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A two-dimensional foam system comprised of three

bubbles is studied via simulations with the viscous

froth model. Bubbles are arranged in a so called

staircase configuration and move along a channel due

to imposed driving back pressure. This flowing three-

bubble system has been studied previously on the

basis that it interpolates between a simpler staircase

structure (a simple lens, which breaks up via so called

topological transformations if driven at high pressure)

and an infinite staircase (which sustains arbitrarily

large driving pressure without breaking). Depending

on bubble size relative to channel size, different

solution branches for the three-bubble system were

found: certain branches terminate (as for the simple

lens) in topological transformations and others

reach (as for an infinite staircase) a geometrically

invariant migrating state. The methodology used

previously was however a purely steady state one,

and hence did not interrogate stability of the various

branches, nor the role of imposing different driving

pressures upon topological transformation type. To

address this, unsteady state three-bubble simulations

are realized here. Stable solution branches without

topological transformation exist for comparatively

low driving pressures. For sufficiently high imposed

back pressures however, topological transformations

occur, albeit with imposed pressure now influencing

the transformation type.

1. Introduction
The study of microscale flows of multiphase systems

including microbubbles or liquid foams has applications in

processes involving drug manufacture, medical treatments,
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minerals processing, material formation, and in the food and cosmetic industries [1–3]. In foam

microfluidic applications in which bubbles flow through a confined geometry, including processes like

enhanced oil recovery (EOR) [4], soil remediation [5], and foam sclerotherapy [6], the foam is used

as a driving fluid to sweep a specific material, colloid pollutant or particles from the medium [7–9].

Due to foam’s low mobility, by controlling how it moves, the flow of other fluids within the medium

can be controlled also. How foam moves and rearranges inside a channel along which it is being

transported is then a matter of great interest since the microscale dynamics impact the global

process behaviour [10].

The rheology of such systems is complex. Liquid foams (which consist of dispersed gas trapped

inside a liquid phase with energy tied to the gas-liquid interface) are themselves non-Newtonian

fluids [11]. Depending on the relative amounts of liquid and gas (i.e. the liquid fraction), foam

configurations will vary from a bubbly dispersion (wet foams), to packing in polyhedral cells (dry

foams) [12]. In the latter scenario (the dry limit which we consider here), static foams try to find

an equilibrium state in which bubbles fill space with their shapes being determined via total surface

area minimization [13]. These systems can behave as solid-like or liquid-like, depending on the

imposed shear stress. If the imposed stress is larger than a yield stress, the system will be set into

motion. As the foam moves, certain liquid interfaces or bubble films are stretched, while others shrink

until disappearing, eventually leading to rearrangements of the structure, with bubbles exchanging

neighbours [14]. These rearrangements are the so called T 1 topological transformations, and their

order of occurrence is not always easy to predict a priori since different transformations may compete

with one another, and in addition one transformation may trigger an avalanche of others occurring

shortly afterwards [15–17].

The rate at which topological transformations are induced in a flowing foam depends on how

rapidly the foam is sheared [18]. However foam also relaxes after each topological transformation,

and the rate at which such relaxation occurs is inherent to the foam itself rather than how rapidly

it is sheared [18]. This means that for a flowing foam, we make a distinction between slow flow

(in which deformation of the foam is punctuated with intermittent topological transformations and

their subsequent relaxations) and fast flow (in which T 1 topological transformations are induced at

a rate comparable with the relaxation rate post-T 1) [19]. In the intermittent (i.e. slow-flowing) case

it is not strictly necessary to resolve the relaxation process itself: on the scale of the slow imposed

deformation, the relaxation is so fast that it appears to be instantaneous. In the fast-flowing case

however this relaxation must be resolved, occurring as it does at a rate comparable with the rate at

which the T 1 transformations are induced by imposed deformation in the first place [19]. In addition

to the bubble rearrangements (i.e. the aforementioned T 1s), the dynamics of a foam flowing along

a channel is affected by the foam structure/bubble configuration, volume of the bubbles, and the

geometry of the channel of transport. All of these factors combined make the bubble-scale system

behaviour difficult to predict [20].

Modelling foam motion on the bubble scale within fully three-dimensional systems can be

computationally expensive. In microfluidic devices however, a two-dimensional foam system (see also

section S 1 in supplementary material) is often considered, where we often just have a monolayer

of bubbles across the depth of a microfluidic channel, albeit possibly with several bubbles stacked

across the channel width and length. Indeed a typical geometry is a Hele-Shaw cell [14] in which a

foam monolayer is confined between two glass plates with a small separation between them. In this

configuration, film lengths along the plates are comparatively large relative to plate separation [21].

Films within a foam monolayer therefore appear as one-dimensional curves of negligible thickness

when seen from above the top plate (see Figure 1), which is how models typically treat them [21].

The film endpoints are either on sidewalls of the Hele-Shaw cell (which when viewed from above the

top plate appear to be upper and lower channel walls, and will be referred to in what follows as such)

or at vertices away from those walls (with three films meeting at each vertex).

The purpose of the present work is to tackle some open questions (described in more detail

in section 2) in the modelling of microfluidic and/or Hele-Shaw foam flows, having important

implications for how foam bubbles arrange within a channel as they flow. Typically how bubbles
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arrange depends on bubble size relative to channel size. Here however issues mentioned above such

as imposed stress (or more generally imposed pressure driving the flow along), rate dependency (slow

versus fast flow) and T 1 topological transformations will all turn out to be central to the discussion.

Via simulations of foam flows, insights will be gained in particular into how systems behave when

different types of T 1 compete: in such cases, it will turn out that the type of T 1 selected and thereby

the bubble arrangement can become sensitive to driving pressure even for a specified set of bubble

sizes. Moreover, even though high driving pressures associated with fast flows are conventionally

thought of as inducing T 1s, one of the most interesting predictions of the simulations will turn out

to be that under certain circumstances high driving pressures actually prevent T 1s. By and large

though, increasing driving pressure tends to cause T 1s, rather than preventing them. Increasing

pressure in this fashion also typically causes the system to break via T 1 in less time and with less

distance travelled along the channel. As a result, for a channel of a specified finite length, it is

typically possible to find a certain particular pressure at which the structure can be driven along

the channel as quickly as possible without breaking. Moreover the shorter the channel, typically the

faster the structure can be driven and still avoid breaking.

The rest of this work is laid out as follows. Section 2 reviews what is already known about modelling

bubbles flowing in Hele-Shaw cells, introduces the three-bubble system and the different types of

topological transformations it might reach and, as already mentioned, identifies the specific open

questions that the present work will address. In section 3, we summarize the simulation methodology

to be employed. Results are given in section 4. Finally in section 5 we offer conclusions. Additional

analysis and results are relegated to supplementary material.

2. Context and open questions
This section reviews the context leading up to the particular system that we choose to study,

which consists of three bubbles (see e.g. Figure 1(c)) moving along a channel in a Hele-Shaw cell.

Background information is given explaining why the three-bubble case turns out to be of such interest,

and what the open questions are that we can address by modelling it.

The present section is laid out as follows. Section 2(a) reviews the physical model to be

employed, whereas section 2(b) describes the rate-dependent flow behaviours that the model predicts.

Section 2(c) then considers two distinct systems, one that exhibits rate dependency leading to

topological transformations and another that does not. After that section 2(d) introduces the specific

system to be studied here (namely the three-bubble system) and indicates how it interpolates between

the cases that are already discussed in section 2(c). Finally information about the possible behaviours

of the three-bubble system and open questions to be addressed here about those behaviours are

discussed in sections 2(e)–2(f).

(a) Viscous froth model

In the introduction it was already mentioned that differences can occur between slow-flowing foam

and fast-flowing foam. To understand those differences, we need a model that can distinguish between

slow-flowing and fast-flowing states. The model of choice here is the so called viscous froth model [11,

21–23]. This model (as described in more detail in supplementary material section S 1(a)) considers

the forces upon foam films, namely bubble pressure effects and capillary (surface tension/curvature)

effects, equating any mismatch between them to a viscous drag force [24], with the viscous drag here

being associated with moving films relative to the plates of the confining Hele-Shaw cell. In particular,

viscous drag forces govern how rapidly foam relaxes after a T 1 transformation, so that the viscous

froth model (unlike a number of models employed in other studies [16,25–28]) is by its nature able

to resolve such relaxation processes. In the interests of simplicity, a linear relation between drag and

velocity will be assumed here. Balancing the various forces then defines a characteristic relaxation

velocity and hence the aforementioned characteristic relaxation rate. However if an external driving

pressure is imposed, over and above the original equilibrium bubble pressures that apply within a

static system, the viscous froth model can predict foam films propagating at a migration velocity
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very different from the characteristic relaxation velocity. By explicitly incorporating the relaxation

processes present in a foam moving through a Hele-Shaw cell, the viscous froth model therefore has

the properties we require, namely it manages to describe rate-dependent effects in fast flows [29–32]

that slow-flowing foam models would fail to capture.

(b) Rate-dependent flow behaviours and topological transformations

Having now identified a rate-dependent model, it is possible to use it to explore the link between

rate-dependent flow behaviours and T 1 topological transformations. In particular in [1] and in [11],

the viscous froth model was applied to a train of bubbles arranged in a staircase structure (see e.g. the

configuration in Figure 1(a)), but flowing now through a U-bend channel (unlike Figure 1(a) which

specifically shows a straight channel). By imposing different back pressures to drive the system, it

could be set into motion at different migration velocities relative to the channel walls [33]. From [11]

it was observed that for low velocities, there was no T 1 topological transformation in such a system.

However, for a sufficiently high velocity (or equivalently for a sufficiently high imposed back pressure

driving the flow), the structure exhibited a T 1 transformation, with the bubbles on the inner side of

the bend tending to overtake those on the outer side. Experimental work in [1] using the U-bend

geometry was found to support the viscous froth model predictions.

The physical mechanism for producing T 1 transformations in such a system is as follows. To

maintain their relative position, points on the outside of the bend need to move faster than points

on the inside of the bend. As a result points on the outside incur more viscous drag, such that

that drag is asymmetric across the channel: what asymmetric means in this context is simply that

points on the outside of the bend have more drag than those on the inside, due to the faster motion

towards the outside. As the overall migration velocity increases (due to an increasing imposed driving

pressure), the asymmetry in the drag forces becomes greater, and eventually the system’s internal

relaxation rate becomes insufficient to compensate for it. Bubbles on the outside then fall behind

those on the inside (or equivalently those on the inside overtake those on the outside) and eventually

a topological transformation occurs: beyond a critical imposed driving pressure therefore, bubbles

exchange neighbours. As demonstrated by [1] then, rate dependency significantly affects foam flows

in Hele-Shaw cell systems. However it is essential to have rate dependency coupled to asymmetry

(specifically the asymmetry between the parts of the staircase on the inside of the bend and on the

outside of the bend), so as to lead to drag forces on a moving system that are able to break the

structure apart.

This then raises an interesting question. If T 1s are associated with asymmetry, then in principle

they can still occur even in a straight channel if asymmetry is present for some other reason. The

simplest way to achieve this is to have an odd number N of bubbles arranged in a staircase, so that

one side of the staircase has more films (and hence when moving, more drag on those films) than the

other. In order to capture that asymmetry effect in a very simple system, the work of [14] therefore

considered a drastically truncated staircase, i.e. the case N = 1 (see Figure 1(b)). This consisted

of just one bubble on one of the channel walls, with an additional film attaching the bubble to the

opposite channel wall. Plateau’s laws govern the angles at which films meet one another and meet

channel walls: see the caption of Figure 1 for details. This system was called a viscous froth lens or

simple lens, and its behaviour is described next.
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(a) (b) (c)

upper channel wall

lower channel wall

Figure 1: Foam structures in a confined straight channel, looking down at a Hele-Shaw cell from
above, so the upper and lower channel walls are in fact sidewalls of the original Hele-Shaw cell.
Bubble films obey Plateau’s laws: they connect three by three in vertices, subtending an angle of
120◦ (or 2π/3) and meeting the cell’s boundaries forming an angle of 90◦ (or π/2), even when the
foam is set into motion [14]. (a) Infinite staircase. (b) Simple lens. (c) Three-bubble system. The
simple lens is a drastically truncated version of the infinite staircase, whereas the three-bubble case
interpolates between those two systems.

(c) Simple lens system contrasted with infinite staircase

When the simple lens system was studied via the viscous froth model it was observed by [14] that

for low imposed back pressures there is no topological transformation, but as the driving pressure is

increased, a topological transformation occurs. What then happens is that the bubble in Figure 1(b)

is overtaken by the film originally attached to it, and eventually that film detaches and leaves the

bubble behind. However the driving pressure at which the topological transformation occurs turns out

to be sensitive to bubble size, i.e. to bubble area in a two-dimensional view like that in Figure 1(b),

implying that bubble size is also a relevant variable to study. In [14], it was demonstrated that small

bubble areas exhibit more resistance to break up than big bubbles do (sizes being measured here

relative to the channel of transport). Small bubbles are of course enclosed by short films, and so

the drag force associated with those films when they move is rather limited. This then limits any

asymmetry of the drag in spite of having two films on one side of the channel but only a single film on

the other. As already mentioned, topological transformations rely on coupling between rapid motion

and asymmetry. By limiting asymmetry, small bubbles resist transformation out to higher driving

pressure (i.e. higher velocity). Larger bubbles on the other hand have longer films, more asymmetry

in the drag, and hence more susceptibility to break via topological transformations.

It is then interesting to contrast the simple lens with a much more symmetric system, namely the

infinite staircase structure (Figure 1(a)). Provided flow occurs along a straight channel, bubbles in the

infinite staircase are found to maintain their relative position with respect to their neighbours, even

when high imposed back pressures are applied [15]. Indeed for the viscous froth model, the infinite

staircase in a straight channel corresponds to a geometrically invariant state. Under any imposed

driving pressure no matter how large, bubbles can move without deforming their shape, such that

no T 1 transformations would ever occur. For N-bubble systems, there is a therefore a significant

difference in behaviour between the simple lens N = 1 and the infinite staircase N → ∞. It was to

elucidate these distinct behaviours and find a system that might somehow form a bridge between

them, that a recent study of [34] elected to study the three-bubble system N = 3 (see Figure 1(c)).

The outcomes of that study are described next.

(d) Three-bubble system

The three-bubble system (shown in Figure 1(c) and in more detail in Figure 2) represents a step

forward in complexity compared to the simple lens. The study of [34] considered three bubbles (B1,

B2 and B3) of various sizes relative to the channel size and also of various sizes relative to each other.

As section S 2 in supplementary material describes in much more detail, bubble size is determined

here by the bubble areas A1, A2, A3 (for simplicity, it is assumed that A1 = A3, although A2 might

differ). Via the viscous froth model, steady state solutions were obtained for the system propagating

steadily at some velocity v along a channel under the influence of an imposed back pressure pb, this



6

rsp
a.royalso

cietyp
u
b
lish

in
g.org

P
ro

c
R

S
o
c

A
0000000

.................................................... .....

pressure pb itself being distinct from the individual bubble pressures p1, p2 and p3. Starting from

equilibrium with no back pressure (Figure 2(a)) and then gradually increasing the imposed back

pressure, it was explored how the steadily propagating configuration evolved as the back pressure

changed (Figure 2(b)), and thereby whether there might be certain critical pressures at which the

structure would break up. The distribution of bubble areas turned out to affect not only the pressure

required to break the structure but also the specific manner in which it broke, there being now several

different ways in which breakage could occur (see Figure 3). Different types of break up were not

seen in the simple lens case [14], which being much simpler geometrically than the three-bubble

system could only ever break up in one way, i.e. a film detaching whilst leaving a bubble behind. An

analogous mode of break up could occur for the three-bubble system [34], but it was by no means

the exclusive break up mode.

Furthermore, for certain bubble area distributions, the three-bubble system was observed to reach

a geometrically invariant state [34] (again see Figure 3). In such cases, the structure deforms

geometrically and also moves faster as imposed back pressure increases, but never undergoes a

T 1. Instead, for high enough back pressure eventually a configuration is reached in which no

further geometric deformation occurs, and instead increases in the pressure are simply absorbed

by increases in the propagation velocity for an established geometry. This then is behaviour akin to

the infinite staircase. The simple lens system, on the other hand, could not admit the aforementioned

geometrically invariant state [14,34]: it is necessary to consider at least a three-bubble system in order

for it to be seen at all.

L

l◦1

l◦2
p◦

1 p◦
3

p◦
2pb = 0

V1
V2 V3

y

x

B1
B3

B2

Upper channel wall

p1 p3

p2

pb > 0

v

(a) (b)

Figure 2: (a) Equilibrium system for a channel of dimensionless width L = 1. The pressures of bubbles
B1, B2 and B3 are p◦

1, p◦
2 and p◦

3 respectively, with the superscript “◦” here denoting equilibrium.
The imposed back pressure in this case is pb = 0. Also in this case p◦

1 = p◦
3 because bubbles B1

and B3 are assumed to have the same area. The distance between the upper channel wall and the
vertex V1 and V3 is l◦1 , and between the upper channel wall and the vertex V2 is l◦2 . The system is
comprised of seven films ij connecting at the respective vertices. Every film forms an angle of π/2
with the respective wall of the channel and an angle 2π/3 with other films. The lengths of the films in
equilibrium are L◦

01 = L◦
30, L◦

23 = L◦
12 and L◦

02 = L◦
20. Moreover L◦

13 = l◦2. When two subscripts are
shown here, they denote the bubbles which a given film separates. (b) The system is set in motion,
travelling at a unknown migration velocity v, as a consequence of an imposed back pressure pb > 0.
Bubble pressures pi and film lengths Lij also change.

What is apparent from the foregoing discussion is that depending on the bubble areas selected,

the three-bubble system can interpolate between behaviours of the simple lens and behaviours of

the infinite staircase, as well as exhibiting some complex behaviours all of its own. In the discussion

that follows (sections 2(e)–2(f)) we give further information about the possible behaviours that [34]

identified for the three-bubble system, and well as some of the open questions about such behaviours.
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(e) Behaviours of the three-bubble system

As mentioned, steady state solutions of the three-bubble system have already been obtained for

a wide range of initial bubble area distributions and a wide range of driving pressures [34]. As is

apparent from Figure 1(c) and also from Figure 2, the system consists of two bubbles adjacent to

an upper channel wall plus one bubble adjacent to a lower channel wall, with seven films which join

threefold at three separate vertices. As section S 2(a) in supplementary material explains in more

detail, the film separating bubbles Bi and Bj is denoted ij and has length Lij . If a subscript within

ij or Lij is zero, it indicates a film on the outside of the structure. Vertices are labelled V1, V2 and

V3 (see Figure 2).

In the equilibrium state (Figure 2(a)), the distance between V1 or V3 and the upper channel wall

is denoted l◦1 (the superscript here denotes equilibrium). Meanwhile the distance between V2 and

the upper channel wall is denoted l◦2 . It is convenient to work in a dimensionless system in which

the distance between the upper and lower channel walls is unity, implying then that l◦2 < l◦1 < 1. As

section S 2 in supplementary material explains, these distances l◦1 and l◦2 (see Figure 2) are useful

surrogates for bubble areas, since by fixing them we fix the bubble areas [34].

The work of [34] then proceeded to increase the imposed back pressure pb to shift the system out

of equilibrium. Any pressure increases however necessarily occurred slowly i.e. quasistatically, because

the intention was to maintain the system at steady state, even though out of equilibrium. Depending

on the bubble areas selected (or equivalently depending on l◦1 and l◦2), it was shown by [34] that

increasing the imposed back pressure pb in this quasistatic fashion could lead to different possible

outcomes. Specifically the three-bubble system can undergo an internal vertex-vertex collision away

from any wall denoted T 1c, or a T 1 at the upper channel wall T 1u (analogous to what happens for

a simple lens [14]), or a T 1 at the lower channel wall T 1l. Variants of the T 1u and T 1l can also

occur, respectively denoted T 1u′ and T 1l′ . Details of exactly what these transformations involve

are indicated in Figure 3 and further discussed in supplementary material section S 2(b). All the

transformations involve a film shrinking to zero length. However, for each different transformation,

a different film is involved.

In addition to having different types of T 1, there are also conceptually two different ways in which

each of these transformations can take place, again depending on the bubble area distribution of the

system [34]. The first way is that as the driving back pressure is gradually increased, certain films

grow, whilst others gradually shrink, the system passing through a sequence of steadily migrating

states until eventually (when a certain critical pressure denoted p∗
b is reached) one of the shrinking

films attains zero length, leading directly to one of the T 1 transformations mentioned earlier. In

this fashion the topological transformation is itself attained quasistatically matching the quasistatic

changes in pressure. Therefore, prior to the T 1 happening, the film that eventually shrinks to zero

length can be maintained arbitrarily short for an arbitrarily long time, provided changes in driving

pressure are sufficiently slow. The second way in which a transformation can be reached is that as

driving pressure is gradually increased, again certain films grow, whilst others shrink, the system

passing through a sequence of steady states until eventually (when a certain pressure again denoted

p∗
b is reached) the steady solution branch comes to an end, and steady solutions thereafter cease to

exist, even though all films still have finite length. The system must then run away to a topological

transformation (with a particular film length then vanishing) but this happens dynamically rather

than via a sequence of steady states. The rate of any subsequent evolution is then determined by

the internal dynamics of the system itself [14], rather than the rate at which an externally imposed

pressure is changed.
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L L

L

L L

L

v =
pb
2

l◦

1

l◦

2

T 1u′ T 1u

pb ≫ 1

T 1lT 1l′

T 1c

pb = 0

pb > 0
pb > 0

pb > 0

pb > 0 pb > 0

V1

V1

V1

V1

V1

V1

V1
V2

V2

V2

V2

V2

V2

V2 V3

V3

V3

V3

V3

V3

V3

y y

y

y y

y

x x

x

x x

x

B1

B1

B1

B1

B1

B1

B1
B3

B3

B3

B3

B3
B3

B3

B2

B2

B2

B2

B2

B2

B2

equilibrium system

Figure 3: In the middle of this figure we show the three-bubble equilibrium structure (bubbles B1,
B2 and B3 and vertices V1, V2 and V3) in a channel of dimensionless width L = 1. A back pressure
pb is then imposed to drive the system out of equilibrium. Each possible outcome, obtained for a
sufficiently high imposed back pressure, is shown around the periphery: topological transformations
T 1u′ (film length L13 of the film separating bubbles B1 and B3 vanishes) and T 1u (L30 vanishes)
correspond to a vertex reaching the upper channel wall; T 1c corresponds to vertex-vertex collision
(L12 vanishes); T 1l′ (L02 vanishes) and T 1l (L20 vanishes) correspond to a vertex reaching the
lower channel wall. In the case labelled pb ≫ 1 there is no T 1, but instead a geometrically invariant
state is reached.

Mathematically this second scenario is associated with the original steady solution branch meeting

a second steady solution branch in what is called a saddle-node bifurcation. What the saddle-node

bifurcation involves specifically will be discussed in more detail later. Physically however it can be

thought of as the T 1 being preempted [35,36]. In other words, it is no longer possible to attain very

short film lengths gradually, nor to maintain very short film lengths indefinitely. Instead there is a

certain finite film length below which it becomes inevitable that the system runs away to T 1, and

the film in question shrinks and disappears. The work of [35,36] is however different from what we

study here. The system of [35,36] was kept at equilibrium up to a saddle-node bifurcation, with T 1s

induced by shifting system boundaries. Here however the system is steadily propagating (but out of

equilibrium) up to the saddle-node bifurcation: T 1 is induced by changing imposing driving pressure,

thereby shifting the system further and further away from equilibrium.

Whilst the saddle-node scenario was ubiquitous for the simple lens (see supplementary material

section S 3 for details), in the three-bubble system studied by [34], the quasistatic type of T 1

happened in most cases, whereas the saddle-node type T 1 was the exception rather than the rule.

In the three-bubble system, saddle-node cases tended to be confined within “buffer regions” where

two or more different types of T 1 (i.e. T 1c, T 1u or T 1l along with variants T 1u′ and T 1l′ as shown

in Figure 3) were competing with each other (see sections S 2(b) and S 4 in supplementary material

for details). It is precisely because of the above mentioned competition that these saddle-node buffer

regions are likely to be interesting to study in more detail, since the different modes of T 1 could

compete to be selected depending how the system is driven. This notion is discussed further below,

with a highlight on open questions.
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(f) Open questions for the three-bubble system

It is actually possible to continue tracking steady solutions around a saddle-node bifurcation onto

a second branch, but what then happens is that driving pressure tends to decrease rather than

increase [34]. The second branch eventually reaches a topological transformation at some driving

pressure pb,T 1 which is lower than the pressure p∗
b at which the bifurcation appeared. However

whether it is even meaningful to track the branch in this fashion is unclear, since the branch could

be dynamically unstable. The methodology used by [34] only tracks steady solution branches, but

does not interrogate their stability. Determining which one of the aforementioned solution branches

is stable is therefore one of the open questions of the present work.

The methodology of [34] was, as has been mentioned, a steady state one (i.e. it involves passing

through sequences of steady states via slow increases in driving pressure until T 1 occurs). Details

of what the steady state approach predicts are discussed in section S 4 in supplementary material.

However, a more likely scenario in experiment is that, starting from an equilibrium (i.e. static) state,

a sudden step in driving pressure would be imposed. How the system responds is then an inherently

dynamic question, not a steady state one. Indeed there is no guarantee that the same state is reached

for a sudden step increase in pressure as opposed to a gradual increase. This then is another open

question to be addressed. The critical pressure needed to break a system dynamically (denoted p∗∗
b

say) might well differ from the critical pressure p∗
b needed to break it via the steady state approach

(see e.g. section 4(c) and also section S 7 in supplementary material). Moreover, the domain of

imposed pressures available to the dynamical simulation is far wider than the domain available to the

steady state computation. In the steady state case, the slow increase in pressure would stop as soon

as the structure breaks via topological transformation. For a dynamic simulation by contrast, the

system can be driven immediately with a pressure well in excess of the minimum pressure needed to

break it. The way in which the system breaks might then depend on the particular pressure imposed,

which again is an open question.

As alluded to already, an alternative situation found by [34] depending again on bubble sizes, is

to have no T 1 whatsoever (see also Figure 3). The system instead reaches, in the limit of large

imposed back pressure a geometrically invariant state, which does not suffer any further deformation

as the imposed pressure continues to increase, but instead merely moves faster and faster (see [15]

for systems exhibiting similar behaviour). For the three-bubble system, this geometrically invariant

state turned out only to occur for a relatively limited set of bubble areas (see phase diagram in the

supplementary material Figure S 2). However it does underline that the three-bubble system can

admit behaviours akin to the infinite staircase, and hence indeed interpolates between the simple

lens and the infinite staircase as we have claimed. One of the findings from [34] was that a necessary

condition (in terms of bubble sizes) could be formulated for existence of a geometrically invariant

state. However only a small subset of the states satisfying the necessary condition actually attained

the geometrically invariant state, the rest undergoing T 1 instead. Remember however, as has been

explained, the work of [34] involved gradual increases in driving pressure. A sudden imposition of a

driving pressure rather than a gradual increase might make the geometrically invariant state more

prevalent or less so. This then is yet another open question to be addressed.

In order to address the various open questions alluded to above, in this work we study the three-

bubble system by evolving it dynamically from the equilibrium state, up the point where the system

undergoes a topological transformations or else attains a geometrically invariant state. As we will

see, the dynamic approach employed here does not always match up with the steady state approach

used by [34], particularly when different types of T 1 are competing.

3. Unsteady state simulation methodology
In this section we summarize the methodology used to perform unsteady state simulations, which

is based, as already mentioned, on the work in [14]. Further details are available in section S 5 in

the supplementary material. Here we start in section 3(a) by introducing the viscous froth model

equation (details in section S 1(a) in supplementary material), which is used to capture the system
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evolution. Then in section 3(b) we define the spatial discretization and time evolution. Finally in

section 3(c) we specify the condition under which a steadily propagating structure is considered to

be achieved.

(a) Equation governing film motion

Equation (S 1.1), as given in supplementary material section S 1(a), corresponds to the dimensional

form of the viscous froth model, with a linear viscous drag law [24]. A rescaled version of the model

can be deduced, as obtained in [14], so that the viscous froth model can be written in its dimensionless

form as

v⊥ = ∆p − κ (3.1)

which is the form we use here, with v⊥ being normal velocity of a film element, ∆p being pressure

difference across a film, and κ being film curvature, all in dimensionless form. Here the left-hand side

of the equation (3.1) represents the linear viscous drag force, and the right-hand side represents the

driving forces, which can only be in balance for a static film (following Laplace’s law) at equilibrium,

but not for a system moving steadily relative to channel of transport. Note that equation (3.1)

specifies normal motion but not tangential motion: this is on the basis that tangential motion does

not directly impact film shapes (see section S 1(a) for further discussion).

(b) Discretization and time evolution

Once the equilibrium structure is set by fixing l◦1 and l◦2 (with l◦2 < l◦1 < 1 since distance between

the upper and lower channel walls is unity in the dimensionless system), each film ij is discretized

into a finite number of points, depending on the film’s length L◦
ij at equilibrium (see section S 5(a)

in supplementary material). In our dimensionless system (with unit width across the channel), film

segment lengths are chosen so as to ensure that each film is comprised of a least five points (again

see section S 5(a) in supplementary material; the reason for requiring at least five points per film is

described in section S 5(c) and is also alluded to below). If a film length happens to be shorter than

a minimum allowed length (chosen here to be 0.002, see section S 5(a)) a topological transformation

is carried out on the system. Otherwise, for a given imposed back pressure pb, each film point moves

over time, discretized in steps of δt.

Motion (see section S 5(b) in supplementary material) is in the normal direction n with a velocity

v⊥ equal to the difference between the pressure change across the film ∆p, and the film curvature

κ (see sections S 5(c)–S 5(d) in supplementary material), which is what the viscous froth model

captures (see equation (3.1) and also section S 5(b) in the supplementary material). Here the chosen

time step δt is sensitive to the spatial discretization. Hence the smaller is the allowed separation

between points, the smaller the time step has to be (see section S 5(b) in the supplementary material

for details). The time step here can take values of δt ∈ [10−7, 10−5] [37]. On the other hand, as

specified in section S 5(c) in the supplementary material, curvature κ is computed numerically, in

such a fashion so as to ensure second order accuracy in space (this is incidentally what requires at

least five points per film). Bubble pressures are computed at each time step aiming to keep bubble

areas invariant as specified in section S 5(d) in the supplementary material. After each time step,

the area constraints might still be violated by very small amounts (owing to truncation error in

the numerical scheme). These constraint violations can however be corrected by following [11] (see

section S 5(e) in the supplementary material for details). Moreover, at each time step we also have

to compute positions of vertices for which we use the solution for a Steiner point, as explained in

section S 5(f) in the supplementary material. To retain second order accuracy, we also implement a

regridding algorithm, as specified in section S 5(g) in the supplementary material.

(c) Conditions to reach steady state

As we suddenly impose an arbitrary back pressure pb upon the system, it will be set into motion. The

films then undergo deformation and bubble shapes change. If pb is smaller than the aforementioned
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critical value p∗∗
b required to induce a topological transformation, a steady state migrating structure

should eventually be attained. In this steadily migrating structure, bubble shapes are no longer

changing with time and film lengths remain constant.

A criterion is needed to determine whether the system has reached a steadily migrating shape. As

established in the numerical method, this is based on the system’s energy measured at each time step.

Energy in this context is the sum total of all film lengths. If the energy varies sufficiently slowly over

time |dE/dt| < 10−5 for at least one dimensionless time unit (see section S 1(a) in supplementary

material for what this represents in dimensional time), steady state is assumed to have been reached.

4. Unsteady state results
In this section we present unsteady state simulation results, obtained for a wide domain of bubble

sizes, specifically for values of l◦1 ∈ [0.1, 0.2, ..., 0.9, 0.96], with values of l◦2/l◦1 ∈ [0.1, 0.2, ..., 0.9]. The

rationale for selecting l◦1 = 0.96 in particular was to allow exploration of T 1l transformations: the

steady state analysis [34] (see also section S 4) suggests that such transformations only tend to

occur with very large l◦1 values. As l◦1 reduces to 0.9 or less, T 1c, T 1u and T 1l′ transformations

occur instead. Note that the present work only follows systems up to their first topological

transformation. The methodology of section 3 can actually track systems through multiple topological

transformations, but here we restrict consideration just to the first of them. Note moreover that the

T 1u′ is not considered here. Having a T 1u′ as the first topological transformation turns out to be

very rare (as [34] explained) and in fact none of the states in the domain to be explored here break

initially via a T 1u′ .

We start in section 4(a) by comparing a steadily migrating system obtained via steady state

solution in [34], with the time evolution of a system obtained via unsteady state simulation here:

this benchmarks our approach. Then in section 4(b) we determine which one of two possible steady

solution branches, as found in [34], is the stable one. In section 4(c) we compute the time and distance

travelled for different systems starting from equilibrium up to them reaching their first topological

transformation. These computations are done for various imposed back pressures pb. Examples are

found in which the pressure needed to break the system dynamically differs from the pressure needed

to break it via a steady state approach. Remarkably systems are also found which do not break at all

when driven dynamically by suddenly imposing a large pressure, but which would certainly break if

the same pressure were to be attained gradually as the steady state approach of [34] would envisage.

In addition, it is shown how the type of topological transformation that a given system undergoes

can change according to the imposed back pressure: all this is studied in section 4(d).

Additional results are presented within section S 6 in supplementary material. Section S 6(a)

verifies that it is possible to find systems that admit steady states which exist only at large pressures

but not necessarily at lower pressures: this then helps to explain some of the findings in section 4(c).

Section S 6(b) provides further details of a system undergoing T 1 at pressures lower than expected

by the steady state approach, so as to complement the results in section 4(c). Section S 6(c) gives

more details of dynamic stability of various branches, to complement the results in section 4(b).

After that section S 6(d) gives a further discussion of systems that transition between selecting

different T 1 types according to the pressure imposed upon them, complementing some of the results

of sections 4(c)–4(d). Section S 6(e) looks at statistics of the three-bubble system T 1 behaviours

to establish which are common and which are less common, particularly as imposed back pressures

are changed. Section S 6(f) compares the three-bubble system and the simple lens. An analogous

comparison was already considered by [34], but in the present work dynamical behaviour, not steady

state behaviour, is analysed.

(a) Approach to the steady state

Here we compare a steadily migrating structure obtained via unsteady state simulation after a

sufficient elapsed time, with a structure obtained for the same system (with the same bubble areas)

but via steady state solution. This is what Figure 4 shows, starting with a system set up at equilibrium
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with l◦1 = 0.5 and l◦2/l◦1 = 0.5. In Figure 4(a) we find that, for the same imposed back pressure pb = 10,

the unsteady state simulation eventually superposes the steady state solution. Any residual difference

between the two structures at longer times is a consequence of truncation error in the unsteady state

numerical scheme, this scheme being computed on a specified grid (see section S 5(a)). The steady

state solution is not tied to a particular grid however (see section S 2(a)).

In Figure 4(b) we can see that the energy E (i.e. the sum of all the film lengths, which is

conveniently normalised here by the energy of initial equilibrium state E◦) increases rapidly at early

times. However as time proceeds dE/dt decreases, i.e. the system deformation rate slows down

over time. This is also reflected in Figure 4(a), where at time t = 0.5 we see that the structure

shows a noticeable difference from the equilibrium system, however, after that time, changes in the

configuration towards the steady state are much more gradual. By time t ≈ 2.87, the value of dE/dt

is small enough that our criterion for reaching steady state is attained (see section 3(c)), and in

Figure 4(a) the unsteady state solution effectively overlays the steady state one.

(a) (b)

Figure 4: (a) Comparison between the steady state solution and the unsteady state simulation for a
structure with l◦1 = 0.5 and l◦2/l◦1 = 0.5 in the equilibrium. In each case the solution is obtained for
an imposed back pressure pb = 10. For the unsteady state we started from an equilibrium state and
then suddenly increased the back pressure from pb = 0 to pb = 10. Then at time t ≈ 2.87 the system
has reached steady state, according to the criterion established here. (b) Energy E normalised by
equilibrium energy E◦ as a function of time t. Energy in this context is just the sum of the film
lengths.

(b) Determining the stable solution branch

As has been mentioned in section 2(e) (see also section S 3), by obtaining steady state solutions it

was found by [34] that some three-bubble systems might reach a saddle-node bifurcation point, at

which two different solution branches were proven to exist (see Figure 5(b) later on for an illustration).

The first branch connected the equilibrium state (at pb identically zero) to a saddle-node bifurcation

point at some pb = p∗
b . The second branch which had higher energy than the first, turned out to

connect the saddle-node bifurcation point to a T 1 topological transformation point at pb = pb,T 1

with pb,T 1 < p∗
b , meaning that pb decreased moving along this branch. This same phenomenon was

seen in the simple lens system [14], where the second solution branch was proven to be unstable.

Based on [14], in [34] it was assumed that the second solution branch was the unstable one in the

three-bubble system also, however a definitive demonstration of this was not given.

(i) Unsteady simulation starting from the second solution branch

Here, to explore stability of various solution branches, we perform an unsteady state simulation. We

start now with a system not at equilibrium, but instead that is already propagating steadily, albeit

on the second (higher energy) steady solution branch. On this higher energy solution branch pb

is decreasing as the system approaches a topological transformation (see Figure 5(b)). We select
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a system which, had it been at equilibrium, would have l◦1 = 0.5 and l◦2/l◦1 = 0.41, but is instead

moving steadily as a result of an imposed back pressure pb = 7.801. This is lower than p∗
b ≈ 7.87 (the

maximum imposed back pressure at the saddle-node bifurcation) but higher than pb,T 1 ≈ 7.61 (the

back pressure at which the solution branch would undergo a topological transformation, specifically

a T 1u in this case).

The studied system is found to be in a buffer region in which, according to a steady state analysis,

T 1u is competing with T 1c (see supplementary material section S 4(a) for details). For instance, if

for the same l◦1 = 0.5, a value l◦2/l◦1 ≤ 0.372 is selected, the T 1u is found on the first solution branch

(with pb increasing starting from equilibrium), i.e. the T 1u is reached quasistatically rather than via

a saddle-node bifurcation. On the other hand, if 0.432 ≤ l◦2/l◦1 ≤ 0.491 the system undergoes T 1c

(not T 1u) on the second solution branch (with pb now decreasing on the approach to T 1). For values

of l◦2/l◦1 > 0.491 the system undergoes T 1c on the first solution branch (with pb increasing).

Returning to the system of interest, the unsteady state simulation methodology now applies. As

mentioned the initial condition is a steady solution on a second solution branch with pb = 7.801 and

the system is then discretized as explained in section 3(b). Then we impose a very slightly different

back pressure pb = 7.8 (at what is considered to be time t = 0), so the initial condition is close to

the steady solution at pb = 7.8, but not exactly the same: a slight perturbation has in effect been

imposed. Then the system is evolved over time.

Three different scenarios are possible. A first scenario is that the system, whilst conserving its

topology, migrates away from its current shape to a different state (the system energy increasing or

decreasing, with some films shrinking and others stretching), eventually reaching a new steady state

after a certain amount of time: the system might for instance migrate from the second steady solution

branch to the first one. A second scenario is that the system migrates away from its current shape

until it reaches a topological transformation. Both of these two scenarios imply that the chosen steady

state solution branch is unstable. In a third scenario, the system would not undergo any significant

change in bubble shape nor in total film energy, suggesting that the high energy steady state branch

was (unexpectedly perhaps) stable.

(ii) Migration from one steady state to another

For the selected system, we obtain that this actually migrates away from the original structure given

at time t = 0, eventually reaching a new steady state solution, i.e. the first of the above mentioned

scenarios. This new steady state structure coincides with that obtained for the same pressure pb = 7.8,

but now on the first solution branch, thereby confirming that the first solution branch is the stable

one. In Figure 5(a) we can see the steady state solution shape of the selected system on the second

solution branch (dotted line in Figure 5(a), structure at time t = 0 in the unsteady state simulation),

and also the steady state solution shape on the first solution branch (see solid line in Figure 5(a)). The

bold dotted line in Figure 5(a) (more easily seen in the inset) corresponds to the final state obtained

via unsteady state simulation (reached, according to our criterion for achieving steady state, at time

t ≈ 7.23): clearly this matches with the solid line. Figure 5(b) shows the system energy for the steady

state solution against different imposed back pressures. Here we can see how via dynamic simulation

the system set up at the given pb using the steady state solution on the second solution branch

(higher energy), migrates to a state on the first solution branch (lower energy) as time proceeds

(again this is easier to see in the inset).

In section S 6(c)i in the supplementary material, we study the same system (same values of

l◦1 = 0.5 and l◦2/l◦1 = 0.41), but considering a wider range of starting points for pb on the second

steady state solution branch. In all the studied cases, even for values of pb very close to p∗
b , and also

values very close to pb,T 1, the system migrates to the first solution branch (of lower energy). To

demonstrate moreover that the findings are not specific to just one set of l◦1 and l◦2/l◦1 values, an

additional case was also studied in section S 6(c)i in the supplementary material, which consists of a

system with l◦1 = 0.9 and l◦2/l◦1 = 0.3 at equilibrium. For this system, a similar situation was observed:

in each case the stable migrating structure corresponds to the first solution branch. In both studied
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cases, we have found that the steady state system on a second solution branch migrates dynamically

back to the first branch.

unstable 

solution branch

stable solution

branch

(a) (b)

Figure 5: (a) Film configurations obtained for a system set up in equilibrium with l◦1 = 0.5 and
l◦2/l◦1 = 0.41. The dotted line (the initial condition) corresponds to a steadily migrating shape on
the second solution branch (with pb = 7.801 ≤ p∗

b ≈ 7.87). The solid line corresponds to the system’s
steadily migrating shape on its first solution branch (with pb = 7.8 ≤ p∗

b ≈ 7.87). In both cases the
system is moving as a result of almost the same imposed back pressure. If we now set pb = 7.8 and
perform an unsteady simulation, then over time, the system on the second branch migrates away from
the initial state. After a time t ≈ 7.23 it is considered to reach a new steady state (which coincides
with the first solution branch given by the solid line). (b) System energy for the steady state solution
vs imposed back pressure. Here we can see the two solution branches connecting at a saddle-node
bifurcation point. The first branch connects the equilibrium state to the saddle-node bifurcation, and
a second branch connects the saddle-node bifurcation to a T 1u topological transformation. On this
second branch, pb decreases from p∗

b to pb,T 1.

On the other hand, if the system is perturbed differently, it can migrate from a steady solution to

a T 1. This was observed to happen when either steady solution branch at pb = p∗
b − δpb, was used

as an initial condition (assuming some small δpb), and the system was perturbed dynamically by

imposing pb = p∗
b + δpb (a domain in which neither steady solution branch exists any longer). This

then leads to a T 1 (see section S 6(c)iii in the supplementary material).

To summarize when multiple steady states are present, it is possible to use unsteady state

simulations to show the system migrating from one steady solution to another, both solutions having

however the same topology. Steady state solutions need not exist however for all values of pb. Instead

any given steady solution branch typically terminates at some finite p∗
b . Outside the domain in which

steady state solutions exist, the system is liable to break up via topological transformations, and this

situation is considered next.

(c) Time and distance up to first topological transformation

As mentioned in section 2(e) (see also section S 2 in supplementary material), the three-bubble

system was shown by [34] to undergo different types of topological transformations, provided large

enough pressure pb was imposed, and depending on the values of l◦1 and l◦2/l◦1 , i.e. depending on the

bubble area distribution. However, the steady state findings of [34] contemplate a different physical

situation from what we consider in this study: here, starting from equilibrium, we suddenly impose a

specified pb then hold it fixed over time, up to the system reaching a steadily migrating structure or

undergoing a topological transformation. In the event that a T 1 is reached, questions of time and

distance to reach it now become relevant.
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For small imposed back pressures we expect no T 1, with the unsteady state system propagating

instead for an arbitrarily long time, and eventually approaching a steadily migrating shape, typically

the same shape as found by [34] via a steady state computation. In contrast, for sufficiently high pb,

systems are expected to undergo a T 1 after a finite amount of elapsed time. The distance travelled

to T 1 meanwhile, is measured as the difference between the average horizontal coordinate location of

films across the channels at the time of the topological transformation, compared to their location in

the initial equilibrium structure. In this section we compute the time elapsed and the distance travelled

up to the first topological transformation being reached for systems with l◦1 = [0.1, 0.5, 0.9, 0.96] and

in each case for values of l◦2/l◦1 = [0.1, 0.5, 0.9] at equilibrium.

(a) (b)

(c) (d)

Figure 6: Time to topological transformation, obtained for different systems, which have in equilibrium
(a) l◦1 = 0.1, (b) l◦1 = 0.5, (c) l◦1 = 0.9 and (d) l◦1 = 0.96. On the pressure axis, the back pressure pb

varies from 0 to 80 in steps of an integer. Note the logarithmic axis for time. We cannot typically
find topological transformation to the left of the vertical lines, since steady state solutions exist in
this domain: the pb values labelling each of these vertical lines are the steady state predictions for
p∗

b . Note in (c), that the first data set (dash-dotted line) stops at pb ≈ 13 and does not continue
to higher pb, i.e. the system ceases to break when pb ≥ 13. Instead, a new steady state not studied
in [34], is found. Note also in (d), that one of the states is highlighted with an arrow because it is
otherwise easy to overlook, given it occurs over only a very small pb domain.

In Figure 6 we can see that as the imposed back pressure increases, the time elapsed up to the first

topological transformation typically decreases. In Figure 7 we see a similar phenomenon for distance

to the first topological transformation. Yet another observation we make comparing Figures 6 and

7 is that the variation in time to T 1 with varying pb (note the logarithmic axis for time) tends to

be more significant than the variation in distance to T 1. This is because long times to T 1 tend to
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correlate with low pb, hence low propagation velocities. Short times to T 1 meanwhile correlate with

high pb, hence high propagation velocities. Distance of course is the integral of velocity over time.

In both cases (Figures 6 and 7), as the imposed back pressure approaches the vertical lines,

which correspond to the steady state critical pressures p∗
b , the time and distance travelled tend

to diverge. This happens since steady state solutions without T 1 were proven to exist in [34] for

pressures lower than critical p∗
b . In at least one case however, as can be seen in Figure 6(a) for

l◦1 = 0.1 and l◦2/l◦1 = 0.9, we found unsteady state topological transformation for pressures smaller

than the predicted critical pressure p∗
b ≈ 72.14 (as obtained from a steady state solution in [34]).

Specifically topological transformations happened for any pb value greater than p∗∗
b ≈ 62. We explore

this situation further in section S 6(b) in supplementary material. It appears that in this situation,

despite steady state solutions existing, the dynamic solution takes the system far away from any

steady branches, which is why the system breaks.

(a) (b)

(c) (d)

Figure 7: Distance travelled by the structure up to topological transformations, obtained for different
systems, which have in equilibrium (a) l1 = 0.3, (b) l1 = 0.5, (c) l1 = 0.9 and (d) l1 = 0.96. On the
pressure axis, the back pressure pb varies from 0 to 80 steps of an integer. We cannot typically find
topological transformation to the left side of the vertical lines, since steady state solutions exist in
this domain.

(i) Different topological transformations for different back pressures

Another observation, as can be seen in Figure 6(d), is that different topological transformations can

be reached for different imposed back pressures. For instance at l◦1 = 0.96 and l◦2/l◦1 = 0.1 we see

T 1l′ as the first transformation that occurs at pb = 6 (only observed case), but this gives way to T 1l

for pb > 6, and at even higher pb values to T 1l again. For the same l◦1 but l◦2/l◦1 = 0.5, T 1l gives
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way to T 1c as pb increases. Yet again at the same l◦1 but l◦2/l◦1 = 0.9, we see a switch from T 1c to

T 1l and back again as pb changes. Switches in the T 1 type with varying pb will be discussed further

in section 4(d) and also in section S 6(d) in supplementary material. As seen in Figures 6(d) and

7(d), they are often associated with sharp changes in the time and distance to T 1.

(ii) System that stops undergoing topological transformation at higher pressures

In the case of l◦1 = 0.9 and l◦2/l◦1 = 0.1 (see Figure 6(c) and also Figure 7(c)), as back pressures

higher than pb > 13 are imposed, the system stops undergoing topological transformation. For this

particular system, the steady state solution predicted no steady states to the right of the p∗
b vertical

line. However the approach of [34] only tracked a steady solution branch starting from the equilibrium

state plus any second branch to which that first one eventually connects. Additional branches of steady

solutions might well exist, disconnected from these ones, and Figures 6(c) and 7(c) are evidently

finding such a branch. This is further discussed in section S 6(a) in the supplementary material.

(iii) Physical implications of varying pb and T1 type

The findings of Figures 6 and 7 have a number of physical implications. We have found that distance

to topological transformation is typically a slowly decreasing function of driving pressure. Therefore, if

it is desired to drive a foam structure intact through a real channel of a certain length, the data in the

Figures 6 and 7, define a maximum permitted driving pressure, and hence a minimum time for driving

the structure through the channel. On the other hand, one of the features we observe in Figures 6(d)

and 7(d), is that in certain cases, the type of topological transformation can change at a certain

pb, sometimes leading to sharp changes in time and distance to T 1. For instance in Figures 6(d)

and 7(d), with l◦1 = 0.96 and l◦2/l◦1 = 0.9, to allow the system to propagate more distance without

breaking, we can set pb so as to avoid the transition from T 1c to T 1l that happens around pb ≈ 20.

In addition, also in Figures 6(d) and 7(d) the T 1l to T 1c transition (for l◦1 = 0.96 and l◦2/l◦1 = 0.5)

and the T 1l to T 1l′ transition for (for l◦1 = 0.96 and l◦2/l◦1 = 0.1) both happening for pb a little

above 60 are desirable: the structure can migrate both further and faster without breaking. Although

not seen in Figure 6 and Figure 7, another relatively common transition turns out to be between

T 1u at lower back pressure and T 1c at higher back pressure. This is discussed in section S 6(d)

in supplementary material and in particular in Figure S 8. There tends to be a slight increase in

distance to T 1 if we select pressure pb just slightly above that transition. Compared to some of the

cases shown in Figure 7(d) however, the relative change in distance to T 1 as pb varies in the case

of Figure S 8 is actually rather modest. To summarize, since the topological transformation type

can affect how far and how fast the structure can move along the channel, understanding how the

transformation type changes is relevant to the design of processes involving transport along channels.

A final comment we make in this section, is that analysis of time and distance to topological

transformation can be done not only for a three-bubble system but also for a simple lens. In this

fashion we can compare and contrast the respective tendency to break up of the three-bubble system

and the simple lens. This is done in section S 6(f) of supplementary material. What we find is that

the three-bubble system can sometimes break up more easily than the simple lens (on the grounds

that it is susceptible to modes of break up unavailable to the simple lens). On the other hand, the

three-bubble system can sometimes be much harder to break than the simple lens, which results from

the three-bubble system sometimes admitting states (unavailable to the simple lens) that avoid break

up altogether. Which case (the three-bubble system or the simple lens) is easier or more difficult to

break ultimately turns out to depend on bubble sizes.

(d) First topological transformation type as a function of pb

As we have discussed, provided the three-bubble system undergoes topological transformation, the

first transformation that it exhibits (see section 2(e)) can be one of five distinct types, denoted as

T 1c, T 1u, T 1u′ (although this is very rare [34], and not actually observed in any of the cases studied

in this work), T 1l′ and T 1l. Which of these transformations turns out to be the first to occur depends
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on the size of the bubbles, which is set by fixing l◦1 and l◦2 at equilibrium. However, for specified l◦1
and l◦2 , we have now seen that which topological transformation is selected first can also potentially

depend on the particular back pressure pb that is imposed (for additional details on this, see e.g.

supplementary material section S 7). Therefore, here we study at different imposed back pressures pb

the topological transformation behaviour of systems with different values of l◦1 ∈ [0.1, 0.2, ..., 0.9, 0.96]

and l◦2/l◦1 ∈ [0.1, 0.2, ..., 0.9].

This is what we show in Figure 8 expressed in the form of phase diagrams. Specifically phase

diagrams in l◦1 vs l◦2/l◦1 are shown for a selection of pb values pb ∈ [10, 20, 40, 80]. There are of course

(at least) two ways to produce phase diagrams such as these. One is the unsteady state simulation

approach that we use here (applying the back pressure suddenly). The other is the steady state

approach of [34] (increasing the back pressure gradually), relevant data for which are presented in

section S 4. As [34] explains, in the steady state case, a contour plot shown in section S 4(b) can

be consulted to decide if any topological transformation has taken place for a specified pb, and if it

has, the type of T 1 can be obtained from a diagram in section S 4(a). Any discrepancies between

the unsteady state and steady state approaches are indicated in Figure 8 by using “|” between the

two predictions.

(a) (b)

(c) (d)

Figure 8: First topological transformation vs imposed back pressure pb for (a) pb = 10, (b) pb = 20,
(c) pb = 40 and (d) pb = 80. Here the first T 1-type for each combination of l◦1 and l◦2 is denoted
with its corresponding symbol c, u, l and l′. Both unsteady state and steady state predictions are
contemplated. Cases in which the unsteady state methodology predicts a different situation from
the steady state solution are specified side by side separated with “|” with the unsteady case shown
first. If the steady state predictions involve T 1s on second solution branches following saddle-node
bifurcations, these are further specified by the subscript “∗”. Cases with no T 1 (at least not yet at
the pb in question), but where a T 1 is predicted eventually are labelled with ×. Cases where a T 1 is
never predicted (at least via the steady state approach) are labelled with ×̃. Cases in which the T 1
type in the unsteady case differs from the type at the next pressure down are underlined.
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(i) Differences between unsteady and state predictions

There are relatively few cases in which the unsteady state and steady state predictions differ in

Figure 8. For the most part, any differences occur in regions of the phase diagram in which distinct

transformation types are known to compete. For instance, based on the steady state results in

Figure S 2(a) (in the supplementary material) there is competition between T 1u and T 1c down the

diagonal of the phase diagram, competition between T 1l and T 1c towards the right hand boundary,

and competition between many different T 1 types in the bottom right hand corner (see the zoomed

view in Figure S 2(b)).

Further to this and as was found by [34], different T 1 types in a steady state phase diagram such

as Figure S 2 are often separated by buffer regions (see also section 2(e)), in which saddle-node

bifurcations are predicted (see section 4(b) and also S 3). In Figure 8 we add a subscript “∗” if the

steady state prediction corresponds to a saddle-node state. In such cases, the T 1s that are predicted

via the steady state analysis are typically on unstable solution branches (again see section 4(b)), so

might not be easily reached via a dynamic simulation approach. This then is what Figure 8 finds:

differences between unsteady state and steady state predictions are often associated with steady

states of saddle-node type.

(ii) Effect of increasing pb upon tendency for T1

From Figure 8(a)–(b) we can see that in many cases for pb values as low as pb = 10, there is no

topological transformation (such cases are denoted with “×”) but as pb increases to pb = 20, systems

tend to undergo T 1, very often a T 1c. For pb = 40 or pb = 80 in Figure 8(c)–(d) there are only a

few cases which have not undergone topological transformation, and they mostly correspond to

moderately large l◦1 with small to moderate l◦2/l◦1 . The systems that have not undergone topological

transformation are the ones that can achieve a geometrically invariant structure as studied in [34]

(see also section S 4 in supplementary material).

Note that in Figure 8 we make a distinction between “×” states (which have not undergone a

topological transformation up to the given pb) and “×̃” states (which according to the steady state

analysis of [34] would never undergo T 1). Clearly there are only few ×̃ states, but the data do seem

to suggest resisting transformation via the steady state analysis also ensures that transformation is

resisted in an unsteady state situation. One exception is l◦1 = 0.8, l◦2/l◦1 = 0.3 which is predicted to

break via T 1c at unsteady state when pb = 80 for instance. One of the issues with the unsteady state

simulation is that, owing to discretization, it cannot predict film lengths shorter than a specified

minimum (see section 3(b)), and hence cannot approach any steady states which happen to have

exceedingly short films. Nevertheless in this particular case, the steady state solution predicts film

lengths to be sufficiently long for the unsteady solution to resolve.

Numerical discrepancies due to discretization are seen however elsewhere in the phase diagram,

e.g. at l◦1 = 0.1 and l◦2/l◦1 = 0.6 and pb = 10. The unsteady state result predicts a T 1u, even though

the steady state does not, but this is due to the steady state having a film shorter than the minimum

length that the unsteady numerical method (see section 3(b)) would permit. Further discussion of

such situations is given in section S 6(b) and also S 7 in supplementary material).

(iii) Effect of pb upon type of T1

As well as affecting the tendency of systems to undergo T 1, imposing different pb values can also

change T 1 type. This is actually only an issue for unsteady state simulations, since the steady state

case implies gradual increases in pressure pb being imposed and the system always breaks once a

critical value p∗
b is reached, and the pressure is not then raised any further. In the unsteady case

however, the pressure pb is imposed suddenly, and it is possible to select a pressure well above the

pressure p∗∗
b needed to break a system. Differences in T 1 type with respect to the next lower pressure

in Figure 8 are specified by an underline, provided of course that the next lower pressure did actually

undergo T 1.
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These underlined cases tend to be situations in which competition between different T 1s is

occurring. For instance along the diagonal in Figure 8(b)–(d) (at various different pb) we see instances

in which competition between T 1u and T 1c occurs. The steady state predicts T 1u but the unsteady

state (underlined cases) has just switched from T 1u to T 1c. Likewise along the right hand boundary

of the phase diagram (the data correspond to l◦1 = 0.96), there is competition between T 1l and T 1c,

with the steady state predicting T 1l but the unsteady state switching from T 1l to T 1c for high

enough pb (underlined cases in Figure 8(d)). Looking at Figure 8(d) overall, it is clear that T 1c is a

common transformation type at the highest pressure pb = 80 considered here. The above described

cases concern situations in which increasing pb creates a difference in predictions between steady and

unsteady state approaches. However increasing pb can also eliminate such difference. Lower down on

the right hand boundary of the phase diagram for instance, there is competition between T 1l and

T 1l′ . The steady state prediction is T 1l′ but the unsteady state prediction only switches from T 1l

to T 1l′ at high enough pb (underlined cases in the bottom right of Figure 8(d)).

(iv) Eliminating topological transformation at high pb

Although for the most part in Figure 8 increasing pb causes T 1s to happen, there are some

cases in which the opposite occurs. For instance l◦1 = 0.7 and l◦2/l◦1 = 0.1 does undergo topological

transformation for pb ∈ [10, 20, 40] in Figure 8(a)–(c) (specifically T 1u for pb ∈ [10, 20] and T 1c for

pb = 40), whereas in Figure 8(d) for pb = 80, no transformation occurs. Cases like this are marked

with an underline “×” in Figure 8(b)–(d) (specifically they are indicated in this fashion for the

pressure at which the transformation is found to be eliminated compared to the next pressure down).

These states tend to be close by to the aforementioned ×̃ states (see section 4(d)ii), towards the

bottom right hand corner of the phase diagram. These × states are predicted to break if driven

with a gradually increasing pressure, and likewise break if they are driven suddenly with a moderate

pressure, but not break at all if they are driven suddenly with a very large pressure. How such a

situation can come about is discussed further in section S 6(a) in the supplementary material. It is

clear though that what determines the ultimate fate of the system, is not just the back pressure that

is eventually imposed, but the manner in which it is imposed.

To summarize regardless of whether an unsteady state or steady state methodology is employed,

the main trend we see as back pressure pb is increased is that more and more systems undergo

topological transformation. In the unsteady state case however switching between different types

of T 1 states as pb changes is also possible. Via both steady state solution and unsteady state

simulation, we have found certain systems that do not undergo any topological transformation even

for large imposed back pressure. As shown in Figure 8, these cases do not always match up between

unsteady state and steady state prediction, although even so, they are still reasonably close together

in the phase diagram in terms of their l◦1 and l◦2/l◦1 values. In these particular cases, whether or

not topological transformation occurs may depend on whether the pressure is slowly increased from

the equilibrium (quasistatically, i.e. finding steady states for each pressure) or is suddenly imposed

(dynamic simulation).

There is therefore a considerable amount of information in Figure 8 (and furthermore some of this

information is captured in a statistical fashion in supplementary material section S 6(e)). However

it is worth remembering that this figure shows only the first topological transformation. After the

first topological transformation, additional T 1s may occur. The various sequences of transformations

that result and the configurations to which they lead, remain as open questions.

5. Conclusions
We have computed unsteady state simulations for a three-bubble system, which corresponds to a

truncated version of the infinite staircase structure. Many different sets of bubble areas have been

considered, by setting different values of l◦1 and l◦2 , which correspond at equilibrium to the vertical

distances from the upper channel wall to vertices V1 (equivalently V3) and V2, respectively.
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Moving away from equilibrium, we have determined the evolution over time of systems as they

migrate through a confined straight channel, looking at a range of imposed back pressures pb to drive

the flow. The unsteady state approach used here (sudden imposition of the back pressure) differs

from the steady state approach of [34] (gradual increase of the back pressure).

Steady state solution revealed [34] that for certain combinations of l◦1 and l◦2 different

solution branches could exist meeting at a saddle-node bifurcation. The present work however has

demonstrated that not all these solution branches are stable. However those steady solution branches

that joined up with the equilibrium state were stable, so in principle are physically achievable. A three-

bubble system can thereby remain intact as it is driven along a channel under increasing imposed

pressure, as long as the steady solution branch exists. If the system is driven under too high a

back pressure however, the branch may come to an end, and the structure typically breaks up via a

topological transformation. What appears moreover to be key to driving topological transformation

here is asymmetry. Since we have an odd number of bubbles, there are unequal numbers of films

on different sides of the channel, and hence (with viscous drag tied to the films) unequal drag on

different sides.

Via the steady state approach, various types of topological transformations e.g. T 1c (vertex-vertex

collision), T 1u (transformation at the upper channel wall) and T 1l or T 1l′ (transformation at the

lower channel wall) were identified in [34]. Meanwhile via unsteady state simulation as performed

here, the same types of topological transformations were found, albeit not always under identical

conditions as we describe below.

(a) First topological transformation

In the present work, we focussed just on the first topological transformation that occurred. The first

topological transformation in the unsteady state system often (but not always) onsets at an imposed

back pressure comparable with the pressure at which it occurs in the steady state approach. Moreover

the type of transformation (T 1c, T 1u, T 1l, T 1l′ ) at onset often (but again not always) matched the

type of transformation seen in the steady state system. Exceptions occurred for combinations of l◦1
and l◦2 (i.e. for certain choices of bubble areas) at which competition between different transformation

types was present. Systems with those sets of bubble areas then evolve in a fashion that is sensitive

to the history of how the driving pressure is imposed.

Another observation is that even though at the pressure of onset, there is a reasonable match

between the T 1 type from steady state solution and unsteady state simulation, if a driving pressure far

above onset is used, this no longer applies. Indeed the T 1c (vertex-vertex collision) becomes the most

common T 1 type (at least for the first topological transformation) as pb is increased. Interestingly

the T 1c also seemed to be particularly common for long trains of bubbles [1] (at least when those

trains move in an asymmetric U-bend as per [1]). Understanding how the T 1c occurs at different

driving pressures in three-bubble systems might then be relevant for understanding the behaviour of

long trains of bubbles.

Knowing how the topological transformation type changes with changing pb is potentially relevant

for delivering bubble structures at high speed through long but finite channels: at any given

driving pressure, break up can be avoided provided channel length remains less than the distance

required to achieve topological transformation. For systems that break up via a specified topological

transformation type, time elapsed and distance travelled up to T 1 were shown to be decreasing

functions of driving pressure, and thereby decreasing functions of propagation speed. However when

a driving pressure was reached at which the topological transformation changed from one type to

another, sharp changes in time elapsed and distance travelled up to T 1 were sometimes observed.

By selecting driving pressure on the appropriate side of these sharp changes, it is possible that a

structure might be driven much further and possibly even much faster along channels, and still arrive

at the end of the channel without yet breaking up.

We have also compared (see supplementary material section S 6(f) for details) the time and

distance to break up for the three-bubble system with the time and distance to break up for the

simple lens (a single bubble plus an additional film). Despite the fact that a system with a very large
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number of bubbles (an infinite staircase) is known to resist T 1, in the systems studied here, the

addition of bubbles (in particular going from the simple lens to the three-bubble system) does not

necessarily imply longer time and distance to break up. This is because the three-bubble system is

susceptible to modes of break up that are unavailable to the simple lens. However there are certain

parameter regimes (i.e. certain combinations of l◦1 and l◦2 or equivalently certain bubble areas) in

which the three-bubble system (albeit not the simple lens), manages to avoid break up altogether (at

least according to steady state calculations of [34]). In such regimes, the system achieves instead a

geometrically invariant state, in which bubbles reach a fixed shape, but merely propagate faster and

faster as driving pressure increases. Close by to these regimes then, the time and distance to break

the three-bubble system can turn out to exceed the time and distance to break the simple lens.

(b) Situations avoiding topological break up

We found instances in which the steady state computations for the three-bubble system predicted

no break up even at arbitrarily large driving pressures, but the unsteady state simulations led to

topological break up even so. Once again the history of how driving pressure is imposed (whether as

a gradual increase or as a sudden imposition) is seen to affect the system. On the other hand we also

found the converse, i.e. a sudden imposition of a large driving pressure enabling the system to avoid

topological transformation even though a gradual pressure increase would drive a topology change.

This behaviour has been found to be associated (see supplementary material section S 6(a)) with

the existence of a steady state solution branch which connected with the geometrically invariant

state (corresponding to the limit of arbitrarily high imposed pressure) but which was disconnected

from the equilibrium state (corresponding to zero imposed pressure, and joining up with a solution

branch that terminated at comparatively modest pressure). The existence of a solution branch at

“high pressure” means that for a suitably chosen history of imposed pressures it might be possible to

drive certain three-bubble systems into the geometrically invariant state, such that bubbles can be

delivered intact arbitrarily far along channels arbitrarily fast.

In [34] a necessary condition for the existence of the geometrically invariant state was identified,

and a large domain of l◦1 and l◦2 values satisfied that condition. In the work of [34] however, very few

of the systems satisfying the necessary condition actually attained the geometrically invariant state,

and the reasons were unclear. Based on the present work however, it appears that gradual increases

in pressure (the strategy of [34]) may not always be the best way to attain the geometrically invariant

state and the rapid transport of bubbles along channels that it admits. Instead the sudden imposition

of a large pressure may actually be a better way to realize rapid transport.

Of interest of course is what happens when more bubbles are added to the system. Adding more

than three bubbles is likely to make it easier for a system to achieve a geometrically invariant state,

given that in an infinite staircase, bubbles can in principle move at arbitrarily large velocities, without

deformation. It is unclear however how the number of bubbles in a train will affect the likelihood that

the geometrically invariant state will be on a solution branch that connects up with equilibrium, as

opposed to on a solution branch that is disconnected from equilibrium. Which situation is the case

will dictate how driving pressures need to be applied over time (either gradually or suddenly) in order

to move many bubbles quickly along channels without break up.

Finally we note that in cases when topological transformations cannot be avoided, the present work

has only considered the first topological transformation that systems encounter. In reality though

systems are likely to undergo a sequence of topological transformations, and the unsteady state

simulation methodology utilised here is capable of studying this. Multiple topological transformations

and the transformation paths that systems take will be addressed in future work.
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