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The dynamical entropy of dense gluonic states in proton-proton collisions at high energies is studied by
using phenomenological models for the unintegrated gluon distribution. The corresponding transverse
momentum probability distributions are evaluated in terms of rapidity. The dynamical entropy density is
obtained in the rapidity range relevant for the collisions at the Large Hadron Collider. The total entropy
density for the dense system is computed as a function of the rapidity evolution ΔY ¼ Y − Y0 given an
initial rapidity Y0. The theoretical uncertainties are investigated, and a comparison with related approaches
in literature is done.
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I. INTRODUCTION

In high energy regime statistical physics concepts and
methods are being increasingly used to describe the out-
come of particle collisions [1–3]. It is well known that
produced particle multiplicities in proton-proton and heavy
ion collisions are connected with the entropy produced by
these reactions [4–8]. In this context, a current hot topic is
the relation between decoherence/entanglement and
high-energy quantum chromodynamics (QCD) processes
[9–15]. In general, the analyzes are complex since there are
interdisciplinary connections of distinct steps of the ther-
malization process to nonequilibrium dynamics (see for
instance the pedagogical review of Ref. [10]). Another
topical subject is the entanglement entropy, which quan-
tifies the level of entanglement between different subsets of
degrees of freedom in a quantum state. Different theoretical
techniques in QCD have been employed to address the
entanglement entropy of partons [16–42], including differ-
ent interpretation for the corresponding entropy [43]. These
rich phenomenological studies give rise to fresh develop-
ments at the confluence of quantum technologies and
fundamental high energy physics [44].
In this work we focus on the dynamical entropy for dense

QCD states of matter first proposed in Ref. [45]. Based on
statistical physics tools for far-from-equilibrium processes
the entropy is written as an overlap functional between the
gluon distribution at different total rapidities Y and satu-
ration radius, RsðYÞ ¼ 1=QsðYÞ, where QsðYÞ ∼ eλY is the

saturation scale. In the weak coupling regime the dynamical
entropy characterizes the change of the color correlation
length RsðY0Þ → RsðYÞ, mirroring the rapidity evolution
Y0 → Y of a dense gluon state. The entropy functional
ΣY0→Y is defined in terms of the gluon transverse momenta
probability distribution, PðY; k⊥Þ. This distribution is
defined by means of the QCD unintegrated gluon distri-
bution (UGD), ϕðY; k⊥Þ. It was shown that the total
dynamical entropy density, dSD=dy is proportional to
ΣY0→Y and the effective gluonic degrees of freedom.
A macroscopic formalism for obtaining the thermodynamic
entropy associated with the production of gluons in a
dilute-dense system within the color glass condensate
(CGC) approach was proposed in Ref. [21]. One key
feature is that entropy behaves like multiplicity of produced
gluons and an upper bound exists. It has been conjectured
in [45] that the dynamical entropy is related to the micro-
scopic definition of entropy based on the underlying
dynamics of the CGC. The formalism also has been
extended to the initial preequilibrium state of a heavy
ion collision. Some preliminary applications were done in
[45] by using a Gaussian CGC model presenting geometric
scaling property as also considered in Ref. [21]. Our goal in
this work is to analyse the dynamical entropy by using
realistic models for the gluon UGD going beyond the
Gaussian CGC approach. The rapidity dependence coming
from distinct phenomenological models is investigated.
Comparison with decoherence entropy is performed.
This paper is organized as follows. In next section, we

briefly review the definitions of the dynamical entropy,
ΣY0→Y , in hadronic scattering by using the seminal work of
Ref. [45]. We compute the transverse momentum proba-
bility distributions considering realistic phenomenological
models for the UGDs, ϕðY; k⊥Þ, for protons. We focus on
analytical models in order to study the main features of the
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dynamical entropy derived from them. The corresponding
evolution in rapidity, ΔY ¼ Y − Y0, is investigated given
an initial rapidity Y0. The total dynamical entropy density,
1

πR2
p

dSD
dy , is also introduced. In Sec. III the main results are

presented and the uncertainties associated to the formalism
and possible future applications are discussed. In Sec. IV
we summarize the main results.

II. THEORETICAL FORMALISM

First, we shortly review the formulation of the dynamical
entropy of dense QCD states first proposed in Ref. [45].
Based on the classical far-from-equilibrium thermodynamics
concepts in statistical physics the microscopical entropy is
defined in terms of the rapidity evolution of the UGD,
ϕðY; k⊥Þ. Namely, the gluon dipole transverse momentum
distribution (dipole TMD) is themain input as it is associated
to the suppression of the color radiation for k⊥ → 0 and
presents typically a maximum around the hadron saturation
scale,Qs. This last property resembles the classical notion of
a gas of partons in a box of size equal to the saturation radius,
Rs ¼ 1=Qs. The saturation scale can be parametrized in
terms of rapidity likeQsðYÞ ¼ k20e

λY . The classical behavior
here is achieved by QCD dynamics for large occupation
number described by the CGC effective theory. The stating
point is the definition of the transverse momentum proba-
bility distribution of the high density gluon states in the
hadron target [45]:

PðY;k⊥Þ¼
1

N
ϕðY;k⊥Þ;

N ¼
Z

ϕðY;k⊥Þd2k⊥;
Z

PðY;k⊥Þd2k⊥¼ 1: ð1Þ

The integration over transverse momentum is simplified in
the case of the dipole TMD to present geometric scaling
property, i.e., ϕðY; k⊥Þ ¼ ϕðτÞ, where τ ¼ k2⊥=Q2

s is the
scaling variable. The classical statistic physics analogies
considered in [45] to propose the quantities appearing in
Eq. (1) are the probability distribution for stationary states
and the Hatano-Sata identity. The transverse momenta play
the role of the phase space and the rapidity Y represents the
dynamical parameter. The classical compression corre-
sponds to the shrinkage of the color correlation length due
to the rapidity evolution.
The dynamical entropy density of a dense system at

rapidity Y is defined by using the distribution PðY; k⊥Þ in
the following way [45]:

ΣY0→Y ¼
�
ln

�
PðY; k⊥Þ
PðY0; k⊥Þ

��
Y
;

≡
Z

PðY; k⊥Þ ln
�
PðY; k⊥Þ
PðY0; k⊥Þ

�
d2k⊥; ð2Þ

where h…iY is the average over the probability distribution
in the final state at Y. The evolution starts from initial
rapidity Y0 in a transverse area approximately given by the
initial color correlation size, R0 ¼ Q−1

s ðY0Þ. The dynamical
entropy in Eq. (2) presents the property of positivity and for
distributions containing geometric scaling an analogy with
the Jarzynski identity in nonequilibrium thermodynamics is
possible.
By making use of the dynamical entropy expression,

the total dynamical entropy density, dSD=dy, for a density
state of overall transverse size Rh can be computed as
follows [45]:

1

Sh

dSD
dy

¼ Cm

S0
μΣY0→Y; ð3Þ

where Sh ¼ πR2
h and S0 ¼ πR2

0 ¼ πQ−2
s ðY0Þ. The constant

Cm ¼ N2
c − 1=ð4πNcαsÞ refers to the product of the color

multiplicity ðN2
c − 1Þ by the typical gluon occupation

number ng ∼ 1=4πNcαs and μ being the effective number
of partonic degrees of freedom inside a transverse cell at Y0.
The last quantity was identified as μ ¼ 3π=2 [45] by
directly comparing the expressions (3) with the macro-
scopic entropy proposed in Ref. [21] in the dilute-dense
configuration in proton-proton collisions.
In Ref. [45], the author considered a class of Gaussian

CGC models in order to estimate the dynamical entropy in
a quantitative way. Namely, the k⊥-probability distribution
is supposed to present geometric scaling, PGSðY; k⊥Þ ¼
PGSðτÞ ∝ Γ−1ðκÞτκ−1e−τ. The overlap parameter κ para-
metrizes the low transverse momenta limit of the dipole
TMD and in case of κ ¼ 2 the color transparency property
is recovered in the gluon UGD.
The main goal here is to compute numerically the

dynamical entropy by using tested phenomenological
models which describe high energy data. Specially, those
models with a accurate description of the low transverse
momentum behavior of the gluon distribution. We prefer
analytical models in order to single out the main features of
the total dynamical entropy density. A phenomenological
model that accounts for the geometric scaling present in
charged hadrons production in pp collisions combined
with a Tsallis-like distribution observed from the hadron
spectrum measured is proposed in Refs. [46,47] (hereafter
the MPM model). The corresponding gluon UGD is
expressed as

ϕMPMðY; k⊥Þ ¼
3σ0
4π2αs

τβðτÞ
ð1þ τÞ1þβðτÞ : ð4Þ

In expression above, αs ¼ 0.2, Q2
sðYÞ ¼ k20e

0.33Y with
k20 ¼ x̄0.330 GeV2. The powerlike behavior of the gluons
produced at high momentum spectrum is determined via
the function βðτÞ ¼ aτb where τ is the scaling variable. The
set of parameters, σ0, x̂0, a, and b are fitted from DIS data
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available at small x. In calculations we consider the
parameters from fit B in Ref. [46]. Namely, σ0 ¼
20.47 mb, x̄0 ¼ 3.52 × 10−5, a ¼ 0.055, and b ¼ 0.204.
By using the definition for the transverse momentum
probability distribution and the manifest geometric scaling
property contained in the MPM model one obtains

PMPMðY; k⊥Þ ¼
1

πQ2
sðYÞξ

τβðτÞ
ð1þ τÞ1þβðτÞ ; ð5Þ

where ξ ¼ 4.34618 results from the numerical calculation
of the normalization N in Eq. (1).
We will compared the MPM model with the one

proposed in Ref. [21], which is the baseline model for
the investigation in Ref. [45] (hereafter CGC Gaussian
model). There the saturation scale is associated to the
maximum of the gluon density and the cross section for the
inclusive gluon production is computed in dilute-dense
regime in proton-proton collisions. The saturation scale
drives the entropy of produced gluons, which is written in
terms of multiplicity of these partons. In such a macro-
scopic definition of entropy, it behaves like the number of
partons whose distribution is given by the gluon UGD. The
dipole TMD and the corresponding transverse momentum
probability distribution are given by

ϕGausðY; k⊥Þ ¼
CFA⊥
4π2αs

τe−τ=2; ð6Þ

PGausðY; k⊥Þ ¼
τe−τ=2

4πQ2
sðYÞ

; ð7Þ

with A⊥ ¼ πR2
p being the proton transverse area. For the

saturation scale scale the following parametrization has
been used,Q2

sðYÞ¼k20e
λY , with k20¼ x̄λ0GeV

2 (x̄0¼4×10−5

and λ ¼ 0.248) [48]. The expression above corresponds to
an overlap parameter κ ¼ 2 for PGSðτÞ as discussed before.
Despite being very simple, this GBW-like parametrization
is not able to describe the charged hadrons pT spectra due
to the highly suppressed exponential tail at large k⊥. This
characteristic feature has been demonstrated in Ref. [49].
In order to analyze a dipole TMD containing more

physical information and having the correct theoretical
behavior for small and large transverse momenta we will
investigate the one obtained in Refs. [50,51]. It was derived
as a general form of solution of ϕðY; k⊥Þ which reproduces
both McLerran-Venugopalan initial conditions and Levin-
Tuchin solution in their appropriate limits. It connects both
limits smoothly and better approximates the numerical
solution of full leading order Balitsky-Kovchegov equation,
specially deep in the saturation region. In this limit the
dipole gluon TMD goes to zero as k⊥ → 0. The results
present similarity with the Sudakov form factor [51].
Initiating with dipole TMD at small transverse momentum
from Levin-Tuchin (LT) solution of the S matrix, the

corresponding UGD takes the form in the region Qs ≳
k⊥ ≳ ΛQCD [51]:

ϕsat
LTðY; k⊥Þ ¼ −

NcA⊥ε
π3αs

ln

�
τ

4

�
exp

�
−εln2

�
τ

4

��
; ð8Þ

where ϕsat
LT has been obtained at small transverse momen-

tum in terms of a series of Bells polynomials. The
expression above corresponds to the leading logarithmic
approximation for the resummed series and the constant
ε ≈ 0.2 arises from the saddle point condition along the
saturation border. Outside of the saturation boundary,
k⊥ ≳Qs, but close to the saturation line, the QCD color
dipole amplitude in transverse size space has the form
Nðr; YÞ ≈ ðr2Q2

sÞγs (γs ≈ 0.63 is the value of the effective
anomalous dimension in the vicinity of the saturation line).
In this limit, the dipole TMD can be written as

ϕdil
dipðY; k⊥Þ ∝

NcA⊥ε
π3αs

τ−γs : ð9Þ

For large transverse momenta violation of the geometric
scaling is expected and the typical Balitsky-Fadin-Kuraev-
Lipatov diffusion term appears (see, for instance the
phenomenology associated to the Santana Amaral-Gay
Ducati-Betemps-Soyez model [52] and references therein).
Based on the theoretical dipole TMD features summa-

rized by Eqs. (8)–(9), we propose the following expression
for the transverse momentum probability distribution,

PLTðY; k⊥Þ ¼
�−B lnðτ

4
Þ exp ½−ε ln2ðτ

4
Þ�; τ < 1

BðdτÞ−γs exp ½−ε ln2ðτ
4
Þ�; τ ≥ 1

; ð10Þ

where d ¼ ½lnð4Þ�− 1
γs and B ≃ 0.1=πQ2

sðYÞ is the overall
normalization. In the region τ ≫ 1, the suppression factor in
second line of (10) has a twofold goal: it ensures the
convergence of k⊥ integration in Eq. (1) and helps on the
function continuity at τ ¼ 1. Fortunately, the large-k⊥ tail
has no severe effect in the calculation of the dynamical
entropy since the integrand is dominated by the contribution
around τ ¼ 1. The same parametrization for the saturation
scale as used in CGC-Gaussian model has been considered.
In next section we compute numerically the dynamical

entropy for the models discussed above as well as the
corresponding total dynamical entropy density. The rap-
idity range investigated is the relevant one for proton-
proton collisions at the LHC.

III. RESULTS AND DISCUSSIONS

In Fig. 1 is shown the transverse momentum probability
distribution of gluons for the MPM [Fig. 1(a)] and CGC
Gaussian [Fig. 1(b)] UGD models. It is presented the k⊥
dependence for several rapidity values, Y= lnð10Þ ¼ 2, 4, 6,
8, which correspond to longitudinal momentum fraction for
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gluons, x ¼ 10−8–10−2. Both models present geometric
scaling property, ϕðY; k⊥Þ ¼ ϕðτ ¼ k2⊥=Q2

sðYÞÞ, and the
peak occurs at transverse momentum proportional to the
saturation scale. However, in each models its location is
different: in the CGC Gaussian kmax⊥ ¼ ffiffiffi

2
p

QsðYÞ whereas
for MPM it corresponds to kmax⊥ ≈

ffiffiffiffiffiffiffiffiffiffiffi
0.954

p
QsðYÞ. We think

these model samples are enough for a qualitative and
quantitative analyzes. It is clear that for models based on
scaling the main contribution to statistical averages comes
from the integration region around saturation scale. The
behavior for k⊥ > QsðYÞ is distinct as the CGC Gaussian
model has a strong exponential suppression on k2⊥, which is
not the case for the MPM model. These features will be the
origin for a diverse behavior of the dynamical entropy
coming from the models.
Now the dynamical entropy of partons (gluons) at

rapidity Y obtained from the QCD evolution Y0 → Y is
computed. We consider the initial rapidity at Y0 ¼ lnð1=x0Þ
with x0 ¼ 10−2. The values of x ≤ x0 corresponds to the
limit of validity for the application of the phenomenologi-
cal UGDs models considered here. At this initial rapidity
partons populate a transverse area proportional to the initial
color correlation size R0ðY0Þ ¼ 1=QsðY0Þ. In Fig. 2 the
dynamical entropy, ΣY0→Y , Eq. (2), is presented as a
function of the rapidity difference ΔY ¼ Y − Y0. The
results are presented for the analytical MPMmodel (dashed
line), the CGC Gaussian model (solid line) and the CGC
Levin-Tuchin model (dot-dashed line). Numerical solutions
for the UGD coming from nonlinear evolution equations
are subsequently discussed. It is verified the MPM and
CGC Levin-Tuchin models are almost coincident meaning
that the phenomenological MPM UGD mimics correctly
the expected theoretical behavior of the dipole UGD in the
saturation region. The CGC Gaussian model provides a
steeper growth of the dynamical entropy in terms of

rapidity Y compared to other models. In order to check
out the salient differences, the entropy for the Gaussian
model is given by

ΣY0→Y
Gaus ¼ 2

��
Q2

sðYÞ
Q2

sðY0Þ
− 1

�
− ln

�
Q2

sðYÞ
Q2

sðY0Þ
��

; ð11Þ

¼ 2ðeλΔY − 1 − λΔYÞ; ð12Þ

where in our case Q2
sðYÞ ¼ Q2

sðY0ÞeλΔY . From the expres-
sion above, the asymptotic dependence at large rapidities is
ΣGauss ≃ eλΔY (with a linear function of ΔY in a logarithmic
scale, lnðΣGaussÞ ∝ 0.3ΔY). It is seen that the large Y limit is
practically independent of the initial conditions, Y0 and
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FIG. 1. The transverse momentum probability, PðY; k⊥Þ, as a function of k⊥ for fixed values of Y ¼ lnð1=xÞ (x ¼ 10−8–10−2). Results
for the MPM model (left panel) and CGC Gaussian model (right panel).
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FIG. 2. Dynamical entropy corresponding to the QCD evolu-
tion in rapidity Y0 → Y, with ΔY ¼ Y − Y0. Initial rapidity has
been set at Y0 ¼ lnð1=x0Þ, where x0 ¼ 10−2. Numerical results
for MPM (dashed line), CGC Gaussian (solid line), and CGC
Levin-Tuchin (dot dashed line) models are shown.
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QsðY0Þ. On the other hand, the MPMmodel gives rise to an
entropy parametrized as follows:

ΣY0→Y
MPM ≈ ð1þ γsÞðeδΔY − g − δΔYÞ; ð13Þ

where δ ≃ 0.088 and g ≃ 0.95 in the range ΔY ≫ 5.
The total dynamical entropy density dSDðY0 → YÞ=dy is

also computed. It is explicitly obtained from the dynamical
entropy ΣY0→Y [45]:

dSD
dy

¼ 3

8

N2
c − 1

Ncαs

Sp
S0

ΣY0→Y; ð14Þ

where Sp ¼ πR2
p is the transverse hadronic target size and

S0 ¼ πR2
0. The initial transverse cell at rapidity Y0 is

denoted by S0, with R0 ¼ Q−1
s ðY0Þ being the typical

correlation length for the proton at rest. The overall
normalization condenses all information on the degrees
of freedom as the color multiplicity, the parton occupation
number in longitudinal coordinate space and the average
number of parton degree of freedom inside a transverse cell.
The expression above does not include parton correlation
effects [45]. For the CGC Gaussian model the total
dynamical entropy is given by

dSGausD

dy
¼ 3

2

ðN2
c − 1Þ
Ncαs

Sp
S0

�
Q2

sðYÞ
Q2

sðY0Þ
−
�
1þ ln

Q2
sðYÞ

Q2
sðY0Þ

��
;

∝ eλΔY ½1þ e−λΔYð1þ λΔYÞ�; ð15Þ

where the main features resembles those for the dynamical
entropy ΣY0→Y discussed before.
In Fig. 3 the total dynamical entropy is presented for the

three analytical models considered here. The notation for
the lines is the same as in previous figure. It is shown as a
function of Y in the range ΔY ¼ ½0; 15�, which corresponds

to a QCD evolution from x ¼ 10−2 to x ¼ 10−8. We have
used αs ¼ 0.2 and Rp ¼ 0.8414 fm in the numerical
calculations. These values can be compared to the extracted
(thermodynamic) entropy per unity of rapidity dS=dy in
proton-proton collisions using the Pal-Pratt method as
shown in Ref. [6]. The entropy for pions in minimum bias
collisions at 7 TeV is ðdS=dyÞπy¼0 ≃ 20 and ðdS=dyÞπy¼0 ≃
71 for high multiplicity collisions. For the MPM and CGC
Levin-Tuchin models, at very small-x the order of magni-
tude is similar. For instance, in the rangeΔY ¼ ½10; 20� one
finds hdSD=dyi ≈ 40.
In order to verify the theoretical uncertainty associated to

the phenomenological models the Kutak-Sapeta (KS)
model for the UGD has been considered which is the
numerical solution of the unified BK/DGLAP equation
[53,54] (hereafter labeled as KS nonlinear). It is an example
of UGD that does not present explicit geometric scaling
property, specially at large-k⊥. The results for this UGD are
presented in Figs. 2 and 3 (dotted curves). Interestingly, for
large enough ΔY the numerical results using KS nonlinear
are nicely mimicked by the simple parametrization CGC
Levin-Tuchin model. Similar exercise can be done using
other numerical results for the proton UGD available in the
updated TMDlib2 library [55].
As a final discussion, we would like to compare the

concept of dynamical entropy with the decoherence entropy
[4,5,15]. The main idea is that dense states in nucleon or
nuclei can be represented by coherent states, jαi, at the initial
stages of collisions. A coherent state jαi is defined to be the
eigenstate of the annihilation operator âwith corresponding
eigenvalue α. They can be expressed as a superposition of
particle number eigenstates, jni. The large number of
occupation allows to describe the corresponding fields as
classical one. For a single mode of the field, the density
matrix is nondiagonal ρ̂mn ¼ hmjαihαjni and jαi has zero
entropy. For this pure quantum state, S ¼ −Trðρ̂Þ lnðρ̂Þ ¼ 0.
Afterwards, the complete decoherence is associated to the
decay of all off-diagonal matrix elements of ρ̂ such that
ρ̂decmn ¼ jhnjαij2. The particle number now follows the
Poisson distribution where the average number of particles
is hni ¼ jαj2. The entropy amount Sdec of this mixed state is
determined as follows [4,15]:

Sdec ¼
X∞
n¼0

e−hni
hnin
n!

ln

�
e−hni

hnin
n!

�
; ð16Þ

≈
1

2

�
ln ð2πhniÞ þ 1 −

1

6hni þ…

�
: ð17Þ

The Sdec can be contrasted with the equilibrium entropy
at temperature T, Seq, for a single quantum oscillator with
same average total energy. Given that the average occu-
pation number is in this case hni ¼ ðeωT − 1Þ−1 one obtains
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FIG. 3. Total dynamical entropy in proton-proton collisions
corresponding to the QCD evolution in rapidity, Y0 → Y, within
the range ΔY ¼ ½0; 15�. Same notation as previous figure.
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Seq ¼ ln ðhni þ 1Þ þ hni ln
�hni þ 1

hni
�
; ð18Þ

where Seq ≈ 2Sdec for a very large occupation number and
close to unity for moderate hni [4,15].
The field is a system of coupled oscillators and after total

decoherence it can be described as an assemblage of N
particles. These particles have been generated by the
decoherence of Nα coherent quantum states. Every coher-
ent state contributes on average for hni ¼ N=Nα gluons.
After complete equilibration, the decoherence entropy
reaches to Sdec ≈ ðNα=2Þ½lnð2πhniÞ þ 1�. In Refs. [4,15]
the decoherence entropy was quantified for nucleus-
nucleus collisions. The initial number of coherent domains
per transverse area was set at Nα ∼Q2

sR2
A and the average

number of decohering gluons per coherence domain is
given by hni ≈ CF lnð2Þ=πα2s. Still, the longitudinal coher-
ence length is taken as Δy ≈ ðαsÞ−1.
On the other hand, it was shown in Ref. [45] that the

dynamical entropy can be viewed (by using the Jarzynski
identity) as the entropy production ΔS by parton degree of
freedom associated to a compression RsðY0Þ → RsðYÞ as
the system relaxes to a state within the domain size RsðYÞ.
In summary, the dynamical entropy is acquired by a gluon
dense initial state through the rapidity evolution and
delivered by the relaxation. In Fig. 4 the dynamical entropy
per average number of gluonic degrees of freedom (with Y0

fixed as before), Σ, is shown as a function of average
number of occupation hni. Following Ref. [16] we con-
sidered the gluon average number given by the gluon
density at scale Q2, i.e., hni ¼ xGðx;Q2Þ. The resolution
scale Q2 ¼ Q2

sðYÞ will be chosen for the typical transverse
momentum inside hadron. The gluon density at this
scale is given by xGðx ¼ eY;Q2

sÞ ¼ CQ2
sðYÞ, with C ¼

3Spð1 − 2=eÞ=4π2αs (see discussion about this expression

in Ref. [29]). The result is shown for the MPM model.
A comparison is done with the decoherence entropy
Sdec, Eq. (17), and equilibrium entropy Seq, Eq. (18),
for a coherent state of a single field mode. For large
number of occupation the behavior of the equilibrium
entropy of a single mode as a function of hni is quite
similar to the dynamical entropy. Of course, we noticed
that a different definition for hni had been used in
each case.
The analysis presented here can be extended to a dense

system at initial state in ultrarelativistic heavy ion colli-
sions. The main input will the gluon unintegrated distri-
bution associated to the glasma phase. In Ref. [45] it was
assumed to be a CGC Gaussian UGD based on geometric
scaling arguments in order to approximately determine the
dynamical entropy. In leading order the entropy has the
form ΣY0→Y ∼ κg½Q2

sðYÞ=Q2
sðY0Þ�, where κg is the overlap

parameter in case of glasma state. This dynamical entropy
can be viewed as the initial entropy density, sð0Þ and it has
connection with thermalization process in heavy ion
reactions. It would be worth consider physical parametri-
zations for the glasma UGD, which it will be considered in
a future analysis.

IV. SUMMARY

We have studied the QCD dynamical entropy for high
energy proton-proton collisions in the LHC energy regime,
which is theoretically obtained by the gluon dipole TMD as
first proposed in Ref. [45]. The k⊥ probability distribution
has been determined by using analytical models for the
gluon UGD. Namely, we consider the MPM phenomeno-
logical model that describes accurately the charged particle
spectra measured at the LHC. It presents geometric scaling
and mimics the correct behavior at large (perturbative
QCD) and small (parton saturation) gluon transverse
momentum. We compared the results from MPM model
to those coming from the CGC framework. A Gaussian
model (CGC Gaussian) for the gluon UGD and the one
based on the Levin-Tuchin law at low-k⊥ (CGC Levin-
Tuchin) have been investigated. Both also present geo-
metric scaling property. In all cases the maximum of the
probability distribution is located at k⊥ ∼Qs. The corre-
sponding dynamical entropy, ΣY0→YðΔYÞ, is computed and
the total entropy density, S−1p dSD=dy, as well. It is found a
strong dependence on ΔY for the CGC Gaussian model.
The results for the analytical MPM and CGC Levin-Tuchin
models are practically coincident. Moreover, the dynamical
entropy is evaluated by using the Kutak-Sapeta model
including nonlinear corrections to the QCD evolution
equation (KS nonlinear) [53]. The results for KS models
are coincident with the ones obtained from the analytical
parametrization CGC Levin-Tuchin. A direct comparison
of the dynamical entropy as a function of average gluon
number, hni, with the decoherence entropy Sdec [4,15] was

2 4 6 8 10 12 14 16 18 20 22 24
<n>

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

S k , 
 Σ

Decoherence entropy (S
dec

)

Equilibrium entropy (S
eq

)

Dynamical entropy (MPM)

FIG. 4. The dynamical entropy, Σ, as a function of average
number of occupation (dotted-dashed line). Comparison with the
decoherence entropy (solid line) and equilibrium entropy (dashed
line) for coherent state of a single field mode is shown.
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performed. Interestingly, at large hni the behavior of the
equilibrium entropy Seq of a single mode is similar to the
dynamical entropy.
In summary, the QCD dynamical entropy in hadron

scattering processes is carefully studied using realistic
models for the dipole TMD function. The analysis has
been helpful to single out the main aspects of the rapidity
dependence of the total dynamical entropy density in

proton-proton collisions. This is the stating point to
investigate the dynamical entropy in the initial states of
the heavy ions collisions.
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