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ABSTRACT 
 

This paper presents probabilistic analysis of structural capacity of pre-stressed concrete 
containments subjected to internal pressure using the Advanced Line Sampling Method 
(an efficient advanced Monte Carlo simulation technique, which gives more accurate 
results than FORM). This task is an important part of level 2 probabilistic safety 
analysis in the nuclear industry, particularly when a reactor is undergoing design 
assessment. We compare our calculation with experimental results from two 
international round robin test exercises (Sandia National Laboratories and Bhabha 
Atomic Research Centre) and calculations using FORM, which are available in the 
literature. Since the ultimate structural collapse mode of the structures has already been 
established, we simply attempt to probabilistically determine the failure pressure of the 
containment. Our results show close agreement with previous calculations and 
demonstrate that structural engineers who are not specialists in risk engineering can 
obtain accurate probabilistic analyses of their models using freely available software. 

 
NOMENCLATURE 
 
FORM: First Order Reliability Method 
PSA: Probabilistic Safety Analysis 
SNL: Sandia National Laboratories 
BARC: Bhabha Atomic Research Centre 
 
1. INTRODUCTION 
 
A pre-stressed concrete containment is a concrete 
structure designed to prevent the release of 
radiation from the core of a nuclear reactor to the 
environment. The structural reliability analysis of 
pre-stressed concrete containments is a key 
component of probabilistic safety analysis 
(specifically, level 2 PSA). The aim of this 
analysis is to determine the load conditions under 
which the structure will fail, for example we wish 
to determine if the structure will fail when a 
particular pressure is reached. 
 
This analysis is usually conducted probabilistically 
since the contributing factors to the strength of the 
containment are subject to two forms of 
uncertainty. Firstly, the containment may be 
subject to aleatory uncertainty since there will be a 
natural variability of material properties 
throughout the containment, e.g. the concrete 

density may be subject to small variations. 
Secondly, even if there is no aleatory uncertainty, 
we may still suffer from a lack of knowledge 
regarding certain properties of the containment, 
and we refer to this as epistemic uncertainty [1]. 
Once these uncertainties are modelled we can 
calculate the failure probability of the containment 
due to a certain applied load (i.e. the fragility). 
 
Various methods exist for calculating the 
probability of failure of a structural system. If the 
limit state function is linear and the random 
variables used to model the uncertainties are 
normally distributed, then the First Order 
Reliability Method (FORM) can be used. Even if 
these assumptions are not true, FORM is often a 
sufficiently accurate approximation for 
engineering purposes. However, if a more accurate 
calculation is required then the Monte Carlo 
Method can be used to obtain an unbiased estimate 
of the failure probability to arbitrary precision. 
Since the Monte Carlo Method relies upon random 
sampling there is an uncertainty in the failure 
probability proportional to the inverse of the 
square root of the number of samples. Assuming 
the samples are collected in serial this means that 
obtaining an accurate result can be very time 
consuming [2]. 



 
Fortunately, several ‘Advanced Monte Carlo’ 
methods exist to reduce the amount of time 
required by the Monte Carlo Method. These 
include Importance Sampling, Subset Simulation, 
Surrogate Model Methods (i.e. the Response 
Surface Methodology, Interval Predictor Models 
[3]) and Line Sampling. Each methodology has its 
advantages and disadvantages [4], for example 
Line Sampling is acknowledged as been the 
quickest but, in some situations, lacks accuracy. 
Subset Simulation is accurate and quick but is far 
more complex to implement than Monte Carlo 
Simulation. Surrogate Model Methods are subject 
to the weaknesses of the chosen surrogate model. 
Importance Sampling is simple to implement and 
quick, but often requires detailed knowledge of the 
engineering system being analysed (often this is 
the knowledge that we are trying to obtain by 
conducting structural reliability analysis!). 
 
In [6] the structural reliability of a concrete 
containment was calculated using FORM, 
Importance Sampling and Subset 
Simulation. This was compared to two 
experimental test cases (Sandia National 
Laboratories and Bhabha Atomic Research 
Centre) which were conducted as a round 
robin international test exercise. In this 
paper we repeat the analysis using the Line 
Sampling Method available in the 
OpenCossan and COSSAN-X Software. 
OpenCossan is an open source and free 
generalised uncertainty quantification 
software package, which is jointly 
developed by the University of Liverpool 
and the University of Hannover, with 
modules for reliability analysis, sensitivity 
analysis, design optimisation and surrogate 
models. Crucially, the OpenCossan 
software can be used to determine the 
optimal design for the containment, to 
reduce the design cost whilst still providing 
a satisfactory probability of failure. 
The software links to well-known structural 
engineering software automatically and can utilise 
high performance computing resources [5]. In this 
paper we aim to demonstrate that the Line 
Sampling Method available in OpenCossan is 
simple to use for novice users and obtains accurate 
results in a short amount of time. We also briefly 

describe the Response Surface method which is 
available in OpenCossan and may be useful when 
the performance function is not known explicitly. 
 
2. STRUCTURAL MODEL 
 
We consider a cylindrical concrete containment, 
and model the area and strength of the concrete, 
rebar, tendons and liner as normally distributed 
random variables. It would be more realistic to 
model these quantities as lognormally distributed 
random variables, however in this example it 
makes little practical difference as the Coefficient 
of Variation is reasonably low. In this study we 
will focus on the SNL containment. The properties 
of the Sandia National Laboratories containment 
are summarised in Table 1. 
 
This is the same structural model considered in 
[6], where P was varied to produce a fragility 
curve for the containment. [6] also contains a 
sensitivity analysis of the coefficient of variation 
distribution parameter for the random variables 
used in the model and justifies why the choices 
made are conservative in an engineering sense.  In 
[7] a similar analysis of a different containment 
model is conducted using imprecise probability 
techniques. 
 
Table 1: SNL Containment Properties 
Load and strength data  Mean 

Values 
CoV 

Concrete tensile strength, 
Fc  

4.4 0.2 

Liner yield, Fl� 382 0.2 

Rebar yield, Fs� 465 0.2 

Tendon yield, Ft 1740 0.2 

Design pressure, Pd  0.39 0.2 

Radius, R 5537.5 0.2 

Concrete area, Ac 312.85 0.2 

Liner area, Al 1.6 0.2 

Rebar area, As 6.85 0.2 



Tendon area, At 3.7 0.2 

 
The performance function of the containment can 
then be modelled using a simple load-strength 
relationship, i.e. 
 
� � #���� � ���� � ���� � ����$ � �	. 
 
By convention, the structure is deemed to fail 
whenever g<0. The region in the space of the 
arguments of g where g<0 is known as the failure 
region. The surface where g=0 is known as the 
limit state surface. The first order reliability 
method (FORM) utilises an analytic relationship 
between the point of maximum probability density 
on a linear limit state surface (the design point) 
and the failure probability, when the random 
variables are normally distributed. 
 
3. LINE SAMPLING METHOD 
 
3.1 INTRODUCTION 
 
The fundamental idea behind line sampling is to 
refine estimates obtained from the First-order 
reliability method (FORM), which may be incorrect 
due to the non-linearity of the limit state function. 
Conceptually, this is achieved by averaging the 
result of different FORM simulations [8]. In 
practice, this is made possible by identifying the 
importance direction in the input parameter space, 
which points towards the region which most 
strongly contributes to the overall failure 
probability. The importance direction can be 
closely related to the centre of mass of the failure 
region (or alternatively to the failure point with the 
highest probability density – the design point), 
which often falls at the closest point to the origin of 
the limit state function, when the random variables 
of the problem have been transformed into the 
standard normal space. Once the importance 
direction has been set to point towards the failure 
region, samples are randomly generated from the 
standard normal space and lines are drawn parallel 
to the importance direction in order to compute the 
distance to the limit state function, which enables 
the probability of failure to be estimated for each 
sample. This procedure is shown in Figure 1. These 
failure probabilities can then be averaged to obtain 
an improved estimate. 
 

 
 
3.2 Algorithm 
 
Firstly, the importance direction must be 
determined. This can be achieved by finding the 
design point, or the gradient of the limit state 
function. 
 
A set of samples is generated using Monte Carlo 
simulation in the standard normal space. For each 
sample �, the probability of failure in the line 
parallel to the important direction is defined as: 
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where �#�$ is the indicator function returning 1 in 
the failure region and 0 otherwise, �  is the 
important direction, 
  is the probability density 
function of a Gaussian distribution (and � is a real 
number). In practice the roots of a nonlinear 
function must be found to estimate the partial 
probabilities of failure along each line. This is 
either done by interpolation of a few samples along 
the line, or by using the Newton–Raphson method. 

The global probability of failure is the mean of the 
probability of failure on the lines:  
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where �� is the total number of lines used in the 
analysis and ��

#�$ are the partial probabilities of 
failure estimated along all the lines. 

For problems in which the dependence of the 
performance function is only moderately non-
linear with respect to the parameters modelled as 
random variables, setting the importance direction 
as the gradient vector of the performance function 
in the underlying standard normal space leads to 
highly efficient Line Sampling. In general, it can 
be shown that the variance obtained by line 
sampling is always smaller than that obtained by 
conventional Monte Carlo simulation, and hence 
the line sampling algorithm converges more 
quickly. 
 



It is unnecessary for engineers to have a detailed 
knowledge of the implementation of the algorithm, 
since all that is required to use the OpenCossan 
Algorithm is the choice of how to calculate the 
design point and the number of samples to be made. 
 

 
Figure 1: An illustration of the line sampling algorithm. Two 
line samples are shown approaching the limit state surface. 
 
4. RESPONSE SURFACE METHOD 
 
In some scenarios the exact performance function, 
and therefore limit state surface, may not be easily 
accessible. For example, this could be because a 
complex and time consuming finite element model 
is being used to predict structural response to a 
given load, or because only experimental data is 
available to describe the structural response of the 
system. In these cases it is desirable to construct 
an approximate performance function using 
mathematical methods from the field of machine 
learning. This process is known as surrogate 
modelling or metamodelling. Regression can be 
used to model the performance function or 
classification can be used to model the limit state 
surface. Once the model is constructed the 
appropriate analysis (e.g. Monte Carlo Simulation 
or Sensitivity Analysis) can be easily run on the 
metamodel at a negligible computational cost. 
 
Specifically, the most well-known and widely 
used metamodelling technique is the response 
surface method where a polynomial (usually 
second degree) is regressed against the known 
structural response data [2]. The main advantages 
of the technique over more sophisticated strategies 
(e.g. neural networks or kriging models) are that 
the coefficients of the model have an easily 
interpretable physical meaning which allows 

engineers to qualitatively understand the 
behaviour of the structural system. The method is 
also simple and efficient to implement 
computationally. The accuracy of the 
approximation can be easily judged by ‘holding 
out’ a test set of data from the response surface 
training process, and later comparing the 
predictions of the model with this test data to 
obtain the so-called coefficient of determination 
and mean squared error statistics. 
 
5. RESULTS 
 
The failure probability was calculated by Line 
Sampling in OpenCossan using 100 lines, with 6 
model evaluations on each line resulting in 600 
samples of the performance function being made. 
This gave a failure probability of 2.6�10-8 when 
P=Pd in a wall clock time of 2.2 seconds. The 
sampled lines are shown in Figure 2. The 
simulations concur with the values given in [6], 
which are summarised in Table 2. 
 
Table 2: Summary of Failure Probabilities for 
SNL Containment, P=Pd 

Method �� Standard 
Deviation of �� 

Line Sampling 2.6�10-8 7.0�10-9 
FORM 2.7�10-8 Not Applicable 
Importance 
Sampling 

6.7�10-8 1.8�10-9 

Subset 
Simulation 

7.8�10-8 2.4�10-9 

 

 
Figure 2: Plot of Lines used to calculate Failure Probability 
for SNL Containment, P=Pd 
 
When P=5.4Pd it is not appropriate to use the line 
sampling method, because the line sampling 
method is designed for problems with low failure 



probability (in other words when the limit state 
surface is far away from the mean of the random 
variables). When the failure probability is large it 
can be evaluated with the Monte Carlo Method. 
The results obtained in [6] are repeated in Table 3. 
 
Table 3: Summary of Failure Probabilities for 
SNL Containment, P=5.4Pd 

Method �� Standard Deviation of 
�� 

Monte 
Carlo 

0.489 0.005 

FORM 0.507 Not Applicable 
 
Our results show reasonable agreement with the 
results obtained from other methodologies. 
 
6. CONCLUSIONS 
 
The Line Sampling algorithm implemented in the 
OpenCossan software has been used to calculate 
the failure probability of a pre-stressed concrete 
containment. The failure probability is obtained 
accurately in a short amount of time, and the 
results obtained agree with experimental 
observation and previously calculated results. The 
software does not require specialist knowledge, 
outside of normal structural engineering domain 
knowledge. 
 
We recommend that analysts with high 
performance computing resources attempt to 
connect their Finite Element Solvers to the 
OpenCossan software, as the sophisticated 
algorithms in OpenCossan allow PSA to be 
conducted using models which would previously 
only have been feasible for deterministic analysis, 
due to the high computational costs required. 
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