0, 0), γ(τ) ∈ Mτ . We will 
write γ(τ) = (xτ , τ). The argument proceeds as follows:
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• Since the path γ is compact, there exists some A < ∞ such that

max
τ∈[0,T ]

|HM|(γ(τ)) ≤ A.

• Fix a small constant ζ > 0. Lemma 4.10 implies M̃τ = Dλ(Mτ − γ(τ)) can be 
written in C1(0) as a graph over the ball Bn

1 (0) in the tangent space to M̃τ at 0, 
where λ = A+ζ

C̃2
. In particular, the hypotheses of Theorem A.2 are satisfied and hence 

we can apply the Brakke formulation of pseudolocality to M̃τ at 0.
• We remark that the small constant ζ > 0 is present so we can rescale each MHi

by 
the same factor. The plan is to use the same argument as in Claim 4.4, with the only 
complication coming from wanting to have the forward neighbourhood be comparable 
at every point along γ. Consider a sequence of points Yi ∈ MHi

accumulating to 
Y∞ ∈ γ, such that |HMHi

(Yi)| → |HM(Y∞)|. Then, there exists an I = I(ζ), such 
that i ≥ I implies |HMHi

(Yi)| < A + ζ. The significance being one can choose a 
cylinder centred at Y∞ in which the conclusion of pseudolocality (Theorem A.2 and 
Proposition 4.12) is valid for M and all MHi

with i ≥ I(ζ) after dilating by the 
common constant λ = A+ζ

C̃2
.

• Returning to our main argument, we transform back to the un-dilated flow and 
deduce there is a uniform ϑ such that at each point γ(τ) ∈ reg(M), the flow M ∩C(τ)
is graphical over the ball Bn

λ−1ϑ(xτ ) in the tangent space to Mτ at γ(τ). Where 
C(τ) = Cλ−1ϑ(xτ ) × ([τ, τ + (λ−1ϑ)2] ∩ [0, TExt)).

• The path γ is continuous and compact. Hence, we can find finitely many times 
0 = τ0 < τ1 < · · · < τN < T such that γ([0, T ]) ⊂ ∪N

j=0C(τj). Note that τN <

T . This will be important for applying the curvature estimates to the flows with 
surgery MHi

. Note further there must be ‘overlap’ of the cylinders, in the sense 
γ(τi) ∈ C(τi−1), i ≥ 1.

• By our assumption, γ(0) ∈ ∂Ω(α,β). Examining the proof of Claim 4.4, we can im-
mediately deduce Brakke convergence of MHi

→ M in C(0). Indeed, for sufficiently 
large i, MHi

∩C(0) is a Brakke flow (no surgeries occur in C(0)). Multiplicity is con-
trolled by our assumption the flows with surgery are graphical over the boundary.

• We can improve the regularity of the convergence. Recall, γ(τ1) ∈ C(0), thus MHi
→

M in a Brakke sense in some small backwards parabolic cylinder P centred at γ(τ1). 
We may suitably shrink P such that P ∩M ⊂ reg(M). Since M is smooth in P , we 
deduce smooth convergence of MHi

→ M in P by White regularity.
• We now prove an inductive step, allowing us to ‘move along’ the path γ. Smooth con-

vergence in P centred at γ(τ1) implies there is a sequence of points Yi = (yi, τ1) ∈
MHi

, Yi → γ(τ1), HMHi
(Yi) → HM(γ(τ1)). We can hence apply the Haslhofer–

Kleiner curvature estimate to MHi
at Yi as in Proposition 4.12 to deduce no surgeries 

occur in the backwards parabolic cylinder P (Yi, Λ(HMHi
(Yi))−1). Applying the cur-

vature estimate is permissible when i is taken sufficiently large: the surgery necks 
accumulate at some time T with τ1 < T , thus for large i we must have τ1 < tFi

, 
where tFi

is the final time of surgery in MHi
.
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• In particular, we deduce smooth convergence in P (γ(τ1, (HM(γ(τ1)))−1) since Λ > 1. 
One is now in the position to apply the argument from Claim 4.4.

• This argument can be repeated at each τj, since τj ∈ C(τj−1). In particular, we note 
that γ(T ) ∈ C(τN ). Thus, again, taking i sufficiently large, we deduce no surgeries 
of the flow MHi

are performed near γ(T ), contradicting the claim that surgeries 
accumulated at γ(T ) = X∞. QED

This concludes the proof, as we have shown surgeries cannot accumulate to regular 
points. QED

We now state and prove our crucial convergence result. Note, in the above proof we 
have already established convergence inside Ω(α,β).

Proposition 4.17 (Convergence away from singular set). Let MHi
be a sequence of 

(α, δ, Hi) surgical flows derived from M , and suppose Hi is a sequence of surgery param-
eters with Hi

th → ∞. Then, MHi
converges to M as Brakke flows on the complement 

of the singular set of M.

Proof. Recall that the singular set S is closed in space-time, thus its complement, Sc, is 
open. Recall further, the definition of convergence of Brakke flows [4], [26], is with respect 
to compactly supported functions. If f ∈ C1

c (Sc), then by definition we have supp(f) �
Sc. In particular, it is sufficient to verify the proposition on any connected open set 
Ω � Sc that has non-trivial intersection with the initial timeslice. These properties are 
required to control the multiplicity of the Brakke flow as in Lemma 4.2.

Claim 4.6. For any open set Ω � Sc, there is an I < ∞ such that for i > I, no surgeries 
of the flow MHi

occur in Ω.

Proof. This follows from Proposition 4.15.
If Ω ∩Ω(α,β) = ∅, we immediately know surgeries are not present in a neighbourhood 

for all i > 0. It remains to check the case when Ω ∩Ω(α,β) �= ∅. Without loss of generality, 
we consider Ω ⊂ Ω(α,β). Since Ω � Sc, there is an open neighbourhood N of S, with 
Ω ∩N = ∅.

Thus, by Proposition 4.15 we deduce all surgeries occur in N for sufficiently large i, 
and hence none occur in Ω. QED

Applying Ilmanen’s compactness result for Brakke flows, [26], there is a limiting unit-
regular Brakke flow N such that,

lim
i→∞

MHi
�Ω = N .

Claim 4.7. supp(N ) = reg(M) ∩ Ω
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Proof. The claim follows immediately from Corollary 4.8. In particular, supp(N ) is con-
nected by the result of [9]. QED

Claim 4.8. N = M�Ω as unit-regular Brakke flows.

Proof. All that remains is to check N does not develop higher multiplicity. By the above, 
supp(N ) is connected and has non-trivial intersection with the initial time-slice, thus N
has unit density everywhere. QED

Thus, limi→∞ MHi
�Sc = M as Brakke flows. QED

As a corollary, one deduces the following results that control the behaviour of any 
potential singular points that form in weak surgery flows.

Corollary 4.18. Let MHi
be a sequence of (α, δ, Hi) surgical flows derived from the flow 

M, and suppose Hi is a sequence of surgery parameters with Hi
th → ∞. If Xi ∈ MHi

is 
a sequence of singular points (i.e. points with Gaussian density ΘMHi

(Xi) ≥ 1 +εWhite). 
Then Xi accumulate in S, the singular set of M.

Remark 4.19. Here εWhite is the (dimension dependent) quantity of White regularity 
[33].

Proof. Suppose for contradiction a sequence of points {Xi}∞i , satisfying the above hy-
pothesis, accumulates at X∞ ∈ reg(M). Then, by Proposition 4.17, the weak surgery 
flows converge to M in a neighbourhood of X∞. In particular, ΘM(X∞) = 1. This is in 
contradiction to the upper semi-continuity of the density; taking the limit of densities 
we should have ΘM(X∞) ≥ 1 + εWhite. QED

Corollary 4.20. The above corollary holds also for regular points Xi ∈ MHi
where

lim
i→∞

|A(Xi)| = ∞

Proof. Following the above proof, we note that smooth convergence implies convergence 
of the second fundamental form. X∞ is a smooth point, thus |A| < ∞, contradicting 
limi→∞ |A(Xi)| → ∞. QED

5. Existence and convergence for smooth mean curvature flow with surgery

Let Mn ⊂ Rn+1 be a closed, smoothly embedded submanifold. Since M is compact 
and smooth, we can find a γ > 0 such that |A| < γ. We suppose there is a unique unit-
regular Brakke flow M emerging from M that encounters only spherical and neck-pinch 
singularities. We fix
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• 0 < α < min{αcyl, αsphere, αoval, αbowl}.
• 0 < β < min{βsphere, βcylinder, βbowl, βoval}.

Let α = (α, β, γ). Additionally, we take δ > 0 small enough that all the arguments of 
Haslhofer–Kleiner [20] hold and to satisfy item (iii) of Definition 3.11 and Remark 3.14. 
For the sake of completeness, we also fix a suitable standard surgical cap, suitable cap 
separation parameter and the value of Λ as in Section 4.

Theorem 5.1 (Surgery at the first singular time). Let M be as above. Let Ω1 be the union 
of the connected components of Ω(α,β) containing the first singular time. Let T1 > 0 be 
the first singular time of the flow outside Ω1. Then for every ε > 0, the parameters 
Hmin(M) < ∞ and Θ(M) < ∞ can be chosen (depending only on the initial hypersur-
face) such that the (α, δ, H) weak surgery flow MH is a smooth mean curvature flow with 
surgery on [0, T1 − ε).

Compare the result of Mramor, [30], where similar ideas are discussed for surgery in 
mean convex ‘patches’ of non-compact flows.

Proof. Fix an ε > 0 and stipulate that surgeries may only be performed in Ω1. By 
Corollary 4.20, we know the singularities of surgery flows converge to the singular set of 
M as Hth → ∞. Thus, we can choose Hmin < ∞ sufficiently large that all singularities 
of a weak surgery flow with Hth > Hmin occur within ε in time of the singularities of 
M. Moreover, such singularities are contained in Ω(α,β) and are spherical or neck-pinch 
singularities.

We initially fix the surgery ratio Θ < ∞, this will be changed in due course.

Claim 5.1. For sufficiently large Hmin, any (α, δ, H)-flow with Hth > Hmin is a δ-graph 
over M in N1 along the boundary of Ω1.

Proof. This is a consequence of Proposition 4.17 and its corollaries. Recall, N1 is the 
open neighbourhood of the boundary of Ω1 in which the flow M is smooth, locally α-
noncollapsed and β-uniformly 2-convex, as defined in Definition 3.10. Since the boundary 
of N1 is bounded away from the singular set, it is immediate from Proposition 4.17 and 
White regularity that, for sufficiently large Hth, the claim holds. QED

Remark 5.2. It is important to compare this claim with the definition of surgery. We only 
permit the surgery procedure to be applied when the flow is graphically over M along 
the boundary. Thus, we see the obstruction to the flow continuing as a smooth surgery 
flow is not from our definitions, but from a point with H(X) = Hneck that does not 
separate regions of curvature Hth and Htrig or is not a δ-neck. This is same obstruction 
as is dealt with in the case for 2-convex flows in [20].
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Claim 5.2. Fix Hmin < ∞ to satisfy claim 5.1. Then if Hth > Hmin, we can directly apply 
the arguments of Haslhofer–Kleiner [20] to establish a Θ < ∞ such that H > Θ implies 
the weak (α, δ, H) surgery flow is a smooth mean curvature flow up to time t = T1 − ε.

Proof. Recall, the definition of an (α, δ)-Brakke flow only allowed surgery as long as the 
flow was smooth. Thus, since the singularities of the surgical flows can occur within ε
of any singular time, T1 − ε is the best one can do without more information on the 
singular set.

By the first claim, MH ∩ ∂Ω1 is 2-convex and α-noncollapsed for all H with Hth >

Hmin. After doing one surgical neck replacement, the maximum principle gives that the 
flow remains 2-convex and α-noncollapsed inside Ω1. The same argument holds across 
any number of neck replacements, so every surgical flow with Hth > Hmin is 2-convex 
and α-noncollapsed inside Ω1.

We now stipulate that the flow is stopped once |H| = Htrig is achieved inside Ω1. 
[20, Theorem 1.21] and [20, Theorem 1.22] can now be applied directly find the desired 
Θ < ∞ which establishes the existence of a weak flow with surgery that is smooth inside 
Ω1 up to time T1 − ε. We note that Corollary 4.20 prevents points of high curvature 
accumulating on the boundary of Ω1 along sequences of surgical flows. This is important 
for the proof of [20, Theorem 1.22]. QED

This completes the proof of the theorem. QED

Remark 5.3. We stop only if Htrig is achieved in Ω1.

Remark 5.4. One should note that Andrews’ maximum principle proof of α-noncollapsing 
for mean convex mean curvature flow, [1], makes use of a 2-point maximum principle for a 
function Z(x, y, t). The positivity of Z(x, y, t) is equivalent to being α-noncollapsed. This 
argument can be suitably localised to the above situation by observing that along the 
boundary of Ω1, the flows will be close to one of the canonical flows (sphere, cylinder, 
bowl, and oval). Indeed, we know for points in the boundary the ‘touching points’ of 
tangential spheres will be in our neighbourhood of the boundary, N1. Since the interior 
mean curvature is larger than the boundary mean curvature, and surgery flows are 
Hausdorff close to the original flow, we see touching points of tangential spheres to 
interior points will be in Ω1 ∪ N1. That is, one only needs to consider the function 
Z(x, y, t) for points ((x, t), (y, t)) ∈ Ω1 × {Ω1 ∪ N1}. This is similar to the argument 
presented in Theorem A.4.

Theorem 5.5 (Existence of a smooth flow with surgery). Let M be as above. Then, the 
parameters Hmin(M) < ∞ and Θ(M) < ∞ can be chosen (depending only on the ini-
tial hypersurface) such that every weak (α, δ, H)-flow, MH, with Hth > Hmin, H > Θ
satisfies:

• |H| ≤ Htrig < ∞ everywhere,
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• MH vanishes in finite time.

i.e. MH is a smooth mean curvature flow with surgery.

Remark 5.6. The weak surgery flows were unit-regular away from surgery, so sudden 
vanishing is not permitted. The second item is thus non-trivial.

Proof. Ω(α,β) has finitely many components, thus it is sufficient to argue inductively.
We show that given Theorem 5.1, we have the respective statement for Ω2, the union of 

connected components of Ω(α,β) containing time T1. Recall time T1 was the first singular 
time that occurs outside Ω1. We will establish that for every ε > 0 the parameters can 
be chosen such that there is a smooth flow with surgery up to time T2 − ε. Here, T2 the 
first singular time outside of Ω1 ∪ Ω2

Remark 5.7. The time interval over which Ω2 exists may overlap with that of Ω1. Surg-
eries in Ω2 can affect the surgeries that occur in Ω1, since mean curvature flow is 
parabolic. This is not an issue as the convergence results still hold. We may require 
a larger Hmin and/or Θ for the same conclusion to hold.

Pick Hmin, Θ < ∞ such that the conclusion of Theorem 5.1 holds, and consider the 
boundary of Ω2. Once again, the logic of Proposition 4.17 controls the behaviour in a 
neighbourhood of the parabolic boundary, N2. We may take Hmin large enough that 
the flow is β-uniformly 2-convex and α-noncollapsed in N2. Proceeding exactly as in 
Claim 5.2, we conclude the same result for Ω1 ∪ Ω2.

This argument can be repeated for each connected component of Ω(α,β). Since there 
are only finitely many components, Hmin and Θ stay bounded as they can only be 
changed a finite number of times.

Observe, the flow M will be entirely contained within the final connected component 
of Ω(α,β). Thus, there will be no singular times outside the final connected component, 
as there is no flow. The flow inside this final component will be a 2-convex surgery of 
[20]. QED

We restate the canonical neighbourhood theorem of Haslhofer–Kleiner.

Theorem 5.8 (Canonical neighbourhood theorem, Theorem 1.22 [20]). For all ε > 0, 
there exist δ = δ(α) > 0, Hcan(ε) = Hcan(α, ε) < ∞ and Θε(δ) = Θε(α, δ) < ∞ (δ ≤ δ̄) 
with the following significance. If δ ≤ δ and MH is an (α, δ, H)-flow with H ≥ Θε(δ), 
then any (p, t) ∈ MH with |H(p, t)| ≥ Hcan(ε) is ε-close to either (a) a β-uniformly 
2-convex ancient α-noncollapsed flow, or (b) the evolution of a standard cap preceded by 
the evolution of a round cylinder.

Proof. The proof is identical to that of Haslhofer–Kleiner [20], for we only do surgery in 
2-convex connected components. QED
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The canonical neighbourhood theorem gives the following topological result concern-
ing the dropped components.

Theorem 5.9 (Discarded components, [20, Corollary 1.25]). For all ε > 0 small enough, 
there are parameters Θε(δ) < ∞, Hcan(ε) such that any weak (α, δ, H) surgical flow with 
H > Θε(δ), and Hth > Hcan(ε), has all discarded components are diffeomorphic to Sn

or Sn−1 × S1.

Remark 5.10. The parameters are derived from the canonical neighbourhood theorem.

Proof. This follows from the canonical neighbourhood theorem [20, Theorem 1.22]. The 
argument is identical to that in [20], for components are only dropped if they are con-
tained in Ω(α,β). QED

We conclude with a result similar to that of Lauer and Head, [29,21]. Note we also 
establish the stronger result that the convergence away from the singular set is smooth.

Theorem 5.11. Taking the limit as Hth → ∞, the weak (α, δ, H) surgical flows converge 
in the Hausdorff sense to the level set flow. Furthermore, away from the singular set of 
M the convergence is smooth.

Proof. This is an immediate consequence of Proposition 4.17 and White regularity 
[33]. QED

6. Applications of the surgery

We now apply the above surgery formalism to prove a Schoenflies type theorem for 
hypersurfaces of entropy less than λ(S1×R2), without having to manually construct the 
isotopies. Such a proof was conjectured in [10, Conjecture 1.9]. The previous best bound 
on the entropy was λ(S2 ×R1) and was achieved independently by Bernstein–Wang [3]
and Chodosh–Choi–Mantoulidis–Schulze [9].

Recall the definition of entropy for a hypersurface from [15].

Definition 6.1. The Entropy of a hypersurface Σ is

λ(Σ) = sup
x0,t0

(
1

4πt0

)n
2
∫
Σ

exp
(
−|x− x0|2

4t0

)
dμ,

i.e. the supremum of the Gaussian densities over all scales and base-points. It can be 
considered a measure of the complexity of an embedding.

We first discuss the topological consequences of surgery. Recall, from Theorem 2.29
we know discarded components will be diffeomorphic to Sn or Sn−1 × S1. Moreover, we 
have the following
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Lemma 6.2. Let MH be a smooth mean curvature flow with surgery from the smooth 
initial condition M . Then,

(i) The flow MH is a smooth isotopy between times of surgery.
(ii) Let M̃ be a connected component of the timeslice Mt, for any t, 0 < t < TExt. The 

size of the fundamental group of M̃ satisfies |π1(M̃)| ≤ |π1(M)|.

Proof. (i) It is immediate from the definition that smooth mean curvature flow is an 
isotopy. The flow MH is a smooth flow with surgery, and thus a mean curvature flow 
between times of surgery. This proves the first statement.

(ii) From part (i), we know that any topological changes that occur must happen at 
surgeries. It is sufficient to show the claim at the first surgery time, as at future surgery 
times we can treat each connected component present before surgery as a separate flow.

Let t be the first time of surgery. We denote the pre-surgery hypersurface by M−
t and 

post neck-replacement, but pre-component dropping, by M#
t . Note that it is possible 

for M#
t to be disconnected. By item (i), we have π1(M−

t ) = π1(M). We need only to 
consider connected components of M#

t as clearly any component present at time between 
the first and second times of surgery must have evolved from some connected component 
of M#

t . Thus, it is sufficient to show |π1(M−
t )| ≥ |π1(M̃)|, where M̃ is a connected 

component of M#
t . This follows immediately by [25, Proposition 3.23], which shows M−

t

is diffeomorphic to the connected sum (reversing the neck-replacement) of the connected 
components of M#

t . For completeness we prove our claim directly, by showing every 
non-trivial element of π1(M̃) corresponds to a non-trivial element of π1(M−

t ).
Let Pi = (pi, t), i ∈ {1, 2, . . . , N}, N < ∞ be the centre of each δ-neck that is 

about to be replaced by caps at time t. We know all modifications are made in 
B = ∪N

i B(pi, 5ΓH−1
neck) (see Definition 2.19 with s = H−1

neck).
Let γ ∈ π1(M̃) be a non-trivial element. We can take this element to be represented 

by a curve γ̃ lying entirely in M̃\{M̃ ∩ B}. This follows as each connected component 
of M̃ ∩ B is diffeomorphic to our standard cap. Since the cap is simply connected, any 
portion of curve that enters a cap is homotopic to a curve on the boundary. Morally, we 
can consider this curve as detecting some topology unaffected by our surgery at time t.

Since γ̃ ∩ B = ∅, we can consider it as a curve in M−
t , since M̃\{M̃ ∩ B} ⊂ M−

t . 
Clearly this curve cannot represent the trivial homotopy class as the connected sum 
operation cannot ‘remove topology’. Consequently, |π1(M̃)| ≤ |π1(M)|). QED

Remark 6.3. It is of note that the surgery procedure detailed above can break handles 
in two ways. This is best illustrated by the following examples.

(1) Consider the 2-convex embedding of the torus known as the ‘wedding band’. Deform 
it in a 2-convex manner such that one region is a much tighter neck than other 
regions. This flow will develop an inward neck pinch under mean curvature flow. If 
surgery is performed once, we are left with a ‘sausage’, smoothly isotopic to a sphere.
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(2) Consider a sphere with small holes drilled in around the poles, that has had the ends 
of a cylinder attached smoothly to each hole. This is a smooth embedding of the 
torus. This cylinder is a long thin neck which, heuristically, one expects would form 
an outward neck pinch under mean curvature flow. If one were to replace this neck 
by surgery, the resulting hypersurface is a sphere with the poles (smoothly) pushed 
in. This hypersurface is smoothly isotopic to a sphere.

Theorem 6.4 (Low-entropy Schoenflies for R4). Let Σ3 ⊂ R4 be a hypersurface home-
omorphic to S3 with entropy λ(Σ) ≤ λ(S1 × R2). Then M is smoothly isotopic to the 
round S3.

Proof. Σ3 ⊂ R4 be a hypersurface homeomorphic to S3 with entropy λ(Σ) ≤ λ(S1×R2). 
By [10], there is a small (isotopic) perturbation of Σ, Σ̂, such that the unit-regular 
Brakke flow, M, emerging from Σ̂ is unique and encounters only spherical and neck-
pinch singularities. We find γ > 0 such that maxx∈Σ̂{|A(x)|} < γ and fix α, β and δ > 0
as discussed in section 5. By Theorem 5.5, the parameters Htrig and Θ can be chosen 
such that there is smooth (α, δ, H)-flow with surgery MH that approximates the flow M. 
In addition, we suppose Hth and Θ are large enough that the conclusion of Theorem 5.9
holds.

It remains to show that all the dropped components of MH are not tori and no 
handles are broken.

Claim 6.1. The topological constraint that Σ is homeomorphic to S3 rules out

(a) Dropped components being diffeomorphic to tori, S2 × S1.
(b) The breaking of a handle during surgery.

Proof. We prove (a), (b) follows identically. Suppose for contradiction that there is at 
least one dropped component that is a torus. Let t be the first time a torus is dropped 
in surgery. It is clear that some component of the pre-surgery hypersurface Mt− would 
have a non-trivial fundamental group (i.e. size greater than 1). By Lemma 6.2, the initial 
condition Σ̂ must also have had non-trivial fundamental group. This is a contradiction 
to Σ being homeomorphic to S3. QED

Thus, all dropped components are isotopic to spheres and no handles are broken.
We now use backward induction to deduce Σ̂ is smoothly isotopic to the round S3. 

There are finitely many surgeries, thus, there is a finite set of times t1 < . . . < tn when 
the flow is stopped.

Observe, at t−n , the final non-empty time slice of MH, we have a collection of 2-convex 
components diffeomorphic to spheres. Each connected component is smoothly isotopic to 
a sphere. (Such an isotopy can be found in [6].) Following the flow back to the (n − 1)th
surgery, item (i) of Lemma 6.2 shows each connected component of the t+n−1 time slice 
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is smoothly isotopic to spheres. Reversing the surgery, the t−n−1 time-slice is obtained by 
connecting the components present in t#n−1) with smooth necks. Explicitly, we have the 
connected components present in t+n−1 and a collection of dropped components.

Claim 6.1 shows that these dropped components are diffeomorphic to spheres. No 
handles will be introduced when we reverse the surgery. Thus, the reversing of the surgery 
is a connected sum of spheres. In particular, t−n−1 is smoothly isotopic to some sub-
collection of the connected components, and thus isotopic to a collection of round S3.

By reverse induction, this is true for the initial time-slice. Since there is only one 
connected component, the hypersurface Σ̂ is smoothly isotopic to the round S3. QED

Appendix A. Graphicality and pseudolocality

Theorem A.1 (Interior estimates for Graphs [17]). Let Mn ⊂ Rn+1 be a smooth hyper-
surface. Let R > 0 be such that Mt can be written as a graph over Bn

R, an n-ball of radius 
R in some hyperplane, for t ∈ [0, T ]. Suppose further that the gradient is bounded, i.e. 
we denote the graph function by u and for each t ∈ [0, T ] we have

√
1 + |Dut|2 ≤ 1 + η

Where η > 0 depends only on the dimension. Then, for any t ∈ [0, T ] and θ ∈ (0, 1), we 
have

sup
BθR(y0)×[0,T ]

|A|2 ≤ C(n, θ,R) sup
BR(y0)×{0}

|A|2

This is immediate from the Theorem 3.1 of [17] under the assumption of bounded 
initial curvature. See also [2], where the estimates are established for high co-dimension.

We also state the pseudolocality result of Ilmanen–Neves–Schulze, in the co-dimension 
1 case. We also don’t require bounded area ratios as we only care about the local case, 
hence can rely on the local Monotonicity formula. See also the pseudolocality result 
stated in [7].

Let x ∈ Rn+1, x = (x̂, ̃x). We define the cylinder Cr(x0) ⊂ Rn+1 by

Cr(x) = {x ∈ Rn+1s.t.|x̂− x̂0| < r, |x̃− x̃0| < r}

Theorem A.2 (Pseudolocality [28]). Let {Mt}t∈[0,T ) be a smooth mean curvature flow of 
embedded hypersurfaces in Rn+1. Then, for any η > 0 there exists ε, ϑ > 0 depending 
only on n, η such that if x0 ∈ M0 and M0 ∩ C1(x0) can be written as graph(u), where 
u : Bn(x0) → R with Lipschitz constant less than ε, then

Mt ∩ Cϑ(x0), t ∈ [0, ϑ2) ∩ [0, T )

is a graph over Bn
ϑ(x0) with Lipschitz constant less than η and height bounded by ηϑ.
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Remark A.3. As is remarked in [28, Remarks 1.6], the above statement holds with only 
the presumption that {Mt}t∈[0,T ) is a unit-regular integral Brakke flow. The proof re-
quires the use of Brakke’s local regularity theorem, [4] in place of White’s local regularity, 
[33].

Theorem A.4. Let M′ be a (α, δ)-Brakke flow. Suppose X = (x, tx) ∈ M ∩ Ω(α,δ) with 
tx ≤ tF , where tF is the final time surgeries are performed. Then, M ∩P (X, ξ|H(X)|−1)
is a smooth (α, δ)-flow in the sense of Haslhofer–Kleiner.

Proof. Note, we do not need to check Y ∈ P (X, ξ|H(X)|−1) ∩ Ω(α,β), by our strict 
definitions of how and when surgery is performed. Since no surgeries occur outside of 
Ω(α,δ) it is sufficient to check the flow is β-uniformly 2-convex and α-noncollapsed.

Suppose X ∈ Ω(α,β) and Y = (y, ty) ∈ P (X, ξ|H(X)|−1) ∩ Ωc
(α,β) �= ∅. From the 

definition of a backwards parabolic cylinder, we have that y ∈ B(x, ξ|H(X)|−1). Let 
L be the line segment joining x to y in the timeslice Rn+1 × {ty}. This line segment 
must pass through ∂Ω(α,δ). Let Z = (z, ty) denote the point on L intersecting ∂Ω(α,δ). 
Clearly we have |z − y| < |x − y| ≤ ξ|H(X)|−1. By the maximum principle, we have 
|H(Z)| ≤ |H(X)|, and so Y ∈ P (Z, ξ|H(Z)|−1)). By the assumption tx ≤ tf , we know 
that at t = ty, the flow M′ remains δ-graphical over M in the neighbourhood of the 
boundary N . By the definition of N , Definition 3.10, we have P (Z, ξ|H(Z)|−1) ⊂ N . In 
particular, by our choice of δ, at the point Y ∈ M′, the flow is β-uniformly 2-convex 
and α-noncollapsed. QED
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