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Abstract: Reconstituted clays have often provided the basis for the interpretation and modelling of 

the properties of natural clays. The term “intrinsic” was introduced to describe a clay remoulded or 

reconstituted at moisture content up to 1.5 times its liquid limit and consolidated one-dimension-

ally. In order to circumvent the difficulties of measuring an intrinsic constant called “intrinsic com-

pressibility index” (C*c), a machine learning (ML) approach using traditional non-parametric tree-

based and meta-heuristic ensembles was adopted in this study. Results indicated that tree-ensem-

bles namely random decision forest (RDF) and boosted decision tree (BDT) performed better in C*c 

prediction (average R2 of 0.84 and root mean square error, RMSE of 0.51) compared to stand-alone 

models. However, models’ hyper parameters combined meta-heuristically, produced the highest 

accuracy (average R2 of 0.90 and root mean square error, RMSE of 0.34). The greatest capacity to 

distinguish between positive and negative soil classes (average accuracy of 0.95, precision and recall 

of 0.86) were demonstrated by meta-ensembles in multinomial classification.  

Keywords: machine learning; regression; big data; deep learning; reconstituted soil; compressibility 

index 

 

1. Introduction 

Reconstituted clays can provide a frame of reference for an assessment of the influ-

ence of soil structure on the mechanical behaviour of intact clays. Hence, geotechnical 

engineers, and researchers have often relied on the mechanical properties (such as com-

pressibility, expansion, and strength, etc.) of reconstituted or remoulded clays to interpret, 

extrapolate and establish the corresponding characteristics of clay subgrade materials. 

Based on this, several efforts have been made over the past 80 decades to formulate vari-

ous constitutive models and theories to study the behaviour of reconstituted soils. One of 

the most popularly known reconstituted soil framework is the “critical state” soil mechan-

ics which was developed between early and mid-20th century. Critical state soil mechan-

ics has become so widely embraced as one of the logical concepts that can be applied to 

solve many engineering problems given its capacity to incorporate theories of plasticity, 

yielding, flow, etc for the modelling of soil behaviour [1–6]. 

A reconstituted clay could be defined as a clay that has been rigorously mixed at a 

moisture content that is equal to or greater than its liquid limit (LL). Burland [7] intro-

duced the “intrinsic properties” concept of reconstituted clays to serve as a basis for the 

interpretation of the natural soil. The name “intrinsic” describes the properties of a clay 

that has been remoulded at a moisture content of between its liquid limit (LL) and 1.25 to 

1.5 times its LL (without the need for air or oven drying) and then consolidated one-di-

mensionally. Figure 1 depicts the intrinsic or inherent compression curve for a given re-

moulded clay. The values 𝑒100
∗  and 𝑒1000

∗  are the intrinsic void ratios that correspond to 

effective state pressures (σv) 100 kPa and 1000 kPa respectively. It is important to note that 
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the asterisk is used to signify an intrinsic property. Figure 1 also indicates the normalisa-

tion of the values of intrinsic compressibility by the assignment of fixed values to 𝑒100
∗   

and 𝑒1000
∗  through a parameter referred to as the void index, Iv (measure of the compact-

ness of a given soil). Void index is mathematically expressed as in Equation (1), and could 

be seen in Figure 1, that a unique slope called the intrinsic compression line (ICL) has been 

achieved, and this slope represents the remoulded clay subgrade material itself rather 

than one that has undergone some post-depositional modifications through weathering, 

desiccation, unloading, etc. 

 

Figure 1. Plots of void ratio vs. effective stress showing intrinsic constants, ICL and void index. 

In order to obtain an accurate measurement and assessment of intrinsic compressi-

bility index of clays, very expensive and time-consuming experiments are often per-

formed using a conventional oedometer or in some cases a modified form of the con-

solidometer. Moreover, when undertaken on clays with very high initial moisture con-

tents, the procedure may even become inevitably cumbersome. The associated difficulties 

of measuring intrinsic compressibility index prompted a growing body of research in the 

use of statistically based estimates or correlation equations. Burland [7] demonstrated that 

soil’s intrinsic constants can be empirically correlated with its Atterberg limits. Following 

this, several modifications to Burland’s relationships has been made in the most recent 

past by various researchers [8–13]. Some of these studies have also attempted to extend 

these empirical correlations to cover the influence of factors such as initial moisture con-

tent, mineralogy, etc on the intrinsic compressibility of clays [14–17]. For instance, Xu and 

Yin [14] investigated the influence of different initial water contents on the compression 

behavior of three clays. They concluded that intrinsic compression indices tend to increase 

nonlinearly with increasing initial water contents. On the other hand, research carried out 

by Habibbeygi et al. [16], indicated that an inherent property such as clay mineralogy can 

have a considerable impact on the values of intrinsic constants of reconstituted clays. 

Most of the presently used correlation models of predicting the intrinsic compressi-

bility index of clays are composed essentially of relationships developed from linear re-

gression techniques. Thus, the resulting analytical correlation equations only tend to de-

termine unknown coefficients that affect the relationship of an intrinsic constant such as 

the compressibility index. Although these models may be effective in some instances how-

ever, they are mostly fraught with a lot of shortcomings that relate to the inherent non-

linearities and complexities of the interrelationships between soil variables. Hence, an ap-

plication of artificial intelligence (AI) techniques through machine learning (ML) para-

digms are proposed herein to solve the challenges of forecasting 𝐶𝑐
∗. 

This study uses a ML approach to intelligently model the intrinsic compressibility 

index of clays by adopting non-parametric tree-based ensemble learners (decision forest 

and boosted decision trees) and meta-heuristic ensembles or combinations of hyperpa-

rameters such as the voting and stacking ensembles. Predictions using stand-alone algo-

rithms (multilinear regressors, Bayesian linear regressors, logistic regressors and artificial 
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neural networks) are also performed and compared with those of the ensemble learners. 

Furthermore, since various types of soils of different classes (classified according to the 

USCS) are utilised for the prediction, ML multiclass or multinomial classification is ap-

plied for the first time as a diagnostic test to determine the ability of the classifiers to ade-

quately learn between the soil types and by so doing discriminate between positive and 

negative classes. 

𝐼𝑣 =
𝑒 − 𝑒100

∗

𝑒100
∗ − 𝑒1000

∗ =
𝑒 − 𝑒100

∗

𝐶𝑐
∗

 (1) 

2. Methodology 

2.1. Database Generation and Pre-Processing 

Very high-quality dataset of intrinsic compressibility index and basic soil’s index pa-

rameters compiled from rigorous literature search are utilised for this study. Standardised 

methods of oedometer testing were adopted by the authors for data collection from the 

reconstituted soils [11,18–33]. Given the diverse nature and sets of data of intrinsic com-

pressibility index (herein considered as the independent feature), it was necessary to 

transform and normalise these data into usable continuous variables to enable an im-

provement of the significance of findings, greater size effects, lesser threats to any causal 

inferences (i.e., the validity of statistical conclusion), and more reliable results. A two-step 

approach of data transformation was followed [34]. Step one involved a transformation 

of the intrinsic compressibility variables into a percentile rank resulting in uniformly dis-

tributed probabilities. Step two then applied the inverse-normal transformation to the re-

sults of step one into a variable comprising normally distributed z-scores. Figure 2 indi-

cates the normally distributed dataset of the method with very low values of skewness 

(0.123457) and kurtosis (−0.09139) (Table 1) meaning therefore that the dataset is very re-

liable for use in the ML modelling. 

 

 

 

Figure 2. Distribution of intrinsic compressibility index. 
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Table 1. Statistics of intrinsic compressibility index (𝐶𝑐
∗.). 

Mean Standard Error Standard Deviation Kurtosis Skewness Min. Max. Range 

0.789244 0.124782 1.36121 −0.0914 0.123457 0.08 8.5 8.42 

On the other hand, a total of six explanatory features are used in this research namely, 

reconstituted soil intrinsic constants (eL, eP and e100), Atterberg limits (Liquid limit (LL) 

and plasticity index (PI)) and a soil texture parameter, specific gravity (G). Table 2 depicts 

important statistical components of these features. It is observed that the range of values 

for the liquid limits (minimum and maximum of 22% and 560% respectively) and plastic-

ity indices (minimum value of 5% and 508% respectively) suggest wide coverage of the 

soils of different plasticity properties. Frequency distribution of the independent features 

of the dataset as depicted in Figure 3 generally indicates non-uniform distribution for all 

the variables except for the specific gravity of the soils. The pattern of distribution which 

is noticed to be mostly right skewed indicates a very strong relationship among the fea-

tures. Three classes of soils defined according to the USCS were captured in this study. 

This will be very useful for the multinomial classification prediction considered subse-

quently in this research to determine the ability of the models to learn between the differ-

ent categories of soils used. 

Table 2. Statistics of explanatory features. 

Statistic G LL PL PI 𝒆𝑳 𝒆𝒑 𝒆𝟏𝟎𝟎
∗  

Mean 2.71 87.62 31.11 56.50 2.37 0.84 1.51 

Standard Error 0.01 8.375 1.196 7.82 0.22 0.03 0.10 

Standard Deviation 0.10 91.36 13.05 85.25 2.43 0.36 1.08 

Kurtosis 0.86 13.93 9.15 16.11 12.94 11.59 9.53 

Skewness -0.5 3.60 2.05 3.94 3.49 2.36 2.78 

Range 0.56 538 96 503 13.68 2.75 6.65 

Min. 2.37 22 12 5 0.59 0.31 0.45 

Max. 2.93 560 108 508 14.27 3.06 7.10 
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Figure 3. Distribution of ML features. (a) specific gravity; (b) Plastic limit; (c) Void ratio at LL; (d) 

Void ratio at 100kPa stress; (e) Liquid limit; (f) Plasticity index; (g) Void ratio at PL; (h) Soil class. 

2.2. ML Cross-Validation 

Using the cross-validation technique enables an assessment of both the variability of 

the dataset used and the reliability of the models utilised to train and test through the 

data. In this research, the dataset was first used to train and test the models by first split-

ting the data in the ratio 80:20. This means that 80 percent of the dataset were used for 

model training while the remaining 20 percent were utilised for testing. This method shall 

be referred simply as the train-(validation)-split (TVS) method. For the application of 

cross-validation, both the k-fold cross-validation (kFCV) and Monte Carlo cross-valida-

tion (MCCV) techniques were applied. Cross-validation employed in this way, enabled 

the sensitivity of the ML prediction to be tested especially when using the TVS method in 

order to ensure that overfitting of the dataset was avoided in the modelling process. 

k-Fold and Monte Carlo Cross-Validation Techniques (kFCV) 

In the k-fold cross-validation (kFCV) techniques, the training, testing, and validation 

are performed by splitting the N-dataset into k (k is typically set to 3, 5, or 10) mutually 

exclusive subset depending on the size of the data. The model is then trained on a collec-

tion of k–1 subset and the testing done on the remainder of the kth subset. This process is 

then iterated k-number of times and each time, a different subset would sequentially take 

up the role of the so-called “test set”. The resulting k-test statistical predictions are then 

averaged to obtain a more realistic and representative output of the generalised perfor-

mance of the model used. In this study, the values of k utilised are both 5-and 10 (i.e., five- 

and 10-fold CV) for the sake of comparison. 

The Monte Carlo cross-validation (MCCV) is also an iterative technique and could be 

regarded loosely as a combination of the TVS and the kFCV methods but with some slight 
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variations. The MCCV technique involves splitting of the N dataset into nt and nv subsets 

by random sampling and without replacing the nt subset data points. The nt subset is then 

applied to train the model and validation performed on the nv subset. It should be noted 

that unlike kFCV, there exist an (𝑛𝑡
𝑁 ) unique training set, however, MCCV circumvents 

the need to run these many repetitions. It is very necessary to bear in mind that the choice 

of the number required for dataset splits (k and/or nt) can influence the trade-offs between 

bias and variance. The larger the values of k and/or nt, the higher the variance and the 

lower the biases. Moreover, overfitting could be the end result because larger training 

datasets tend to be more similar between iterations. An assessment of this phenomena 

shall be carried out subsequently during an analysis of the ML models. 

3. Supervised ML Models 

3.1. Tree-Based Ensembles and Decision Forest Classifier Models 

Decision tree prediction models do resemble a natural tree plant with leaf nodes and 

decision branches functioning mostly by the aggregation of its separate parts into an en-

semble as shown in Figure 4. A series of simple tests are performed for each instance by 

traversing a binary tree-data structure up until a decision node (or leaf node) is reached. 

There are different kinds of tree-based models however, in this study, the random deci-

sion forest and the boosted decision tree are considered. 

 

Figure 4. Typical decision trees. 

3.1.1. Random Decision Forest (RDF) and Boosted Decision Trees (BDT) 

The random decision forest regressor or classifier model is composed of an ensemble 

of various non-parametric decision trees. An individual tree in an RDF would output a 

Gaussian distribution as a prediction. The aggregation of trees is performed over the tree 

combination to search for the closest Gaussian distribution to the combined total distribu-

tion of all the trees in the decision model. The boosted decision tree model combines indi-

vidual trees to reach a decision by using the technique of “boosting” in order to increase 

the accuracy of prediction. Boosting simply means that each succeeding tree is dependent 

on the preceding on. Hence, the algorithm or model learns by fitting each tree’s residual 

that precedes it. 

3.1.2. Meta-Heuristic Ensembles and Voting Ensemble (VE) 

In order to further improve ML predictions, meta-ensembles are used. These are con-

structed by an aggregation of several models or hyperparameters and thus are also re-

ferred to as model of models. Some of the hyperparameters of the forgoing models were 

combined through averaging by the voting and stacking systems. The voting ensemble 

estimates the average predictive output of the sum of aggregated models through a ma-

jority voting exhibited by the model with the highest prediction confidence or the model 

that has the most popular output. A typical structure of VE is shown in Figure 5. 
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Figure 5. Typical structure of voting ensemble. 

While the stacking ensemble (SE) is an adjunct of the averaging system where the 

hyperparameters learn and choose when to depend on themselves to enable a more gen-

eralised multistage prediction. Hence, the output of preceding models would become or 

serve as inputs for the subsequent models and predictions are being made as shown in 

Figure 6. 

 

Figure 6. Typical structure of stacking ensemble. 

3.2. Stand-Alone Algorithms 

3.2.1. Linear Regression (REG) 

Multiple linear regression is normally applied to enable estimates of certain un-

knowns (variables, parameters, or coefficients) by demonstrating how a change in one or 

more independent set of variables can affect a corresponding predictor variable. Mathe-

matically, the general form of REG can be expressed as: 
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𝑌𝑛 =  𝜇 + ∑ 𝛼𝑛 

𝑚

𝑛=1

∙  𝑥𝑛 (2) 

where Y = predictor variables and X1, X2, X3,…, Xm represent the independent variables 

plus the error term that accounts for certain other unknown factors in the prediction. 

3.2.2. Logistic Regression (LR) 

Logistic regression normally arises from a conditional probability modelling that 

suggests that the outcome or predicted variable say Y = 1, given a set of input or predictor 

variables say X. Mathematically, the conditional probability (or the hypothesis function) 

is modelled by LR as: 

𝑃𝜔(𝑦 = ±1|𝑥) =  
1

1 + 𝑒𝑥𝑝−𝑦𝜔𝑇𝑥
 (3) 

where x represents the dataset, y represents class label and ω ϵ ℜn is the weight vector. For 

a binary classification problem with two-class training dataset (xi,yi)i=1, xi ϵ ℜn, yi ϵ (1, −1), 

then LR tends to maximise the following regularised negative likelihood: 

𝑝 (𝜔) = 𝐶 ∑ log(1 + 𝑒𝑥𝑝−𝑦𝜔𝑇𝑥𝑖) +
1

2
𝜔𝑇𝜔

𝑙

𝑖=1

 (4) 

where C > 0 is regarded as a penalty parameter. It is important to mention that several 

optimisation techniques have been applied on a LR problem and some of which are doc-

umented in the literature [35,36]. 

For a multinomial classification problem, the conditional probability could be mod-

elled using a maximum entropy as: 

𝑃𝜔(𝑦|𝑥) =
exp (𝜔𝑇𝑓(𝑥, 𝑦)

∑ exp (𝑦′ 𝜔𝑇𝑓(𝑥, 𝑦′))
 (5) 

Here, the function vector is expressed f(x, y) ϵ ℜn 

3.2.3. Bayesian Linear Regressor (BLR) 

Just like the LR, Bayesian linear regressor represents a special case of REG that allows 

modelling to be performed within the “Bayes” theorem statistical inference. 

Hence, for a given dataset say D = (x1, y1),…, (xn,yn) where x ϵ ℜd, and y ϵ ℜ, then a 

BLR model can be expressed as: 

Prior: 

𝜔 ~ 𝒩(0, 𝜎𝜔
2𝐼𝑑)  

Ω is the vector (ω1,…, ωd)T, making the previous distribution a multivariate Gaussian; 

and Id is a d x d identity matrix. 

Likelihood 

𝑌𝑖  ~ 𝒩(𝜔𝑇𝑥𝑖 , 𝜎2)  

With the assumption that Yi ⊥ Yj|ω, i ≠ j 

If we use the variance, a = 1/σ2, and b = 1/σ2ω then we assume that a and b are 

unknown. 

We state the prior as: 

𝑝(𝜔) ∝ 𝑒𝑥𝑝 {−
𝑏

2
𝜔𝑡𝜔} (6) 

Furthermore, the likelihood stated as: 
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𝑝(𝐷|𝜔) ∝ 𝑒𝑥𝑝 {−
𝑎

2
(𝑦 − 𝐴𝜔)𝑇(𝑦 − 𝐴𝜔)} (7) 

where y = (y1,…,yN)T and A is a n x d matrix 

Then, the posterior is: 

𝑝(𝜔|𝐷) ∝ 𝑝(𝐷|𝜔)𝑝(𝜔)  

Which ultimately produces the expression: 

𝑝(𝜔|𝐷)~𝒩(𝜔|𝜇, 𝛬−1)  

where the precision matrix 𝜦 is: 

𝛬 = 𝑎𝐴𝑇𝐴 + 𝑏𝐼𝑑   

𝜇 = 𝑎𝛬−1𝐴𝑇𝑦  

For the predictive posterior: 

𝑝(𝑦|𝑥, 𝐷) =  ∫ 𝑝(𝑦|𝑥, 𝐷, 𝜔)𝑝(𝜔|𝑥, 𝐷)𝑑𝜔 =  ∫ 𝑝(𝑦|𝑥, 𝜔)𝑝(𝜔|𝐷)𝑑𝜔  

It is then possible to then get the following: 

𝑦|𝑥, 𝐷 ~ 𝒩(𝜇𝑇𝑥,
1

𝑎
+ 𝑥𝑇𝛬−1𝑥) (8) 

3.2.4. Artificial Neural Networks (ANN) 

The structure and architecture of neural networks are inspired by the network of in-

put—processes (decisions)—output system such as that of the human nervous system. 

More technically, the information or data processing capability of ANN is represented as 

a network of input, hidden, and an output layers as depicted in Figure 7. 

 

Figure 7. Architecture of artificial neural network. 
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Where x = inputs, wij = neurons’ weight, b = bias and f = activation function that ena-

bles the inputs to be transformed into the output by inputs’ (processing neuron) multi-

plied by the corresponding weights. 

3.3. ML Model Implementation and Multiclass-Class Evaluation Metrics 

The implementation and execution of dataset (training, testing, and evaluation) by 

the models was conducted on a cloud-based platform that supports Python programming 

including its associated libraries. The properties of ML algorithms adopted for optimal 

performance are presented in Table 3. The ML methodology followed in this study is sum-

marised in Figure 8. 

Table 3. Models’ optimised parameter settings. 

Stand-Alone Algorithms 

 Parameter Option/value 

 REG Regularisation wt. (L2) 0.001 
 Method Ordinary least squares (OLS) 

 LR 
Optimisation tolerance 1 × 10-7  

Regularisation wt. (L1 & L2) 1.00 

BLR Regularisation wt. (L2) 1.00 

ANN 

Normaliser min-max 

No. of hidden nodes 100.00 

No. of iterative learning 100.00 

Hidden layer spec. Full connection 

Tree-ensembles 

 Parameter Option/value 

Boosted decision tree (BDT) 

Constructed trees 100.00 

Tree-forming training instances  10.00 

Leaves/tree (max.) 20.00 

Random decision forest (RDF) 

Tree depth (max.) 32.00 

Constructed trees 8.00 

Method of resampling Bagging 

Samples/leaf node (min.) 1.00 

Randomised splits/node 128.00 

 

Figure 8. Summary of ML methodology. 
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In terms of the multiclass evaluation metrics, the indicators of performance consid-

ered in this study for ML regression are the coefficient of determination (R2), Root Mean 

Squared Error (RMSE) and Mean Absolute Error (MAE) metrics. Detailed discussions for 

these frequently used regression metrics are given in the literature [37,38]. However, for 

ML multinomial classification, the following performance metrics shall be elucidated: 

Accuracy—is simply an estimate of the average number of correct predictions in a 

ML classification problem. It can be expressed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (9) 

where: TP = True Positive of prediction; TN = True Negative; FP = False Positive; FN = False 

Negative 

Precision—is defined as the TP divided by the sum of the positively predicted out-

comes. In order words, precision expresses the model’s unit proportion that are positive 

as being actually positive. Precision is given as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

Recall—is defined as the TP divided by the sum of the positively predicted outcomes 

in which case, unlike precision, FN are the labels that have been classified as negative even 

though they are actually positive. Recall can be expressed as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

4. Results and Discussion 

4.1. ML Regression 

Table 4 indicates the statistical measures of performance of the ML regression algo-

rithms used for prediction of intrinsic compressibility index of the soils. The TVS method 

was used for training, testing, and subsequent validation of the datasets. An indication of 

good performance is usually depicted by high values of coefficient of determination (R2) 

with corresponding low mean error values given as the mean absolute error (MAE) and 

the root mean square error (RMSE). Among the traditional regression models, the tree 

ensembles (RDF and BDT) seem to outperform the stand-alone models (REG, ANN and 

BLR) as could be observed in Table 4. With regards the stand-alone algorithms, BLR does 

clearly produce the least accuracy when compared to REG and ANN. The outcome of REG 

and BLR on a non-linear problem such as that presented by this study may not be entirely 

surprising given the models’ underlying assumptions of linearity thus, being unable to 

implicitly detect all the possible combinations or interactions between explanatory and 

predictor variables. Notwithstanding, the relatively less accuracy of prediction given by 

ANN is quite remarkable. Though, depending on a given regression problem, opinions 

are quite divided as to the behaviour of ANN as a result of its inherent structure compris-

ing of ‘black boxes’ which may tend to either cause an over-estimation or not being able 

to explicitly learn several unobserved causal relationships during data training. ANN has 

a criterion that is not well-established to enable an interpretation of the weights and biases 

that exist in a connection matrix. In ANN’s backpropagation method of instinctive search 

and optimisation of its weight matrix, successive upgrades or updates tend to all converge 

to local minimum error spaces rather than one that is more global. 

Table 4. ML regression performance metrics. 

Model 
R2 RMSE MAE 

 % % 

REG 0.67 0.73 0.54 

ANN 0.59 0.81 0.61 
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BLR 0.19 1.14 1.02 

BDT 0.82 0.53 0.44 

RDF 0.86 0.48 0.38 

SE 0.93 0.34 0.29 

VE 0.93 0.33 0.26 

Among the tree-based algorithms, RDF does appear to outperform (R2 of 0.86 and 

RMSE of 0.48) though slightly, the BDT with an R2 of approximately 0.82 and RMSE of 

about 0.53 both of which have incorporated the technique of ‘bagging’ or ‘bootstrapping’ 

in order to improve their performances. This method of boosting in addition to their in-

nate architecture does improve the tree-ensembles’ capacity to learn and predict the com-

plexities of non-linear interactions between the input features especially when compared 

to the afore-mentioned stand-alone models. Nonetheless, tree-ensembles are also known 

to be ridden with some setbacks of their own. Since the tree-ensembles function through 

a progressive learning with subsequent ‘tree construction’ based on a previously fed train-

ing dataset, there may be an intuitively ‘greedy’ construction phase where a perceived 

best entity is most preferred and therefore selected without consideration of a successive 

aggregation of another entity which might give even more accuracy than the previous 

one. This phenomenon does result in a loss of information during training or testing be-

cause of the continuous splitting and partitioning process. Overall, as could be observed 

from Table 4, when all the above-mentioned models’ hyperparameters are meta-heuristi-

cally combined into meta-ensembles (model of models) through the techniques of voting 

(VE) and stacking (SE), the accuracy of prediction appears to increase remarkably. Alt-

hough, a closer examination would indicate that the method relying on voting does 

slightly produce better prediction (RMSE of 0.33 and MAE of 0.26) than model hybridisa-

tion through stacking (RMSE or 0.34 and MAE of 0.29). Further analyses and discussions 

regarding the sensitivity of the best performing meta-ensemble models are given in sec-

tions following. 
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4.2. Sensitivity Analysis of the Meta-Ensembles 

4.2.1. Comparing between Cross-Validation Techniques 

Table 5 and Figure 9 compare the performance of the hybrid meta-heuristic ensemble 

models across 3 cross validation methods. At first glance, it is observed that the method 

relying on the TVS seems to generally produce the highest values of R2 (with correspond-

ing lower RMSE and MAE scores) from Table 5. This phenomenon is also demonstrated 

by the less degree of deviation of the predicted curve from the ideal line in Figure 9. On 

the other hand, the iterative method of training, testing, and validation for which kFCV 

and MCCV depend, tend to produce slightly lowers values of R2 compared to the TVS 

method. As mentioned previously, both kFCV and MCCV are used to improve the pre-

diction of ML regression analyses while also serving as fine-tuning mechanisms to the 

TVS technique. Hence, the modelling with training and testing carried out using TVS 

when compared to kFCV and MCCV techniques seems to now indicate slight overfitting. 

Nonetheless, from Table 5 it is observed that the MCCV method does generally provide 

slightly much better accuracy than its kFCV counterpart. When also comparing between 

models, the prediction offered by the meta-ensembles using MCCV as a technique of cross 

validation, can be said to be more accurate than those of the stand-alone and tree ensem-

bles which rely on the TVS method (Table 4). Although, when considered in terms of their 

Bias-Variance trade-offs, the MCCV is mostly deemed as having greater biases than the 

kFCV but with the former seeming to provide slightly more confidence in ML predictions 

given that it is more repeatable than the later due to its capacity to provide results with 

lower degrees of variance. Besides being characteristically prone to giving results with 

high variance, one other reason for KFCV’s poor performance is attributable to the num-

ber of its partitioning being limited by the number of folds used. However, a much closer 

examination of Table 5 indicates that ML testing and validation relying on a smaller num-

ber of folds (for both MCCV and kFCV) does marginally produce more accuracy. 

Table 5. ML regression performance metrics by method of dataset testing and validation. 

Model 
   R2 RMSE MAE 

CV Method Set No. of Folds  % % 
 TVS 20 - 0.93 0.34 0.29 
  10 - 0.67 0.66 0.62 

SE KFCV - 5 0.88 0.44 0.33 
  - 10 0.86 0.44 0.33 
 MCCV 10 5 0.89 0.40 0.31 
  20 5 0.88 0.46 0.35 
  10 10 0.88 0.43 0.34 
  20 10 0.88 0.46 0.36 
 TVS 10 - 0.91 0.34 0.29 
  20 - 0.93 0.33 0.26 

VE KFCV - 5 0.88 0.43 0.32 
  - 10 0.86 0.43 0.32 
 MCCV 10 5 0.90 0.40 0.32 
  20 5 0.88 0.45 0.35 
  10 10 0.87 0.44 0.35 
  20 10 0.88 0.46 0.36 
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Figure 9. Ideal v actual intrinsic compressibility index. 

It is important to bear in mind that depending on the situation, or the regression 

problem faced with, both MCCV and kFCV have been reported in the past as being able 

to provide better predictions than TVS. Nevertheless, within the context of this study, it 

is seen that the reverse seems to be the case. Again, judging from the method of cross 

validation used, model combination through voting does outperforms that done by stack-

ing as Figure 9 indicates. 

4.2.2. Model Residuals 

Plot of the residuals of prediction does provide a means of validating ML models. By 

using residual plots, the observed errors of the best performing meta-heuristic models are 

assessed to ensure they are consistent with their corresponding stochastic errors (i.e., their 

randomness and unpredictability). Adopting this procedure is very necessary in this 

study given that none of the models used herein was able to produce 100% accuracy 
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hence, these models could be regarded as inherently possessing some slight degree of er-

rors. Another reason for using the residual plot is to assess the claims made of supposed 

overfitting in using the TVS validation methods and to evaluate the closeness of predic-

tion when utilising both iterative cross validation methods—kFCV and MCCV. 

A good model must always show independence of the residuals by having random 

errors left when learning the dataset. Figure 10 compares the independence of the errors 

of the meta-heuristic models across the validation methods. It is very interesting to ob-

serve that the TVS method does show a less independence of the stochastic errors even 

though ML dataset training relying on it showed earlier that its performance in terms of 

the statistical measures was the highest. However, as indicated in Figure 10, the data 

points are less symmetric about the origin while there is a corresponding high density of 

points and some measures of trending around the zero line. Moreover, there appears to 

be a pattern of distribution that is linear along the horizontal axis. This is indeed a confir-

mation of the less accuracy of the models’ prediction due to overfitting, when using the 

TVS method for training and testing of the dataset in this research. This also means that 

the models could not capture completely, the predictive information presented by the data 

hence, the reason there is a seepage of the data into the residuals. 

Figure 10 also shows that the residuals of ML prediction given by the models with 

cross validation performed using both kFCV and MCCV techniques are quite independ-

ent. As could be observed, there are no forms of trending of the data points around the 

origin rather, there is much scatter and disordered patterns. Nevertheless, Figure 10 

shows that that ML prediction of intrinsic compressibility with the cross validation carried 

out by using MCCV, provides the most accuracy given the symmetric and random distri-

bution of residuals (no observable trends) about the origin for both voting and stacking 

models. Again, this diagnostic test has further validated the training, testing and valida-

tion of the meta-heuristic models performed using the MCCV as the best technique at least 

within the confines of this study. 

4.2.3. Distribution of Residuals 

Normal frequency distribution of the residuals does provide another ground for 

which a ML model effectiveness and authenticity can be assessed. Figure 11 indicates the 

normal distribution and histogram of the meta-heuristic models under three validation 

methods. Notice how both the models trained and validated by TVS and kFCV tend to be 

biased towards predicting values that are higher and lower, respectively, than the actual 

values of intrinsic compression index thus confirming their behaviour as demonstrated 

previously by their residual plots. On the other hand, ML prediction carried out with the 

models trained and validated using MCCV shows a much-balanced distribution as shown 

by the curve and indicating much better prediction. The corresponding histograms are 

also used to validate the accuracy of ML prediction. In this case, a very good model will 

tend to have its residuals peaking at zero but with few of the stochastic errors at its ex-

tremes while a low performing model will have its residual distribution spreading out but 

with fewer errors around zero. Using this theory, it could be observed that the best per-

forming meta-ensemble models do have their training and validation done by adopting 

the MCCV method. It should also be mentioned that the voting technique across the three 

cross validations tend to slightly perform better than the technique of voting in general. 
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Figure 10. Residual plots. 

 

0 0.5 1

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

0 20 40 60 80 100

R
es

id
u
al

s

TVS - SE

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

0 20 40 60 80 100

R
es

id
u
al

s

TVS - VE

0 0.5 1

 – 1.6 

 – 1.2 

 – 0.8 

 0 

 0.4 

 0.8 

 – 0.4 

 – 1.6 

 – 1.2 

 – 0.8 

 0 

 0.4 

 0.8 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
es

id
u
al

s

kFCV - SE

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
es

id
u
al

s

kFCV - VE

    – 2 

 – 1.5 

    – 1 

 0.5 

    1 

 – 0.5 

 1.5 

    2 

    – 2 

 – 1.5 

    – 1 

 0.5 

    1 

 – 0.5 

 1.5 

    2 

 0   0 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

R
es

id
u
al

s

MCCV - SE

-2

-1.5

-1

-0.5

0

0.5

1

1.5

R
es

id
u
al

s

MCCV - VE

    – 2 

 – 1.5 

    – 1 

 0.5 

    1 

 – 0.5 

 1.5 

   0 

    – 2 

 – 1.5 

    – 1 

 0.5 

    1 

 – 0.5 

 1.5 

   0 

 2 



Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 26 
 

 

 

Figure 11. Distribution of residuals.  
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4.3. ML Classification 

Different types of soils have been used for ML prediction from the forgoing. Hence, 

machine learning classification shall be applied as another form of diagnostic test in the 

forecast to ensure that the algorithms used properly learnt the different soil types and as 

such able to discriminate between each of the soil categories. By relying on their plasticity 

properties, this study utilises three different classes of soils defined according to the uni-

fied soil classification system (USCS) in the ML prediction. Hence, for the type of ML clas-

sification problem considered herein, the multiclass elements of the meta-models are used 

to predict the soil categories. The distribution of the soil classes in the dataset was given 

previously in Figure 3. 
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4.3.1. Receiver Operating Characteristic Curve (ROC) and Area under Curve (AUC) 

To depict how well the meta-models are able to predict the probability of intrinsic 

compression index belonging to the different soil classes across some decision thresholds, 

the AUC-ROC are used. ROC plots the true positive rate (TPR) or sensitivity against false 

positive rate (FPR) or one less specificity given under various thresholds therefore sepa-

rating “noise” from “signals” (Figure 12). Higher values on the horizontal axis, indicates 

higher number of the false positives compared to the true negatives. On the other hand, 

higher values on the vertical axis, indicate a higher number of true positives compared to 

false negatives. Hence, balancing between false positive and false negatives remains the 

choice of a chosen threshold. Meanwhile, AUC measures the actual capability of a model 

to differentiate between class labels. Hence, the higher the larger of AUC, the better the 

classifier at being able to distinguish between the positive and negative classes. When 

AUC equals 1, it therefore means that the model has been able to perfectly distinguish 

between the classes. However, a zero value would mean that the model has predicted all 

the positives as negatives and all the negatives as positives. When AUC is between 0.5 

and 1, it means there is a higher chance that the model is capable of detecting more num-

bers of true positives and negatives than false negatives and positives. If AUC is exactly 

0.5, then it means that the classifier is not able to differentiate between classes, in which 

case, it is just predicting constant or random class. 

 

Figure 12. Typical ROC plots. 

It could be observed from the ROC (Figures 13 and 14) that the meta-ensembles all 

demonstrate the ability to discriminate between positive and negative classes. This also 

means that using the meta-ensembles in the multinomial class prediction has enabled a 

reduction in both type 1 and 2 prediction errors. 

 

Figure 13. ROC plot for SE model. 
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Figure 14. ROC plot for VE model. 

The dataset training and testing performed using the TVS appears to show perfect 

classification with an alignment of ROC with the top horizontal and left vertical axes. This 

again indicates an overfitting of the dataset given that the application of iterative cross 

validation techniques (kFCV and MCCV) results in slightly lower sensitivity compared to 

the TVS method. A closer examination of the corresponding Tables 6 and 7 for both voting 

and stacking methods of model aggregation indicates that ML training and validation 

done by utilising the kFCV has the most sensitivity in distinguishing between the soil 

categories but with the 5-fold validation case having the highest overall AUC. 

Table 6. AUC metrics for SE model. 

Model CV Method Set No. of Folds  
AUC 

Micro Macro Weighted 

  TVS 20 - 0.957 0.869 0.975 

  TVS 10 - 1.000 1.000 1.000 

SE KFCV - 5 0.989 0.982 0.992 

 KFCV  - 10 0.982 0.986 0.992 

 MCCV  10 5 0.861 0.813 0.833 

 MCCV  20 5 0.890 0.843 0.911 

 MCCV  10 10 0.923 0.887 0.904 

 MCCV  20 10 0.946 0.929 0.946 

Table 7. AUC metrics for VE model. 

Model CV Method Set No. of Folds  
AUC 

Micro Macro Weighted 

  TVS 20 - 0.986 0.986 0.996 

  TVS 10 - 1.000 1.000 1.000 

VE KFCV - 5 0.992 0.984 0.993 

 KFCV  - 10 0.991 0.996 0.998 

 MCCV  10 5 0.950 0.964 0.973 

 MCCV  20 5 0.974 0.969 0.984 

 MCCV  10 10 0.966 0.976 0.979 

 MCCV  20 10 0.983 0.982 0.990 
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Further analysis of sensitivity as given by Table 8 indicates that the kFCV method 

has the best accuracy, recall rate and precision. When compared with the TVS method 

(with 20% of the dataset) originally used for testing of the algorithm, it could be observed 

that when using 5-fold cross validation multiclass predictions are higher by approxi-

mately 10–25% in terms of accuracy, rate of recall and precision. It is also interesting to 

observe that the kFCV method does also performs slightly better than MCCV on a mul-

ticlass problem such as that considered in this research. In this case, the disadvantage of 

using MCCV seems to weigh more heavily on multiclass prediction than on non-linear 

regression. 

Table 8. ML multinomial classification performance metrics. 

Model 
CV 

Method 
Set (S) 

No. of 

Folds 

(F) 

Accuracy Recall Precision 

Overall Weighted Micro Macro Weighted Micro Macro Weighted 

 TVS 20 - 0.833 0.938 0.833 0.563 0.833 0.833 0.575 0.775 

 TVS 10 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

SE KFCV - 5 0.924 0.972 0.924 0.758 0.924 0.924 0.787 0.908 

  KFCV - 10 0.933 0.964 0.933 0.856 0.933 0.933 0.855 0.923 

  MCCV 10 5 0.817 0.856 0.817 0.756 0.817 0.817 0.734 0.776 

  MCCV 20 5 0.858 0.911 0.858 0.746 0.858 0.858 0.745 0.809 

  MCCV 10 10 0.858 0.893 0.858 0.805 0.858 0.858 0.765 0.820 

  MCCV 20 10 0.908 0.946 0.908 0.806 0.908 0.908 0.803 0.875 

  TVS 20 - 0.875 0.957 0.875 0.625 0.875 0.875 0.683 0.850 

  TVS 10 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

VE KFCV - 5 0.958 0.982 0.958 0.856 0.958 0.958 0.865 0.946 

 KFCV - 10 0.941 0.975 0.941 0.861 0.941 0.941 0.859 0.928 

 MCCV 10 5 0.917 0.936 0.917 0.865 0.917 0.917 0.883 0.922 

 MCCV 20 5 0.925 0.969 0.925 0.796 0.925 0.925 0.803 0.901 

 MCCV 10 10 0.900 0.935 0.900 0.824 0.900 0.900 0.816 0.877 

 MCCV 20 10 0.921 0.964 0.921 0.781 0.921 0.921 0.778 0.897 

Table 8 also indicate that the assignment of uniform weights to cater for any under-

represented class instances does clearly improves the individual multiclass accuracy com-

pared to the overall accuracy metric. Further, it is also worth noting that the averaging of 

each class instances (i.e., micro-averaging), presents higher scores compared to the aver-

aging that considers all equal class instances (i.e., macro-averaging) with respect to the 

most frequently occurring labels. Overall, by comparing the precision scores and recall 

rates, using micro-averaging does provide a higher sensitivity and thus better perfor-

mance. However, it is needful to state that the application of the micro-averaging tech-

nique should be approached with care because unlike macro-averaging, it may not be 

suitable when dealing with an imbalanced class distribution given it does not average 

over larger group or class instances. 

Generally, within the method of model aggregation used, it could also be observed 

that the voting method (VE) seems to generally perform better than its stacking counter-

part across the validation methods used. 

4.3.2. Comparing between Meta-Heuristic Ensembles and Traditional Classifiers 

The superior performance of the meta-ensemble models (VE and SE) on the mul-

ticlass prediction of intrinsic compressibility of soils can be further validated by compar-

ing them to other traditional ML multinomial classifiers namely, artificial neural networks 

(ANN), logistic regressor (LR), boosted decision trees BDT) and random decision forest 

(RDF). The sensitivity scores of the multiclass classification given in Table 9 indicates that 
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both the stand-alone and tree-ensemble traditional ML classifiers do have the capability 

of distinguishing between soil plasticity categories just like the meta-heuristic ensemble 

models. Notwithstanding, among the traditional classifiers, the tree ensembles have 

clearly outperformed the stand-alone algorithms. ML prediction given by ANN is gener-

ally the least accurate as could be observed from Table 9. Some of the elements of the 

structure and architectural make-up of neural networks that do sometimes contribute to 

its poor performance, especially when applied in ML prediction problems such as those 

considered in this study, were stated previously in the regression prediction. Neverthe-

less, it is quite apt to add that the stand-alone models (ANN and LR) are in many respects 

quite similar given their common roots in statistics. However, the functional form of ex-

pression used as indicated in their mathematical equations stated above is what differen-

tiates these classifiers. That which is used in LR is parametric whereas the ANN operates 

semi- or non-parametric functions. This is a very important distinction because most of 

the contributions given by parameters of an LR can be sufficiently interpreted whereas, as 

stated previously in the discussion of ML regression, those of ANN whose contributions 

are from the weights and biases may not be easily interpreted. On the other hand, the 

relatively high prediction accuracy of the tree-based classifiers is partly because their be-

haviour in learning is often suggested by a prior set of rules and hence, they are referred 

to as ‘white-boxes’ as compared to the neural networks. Hence, they tend to predict out-

comes of classifications by continually splitting their inputs based on a set of criteria which 

then leads to a maximisation of the separation between the dataset and a decrease in en-

tropy. The tree-based classifiers do have their setbacks hence, an aggregation of models 

into multiple classifiers carried out by stacking or by voting does further increase the ac-

curacy of prediction as seen in Table 9 with the dataset trained, tested, and validated by 

the kFCV method. 

Table 9. Sensitivity metrics for traditional ML algorithms and meta-ensembles with dataset training 

and validation done under k-fold CV method. 

Model 
BDT RDF LR ANN VE SE 

10 CV 5 CV 10 CV 5 CV 10 CV 5 CV 10 CV 5 CV 10 CV 5 CV 10 CV 5 CV 

Accuracy 0.898 0.907 0.898 0.866 0.747 0.731 0.721 0.690 0.941 0.958 0.933 0.924 

Precision 0.869 0.805 0.836 0.772 0.531 0.523 0.523 0.455 0.859 0.865 0.856 0.787 

Recall 0.878 0.836 0.842 0.715 0.634 0.570 0.585 0.520 0.861 0.856 0.856 0.758 

4.4.3. Feature Importance 

Indicators of the importance of independent features in ML prediction can also give 

an insight into the data used in the modelling as well as allow for an improvement of the 

efficacies of the models adopted. The relative significance and usefulness of the input var-

iables used in the predictions of target features are depicted in Figure 15 for both the re-

gression and multiclass classification ML predictions. The effect of each individual inde-

pendent variables is herein assessed using the best prediction models. In terms of ML 

modelling and prediction of the intrinsic compressibility index of soils, it is clearly ob-

served from Figure 15a that the feature of importance in this regard is the ratio of voids at 

100 kPa of applied pressure. This is hardly surprising given the direct bearing of this 

measure quantity on C*c as previously demonstrated in the void index relationship. 

Among the other variables of indirect importance, the liquid limit including its corre-

sponding void ratio prove to be the next most useful features in the forecast of C*c. It is 

very imperative to bear in mind that several strong linear relationships exist between the 

Atterberg limits and C*c as suggested by previously mentioned studies. On the other 

hand, when used for the first time in the prediction of C*c, the specific gravity or the tex-

ture element seems to bear the least influence at least within the remit of this research. 



Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 26 
 

 

Figure 15. ML Feature importance. 

In terms of multiclass classification and when the average of the absolute class 

weights of the variables are considered, Figure 15b indicates that the Atterberg limits of 

the soils are the most significant factors in the determination of soil classes with the plas-

ticity index wielding or having the highest numerical importance. This is a confirmation 

of the established research and theory that uses mostly the soil plasticity index for the 

direct and indirect determination of soil classes especially if the classification is carried 

out based on a standard provided by the unified soil classification system (USCS). By vir-

tue of individual class vectors, the Atterberg limits features of the soils do generally seem 

to carry the most influence on the multiclass prediction of the soil categories as observed 

in Figure 15c. It is also interesting to note the individual importance of the ratio of voids 

at PI on the prediction of the relatively least plastic soils when compared to the actual 

Atterberg limits (both PI and LL). Again, as could be observed, the soil textural character-

istics does not seem to be a lot useful in the prediction of the soil classes not to mention 

the derived features C*c. 
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5. Study Significance and Implementation 

The significance of machine learning to geotechnical engineering design cannot be 

over- emphasized. The concept of artificial intelligence as applied in this study to predict 

the intrinsic compressibility of soils can save time and cost during the initial planning and 

design stages of soil investigation. For example, various tedious laboratory experimenta-

tion and time consuming trials that also involve the determination of influencial factors 

on soil instrinsic compressibility can be circumvented by adopting the methods carrried 

out in this reserach. However, in order to practically apply the best performing algorithms 

from this study, it is recommended that the background coding and scripting be persisted 

and deployed on any organisation’s computing resource and training or testing per-

formed on new datasets of intrinsic compressibility of soils. 

6. Conclusions 

This study has used the machine learning (ML) approach to intelligently model the 

intrinsic compressibility index of soils by adopting non-parametric tree-based ensemble 

learners and meta-heuristic ensembles. Predictions using traditional stand-alone algo-

rithms were also performed and compared with those of the ensemble learners. ML mul-

ticlass or multinomial classification was also applied to examine the ability of the classifi-

ers to adequately learn between the soil types and by so doing distinguish between posi-

tive and negative classes. The following are the main conclusions from this study: 

1. Among the traditional stand-alone ML regression models, BLR did produce the least 

accuracy of prediction of intrinsic compressibility index of soil when compared to 

REG and ANN. Although, a general consideration of the stand-alone ensembles such 

as REG and BLR would suggest their inability to implicitly detect the complexities of 

variable combinations due to their basic underlying assumption of linearity. 

2. The tree ensembles (RDF and BDT) did generally outperform the stand-alone models 

with the RDF model having an R2 of 0.86 and RMSE of 0.48 and the BDT model pro-

ducing and an R2 of 0.822 and RMSE of 0.53. The techniques of ‘bagging’ or ‘boot-

strapping’ inherent in these tree-ensembles certainly enhanced their accuracy in that 

respect. 

3. The technique of ensemble averaging with a meta-heuristic combination of models’ 

hyperparameters through voting and stacking gave the best overall performance in 

the prediction of the intrinsic compressibility index of soils with an average R2 of 0.9 

and RMSE of 0.34. 

4. Sensitive analysis and diagnostic tests used to examine the procedure and outcome 

of dataset training, testing and validation showed the Monte Carlo method of cross 

validation as giving the best results for ML prediction. 

5. An analysis of the features with direct influence on the ML prediction revealed that 

the void ratio determined at effective stress of 100 kPa had the most significance fol-

lowed by soil’s Atterberg limits while specific gravity was the variable of least im-

portance in the forecast of intrinsic compressibility index of soils C*c. 
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