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Abstract: Background: Malaria is a global burden in terms of morbidity and mortality. In the
Democratic Republic of Congo, malaria prevalence is increasing due to strong climatic variations.
Reductions in malaria morbidity and mortality, the fight against climate change, good health and
well-being constitute key development aims as set by the United Nations Sustainable Development
Goals (SDGs). This study aims to predict malaria morbidity to 2036 in relation to climate variations
between 2001 and 2019, which may serve as a basis to develop an early warning system that integrates
monitoring of rainfall and temperature trends and early detection of anomalies in weather patterns.
Methods: Meteorological data were collected at the Mettelsat and the database of the Epidemiological
Surveillance Directorate including all malaria cases registered in the surveillance system based on
positive blood test results, either by microscopy or by a rapid diagnostic test for malaria, was used
to estimate malaria morbidity and mortality by province of the DRC from 2001 to 2019. Malaria
prevalence and mortality rates by year and province using direct standardization and mean annual
percentage change were calculated using DRC mid-year populations. Time series combining several
predictive models were used to forecast malaria epidemic episodes to 2036. Finally, the impact of
climatic factors on malaria morbidity was modeled using multivariate time series analysis. Results:
The geographical distribution of malaria prevalence from 2001 and 2019 shows strong disparities
between provinces with the highest of 7700 cases per 100,000 people at risk for South Kivu. In the
northwest, malaria prevalence ranges from 4980 to 7700 cases per 100,000 people at risk. Malaria
has been most deadly in Sankuru with a case-fatality rate of 0.526%, followed by Kasai (0.430%),
Kwango (0.415%), Bas-Uélé, (0.366%) and Kwilu (0.346%), respectively. However, the stochastic trend
model predicts an average annual increase of 6024.07 malaria cases per facility with exponential
growth in epidemic waves over the next 200 months of the study. This represents an increase of 99.2%.
There was overwhelming evidence of associations between geographic location (western, central and
northeastern region of the country), total evaporation under shelter, maximum daily temperature at
two meters altitude and malaria morbidity (p < 0.0001). Conclusions: The stochastic trends in our
time series observed in this study suggest an exponential increase in epidemic waves over the next
200 months of the study. The increase in new malaria cases is statistically related to population density,
average number of rainy days, average wind speed, and unstable and intermediate epidemiological
facies. Therefore, the results of this research should provide relevant information for the Congolese
government to respond to malaria in real time by setting up a warning system integrating the
monitoring of rainfall and temperature trends and early detection of anomalies in weather patterns.
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1. Introduction

The fight against climate change, good health and well-being are, respectively, the
thirteenth and the third Sustainable Development Goals (SDGs) of the United Nations.
Section 3.3. of the third SDG aims to end the HIV/AIDS epidemic, tuberculosis, malaria
and neglected tropical diseases and to combat hepatitis, water-borne diseases and other
communicable diseases by 2030.

Global warming is the phenomenon of increasing average ocean and air temperatures,
induced by the quantity of heat trapped on the earth’s surface. In humanitarian terms, an
increase in extreme weather events leads to torrential rains, storms, droughts, as well as
an increase in diseases with epidemic potential such as malaria, diarrheal and respiratory
diseases.

Malaria is a vector-borne disease whose existence and transmission depend on three
main factors: the Plasmodium parasite, the Anopheles vector and the human host. Beyond
these essential factors, the risk of malaria transmission can be maintained or increased by
environmental or climatic conditions as well as socio-economic factors [1].

In the past, several authors had already highlighted the relationship between climate
variations and malaria endemicity [2—4].

Malaria constitutes a global burden in terms of morbidity and mortality. In 2019,
229 million malaria cases in 91 countries were recorded, an increase from 211 million cases
in 2015. Globally, the number of deaths from malaria was estimated at 409,000 in 2019,
compared with 446,000 in 2015. The WHO African Region carries a disproportionately
high share of the global malaria burden with 94% of malaria cases and deaths occurring in
2019 [5].

Environmentally related morbidity and mortality still remain high globally, although
they have declined significantly in recent decades [6].

In sub-Saharan Africa in general and in the Democratic Republic of Congo (DRC) in
particular, where malaria represents the greatest burden of disease, studies on forecasting
malaria prevalence based on an environmental and longitudinal approach are rare.

Much published research on the relationship between malaria and climate change
has emphasized on the increased risk posed by the expansion of malaria-prone areas. In
some parts of Africa, the number of malaria cases is decreasing and scientists believe that
this is due not only to prevention measures but also to the effects of climate change on
rainfall [7-9].

The purpose of this study is to forecast malaria episodes to 2036 using time series
forecasting models in order to strengthen the surveillance and response to diseases with
epidemic potential throughout the DRC.

2. Materials and Methods
2.1. Materials
2.1.1. Study Areas

This study was conducted in the Democratic Republic of Congo (DRC), which has 26
administrative provinces (See Figure 1). The DRC is located in the heart of Africa and is one
of the largest countries on the continent with an area of 2,345,000 km?. It shares 9165 km of
borders with nine neighboring countries: the DRC to the west, Uganda, Burundi, Rwanda
and Tanzania to the east, the Central African Republic and Sudan to the north and Zambia
and Angola to the south. The country’s extensive borders, combined with a lack of transport
and communication infrastructure, make it particularly difficult to trade and move goods
and people within the country.
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Figure 1. Map of the DRC showing the 26 administrative provinces with average number of YEARLY
rainy days between 2001 and 2019 obtained from the National Geographic Institute of the DRC.

The United Nations World Population Prospects estimates the 2022population of DRC
to be 95,240,792 inhabitants with a population growth rate of 3.19%, the highest in the
world and the population projected to surpass 100 million in 2024 and double its population
by 2047. The fertility rates in DRC of 6.11 births per woman is also among the highest in
the world. However, since the invasion of DRC in 1996 by neighbouring countries mainly
Rwanda and Uganda and the second war of invasion in 1998, also called the African world
war, the deadliest conflict on earth since the Chinese Civil War with an estimated over
6 million civilian deaths from 1993 to 2003 alone and 47% of the deaths were children
under 5. In the economic war in DRC, which is still ongoing, 90% of soldiers died from
malaria and disease and displaced a huge percentage of the population, which makes the
DRC one of the most challenging environments for health development in Africa with
many issues that a rapidly increasing population can exacerbate such as ongoing conflict,
lack of modern health services in addition to major health problems, the EBOLA pandemic,
HIV/AIDs as well as rape, human trafficking and child labor [10,11].

2.1.2. Type of Study and Data Collection

This was a retrospective longitudinal ecological study. We exploited the Mettelsat
database for meteorological data on the one hand and the Epidemiological Surveillance
Directorate (ESD) database including malaria data from 2001 to 2019 on the other hand.

The ESD database is centralized data of 26 provincial health directorates of the DRC
including all malaria cases registered in the surveillance system based on positive blood
test results, either by microscopy or by a rapid diagnostic test for malaria, which was used
to estimate malaria morbidity by province of the DRC.

Climatic data, including total rainfall quantity, temperature, wind speed, total evap-
oration under shelter, and average relative humidity, were measured on a permanent
basis using different weather stations in the DRC. The distribution of these stations takes
into account the variability of the different eco-zones with respect to their climate, their
proximity to rivers and altitude. Geographic data are collected at the National Geographic
Institute including longitude, latitude, altitude, seasons and hydrography (Figure 2).
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Figure 2. Data collection flow chart. DRC METTELSAT; National Agency of Meteorology and Remote
Sensing by Satellite of the DRC. DRC DSE: Epidemiological Surveillance Directorate of the DRC.

Results

This figure shows that malaria and climate data were collected separately and then
merged for the analyses.

2.2. Sampling

Sampling was conducted in three stages as follows: In the first stage, we drew lots
from the Provincial Health Directorates (PHD) with at least one weather station. In total,
the DRC has 26 PHD. For the malaria data, 13,332,072 observations were selected for our
analysis. These are 26 provinces x 19 years x 52 epidemiological weeks x 519 Health
Zones or the total of 13,332,072. In the second stage, we selected the health zones with
meteorological data. We reduced the observations by grouping them into 26 provinces,
19 years, 52 epidemiological weeks. Outliers and incomplete data reported by some health
zones represented less than one percent for the 26 provinces from 2001 to 2019 (Figure 3).
Outliers were removed during the data cleaning process. Missing data were replaced by the
mean value imputation technique. In the third stage, we have the malaria cases completely
and correctly recorded in the database. The data were reduced in terms of 26 provinces
and 19 years. This gives a total of 494. This allowed us to forecast malaria prevalence to
2036 (Figure 3).

Global Data(n=13,332,072)

Data reduction (n=511,772)

Remove Errors Data by Provinces, Years, and Month(n=5928)

Select Forecast Data Priorities (n=494)

Figure 3. Sample flow chart for the analysis.

Statistical Methods

The raw data from the different sources mentioned above were cleaned, recoded and
merged into a single Excel file. The imputation technique of mean values was used to
fill in missing data. The data were analyzed using Stata, R for Windows 4.1.3, R-studio
2022.02.3 (Vienna, Austria) and ARC-GIS 10.2 (ESRI, Redlands, CA, USA). Flat sorting and
calculations of measures of association were performed on the collected data. Variables
were compared using Spearman correlation analysis. Finally, the modeling and forecasting
of malaria epidemic episodes to 2036 was done by combining several time series models
as follows:

Let X; be a time series with the following general additive structure:

Xt =my+ st + €
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m; is the trend which can be linear, polynomial, exponential ... It corresponds to the
evolution over time independently of seasonal fluctuations.

s¢ is the seasonality, i.e., a periodic component of period d such that 3d, Vt,s; 5 + s;.
Seasonality corresponds to pure seasonal variations. ¢; is the residual or noise of the
time series.

The trend and seasonality correspond to the deterministic part of the series, the noise
is the random component.

The study of time series has two aspects, on the one hand the extraction of the
deterministic character and on the other hand the determination of a model for the noise.
These two steps are necessary to be able to make forecasts.

To evaluate the predictive performance of a model, it is common to divide the available
data into a “training set” and a “test set”, i.e., to separate the data set into two parts: one
to estimate the number and value of the model’s parameters, the other to test the model’s
predictions [10] (Figure 4). The use of a test set allows us to know if the model makes
relevant predictions when confronted with new data. In this case, we have divided our
data series into a training set and a test set of sizes 90% (or 205 months) and 10% (or 23
months), respectively. Thus, we calculated the forecast errors on a test data set size of 228
months (19 years at a frequency of 12 months). Sequential ensemble methods were used to
select the training set and the test set.

Training data Test data
- e & & & & & & & ® & o e o o e & & e o e & & & & > fime

Figure 4. Training set and a test set.

The most commonly used forecast validation metrics are the MAE (Mean Absolute
Error) and the RMSE (Root Mean Squared Error) whose formulas are as follows:

RMSE = (§i — yi)?

S|
=

MAE = mean(|e; | )

With:
ep =error= §i—yili —1
N A .
MAPE = l Z:i:1‘ yl._yl |
n i
with:

n = number of data
yi = predicted data
yi = reserved data

Optimal model selection [12,13].

The Box-Jenkins SARIMA approach and the combination of several forecasting models
(ETS, ARIMA, STL-ETS, NNAR, and TBATS) was implemented. Using malaria case count
data from the last 19 years (228 months) of observations, we model and forecast malaria
episodes to 2036.

3. Results
3.1. Spatial and Temporal Distribution of Malaria Morbidity and Mortality

Malaria prevalence in South Kivu was 7700 cases per 100,000 people at risk over the
past 19 years. Several provinces reported between 4980 and 7700 cases per 100,000 people
exposed. In the northwestern part, there is Kinshasa, Equateur and North-Ubangi. In
the center of the country, we find Kasai Central and Oriental. In the southeastern part of



Int. |. Environ. Res. Public Health 2022, 19, 12271 6 of 28

the country, there is Haut-Uélé and Sud-Kivu. The orange color symbolizes the malaria
prevalence ranging from 4310 to 4980 cases per 100,000 exposed persons (Figure 5).

Malaria Lethality in DRC from 2001 to 2019

Malaria Lethality (%)
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Figure 5. Spatial distribution of malaria morbidity and mortality from 2001 to 2019. Note: The legend
of the provinces, see the Appendices A and B.

Malaria killed the most people in Sankuru with a case fatality rate of 0.526%, followed
by Kasai (0.430%), Kwango (0.415%), Bas-Uélé (0.366%) and Kwilu (0.346%).

3.2. Temperatures (in °C)

Describing the variability of temperatures, it is very useful to carry out a detailed
analysis of the results obtained with these variables. In this case, it is necessary to determine
the trends in temperature values over the 19-year period from 2001 to 2019 (Average
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temperatures are calculated by year and by province). The three variables in question
(average temperatures [Tmean], maximum temperatures [Tmax] (Figure 6) and minimum
temperatures [Tmin]) therefore take into account the air temperature values near the surface,
and are presented separately. The following figure describes the variability of near-surface
air temperature for the different measurement stations considered.

Mean Temperatures (°C) in DRC from 2001 to 2013

December
Movember Temp. [F]
October
September 28.0
% August 27.5
= July 27.0
June 26.5
May 26.0
April 235
March
February
January
26 27 28
Mean Temperature [F]
Max Temperature in DRC from 2001 to 2019
i Max Temperature ("C)
N B [15.9,24.9)
O [24.9254)
0O [254,256)
B [256,26.8]
KGC
SourcesMETTELSAT, 2022
OpenSireetap contributors.
Tiles =tyle Eric PANZI, Bicstatiztician-Epidemiclogizt. 0.004 km

carnography 3.0.1

Figure 6. Evolution of average temperatures from 2001 to 2019 (for the legend of the provinces, see
the Appendices A and B).

Distributed by geographical entities, it is clear that the average temperatures are
divided into three regions. The northwestern part is the warmest with average temperatures
ranging from 25.4 °C to 26.8 °C. In Tshopo and the center of the DRC, temperatures range
from 24.9 to 25.6 °C. Finally, it is between 18.9 and 24.9 °C in the southeastern part of the
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country. Over the course of the year, temperatures begin to rise gradually from January to
May. These increases are between about 1 °C and 2.7 °C. Then, a significant drop is seen
between June and August. This cycle starts again from September to January of the next
year. Other maps showing weather variables and malaria forecast maps can be found in
the Appendices A and B (Figures A1-A12).

3.3. Time Series Profile

The different steps of the stochastic modeling of the Malaria series are the following:
(1) Identification of the series, (2) Diagnosis of the series, (3) Choice of model, (4) Diagnosis
of the quality of the model, (5) Adjustment of the model, (6) Validation of the model,
(7) Forecasting.

To begin, let us present the temporal evolution of all the variables of the study in the
following Charts (Figure 7):

EICIET

paadspuips,  UwWdwa]

2DIDE 2DIEII3 ZDID? 2DIDB 2DIDQ 2010 20‘11 2DI12 2DI13 2DI14 2DI15 2DI1I3 2017 2018 2DI19
Time
Figure 7. Evolution of study variables from 2001 to 2019. The legends of the variables are shown in
the Appendices A and B. Note: The number of malaria cases is obtained by multiplying the absolute
number on the y axis by 10°.

All of the study variables follow an oscillating pattern over the past 19 years. A general
trend, probably driven by weather parameters, is detected as well as cyclical trends. Later
on, we will see how to predict future occurrences, and the uncertainty of these predictions,
from the recorded data.

3.3.1. Identification of the Time Series

We use the “Palmet” series, which represents the number of malaria cases between
January 2001 and December 2019 in DRC (Figure 8).
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Malaria

2000

1500

1000

500

Malaria cases from 2001 to 2019

20 100 150 200

Time

Figure 8. Trend in malaria cases from 2001 to 2019, which illustrate that the evolution of malaria
follows an increasing trend with oscillations recorded between 2001 and 2019 in DRC. Note: The
number of malaria cases is obtained by multiplying the absolute number on the y axis by 103.

An oscillating trend is observed between 2001 and 2004. In contrast, a linear and
increasing trend is observed between 2005 and 2019. The variance of malaria cases does not
always appear to be constant around the seasonal mean in the short term, but it remains
relatively stable over longer periods. The annual cycle is also clearly repetitive. This Chart
confirms the sharp increase in malaria episodes in the first and last quarter. The downward
trend is observed in the third quarter.

3.3.2. Modeling Choices

In order to model the stochastic part of the series, we start by removing the determin-
istic part (trend + seasonality). We can then identify and model the stochastic part. In this
case, we use the moving average method. We estimate the trend and the seasonality in a
non-parametric way by the moving average method (Figure 9).
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Decomposition of additive time series
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Figure 9. Decomposition of the “Palmet” time series. Note: The numbers on the y-axis represent the
absolute number multiplied by 1000.

Palmet: Our forecasting model was named weather malaria (in French
“paludisme météorologie”).

The “Palmet” series follows a linear trend over the last 19 years. However, there are
seasonal fluctuations that oscillate around the general trend on a regular basis during the
study period. After decomposing the Palmet series, the random (stochastic) component
shows low variabilities around the mean. This justifies a modeling of the Stochastic part.

Over the past 19 years, malaria episodes have shown high monthly variability around
the average, with a peak in April. It decreases to lowest values in June, but rises again to
maximum in July, September, October and November (Figure 10).

Seasonal plot: Malaria cases(2001-2019)

2000000 -

1500000 -

1000000 -

Malaria cases (millions)

500000 - g Je

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mow Dec
Month

Figure 10. Seasonality of malaria episodes in DRC from 2001 to 2019.
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3.3.3. Diagnosis of Seasonality

To diagnose seasonality, we used the autocorrelation test. Just as correlation measures
the extent of a linear relationship between two variables, autocorrelation measures the
linear relationship between lagged values in a time series.

If the test of stationarity of the series were confirmed, by “difference”, the second step
in the diagnosis of the series would be the analysis of autocorrelations. Two indicators are
then used: Total autocorrelation (ACF) and partial autocorrelation (PACF). These indicators
can be examined by Charts or by numerical analysis.

There are several autocorrelation coefficients, corresponding to each panel in the shift
plot. For example, r; measures the relationship between y; and y;_1, ¥ measures the
relationship between y; and y;_, and so on.

The top ten autocorrelation coefficients for the mean annual malaria cases data are
shown in the following Table 1:

Table 1. Autocorrelation coefficients.

Coefficient 7 7

r3 Ty 5 L r7 rg 9 10

ACF 1.000 0.455

0.428 0.346 0.308 0.301 0.209 0.219 0.146 0.139

PACF 0.455 0.279

0.107 0.071 0.089 —0.037 0.038 —0.037 —0.001 —0.020

ACF

The Box-Pierce test was used to deduce the significance of total autocorrelations (ACF)
at the 5% significance level.

The null hypothesis of these tests is HO: suggests the absence of autocorrelation
(between 1 and the maximum lag indicated in parameter). Below is the implementation of
the Box-Pierce test in R:

data: Palu

X-squared = 2284.5, df = 24, p-value < 2.2 x 1071,

We reject HO because p-value = 2.2 x 10716 << 5%.

The autocorrelation coefficients are plotted to show the autocorrelation function known
as a correlogram.

For the total autocorrelation (ACF), we see that rq is higher than for the other lags.
This is due to the seasonal pattern of the data: peaks tend to be one quarter apart and
troughs one quarter apart. All total autocorrelations (ACF) are significant. As for partial
autocorrelation (PACEF), r4, 13, 19 and 11y are more negative than for the other lags because
the troughs tend to be two quarters behind the peaks.

3.3.4. Charts Visualization: Correlograms

A total autocorrelation (a partial autocorrelation) is significant at a lag of order p (resp.
order q) when the “bar” at that lag falls outside the confidence interval (except for the lag of
order 0, the first bar). It can be seen that for the total autocorrelation (ACF), autocorrelations
of order 1 to 10 are significant. For PACF, the significant partial autocorrelations are those
of order 1 to 2 (Figure 11).

Series Malaria Series Malaria
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Figure 11. Total and partial autocorrelation. The blue dashed lines indicate whether the correlations
are significantly different from zero.
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Cases

The performance of the predictions depends on the size of the prediction errors. It is
a matter of comparing the predictions with the actual observed values. The smaller the
training data, the better the method performs (Table 2).

Table 2. Test for evaluating the accuracy of the forecasts.

Coefficient Test RMSE MAE MAPE MASE
Mean Training set 282,904.4 214,217.7 34.25161 1.0000000
method Test set 188,203.0 188,203.0 14.82961 0.8785594
Naive Training set 430,145.4 341,277.7 89.74833 1.593135
method Test set 524,529.7 524,529.7 41.33075 2.448582
Seasonal Training set 276,096.8 191,684.1 33.11892 0.8948098
naive method Test set 541,065.0 541,065.0 42.63366 2.5257712

It is obvious from the Charts below that the naive seasonal method is the best for
these data, although it can still be improved, as we will discover later. Sometimes different
measures of accuracy lead to different results as to which forecasting method is more
appropriate. However, in this case, all results indicate that the seasonal naive method is
the best of the three methods for this data set (Figure 12). The results can be seen in Charts
below (Table 3).

Annual forecast of the number malaria cases in DRC

2000-

|
TTTATONTRNOTINY  orecas

|- Mean
1000- 7 Naive

& -
A% Beasonal naive

500-

1 1 1
2000 2010 2020 2030
Year

Figure 12. Annual forecast of malaria cases to the end of 2036. Note: Malaria cases are obtained by
multiplying the absolute number on the y-axis by 103.

Table 3. Predictive models for malaria episodes over the next 16 years.

Model ETS ARIMA STL-ETS NNAR TBATS Combination
Value 341,546.2 503,800.4 214,444.0 151,692.0 334,506.0 309,197.7

Here, the best method is the seasonal naive method (regardless of the accuracy
measure used).

3.3.5. Forecast Combinations

Using malaria case count data from the last 19 years (228 months) of observations, we
modeled and predicted future malaria infestations for the next 200 months using forecasts
from the following models: ETS, ARIMA, STL-ETS, NNAR, and TBATS; and we compare
the results (Figure 13).
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Figure 13. Point forecasts from various applied methods of malaria episodes in DRC.

The combined model approach predicts an exponential increase in malaria episodes
over the next 16 years in DRC. The combinatorial approach was used to improve the
accuracy of the forecasts.

3.3.6. Predictive Models

The NNAR is particularly well suited to this series while the combined approach is
twice as good as the component method. In the next 16 years, there will be an average
increase of 309,198 new malaria infestations per year per province (Table 3).
3.3.7. Final Model Selection

Before selecting the final model for the prediction, several models are proposed and
compared (Table 4).

Table 4. Deterministic model (Regression with ARIMA (1,0,1).

Arl mal xreg
errors Coefficients 0.9749 —0.8733 6420.4719
se 0.0206 0.0419 419.2883

02: 4.045 x 1010
log likelihood: —3106.59
AIC: 6221.19
BIC: 6234.9

The time series models presented above allow for the inclusion of information from
past observations of a series, but not for the inclusion of other information that might also
be relevant. If we want to include external variables that can explain some of the historical
variation and can lead to more accurate forecasts, we need to exploit dynamic regression
models that take into account the subtle variation in time series. In this case, we will use
the deterministic and stochastic model and then compare them.

A deterministic trend is obtained by using the regression model:

yt = Bo + Bt +ny,

where 1; is an ARMA process.
The following equations are generated:

y; = 4414.273 4 6420.4719¢ + 1,

n; = 0.9749n, | — 0.8733n,_, + &
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e+ ~ NI1D(40450000000)

Each year, there will be an average of 6420 of the new malaria cases per health facility.
Our stochastic trend model is estimated as follows (Table 5):

Table 5. Stochastic model (ARIMA (2,1,2).

AR1A AR2 MA1 MA2 DRIFT
Coefficients —1.0052 —0.1915 0.1068 —0.8216 6024.074
se 0.0763 0.0758 0.0477 0.0471 1711.044

02: 3.814 x 1010
log likelihood = —3086.09
AIC: 6184.18
BIC = 6204.73

The model can be written as:

Y — i1 = 6024.074 + 7',

Yi = yo -+ 6024.074¢ +
My =M1 + 0.106851571 + Et
¢+ ~ NI1D(38140000000)

In this case, of the stochastic model, the annual increase in malaria cases is 6024.07
per health facility. Although the growth estimates are similar, the prediction intervals are
not, as shown in Figure 14. In particular, the stochastic trends have much wider prediction
intervals because the errors are not stationary.

There is an implicit assumption with deterministic trends that the slope of the trend
will not change over time. On the other hand, stochastic trends can change, and the
estimated growth is only assumed to be the average growth over the historical period,
not necessarily the growth rate that will be observed in the future. Therefore, it is safer
to forecast with stochastic trends as our final choice of model, especially for longer fore-
casting horizons, because the forecasting intervals allow for greater uncertainty about
future growth.

Forecasts from trend models

@ 36+06 -
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O
& Forecast
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- Stochastic trend
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_lﬂ
-2 12+06-
®
[y
=
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Figure 14. Forecast of the annual number of malaria cases in DRC using a deterministic trend model
and a stochastic trend model.
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3.4. Climate Predictors Associated with Malaria

We also modelled the relationship between malaria morbidity and climate factors be-
tween 2001 and 2019 adjusting for spatio-temporal variations to identify climatic predictors
of malaria (Table 6).

Table 6. Multivariate time series analysis of Geoclimatic factors and Malaria Morbidity.

TEUS
20 -
15-
18- l
a5o-
2
TP R -
75.0-
[ ]

a0 -
30-
20- **
1E|' -"‘
18- "%
1 .
2
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RD: Rainy day (day/month)
TEUS: Total evaporation under shelter (pitcher)
P24: Precipitation of 24 H (mm)
Tmin: Min. temperature (°C)
WS: Wind speed at 2 m above the ground (m/s)
RH: Relative humidity (%)
Figure 15 shows the correlation matrix. Spearman correlation analysis indicates a
statistically significant association between evaporation within two meters of the ground
and the number of annual malaria cases (r = 0.25; p < 0.001).
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Figure 15. Scatterplot matrix of Spearman correlation.
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Explanatory Variables B IC 95% Pr (> | F-Statisticl)

(Intercept) 653,071 —4,549,211 to 5,855,353 0.804

Evaporation 13,285 7632 to 18,937 0.00001

Soil moisture 39,233 28 to 78,438 0.049
Total rainfall quantity 3058 198 to 5919 0.036
Minimun temperature —184,707 —322,025 to —47,390 0.008
Wind speed —8833 —104,307 to 86,641 0.855
Precipitation 24 h 4581 —2428 to 11,590 0.1991
Average number of rainy days —23,287 —61,872 to 15,297 0.235
Density 1320.87 (1114.22 to 1527.51) <0.001

Legend:

Ly Fed HY sN3al

Sh

[*** indicates statistically significant

A statistically insignificant association was observed between the rest of the climate
variables and the number of annual malaria cases.
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Based on the historical average values of geoclimatic factors (all else being equal), over
the next 16 years, the number of malaria cases will increase by its historical average value
of 653,071 cases per year.

In addition, for each annual increase of one unit of evaporation at two meters above
ground, the absolute number of malaria cases will increase by its historical average value
of 13,285 cases. This change is statistically significant (p < 0.0001).

Year-over-year, when relative soil moisture increases by an average of one percent, the
average number of malaria cases will increase by an average of 39,233 cases. A statistically
significant change (p = 0.049).

Similarly, the annual increase in heavy rainfall in millimeters will result in an increase
in malaria cases from its historical average of 3058 cases per year. This increase is statistically
significant (p = 0.049).

Similarly, when the density increases by one inhabitant per square kilometer from one
year to the next, the average number of malaria cases will increase by 1320 cases compared
to its historical value (p < 0.001).

On the other hand, a one-degree Celsius increase in minimum temperature each year
will result in an average decrease in malaria cases by 23,287 of its historical average value
per year (p = 0.008).

4. Discussion

Malaria is caused by infection with protozoan parasites of the species Plasmodium.
Plasmodium falciparum is widespread in Africa, while P. vivax, P. ovale and P. malariae
infections are less common and geographically limited [14,15].

Globally, the number of malaria cases is estimated to be 228 million in 2018 (95%
confidence interval [CI]: 206-258 million), compared with 251 million in 2010 (95% CI:
231-278 million) and 231 million in 2017 (95% CI: 211-259 million) [16].

In DRC, our results show an average malaria prevalence of the last 19 years of 13,246
(11,783.83-1417.83) cases per 100,000 people at risk. This prevalence increases signifi-
cantly during the whole study period. The year 2002 was more morbid with 29,137.99
(12,094.51-38,304.56) cases per 100,000 persons at risk.

Most cases in 2018 (213 million or 93%) were recorded in the WHO African region,
far ahead of the Southeast Asian region (3.4%) and the Eastern Mediterranean region
(2.1%) [16]. Our study showed that malaria-attributable mortality had reached 117.33
(71.08-163.58) malaria deaths per 100,000 people exposed to malaria in 2002. In 2008, the
lowest level recorded was 19.04 (14.14-23.35) malaria deaths per 100,000 people exposed
to malaria. In general, malaria mortality has been declining dramatically over the past
19 years.

The same observations were made by WHO 2019 showing that on a global scale,
malaria incidence declined between 2010 and 2018 from 71 cases per 1000 people at risk
of malaria to 57 per 1000. Nevertheless, this decline slowed considerably between 2014
and 2018, with incidence decreasing to 57 per 1000 in 2014 and remaining at a similar level
through 2018 [16].

The WHO Africa region alone accounted for 94% of global malaria deaths in 2018.
Yet, it also accounted for 85% of the 180,000 fewer deaths from the disease compared to
2010 [16]. Nearly 85% of global malaria deaths in 2018 were concentrated in 20 countries in
the WHO African region and India. Nigeria alone accounted for nearly 24% of these deaths,
followed by the Democratic Republic of Congo (11%), the United Republic of Tanzania
(5%), and Angola, Mozambique, and Niger (4% each) [16].

In our study, Spearman’s correlation analysis indicates a statistically significant as-
sociation between evaporation at two meters from the ground and the number of annual
malaria cases. A statistically insignificant association was observed between the rest of
the climate variables and the number of annual malaria cases. In contrast, in South Africa,
a statistically significant association between all climate variables studied and monthly
malaria cases was reported where minimum temperature had the highest correlation
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(R =0.39; p < 0.001), followed by total quantity of rainfall at two meters altitude and mean
temperature (r = 0.35; p < 0.001, r = 0.35; p < 0.001), then relative humidity and maximum
temperature with (R = 0.29; p < 0.001, r = 0.25; p < 0.001), respectively [17].

This difference could be related to the disparity in transmission levels in Africa, both
in intensity and in seasonality and regularity. This disparity has consequences at several
levels: biological, immunological, pathological, etc. Subjected to a strong and permanent
plasmodial infection, the population develops a premunition, a temporary immunity,
non-sterilizing and maintained by the infection, itself maintained by the transmission.

It should be noted that South Africa is located in an area where transmission is regular
every year, with a long seasonal interruption of about 6 months, linked to the rhythm of the
rains. The populations of these areas have a very high degree of resistance to malaria but
are not totally free of “moderate” malaria attacks and may be susceptible to severe malaria
attacks in case of plasmodial infections by foreign strains [18].

Wilson's classifications of epidemiological facies as “models” reflect the dynamics
of host-vector-parasite relationships in different environments, and he points out that all
intermediate situations can be found within and between these basic models.

There are seasonal variations in the intensity of transmission, but no interruption,
however brief. Transmission is generally by An. gambiae and An. funestus. This mode of
transmission is well illustrated by the degraded forest areas of Central Africa (DRC, Congo,
Cameroon, etc.).

This approach by Wilson highlights the transmission/malaria disease relationships,
taking into consideration the intensity of transmission (chance of infection or frequency
of infection), the duration of transmission with its regularity from one year to the next
(transmission continues nearly all-year round or annually recurring season or seasons of
malaria transmission), the ecological variables (altitude, temperature, humidity) with the
relative development of immunity. Variations in these different variables are reflected
in variations in the classical malaria indices (splenic index, plasmodic index) but above
all in malaria morbidity according to age groups and general mortality in the event of
an epidemic.

Some authors agree with Wilson’s categorization of epidemiological facies where the
DRC/Zaire is located in the Degraded Forest Zone: permanent transmission (=Wilson’s
Group I): where malaria is endemic with intense and permanent transmission [19].

The results of our study reveal a negative but not statistically significant association
observed between the remaining number of annual malaria cases and wind speed, number
of rainy days, maximum and minimum temperature. Our results concur with those found
by Lindsay et al. showing a negative but statistically significant association between rainfall
and malaria cases, which could be due to the fact that the breeding sites were washed away
by heavy rains [20].

The significant relationships observed with a lag of more than one month between
malaria onset and associated climatic variables (p < 0.05), such as rainfall and minimum
temperature at two months, suggest that climatic conditions in a given year (early onset of
rains, especially those associated with La Nifia conditions and tropical cyclones) may affect
malaria transmission in the following year.

Periods of heavy rainfall combined with low temperatures and high relative humidity
promote saturated soil moisture, which prolongs the life of water pockets and may result
in the persistence of larval habitats [21,22].

Several forecasting models were used in this study to predict future malaria episodes.
Some authors used the SARIMAX model to forecast monthly time series of malaria cases
using the SARIMA Box-Jenkins approach and multiple linear regression (MLR). The forecast
shows that the number of malaria cases remains high until July, which is normally a period
of low malaria transmission, indicating a change in the malaria season [17].

For Kumar et al. [23], the autoregressive integrated moving average, ARIMA (0,1,1)
(0,1,0) 12, was the best fitting model and could explain 72.5% variability in the time series
data. Rainfall (p = 0.004) and relative humidity (p = 0.001) were found to be significant
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predictors for malaria transmission in the study area. The seasonal adjustment factor (SAF)
for malaria cases showed a peak during August and September. Although ARIMA time
series analysis models are a simple and reliable tool for producing reliable forecasts for
malaria in Delhi, India, in our study however, the combination of several forecasts led to
higher forecast accuracy.

The combination of multiple model forecasts (ETS, ARIMA, STL-ETS, NNAR, and
BATS) fit better and led to greater accuracy in modeling and forecasting for future malaria
infestations over the next 200 months. The results were virtually unanimous: the combined
model approach predicts an average increase of 309,198 new malaria infestations per year
per province over the next 16 years in DRC. However, the NNAR predictive model was
particularly well suited in this series.

Wangdi et al. [24] also found that ARIMA (2,1,1) (0,1,1) 12 was the best possible model
for predicting malaria cases in Bhutan. In the same vein, The ARIMA model has also
been used for malaria case prediction in Sri Lanka [25] and Ethiopia [26]. To evaluate the
predictive performance of our model, we divided our data set into a training set and a test
set of sizes 90% and 10%, respectively.

The mean absolute scaled error (MASE) as a measure of the quality of the predictions
made by our models showed that the naive seasonal method was the best of the three
methods for this data set with a MASE of 0.894. Recall that the closer the MASE is to zero,
the better the forecast.

Our forecasting horizon was set at 2036, and it was desirable and wise to finally
retain the stochastic model, as it is safer to forecast with stochastic trends, especially for
longer forecasting horizons, as the forecasting intervals allow for greater uncertainty about
future growth.

Our stochastic model predicts an average annual increase of 6024.07 new malaria cases
per facility.

As for the estimated seasonal component, this study shows a slight decrease in malaria
cases from January to February throughout the study period, rising again in March and
reaching the peak in April. It declines to lowest values in June, but rises again to the peak
in July, September and November. In addition, malaria is present almost year-round in
the DRC due to the tropical climate and the country’s extensive river system. The DRC
has about 30 major rivers with at least 20,000 km of shoreline and 15 lakes with about
180,000 km of shoreline.

As for the “seasonality” component, this study reveals that the “Palmet” series will
have variation between months simply due to the different number of days in each month,
in addition to the seasonal variation in future years. This disparity is closely related to
the variability of precipitation during the study period showing very intense palustrine
episodes from January to June and then from September to December. On the other hand, a
decrease in rainfall is observed between July and October (dry season).

The relief of the DRC can also have an impact on the seasonality of malaria. There
is a vast low-lying area in the center of the country, which is a plateau shaped by the
westward flowing river basin and covered by a large tropical forest. This area is surrounded
by mountainous terraces such as the Mitumba Mountains in the east and the Virunga
Mountains in the north, savanna-covered plateaus in the south and southwest, and the
north is bordered beyond the river by dense forest. High mountains are found at the eastern
end of the country (Great Rift region).

A study conducted in Kenya shows an increase in malaria cases in the high and
medium altitude areas while in the riverine and lowland areas, the number of malaria cases
had significantly decreased as of 2011, during the study period [27].

Finally, our results of the multivariate time series analysis showed that over the next
16 years, the number of malaria cases will increase from its historical average value of
653,071 cases per year due to increase in geo-climatic factors such as evaporation under
shelter at two meters from the ground, relative soil moisture, high rainfall and population
growth with a density of one inhabitant per square kilometer will significantly increase
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the number of malaria cases from its historical mean value each year. On the other hand,
increasing the minimum temperature by one degree Celsius each year will lead to an
average decrease in malaria cases by 23.287 of its historical average value per year.

Our previous study conducted in 2022 showed that the number of rainy days resulted
in a statistically significant 7% increase in malaria cases with malaria morbidity significantly
associated with geographic location, total evaporation under shelter, maximum daily
temperature at two meters altitude, and humidity at two meters altitude [28].

Our results are similar to those of Solomon Kibret et al. in their study on environ-
mental and meteorological factors related to malaria transmission around large dams in
three ecological settings in Ethiopia, which showed that Rainfall (lagged 1 and 2 months)
was significantly associated with malaria incidence, but only at the lowland dam, while
minimum and maximum air temperatures (lagged 1 and 2 months) were significant factors
only at the highland dam [29].

The polynomial model Mopuri R et al. had predicted malaria cases with high pre-
dictive power and revealed that first lag malaria cases and population play a vital role in
malaria transmission. Similarly, mean temperature, rainfall and normalized vegetation
index had significant impact on malaria cases [30].

In the same perspective, the results of Nkiruka et al. suggest that, although the exact
association between malaria incidence and climate variability varies across geographic
regions, non-seasonal changes in three climatic factors (rainfall, temperature, and surface
radiation) contribute significantly to malaria occurrence [31].

The results of Sahai et al. agree with ours. The authors note that changes in rainfall
and temperature regimes probably play a major role in increasing the incidence of these
diseases in different geographical locations. A detailed analysis was conducted on the
incidence of malaria and diarrhea in two districts of Maharashtra State. It is found that
the increased likelihood of high (low) rainfall, high (low) minimum temperatures and low
(moderate) maximum temperatures are more (less) conducive to both diseases in these
areas, but with different thresholds [32].

5. Conclusions

The purpose of this study was to forecast malaria episodes to 2036 using the epidemi-
ological and meteorological model in order to strengthen the surveillance and response to
diseases with epidemic potential throughout the DRC. The results of the predictive analysis
showed that malaria transmission is highly seasonal in the DRC despite being endemic in
the country.

Our stochastic trend model predicts an average annual increase of 6024.07 malaria
cases per health facility. As such, this model forecasts an exponential growth of epidemic
waves over the next 200 months of the study.

Furthermore, the geo-climatic predictors most associated with malaria were geo-
graphic location (western, central and northeastern region of the country), total evaporation
under shelter, maximum daily temperature at two meters altitude. Finally, the average
number of malaria cases increased positively as a function of the average number of rainy
days, the total quantity of rainfall and the average daily temperature.

Therefore, the results of this research should provide relevant information for the
Congolese government to respond to malaria in real time by setting up a warning sys-
tem integrating the monitoring of rainfall and temperature trends and early detection of
anomalies in weather patterns.
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Appendix A

Table A1l. Malaria prevalence rate (P.100.000 persons at risk) in DRC, 2001-2019.

95% Confidence Interval

Year n Prevalence
Total Cases Person Years at Risk Lower Bound  Upper Bound

2001 26 2,931,016 57,536,316 5094.20 2918.33 7181.91
2002 26 17,318,171 59,435,015 29,137.99 12,094.51 38,304.56
2003 26 15,021,325 61,396,371 24,466.14 12,109.71 38,872.55
2004 26 4,251,830 63,422,448 6703.98 4406.78 8317.09
2005 26 8,041,313 65,515,392 12,273.93 7332.18 14,726.80
2006 26 5,581,162 67,677,401 8246.71 5065.45 10,856.70
2007 26 5,662,730 69,910,755 8099.94 5248.46 9886.56
2008 26 5,632,064 72,217,808 7798.72 5543.42 9439.33
2009 26 7,372,005 74,600,994 9881.91 7073.72 11,716.57
2010 26 8,515,264 77,062,827 11,049.77 7853.73 12,936.89
2011 26 8,930,122 79,605,900 11,217.91 8249.03 13,792.51
2012 26 9,377,143 82,232,897 11,403.15 9164.74 13,859.17
2013 26 9,842,772 84,946,581 11,587.01 9419.97 13,568.57
2014 26 10,964,357 87,749,819 12,495.02 10,555.09 15,394.83
2015 26 11,890,907 90,645,561 13,118.02 10,669.10 16,135.94
2016 26 14,146,386 93,636,868 15,107.71 13,125.69 18,196.94
2017 26 15,914,057 96,726,882 16,452.57 13,168.19 22,394.50
2018 26 16,760,860 99,816,895 16,791.61 14,362.18 20,381.75
2019 26 18,836,175 103,005,624 18,286.55 15,794.49 23,096.55
Total 494 196,989,659 1,487,142,354 13,246.19 11,783.83 14,174.83

Note: Figures in bold indicate malaria prevalence (P.100,000 persons at risk) significantly higher than the mean for
a period (p < 0.0001).

Table A2. Malaria case-fatality rate (Deaths per 100 cases) in DRC, 2001-2019.

95% Confidence Interval

Year n Lethality
Lower Bound Lower Bound

2001 26 0.67 0.43 0.91
2002 26 0.68 0.53 0.83
2003 26 0.52 0.38 0.67
2004 26 0.45 0.34 0.56
2005 26 0.33 0.25 0.42
2006 26 0.33 0.26 0.40
2007 26 0.33 0.26 0.39
2008 26 0.32 0.25 0.40
2009 26 0.28 0.22 0.34
2010 26 0.25 0.17 0.32
2011 26 0.29 0.21 0.37
2012 26 0.27 0.19 0.36
2013 26 0.29 0.19 0.40
2014 26 0.27 0.20 0.34

2015 26 0.23 0.18 0.29
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Table A2. Cont.

95% Confidence Interval

Year n Lethality

Lower Bound Lower Bound
2016 26 0.20 0.16 0.24
2017 26 0.15 0.11 0.18
2018 26 0.12 0.09 0.15
2019 26 0.11 0.09 0.14
Total 494 0.32 0.30 0.35

Note: Bolded numbers indicate malaria case-fatality rates that are significantly higher than the average for a given
period (p < 0.0001). Malaria case-fatality in DRC has been decreasing over the past 19 years, from 0.67 (0.43-0.91)
deaths per 100 positive test cases in 2001 to 0.11 (0.09-0.14) deaths per 100 positive test cases in 2019. This case
fatality varied significantly throughout the study period (p < 0.0001). From 2001 to 2002, malaria caused more
deaths in families with a case-fatality rate higher than 0.66%.
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Figure A1l. Malaria prevalence forecasts to 2020.
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Figure A2. Malaria prevalence forecasts to 2025.



Int. |. Environ. Res. Public Health 2022, 19, 12271 23 of 28

Malaria prevalence forecast to 2030
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Figure A3. Malaria prevalence forecasts to 2030.
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Figure A4. Malaria prevalence forecasts to 2035.
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Malaria prevalence forecast to 2036
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Figure A5. Malaria prevalence forecasts to 2036.

Appendix B

Evaporation (piche) in DRC from 2001 to 2019
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Figure A6. Evaporation (Piche) in DRC from 2001 to 2019.
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Evaporation under shelter (Piche) in DRC from 2001 to 2019
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Figure A7. Total evaporation under shelter (Piche) in DRC from 2001 to 2019.
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Figure A8. Min temperature (°C) in DRC from 2001 to 2019.
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Total rainfall(mm) in DRC from 2001 to 2019
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Figure A9. Total rainfall (mm) in DRC from 2001 to 2019.
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Figure A10. Speed wind (m/s) in DRC from 2001 to 2019.
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Max Temperature in DRC from 2001 to 2019
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Figure A11. Max temperature (°C) in DRC from 2001 to 2019.

Rainfall in DRC from 2001 to 2019
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Figure A12. Rainfall (mm) in DRC from 2001 to 2019.
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