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A B S T R A C T   

DC microgrid is the most susceptible to cyber-attacks as the communication channel is involved for the imple
mentation of the secondary controller. Accordingly, the false data are injected into the transmitted data (i.e., DC 
bus voltage) and it may lead to deteriorating the system performance. To address these issues, the gated recurrent 
unit (GRU) based mechanism is presented to eliminate the false data injection (FDI) attack for the resilient 
operation of the DC microgrid. The presented GRU-based framework is divided into two parts: 1) estimation 
strategy: an offline-trained GRU based network is employed herein for online evaluation of the actual DC bus 
voltage, and 2) mitigation strategy: GRU based trained network is exploited herein with an amalgamation of the 
proportional-integral (PI) controller to counteract the malicious cyber-attack. The presented GRU-based 
framework has several advantages such as ease of implementation and computationally efficient, unlike state- 
of-art methods. The sensitivity analysis is investigated herein to validate the effectiveness of the presented 
GRU-based framework over state-of-art techniques. Simulation results show satisfactory performance under 
manifold operating scenarios such as bias injection attack and time-varying attack. In addition, the quantitative 
and qualitative comparative performances are performed herein to demonstrate the efficacy of the presented 
framework.   

1. Introduction 

Nowadays, renewable energy sources (e.g. solar, wind, biomass, 
geothermal, etc.) are booming into the distribution energy sector as the 
traditional forms of power generation (e.g. coal-based thermal power 
generation) increase the concern over greenhouse gas, acid rain, climate 
change, and global warming, etc. To address these issues, several re
searchers have investigated the AC and DC microgrid in the literature 
[1–3] for the reliable operation of the centralized network. Nonetheless, 
the DC microgrid has several advantages [2–5] over the AC microgrid 
such as low cost, low complexity, high reliability, energy efficient, etc. 
Several configurations of the power electronic converters are described 
in [6–8] for an application of the DC microgrid. This DC microgrid 
network [6–8] is susceptible to cyber-attacks as the centralized and hi
erarchical controllers require a communication channel for its reliable 
operation. The attack model in a cyber-physical system [9,10] is divided 
into three categories: disclosure attacks, deception attacks, and disrup
tion attacks. The disclosure attacks try to steal and collect vital infor
mation from the system and it may be used for the next attack in the 

future. The false-data injection (FDI) and the replay attacks are cate
gorized as the deception attacks [9,10], where the attacker destroys the 
real data of the system to compel the destabilization of the overall sys
tem. The disruption attack is popularly known as a denial of service 
(DoS) attack [9,10], where the attacker prevents the data and makes it 
inaccessible to the controller 

Several researchers [11–14] have investigated resilient strategies to 
alleviate the FDI attack as it is the most common attack in the cyber- 
physical system (CPS). In the DC microgrid, a hierarchical control is 
investigated in [11] for flexible regulation of the output voltage and 
current, however, this control strategy fails to provide stable operation 
under cyber-attack. To address this issue, the FDI counteract framework 
is analyzed in [12] to identify the attack signal using the Daikon dy
namic invariant detector. Likewise, Sahoo et. al. [13] have analyzed a 
cooperative vulnerability factor-based framework to identify the attack 
for each agent of the DC microgrid. However, these controllers [12,13] 
fail to provide resilient operation under the presence of disturbances in 
the current components. A discordant element-based approach is 
described in [14] to detect destabilization and deception attacks by 
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analyzing the consensus-based cooperative control network. Nonethe
less, the value of the discordant element in [14] abruptly changes as the 
cyber-attack is occured in the DC microgrid. 

The model-based FDI attack frameworks [15–23] are the most 
common approach to ensure the resilient operation of the microgrid. An 
event-driven resilient control mechanism is analyzed in [18] to suppress 
the impact of attack signal from both voltage and current measurements 
of the DC microgrid. Accordingly, the event signal is actuated as one of 
the agents is attacked, thereafter, the trusted neighbor agents rebuild the 
estimated value, which is used in the consensus controller. In literature 
[19,20], a model-based command authentication strategy to detect and 
mitigate attacks for multi-agent power system is put forward. The 
stealthy attacks targeting the economic dispatch control signal from 
centralized control centre to generating units is modelled. The proposed 
mitigation method can restore system from the attacks and make the 
system perform in optimal operation. In case of poor coordination be
tween these agents [21], the performance of the system can be deteri
orated under cyber-attack. Researchers [22,23] have addressed these 
issues with help of an adaptive control strategy to compensate the im
pacts of malicious cyber-attacks (e.g., at the output of the secondary 
controller) in the distributed power generation system. Cecilia et. al. 
[23] have analyzed the reconstruction approach to obtain the original 
data from the measured signal, however, this strategy is restricted to 
constant power loads. In addition, the nonlinear sliding mode observer is 
incorporated in [23] to estimate the states of the system, which leads to 
chattering phenomena in the converter and yields to the high heat losses 
in the power circuits. In essence, the model-based technique has several 
disadvanatges, which can be summarized as follows:  

• Highly dependent on the precision of the modelling  
• Performance is affected by the uncertainty in the parameters  
• Most of the model-based method linearizes the nonlinear system 

which reduces the effectiveness of the approach  
• It may be invalid when the hacker knows the information of the 

whole system 

Therefore, continuous development of resilient techniques is neces
sary for the reliable operation of DC microgrid systems. 

Data-driven techniques [24,25,32] are booming in power electronics 
system as it needs to build the relationship between variables of a sys
tem, which is easier to be applied in the real-time CPS. The cons of the 
model-free based techniques can be concluded as:  

• Implemented without having knowledge of the system model  
• High precision  
• Easy application in nonlinear system 

Several researchers have designed data-driven techniques [24,32] 
for resilient operation under deception attacks. A nonlinear neural 
network method is realized in [24] to detect the FDI attack in the voltage 
and current measurement of the DC microgrid. The deep-learning-based 
strategy is analyzed in [25] for satisfactory operation of the DC micro
grid, which combines a deep-learning-based identification scheme with 
a state vector estimator to capture behavior features of the attack signal. 
The summary of state of art resilient techniques against attack is shown 
in Table 1. 

The artificial neural network (ANN) based controller is employed in 
[32] to mitigate the FDI attack on parallel-connected buck converters in 
the DC microgrid. However, ANN is the simplest structure of the neural 
network. In order to learn more complicated and nonlinear relationships 
between the data, especially the time series data, the deep learning 
method is popular as it consists of multiple layers of neural network. 
Nonetheless, accumulating the ANN for a deeper layer cannot get the 
desired result in certain scenarios [34]. It may suffer from the overfitting 
issues, where estimated error decreases at first, thereafter, it will rise 
because of having multiple layers in ANN. To solve these problems, the 
recurrent neural network (RNN) is designed in the literature [34]. 
Despite that, RNN has the drawback of remembering long time se
quences [34], which leads the long short-term memory (LSTM). The 
LSTM is widely adopted in the prediction of the power and energy sector 
[35]. Nevertheless, it suffers from a large computational burden. 
Therefore, the gated recurrent unit (GRU) is developed in [36], which is 
an advanced version of the recurrent neural network and it solves the 
vanishing gradient problem of the RNN. In addition, it is capable to 
analyze the intrinsic relationship of sequence like LSTM does but it is 
more concise than LSTM [37]. The estimation of DC bus voltage is highly 
related to the precision of input variants of the neural network (i.e., if 
there is a disturbance of the input variants and the estimation of the 
attack signal is not precise enough, the effectiveness of the mitigation 
method is reduced). To solve this problem, the GRU-based framework in 
this paper is proposed for DC microgrid system. It performs lower 
sensitivity against the disturbance of the input signal. The main con
tributions of this article are explained as follows:  

• A GRU-based resilient framework is presented herein to mitigate the 
impact of the FDI attack on the DC microgrid. The presented 

Table 1 
State-of-Art Resilient Techniques Against Attack.  

Ref. Technique Type of application Reconstruct False 
data 

Complexity Limitation 

[26] Sliding mode observer Buck converter Feasible High Chattering problem 
[27] Sliding mode observer-based 

resilient approach 
AC microgrid Not feasible High Chattering problem 

[28] Adaptive control Bidirectional interleaved 
converter 

Not Feasible High Only consider impulsive FDI attack 

[8] Trust-based cooperative controller Buck converter Not Feasible Medium More than half of the neighbours should be healthy. 
[29] Adaptive control Nonlinear cyber-physical 

systems 
Not feasible Medium Not applied to the actual model 

[30] Luenberger observer and artificial 
neural network 

Load frequency control 
system 

Feasible High Not consider the communication delay 

[31] Sliding mode observer-based F-404 aircraft engine 
system 

Not feasible High The transition rates of the considered Markovian jump system 
are assumed to be known 

[32] Artificial neural network Buck converter Feasible Low Fails Performance with disturbance of input of a neural 
network 

[33] LSTM and adaptive neuro-fuzzy 
inference system 

Energy management 
system 

Not Feasible High Accuracy is conceded to the calculation ratio  
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framework is a model-free approach, which helps to overcome the 
modeling inaccuracy and eliminates the vanishing gradient problem, 
unlike classical neural network, and improves the system dynamics 
under various FDI attacks. 

• In contrast with the state-of-art strategies [17,24,38,39], the pre
sented GRU-based framework ensures satisfactory performance even 
under various kinds of FDI attacks (i.e., constant DC bias, time- 
varying attack). In addition, detailed qualitative and quantitative 

comparative performances are carried out to exhibit the effectiveness 
of the presented GRU-based framework.  

• A detailed sensitivity analysis is carried out to demonstrate the 
strength of the presented GRU-based approach against the input 
disturbances, unlike classical neural network-based technique. The 
numerical results illustrate the effectiveness of the presented 
approach over the classical method. 

The rest of this article is organized as follows. Section 2 describes the 
basic structure of the DC microgrid. Section 3 introduces the GRU-based 
control strategy to mitigate the FDI attack. In Section 4, simulation re
sults are demonstrated to validate the effectiveness of the presented 
framework. A qualitative and quantitative comparative analysis be
tween the GRU-based framework and the classical method, are per
formed in Section 5. The research findings and conclusions are 
summarized in Section 6. 

2. Schematic diagram 

Fig. 1 shows the schematic diagram of the DC microgrid [40]. The 
renewable energy sources are coupled with DC microgrid through a DC- 
DC buck converter. These converters are connected at a common 
coupling point through a transfer line. The resistances (R1-Rn) represent 
the equivalent resistance of transfer line for DC-DC converters (i.e., 1, 2, 
…, n). Fig. 2 illustrates the basic structure of primary and secondary 
controllers based droop control for DC microgrid [41]. The droop 
controller is implemented herein for the reliable operation of the DC 
microgrid. The main objective of the secondary control is to adjust the 
output of the DC-DC converter to ensure the reference value, which is 
obtained from the master controller. In order to regulate the current 
sharing, the output of the secondary controller is processed further into 
the droop controller. The primary control layer plays a vital role as it is 
consisted of an outer voltage controller and an inner current controller 
to regulate the output voltage and current of each converter. As it can be 

R1

R2

Rn

DC 
power 
Supply

DC 
power 
Supply

DC 
power 
Supply

Buck converter

Buck converter

Buck converter

I1

I2

In

Fig. 1. Schematics of DC-DC buck converter coupled DC microgrid.  

Fig. 2. Schematics of control structure for DC microgrid.  

Fig. 3. Neural network-based FDI attack mitigation method.  
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observed from Fig. 2, when the attack (Ψ(t)) happens in the bus voltage 
Vdc, that is, δ(t) = Vdc(t) + Ψ(t), becomes the bus voltage transferred to 
the control layer. Then, the whole system could be destabilized and it 
may damage the DC microgrid. To cope with these malicious cyber- 
attacks, the gated recurrent unit based control strategy is designed to 
estimate the attack signal and provides a resilient operation to the DC 
microgrid. The detailed modeling parameters of the DC microgrid is 
given in Appendix. 

3. Presented control strategy 

Fig. 2 and Fig. 3 illustrates the schematics of the presented control 
strategy to eliminate the FDI attack on DC microgrid. The problem 
statement of the presented work can be expressed as follows: 

Input signal: DC bus voltage (with inclusion of malicious attack signal 
(Vdc + Ψ)). 

Target: Accurate estimation of an attack signal (Ω) (i.e., lim
t→∞

Ψ(t) +

Ω(t) = 0). 
End goal: To provide resilient operation of the DC microgrid under 

malicious attack 
The whole control structure is composed of two sections: (1) The 

basic control structure part includes the primary controller and sec
ondary controller, and (2) The gated recurrent unit-based neural 
network, which is trained in such a way that it estimates the DC bus 
voltage with help of the converter output voltage and current 

measurements, and provides resiliency to the DC microgrid under ma
licious cyber-attack. The detailed implementation of the gated recurrent 
unit-based mitigation strategy is explained below. 

3.1. Introduction of GRU 

In order to estimate the time-series signals like voltage and current, 
the data-driven techniques are widely adopted because of having certain 
advantages [36] over classical model-based methods [8,26–31]. None
theless, the classical neural network has several drawbacks, for example, 
it faces the random gradient explosion for deeper network while 
considering the long-term signal, which may lead to trapping in a locally 
optimal solution rather than offering a global optimum solution. To 
solve the vanishing gradient problem and to learn longer-term re
lationships, a long short-term memory (LSTM) method is described in 
the literature [37]. However, the computation process of LSTM algo
rithm is quite complicated, thereby, it requires a lot of training time. 
Therefore, the gated recurrent unit (GRU) is analyzed in [36] to simplify 
the structure of the LSTM and overcome its shortcomings. The single- 
time step working principle of GRU is demonstrated in Fig. 4. The 
output value (st) is computed as follows: 

zt = σ(Uzxt + Wzst− 1 + bz)

rt = σ(Urxt + Wrst− 1 + br)#

ht = tanh(Uhxt + Wh(st− 1 ⊙ rt) + bh )

st = (1 − zt) ⊙ st− 1 + zt ⊙ ht###

(1)  

where, zt is the updated gate, rt is reset gate, xt is the current input state, 
ht is the candidate activation, σ is the sigmoid function, and ⊙ represents 
an element-wise multiplication; Uz, Ur, and Uh represent the input 
weight matrixs; Wz, Wr, and Wh are the recurrent weights; bz, br, and bh 
are biases. From the output function, it is easy to notice that if the 
updated gate approaches to 1, then, information from previous memory 
would be forgotten and the current state would be remembered and vice 
versa. Because of having this inherent characteristic, the GRU has the 
ability to remember long-term information and discards some unim
portant information to extract the intrinsic relationship of a model, 
which makes it the best candidate amongst the other data-driven tech
niques in order to develop the mitigation strategy. 

3.2. GRU-Based mitigation strategy 

Fig. 3 shows the overall control structure of the GRU-based mitiga
tion method to alleviate the FDI attack on the DC microgrid. The GRU- 
based neural network plays a vital role to estimate the DC bus voltage 
data in an event of a malicious FDI attack. The detailed implementation 
of the control structure is depicted in Fig. 3. 

Supposing that the revised value of the DC bus voltage (δ) under FDI 
and mitigation method is expressed as [23–25]: 

δ(t) = Vdc(t) +Ψ(t)+Ω(t) (2)  

where, Ψ(t) is the attack signal and Ω(t) is the output of the proportional 

Fig. 4. Working principles of GRU block at time..t  

Fig. 5. Unrolled architecture of GRU considering present and past input values.  
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integral (PI) controller and Vdc(t) is actual value of DC bus voltage. As 
the PI parameters are properly designed, it yields that input of the sec
ondary controller (δ) converge to V̂dc, i.e.,: 

lim
t→∞

V̂ dc(t) = δ(t) (3) 

It can be analyzed that the GRU-based neural network precisely es
timates the DC bus voltage at event of the malicious cyber-attack, 
thereafter the output of the PI controller counteracts the attack signal 
from the measured DC bus voltage data. It yields an accurate estimation 
of the attack signal. 

lim
t→∞

Ψ(t) +Ω(t) = 0 (4) 

In case of the absence of the FDI attack, it can be observed that the 
input of the secondary controller is equal to the actual DC bus voltage 
(Vdc). 

3.3. Detailed implementation of GRU-Based neural network framework 

Fig. 5 shows an unrolled architecture of the gated recurrent unit 
network. The inputs and output of the GRU network are the output 
currents and voltages of the converters, and the estimated DC bus 
voltage, respectively. The present input state (xt) and the output of the 
previous block (st− 1), are fed to the current time step GRU block as 
illustrated in Fig. 5. By parity of reasoning, the output of the previous 
block maintains the information from the previous input state. The 
updated gate determines the retained information. In the case of a deep 
neural network [34], the mathematical formulation of weight, state, and 
bias, may give trivial value and leads to a vanishingly small gradient. In 
contrast with the classical neural network, the GRU overcomes these 
issues by introducing the gated structure in the network as explained in 
(1). Because of having this mechanism, the long-term state is easily 

retained and passed to its end, regardless of the length of the subse
quence. Henceforth, the structure of the neural network plays a vital role 
to train the data set. The input data of GRU-based neural network is 
expressed as follows: 

xt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

i1(t)

⋮
in(t)

v1(t)

⋮

vn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)  

where, in, vn are the output current and voltage of the nth converters, 
respectively. 

The whole GRU-based estimated framework is illustrated in Fig. 6. It 
consists of the input layer, GRU layer, and output layer. The time-series 
signals are sampled, normalized, and processed to the GRU block. The 
normalizing process plays a pivot role herein because there are two 
benefits of applying the normalization in the GRU-based neural network. 
The first one is accelerating the convergence speed, the second one is 
eliminating the disunity of the units. Subsequently, the GRU layer is 
implemented to attain the final time-step output. For each timesteps t, it 
calculates an output (st). Here, k represents the timesteps, which is 
related to the hidden number of the GRU. Then the outputs of the last 
timestep are imported to the fully connected layer. To obtain the desired 
output size, the fully connected layer is exploited herein to map the 
output of GRU layer, thereafter, it multiplies the input by a weight 
matrix and a bias vector to obtain an output of the GRU-based frame
work. Significantly, the output of the data should be denormalized to get 
the estimated value of the bus voltage (V̂dc) using the same optimized 
parameters of the weights and bias to compel the estimated value close 
to the actual value. 

The detailed description of the training process is manifested in 
Table 2. Accordingly, the training process is described for n parallel DC- 
DC converters coupled DC microgrid. The first step is sampling and 
collecting the data from the system under nominal case with different 
operating conditions. In order to prevent the divergence of the network 
training, the second step plays a pivot role to obtain the standardize data 
with help of its mean value and standard deviation. It is computed by 
taking the difference between the input value and mean value of the 
whole data, thereafter, it is processed with the standard deviation. The 
initial learning rate is set as 0.05 and it would be lessened by factor 0.2 
after reaching 125 epochs. The maximum epoch is set as 250, which is 

Fig. 6. The whole structure of the GRU-based neural network.  

Table 2 
Offline training process.  

Initialization: 
1. Sample and collect output voltage v1 ,v2,.., vn and current i1, i2,.., in of 

converters, and bus voltage Vdc, and, thereafter, it is categorized into training 
data and tested data. 

2. Normalize the collected data. 
Process: 
3. Measurement data of xt in (5) is assigned as the input of the GRU and the DC bus 

voltage (Vdc) is assigned as the target value. 
4. Apply the data to the built GRU-based network with initial parameters in (1). 
5. Train the network. 
6. If the training value of loss and RMSE are low enough, the trained network is 

obtained, if not, turn to Step-1 to collect more data and adjust the parameter of 
the network. 

Output: 
7. Using test data to verify the effectiveness of the network. 
8. If it works perfectly, the parameter of a well-trained network in Eq. (1) is gained. 

If not, go back to Step-1.  
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the number of times passing through the full data. The values of weights 
and biases are altered through the learning rate to get the minimum 
difference value between the target value and the estimated value. In 
this work, the Adam optimizer is chosen as the gradient descent opti
mization algorithms. If the training process curve is smooth and the loss 
and root-mean-square error (RMSE) are quite small enough, the network 
is well-trained. Thereafter, the effectiveness of the network is verified by 
using test data. More data should be re-collected and reset the initial 
values of the network in case of a mismatch between the estimated 
output and actual output of the system. The loss and RMSE of training 
process are shown in Fig. 7. One can observe that the loss and RMSE are 
small enough (1.4 × 10− 5, 0.0049, respectively), which indicates that 
the network is well trained. Finally, the well-trained network is used in 
the online application for the resilient operation of the DC microgrid. 

3.4. Sensitivity analysis of GRU with respect to classical neural network 

The partial derivatives sensitivity analysis method is used to 
demonstrate the superiority of the GRU-based framework compared 
with the classical neural network with the presence of disturbance in the 
network inputs. 

3.4.1. Sensitivity analysis of classical neural network 
In classical neural network, multi-layer perceptron (MLP) is a well- 

known structure to learn nonlinear realtionship between inputs and 
outputs. The MLP is consisted of three or more layers. The three layers 
MLP (i.e., one input layer, one hidden layer, and one output layer) is 
considered in [40] to build the classical neural network. The basics 
design and implementation of classical neural network with MLP 
framework is described in Appendix. Supposed that the input of the kth 

neuron in the lth(1 ≤ l ≤ 3) layer is zl
k, and the ith neuron of the output of 

the last layer is yl− 1
i . Thus, the partial derivate regards to last layer’s 

output are [42]: 

∂zl
k

/
∂yl− 1

i = ωl
ki (6)  

where, ωl
ki is the weights between the connection neuron of lth and 

(l − 1)th. 
The derivative of the output of the neuron regards to the input of the 

neuron is expressed as: 

∂yl
k

/
∂zl

i = ∂f l
k

/
∂zl

i (7) 

In order to reduce the calculation burden, it is expressed in the 
matrix form as [42]: 

∂zl
[1×nl ]

∂yl− 1
1×nl− 1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂zl
1

∂yl− 1
1

∂zl
1

∂yl− 1
2

∂zl
2

∂yl− 1
1

∂zl
2

∂yl− 1
2

⋯
∂zl

1

∂yl− 1
nl− 1

⋯
∂zl

2

∂yl− 1
nl− 1

⋮ ⋮

∂zl
nl

∂yl− 1
1

∂zl
nl

∂yl− 1
nl− 1

⋱ ⋮

⋯
∂zl

nl

∂yl− 1
nl− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ωl
11 ωl

12

ωl
21 ωl

22

⋯ ωl
1nl− 1

⋯ ωl
2nl− 1

⋮ ⋮
ωl

nl1 ωl
nl2

⋱ ⋮
⋯ ωl

nl1nl− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Wl
[nl×nl− 1 ]

(8)  

∂yl
[1×nl ]

∂zl
[1×nl ]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂yl
1

∂zl
1

∂yl
2

∂zl
1

∂yl
1

∂zl
2

∂yl
2

∂zl
2

⋯
∂yl

nl

∂zl
1

⋯
∂yl

nl

∂zl
2

⋮ ⋮

∂yl
1

∂zl
nl

∂yl
2

∂zl
nl

⋱ ⋮

⋯
∂yl

nl

∂zl
nl

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f l
1

∂zl
1

(
zl

1

) ∂f l
2

∂zl
1

(
zl

1

)

∂f l
1

∂zl
2

(
zl

2

) ∂f l
2

∂zl
2

(
zl

2

)

⋯
∂f l

nl

∂zl
1

(
zl

1

)

⋯
∂f l

nl

∂zl
2

(
zl

2

)

⋮ ⋮

∂f l
1

∂zl
nl

(
zl

nl

) ∂f l
2

∂zl
nl

(
zl

nl

)

⋱ ⋮

⋯
∂f l

nl

∂zl
nl

(
zl

nl

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Jl
l[nl×nl ] (9) 

Thus, the Jacobian matrix of the output in the lth layer with regard to 
the input (l − j)th layer is calculated by: 

Jl
l− j = Jl

l •
∏l− j

h=l− 1

(
Wh+1 • Jh

h

)
(10) 

After applying all the measurement data, the mean value of the 
quantitative result for classical neural network is: 

[ 0.8814757 − 3.9321402 − 6.8684759 13.9050731 ]

Fig. 7. Training process (a) Training loss (b) Training RMSE.  
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3.4.2. Sensitivity analysis of gated recurrent unit integrated neural network 
The output of the GRU-based neural network is shown as follows: 

y = WFst + bF (11)  

where, WF is the weight factor matrix of the fully-connected layer, and 
bF is a bias factor. 

In order to calculate the sensitivity of output value (y) of GRU based 
network regards to the input variables, the partial derivative of the 
output regards to the input signals for each time step should be 
computed and it is formulated as:   

For convenience, x1 and x10 stands for xt− 9 and xt , respectively. The 
gradient of output of GRU block (si) with respect to input state (xi) is 

represented by 
(

∂si
∂xi

)

and it is computed as:  

where, ∂hi
∂xi 

is the gradient of hi with respect to xi with considering ri as 
a constant. It should be noted that the numerator layout is applied in this 
work.   

where, 
(

∂si
∂si− 1

)

is the gradient of present output (si) with respect to 

previous output (si− 1) of GRU block, whereas, the variables candidate 
activation (hi) and updated gate (zi) are considered as constant. After 
applying the same data-set of classical neural network, the obtained 
mean value of quantitative result for a GRU-based framework is: 

[ − 0.0743262 − 0.0566587 0.0486835 0.0851134 ]
T 

The result indicates that the GRU has less sensitivity than the clas
sical neural network, which means that it has better stable performance 

even when the input of the network is disturbed. 

4. Simulation result 

The DC-DC converter interfaced DC microgrid is modeled in MAT
LAB®/Simulink using the Simpower toolbox. The proposed algorithm 
applied on the MATLAB version 9.9.0.1467703 (R2020b) /Simulink of a 
laptop with Windows 10, Intel(R) Core (TM) i7-10750H CPU @ 2.60 
GHz. The installed memory (RAM) is 16 GB and the system type is a 64- 
bit operating system with X-64 based processor. As for the software 
environment, the Neural Network Time Series app which belongs to the 

Deep Learning Toolbox (version 14.1) is used. Besides, the MATLAB 
Coder interface for Deep learning Libraries, and Intel Math Kernel Li
brary for Deep Neural Networks (V0.14) is required. In this simulation 
study, the DC microgrid with two converters (n = 2) is modeled in Case 
1 and Case 2 to verify the effectiveness of the presented GRU-based 

framework. In order to prove the scalability of the presented work, 
three converters (n = 3) are also considered. The designed parameters 
of the system configuration are given in Appendix. The initial setting 
parameters of the GRU and classical neural network for training are 
described in Appendix. In order to train the data, the system measure

ment data is collected from the nominal case with different operating 
scenarios. Moreover, the load and target values are varied with the 
purpose to capture additional measurement data. The system runs for 
10s in normal operating scenario. Total 1 × 106 sets of measurement 
data are obtained and utilized in network training progress. The GRU- 
based framework is applied to these data to train the network, there
after, the well-trained network is applied to the DC microgrid system to 
alleviate the impact of malicious cyber-attack. 

4.1. Case1: Constant FDI attack with two converters 

Fig. 8 (a-b) show the performance of the DC microgrid system with 

∂y
∂x1

+
∂y
∂x2

+
∂y
∂x3

+ ⋯ +
∂y

∂x10
=

(
∂s10

∂s9

∂s9

∂s8
⋯

∂s2

∂s1

∂s1

∂x1

)T ∂y
∂s10

+

(
∂s10

∂s9

∂s9

∂s8
⋯

∂s3

∂s2

∂s2

∂x2

)T ∂y
∂s10

+ ⋯ +

(
∂s10

∂x10

)T ∂y
∂s10

=
∑9

i=1

((
∏9

j=i

∂sj+1

∂sj

)
∂si

∂xi

)T

WT
F +

(
∂s10

∂x10

)T

WT
F#

(12)   

∂si

∂xi
=

∂si

∂zi

∂zi

∂xi
+

∂si

∂hi

∂hi

∂xi

=
∂si

∂zi

∂zi

∂xi
+

∂si

∂hi

(
∂hi

∂ri

∂ri

∂xi
+

∂hi

∂xi

)
= diag(si− 1 − hi)diag(zi ⊙ (1 − zi) )UZ + diag(zi)

⎛

⎝
diag(1 − hi ⊙ hi)Whdiag(si− 1)diag(ri ⊙ (1 − ri) )Ur

+diag(1 − hi ⊙ hi)Uh

⎞

⎠#

#

(13)   

∂si

∂si− 1
=

∂si

∂hi

∂hi

∂si− 1
+

∂si

∂zi

∂zi

∂si− 1
+

∂si

∂si− 1
=

∂si

∂hi

(
∂hi

∂ri

∂ri

∂si− 1
+

∂hi

∂si− 1

)

+
∂si

∂zi

∂zi

∂si− 1
+

∂si

∂si− 1

= diag(zi) ×

(
diag(1 − hi ⊙ hi)Whdiag(si− 1)diag(ri ⊙ (1 − ri))Wr

+diag(1 − hi ⊙ hi)diag(ri)Wh

)

+ diag(hi − si− 1)diag(zi ⊙ (1 − zi))Wz + diag(zi) (14)   
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the presence of an FDI attack. At 0.5s, the step input of false data with a 
typical value of 60V, is injected to the sensor of DC bus voltage sensor. 
Fig. 8(a) shows the dynamics of DC microgrid without having any 
mitigation method. It is easy to notice that the system may collapse as 
the converter DC bus voltage reaches over 600V. Furthermore, the 
inverter output current is noticeably increased over 55A, which may 
damage the converter switches. Fig. 8(b) shows the response of the 
system with the presented mitigation framework under FDI attack. It is 
easy to observe that DC bus voltage is regulated within restricted limits 
even under large malicious FDI attack. Furthermore, the peak value of 
the DC bus voltage is attained at around 124.6V. It takes typically 0.4s to 
recover from the attack, which means that the bus voltage reaches to 
125V. The oscillation in the DC bus voltage is quite low as depicted in 
Fig. 8(b). In contrast to Fig. 8 (a), the GRU-based mitigation approach 
nullifies the negative impact of FDI attacks on the DC microgrid. 

4.2. Case2: Time-varying FDI attack with two converters 

Fig. 9 (a-b) and Fig. 10 (a-b) illustrate the dynamics of the DC 
microgrid at an event of a time-varying FDI attack. Fig. 9 (a-b) show the 
performance of the system with considering attack signal of a sinusoidal 

wave with an amplitude of 20V and ω = 157rad/s. As the attack starts at 
t = 0.5s, It is easy to notice that the DC bus voltage is suddenly increased 
over 138V with a steady-state bound of 125 ± 20V and this may lead to 
damage to the switches of the converter. The DC bus dynamics are. 

harmonically polluted as exhibited in Fig. 9 (a), which leads to in
jection of harmonics in the converter output current. The peak value of 
the current is attained in-range of 5.7A, which brings awful consequence 
compared with the rated value 1A. Fig. 9 (b) shows the effectiveness of 
the presented approach under time-varying FDI attack. It shows that DC 
bus voltage is effectively sustained as per reference DC bus voltage as 
illustrated in Fig. 9 (b). The zoom-view demonstrates that the fluctua
tion of the DC bus voltage is achieved within ±0.1V. 

Likewise, a sinusoidal wave with an amplitude of 20V and ω =

3.14rad/s is voluntarily injected into the DC bus voltage and dynamics of 
the system are exhibited in Fig. 10 (a-b). Fig. 10 (a) shows the perfor
mance of the system without any resilient controller strategy. As the 
attack happens at t = 0.5s, the fluctuation of the DC bus voltage reaches 
up to 83V and it affects the system performances as illustrated in Fig. 10 
(a). The performance of the system is not satisfactyory as the voltage has 
a disturbance of ±20V with ω = 3.14rad/s as illustrated in Fig. 10 (a). 
Fig. 10 (b) shows the dynamics of the system as the mitigation method is 

Fig. 8. The bus voltage and output current of converters (a) System under 60V step FDI attack without mitigation method (b) System under 60V step FDI attack with 
mitigation method. 

Fig. 9. The bus voltage and output current (a) System under ω = 157rad/s sinusoidal wave FDI attack without mitigation method (b) System under ω = 157rad/s 
sinusoidal wave FDI attack with mitigation method. 
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engaged with the control strategy. One can easily notice that the devi
ation of the voltage is cut down to the 125 ± 0.05V. The transient 
oscillation in the output of converter current is alleviated using the 
presented GRU-based mitigation framework. 

4.3. Case3: Time-varying FDI attack with three converters 

Fig. 11 (a) shows the system performance of the three converters 
with the presence of the malicious cyber-attack of having typical value 
of ω = 157 rad/s sinusoidal wave false data injection attack character
istics. The presented framework effectively identifies the attack signal 
and provide resiliency as depicted in Fig. 11 (a). The converter output 
currents are also not affected as the network is effectively trained with 

datasets. It is worth to notice that no oscillations or no magnitude var
iations are observed in any of the converter even with the presence of 
cyber-attack. Likewise, the performance of the system (with consider
ation of three converters) is analyzed in Fig. 11 (b). The typical fre
quency of the sinusoidal attack signal is 3.14 rad/s with having false 
data injection characteristics. As one can observe that the little transient 
is observed in the DC bus voltage dynamics, which is significantly low 
and it will not affect the system performance. The dynamics of the 
converter output currents are smooth as depicted in Fig. 11(b). 

5. Comparative performance 

The comparative performances between the presented GRU-based 

Fig. 10. The DC bus voltage and output current (a) System under ω = 3.14rad/s sinusoidal wave FDI attack without mitigation method (b) System under ω =

3.14rad/s sinusoidal wave FDI attack with mitigation method. 

Fig. 11. The DC bus voltage and output current (a) System under ω = 157rad/s sinusoidal wave FDI attack with mitigation method (b) System under ω = 3.14rad/s 
sinusoidal wave FDI attack with mitigation method. 
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mitigation framework and classical neural network-based method [32] 
are analyzed for DC microgrid with the presence of disturbance in a 
current sensor measurement under variation of loads. In addition, the 
qualitative and quantitative analyses under different attacks and output 
current measurement noise are considered to validate the effectiveness 
of the presented approach. The detailed analysis of the comparative 
performance is explained as follows. 

Fig. 12 shows the comparative performance with the consideration 
of the noise and disturbance in the output of the current sensor. It shows 

that the disturbance signal of 1A is voluntarily injected from t = 1s to 
t = 2.5s. In addition, the FDI attack happens in DC bus voltage at t =
0.5s with its typical value of 10V, ω = 314rad/s. For a fair comparison, 
the same measurement data set is used to train both GRU and classical 
neural network. Fig. 12 (a) shows that the DC bus voltage deviates from 
the steady-state value with a bias of 1V in the case of the classical neural 
network-based method. In contrast with the classical neural network, 
Fig. 12 (b) demonstrates that the disturbance of the current causes an 
insignificant steady-state error or bias in the DC bus voltage (i.e., 0.08V) 
using the GRU-based mitigation approach. The presented algorithm 
provides a better response as compared to the classical neural network- 
based method. Thereby, it is verified that the sensitivity of the GRU- 
based framework is better than the classical neural network. 

Additionally, the RMSE analysis under different measurement error 
and noise in current measurement (i1) are also carried out in Table 3. As 
the disturbance signal of 1A is injected into the current sensor mea
surement (i1), the RMSE of GRU-based method is restricted up to one- 
tenth as compared to the classical neural network-based method. It 
demonstrates that the GRU-based framework provides a superior 
response when inputs of the network are disturbed. For different mea
surement disturbances in the current sensor, the GRU-based framework 
attained lower RMSE as compared to the classical method. To validate 
this claim, the time-varying disturbance is injected into the sensor 
measurements, the RMSE of GRU based method is significantly low with 
respect to the classical method. That is, if one of the inputs of the 
network is disturbed, the GRU-based framework has the capability to 
accomplish better accuracy and stability of the DC microgrid system. 
Table 3 and Table 4 summarizes the qualitative and quantitative anal
ysis of the presented approach and state-of-art controllers. 

6. Conclusion 

The GRU-based mitigation framework has been presented to alle
viate the various kinds of FDI attacks in the parallel DC-DC converters 
interfaced hierarchical DC microgrid. In comparison with the state-of- 
art methods, the presented strategy has several distinct benefits, 
which are mentioned as follows. (1) The GRU based mitigation method 
is a model-free framework, thereby, it eliminates an modeling inaccu
racy while estimating the attack signal as compared with the model- 
based approaches, (2) The presented framework provides satisfactory 
performance and ensures the resiliency for the system even under 
various kinds of FDI attacks (i.e., DC bias attack, time-varying attack), 
(3) In comparison with the state-of-art method, the presented GRU- 
based framework accomplishes better tracking performance under 

Fig. 12. Dynamics of bus voltage and output current with the presence of 1A disturbance to the sensor of output current (i1) (a) Classical neural network based 
mitigation method (b) GRU-based mitigation method. 

Table 3 
RMSE under different measurement disturbances.  

Disturbance in Current 
Measurements 

RMSE of GRU- 
Based Method 

RMSE of Classical Neural 
Network-Based Method [32] 

Step signal(1 A)  0.0513482  0.6099651 
Step signal(0.1 A)  0.0280360  0.0641471 
Sinusoidal (0.5 A, 314 

rad/s)  
0.0449013  0.2177374 

Sinusoidal (0.5 A, 3.14 
rad/s)  

0.0554365  0.2177380  

Table 4 
Comparative Analysis Between Presented Controller and State-of-Art Technique.  

Parameters [38] [32] [39] Presented 
Work 

Type of algorithm Kalman and 
H-infinity 
controller 

Classical 
neural 
network 

Hybrid 
observer 

Gated 
Recurrent 
unit 

Type of application Buck-Boost 
converter 

Buck 
converter 

Buck 
converter 

Buck 
converter 

Performance under 
time-varying 
attack 

Fails Adapts Fails Adapts 

Performance under 
constant bias 
attack 

Fails Adapts Adapts Adapts 

Performance with 
disturbance in 
current data 

Fails Fails Fails Adapts 

Computation 
burden 

NA 186.126 s NA 257.409 s 

Sensitivity under 
cyber-attack 

Poor Medium Medium Better 

Complexity Low High Low High  
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distinct cyber-attacks. In addition, the root mean square error analysis 
also demonstrates the effectiveness of the presented work over con
ventional neural network-based method, and (4) A comparative sensi
tivity analysis has been analyzed and it shows that the presented GRU- 
based framework has better disturbance rejection capability as 
compared with the classical neural network-based mitigation technique. 
To validate the scalability of the presented work, the three converters 
based DC microgrid systems is analyzed and shows the satisfactory 
performance under dynamic operating scenarios. In addition, the pre
sented framework effectively mitigates the impact on DC bus voltage 
with the presence of disturbance in the output current sensor of con
verters. In contrast with the classical neural network, the numerical 
comparative results of sensitivity analysis demonstrate the strength of 
the GRU-based approach under the presence of disturbances in the 
measurements. Furthermore, the numerical results show that RMSE 
value obtained through the presented approach is one-tenth of the value 
attained by the traditional method, which demonstrates the effective
ness of the presented framework. 

7. Future work 

The future work can be planned to consider more complicated DC 
microgrid control structure. In that case, the attack would affect the 
reference value of the secondary control which is a constant value in our 
case. The distinguish between fault and cyber attack could be 

investigated in the DC microgrid. In addition, the proposed mitigation 
frame work will be improved to implemented on different type of attack 
such as DoS attack and replay attack. The calculation burden of the 
proposed method can also be improved. 
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Appendix 

A.1. Simulation parameters 

DC power supply=350V, Equivalent resistance of transfer line: R1= 0.6Ω and R2= 0.5Ω, Vref
dc = 125V; Secondary controller parameters: kp = 1, 

ki = 100; Drop constant: k = 1; Outer voltage loop controller parameters: kp = 1, ki = 10; Inner current loop controller parameters: kp = 1, ki = 10; 
Sampling time: 10μs. 

A.2. Network parameters 

GRU initial setting parameters: number of input features = 4; Number of hidden units = 10; Max epochs = 250; Initial learning rate = 0.005; 
Classical neural network initial setting parameters: number of hidden neurons = 10; Delay order = 3. 

A.3. Prelimanries for senstivity analysis of classical neural network 

For the classical feedforward neural network, Fig. 13 shows, there are only three layers. The input layer, the hidden layer, and the output layer. 
Supposing that the number of the converters are n, the inputs data (Xt) are as follow, where D is the memory order [24,25,32]: 

Xt =

[i1(t − 1), ⋯,

⋯, in(t − 1),

i1(t − D),

⋯, in(t − D),

v1(t − 1), ⋯,

⋯, vn(t − 1),

v1(t − D),

⋯, vn(t − D)]

(15) 

The neuron is formulated by weights (ωij) and bias (bj), and these will be multiplied with the input vector (zj). These input vector comes from the 
input of the system or the previous layer by the weights array and bias, then the output value of the neuron (yi) is obtained through the activation 
function like sigmoid or the hyperbolic tangent function. It is expressed as: 

yi = f

(
∑n

j=1
zjωij + bj

)

(16) 

The output of the neural network (y) is the estimated value of the DC bus voltage and it is expressed as [24,25,32]: 

y = f2(f1(XtW1 + B1)W2 +B2 ) (17)  

where, f1, f2 are the activation function of the hidden layer and output layer, respectively. W1, W2 are the weights and B1, B2 are the biases. To obtain 
the value of these parameters, the trained data is collected and implemented to the network offline. Then the weights and bias are accommodated to 
make the output value of the network tend to the target value that is bus voltage in this case. 
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A.4. Prelimanries for senstivity analysis of gated recurrent unit 

In order to explain the derivation of the GRU, some basic formulations like the derivation of sigmoid and hyperbolic functions are explained as 
follows. The sigmoid function is expressed as: 

σ(x) = 1
1 + e− x (18) 

The derivation of it in matrix form is expressed as [42,43]: 

σ′

(x) = diag(σ(x) ⊙ (1 − σ(x) ) ) (19) 

The hyperbolic function is expressed as: 

tanh(x) =
ex − e− x

ex + e− x (20) 

The derivation of (20) in matrix form is expressed as: 

tanh
′

(x) = diag(1 − tanh(x) ⊙ tanh(x) ) (21) 

Thus, according to the above formulation, the equation deducing process of the (13) is shown as follows: 

∂si

∂xi
=

∂si

∂zi

∂zi

∂xi
+

∂si

∂hi

∂hi

∂xi
=

∂si

∂zi

∂zi

∂xi
+

∂si

∂hi

(
∂hi

∂ri

∂ri

∂xi
+

∂hi

∂xi

)

= diag(si− 1 − hi)σ′
(
fz(xi)

) ∂f (xi)

∂xi
+ diag(zi)

(

tanh′(fh(ri) )
∂ri

∂xi
+

∂hi

∂xi

)

= diag(si− 1 − hi)diag(zi ⊙ (1 − zi) )UZ +(diag(zi) ) ×

(
diag(1 − hi ⊙ hi)Whdiag(si− 1)diag(ri ⊙ (1 − ri) )Ur

+diag(1 − hi ⊙ hi)Uh

)

(22) 

The gradient of present output (si) with respect to previous output (si− 1) of GRU block is expressed as [42,43]: 

∂si

∂si− 1
=

∂si

∂hi

∂hi

∂si− 1
+

∂si

∂zi

∂zi

∂si− 1
+

∂si

∂si− 1
=

∂si

∂hi

(
∂hi

∂ri

∂ri

∂si− 1
+

∂hi

∂si− 1

)

+
∂si

∂zi

∂zi

∂si− 1
+

∂si

∂si− 1

= diag(zi)

(

tanh′

(fh(ri) )

(

σ′

(fr(si− 1) )
∂fr(si− 1)

∂si− 1

)

+
∂hi

∂si− 1

)

+ diag(hi − si− 1)

(

σ′ ( fz(si− 1)
) ∂fz(si− 1)

∂si− 1

)

+ diag(zi) =diag(zi

)

×

(
diag(1 − hi ⊙ hi)Whdiag(si− 1)

diag(ri ⊙ (1 − ri) )Wr + diag(1 − hi ⊙ hi)diag(ri)Wh

)

+ diag(hi − si− 1)diag(zi ⊙ (1 − zi))Wz + diag(zi

)

(23)  

A.5. Detailed calculation of quantitative result of sensitivity 

For better clarity to the readers, the flow chart is introduced in Fig. 14 in order to demonstrate the process of calculating quantitative results for 
both neural network and GRU-based frameworks. In Fig. 14 (a), the sensitivity quantitative result calculation of the classic neural network is 
described. All the data sets of input states, weights, and biases from the well-trained neural network are processed/fed into the calculation program. 
Each of the datasets is calculated by applying Eqs. (8)–(10) and adding them together by iteration and its output is the sum of the sensitivity value of 
each dataset. Thereafter, the mean value of sensitivity should be divided by the number of datasets. As for the GRU-based framework, the datasets of 
input states, weights, and biases from the well-trained GRU framework are fed into the calculation program. At first, the forward process of the GRU 
framework is calculated by applying Eq. (1) to prepare for the value of the following steps. Then, the sensitivity of a timestep is calculated by Eqs. (13)– 
(14). Then, considering the hidden units, the Eq. (12) is applied. The sensitivity of each dataset is added and divided by the applied dataset to get the 
mean value. 

Fig. 13. Structure of a three layers classical feedforward neural network.  
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