
Received January 4, 2021, accepted January 14, 2021, date of publication January 22, 2021, date of current version February 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3053764

Differentiable Forward and Backward
Fixed-Point Iteration Layers
YOUNGHAN JEON 1, (Member, IEEE), MINSIK LEE 2, (Member, IEEE),
AND JIN YOUNG CHOI 1, (Member, IEEE)
1Department of Electrical and Computer Engineering, ASRI, Seoul National University, Seoul 08826, South Korea
2Division of Electrical Engineering, Hanyang University, Ansan 15588, South Korea

Corresponding author: Jin Young Choi (jychoi@snu.ac.kr)

This work was supported in part by the Ministry of Science and Information and Communications Technology (ICT) Ministry of Science
and ICT (MSIT), South Korea: {Outdoor Surveillance Robots} and { Information Technology Research Center (ITRC)
through the Grand Information & Communication Technology Research Center support program}, supervised by the Institute for
Information & Communications Technology Planning & Evaluation (IITP), under Grant IITP-2017-0-00306 and Grant
IITP-2020-0-101741, and in part by the BK21.

ABSTRACT Recently, several studies have proposed methods to utilize some classes of optimization
problems in designing deep neural networks to encode constraints that conventional layers cannot capture.
However, these methods are still in their infancy and require special treatments, such as the analysis of the
Karush–Kuhn–Tucker (KKT) condition, to derive the backpropagation formula. In this paper, we propose a
new formulation called the fixed-point iteration (FPI) layer, which facilitates the use of more complicated
operations in deep networks. The backward FPI layer, which is motivated by the recurrent backpropagation
(RBP) algorithm, is also proposed. However, in contrast to RBP, the backward FPI layer yields the gradient
using a small networkmodulewithout explicitly calculating the Jacobian. In actual applications, both forward
and backward FPI layers can be treated as nodes in the computational graphs. All the components of our
method are implemented at a high level of abstraction, which allows efficient higher-order differentiations on
the nodes. In addition, we present two practical methods, the neural net FPI (FPI_NN) layer and the gradient
descent FPI (FPI_GD) layer, whereby the FPI update operations are a small neural network module and a
single gradient descent step based on a learnable cost function, respectively. FPI_NN is intuitive and simple,
while FPI_GD can be used to efficient train energy function networks that have been studied recently. While
RBP and related studies have not been applied to practical examples, our experiments show that the FPI layer
can be successfully applied to real-world problems such as image denoising, optical flow, and multi-label
classification.

INDEX TERMS Fixed-point iteration, gradient descent, differentiable layers, recurrent back-propagation,
energy network, deep learning architecture.

I. INTRODUCTION
Recently, several papers have proposed the composition of
deep neural networkwithmore complicated algorithms rather
than the simple operations that have been used so far. For
example, there have been methods using certain types of
optimization problems in deep networks, such as differen-
tiable optimization layers [4] and energy function networks
[5], [9]. These methods can be used to introduce a prior into
a deep network and provide the possibility of bridging the gap

The associate editor coordinating the review of this manuscript and

approving it for publication was Fanbiao Li .

between deep learning and some of the traditional methods.
However, they are still premature and require non-trivial
efforts to implement in actual applications. In particular,
the backpropagation formula has to be derived explicitly
for each different formulation based on some criteria such
as the KKT conditions. This limits the practicality of the
approaches, since there can be numerous different formula-
tions depending on the actual problems. As far as we know,
this is the first attempt to address these issues. Unlike the
aforementioned differentiable optimization layers, the pro-
posed method can embed an optimization problem into a
neural network without deriving a separate backpropagation

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 18383

https://orcid.org/0000-0002-3529-1202
https://orcid.org/0000-0003-4941-4311
https://orcid.org/0000-0003-3891-5815
https://orcid.org/0000-0002-4237-855X

Y. Jeon et al.: Differentiable Forward and Backward Fixed-Point Iteration Layers

formula depending on the problem. Furthermore, energy
function networks can be trained efficiently using our
method.

Several decades ago, an algorithm called the recurrent
backpropagation (RBP) was proposed by Almeida [3] and
Pineda [22]. It is a method of training a recurrent neural
network (RNN) that converges to the steady state. The advan-
tages of RBP are that it can be applied universally to most
operations that consist of repeated computations and that the
whole process can be summarized in a single update equa-
tion. Even with its long history, however, RBP and related
studies [6], [20] have been tested only for the verification of
theoretical concepts, and there have been no examples apply-
ing these methods to practical tasks. Moreover, there have
been no studies using RBP in conjunction with other neural
network components to verify its effects in more complex
settings. We add several improvements to the existing advan-
tages of RBP in the backpropagation process. Our formula
can be applied to general problems as well as combined with
other network components. Unlike RBP-based studies, our
method shows good performance on practical tasks.

To facilitate the use ofmore complicated operations in deep
networks, in this paper, we introduce a new layer formulation
that can be practically implemented and trained based onRBP
with some additional considerations. To this end, we employ
the fixed-point iteration (FPI), which is the basis for many
numerical algorithms, including most gradient-based opti-
mizations, as a layer in the neural network. The input and
weights of the FPI layer are used to define an update equation,
and the output of the layer is the fixed point of the update
equation. Under mild conditions, the FPI layer is differen-
tiable and the derivative depends only on the fixed point,
which is much more efficient than adding all the individual
iterations to the computational graph.

We also propose a backpropagation method called the
backward FPI layer based on RBP [3], [22] to efficiently
compute the derivative of the FPI layer. We prove that,
if the aforementioned conditions for the FPI layer hold,
then the backward FPI layer also converges. In contrast to
RBP, the backward FPI layer yields the gradient through a
small network module, which allows us to avoid explicitly
calculating the Jacobian. In other words, we do not need
a separate derivation for the backpropagation formula, and
we can utilize existing autograd functionalities. Specifically,
we provide a modularized implementation of the partial dif-
ferentiation operation, which is essential in the backward FPI
layer but absent from regular autograd libraries, based on an
independent computational graph. This makes the proposed
method very convenient for various practical applications.
Since FPI covers many different types of numerical algo-
rithms as well as optimization problems, there are numerous
potential applications for the proposed method. The FPI layer
is highly modularized, so it can be used easily with other
existing layers, such as the convolution and rectified linear

unit (ReLU),1 and it has richer representation power than
a feedforward layer with the same number of weights. The
contributions of the paper are summarized as follows:

• We propose the use of FPI as a layer in the neural
network. The FPI layer can incorporate the mechanisms
of conventional iterative algorithms, such as numerical
optimization, into deep networks. Unlike other existing
layers based on differentiable optimization problems,
this implementation is much simpler, and the backprop-
agation formula can be universally derived.

• For backpropagation, the backward FPI layer is pro-
posed based on RBP to compute the gradient efficiently.
Under mild conditions, we show that both forward
and backward FPI layers are guaranteed to converge.
All components are highly modularized, and a general
partial differentiation tool is developed so that the FPI
layer can be used in various circumstances without any
modifications.

• Two types of FPI layers (FPI_NN and FPI_GD) are
presented. Proposed networks based on the FPI layers
are applied to practical tasks such as image denoising,
optical flow, and multi-label classification. These tasks
have been largely absent in existing RBP-based studies,
and the networks show good performance.

The remainder of this paper is organized as follows:
We first introduce related works in Section II. The proposed
FPI layer is explained in Section III, and the experimental
results follow in Section IV. Finally, we conclude the paper
in Section V.

II. BACKGROUND AND RELATED WORK
Fixed-point iteration (FPI): For a given function g and a
sequence of vectors {xn ∈ Rd

}, the FPI [10] is defined by the
following update equation:

xn+1 = g(xn), n = 0, 1, 2, · · · , (1)

which converges to a fixed point x̂ of g, satisfying x̂ = g(x̂).
The gradient descent method (xn+1 = xn − γ∇f (xn)) is
a popular example of FPI. Many numerical algorithms are
based on FPI, and there are also many examples in machine
learning. Some important concepts about FPI are listed below.
Definition 1 (Contraction Mapping) [17]: On a metric

space (X , d), the function f : X → X is a contraction
mapping if there is a real number 0 ≤ k < 1 that satisfies
the following inequality for all x1 and x2 in X :

d
(
f (x1), f (x2)

)
≤ k · d(x1, x2). (2)

The smallest k that satisfies the above condition is called the
Lipschitz constant of f . The distance metric is defined as an
arbitrary norm ‖ · ‖ in this paper. Based on the above defini-
tion, the Banach fixed-point theorem [7] states the following:

1The code will be available upon publication.

18384 VOLUME 9, 2021

Y. Jeon et al.: Differentiable Forward and Backward Fixed-Point Iteration Layers

Theorem 1 (Banach Fixed-Point Theorem): A contraction
mapping has exactly one fixed point, and it can be found
by starting with any initial point and iterating the update
equation until convergence.

Therefore, if g is a contraction mapping, it converges to a
unique point x̂ regardless of the starting point x0. The above
concepts are important in deriving the proposed FPI layer in
this paper.

Energy function networks: Scalar-valued networks that
estimate energy (or error) functions have attracted consider-
able research interest recently. The energy function network
(EFN) has a different structure from general feed-forward
neural networks, and the concept was first proposed in [19].
After training an EFN for a certain task, the answer to a test
sample is obtained by finding the input of the trained EFN that
minimizes the network’s output. The structured prediction
energy network (SPEN) [9] performs a gradient descent on
an EFN to find the solution, and a structured support vector
machine [23] loss is applied to the obtained solution. Input
convex neural networks (ICNNs) [5] are defined in a spe-
cific way such that the networks have convex structures with
respect to (w.r.t.) the inputs, and their learning and inference
are performed by the entropy method, which is derived based
on the KKT optimality conditions. Deep value networks [14]
and the IoU-Net [15] directly learn the loss metrics, such
as the intersection over union (IoU) of bounding boxes, and
then perform inference through gradient-based optimization
methods.

Although the above approaches provide novel ways of
utilizing neural networks in optimization frameworks, they
have not been combined with other existing deep network
components to verify their effectiveness in more complicated
problems. Moreover, they are mostly limited to a certain type
of problem and require complicated learning processes. Our
method can be applied to broader situations than existing EFN
approaches, and these approaches can be equivalently imple-
mented by the proposed method once the update equation for
the optimization problem is derived.

Differentiable optimization layers: Recently, some
papers have proposed using optimization problems as a layer
in the deep learning architecture. Such structures can exhibit
more complicated behavior in one layer than the usual layers
in neural networks, and they can potentially reduce the depth
of the network. OptNet [4] presents how to use the quadratic
program (QP) as a layer of a neural network. They also use
the KKT conditions to compute the derivative of the solution
of QP. Agrawal et al. [1] propose an approach to differentiate
disciplined convex programs, which are subclass of convex
optimization problems. Some other researches have tried to
differentiate optimization problems such as submodular mod-
els [11], cone programs [2], and semidefinite programs [24].
However, most of these have limited applications, and users
need to adapt their problems to the rigid problem settings.
On the other hand, our method facilitates the use of a large
class of iterative algorithms, which also includes differen-
tiable optimization problems, as a network layer.

Recurrent backpropagation: RBP is a method to train
a special case of RNNs proposed by Almeida [3] and
Pineda [22]. It computes the gradient of the steady state for
an RNN with constant memory. Although RBP has great
potential, it is rarely used for practical problems in deep
learning. Some artificial experiments have been performed to
show its memory efficiency, but it has been difficult to apply
in complex and practical tasks. Recently, Liao et al. [20]
tried to revive RBP using the conjugate gradient method
and the Neumann series. However, both the forward and
backward passes use a fixed number of steps (maximum 100),
which may not be sufficient for convergence in practical
problems. In addition, if the forward pass does not converge,
the equilibrium point would be meaningless; hence, it may
be unstable to train the network using the unconverged final
point, which is a problem that is not addressed in the paper.
Deep equilibrium models (DEQs) [6] have tried to find the
equilibrium points of a deep sequence model via an exist-
ing root-finding algorithm. For backpropagation, they then
compute the gradient of the equilibrium point using another
root-finding method. In short, both the forward and backward
passes are implemented via quasi-Newton methods. DEQs
can also be executed with constant memory, but they can only
model sequential (temporal) data, and the aforementioned
convergence issues still exist.

RBP-based methods mainly perform experiments to verify
theoretical concepts and have not been widely applied to
practical examples. Our work incorporates the concept of
RBP into the FPI layer to apply complicated iterative oper-
ations in deep networks and presents two types of algorithms
accordingly. The proposed method is the first RBP-based
method that shows successful applications to practical tasks
in machine learning or computer vision, and it can be widely
used for promoting RBP-based research in the field of deep
learning.

III. PROPOSED METHOD
The FPI formula contains a wide variety of forms and
can be applied to most iterative algorithms. Section III-A
describes the basic structure and principles of the FPI layer.
Sections III-B and III-C explain the differentiation of the
layer for backpropagation. Section III-D describes the con-
vergence of the FPI layer, and Section III-E presents two
example cases of the layer.

A. STRUCTURE OF THE FIXED-POINT ITERATION LAYER
Here, we describe the basic operation of the FPI layer. Let
g(x, z; θ) be a parametric function where x and z are vectors
of real numbers and θ is the parameter. We assume that g is
differentiable for x and has a Lipschitz constant of less than
one for x, and the following fixed point iteration converges to
a unique point according to the Banach fixed-point iteration
theorem:

xn+1 = g(xn, z; θ), x̂ = lim
n→∞

xn (3)

VOLUME 9, 2021 18385

Y. Jeon et al.: Differentiable Forward and Backward Fixed-Point Iteration Layers

The FPI layer, F, can be defined based on the above relations.
It receives an observed sample or output from the previous
layer as input z and yields the fixed point x̂ of g as its
output; i.e.,

x̂ = g(x̂, z; θ) = F(x0, z; θ)

= lim
n→∞

g(n)(x0, z; θ) = (g ◦ g ◦ · · · ◦ g)(x0, z; θ), (4)

where ◦ indicates the function composition operator. The
layer receives the initial point x0 as well, but its actual value
does not matter in the training procedure, because g has a
unique fixed point. Hence, x0 can be preset to any value, such
as a zeromatrix. Accordingly, we often express x̂ as a function
of z and θ in this paper; i.e., x̂(z; θ). When using an FPI layer,
the first equation in (3) is repeated until convergence to find
the output x̂. We may use some acceleration techniques such
as Anderson acceleration [21] for faster convergence. Note
that there is no apparent relation between the shapes of xn
and z. Hence, the sizes of the input and output of an FPI layer
do not have to be equal.

B. DIFFERENTIATION OF THE FPI LAYER
Similar to other network layers, the learning of F is per-
formed by updating θ based on backpropagation. To this
end, the derivatives of the FPI layer have to be calculated.
One simple way to compute the gradients is to construct a
computational graph for all iterations up to the fixed point x̂.
However, this method is not only time consuming but also
requires a large amount of memory.

In this section, we show that the derivative of the entire FPI
layer depends only on the fixed point x̂. In other words, all the
xn before the convergence are not actually needed to compute
the derivatives. Hence, we can solely retain the value of x̂ to
perform backpropagation, and we consider the entire F as a
node in the computational graph. Note that x̂ = g(x̂, z; θ) is
satisfied at the fixed point x̂. If we differentiate both sides of
the above equation w.r.t. θ , we have

∂ x̂
∂θ
=
∂g
∂θ

(x̂, z; θ)+
∂g
∂x

(x̂, z; θ)
∂ x̂
∂θ
. (5)

Here, z is not differentiated, because z and θ are independent.
Rearranging the above equation gives

∂ x̂

∂θ
=

(
I −

∂g

∂x
(x̂, z; θ)

)−1
∂g

∂θ
(x̂, z; θ), (6)

which confirms that the derivative of the output of
F(x0, z; θ) = x̂ depends only on the value of x̂. One downside
to the above derivation is that it requires the calculation of
the Jacobians of g, which may take much memory space
(e.g., convolutional layers). Moreover, calculating the inverse
can also be a burden. The next section provides an efficient
way to resolve these issues.

C. BACKWARD FIXED-POINT ITERATION LAYER
To train the FPI layer, we need to obtain the gradient w.r.t.
its parameter, θ . In contrast to RBP [3], [22], we propose

a computationally efficient layer, called the backward FPI
layer, which yields the gradient without explicitly calculating
the Jacobian. Here, we assume that the FPI layer is in the
middle of the network. If we define the loss of the entire
network as L, then what we need for backpropagation of the
FPI layer is ∇θL(x̂). According to (6), we have

∇θL =

(
∂ x̂

∂θ

)>
∇x̂L

=

(
∂g

∂θ
(x̂, z; θ)

)> (
I −

∂g

∂x
(x̂, z; θ)

)−>
∇x̂L. (7)

This section describes how to calculate the above equation
efficiently. (7) can be divided into two steps as follows:

c =

(
I −

∂g

∂x
(x̂, z; θ)

)−>
∇x̂L, (8)

∇θL =

(
∂g

∂θ
(x̂, z; θ)

)>
c. (9)

Rearranging (8) yields c =

(
∂g

∂x
(x̂, z; θ)

)>
c + ∇x̂L, which

can be expressed as an iteration form, i.e.,

cn+1 =

(
∂g

∂x
(x̂, z; θ)

)>
cn +∇x̂L, (10)

which corresponds to RBP. This iteration eliminates the need
for the inverse calculation, but it still requires the calculation
of the Jacobian of g w.r.t. x̂. Here, we derive a new network
layer, the backward FPI layer, which yields the gradient with-
out explicitly calculating the Jacobian. To this end, we define
a new function, h, as h(x, z, c; θ) = c>g(x, z; θ), and (10)
becomes

cn+1 =
∂h

∂x
(x̂, z, cn; θ)+∇x̂L. (11)

Note that the output of h is scalar. Here, we can consider
h as another small network containing only a single step of
g (with an additional inner product). The gradient of h can
be computed based on existing autograd functionalities with
some additional considerations. Similarly, (9) is expressed
using h as follows:

∇θL =
∂h

∂θ
(x̂, z, c; θ), (12)

where c is the fixed point obtained from the FPI in (11).
In this way, we can compute ∇θL using (12) without any
memory-intensive operations or Jacobian calculations. c can
be obtained by initializing c to some arbitrary value and
repeating the above update until convergence.

Note that this backward FPI layer can be treated as a node
in the computational graph, hence the name ‘‘backward FPI
layer’’. However, care should be taken regarding the above
derivation, as the differentiations w.r.t. x and θ are partial

18386 VOLUME 9, 2021

Y. Jeon et al.: Differentiable Forward and Backward Fixed-Point Iteration Layers

differentiations. x and θ may have some dependency on each
other, which can disrupt the partial differentiation process
if it is computed based on the usual autograd framework.
Hereafter, let φ(a, b) denote the gradient operation in the con-
ventional autograd framework that calculates the derivative
of a w.r.t b, where a and b are both nodes in a computational
graph. Here, b can also be a set of nodes, in which case the
output of φ would also be a set of derivatives.
In order to resolve the issue, we implement a general

partial differentiation operator P(s; r) , ∂r(s)/∂s, where s
is a set of nodes, r is a function (a function object, to be
precise), and ∂r(s)/∂s denotes the set of corresponding partial
derivatives. Let I (t) denote an operator that creates a set of
leaf nodes by cloning the nodes in the set t and detaching them
from the computational graph. P first creates an independent
computational graph having leaf nodes s′ = I (s). These leaf
nodes are then passed onto r to yield r ′ = r(s′), and now
we can differentiate r ′ w.r.t. s′ using φ(r ′, s′) to calculate the
partial derivatives, because the nodes in s′ are independent
of each other. Here, the resulting derivatives ∂r ′/∂s′ are also
attached to the independent graph as the output of φ. The P
operator creates another set of leaf nodes I (∂r ′/∂s′), which
is then attached to the original graph (where s resides) as the
output of P, i.e., ∂r(s)/∂s. In this way, the whole process is
completed and the partial differentiation can be performed
accurately. If some of the partial derivatives are not needed
in the process, we can simply omit them in the calculation
of ∂r ′/∂s′.
Note that the above independent graph is preserved for

backpropagation. Let H (v; u) be an operator that creates a
new function object that calculates

∑
i 〈vi, ui〉, where the

node vi is an element of the set v and ui is one of the
outputs of the function object u. In the backward path of P,
the set δ of gradients passed onto P by backpropagation is
used to create a function object η = H (δ; ρ) where ρ(s)
is a function object that calculates P(s; r) = ∂r(s)/∂s. The
backpropagated gradients for s can be calculated with another
P operation; i.e., P(δ ∪ s; η) (here, the derivatives for δ do
not need to be calculated). In practice, the independent graph
created in the forward path is reused for ρ in calculating η.

The backward FPI layer can be highly modularized with
the above operators (i.e., P, H); a plus operator can con-
struct (11) and (12) entirely, and the iteration of (11) can
be implemented with another forward FPI layer. This allows
multiple differentiations of the forward and backward FPI
layers. A picture depicting all the above processes is provided
in the supplementarymaterials. All the forward and backward
layers are implemented at a high level of abstraction; there-
fore, it can be easily applied to practical tasks by changing
the structure of g to one that is suitable for each task.

D. CONVERGENCE OF THE FPI LAYER
The forward path of the FPI layer converges if the bounded
Lipschitz assumption holds. For example, to make a fully
connected layer a contraction mapping, simply dividing the
weight by a number greater than the maximum singular value

of the weight matrix will suffice. Empirically, we found that
setting the initial values of weights (θ) to small values is
enough to make g a contraction mapping throughout the
training procedure.
Convergence of the backward FPI layer. The backward

FPI layer is composed of a linear mapping based on the
Jacobian ∂g/∂x on x̂. Convergence of the backward FPI layer
can be confirmed by the following proposition:
Proposition 1: If g is a contraction mapping, the backward

FPI layer (10) converges to a unique point.
Proof: For simplicity, we omit z and θ from g. By the

definition of contraction mapping and the assumption of the
arbitrary norm metric, ‖g(x2)−g(x1)‖

‖x2−x1‖
≤ k is satisfied for all

x1 and x2 (0 ≤ k < 1) by inequality (2). For a unit vector
v, i.e., ‖v‖ = 1 for the aforementioned norm, and a scalar
t , let x2 = x1 + tv. The above inequality then becomes
‖g(x1+tv)−g(x1)‖

‖t‖ ≤ k . For another vector u with ‖u‖∗ ≤ 1
where ‖ · ‖∗ indicates the dual norm, it satisfies

u>
(
g(x1 + tv)− g(x1)

)
|t|

≤
‖g(x1 + tv)− g(x1))‖

|t|
≤ k (13)

based on the definition of the dual norm. This indicates that

lim
t→0+

u>
(
g(x1 + tv)− g(x1)

)
|t|

= ∇v(u>g)(x1) ≤ k. (14)

According to the chain rule, ∇(u>g) =
(
u>Jg

)> where Jg is
the Jacobian of g. This yields

∇v(u>g)(x1) =
(
∇(u>g)(x1)

)>
· v

= u>Jg(x1) v ≤ k. (15)

Let x1 = x̂ then u>Jg(x̂) v ≤ k for all u, v that satisfy
‖u‖∗ ≤ 1, ‖v‖ = 1. Therefore,

‖Jg(x̂)‖ = sup
‖v‖=1

‖Jg(x̂)v‖

= sup
‖v‖=1,‖u‖∗≤1

u>Jg(x̂)v ≤ k < 1, (16)

which indicates that the linear mapping by weight Jg(x̂)
is a contraction mapping. By the Banach fixed-point theo-
rem, the backward FPI layer converges to the unique fixed
point.

E. TWO REPRESENTATIVE CASES OF THE FPI LAYER
As mentioned above, FPI can take a wide variety of forms.
We present two representative methods that are easily appli-
cable to practical problems.

1) NEURAL NET FPI (FPI_NN) LAYER
The most intuitive way to use the FPI layer is to set g as
an arbitrary neural network module. In FPI_NN, the input
variable recursively enters the same network module until
convergence. g can be composed of layers that are widely
used in deep networks, such as convolution, ReLU, and linear
layers. The FPI_NN approach can performmore complicated
behaviors with the same number of parameters than using
g directly without FPI, as demonstrated in the experiments
section.

VOLUME 9, 2021 18387

Y. Jeon et al.: Differentiable Forward and Backward Fixed-Point Iteration Layers

2) GRADIENT DESCENT FPI (FPI_GD) LAYER
The gradient descent method can be a perfect example for
the FPI layer. It can be used for efficient implementations of
the EFN, such as the ICNN [5]. Unlike a typical network,
which obtains the answer directly as the output of the network
(i.e., f (a; θ) is the answer to the query a), an EFN retrieves
the answer by optimizing an input variable of the network
(i.e., argminx f (x, a; θ) becomes the answer). The easiest way
to optimize the network f is through gradient descent (xn+1 =
xn−γ∇f (xn, a; θ)). This is a form of FPI, and the fixed point
x̂ is the optimal point of f , i.e., x̂ = argminx f (x, a; θ). In the
case of a network with a single FPI_GD layer, x̂ becomes the
final output of the network. Accordingly, this output is fed
into the final loss function L

(
x∗, x̂) to train the parameter θ

during the training procedure. This behavior conforms to that
of an EFN. However, unlike existing methods, the proposed
method can be trained easily with the universal backprop-
agation formula. Therefore, the proposed FPI layer can be
an effective alternative for training EFNs. One advantage of
FPI_GD is that it can easily satisfy the bounded Lipschitz
condition by adjusting the step size γ .

IV. EXPERIMENTS
Since several studies [3], [6], [20], [22] have already shown
that RBP-based algorithms require only a constant amount of
memory, we omitted memory-related experiments. Instead,
we focused on applying the proposed method to practical
tasks in this paper. It is worth noting that both the forward
and backward FPI layers were highly modularized, and the
exactly same implementations were shared across all the
experiments without any alterations. The only difference
was the choice of g, into which we could simply plug in
its functional definition; this shows the efficiency of the
proposed framework. In the image denoising experiment,
we compared the performance of the FPI layer to a non-FPI
network that has the same structure as g. In the optical flow
problem, a relatively very small FPI layer is attached at the
end of FlowNet [12] to demonstrate its effectiveness. For all
the experiments, the detailed structure of g and the hyper-
parameters for training are described in the supplementary
materials. Results for the multi-label classification problem
show that the FPI layer is superior in performance compared
to the existing state-of-the-art algorithms. All training was
performed using the Adam [18] optimizer.

A. IMAGE DENOISING
Here, we compared the image denoising performance for
gray images perturbed by Gaussian noise with variance σ 2.
Traditionally, image denoising has been solved with iterative,
numerical algorithms; hence, an iterative structure such as
the proposed FPI layer can be an appropriate choice for the
problem. To generate the image samples, we cropped the
images in the Flying Chairs dataset [12] and converted them
to grayscale (400 images for training and 100 images for
testing). We constructed a single FPI_NN layer network

TABLE 1. Denoising performance (PSNR, higher is better). The single
FPI_NN network outperformed the feedforward network, and the
performance gap was larger for noisier (more difficult) circumstances..

for this experiment. For comparison, we also constructed
a feedforward network that has same structure as g. The
performance is reported in terms of peak signal-to-noise ratio
(PSNR) in Table 1.

Table 1 shows that the single FPI layer network outper-
formed the feedforward network across all experiments. Note
that the performance gap between the two algorithms was
larger under noisier circumstances. Since both networks were
trained to yield the best performance with their given settings,
this confirms that a structure with repeated operations can be
more suitable for this type of problem. One advantage of the
proposed FPI layer here is that there is no explicit calculation
of the Jacobian, which can be quite large in this image-based
problem, even though there is no specialized component
except the bare definition of g, thanks to the highly modu-
larized nature of the layer. Examples of the image denoising
results are shown in the supplementary materials.

FIGURE 1. Average EPE per epoch (lower is better). A very small FPI layer
helps to refine the FlowNet algorithm..

B. OPTICAL FLOW
Optical flow, one of the major research areas in computer
vision, aims to acquire motions by matching pixels in two
images. We demonstrate the effectiveness of the FPI layer
through a simple experiment, where the layer is attached
at the end of FlowNet [12]. The Flying Chairs dataset [12]
was used with the original split which has 22,232 training
and 640 test samples. In this case, the FPI layer plays the
role of post-processing. We attached a very simple FPI layer
consisting of conv/deconv layers and recorded the average
end-point error (aEPE) per epoch, as shown in Figure 1.
While the number of additional parameters was extremely
small (less than 0.01%) and the computation time was nearly
the same as for the original FlowNet, there was a noticeable
improvement in performance with the FPI layer.

18388 VOLUME 9, 2021

Y. Jeon et al.: Differentiable Forward and Backward Fixed-Point Iteration Layers

C. MULTI-LABEL CLASSIFICATION
The multi-label text classification dataset (Bibtex) is intro-
duced in [16]. The goal of the task is to find the correla-
tion between the data and the multi-label features. Both the
data and the features are binary, with 1836 indicators and
159 labels, respectively. The number of positive indicators
and labels differs for each data, and the number of true labels
is unknown during the evaluation process. We used the same
training and test split as in [16] and evaluated the F1 scores.
Here, we used two single FPI layer networks with FPI_GD
and FPI_NN, respectively. We set g of the FPI_NN and f
of the FPI_GD to similar structures that contain one or two
fully-connected layers and activation functions. As men-
tioned, the detailed structures of the networks are described
in the supplementary materials. Table 2 shows the F1 scores
(‘‘GT’’ stands for ‘‘ground truth’’). Here, DVN (adversarial)
achieved the best performance, but it generated adversar-
ial samples for data augmentation. Both FPI_GD layer and
FPI_NN layer achieved better performance than DVN (GT)
under the same conditions. Despite their simple structures,
our algorithms had the best performance among those using
only the training data, which confirms the effectiveness of the
proposed method.

TABLE 2. F1 score of multi-label text classification (higher is better). Our
method shows the best performance among those using only the training
data..

V. CONCLUSION AND FUTURE WORK
This paper proposes a novel architecture using FPI as a layer
of the neural network. The backward FPI layer is also pro-
posed to backpropagate the FPI layer efficiently. We proved
that both forward and backward FPI layers are guaranteed
to converge under mild conditions. All the components were
highly modularized so that we could efficiently apply the
FPI layer to practical tasks by only changing the structure
of g. Two representative cases of the FPI layer (FPI_NN
and FPI_GD) were introduced. The experiments show that
our method has advantages for several problems compared
to the feedforward network. For problems such as denoising,
the iterative structure of the FPI layer can be more helpful,
while for other problems, it can be used to refine the perfor-
mance of an existing method. Finally, we also demonstrate
in the multi-label classification example that the FPI layer
can achieve state-of-the-art performance with a very simple
structure.

Since this research area has not been studied extensively,
there is high potential for improvement. First, new structures

of g and their applications are worth studying. As a simple
and intuitive example, we can use another gradient-based
algorithm such as Adam [18] instead of gradient descent in
FPI_GD. Using multiple input sources can be an interesting
direction for future research. We used a single input source x
in this work but multiple input sources and alternate optimiza-
tions using multiple g may yield new effects. Another inter-
esting direction for research is learning the initial value x0,
which was initialized to a zero matrix (or zero vector) in
our study, based on z for improving the efficiency of the
algorithms.

FIGURE 2. Forward operation of partial differentiation.

FIGURE 3. Backward operation of partial differentiation.

APPENDIX A
FIGURES OF PARTIAL DIFFERENTIATION AND
THE BACKWARD FPI LAYER
The following figures (Figures 2 to 4) show the structures
of the proposed partial differentiation operator and the back-
ward FPI layer. Here, we can see that all the operations are
highly modularized, which allow multiple differentiations in
the usual autograd framework without any explicit Jacobian
computations.

VOLUME 9, 2021 18389

Y. Jeon et al.: Differentiable Forward and Backward Fixed-Point Iteration Layers

FIGURE 4. Backward FPI layer.

APPENDIX B
IMPLEMENTATION DETAILS
In all the experiments, we used the following criterion to
determine the convergence of the FPI layer:

β =
‖xn+1 − xn‖2

‖xn‖2

using the L2-norm. When β fell below a certain threshold,
xn+1 was considered to be converged, and we stopped the iter-
ation. For all the experiments, we used two types of network
modules for g of the FPI layer:

1) The FPI_NN layer: To see the full potential of the
FPI layer, we tested an FPI layer with g as a general
(small) neural network module. In this case, g can
become an arbitrary function, and we can explore more
diverse possibilities of the FPI layer. The only issue
here is that the Lipschitz constant of g might not be
bounded. Based on our empirical experience, using
small initial weights for g was sufficient in our empiri-
cal experience.

2) The FPI_GD layer: Inspired by the EFNs [5], [9],
[14], this layer performs a simple numerical optimiza-
tion and yields the solution as the output of the layer.
We define the energy function as a small neural network
with a scalar output, and based on this energy function,
g is defined to be a simple gradient descent step with a
fixed step size. Unlike most existing EFNs, our version
can perform backpropagation easily with the existing
autograd functionalities.

FIGURE 5. Example multi-layer network using an FPI layer (layer 2). Note
that the shapes of input a and output x̂ can be changed..

Figure 5 shows an example multi-layer network includ-
ing an FPI_NN layer for a mini-batch size of 1. pa is the

prediction for the input data a, and ta is the ground truth.
As seen in the figure, the FPI layer is composed of a neural
network module. When passing the FPI layer during the
backpropagation process, the backward FPI layer is used to
compute ∇θ2L.
For the experiments with image inputs, such as image

denoising and optical flow, only the FPI_NN layer was tested.
In order for the EFN of the FPI_GD layer to have a scalar
output, we attached a mean-squared layer at the end of the
network. For the multi-label classification, the performance
was evaluated for both the FPI_NN and FPI_GD. Note that,
for all the above layers, the fixed-point iteration variable x
was concatenated with the layer input z and passed onto
g (e.g., for vector inputs, g(x, z; θ) = g([xT zT]T ; θ)).
Accordingly, the size of the input for g was greater than that
of the output. x0 was either a zero vector or a zero matrix in
all the experiments.

All the training was performed using the Adam optimizer
with a learning rate of 10−3, and noweight decaywas used. In
the following experiments, we used the ReLU activation func-
tion most of the time. Although this does not exactly align
with the assumptions in the paper, we used it nonetheless,
based on common practices in deep learning and, confirmed
that the FPI layer still performed well.

A. IMAGE DENOISING
The first 500 images of the Flying Chair dataset [12] were
cropped to 180 × 180 around the center. Of these, the first
400 images were used to train the networks, and the latter
100 were used as test samples. All the images were converted
to grayscale.

All the network modules consisted of two 2D convolution
layers with 32 intermediate channels and a ReLU activation
after the first convolution layer in the proposed method, and
the baseline (non-FPI) feedforward network also shared the
same structure. The channel sizes of the network’s input
and output were both one, since both input and output were
grayscale images. All the models were trained for 20 epochs,
and the final results were reported based on the best epoch
for each method. Gradient clamping with a max-norm value
of 0.1 was used to prevent the divergence of the FPI lay-
ers, and the convergence threshold of the FPI layer was set
to 10−7. The initial values of the network weights were
set to ten times smaller than the default initialization of
PyTorch [13]. Figure 6 shows the image denoising examples.

B. OPTICAL FLOW
We used the FlowNetS [12] structure for this experiment.
As in [12], we tested the performance on the Flying Chair
dataset with the same training and test split. The number of
channels in FlowNetS starts at 6 and increases to 1024 using
10 conv layers, which are followed by several deconv layers.
We attached an FPI layer at the end of FlowNetS, where g
consists of one conv layer with four input and output channels
and one deconv layer with four input and two output channels.
The strides of the conv and deconv layers were set to two

18390 VOLUME 9, 2021

Y. Jeon et al.: Differentiable Forward and Backward Fixed-Point Iteration Layers

FIGURE 6. Image denoising examples. The left column shows the noisy
input, and the right column is the ground truth. The denoised images are
shown in the middle column.

for both downsampling and upsampling. The final output
of the proposed model was the summation of the output of
the FPI layer and that of the original FlowNetS. Note that
both FlowNetS and the FPI layer were trained end-to-end
in this experiment. The convergence threshold of the FPI
layer was set to 10−13 and the initial values of the network
weights were 100 times smaller than the default initializa-
tion of PyTorch. All other training settings were identical to
those of the original FlowNet. Note that, for this experiment,
the performancewas worse than that of the original FlowNetS
when a (non-FPI) feedforward module of the same structure
was attached to the end of FlowNetS, and thus this result is
omitted from the experimental results.

C. MULTI-LABEL CLASSIFICATION
For this experiment, all the training settings of the proposed
methods were the same as in the other algorithms compared,
except for the network structure. The network structure for
FPI_NN was composed of two fully-connected (FC) layers
with 512 hidden nodes, a ReLU activation after the first FC
layer, and an additional sigmoid layer after the second FC
layer to normalize the output between zero and one. In this
case, the convergence threshold was 10−8. For FPI_GD,
the energy function had only one FC layer with ReLU activa-
tion and a mean-squared term to obtain a scalar output. Here,
the number of hidden nodes was also 512, and an additional
sigmoid layer was added after the FPI_GD layer. We set the
step size to 1.0 for the gradient descent in FPI_GD and used
a different convergence criterion as follows:

β ′ = ‖xn+1 − xn‖2

where the convergence threshold was 10−4. The input and
output sizes of both networks were 1836 and 159, respec-
tively, which is equal to the numbers of indicators and labels.

APPENDIX C
ADDITIONAL EXPERIMENTS: A CONSTRAINED PROBLEM
Here, we show the feasibility of our algorithm by solving
a constrained optimization problem (minx ‖x − a‖2) with a
box constraint (−1 ≤ x ≤ 1). The goal of the problem is to
learn the functional relation based on training samples (a, t),
where t is the ground-truth solution. We used single FPI layer
networks for this problem.

Performance was evaluated for the FPI_NN network,
the FPI_GD network, and a non-FPI network that has the
same structure as g of the FPI_NN. The structures of g
of FPI_NN and the energy function of FPI_GD were both
linear-ReLU-linear. The dimensions of a, x and the number
of hidden nodes were 10, 10, and 32, respectively. We ran-
domly generated a using zero-mean Gaussian distributions.
10,000 training samples were generated with σ = 2, and
1,000 test samples with σ = 1. The convergence threshold
was set to 10−6 for both FPI_NN and FPI_GD layers and the
step size of the gradient descent in the FPI_GD was fixed
to 0.01. All the models were trained for 40 epochs with a
batch size of 100, and the training and test losses (MSE) were
reported.

FIGURE 7. Training and test losses per epoch in the constrained problem.
The FPI_GD and FPI_NN networks performed better than the feedforward
network with the same number of parameters..

Figure 7 shows the training and test losses per epoch. Here,
we can see that the FPI_NN outperformed the other networks
in both training and test losses.

APPENDIX D
ADDITIONAL LEMMAS FOR THE CONVERGENCE OF
BACKWARD FPI LAYER
Here, we use an arbitrary norm metric for all the vector and
matrix norms. The following lemma holds for vectors x and
b, matrix A, and scalar k < 1:
Lemma 1: If the matrix norm ‖A‖ < 1, then the linear

transformation by weight A, i.e., f (x) = Ax+ b, is a contrac-
tion mapping.

Proof:

‖f (x1)− f (x2)‖

‖x1 − x2‖
=
‖Ax1 − Ax2‖

‖x1 − x2‖
=
‖A(x1 − x2)‖

‖x1 − x2‖

≤
‖A‖ · ‖x1 − x2‖

‖x1 − x2‖
= ‖A‖ ≤ k < 1

By the definition, f is a contraction mapping.
In section 3.4, ‖Jg(x̂)‖ ≤ k < 1, which means that the lin-

ear transformation with weight matrix Jg(x̂) is a contraction

VOLUME 9, 2021 18391

Y. Jeon et al.: Differentiable Forward and Backward Fixed-Point Iteration Layers

mapping by Lemma 1. Therefore, (10) of the backward FPI
in the main paper is a contraction mapping.

ACKNOWLEDGMENT
(Younghan Jeon and Minsik Lee are co-first authors.)

REFERENCES
[1] A. Agrawal, B. Amos, S. Barratt, S. Boyd, D. Diamond, and S. Kolter,

J. Zico, ‘‘Differentiable convex optimization layers,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 9558–9570.

[2] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. M. Moursi, ‘‘Dif-
ferentiating through a cone program,’’ 2019, arXiv:1904.09043. [Online].
Available: http://arxiv.org/abs/1904.09043

[3] L. B. Almeida, ‘‘A learning rule for asynchronous perceptrons with feed-
back in a combinatorial environment,’’ in Proc. Int. Conf. Neural Netw.,
1987, pp. 609–618.

[4] B. Amos, S. Kolter, and J. Zico, ‘‘Optnet: Differentiable optimization as a
layer in neural networks,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70,
2017, pp. 136–145.

[5] B. Amos, L. Xu, and J. Kolter, ‘‘Input convex neural networks,’’ in Proc.
34th Int. Conf. Mach. Learn., vol. 70, 2017, pp. 146–155.

[6] Bai, Shaojie, Kolter, J Zico, and Koltun, Vladlen, ‘‘Deep equilibrium
models,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 688–699.

[7] S. Banach, ‘‘Sur les opérations dans les ensembles abstraits et leur appli-
cation aux équations intégrales,’’ Fundam. Math., vol. 3, pp. 133–181,
Dec. 1922.

[8] Beardsell, Philippe and Hsu, Chih-Chao. (2020). Structured Prediction
with Deep Value Networks. [Online]. Available: https://github.com/philqc/
deep-value-networks-pytorch

[9] Belanger, David and McCallum, Andrew, ‘‘Structured prediction energy
networks,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 983–992.

[10] Burden, Richard and Faires, Numerical Analysis. Boston, MA, USA:
Cengage Learning, 2004.

[11] Djolonga, Josip and Krause, Andreas, ‘‘Differentiable learning of sub-
modular models,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1013–1023.

[12] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazárbaá, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, ‘‘FlowNet: Learning optical
flow with convolutional networks,’’ 2015, arXiv:1504.06852. [Online].
Available: http://arxiv.org/abs/1504.06852

[13] Glorot, Xavier and Bengio, Yoshua, ‘‘Understanding the difficulty of
training deep feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif.
Intell. Statist., 2010, pp. 249–256.

[14] M. Gygli, M. Norouzi, and A. Angelova, ‘‘Deep value networks learn to
evaluate and iteratively refine structured outputs,’’ in Proc. 34th Int. Conf.
Mach. Learn., vol. 70, 2017, pp. 1341–1351.

[15] Jiang, Borui, Luo, Ruixuan, Mao, Jiayuan, Xiao, Tete, and Jiang, Yuning,
‘‘Acquisition of localization confidence for accurate object detection,’’ in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 784–799.

[16] Katakis, Ioannis, Tsoumakas, Grigorios, and Vlahavas, Ioannis, ‘‘Mul-
tilabel text classification for automated tag suggestion,’’ in Proc.
ECML/PKDD, vol. 18, 2008, p. 5.

[17] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces Fixed
Point Theory, vol. 53. Hoboken, NJ, USA: Wiley, 2011.

[18] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[19] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, ‘‘A tutorial on
energy-based learning,’’ Predicting Struct. Data, vol. 1, p. 10, Aug. 2006.

[20] R. Liao, Y. Xiong, E. Fetaya, L. Zhang, L. Yoon, X. Pitkow, R. Urtasun,
and R. Zemel, ‘‘Reviving and improving recurrent back-propagation,’’ in
Proc. Int. Conf. Mach. Learn., 2018, pp. 3082–3091.

[21] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu, ‘‘Anderson
acceleration for geometry optimization and physics simulation,’’ ACM
Trans. Graph., vol. 37, no. 4, pp. 1–14, 2018.

[22] F. J. Pineda, ‘‘Generalization of back-propagation to recurrent neural net-
works,’’ Phys. Rev. Lett., vol. 59, no. 19, p. 2229, 1987.

[23] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, ‘‘Support vector
machine learning for interdependent and structured output spaces,’’ in
Proc. 21st Int. Conf. Mach. Learn. (ICML), 2004, p. 104.

[24] P.-W. Wang, P. L. Donti, B. Wilder, and Z. Kolter, ‘‘SATNet: Bridg-
ing deep learning and logical reasoning using a differentiable satisfia-
bility solver,’’ 2019, arXiv:1905.12149. [Online]. Available: http://arxiv.
org/abs/1905.12149

YOUNGHAN JEON (Member, IEEE) received the
bachelor’s degree in electrical and computer engi-
neering from Seoul National University, Seoul,
South Korea, in 2014. He is currently pursuing the
Ph.D. degree in electrical and computer engineer-
ing. His current research interests include deep
learning architecture, optimization, and recurrent
networks.

MINSIK LEE (Member, IEEE) received the B.S.
and Ph.D. degrees from the School of Electri-
cal Engineering and Computer Science, Seoul
National University, South Korea, in 2006 and
2012, respectively. From 2012 to 2013, he was
a Postdoctoral Researcher with the School of
Electrical Engineering and Computer Science.
In 2014, he joined Seoul National University as a
BK21Assistant Professor. He is currently anAsso-
ciate Professor with Hanyang University, Ansan,

South Korea. His research interests include shape and motion analysis,
deformable models, computer vision, deep learning, pattern recognition, and
their applications.

JIN YOUNG CHOI (Member, IEEE) received the
B.S.,M.S., and Ph.D. degrees in control and instru-
mentation engineering from Seoul National Uni-
versity, Seoul, South Korea, in 1982, 1984, and
1993, respectively. From 1984 to 1989, he joined
the Project of TDX Switching System, Electron-
ics and Telecommunications Research Institute
(ETRI), Daejeon, South Korea. From 1992 to
1994, he was with the Basic Research Depart-
ment, ETRI. Since 1994, he has been with Seoul

National University. From 1998 to 1999, he was a Visiting Professor with
the University of California at Riverside, Riverside, CA, USA. He is cur-
rently a Professor with the School of Electrical Engineering, Seoul National
University, where he is also with the Engineering Research Center for
Advanced Control and Instrumentation, the Automatic Control Research
Center, and the Automation and Systems Research Institute. His current
research interests include adaptive and learning systems, visual surveillance,
motion pattern analysis, object detection and tracking, and pattern learning
and recognition. He was a Senior Member of Technical Staff involved in the
neural information processing system with ETRI.

18392 VOLUME 9, 2021

