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A B S T R A C T   

The low-cycle fatigue behaviour of quasi-brittle materials (e.g., concrete and rock) that is characterized by fa
tigue induced inelastic deformation significantly affects the integrity and serviceability of engineering structures. 
However, the low-cycle fatigue mechanism and fatigue-controlled fracture process of quasi-brittle materials is 
not clear. This paper develops a new cyclic cohesive zone model (CZM) for low-cycle fatigue of quasi-brittle 
materials. Based on in-situ stress and damage state, a nonlinear fatigue damage model is proposed and imple
mented into the cyclic CZM. The fatigue parameters are determined based on S–N curve. A worked example for 
monotonic and cyclic loading of concrete beam under three-point bending is presented to demonstrate the 
application of the developed numerical model. After validation against experimental data, the fatigue crack 
mechanisms are discussed and a comprehensive parametric study is carried out to investigate the effects of fa
tigue parameters, stress levels and loading sequences on the fatigue failure. It has been found that there are three 
stages for the development of crack mouth of displacement, i.e., crack initiation, stable growth and rapid fracture 
which are caused by combined static and fatigue damage, fatigue damage, and combined static and fatigue 
damage dominated by static damage, respectively. The developed cyclic CZM is practically significant and its 
parameters are easy to be determined based on S–N curve. It provides a new and useful tool for low-cycle fatigue 
crack modelling of quasi-brittle materials.   

1. Introduction 

Quasi-brittle materials including concrete, rock and ceramics, etc., 
are characterized by the presence of a fracture process zone with non- 
negligible size ahead of the crack tip [1,2]. The fracture of quasi- 
brittle materials is crucial for many engineering applications, e.g., 
structural durability and integrity, rock slope stability, hydraulic 
fracking, etc. The monotonic fracture responses of quasi-brittle mate
rials have been well understood and documented. However, the fatigue 
mechanism and fatigue controlled fracture process of quasi-brittle ma
terials have been less researched. For instance, concrete bridges are 
often subjected to cyclic loads from wind and wave effects to earth
quake- and traffic-induced wave propagation; from the material point of 
view, the mechanical properties of concrete are degraded and the 
degradation is dependent on the characteristics of the cyclic loads. 
Moreover, comparing to high-cycle fatigue, low-cycle fatigue usually 
generates inelastic deformation after every cycle which significantly 
affects the serviceability and safety of engineering structures [3–5]. In 

particular, some new techniques have been developed to stimulate low- 
cycle fatigue of rock to extract geo-energy, e.g., pulsating fracking [6,7], 
cyclic-thermal drilling [8,9], etc. Therefore, understanding the low- 
cycle fatigue fracture of quasi-brittle materials is highly desired for the 
anti-fatigue design of engineering structures and optimization of 
fatigue-assistant cracking activities. 

The S–N curve (load versus number of cycles to failure) is perhaps the 
most common and traditional tool for fatigue life assessment [10–12]. 
Through the S–N curve determined from cyclic loading tests at different 
constant stress levels, the remaining life or limiting stress for the desired 
structural life can be obtained. The S–N curve for the fracture of quasi- 
brittle materials can be obtained by the direct tensile test [4], three- 
point bending beam test [13], Brazilian disc test [14], etc. Although 
the experimentally established S–N curve is practical to be used for fa
tigue life assessment, it is insufficient to understand the fatigue fracture 
behaviour of quasi-brittle materials due to: (1) the S–N curve only pre
dicts the overall fatigue life of the materials while it does not consider 
the in-situ fatigue damage and crack propagation and; (2) the fracture of 

* Corresponding author. 
E-mail address: shangtong.yang@strath.ac.uk (S. Yang).  

Contents lists available at ScienceDirect 

Theoretical and Applied Fracture Mechanics 

journal homepage: www.elsevier.com/locate/tafmec 

https://doi.org/10.1016/j.tafmec.2022.103641 
Received 25 April 2022; Received in revised form 13 October 2022; Accepted 14 October 2022   

mailto:shangtong.yang@strath.ac.uk
www.sciencedirect.com/science/journal/01678442
https://www.elsevier.com/locate/tafmec
https://doi.org/10.1016/j.tafmec.2022.103641
https://doi.org/10.1016/j.tafmec.2022.103641
https://doi.org/10.1016/j.tafmec.2022.103641
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tafmec.2022.103641&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Theoretical and Applied Fracture Mechanics 122 (2022) 103641

2

tested specimen under constant loading amplitudes is unstable and it 
does not include the post-peak softening behaviour for the quasi-brittle 
materials. 

To predict the fatigue crack growth, Paris law is a widely accepted 
method which defines the crack extension per incremental number of 
cycles as a function of the range of stress intensity factor [15,16]. The 
fatigue crack propagation is normally divided into three stages: crack 
initiation (short cracks), stable propagation (long cracks) and fast crack 
propagation (final fracture) [15]. Paris law is supposed to model the 
stable propagation stage (60–80% of the entire fatigue life) for fatigue 
crack propagation [17]. Moreover, Paris law is based on the linear 
elastic fracture mechanics thus it can only be used for specimens with an 
initial crack for the determination of stress intensity factor. However, 
fracture in quasi-brittle materials is characterized by distributed post- 
peak softening damage within the fracture process zone (FPZ) where 
fatigue crack growth interacts with the progressive damage [18]. 
Therefore, theoretical justifications of Paris law for quasi-brittle mate
rials are required. 

Since Hillerborg et al. [19] first proposed the cohesive model to 
simulate discrete cracking in the FPZ of concrete, the cohesive zone 
model (CZM) has been widely employed to model the cracking of 
composites, rock, and coal given the same quasi-brittle nature [20–26]. 
Fig. 1a illustrates the relationship between the traction stress and sep
aration displacement for a typical monotonic cohesive law. There are 
three basic parameters in the monotonic cohesive law, i.e., penalty 
stiffness which should be significantly larger than the material stiffness 
to ensure that there is almost no deformation of the fictitious crack 
before crack initiation; cohesive strength which is the fracture strength 
of materials; fracture energy which is the energy required to make a unit 
area of a fracture surface complete separation (the area of OAM). The 
cohesive stress first linearly increases until the peak stress and then 
gradually decreases while the stiffness softens. The softening curve can 
be linear, bi-linear, exponential or other forms [27]. If unloading occurs 
during the softening, the stress will decrease by a slope of a damaged 
stiffness and return to the origin. It is clear that the monotonic cohesive 
law is not able to model the fatigue cracking because a fatigue load 
smaller than the cohesive strength will only cause repetitive linear 

elastic deformation. 
With the success of CZM in modelling the fracture of quasi-brittle 

materials, it would be ideal to extend the capability of CZM to fatigue 
crack growth simulation. A key to develop a cyclic CZM is to introduce a 
fatigue damage variable into the constitutive model. A common 
approach for developing cyclic CZMs is to directly employ a cycle- 
dependent degradation of strength or stiffness in the constitutive 
formulation (see Fig. 1c-d). Yang et al. [28] first proposed a cyclic CZM 
for fatigue crack growth in quasi-brittle materials and introduced a 
reduction of unloading stiffness for the unloading back to the origin. 
Through the degradation of stiffness, the fatigue damage at loa
ding–unloading cycles below the monotonic envelope were accumulated 
and thus the simulation of fatigue crack growth became possible. Roth 
et al. [29,30] developed a cyclic CZM and proposed a concept of cohe
sive zone potential to determine the stiffness degradation. However, in 
these cyclic CZMs based on stiffness degradation, the fatigue damage 
was accumulated after the first cycle so the crack initiation was not 
explicitly considered [17]. Khoramishad et al.[31–33] believed the 
fatigue-induced strength degradation should dominate in fatigue crack 
growth and developed a cyclic CZM based on strength degradation. Xi 
et al. [7] developed a cyclic CZM coupled with fluid flowing and 
considered fatigue-induced strength degradation for crack initiation. 
Nojavan et al.[17] proposed a cyclic CZM for unified crack initiation and 
propagation, in which the strength degradation determined the crack 
initiation and stiffness degradation determined the crack propagation. 
Benedetti and Gulizzi [34] developed a three-dimensional cohesive zone 
model for inter-granular high-cycle fatigue degradation in polycrystals 
and implemented it into boundary element method. 

However, the above cyclic CZM models all assume that the unloading 
path returns back to the origin, i.e., zero deformation, which is not true 
for low-cycle fatigue of quasi-brittle materials. Chen et al. [4] carried out 
the direct tensile tests of concrete under high stress levels (0.8–0.95 time 
of monotonic strength) and found that a significant portion of irre
versible displacement or inelastic deformation existed per loading cycle. 
To account for the irreversible displacement, Roe and Siegmund [35] 
proposed a cyclic CZM for interface fatigue crack growth simulation (see 
Fig. 1d). The Roe-Siegmund model is based on Needleman monotonic 

Fig. 1. Illustrations of monotonic and cyclic cohesive zone models: (a) monotonic CZM [19,54,55]; (b) cyclic CZM by stiffness degradation [7,33,56]; (c) cyclic CZM 
by strength degradation [29,30,45,57]; (d) cyclic CZM by both strength and stiffness degradation [35,58,59]. 
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CZM which describes the traction-separation law by an ingenious 
exponential function [35]. However, the Needleman CZM is not a gen
eral CZM because it only contains two fatigue parameters, i.e., strength 
and the critical displacement to the strength, which enlarges the unre
alistic deformation before crack initiation [36]. Furthermore, the fatigue 
damage variable in the Roe-Siegmund cyclic CZM simultaneously re
duces the strength and stiffness [35]. Skar et al. [37,38] developed a 
cyclic CZM in which different stiffness values for unloading and 
reloading were considered for fatigue damage and a fixed negative 
intersecting point below the origin on the stress axis was assumed for 
irreversible deformation. Parrinello and Benedetti [39] developed an 
elastic–plastic cohesive laws for polycrystalline low-cycle fatigue and 
the cohesive-frictional behaviour can be considered [40]. Their models 
[39,40] were formulated in a thermodynamically consistent framework 
and based on plasticity and damage mechanics with non-associative 
flow rule for damage evolution. 

Another key issue for cyclic CZMs is the determination of fatigue 
damage evolution. Miner proposed a linear fatigue damage model based 
on S–N curve in 1954 [41]. Due to its simplicity and ease of application 
for Miner’s model, it is still widely used in the fatigue design of struc
tures [42] and cyclic CZMs [7,17,31–33]. However, the linear fatigue 
damage model [41] assumes the same fatigue damage increment per 
cycle under a constant amplitude, which cannot be true because, as the 
residual strength is gradually decreased, the fatigue damage should be 
accumulated in an accelerated manner, given the same loading ampli
tude. Moreover, the effect of loading sequence on the fatigue damage 
under varying amplitude loads is not considered in the linear fatigue 
damage model [42]. Further, some nonlinear fatigue damage models 
were proposed by introducing a power variable to Miner’s model 
[42,43]. Based on the revised Miner’s models, the fatigue damage 
should transfer from one stress level to another for the prediction of 
residual life under loading with varying amplitudes [42], which brings 
inconvenience to be used in cyclic CZMs. The fatigue damage can also be 
determined by Paris law [15,17,44]. However, Paris law based CZM 
introduces some ambiguities because Paris law is associated with a 
mathematically sharp, point-wise crack-tip according to the definition 
based on LEFM, while CZM represents a nonlinear fracture process zone 
with finite size [17,45]. The literature review suggests (1) there is a lack 
of general cyclic cohesive zone model considering irreversible defor
mation for low-cycle fatigue of quasi-brittle materials; (2) there is a 
research gap for developing a nonlinear fatigue damage model and 
implementing it into the cyclic CZM. Therefore, it is well justified that a 
new cyclic CZM be developed to model the nonlinear fatigue damage 
accumulation and crack growth for low-cycle fatigue of quasi-brittle 
materials. 

This paper develops a cyclic cohesive zone model for low-cycle fa
tigue of quasi-brittle materials. The cyclic fatigue model is based on a 
general bilinear monotonic CZM. The low-cycle fatigue induced 

irreversible displacement is considered in the cyclic CZM. The fatigue 
and static damage variables are used for irreversible displacement 
accumulation and stiffness degradation, respectively. A nonlinear fa
tigue damage model is proposed to calculate the fatigue damage in the 
cyclic CZM. The fatigue damage parameters are determined based only 
on experimental S–N data and the fatigue damage evolution derived 
from the fatigue model is compared with that from experimental results. 
Further, the developed cyclic CZM is implemented into ABAQUS solver 
by a VUMAT subroutine. To demonstrate the application of the devel
oped numerical method, a worked example for monotonic and cyclic 
loading of three-point bending concrete beam is presented. Moreover, 
the fatigue crack mechanisms are discussed through analysing the stress 
and damage distributions and evolutions along the potential cracking 
path. Finally, a comprehensive parametric study is carried out to 
investigate the effects of fatigue parameters, stress levels and loading 
sequences on the fatigue failure. 

2. New cyclic cohesive zone model 

The new cyclic cohesive zone model consists of two regimes. First, it 
includes the monotonic cohesive laws for static fracture. In this paper, a 
typical CZM with linear softening is introduced [46,47]. Fig. 1a illus
trates the traction-separation law (i.e., stress-displacement relationship) 
for static Mode I fracture of quasi-brittle materials. The stress is a 
function of the corresponding relative displacements of the crack sur
face. For a cohesive crack, the stress will linearly increase to the cohesive 
strength by a penalty stiffness and then gradually decrease to zero stress. 
The stress–displacement relationship in the linear elastic stage can be 
expressed as follows: 

σ = Kδ (1)  

where σ and δ are the cohesive stress and crack opening displacement, 
respectively; K is the penalty stiffness. 

It is worthwhile to mention that the cohesive crack is a fictitious 
crack thus there should not be significant separation or displacement 
before cracking. Therefore, the penalty stiffness must be large enough to 
hold the two surfaces of the bulk concrete together prior to crack initi
ation, leading to the same performance as that of no interface existing 
[48]. However, the penalty stiffness cannot be infinitely large because it 
will cause convergence problems and increase the computational cost 
[27]. In this study, the penalty stiffness is set as 10,000 GPa which is 
approximately 300 times of the bulk materials. 

After reaching the strength, the tensile stress gradually decreases 
following certain softening rules. A linear softening curve is considered 
in this study for simplification. The residual stress of the cohesive 
element can be expressed as follows: 

σ = (1 − Ds)Kδ (2)  

where Ds is the static damage parameter. 
It can be seen that the static damage reduces the penalty stiffness 

from K to (1 − Ds)K. If unloading occurs at point G (in Fig. 1a), the 
unloading stiffness is also (1 − Ds)K and the curve will return the origin, 
i.e., zero deformation. Thus, the static damage only regulates the stiff
ness, which can be determined as follows [21]: 

Ds =
δf (δm − δ0)

δm
(
δf − δ0

) (3)  

where δ0 is the critical displacement to the cohesive strength (i.e., Ds =

0); δm is the historical maximum displacement during the loading his
tory; δf is the failure displacement when the stress reduces to zero (i.e., 
Ds=1); 

The fracture energy Gf is the area under the stress-displacement 
curve (i.e., triangle OAM in Fig. 1a). The fracture energy can thus be 
calculated as follows: 

Fig. 2. Cohesive law for low-cycle fatigue of quasi-brittle materials.  
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Gf =
Kδ0δf

2
(4) 

According to numerous experimental results [4,5,13,35], the 
monotonic CZM will be extended to a cyclic CZM for low-cycle fatigue of 
quasi-brittle materials with the following assumptions: (1) irreversible 
deformation before failure for low-cycle fatigue is significant. (2) the 
fatigue damage has little effect on the increasing slope of stress (i.e., 
stiffness) before fatigue failure. (3) the monotonic CZM is the envelope 
curve of the cyclic CZM, i.e., fatigue won’t enhance the mechanical 
properties of quasi-brittle materials. In this model, fatigue causes the 
accumulation of irreversible displacement while the static damage 
causes stiffness degradation. Fig. 2 illustrates the stress-displacement 
relationship for the cyclic CZM. Under cyclic loading with the 
maximum stress amplitude σm which is smaller than the static strength 
σf , the fatigue damage parameter Df and the irreversible displacement δp 

will develop. We define the fatigue damage for quasi-brittle materials as 
follows: 

Df =
δp

δf
(5) 

Df is 0 for the first cycle and 1 for irreversible displacement reaching 
the monotonic failure displacement δf . After n cycles (point C in Fig. 2), 
the residual strength becomes σfn. The triangles OAM and CBM are 
similar triangles due to the same penalty stiffness K. It is thus easy to 
obtain the relationship below: 

σfn

σf
=

δf − δp

δf
(6) 

Accordingly, the relationship between fatigue damage and residual 
strength can be expressed as follows: 

σfn =
(
1 − Df

)
σf (7) 

Therefore, the fatigue damage can also be regarded as the strength 
degradation due to inelastic displacement. The area of the translation 
curve (i.e., OCBA) is the fatigue-induced energy dissipation. Further, the 
critical displacement to the residual strength can be expressed as 
follows: 

δ0n =
(
1 − Df

)
δ0 (8) 

Before the residual strength reduces to the maximum cyclic loading 
amplitude (for instance, point F in Fig. 2), the stress-displacement 
relationship can be calculated as follows: 

σ = K
(
δ − δp

)
(9) 

Substituting Eq. (5) into Eq. (9), the stress-displacement relationship 
can be obtained as follows: 

σ = K
(
δ − Df δf

)
(10) 

If the fatigue damage is known, the fatigue behaviour before the 
maximum loading amplitude reaching the residual strength can be 
determined by Eq. (9). Once the strength is degraded to the maximum 
load (e.g., point F in Fig. 2), two potential cracking scenarios may 
happen in the next loading cycle: (1) if the in-situ maximum stress keeps 
the same, the maximum stress will exceed the residual strength and 
unstable failure will occur; (2) for stable cracking, the stress will reduces 
following the softening curve and static damage will occur. In the new 
updated CZM (triangle EFM in Fig. 2), the static damage can be 
expressed as follows: 

Ds =
(δf − δp)

(
δm − δp − δ0n

)

(
δm − δp

)(
δf − δp − δ0n

) (11) 

The historical maximum displacement δm represents the maximum 
static damage. δm can be expressed as follows: 

δm =
(δf − δp)δ0n(

δf − δp
)
− Ds

[
δf − δp − δ0n

]+ δp (12) 

If the next displacement continues larger than δm, static damage will 
increase. Otherwise, fatigue damage will continue to accumulate under 
the updated softening curve. Finally, the stress-displacement relation
ship for coupled fatigue and static damage can be derived as follows: 

σ =

⎧
⎨

⎩

Kδδ < 0
0δ ≤ Df δf

(1 − Ds)K
(
δ − Df δf

)
δ > Df δf

(13)  

where δ < 0 means the compressive state; δ ≤ Df δf means the irrevers
ible deformation. 

Through Eqs. (5), (11) and (13), the stress-displacement relationship 
for the new cyclic CZM is established. The new cyclic CZM uses fatigue 
damage to account for irreversible displacement and static damage for 
stiffness degradation. In the developed cyclic CZM, the energy balances 
are ensured during all loading cycles by accounting for fatigue and static 
damage. If the maximum load in a cycle is lower than the strength, the 
mechanical energy dissipation can be calculated by the fatigue-induced 
strength reduction and irreversible displacement (e.g., OABC in Fig. 2). 
While the maximum load in a cycle is higher than the strength, the 
mechanical energy dissipation is calculated by the stiffness softening (e. 
g., EFG in Fig. 2). 

3. Nonlinear fatigue damage model 

A S–N curve based fatigue damage model is developed. Miner pro
posed a linear fatigue damage model based on S–N curve in 1954 [41], 
which can be expressed as follows: 

Dfn =
ni

Nf
(14)  

where Dfn is the fatigue damage at the cycle number ni with a constant 
fatigue amplitude; Nf is the number of cycle to failure. 

Based on Miner’s model, the sum of damage fractions for varying 
loading amplitudes is 1. In fact, the fatigue damage evolution should not 
be linear while the fatigue damage is progressively accumulated and the 
residual strength is gradually decreased. To overcome this shortcoming 
of Miner’s rule, some nonlinear fatigue damage models were proposed 
by introducing a power variable to Miner’s model: 

Dfn = 1 −
(

1 −
ni

Nf

)φ

(15)  

where φ = 1 for Miner’s model [41]; φ is a material constant in 
[43,49]; φ = − 1.25/lnNf in [42]. 

The nonlinear fatigue models can be used for varying amplitude 
loading through damage transfer from different stress level and expe
rienced fatigue cycles. However, the damage transfer is complex and 
difficult to be used in the numerical algorithm because the in-situ cyclic 
stress is always varying with the fatigue crack growth. Therefore, a 
nonlinear fatigue damage model based on cyclic stress and in-situ 
damage state is needed. 

3.1. Heuristic fatigue damage model 

For each cycle, it is reasonable to assume the fatigue damage incre
ment is a function of the in-situ residual strength and maximum cyclic 
stress, which can be expressed as follows: 

dDf

dN
= f

(
σmax

σfn

)

(16) 

Paris law defines the fatigue crack growth rate as a function of the 
amplitude of stress intensity factor: 
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da
dN

= C(ΔK)
m (17)  

where a is the crack length and da/dN is the fatigue crack growth in a 
cycle; ΔK is the range of stress intensity factor in a cycle; C and m are 
material coefficients obtained from experiments. 

Inspired by the form of Paris law, we propose to use a power function 
to describe the relationship between fatigue damage increment and 
stress state as follows: 

dDf

dN
= α

[
σmax(

1 − Df
)
σf

]β

(18)  

where α and β are the material parameters that need to be determined 
based on experimental S–N curve. 

Eq. (18) can also be written as follows: 

(
1 − Df

)βdDf = α
(

σmax

σf

)β

dN (19) 

The integral of Eq. (19) on two sides can be written as follows: 

−

(
1 − Df

)1+β

1 + β
= α

(
σmax

σf

)β

N + constant (20) 

Due to the monotonic failure occurs at the first cycle, i.e., (N = 1, 
σmax

σf
=1 and Df = 0), the constant can be obtained and Eq. (20) can be 

expressed as follows: 

−

(
1 − Df

)1+β

1 + β
= α

(
σmax

σf

)β

N − α −
1

1 + β
(21) 

For a typical S–N curve established from experiments under constant 
amplitudes, unstable failure occurs at fatigue life Nf . Therefore, the re
sidual strength for the unstable failure is same as the stress amplitude, i. 
e., 
(
1 − Dfmax

)
σf = σmax (22)  

where Dfmax is the maximum fatigue damage value. 
Eq. (22) can also be written as follows: 

Dfmax = 1 − S (23)  

where S is the stress level σmax/σf . 
Therefore, Eq. (21) can be expressed based on S–N curve as follows: 

−
S1+β

1 + β
= αSβNf − α −

1
1 + β

(24) 

Eq. (24) can also be written as follows: 

Nf =
1 − S1+β + α(1 + β)

αSβ(1 + β)
(25)  

3.2. Determination of fatigue parameters and discussion 

In the S–N curve or fatigue tests, a number of data (Si,Nfi) are given. 
Therefore, the S–N data (Si,Nfi) can be used to determine the parameters 
α and β by least-squares fitting of Eq. (25). It should be mentioned that, 
the value of Nfi may vary from one to hundreds of thousands for low- 
cycle fatigue, which makes the variance extremely unequal [4]. A 
weighted least-squares method is required to avoid overfitting around 
the data with a large value of Nfi. The weighted least-squares fitting can 
be described as follows: 

SSR =
∑

wi
(
Nfi − N̂fi

)2 (26)  

where SSR is the summed square of residuals; N̂fi is the fitted results. wi 

are the weights which is defined as follows in this study: 

wi =

(
Nfmax

Nfi

)2

(27)  

where Nfmax is the maximum number of cycles to failure in fatigue tests. 
A worked example for determining the parameters α and β based on 

experimental data is given in Appendix. 

4. Implementation and testing 

4.1. Implementation and verification 

The developed cyclic CZM with nonlinear fatigue damage model is 
implemented into ABAQUS by a VUMAT subroutine. The VUMAT is 
called by ABAQUS explicit solver for quasi-static loading problems. 
Fig. 3 illustrates the flowchart for the calculation of the VUMAT. First, 
basic parameters in a monotonic CZM (i.e., penalty stiffness, strength 
and failure displacement) and fatigue parameters (α and β) are set as 
input parameters. At the initial states, the static and fatigue damage 
values are both zero. Within a loading cycle, the maximum displacement 
and stress are recorded to calculate the fatigue damage and static 
damage. If the maximum displacement is larger than the historic 
maximum displacement corresponding to static damage, the static 
damage occurs; otherwise, fatigue damage increment is calculated. 
Further, the stresses are updated according to the Eq. (13). The VUMAT 
will be called in every numerical increment and cycle until the loading is 
finished or the model is failed. 

A worked example of three-point bending beam of concrete is used to 
demonstrate the application of the developed numerical method. Fig. 4 
shows the mesh and dimensions of the worked example. The dimensions 
of the 2D plane strain model are the same as those in [13]. Zero- 
thickness cohesive elements are inserted into the potential cracking 
path. The length of cohesive element is 2 mm which is sufficiently small 
for modelling the fracture process zone in concrete. It should be 
mentioned that the minimum size of element which is the shortest edge 
for bulk element or the length of cohesive element directly determines 
the numerical efficiency for ABAQUS explicit solver. The smaller the 
minimum size is, the longer time the computation will take. There are 
9,858 bulk elements and 64 cohesive elements in the model. It should be 

Fig. 3. Flowchart for the implementation of the cyclic CZM into VUMAT.  
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mentioned that given the calculation of cyclic damage in the meantime 
of static fracture damage cycle by cycle, it is extremely time-consuming 
even for a model with 64 cohesive elements. A typical simulation for 1 
cycle takes about 1 min by parallel computation using 16 Intel Core i9- 
10885H CPUs @2.4 GHz. The S–N data from experiments [13] are used 
for the determination of fatigue parameters. Table 1 shows the S–N data 
from [13] and other input parameters in the worked example. It should 
be noted that the flexure strength from the three-point bending beam 
tests is normally 1.4–2.8 times larger than direct tensile strength [50]. 
Therefore, the tensile strength used in the model is set as 70% of the 
measured strength from the three-point bending beam tests [13] for 
comparison purpose. The monotonic loading controlled by displacement 
is first applied to obtain the static peak load of the beam. Then a certain 
percentage of the static peak load is cyclically applied to the beam for 
fatigue modelling. To meet the requirements for quasi-static modelling 
and avoid dynamic fluctuations, the monotonic loading time is set as 0.2 

s. The loading rate for cyclic and monotonic loading are set as the same. 
The Load-Crack Mouth Opening Displacement (P-CMOD) curve is a 

key output for three-point bending beam test. Fig. 5 illustrates the P- 
CMOD curves for monotonic and cyclic loading. The cyclic load varies 
from 5% to 80% of the static peak load. It can be seen that, for mono
tonic loading, the load first increases and then decreases after the peak 
load 6.01 kN. Although the stress-displacement curve prior to the peak 
stress is linear in the cyclic CZM, the overall load-CMOD curve of the 
beam is nonlinear. This is because the cohesive stresses are non- 
uniformly distributed in the fracture process zone which leads to the 
overall nonlinear behaviour. For cyclic loading, the load and CMOD 
cyclically increase and decrease. However, the irreversible displacement 
gradually accumulates until the CMOD is close to the monotonic enve
lope. Subsequently, the load-bearing capacity of the beam is reached and 
unstable failure occurs. The P-CMOD curve generally translates towards 
the right and the cyclic P-CMOD curve is sparse-dense-sparse along the 
x-axis with the cycle increasing. It is interesting to find that, within the 
first cycle, the unloading curve significantly differs with the loading 
curve and does not return to the origin. Fig. 6 shows the CMOD devel
opment as a function of the cycle number. It can be seen that, the 
maximum CMOD first rapidly increases before cycle 600, then almost 
linearly increases between 600 and 3000 cycles, and rapidly increases 
after cycle 3000. The unstable failure occurs at cycle 3408. The stable 
growth cycles account for 70% of the entire fatigue life. Therefore, the 
CMOD development can be divided into three stages: crack initiation, 
stable growth and rapid fracture. The cracking mechanisms behind the 
three stages will be discussed in the next section. This CMOD develop
ment trend has a very good agreement with numerous experimental 
results on fatigue crack growth [5,45,51]. 

Fig. 4. Discrete model for the worked example.  

Table 1 
Parameters in the worked example [13].  

Stress level (S) 0.90 0.85 0.80 0.75 0.70 
Number of cycles to failure (Nf) 181 698 3346 18,091 94,074 
Determined fatigue parameters α = 0.003225 & β = 25.03 
Young’s modulus 34.61 GPa 
Poisson’s ratio 0.21 
Penalty stiffness 10,000 GPa 
Tensile strength 2.34 MPa 
Fracture energy 129.4 N/m  

Fig. 5. Load-CMOD curves for the monotonic and cyclic loads.  

Fig. 6. CMOD development as a function of cycle number.  
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Fig. 7 illustrates the verification of the developed numerical method 
with experimental results [13]. Fig. 7a shows the P-CMOD curve for 
monotonic loading. It can be seen that, the P-CMOD curve is consistent 
with that from experimental results. The peak load from numerical 
modelling is 6.01 kN and the average value of peak loads from six testing 
specimens is 6.21 kN. Fig. 7b compares the CMOD developments from 
numerical model and experiments. It can be seen that, the CMOD 
development of concrete under the same fatigue load significantly varies 
amongst samples. The highly scattering experimental data is mainly 
caused by the heterogeneity of concrete. The randomness of aggregates 
leads to an uncertainty of static strength. Moreover, the stress level is 
based on the mean strength of six specimens. Therefore, the uncertainty 
of fatigue failure is exaggerated because the realistic stress level for each 
specimen is not exactly the same. For both experimental and numerical 
results, the CMOD values first rapidly increase then linearly increases 
and finally rapidly increase until failure, corresponding to the three 
stages of the cracking development. The CMOD curve from the numer
ical model has a good agreement with those from experimental results. 
Fig. 7c-d are P-CMOD curves for combined fatigue and static loading 
which applies 85% of monotonic peak load to the concrete beam for 70% 
of fatigue life and then applies monotonic load until failure. The fatigue 
life for stress level 0.85 is 588 which is obtained by numerical modelling 
prior to the combined fatigue-static modelling. It can be seen that, the P- 
CMOD curve gradually translates towards the right until it reaches the 
monotonic fracture failure envelop. For the monotonic loading after 

fatigue, the P-CMOD curve does not start at the origin and an irreversible 
displacement exists. There is a fluctuation of P-CMOD curve in the nu
merical results. This is because the resistance is zero in the irreversible 
displacement while the monotonic displacement loading causes dy
namic fluctuations in ABAQUS explicit solver. For combined fatigue- 
static loading, the P-CMOD curve from the numerical model has also a 
good agreement with that from experimental results. Therefore, the 
developed cyclic CZM, nonlinear fatigue damage model and numerical 
method are reliable and accurate for low-cycle fatigue crack growth 
modelling of quasi-brittle materials. 

4.2. Fatigue crack mechanisms 

It is of significance to investigate the fatigue cracking mechanism 
behind the three-point bending beam fatigue tests. The worked example 
with the cyclic stress level S = 0.8 is used to discuss the fatigue crack 
mechanisms. Fig. 8 illustrates the typical local in-situ fatigue behaviour 
of the first cohesive element at the notch tip. Fig. 8a shows the stress- 
displacement curves at the notch tip and the monotonic stress- 
displacement curve is added for reference. During the first cycle, the 
static damage has already occurred because the stress at the notch tip 
exceeds the tensile strength of cohesive element. This static damage is 
the reason for the significant difference between the loading and 
unloading P-CMOD curves within the first cycle. However, the load- 
bearing capacity still exists at the post-peak stage for quasi-brittle 

Fig. 7. Verification of the numerical model with experimental results: (a) monotonic stress-displacement curve; (b) CMOD development as a function of cycle 
number; (c) load-CMOD curve from cyclic-static loading from experiments; (d) load-CMOD curve from cyclic-static loading from simulations. 
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materials oriented from the fracture process zone. For next loading cy
cles, the displacement does not exceed the historic maximum displace
ment corresponding to static damage so fatigue damage accumulates. 
Although the external loads are the same for each cycle, the local in-situ 
stress at the notch tip gradually decreases due to degradation (see 
Fig. 8b). Fig. 8c shows the static damage suddenly increases at the first 

cycle but keeps the same until close to failure. Fig. 8d shows the fatigue 
damage evolution at the notch tip. It can be seen that the fatigue damage 
first increases fast, then gradually develops and finally reaches cata
strophic growth. The fatigue damage evolution is dependent on the ratio 
of the cyclic maximum stress to the residual strength. Therefore, fatigue 
life prediction based on the overall external loading amplitudes is 

Fig. 8. Fatigue damage behaviour of the first cohesive element at the notch tip: (a) stress-displacement curve with static curve as a reference; (b) maximum stress 
development; (c) static damage evolution; (d) fatigue damage evolution. 

Fig. 9. Normal stress distribution of the cohesive elements at different cycles.  Fig. 10. Static damage evolution of the cohesive elements at different cycles.  
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inaccurate. The prediction of structural fatigue cracking should consider 
the in-situ stress and fatigue damage. 

Fig. 9 illustrates the normal stress distributions of the cohesive ele
ments at the maximum load in different cycles. There is a significant 
compressive zone close to the top-loading point, which is a shortcoming 
for three-point beam bending tests to determine the tensile fracture 
properties. After the first loading cycle, there is a high tensile stress zone 
near the notch tip. At the crack initiation stage from cycle 1 to 600, the 

length of high tensile stress zone increases from 40 to 68 mm while the 
maximum stress decreases from around 2.1 MPa to 1.7 MPa. From cycle 
600 to 3000 which is the stable growth stage of CMOD, the peak stress 
stays at the location of 68 mm while the stress from 0 to 68 mm grad
ually decreases. Therefore, the zone with a length of 0–68 mm from the 
notch tip is the main bearing zone for stable crack growth stage. For 
rapid fracture stage after cycle 3000, the peak stress point gradually 
moves towards the top-loading point. At the penultimate cycle 3407 in 
Fig. 9, the stress at the notch tip has still not reached zero, which means 
that the true crack does not form until the unstable failure. 

Fig. 10 shows the static damage distributions of cohesive elements 
for different cycles. It can be seen that, at the first cycle, the static 
damage zone is from 0 to 42 mm. From 1 to 600 cycles (i.e., the crack 
initiation stage), the static damage zone increases from 42 mm to 46 mm 
and the static damage increases for most cohesive elements. However, 
for the stable growth stage (600–3000 cycles), the static damage never 
changes. After 3000 cycles, the static damage rapidly increases in both 
spatial range and magnitude value. Fig. 11 shows the fatigue damage 
distribution of cohesive elements for different cycles. It can be found 
that, the length of fatigue damage zone gradually increases with the 
cycle increasing and the fatigue damage values also gradually increase. 
The closer the cohesive element is to the notch tip, the fatigue damage 
value is generally larger. At the stable growth stage from cycle 600 to 
3000, the fatigue zone length grows from 68 mm to 90 mm, which is 
slower than that for crack initiation and rapid fracture stages. Therefore, 
it can be summarised that: (1) the crack initiation stage involves the 
combined static and fatigue damage; (2) the stable growth stage is 
controlled by the fatigue damage accumulation; and (3) the rapid frac
ture is also a combined static and fatigue damage process but dominated 
by static damage. For structural fatigue failure of quasi-brittle materials, 

Fig. 11. Fatigue damage evolution of the cohesive elements at different cycles.  

Fig. 12. Effect of fatigue parameters on the fatigue failure: (a) CMOD development affected by α; (b) CMOD development affected by β; (c) sensitivity of α and β on 
the number of failure cycle. 
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Fig. 13. Effect of stress level on the fatigue failure: (a) CMOD development; (b) S–N curve.  

0.8

0.8
+

0.9

0.9
= 1.07

0.8

0.8
= 0.25

0.9

0.9
= 0.82

0.9

0.9
+ 0.8

0.8
= 0.948

0.9

0.9
= 0.75

0.8

0.8
= 0.198

Fig. 14. Effect of loading sequence on the CMOD developments: (a) low to high amplitudes; (b) high to low amplitudes.  

Table 2 
Values of S–N data from experiments [52].  

Stress level (S) 0.85 0.75 0.65 

Number of cycles to failure (Nf) 296 6307 75,232  

Fig. 15. S–N curve from the nonlinear damage model and the experi
mental data. 

Fig. 16. Comparison of the fatigue damage evolution from the model and 
experimental data. 
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the static damage and fracture process zone still play a significant part. 

4.3. Parametric studies 

The parameters α and β in the proposed nonlinear fatigue model are 
obtained from fatigue S–N data. The parameters vary with different 
materials and experimental data. It is necessary to investigate the effects 
of fatigue parameters on the fatigue cracking. Fig. 12 illustrates the ef
fects of fatigue parameters on the fatigue failure for cyclic stress level 
0.8. It can be seen that, the larger the parameter α is, the faster the 
CMOD develops. The effect of parameter α on the stable growth stage is 
more significant than that on crack initiation and rapid fracture stages. 
This is because the stable growth stage is controlled by the fatigue 
damage. The larger the parameter β is, the slower the CMOD progresses. 
When α increases from 0.8α0 to 1.2α0, the fatigue life is decreased by 
30% from 4239 to 2943 cycles, in an almost linear manner. When β 
increases from 0.8β0 to 1.2β0, the fatigue life exponentially rises by 
350% from 1618 to 7263 cycles. It can be postulated that the fatigue life 
is more sensitive to the parameter β. 

Fig. 13 shows the effects of cyclic stress level on the CMOD devel
opment and fatigue life. First of all, larger stress level leads to larger 
CMOD growth during the first cycle. This is because a larger stress level 
induces a larger static damage at the first cycle. Moreover, the cyclic 
stress level significantly affects the fatigue life. The S–N curve from 
numerical results shows that, when the stress level decreases from 0.95 
to 0.78, the fatigue life increases from 69 to 7435 cycles. The predicted 
fatigue life from numerical simulations has a good agreement with that 
obtained from experimental results. 

Fig. 14 illustrates the effects of loading sequences on the fatigue 
failure of concrete beam. Nf0.9 = 588 and Nf0.8 = 3408 are the fatigue life 
for stress level 0.9 and 0.8, respectively. For low to high loading am
plitudes, the cyclic loading with stress level 0.8 is first applied on the 
beam for 25% of Nf0.8 then the cyclic loading with stress level 0.9 is 
applied until failure. It can be seen that, the CMOD first grows fast then 
almost linearly increases at the stress level 0.8. Once the stress level is 
changed from 0.8 to 0.9, there is a fast CMOD growth following a sudden 
CMOD growth. The sudden growth of CMOD is because the improved 
load increases the opening of cohesive elements. The fast growth is 
caused by the improvement of stress level. Moreover, the ratio of re
sidual fatigue life to whole fatigue life for stress level 0.9 is 0.82 thus the 
sum of fatigue life fractions is 1.07. For a linear fatigue damage 
described by Miner’s rule [41], the sum of fatigue life percentages 
should be 1. Therefore, for low to high amplitudes, the predicted life 
from the numerical results is longer than Miner’s prediction. For high to 
low loading amplitudes, the cyclic loading with stress level 0.9 is first 
applied on the beam for 75% of Nf0.9 then the cyclic loading with stress 
level 0.8 is applied until fatigue failure. It can be seen that, the CMOD 
first fast increases at the stress level 0.9. When the stress level is changed 
from 0.9 to 0.8, the CMOD curve suddenly decreases due to the reduced 
load shortens the opening displacement of cohesive elements. Then a 
stable growth of CMOD exists until rapid fracture and failure. Therefore, 
once the static damage is formed by a high stress level, the CMOD 
development becomes stable under a low stress level. Moreover, the sum 
of fatigue life fraction is 0.948 which is smaller than 1. Therefore, for 
high to low amplitudes, the predicted life from the numerical results is 
shorter than Miner’s prediction. The effects of loading sequences on the 
sum of fatigue life fractions from the numerical results are consistent 
with conclusions from experimental results, i.e., in relation to the 
Miner’s rule, high to low loading scenario leads to the fatigue life 
reduction while the low to high loading sequence results in an extension 
[52]. 

5. Conclusions 

In this paper, a cyclic cohesive zone model is developed for low-cycle 
fatigue of quasi-brittle materials. In the cyclic CZM, the fatigue damage 

accounts for irreversible displacement accumulation and the static 
damage controls the stiffness degradation. A nonlinear fatigue damage 
model is proposed for calculating fatigue damage in the cyclic CZM. The 
fatigue damage parameters are determined based only on experimental 
S–N data and the fatigue damage evolution derived from the fatigue 
model is in a good agreement with that from experimental results. 
Further, the developed cyclic CZM is implemented into ABAQUS by a 
VUMAT subroutine. A worked example for monotonic and cyclic loading 
of three-point bending concrete beam is presented to demonstrate the 
application of the developed numerical method. The numerical results 
have a good agreement with the experimental results. Moreover, the 
fatigue crack mechanisms are discussed through stress and damage an
alyses. Finally, comprehensive parametric studies are carried out to 
investigate the effects of fatigue parameter, stress level and loading 
sequence on the fatigue failure. It has been found that, there are three 
stages for the development of CMOD, i.e., crack initiation, stable growth 
and rapid fracture which are caused by combined static and fatigue 
damage, fatigue damage, and combined static and fatigue damage 
dominated by static damage, respectively. At the fatigue controlled 
stable growth stage, the peak tensile stress along the potential crack path 
stays at a fixed location and static damage along the potential crack path 
never increases. The fatigue life is more sensitive to the fatigue param
eter β than α. With the parameter β increasing, the fatigue life expo
nentially increases. The stress level also significantly affects the fatigue 
life. When the stress level decreases from 0.95 to 0.78, the fatigue life 
increases from 69 to 7435. Moreover, for low to high amplitude loading 
sequence, the predicted fatigue life from the numerical model is longer 
than that from Miner’s rule which is based on a linear fatigue damage 
law. But for high to low loading amplitudes, the predicted fatigue life 
from the numerical model is shorter than Miner’s prediction. 
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Appendix: Worked example for the determination of fatigue 
parameters 

A worked example for concrete fatigue cracking is presented to 
demonstrate the proposed method for the determination of fatigue pa
rameters. Liang et al. [52] obtained S–N data for concrete by three-point 
beam bending tests under cyclic loads with different loading amplitude 
(see Table 2). Moreover, fatigue-induced strength reductions were ob
tained through combined fatigue-static tests that first applied cyclic 
loading for 20%, 40%, 60% and 80% of fatigue life respectively then 
monotonic loads were applied to measure the residual strengths of 
concrete [52]. Therefore, the fatigue damage evolution was determined 
based on the residual strengths in Liang’s tests [52]. The parameters α 
and β from the fitting results are 0.00464 and 20.53, respectively. Fig. 15 
illustrates the S–N curve from the fatigue model with fitted parameters 
and experimental data. The scatter points are from the experiment and 
the red line is from the developed model. It can be seen that, the S–N 
curve from the fatigue model has a good agreement with the 
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experimental data [52]. The coefficient of determination R2 is 0.991. It 
is interesting to find that, the S–N curve from the fatigue model is 
nonlinear at the stress level higher than 0.95, which is consistent with 
experimental results [53]. Fig. 16 shows the comparison of fatigue 
damage evolution from the proposed fatigue model and experimental 
data [52]. It can be found that, the fatigue damage evolution from the 
fatigue model has also a good agreement with those from experiments. 
The fatigue damage is very small at the first 20–40% of the fatigue life 
due to the loading amplitude is relatively much smaller than the residual 
strength. With the fatigue damage increasing and the residual strength 
gradually decreasing, the fatigue damage increment becomes larger and 
larger until a sudden unstable failure. Therefore, the proposed nonlinear 
fatigue damage model is practically significant and its parameters are 
easy to be determined based only on experimental S–N data. The S–N 
curve from the fatigue model is nonlinear and accurate for low-cycle 
fatigue life prediction. Moreover, the nonlinear fatigue damage evolu
tion can also be well described by the fatigue model which can be used in 
the cyclic cohesive zone model. It should be mentioned that, more data 
on concrete fatigue cracking are required to determine the fatigue pa
rameters for statistical validation with higher accuracy. 
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