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Abstract Inland Marsh (IM) is a type of wetland

characterized by the presence of non-woody plants as

grasses, reeds or sedges, with a water surface smaller

than 25% of the area. Historically, these areas have

been suffering impacts related to pollution by urban,

industrial and agrochemical waste, as well as drainage

for agriculture. The IM delineation allows to under-

stand the vegetation and hydrodynamic dynamics and

also to monitor the degradation caused by human-

induced activities. This work aimed to compare four

machine learning algorithms (classification and

regression tree (CART), artificial neural network

(ANN), random forest (RF), and k-nearest neighbors

(k-NN)) using active and passive remote sensing data

in order to address the following questions: (1) which

of the four machine learning methods has the greatest

potential for inland marshes delineation? (2) are SAR

features more important for inland marshes delin-

eation than optical features? and (3) what are the most

accurate classification parameters for inland marshes

delineation? To address these questions, we used data

from Sentinel 1A and Alos Palsar I (SAR) and Sentinel

2A (optical) sensors, in a geographic object-based

image analysis (GEOBIA) approach. In addition, we

performed a vectorization of a 1975 Brazilian Army

topographic chart (first official document presenting

marsh boundaries) in order to quantify the marsh area

losses between 1975 and 2018 by comparing it with a

Sentinel 2A image. Our results showed that the

method with the highest overall accuracy was k-NN,

with 98.5%. The accuracies for the RF, ANN, and

CART methods were 98.3%, 96.0% and 95.5%,

respectively. The four classifiers presented accuracies

exceeding 95%, showing that all methods have

potential for inland marsh delineation. However, we

note that the classification results have a great

dependence on the input layers. Regarding the impor-

tance of the features, SAR images were more impor-

tant in RF and ANN models, especially in the HV,

HV ? VH and VH channels of the Alos Palsar I

L-band satellite, while spectral indices from optical

images were more important in the marshes delin-

eation with the CART method. In addition, we found

that the CART and ANN methods presented the

largest variations of the overall accuracy (OA) in

relation to the different parameters tested. The multi-

sensor approach was critical for the high OA values

found in the IM delineation ([ 95%). The four

machine learning methods can be accurately applied

for IM delineation, acting as an important low-cost

tool for monitoring and managing these environments,
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in the face of advances in agriculture, soil degradation

and pollution of water resources due to agrochemical

dumping.

Keywords Machine learning � GEOBIA � Image

classification � Wetlands

Introduction

Wetlands are ecosystems at the interface between

aquatic and terrestrial environments; they may be

continental or coastal, natural or artificial, perma-

nently or periodically inundated by shallow water or

consist of waterlogged soils (Junk et al. 2014).

Wetlands have high biodiversity, playing an important

role in maintaining/improving water quality, flood

mitigation, aquifer recharge (Cowardin et al. 1979),

microclimate regulation (Şimşek and Ödül 2018) and

carbon sequestration (Mitsch et al. 2013). Wetlands

can be classified as swamp, fen, bog, wet meadow and

shallow water (Jahncke et al. 2018). Inland marshes

are wetland types characterized by the presence of

non-woody plants as grasses, reeds or sedges (Neiff

et al. 2002; Keddy 2008). Due to the high accumula-

tion of organic matter in these environments, it is

possible to observe the formation of peatland layers or

soils rich in organic matter (Sasser et al. 2017).

The delineation of inland marshes allows to under-

stand the hidrodynamic patterns and also to monitor

the development of agriculture over these areas (Junk

et al. 2014). Although public awareness of wetland

conservation has increased in the past few decades

(Brock et al. 1999; Mui et al. 2015), the degradation of

these areas has increased significantly. In the state of

Rio Grande do Sul, southern Brazil, marsh areas are

considered permanent preservation areas by legisla-

tion. However, there are no accurate inventories or

mapping of the marsh areas located in the state. Due to

conversion to agricultural areas, urbanization and

waste disposal, important marsh areas have been

extensively degraded in Rio Grande do Sul (Brenner

2016; Silva 2016).

The advance of geographic information systems

has led to the improvement of methods used for the

classification of remotely sensed images (França and

Amaral 2013; Girolamo Neto 2014; Neves 2015).

Remote sensing has an important role in the

delineation of wetlands in regional scale (Karlson

et al. 2019). The improved spatial, temporal, spectral

and radiometric resolutions of optical sensors, espe-

cially Landsat 8 Operational Land Imager (OLI) and

Sentinel 2 Multispectral Instrument (MSI) satellites,

allows the development of strategies for continuous

monitoring of vegetation patterns, water level oscil-

lation and loss and degradation in wetlands (Sánchez-

espinosa and Schröder 2019).

In the past few years, Synthetic Aperture Radar

(SAR) sensors have been increasingly used for

delineation and monitoring different wetland ecosys-

tems in South America (Kandus et al. 2018), such as

the Amazon river floodplain (Ferreira-Ferreira et al.

2015; Furtado et al. 2016; Pereira et al. 2018), the

Brazilian Pantanal floodplain (Evans et al.

2010, 2014), the Paraná River floodplain (Morandeira

et al. 2016; Gayol et al. 2019), and inland marshes

areas (Grimson et al. 2019; Simioni et al. 2019).

SAR images have advantages in delineation of

wetlands in comparison with optical images (White

et al. 2015; Dabboor and Brisco 2018). SAR micro-

waves can collect data at day or night, and are able to

penetrate through clouds and interact three-dimen-

sionally with vegetation, detecting canopy structural

characteristics and soil moisture (Morandeira et al.

2016; Pereira et al. 2018).

There are many SAR sensors, with different spatial

resolutions, polarizations and wavelengths (Mahdian-

pari et al. 2017). The use of X (2.43–3.75 cm) and C

(3.75–7.5 cm) bands are preferable for mapping

herbaceous, less dense wetlands, and the L-band

(15–30 cm) is indicated for mapping woody wetlands

such as swamps and other high biomass wetlands

(Dabboor and Brisco 2018).

With the wide range of satellite imagery available

lately, different methods and techniques allow to

delineate and classify wetlands with high accuracy.

Geographic Object-Based Image Analysis (GEOBIA)

offers a promising framework for segmenting land-

scapes into heterogeneous wetlands. The main benefits

of GEOBIA in relation to pixel-based methods

include: (1) the possibility of incorporating the shape,

texture and any relevant contextual variables of the

object into the classification, (2) to soften part of the

local variation within the objects, which can reduce

the speckle noise and increase the accuracy of the

classification; and (3) to explain the landscape hier-

archy, different land cover types and ecosystem
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structure, by using multiple layers of objects at

different spatial scales (Blaschke et al. 2014). Dronova

(2015) states that there is an increase in precision using

GEOBIA when compared to pixel-based approaches.

Kamal and Phinn (2011) found a difference of * 20%

between GEOBIA and pixel-based aproaches.

Another method that has been widely used in recent

years is the knowledge discovery in database (KDD),

an exploratory automatic data analysis, designed to

identify and to organize spatial patterns from large and

complex remote sensing data sets (Maimon and

Rokach 2005). One of KDD main steps is data mining

(DM), a classification process used to identify patterns

and to establish relationships within large data sets

(Hand 2007). DM comprises a set of methods and

algorithms with different usability and accuracy.

Among them, we highlight the artificial neural

networks (ANN), k-nearest neighbors (k-NN), classi-

fication and regression tree (CART), and random

forest (RF) methods (Behrens and Scholten 2007).

These algorithms have been successfully applied to

delineate and classify different wetlands types. Bao

and Ren (2011) applied ANN to classify the landscape

heterogeneity in a wetland in DaLinor Lake and Van

Beijma et al. (2014) applied RF to classify the

vegetation in a salt marsh in Llanrhidian salt marshes,

both with accuracy greater than 90%. RF is widely

applied in studies to map wetlands with GEOBIA

because of its ability to handle large datasets from

different sources and the ability to evaluate the

importance of features (Mahdianpari et al. 2017).

The combination of multiple sources was a determin-

ing factor for the high accuracy ([ 93% and[ 94%)

observed by Silva et al. (2010), which used GEOBIA

to map seasonal changes in aquatic macrophyte cover,

and by Dubeau et al. (2017), which mapped wetlands

using optical data, SAR and a Digital Elevation Model

(DEM), respectively. By using DEM, SAR, and

optical imaging data separately, Dubeau et al. (2017)

found that the OA decreased to 89%. Wang et al.

(2019) applied different DM methods to classify land

cover in a coastal wetland in Linhong River Estuary

Wetland with accuracy of 86.6% with RF and 77.2%

with the k-NN method. Baker et al. (2006), using

CART, obtained 73.1% accuracy in the mapping of

wetlands and riparian areas in Gallatin River water-

shed, USA.

Although the integration between multi-sensor

analysis, GEOBIA and data mining techniques for

wetlands mapping has been well discussed in the

literature (Belluco et al. 2006; Silva et al. 2010; Van

Beijma et al. 2014; Walsh et al. 2014; Wester et al.

2018; Wang et al. 2019), this is the first study to apply

these methods to map inland marshes. We hypothesize

that the multi-sensor approach of the Sentinel-1 and

Sentinel-2 satellites may have a high potential to

discriminate the vegetation of wetlands.

Based on the consideration above, this work aimed

to compare four machine learning algorithms (classi-

fication and regression tree (CART), artificial neural

network (ANN), random forest (RF), and k-nearest

neighbors (k-NN)) using active and passive remote

sensing data in order to address the following ques-

tions: (1) which of the four machine learning methods

has the greatest potential for inland marshes delin-

eation? (2) are SAR features more important for inland

marshes delineation than optical features? and (3)

what are the most accurate classification parameters

for inland marshes delineation? To address these

questions, we used data from Sentinel 1A and Alos

Palsar I (SAR) and Sentinel 2A (optical) sensors, in a

geographic object-based image analysis (GEOBIA)

approach. In addition, we performed a vectorization of

a 1975 Brazilian Army topographic chart (first official

document presenting marsh boundaries) to quantify

marsh area losses between 1975 and 2018.

Methodology

Study area

The Banhado Grande (BG) marsh (29�570 S, 50�410
W) is located within the Gravataı́ river basin, state of

Rio Grande do Sul, Brazil. The BG is a marsh remnant

in a predominantly agricultural landscape, with an

original area of 5,591 ha (Geographic Service Direc-

torate 1975; Ramos et al. 2014) and it is included in the

Banhado Grande System (BGS) wetlands complex.

The BGS is an extensive mosaic of wetlands, which is

formed by marshes, wet meadow (WM) and rice crops

(RC). The BGS is delimited by a 20-m altimeter quota

(Fig. 1).

In large flood pulses, the area comprised by the

BGS floods, connecting different small inner marshes

(Leite and Guasselli 2013; Simioni et al. 2017). The

connectivity established during flood pulses is
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responsible for large amounts of nutrient and sediment

exchanges between wetlands.

The mean annual precipitation varies between

1500 mm and 1700 mm. August has the highest mean

precipitation (140 mm) and April has the lowest

(86 mm). The average annual temperature varies

between 17 and 20 �C. In the hottest month, January,

the average temperature oscillates between 23 and

26 �C, and in the coldest month, July, it oscillates

between 11 and 14 �C.
Most of the vegetation in the BG is basically

composed of three large compartments, (i) Cyper-

aceaes of the genus Scirpus; (ii) Pontederiaceaes of

the genus Eichhornia, and (iii) transition vegetation,

characterized by diverse macrophytes, grasses and

shrubby. Plants of the Scirpus genus are characterized

by dense vegetation, ranging from 1.5 to 2.5 m above

the water level and cover about 28% of the BG area,

and do not show significant seasonal differences,

given the high leaf turnover, with continuous growth

and appearance of new green leaves even during the

winter months (Leite and Guasselli 2013). Eichhornia

plants have seasonal variability regulated by flood

pulses, have an average height between 10 and 16 cm

and cover approximately 15% of the BG area (Leite

and Guasselli 2013). The other 57% of the BG area

consists of open water and transitional vegetation,

characterized by diverse macrophytes, grasses and

shrubby (Leite and Guasselli 2013). The BG marsh

presents rice crops and wet meadow areas within its

limits (Ramos et al. 2014). In addition to the marsh

samples, we also collected samples for rice crop and

wet meadow. The dominant species in each of the

classes are described in Table 1.

Image processing

The satellite images were obtained from three sensors:

Alos Palsar (Phased Array L-band Synthetic Aperture

Radar) 1 L-band, Sentinel 1a C-band (level Ground

Range Detected—GRD) and Sentinel 2aMultispectral

Instrument with preprocessing level 1C (Table 2).

Both Alos Palsar 1 L-band and Sentinel 1a C-band

images were obtaining from the Alaska Satellite

Facility website (www.vertex.daac.asf.alaska.edu).

The Also Palsar I satellite collected data from 2006

and 2011, the image from 12/05/2011 is the only full-

polarimetric image collected in the study area. We

understand that different dates used in the study may

interfere in the results, however there have been

studies showing the efficacy of Alos Palsar I L-band to

map marshes (Simioni et al. 2019). To minimize this

problem, we used images with same day and month to

the Alos Palsar I image acquisition. These images

have full and dual-polarization, with L and C bands

multi-frequencies. The Sentinel 2a MSI images were

obtained from the Copernicus Programwebsite (www.

scihub.copernicus.eu).

For the synthetic aperture radar (SAR) images, we

first conducted a radiometric calibration (RC), which

is required to compare SAR images obtained with

different sensors or same sensor at different times. The

radiometric calibration corrects the pixel values in

order to truly represent the backscatter of the imaged

surface, so the values were converted to intensity. The

speckle noise causes the cancellation (destructive

interference) or the sum of the signal (interference),

generating images with a ‘‘salt and pepper’’ effect. To

mitigate this effect, the Lee sigma filter was applied,

with a 5 9 5 movable window (Furtado et al. 2016).

Due to the lateral geometry of the SAR image, the

generated image is mapped in the inclined plane (Slant

Range Domain). For the Sentinel 1a C-band image, we

applied a terrain correction in order to convert the

image from the inclined plane to the ground level

(Ground Range Geometry) and then defined a carto-

graphic system. For the terrain correction, altimetry

images from the Shuttle Radar Topography Mission

(SRTM) were used, with spatial resolution of 30 m

and the Mercator Transverse Universe (UTM) projec-

tion system, spindle 22, southern hemisphere and

horizontal datum SIRGAS 2000.

For the Sentinel 2a MSI satellite images, we first

performed the atmospheric correction and transfor-

mation of radiance to reflectance by using the sen2cor

tool (Kaplan and Avdan 2017). Then, the bands 11 and

12 of Sentinel 2a were resampled from 20 to 10 m by

the bilinear interpolation method (Zhou et al. 2003).

To calculate the spectral indices we used the bands B3

(green), B4 (red), B8 (NIR), B11 (SWIR 1) and B12

(SWIR 2). Since we have extracted these spectral

indices from the Sentinel 2a images, we did not use the

bands 1, 5, 6, 7, 8A, 9 and 10.

RC and refined Lee filter processing of the SAR

images and atmospheric correction of Sentinel 2a

magnets were performed on the SNAP desktop

software. After pre-processing the images, we

obtained 29 features: 16 from vegetation, soil and
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water indexes (Sentinel 2a image) and 13 from

polarimetric channels (Sentinel 1a and Alos Palsar 1

images) (Table 3).

In addition, we performed the BG boundary

vectorization using the 1:50:000 scale Brazilian Army

topographic map (Geographic Service Directorate

1975) to quantify the loss of marsh area between

1975 and 2018. The topographic map was performed

from surveys and fieldwork, and is the first official

document presenting the BG limits.

Reference samples

The reference samples were collected by twomethods.

First, we collected 450 samples of the wet meadow

and rice crop samples from fieldwork that took place

between 12/01/2018 to 12/04/2018. To collect the

samples, two Global Navigation Satellite System

(GNSS) Ruide R90-X dual-frequency (L1/L2) recei-

vers were used. The receiver’s integrated GSM/GPRS

modem enables the use of Networked Transport of

RTCM via Internet Protocol (NTRIP) technology,

which uses TOA-IP protocol to send GNSS receivers

Real-time Kinematics (RTK) data. The reference base

was the Brazilian Continuous Monitoring Network

(BCMN) located in Porto Alegre, RS. Then, inland

marshes, wet meadow and rice crops samples were

collected by visual interpretation of World View 2

satellite images obtained on 12/08/2018. The multi-

spectral resolution of the images is 2.0 m and the

Fig. 1 Localization of the Banhado Grande (BG) marsh

Table 1 Orbital sensors

used in the study
Date Sensor Polarization Resolution (m) Path/Frame Frequency

12/05/2011 Alos Palsar 1 Quad-Pol 12.5 67/6590 L-band

12/04/2018 Sentinel 1a VV ? VH 10.0 66/78,211 C-band

12/07/2018 Sentinel 2a MSI – 10.0 14,621/38 –
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radiometric resolution is 11 bits. The visual interpre-

tation of the World View 2 images was due to the

impossibility of access to BG.

Segmentation

The segmentation was done through the object-based

geographic analysis (GEOBIA), which segments the

image in objects, which are groups of pixels repre-

senting homogeneous areas, entities or their (primi-

tive) elements. These segments can then be classified

into different categories by unsupervised, supervised

or rule-based algorithms (Dronova 2015; Jones et al.

2018).

The segmentation was performed using the bands 2

(blue), 3 (green), 4 (red), 8 (near-infrared), 11 (Short-

wave infrared SWIR) and 12 (SWIR) of Sentinel 2a

MSI, and the channels VV and VH of Sentinel 1A,

both with 10 m spatial resolution. We opted for the

joint segmentation of SAR and optical images,

because the joint analysis has shown better results

compared to a sensor only (Macrı̀-Pellizzeri et al.

2002). For segmentation, we used the region-growth

algorithm (Happ et al. 2013). The region-growth

segmentation brings together adjacent pixels that meet

a given heterogeneity criterion. Thus, the regions of

the image are grouped or divided depending on

whether the pixels have similar characteristics in

terms of color, texture or shape. The region

Table 2 Indexes and polarizations used in the study

Index Equation Author(s)

Optical

Weighted Difference Vegetation Index WDVI = (B8 - g*B4) Clevers et al. (1989)

Soil Adjusted Vegetation Index SAVI = (((1 ? L)*(B8-B4))/

((B8 ? B4 ? L)))

Huete (1988)

Transformed Normalized Difference Vegetation

Index

TNDVI = H((NDVI ? 0.5)) Deering (1975)

Brightness Index BI = H((((2*B4) ? (2*B3))/2) Escadafal (1989)

Brightness Index 2 BI_2 = H((((2*B4) ? (2*B3) ? (2*B8)))/3) Escadafal (1989)

Ratio Vegetation Index RVI = (B4/B8) Pearson and Miller (1972)

Normalized Difference Water Index NDWI = ((B8 - B11)/(B8 ? B11)) Gao (1996)

Normalized Difference Water Index 2 NDWI_2 = ((B3 - B8)/(B3 ? B8)) McFeeters (1996)

Normalized Difference Vegetation Index NDVI = ((B8-B4)/(B8 ? B4)) Rouse et al. (1973)

Normalized Difference Turbidity Index NDTI = ((B4 - B3))/(B4 ? B3)) Lacaux et al. (2007)

Normalized Difference Pond Index NDPI = ((B3-B11*B12)/(B3 ? B11*B12)) Lacaux et al. (2007)

Normalized Difference Index NDI45 = ((B5 - B4)/(B5 ? B4)) Delegido et al. (2011)

Modified Normalized Difference Water Index MNDWI = ((B3-B11)/(B3 ? B11)) Xu (2007)

Green Normalized Difference Vegetation Index GNDVI = ((B8 - B3)/(B8 ? B3)) Gitelson et al. (1996)

Difference Vegetation Index DVI = (B8 - B4) Richardson and Wiegand

(1977)

Atmospherically Resistant Vegetation Index ARVI = (((B8 - rb))/(B8 ? rb)) Kaufman and Tanre (1992)

Polarization Satellite Band

SAR

VV, VH and VV ? VH Sentinel 1a C

VV, VH, HH and HV Alos Palsar 1 L

VV ? VH, VV ? HH, and VV ? HV Alos Palsar 1 L

VH ? HH and VH ? HV Alos Palsar 1 L

HH ? HV Alos Palsar 1 L
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segmentation started with the launch of seed pixels

from previously defined samples. It was obtaining

1,000 samples for each class analyzed (inland

marshes, wet meadow and rice crop).

The region-growth algorithm is controlled by the

similarity threshold (ST). Values from 0 to 1 were

tested. High ST values mean higher freedom for

growth of the regions (geographic objects) and vice

versa. In addition, we evaluated the minimum number

of cells (MNC), which determines the minimum size

of the geographic objects. Low MNC values mean

smaller geographic-objects generated by the segmen-

tation. We tested MNC values between 200 and 600,

varying by 200.

In order to incorporate the collected samples into

the segmentation polygons, we performed the union of

attributes by geographic location, through the spatial

join plugin of QGis 3.4 Madeira. The segmentation

was performed in the QGis 3.4 software, through the

Geopatterns plugin (Ruiz 2019). Sample distribution

ensured that no spatial object spanned more than one

sampling point.

Classification and validation

In order to define the training and validation samples,

1000 points were generated on each of the three

classes (inland marshes, wet meadow and rice crops),

totaling 3000 samples. We used 80% of the samples

for training and 20% for validation. The sampling and

validation samples were randomly separated by the

Geopatterns plugin, in the QGIS software 3.4. The

accuracy of the classification was measured by the

following indexes: (1) overall accuracy (OA) (Pontius

andMillones 2011), (2) producer’s accuracy (PA), and

(3) user’s accuracy (UA) (Story and Congalton 1986).

The following non-parametric methods were used for

classification: (1) classification and regression tree

(CART), (2) artificial neural network (ANN), (3)

random forest (RF), and (4) k-nearest neighbors (k-

NN). The CART, RF and k-NN algorithms were

applied based on the classification tool from the

Geopatterns plugin (Ruiz 2019), and the ANN was

applied in the MATLAB R2012b (MathWorks)

software.

Classification and regression tree (CART)

The CART method uses the binary recursive parti-

tioning analysis for class discrimination, in which each

parent node is divided into two child nodes (Breiman

et al. 1984; Lawrence and Wright 2001). The process

is repeated by treating each child node as a parent

node. When data from a node cannot be divided into

additional nodes, it is called the terminal node. Once

the first terminal node has been created, the algorithm

repeats the procedure for each data set until all data are

categorized as terminal nodes (Waheed et al. 2006).

The sample values 3, 5, 10, 15, 20, 25 and 30 were

evaluated for tree depth and the values 8, 20, 40, 60,

80, 100 and 120 for the maximum number of samples

at child nodes. The gini index (Rokach and Maimon

2005) was used as a measure of impurity of tree

branches. The gini index measures the degree of

heterogeneity of the data, searches the largest category

in the data set (i.e., inland marsh) and tries to isolate it

from other categories (Waheed et al. 2006).

The index of a node is given by Eq. 1:

Gini ¼ 1�
Xc

i¼1

p2i ð1Þ

where pi is the relative frequency of each class in each

node, and c is the number of classes (in this case, 3).

Table 3 Dominant species for each class

Class Dominant species/typology

Inland Marsh (IM) Eichhornia crassipes, Eichhornia azurea, Salvinia auriculata, Hydrochleis nymphoides,

Leersia sp., Cabomba australis, Leersia sp., Pontederia lanceolata, Nymphoides sp.,

Hygrophila sp., Polygonum spp., Myriophillum brasiliensis, Scirpus sp., Cyperus sp.,

Zizaniopsis sp., Eryngium pandanifolium sp.

Wet Meadow (WM) Erianthus sp., Andropogon bicornis, Sida sp., Mimosa bimucronata, Panicum prionitis,

grasses and shrubby

Rice Crops (RC) Rice cultivation (Oryza sativa)
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Artificial neural network (ANN)

The ANN is a structured group of processing units,

called artificial neurons, which comprises a mathe-

matical model capable to approach complex relation-

ships within data sets. Each neuron in the network can

receive input signals, process them and send an output

signal (Fantin-Cruz et al. 2011).

The ANN training was performed by the multi-

layered backpropagation method (Rumelhart et al.

1986) and the updating of the synaptic weights and

internal connections of the network was done through

the delta rule (Gurney 1997). The values of the input

attributes were scaled from linear transformations

according the Eq. 2:

yt � poð Þ
so

¼ ANN
xt � pið Þ

si

� �
ð2Þ

where xt and yt are the input and output variables,

respectively, so and po are the scale and position

parameters of the model outputs, and si and pi are the

scale and position parameters of the model inputs.

Several model configurations were tested, varying

the number of neurons in the hidden layer of the

network. The activation function used in both layers of

the model was the sigmoidal. The output of the model

was calculated from the function presented in Eq. 3:

ANN
xt � pið Þ

si

� �
¼ fo

X

h

wofh
X

i

wh

xt � pi

si

� �
þ bh

 !
þ b0

 !
þ eo

ð3Þ

where wh, bh, fh, wo, bo and fo are the synaptic weights

(w), biases (b) and activation functions (f), respec-

tively, of the hidden (h) and output (o) layers, while eo
is the expected error in the output layer.

Once the weights initialization is random, we

executed 30 iterations for each model configuration.

At each iteration, a maximum number of learning

cycles for training interruption was defined if the

model did not reach the convergence threshold. After

several tests, the number of 15,000 cycles was defined,

since it was sufficient to achieve an ideal fit for the

synaptic weights. The training and calibration parts

were separated for an internal cross-validation process

in order to avoid the model overfitting. The relevance

of the input attributes of the model was quantified by

the relative contribution (RC) index (Oliveira et al.

2015).

Random forest (RF)

The RF is an ensemble classifier, which is comprised

by a decision tree set {h (X, vk), k, 1,…}, in which vk

are independently sampled random vectors equally

distributed in all the trees of the forest (Breiman 2001).

The RFmethod can produce multiple decision trees by

using a subset of samples and training variables. The

result of the classification process is the X class, with

the highest number of votes among all trees (Han et al.

2012).

After the forest formation, there are many decision

trees to be tested and all contribute for the classifica-

tion of the object under study by choosing which class

the target attribute should belong to. The RF defines its

decision by counting the votes of the predictor

components in each class and then selecting the

winning class in terms of the number of votes

accumulated (Han et al. 2012).

The number of trees and their maximum depth can

be adjusted.We evaluated the values between 5 and 50

for both parameters. As a criterion of division it was

used the gini index.

k-nearest neighbors (k-NN)

The k-NN is a supervised classification method based

on the proximity of its neighbors in a sample space

(Mazzillo JR andAnzanello 2015). The aim of k-NN is

to form a generalization that is based on a training set,

maximizing the accuracy of the classification (Han

et al. 2012). The parameter k controls the number of

neighbors to be analyzed. The k-NN values were

defined from the following distances: Manhattan

(power = 1), Euclidean (power = 2) and Chebyshev

(power = 3).

Results

Model calibrations

The highest OA for the CART method (95.5%) was

obtained considering a MNC of 400, a maximum

depth of 10 and a number of child nodes of 20 (Fig. 2).

As we increase the number of child nodes, the OA

decreases. For the CART method, the smallest OA

values (90%) were found considering a number of

child nodes of 120 and amaximum depth of 10. For the
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ANN method, the highest OA (96%) was obtained

with a MNC of 400 a number of neurons in the hidden

layer equal to 33. As in the CART method, the lowest

OA value for ANN was 90%. The RF presented the

highest OA values (96%-98.2%) considering a MNC

equal to 600. The k-NN presented the highest OA

variations (96.5%-98.4%) by using the Chebyshev

metric. In this metric, the distance between two

vectors is the largest of their differences along any

dimension.

Layer importance and mapping

The importance of the layers in the classifications is

presented in Fig. 3. The optical images were more

relevant only in the CART method. The ANN and RF

methods presented a similarity in the importance of the

layers, with greater relevance for SAR images. In the

ANN, the highest importance was for the HV, VH and

HV ? VH channels, of about 11.6%. The highest

importance for ANN using optical images were

observed in the RVI index. For the SAR images, the

greatest importance was obtained by using the VH

channel of Alos Palsar I through the RF method

(14.5%). For the optical images, the greatest impor-

tance was obtained byusing the NDWI index through

the RF method (5.7%).

In Fig. 4, we observe that the CART, ANN, RF and

k-NN methods classified, respectively, 69.3%, 77.2%,

68.9%, and 71.9% of BG as IM. The ANN presented

more homogeneous IM areas in the central portion of

BG in comparison with the other methods. The RF

method presented the smallest IM area and the largest

RC area among the analyzed methods. The k-NN

classified more RC fragmented areas inside IM zones.

Fig. 2 Correct Proportion (CP) of each method: CART, ANN, RF, and k-NN
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The confusion matrix shows the values of PA, UA

and Kappa for the different classifiers (Table 4). For

the CART method, there was confusion between WM

and RC classes within the IM areas. For the ANN

method, the IM areas presented confusion only with

RC, reaching 97.7% for UA. Both PA (98.6%) and

kappa (0.93) were one tenth higher than the CART

method. Both RF and k-NN presented 100% onUA for

IM. The PA for IM using RF and k-NN was lower

when compared to CART and ANN (97.2%). Never-

theless, RF and k-NN showed the highest overall

kappa values (0.97 and 0.98, respectively).

Fig. 4 Classification results for the diferent methods: (1) CART, (2) ANN, (3) RF, and (4) k-NN
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Discussion

In this study, we analized several methods to delineate

inland marshes in southern Brazil using machine

learning algorithms and a multi-sensor approach.

Optical remote sensing data provides spectral infor-

mation of molecular and structural features related to

leaf area index, biomass and coverage of the canopy.

On the other hand, SAR data provides structural

(roughness and geometry) and dielectric (water pres-

ence) features (Van Beijma et al. 2014). Within this

context, recent work have shown that GEOBIA is a

promising method in the mapping of wetlands, since it

allows to separate the heterogeneity of plant commu-

nities into objects, reducing the noise in the spectral

data (Dronova 2015; Mui et al. 2015).

Simioni et al. (2018) mapped inland marshes using

a pixel-based approach, finding a 95.9% accuracy. In

this study, using GEOBIA, we obtained a 98.5%

accuracy. Despite the fact that the present study shows

a better accuracy in relation to the work of Simioni

et al. (2018), it is understood that we cannot say that

GEOBIA was more reliable, since the difference in

accuracy values is small (\ 3%) and may be associ-

ated with the date of obtaining the image or even the

method of classification used.

We also highlight the potential of data mining

techniques for inland marshes delineation. The four

methods analyzed showed accuracy greater than 90%

for all parameters tested. CART and ANN presented

6% differences in the OA values, demonstrating the

importance to evaluate different parameters in the

models.

Our results also showed that the RF and k-NN

classifiers presented the highest OA for inlandmarshes

delineation (98.3% and 98.5%, respectively). The

k-NN was the method that presented the highest OA.

This method is considered a lazy learning (Guo et al.

2003), because it simply stores the entire training set

and postpones all effort towards inductive generaliza-

tion until classification time (Wettschereck et al.

1997). Although studies have stated that k-NN is

highly sensitive to the definition of its distance

function (Wettschereck et al. 1997; Guo et al. 2003),

we found that the variation of k between 3 and 13

showed the same OA in Chebyshev distance and

decreased only 1% in some values of k in the

Manhattan and Euclidean distances. One explanation

for the success of k-NN is that lazy learnings perform

better for forecasts that use a single training set and

few classes (Webb et al. 2011). In this study, we chose

to use only three classes (IM, WM and RC). We also

found that the UA (forecasting ability to represent

reality) achieved 100% in the inland marshes areas for

the RF and k-NN methods. However, both methods

had the lowest PAs (the quality of the classification of

training set pixels) for IM, of the order of 97.2%. The

best PA verified for IM areas was found in the ANN

method.

The L-band VH channel had the greatest impor-

tance in mapping wetlands for RF and ANN methods.

The SAR images show differences in the backscatter

response between flooded and non-flooded vegetation,

playing an important role in the hydrological moni-

toring of wetlands (Baghdadi et al. 2001; Ferreira-

Ferreira et al. 2015). For the Brazilian Pantanal, Evans

et al. (2014) found a OA of 80% by mapping the

vegetation cover with the integration of SAR C and

L-bands images. According to the authors, the main

errors found in the classification were due to the

Table 4 Confusion matrix for the different methods: (1) CART, (2) ANN, (3) RF, and (4) k-NN

CART ANN RF k-NN

IM WM RC UA (%) IM WM RC UA (%) IM WM RC UA (%) IM WM RC UA (%)

IM 186 5 7 93.9 210 0 5 97.7 209 0 0 100 209 0 0 100

WM 0 199 6 97.1 1 177 15 91.7 0 193 4 98.0 0 192 2 99.0

RC 3 6 187 95.4 2 1 188 98.4 6 0 187 96.9 6 1 189 96.4

PA (%) 98.4 94.8 93.5 95.5 98.6 99.4 90.4 96.0 97.2 100 97.9 98.3 97.2 99.5 99.0 98.5

Kappa 0.92 0.93 0.97 0.98

IM inland Marsh, WM wet meadow, RC rice crop, UA User’s accuracy, PA producer’s accuracy
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similarity of wetland type classes in terms of vegeta-

tion structure and flood dynamics, and, therefore,

similar backscatter characteristics.

When mapping wetlands using SAR C and X-bands

data, Mleczko and Mróz (2018) obtained a OA

of * 65% using Sentinel 1 C-band. Franklin and

Ahmed (2017) used SAR C- band and Landsat 8 OLI

images together with Lidar-derived geomorphometric

variables, and found a OA of 91%. The authors

highlight the importance of the multisensor approach,

especially with optical and SAR images, to improve

wetland mapping accuracy.

We highlight that among the four classifiers

analyzed in this study, RF is the most common

method found in literature to map wetlands (Millard

and Richardson 2013; Van Beijma et al. 2014;

Mahdianpari et al. 2017), showing overall accuracies

higher than 90%. The k-NN method, which presented

the highest accuracy in this study (98.5%), did not

show the same performance on other studies over

similar environments. Na et al. (2015), i.e., assessing

the k-NN and RF methods to map flooded forests in

China observed accuracies of 41.6% and 83.6 using

k-NN and RF, respectively.

In relation to the CART and ANN methods, the

accuracies obtained in this study (OA of 95.5% and

96%, respectively) are still more reliable than previous

studies aiming to map inland marshes. The CART

method, for example, was evaluated by Pantaleoni

et al. (2009), where the authors observed a precision of

76.1% by using Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER)

images. The ANN method has been used for wetlands

mapping since the last two decades (Augusteijn and

Warrender 1998; Ghedira et al. 2000; Fantin-Cruz

et al., 2011; Chatziantoniou et al., 2017), with

accuracies ranging between 70 and 90%. Using

machine learning methods to map land use and land

cover with emphasis on wetlands, Chatziantoniou

et al. (2017) point out that the marsh class presented

the lowest accuracy in the optical classification, but

when using SAR data the results were improved due to

texture and backscatter. In addition, the authors

highlighted the GEOBIA high ability to discriminate

rice crop and wetland areas by using the shape

characteristic.

Figure 5 shows the different classes in the southern

flank of BG. The potential of GEOBIA on recognizing

shapes in the segmentation process was decisive for

the good performance in the class discrimination,

especially for RC. We highlight that this image was

collected in December (12/11/2018), which is the final

period of tillering in the rice areas. All shoots that

grow after the initial parent shoot grows from a seed.

Tillers are segmented, and each segment phase its own

two-part leaf. From planting to harvest, rice passes by

three stages (vegetative phase, reproduction phase and

ripening phase). In this sense, we note that that date of

the image may affect the reflectance values, given the

structure of the crops and also physiological stress,

Fig. 5 Different types of vegetation within the Banhado Grande marsh
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interfering in the classification results (Kuenzer and

Knauer 2013).

In SAR images, Kuenzer and Knauer (2013)

suggest that the final tillering period is ideal for

separating rice from other classes, since the volume

dispersion within the rice canopy and the interactions

between plants and the surface of water result in an

increase in the backscatter. Regarding polarization, we

note that VV channels have higher backscatter coef-

ficients than HH channels in the early stages of rice

growth due to the physical structure of the plant, which

consists mainly of short vertical leaves and stems

during the early stages of rice growing (Kim et al.

2008). We found that the rice crop area within the BG

ranges from 15.3% (k-NN) to 19% (RF), and is found

mainly at the southern and northern limits of BG.

However, the highest OA for RC areas (98.4%) were

verified in the ANN method. This method estimated

that 15.4% of the BG area in 1975 was currently

occupied by RC.

Approximately 28% of the BG area is composed of

Cyperaceaes of the genus Scirpus sp. (Fig. 6). This

vegetation type is common in freshwater marshes of

southern Brazil and Argentina (Pratolongo et al.

2005). This vegetation is dense, ranging from 1.5 to

2.5 m above the surface water. In a study on vegeta-

tion dynamics in a marsh, Guasselli (2005) found that

there are no significant differences in reflectance of

Scirpus giganteus during the year, given the high leaf

turnover, with continuous growth and appearance of

new green leaves even during the winter months

(Pratolongo et al. 2005).

Regarding SAR images, Pope et al. (1994) point out

that HH polarization allows to separate Scirpus

giganteus from other aquatic vegetation types. The

same is discussed by Bourgeau-Chavez et al. (2009),

whichfound that HH/HV showed higher backscatter

coefficients compared to wet meadow, for example.

The models estimated that there are between 68.9%

(CART) to 77.2% (ANN) of remaining natural veg-

etation within BG. The largest OA’s found for IM

areas were obtained by the RF and k-NN methods,

with * 100% accuracy. Both methods estimated

similar values of remnants of IM areas in BG, 68.9%

(RF) and 71.9% (k-NN).The models also estimated

that between 7.4% (ANN) and 12.8% (k-NN) of the

BG area correspond to wet meadow areas. The k-NN

was the method that presented the highest overall

accuracy in the WM classification, of * 99%

(Fig. 7). Ozesmi and Bauer (2002) highlight the high

separability of WM from other vegetation types

common in marshes areas, especially in the near

infrared band. Chimner et al. (2019) used multi-sensor

data (SAR and optical) to map Mountain Peatlands

Fig. 6 Scirpus giganteus in the Banhado Grande marsh
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and wet meadows. The results showed that the wet

meadow areas had the lowest overall accuracy

(* 79%), being confused mainly with grassland or

shrubland. It is important to note that we aimed to map

the total area of inland marshes; however, in order to

reduce the classes of analysis we incorporated grass-

land or shrubland areas as WM areas. This fact may

justify the higher overall accuracy found in our study,

since the largest WM class errors in the study by

Chimner et al. (2019) are associated with the grassland

or shrubland areas.

Finally, our results showed a decrease of the BG

natural area since its first mapping, in 1975 (Geo-

graphic Service Directorate 1975; Ramos et al. 2014).

It should be noted that the 1975 mapping was

performed by visual interpretation of an aeropho-

togrammetric image, that is, a different method than

the one used in this study. We understand that it is

interesting to bring this information so that we can

quantify the area of marsh lost since the first accurate

mapping carried out. By using the k-NN method,

which showed the highest OA, we found that *
15.3% of the BG original area has been converted to

agriculture. These results are important in terms of the

development of more sustainable activities inn the

area surrounding the BG, which has a key role in the

hydrological patterns in the region.

Conclusion

We conclude that the four models analyzed can be

applied with high precision ([ 95.5%) to delineate

inland marshes. The method that presented the highest

overall accuracy to delineate inland marsh was k-NN

(98.5%) accuracy, followed by RF (98.3%) accuracy.

ANN presented a overall accuracy of 96%, and CART

was the method that presented the lowest overall

accuracy, of 95.5%.

For RF, the MNC 600 showed the highest accuracy

and, for k-NN, the highest accuracy was found at

MNC 200. It can be concluded that MNC values less

than 600 allow high precision in marsh areas

classification.

Regarding the importance of features, we conclude

that SAR images are the most important in ANN and

RFmodels. The greatest overall importance was found

in the Alos Palsar I L-band VH channel, with 14.5% in

the RF method, demonstrating the potential of SAR

L-band images to delineate inland marshes. For the

ANN method, the SAR channels HV, HV ? VH and

Fig. 7 Wet meadow in the Banhado Grande marsh
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VH presented the highest importance, both with

11.6%. Regarding the spectral indices, the feature

BI_1 was more important in the CART model,

6.8%.The CART and ANN methods presented the

largest variations of the accuracy in relation to the

different parameters tested. For CART, we found that

increasing the number of child nodes caused the

production of trees with smaller overall accuracy, with

a variation of * 6% in the overall accuracy, and the

parameter with the best OA was found in Neurons in

the hidden layer 33. Thus, we verified that different

parameters can generate differences of * 6% in the

final accuracy to delineate marshes in the CART and

ANN methods.

For the RF, we did not obtain significant differences

between the OA values by testing different parame-

ters. We note that the OA values were similar between

Maximum Depth 10 to 50 for all tree numbers except

trees 5 and maximum depth 30. As in the RF method,

the k-NN method showed little variation in OA values

when testing different parameters. The values of k did

not influence the OA results in the Chebyshev metric

distance.

The method with the highest OA (k-NN) estimated

that the BG area has decreased 28.1% since 1975, with

15.3% being converted to agricultural areas and 12.8%

to wet meadow. This fact demonstrates the need for

conservation strategies not only in BG, but in all

wetlands of the state of Rio Grande do Sul.

We suggest, for further studies, the use of other data

mining methods, as well as the use of both geomor-

phological attributes and land use temporal classifica-

tion in the algorithms, as well as the evaluation of the

results attributed to the use of different sets of images

for the same classifier. We also recommend the

application of these algorithms in other IM areas,

including salt marshes, to verify the potential of the

methods in different types of wetlands.
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