
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

ARTHUR MARQUES MEDEIROS

Interactive Photorealistic Scene
Manipulation using Path Tracing

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. Manuel Menezes de Oliveira
Neto

Porto Alegre
June 2021

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Rodrigo Machado
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Rendering pleasing photorealistic images requires both a high-quality renderer and well-

crafted scenes. While rendering algorithms and systems have made some impressive

progress over the last two decades, creating nice scenes still remains highly dependent

of the artistic skills of the modeler. As a result, researchers tend to rely on a small num-

ber of existing good-looking scenes to test their algorithms. While creating new scenes

from scratch is difficult for non-artists, editing existing scenes to achieve new and de-

sired results is a task at the reach of the average graphics user. We present a system

that allows users with no special artistic skills to create new scenes by modifying ex-

isting ones through a simple user interface. Enabled by modern hardware and software

advancements, we render the scenes photorealistically using path tracing and provide in-

stant feedback on the user modifications. The quality of the images generated by our

system is comparable to established offline renderers, such as PBRT, while still main-

taining interactive performance. Our system should stimulate the creation of new scene

datasets, and allow anyone to customize existing scenes with shapes and materials ac-

cording to his/her specific needs or desires. The easy customization of scenes and the

high-quality renderings produced by our system may also stimulate other professionals,

such as designers, scenographers, architects, decorators, etc. to make more intense use of

computer generated imaging in their daily tasks.

Keywords: Real time rendering. physically-based rendering. ray tracing. path tracing.

monte carlo ray tracing. light transport. computer graphics.

Manipulação Interativa de Cenas Fotorealistas usando Path Tracing

RESUMO

Palavras-chave: Renderizar imagens fotorealistas agradáveis requer tanto um renderi-

zador de alta qualidade quanto cenas bem feitas. Enquanto sistemas e algoritmos de

rendering tiveram progressos impressionantes nas últimas duas décadas, a criação de ce-

nas interessantes ainda é altamente dependente nas habilidades artísticas do modelador.

Como resultado, pesquisadores tendem a usar uma porção pequena de boas cenas já exis-

tentes para testar seus algoritmos. Embora a criação de cenas do zero seja difícil para

não-artistas, editar cenas existentes para conseguir novos resultados é uma tarefa ao al-

cance do usuário médio de computação gráfica. Nós apresentamos um sistema que per-

mite usuários sem habilidades artísticas especiais a criar novas cenas modificando cenas

existentes através de uma interface simples. Baseado em avanços recentes em hardware

e software nós renderizamos as cenas fotorealisticamente usando path tracing, provendo

feedback instantâneo nas modificações do usuário. A qualidade das imagens geradas pelo

nosso sistema é comparável a renderizadores offline estabelecidos, como o PBRT, en-

quanto ainda mantendo performance interativa. Nosso sistema deve estimular a criação

de novos datasets de cenas, e permitir a qualquer um a customizar cenas existentes com

formas e materiais de acordo com sua necessidade ou desejo. A fácil customização de

cenas e as imagens de alta qualidade produzidas pelo nosso sistema também podem es-

timular outros profissionais, como designers, cenógrafos, arquitetus, decoradores, etc. a

fazer uso mais intenso de imagens geradas por computador em suas tarefas diárias..

LIST OF FIGURES

Figure 1.1 A realistic looking virtual scene, modeling a modern living room with
complex objects and materials. ...13

Figure 1.2 A synthetic scene, displaying a white room with complex materials............14
Figure 1.3 Example of scene created using our system. (a) Original scene (Country

Kitchen). (b) Modified version of the original scene showcasing a bigger table
with additional chairs, plates and cups. In addition, the kitchen island was
removed and some wall materials were changed. ..17

Figure 3.1 A diagram explaining the traditional ray tracing setup.23
Figure 3.2 A diagram exemplifying the tree-like structure of a BVH.25
Figure 3.3 A classic example of Monte Carlo integration: computing the area of a

circle via random sampling of points. All that is needed is a way to check if
each sample is within the circle and know the square’s area.27

Figure 3.4 A comparison between two sampling strategies: the first figure samples
based on a BSDF-shaped distribution, and the second figure samples the light
sources directly. Each plate has different surface roughness..................................32

Figure 3.5 The same scene from figure 3.4, but now using both samples weighted
by the balance heuristic...33

Figure 3.6 A figure illustrating a BSDF with both reflectance (BRDF) and trans-
mittance (BTDF)...34

Figure 3.7 A model (the white dragon) rendered with a perfectly Lambertian dis-
tribution. Original "dragon" model by Christian Schüller.35

Figure 3.8 A model rendered with the distribution of perfectly specular reflection.
Original "dragon" model by Christian Schüller. ...36

Figure 3.9 A model rendered with the distribution of specular reflection and refrac-
tion weighted by the fresnel equations. Original "dragon" model by Christian
Schüller. ..38

Figure 3.10 A model rendered with the Oren-Nayar distribution. Original "dragon"
model by Christian Schüller..41

Figure 3.11 A model rendered with the Beckmann-Spizzichino microfacet distri-
bution, and with the Torrance-Sparrow BRDF model. Original "dragon" model
by Christian Schüller...42

Figure 3.12 A model rendered with the Trowbridge-Reitz (GGX) microfacet dis-
tribution, and with the Torrance-Sparrow BRDF model. Original "dragon"
model by Christian Schüller..43

Figure 3.13 Area lights are capable of casting soft shadows, like the one shown in
this picture...45

Figure 4.1 An abstraction of our system’s architecture. ...51
Figure 4.2 An example of acceleration structure tree, showing possible connec-

tions between nodes. ...54
Figure 4.3 A diagram showing the usual data flow of an OptiX program. Green

nodes represents fixed function code, and gray represents user programs.55
Figure 4.4 A screenshot of our system, with menus minimized.58
Figure 4.5 A screenshot of our system, with menus minimized. The camera was

altered by the user, getting closer to the dragon object and changing the angle.....58
Figure 4.6 The scene properties menu, displaying all sections.......................................59
Figure 4.7 The dragon scene, with a modified skybox texture.60

Figure 4.8 The object inspector menu, after selecting the dragon mesh and modi-
fying it with a different material. It shows the current material (Metal), with
its properties..61

Figure 4.9 A modified dragon scene, with duplicated instances, each with their
own materials and transforms. ..61

Figure 4.10 Living Room scene, rendered with a small number of samples (a). This
image, when applied to the denoiser, produces a much more appealing result (b).65

Figure 5.1 Modified "Country Kitchen" scene, with instance duplication, deletion,
material changes and transform manipulation. ...66

Figure 5.2 Modified "The White Room" scene, with a different camera, materials
and textures. ..67

Figure 5.3 Variations of "The White Room" scene, with different cameras, materi-
als and textures..68

Figure 5.4 Modified "Bathroom" scene, with a different camera, materials and tex-
tures. The large mirror has also been replaced by two smaller ones.69

Figure 5.5 Modified "The Wooden Staircase" scene, with different camera, mate-
rials and textures. ..70

Figure 5.6 "Cornell Box" scene, rendered (128 spp) in our renderer (a) and PBRT (b). 71
Figure 5.7 "Contemporary Bathroom" scene, rendered (128 spp) in our renderer

(a) and PBRT (b). ..71
Figure 5.8 "Salle de bain" scene, rendered (128 spp) in our renderer (a) and PBRT (b).72
Figure 5.9 "Country Kitchen" scene, rendered (128 spp) in our renderer (a) and

PBRT (b). ..73
Figure 5.10 "The Grey & White Room" scene, rendered (128 spp) in our renderer

(a) and PBRT (b). ..74
Figure 5.11 "The White Room" scene, rendered (128 spp) in our renderer (a) and

PBRT (b). ..75
Figure 5.12 "The Wooden Staircase" scene, rendered (128 spp) in our renderer (a)

and PBRT (b). ...76
Figure 5.13 "Modern Hall" scene, rendered (128 spp) in our renderer (a) and PBRT

(b)..76
Figure 5.14 "Bedroom" scene, rendered (128 spp) in our renderer (a) and PBRT (b)....77
Figure 5.15 Dragon model, with a "Matte" material. Rendered with the same pa-

rameters on our renderer (a) and PBRT (b). ...77
Figure 5.16 Dragon model, with a "Substrate" material. Rendered with the same

parameters on our renderer (a) and PBRT (b)...78
Figure 5.17 Dragon model, with a "Glass" material. Rendered with the same pa-

rameters on our renderer (a) and PBRT (b). ...78
Figure 5.18 Dragon model, with a "Metal" material. Rendered with the same pa-

rameters on our renderer (a) and PBRT (b). ...78

LIST OF TABLES

Table 5.1 Render times (128 spp) ...69

LIST OF ABBREVIATIONS AND ACRONYMS

CGI Computer Generated Imagery

GPU Graphics Processing Unit

PBR Physically Based Rendering

GPGPU General Purpose GPU

BVH Bounding Volume Hierarchies

AABB Axis Aligned Bounding Box

BRDF Bidirectional Reflectance Distribution Function

BTDF Bidirectional Transferance Distribution Function

BSDF Bidirectional Scattering Distribution Function

LCG Linear Congruential Generator

PDF Probability Distribution Function

CDF Cumulative Distribution Function

MIS Multiple Importance Sampling

FOV Field of View

SBT Shading Binding Table

LDR Low Dynamic Range

HDR High Dynamic Range

CONTENTS

1 INTRODUCTION...12
1.1 The Rendering Problem ...12
1.2 Uses for Realistic Rendering ..12
1.3 Physically-Based Rendering...14
1.4 Hardware-Accelerated Ray Tracing ...15
1.5 Scene Creation...15
1.6 Thesis Structure ..18
2 RELATED WORK ...19
2.1 Light Transport ...19
2.2 Other Renderers..19
2.2.1 PBRT..19
2.2.2 Mitsuba 2 ...20
2.3 Modeling Software ..20
2.4 Other Work..21
3 GLOBAL ILLUMINATION BACKGROUND..22
3.1 Ray Tracing ...22
3.1.1 Camera Model..23
3.1.1.1 Pinhole Camera...23
3.1.1.2 Aperture ..23
3.1.1.3 Ray Direction ..24
3.1.2 Acceleration Structures..24
3.1.2.1 Bounding Volume Hierarchies ..25
3.2 Path Tracing ..25
3.2.1 Rendering Equation ...26
3.2.2 Monte Carlo Integration...27
3.2.2.1 Random Variables ...28
3.2.2.2 Probability Functions ..28
3.2.2.3 Expected Value..29
3.2.2.4 Variance...29
3.2.2.5 Bias ...29
3.2.2.6 Monte Carlo Estimator..30
3.2.2.7 Russian Roulette ...30
3.2.2.8 Splitting...31
3.2.2.9 Importance Sampling ..31
3.2.2.10 Multiple Importance Sampling ...32
3.2.3 Distribution Functions ...33
3.2.3.1 Lambertian ..35
3.2.3.2 Specular...35
3.2.3.3 Dieletrics and Conductors...37
3.2.3.4 Fresnel Equations..37
3.2.3.5 Fresnel-Specular ...38
3.2.3.6 Microfacet Models ..39
3.2.3.7 Microfacet Definitions ..39
3.2.3.8 Oren-Nayar ...41
3.2.3.9 Beckmann-Spizzichino ...42
3.2.3.10 Trowbridge-Reitz (GGX)..43
3.2.3.11 Torrance-Sparrow..44

3.2.4 Light Sources ...44
3.2.4.1 Point Lights...45
3.2.4.2 Area Lights..45
3.2.4.3 Infinite Area Lights ...46
3.2.5 Summary ..47
4 SYSTEM DESIGN..49
4.1 Design Goals ..49
4.1.1 Intuitive and Easy to Use ...49
4.1.2 Fast and High Quality Rendering ..49
4.1.3 Familiar and Extendable ..50
4.2 Architecture...50
4.3 Base Technologies..51
4.3.1 NVIDIA CUDA ...52
4.3.2 NVIDIA OptiX ..52
4.3.3 OpenGL..53
4.3.4 Scene Loading..53
4.4 Acceleration Structures ..53
4.5 Ray Programs..54
4.5.1 Types ..54
4.5.2 Compilation ...56
4.6 Shader Binding Table ...56
4.7 Initialization ..57
4.8 User Interaction ..57
4.8.1 Basic Controls..58
4.8.2 Scene Properties...59
4.8.3 Object Inspector ...60
4.9 Render Loop..62
4.9.1 Raygen Program...62
4.9.2 Closest-Hit Program...63
4.9.3 Miss Program...64
4.9.4 Accumulation and Denoising...64
5 RESULTS...66
5.1 Modified Scenes...66
5.2 Scene Comparisons ...69
5.3 Material Comparisons ..72
5.4 Limitations...74
6 CONCLUSION AND FUTURE WORK ..79
REFERENCES...80
APPENDIX A — MATH CONCEPTS ..83
A.1 Points ...83
A.2 Vectors ...83
A.2.1 Vector Math...83
A.2.2 Normalization..84
A.2.3 Dot Product ...84
A.2.4 Cross Product ..84
A.3 Triangle meshes ..85
A.4 Normals ...85
A.5 Bounding Boxes ..85
A.6 Rays ...86
APPENDIX B — RADIOMETRY ...87
B.1 Energy ...87

B.2 Flux ..87
B.3 Irradiance and Radiant Exitance ...88
B.4 Intensity...88
B.5 Radiance..88

12

1 INTRODUCTION

1.1 The Rendering Problem

Drawing realistic images has been an interest of mankind for centuries. Renais-

sance artists like Leonardo da Vinci were already studying optics and light in the fifteenth

century, and applying that knowledge to create realistic depictions of our world.

With the advent of technology, computers entered every facet of our society. With

ever increasing computational power, processors are capable of simulating the way that

light interacts with our own human visual system using mathematics, and are capable of

rendering results that are very close to indistinguishable from reality.

Rendering involves many overlapping disciplines, since representing and visual-

izing virtual scenes in a way that fools human perception takes a lot of work and decades

of research. Physics equations (some of them derived before the age of computers) are

utilized extensively, and a lot of research regarding our human visual system and how

different objects interact with light was necessary to model realistic worlds.

Computer graphics’ popularity exploded in the 1980s and 1990s, with the advent

of video games and movies that had a massive global cultural impact, as well as significant

technological advancements. Over the years, a lot of different techniques were utilized to

render graphics on a screen, each with their own level of fidelity and characteristics. In

our current world 3D graphics are everywhere, from cellphones to household appliances.

1.2 Uses for Realistic Rendering

Realistic rendering is a subset of computer graphics, where the objective is to ren-

der images that are as close to reality as possible. This generally involves simulating

complex light transport and material scattering distributions, which causes these tech-

niques to be computationally expensive. Figures 1.1 and 1.2 shows examples of realistic

images rendered by a computer.

This kind of rendering is very popular today, due to the heavy use of computer

graphics imagery (CGI) in the movies industry. While obviously being used for special

effects and fantastical elements, CGI is also widely applied for more subtle uses, like shot

compositing and allowing a variety of changes in post production.

Video games are another extremely popular use of realistic graphics. They tend

13

Figure 1.1 – A realistic looking virtual scene, modeling a modern living room with complex
objects and materials.

Author: Mateusz Wielgus

to have severe limitations compared to other applications , since they need to run on real-

time and have interactive framerates, but over the years a number of clever techniques

have been developed to bridge that gap between offline and online rendering. Games

have also been crucial to the advent of the GPU, which were originally designed for the

raster pipeline but now have many uses.

In the industry, there are non-entertainment uses for this kind of rendering too.

The architecture market has been revolutionized by computer tools (O’CONNOR, 2015),

which allows for beautiful visualizations of house designs (CHAOS-GROUP, 2021).

These tools are also a great way of showing to clients a more clear view of scenes that can

be hard to imagine for non-experts. Realistic rendering is also widely used by marketing

and design teams around the world to quickly prototype and develop new approaches

to packaging and implementation of products, greatly benefiting from realistic material

models.

The medical industry is also being revolutionized by graphics tools (GROSS,

1998), alongside with other technologies like robotics. Realistic visuals can be used to

aid surgeons in a remote surgery, and can also be used to teach new medical students what

to look for without access to a real-life counterpart.

14

1.3 Physically-Based Rendering

To produce realistic images, we need to simulate how light interacts with the scene

in a robust way. Physically based rendering, generally based on radiometric quantities,

tries to mimic physical properties of light and objects virtually. These properties can

come from carefully designed approximations or from real-life measurements by means

of laboratory experiments.

PBR is generally associated with ray tracing based algorithms. These techniques

approximate light as rays traversing through the scene. Materials are generally modeled

with a light scattering distribution. This formulation can be bent on purpose by artists

to better suit their current needs and produce interesting scenes, even if the result would

break the laws of physics in the real world.

Figure 1.2 – A synthetic scene, displaying a white room with complex materials.

Author: Mateusz Wielgus

Ray tracing techniques are known to come with a steep computational price. The

main bulk of this cost comes from intersection tests: each ray needs to perform several of

them to figure out what things are hit by it. There are several techniques designed to opti-

mize this process, but these costs, historically, have been the main reason why ray tracing

is not used in real time settings. This distance between real-time (based on rasterization)

and offline techniques (based on ray tracing) only grew larger with the popularization of

GPUs, which greatly accelerate the raster pipeline.

15

1.4 Hardware-Accelerated Ray Tracing

Over the years, there were several attempts to develop ray-tracing specific hard-

ware to accelerate the overall algorithm. These attempts were generally focused on re-

search and high-end consumers, not really aiming for widespread adoption by the pub-

lic. Traditional GPUs also evolved, with the advent of general purpose computation

(GPGPU). This relaxed the limitations of what could be computed in a GPU, and allowed

for ray tracing algorithms to be parallelized and run on this hardware.

The first company to have ray-tracing specific hardware on consumer cards was

NVIDIA, with its RTX series of cards (NVIDIA, 2018). Ray-tracing dedicated hardware

was now accessible to the general consumer. This architecture introduced the RT core,

which accelerated intersections calculations in hardware. This allowed for ray tracing

operations to be used concurrently with the raster pipeline, and opened the possibilities

for a lot of new techniques to be utilized by games and other applications.

Since the launch of RTX cards, hardware ray tracing has been widely accepted by

the industry. AMD has its own ray-tracing technology on its new series of cards. The

current generation of video game consoles, the Playstation 5 and the Xbox Series X, also

have ray tracing acceleration built in on their architectures. Ray-tracing based techniques

are now widely utilized in high-end games, allowing for high quality effects like shadows

and global illumination.

1.5 Scene Creation

Creating photorealistic scenes is an arduous task that requires artistic talent and

skill. It is also a laborous task: these scenes need to have highly detailed geometry with

appealing materials, textures, lighting and camera work. To produce a high-end scene,

an artist needs to not only train their sensibilities, but also master sophisticated software

tools that can deal with all of these complexity.

This difficulty limits the number of high-quality scenes available, and researchers

tend to rely on a small number of existing scenes to prototype and test their systems and

algorithms. Thus, it is common to see the same scenes re-used across many different

domains. These scenes might be chosen out of convenience, even if they are not the best

choice for testing and demonstrating new rendering features.

While creating high-quality scenes from scratch is difficult for non-artists, editing

16

existing ones to obtain new and desired results and effects is a task at the reach of the

average graphics user. This is a key observation behind our work. Unfortunately, two

aspects still inhibits the editing of available scenes. First, good modeling software tend

to have a highly-steep learning curve (and in many cases, are expensive). Second, the

high-quality scenes containing features used by photorealistic renderers are available in

the renderers’ proprietary formats, making it difficult to import these scenes in a modeler

for further editing. Thus, a system capable of importing and allowing for easy editing

such scenes would be a high-valuable tool for the graphics community.

Intending to fill this gap, we present a system that allows users with no special

artistic skills to create new scenes (from scratch or) by modifying existing ones through a

simple user interface. Our system was designed to satisfy the following requirements and

goals:

• Import scenes from existing physically-based renderers, providing initial high-

quality scenes to be edited. The system should also be able to export the modified

scenes in these formats;

• Ease of use, based on an intuitive user interface, primarily based on pointing (with a

mouse), and drag-and-drop operations, for fast learning. These operations should be

applied directly on the system’s viewport (despite being applied in 3D), and should

support object manipulation (e.g., translation, rotation, copy, deletion, addition),

material changes, texturing modifications, etc.;

• Support high-quality global illumination rendering, allowing the user to know

exactly how the scene should look like in the definite rendering;

• Focus on interactivity, providing instant feedback even for complex scene modifi-

cations;

• Easy extension, allowing for easy addition of new rendering components, such as

new new materials (e.g., BRDF shaders), and high-level modeling operations;

In order to satisfy these design goals, we leverage modern hardware and software

advancements. To provide high-quality photorealistic images at interactive rates we im-

plemented a path tracer (KAJIYA, 1986) based on NVIDIA Optix (PARKER et al., 2010)

that uses its built-in denoiser. The use of the denoiser significantly improves rendering

quality with a small number of samples, thus producing high-quality renderings at inter-

active rates. This allows us to create a simple and natural interface and provide instant

user feedback. Our path tracer is modular and can be easily extended to support new

17

Figure 1.3 – Example of scene created using our system. (a) Original scene (Country Kitchen).
(b) Modified version of the original scene showcasing a bigger table with additional chairs, plates

and cups. In addition, the kitchen island was removed and some wall materials were changed.
(a) Original scene

(b) Modified scene created with our system

Source: Our system.

materials and other rendering features. Currently, our system prototype imports scenes in

the PBRT v3 (PHARR; JAKOB; HUMPHREYS, 2016) format.

Figure 1.3 illustrates the use of our system to obtain a new scene shown in (b) by

modifying the original PBRT Country Kitchen one in (a). For this example, the kitchen

island was removed; the table was enlarged; chairs, plates and cups were cloned and

rearranged, and walls were painted with different colors. Although the two scenes look

considerably different, these editing operations required no artistic skills or knowledge of

specific modeling software. Nevertheless, the aesthetic quality of the resulting scene is

comparable to the original one.

The quality of the images generated by our system is comparable to established

offline renderers, such as PBRT, while still maintaining interactive performance. Our

system should stimulate the creation of new scene datasets, and allow anyone to customize

18

existing scenes with shapes and materials according to his/her specific needs or desires.

The contributions of this work include a system that allows users to create high-

quality scenes by modifying existing ones through a simple user interface. Our system

requires no artistic skills and can produce studio-quality scenes in just a few minutes; Our

system supports extensive scene manipulation, allowing the user to interact and manipu-

late several properties like objects, materials, and others with instant feedback.

1.6 Thesis Structure

This thesis will detail from the ground up all the concepts necessary for under-

standing the system, and how they were implemented in the code. Chapter 2 discusses

related work in the area, comparing our solution to existing light transport algorithms and

our implementation with established renderers. Chapter 3 will focus on the mathematical

concepts that are necessary for understanding the path tracing algorithm. Chapter 4 will

detail the system design, discussing the decisions that were made and their consequences

on the solution. Chapter 5 will show results and comparisons that are useful to under-

stand the capabilities and limitations of our work. Chapter 6 presents the conclusion and

discussion for extensions and future work.

19

2 RELATED WORK

This chapter discusses previous work in the area of realistic rendering and scene

creation.

2.1 Light Transport

Light transport was revolutionized with the introduction of ray tracing (WHIT-

TED, 1980), which allowed for complex scenes and materials to be computed with relative

simplicity (but high computational costs). This work spawned a new family of rendering

algorithms based on ray intersections.

Path tracing was later formalized (KAJIYA, 1986), introducing important con-

cepts like the light transport (or rendering) equation. Veach’s PhD thesis (VEACH, 1997)

presented a new framework to the equation, alongside many other important contributions

that we use to this day.

There are several expansions to traditional path tracing that were also developed,

and are extremely popular. Bidirectional path tracing (LAFORTUNE; WILLEMS, 1993)

(VEACH; GUIBAS, 1995) creates paths from the viewer and also from the light sources,

attempting connections and finding better contributions in scenes with hard-to-reach light.

Metropolis Light Transport (VEACH, 1997) involves local domain space explorations to

improve sample quality, allowing for faster convergence.

2.2 Other Renderers

Our work is based on other existing renderers that have helped shape the field of

computer graphics.

2.2.1 PBRT

PBRT (PHARR; HUMPHREYS, 2015) is one of the most influential renderers in

the history of computer graphics. It is also the main inspiration for our work, serving as a

great source of consultation and comparisons. The PBRT architecture is described in the

book Physically Based Rendering (PHARR; JAKOB; HUMPHREYS, 2016), which also

20

served as a great source of reference for this thesis.

The last official PBRT version is PBRT-v3, the third big iteration of the original

system. It is a CPU renderer, and its main purpose is to educate: therefore, it is not the

most performant renderer in the market.

At the time of this writing, a v4 version of PBRT is announced and in beta

(PHARR; HUMPHREYS, 2021). It features GPU acceleration using NVIDIA OptiX

(much like our own work), providing a substantial speed improvement on rendering. We

started this work before the v4 version was even announced, so our decisions were not

influenced by this upcoming version.

None of these PBRT versions allow for user interaction or live scene modification.

Without external tools, modifying a scene in PBRT requires a manual change in the text-

based scene file. After that, the user must start the rendering all over again - a process that

can take hours.

2.2.2 Mitsuba 2

Mitsuba 2 (NIMIER-DAVID et al., 2019) is a modern renderer, designed to run on

both CPU and GPU. It accelerates its vector computation using the Enoki library, that also

provides autodifferentiation capabilities to its application. Much like its predecessor, Mit-

suba 2 is a research focused rendered, designed for fast development of new techniques

and algorithms.

Mitsuba 2 also does not allow for any meaningful user interaction, even though it

is much faster than PBRT. It also does not have easy ways of modifying an existing scene.

2.3 Modeling Software

Blender (Blender Online Community, 2018) has a complex 3d toolkit, and allows

for modeling, texturing, scene creation, and much more. It also contains several different

renderers, that range from full path tracers to more simple rasterization based approaches.

Cycles is an interative CPU path tracer that allows for relatively fast updates to the user,

and Cycles X (LOMMEL, 2021) is its GPU accelerated counterpart. While its many tools

centralize anything that an artist may need, it also greatly steepens the learning curve of

the software, making it hard for beginner users to pick it up quickly.

21

SketchUp (TRIMBLE, 2021) is an architectural 3D application focused on mod-

eling. It can also import models from an online repository directly, and photorealistically

render the resulting scene. The rendering process is slow, and the renderer used when

working on scenes is very basic (to facilitate geometry modeling operations).

V-Ray (CHAOS-GROUP, 2021) is a renderer plugin that is available for a variety

of software products. It contains a GPU accelerated path tracer, making it able to do real-

time performance. It is, however, only a renderer, and depends on its overlying software

to modify the scene.

2.4 Other Work

Hagemann and Oliveira presented a system designed to convert scenes between

popular renderers (HAGEMANN; OLIVEIRA, 2018). This system works by converting

whole scenes from one format to the other, but does not allow for user interaction or for

modifications in existing scenes. It also only deals with the scene formats themselves, and

does not render scenes in any way.

Bitterli, in his public scene repository (BITTERLI, 2016), details the laborous

process of creating a PBR scene from scratch. The process took several days per scene,

and involved manually setting PBR materials, lighting and camera for each one.

22

3 GLOBAL ILLUMINATION BACKGROUND

In this chapter, we review some key theoretical concepts that are of utmost impor-

tance to the thesis. Most of these topics are deep and complex, so this chapter only covers

the basics and focus on the relevant areas. Implementation details are not present here,

but are detailed in the next chapter. Appendices A and B present more basic concepts,

introducing algebraic operations and a very brief introduction to radiometric units. Both

appendices and this chapter are heavily based on the book "Physically Based Rendering,

From Theory to Implementation" (PHARR; JAKOB; HUMPHREYS, 2016).

3.1 Ray Tracing

The field of computer graphics was revolutionized with the introduction of ray

tracing (WHITTED, 1980). It is an algorithm developed to render complex images of

globally illuminated scenes. The original paper presented by Whitted already contains

most of the fundamentals that we still use today, but several extensions to the traditional

ray tracing algorithm were researched and developed over the years.

The main idea is to approximate light traveling in the scene as a geometrical ray.

A valid light path that goes from the light source to the camera (or eye, or observer) can

be inverted to produce another valid light pact that goes the opposite way. Using this

intuition, the algorithm starts by tracing rays for each pixel of the image starting from

the camera, and adds each contribution that it finds from light sources to the final pixel

value. At each surface hit, the algorithm can trace subsequent rays from the intersection

point, creating a light path that can simulate global illumination. The final color of the

pixel will be affected by several things like camera model, participating media, material

of objects hit, etc. A diagram showing a representation of the ray tracing algorithm is

shown in Figure 3.1.

It is worth noting that the nomenclature between ray tracing techniques is a point

of contention in the graphics community. Even though ray tracing can be used to refer to

a traditional Whitted ray tracer, it can also be used to refer to a stochastic (distributed) ray

tracer (COOK; PORTER; CARPENTER, 1984), a path tracer (KAJIYA, 1986) or even

more complicated techniques that use the ray casting operation. Here, "ray tracing" and

the techniques explained ahead will refer to stochastic ray tracing, a simple extension

to the original ray tracer that utilized random numbers to sample different parts of the

23

Figure 3.1 – A diagram explaining the traditional ray tracing setup.

Source: extracted from Wikipedia

domain.

3.1.1 Camera Model

The initial rays that leave the camera and its contributions to each pixel’s final

color will be determined by the camera model. There are several different abstractions

that can be utilized here, and each abstraction allows for different image effects.

There are advantages from the algorithm’s structure that we can exploit. First, we

do not need to simulate the internal part of a camera: shooting rays from the lens to the

focus plane is enough. Simulating more complex parts of a camera (like an imperfect

sensor of a compound lens) could lead to interesting results, but luckily, most of the

resulting effects can be simulated by more straight-forward means.

3.1.1.1 Pinhole Camera

The pinhole camera has an infinitely small lens, which to our purposes means that

every single ray will leave the same point. This creates an image that is always in focus,

and it is the simplest, fastest camera to utilize in a ray tracing algorithm.

3.1.1.2 Aperture

The pinhole virtual camera can easily be extended to produce effects such as de-

focus blur (commonly referred to as depth of field). Objects that are not in the focus plane

will not be focused in the image, and the amount of blur will be determined by the size

of what is called the circle of confusion. This size can be influenced by changing the

24

aperture of the lens.

To simulate a lens with a non-zero radius, we just need to sample a disk with the

same radius centered at the camera’s center and use this value as the current’s ray origin.

The sampling can be done with a simple rejection based approach. This calculation is

done per ray, meaning that every time a new ray is cast a new value will possibly be

chosen. This can introduce noise, so an acceptable number of samples per pixel must be

chosen.

3.1.1.3 Ray Direction

Since we’re simulating a traditional lens, all rays need to converge in the virtual

film plane. Now, we also must divide the image plane in several areas - one for each pixel

in the final image.

We could just draw a ray to the middle of this area, and be content with only one

ray per pixel. This leads to severe aliasing, however, since what that single ray hit will

be the only information that we will have for the entire pixel. To mitigate that, we can

sample the whole area of the pixel randomly. Each ray will go through a different point

in that pixel’s portion of the film plane, and when all samples are added together, a closer

approximation of the original signal will be obtained.

3.1.2 Acceleration Structures

As we discussed before, ray intersections are key to the ray tracing algorithm: they

will define which surface will color the final pixel of the image. There is a major problem,

however: since scenes can contain millions of primitives, intersection would need to be

tested for each primitive every ray. This is unfeasible even in scenes with a low number

of primitives and samples.

To mitigate that issue, we use acceleration structures. They are intermediary prim-

itives that can contain multiple pieces of the scene, restructuring it in a tree-like structure.

That way, if the intersection fails for the overlying structure, the algorithm can discard

everything below, saving a lot of computation.

25

Figure 3.2 – A diagram exemplifying the tree-like structure of a BVH.

Source: extracted from Wikipedia

3.1.2.1 Bounding Volume Hierarchies

Bounding Volume Hierarchies (BVH) are probably the most common type of ac-

celeration structure. The technique consists in creating volumes (usually a bounding box)

that contains parts of the scene, and possibly even other bounding boxes. Figure 3.2

illustrates the tree-like structure of a BVH, representing objects as shapes.

Optimal BVH construction is a research subject on its own: there are several com-

mon strategies (each with its own drawbacks), ranging from simple to complex. A badly

built BVH can still help with intersections, but an optimal BVH is crucial to the perfor-

mance of a ray tracer, since intersection calculations will generally be the most costly part

of the whole algorithm.

3.2 Path Tracing

Path tracing (KAJIYA, 1986) is a major overhaul to the ray tracing algorithm

that defined light transport in a more robust way and allowed for complex interactions to

be modeled and rendered. The algorithm was computationally expensive but produced

incredible results, paving the way for a new era of physically-based rendering. Several

additions to the original path tracing definition were later developed, improving even more

its capabilities.

Path tracing extends ray tracing by allowing nondelta distributions to be sam-

pled. Every surface interaction can generate rays based on its distribution, making area

lights and complex light scattering distributions possible to simulate. To achieve this, the

rendering equation is defined: a seminal contribution to graphics and the basis of every

subsequent physically based technique.

26

3.2.1 Rendering Equation

To compute complex distributions, a path tracer solves the rendering (or light

transport integral) equation (KAJIYA, 1986): a representation that presents the rendering

problem as a recursive integral over several domains. This makes the equation difficult

to solve: not only is the integrand discontinuous, but it is also infinitely-dimensional for

each new vertex in the path.

The rendering equation has many forms. In this one, it is designed to represent the

spectral radiance that is reflected from a point p to a direction ωo. It can be written as:

Lo(p, ωo) = Le(p, ωo) +

∫
Ω

fs(p, ωi, ωo)Li(p, ωi)| cos θi| dωi, (3.1)

where Lo and Li are outgoing and incoming radiance, ωi is an incoming direction

and Le is the radiance emitted by the surface. Also, Ω represents the hemisphere (centered

at the normal) of the surface, and θi represents the angle between ωi and the surface’s

normal at p.

There is one term that deserves a special introduction: fs is also called the bidi-

rectional scattering distribution function (BSDF), which is the combined distributions of

reflectance and transmission of light in the surface. All of these terms will be explained

and expanded upon later.

To sample this equation, we simply cast rays in the scene. They can be calculated

by sampling each dimension in the domain with random distributions. For every inter-

section, more rays can be cast, by sampling each domain in the rendering equation once

again. This series of points in space that the original ray reaches by subsequent rays form

what is called a path. With n being the number of vertices in the path:

p̄n = p0, p1, ..., pn−1. (3.2)

This definition has an useful implication: if every domain can be sampled by one

or more random variables ε and the vertices in a path are only determined by these values,

a path can also be represented by this series of values alone.

27

3.2.2 Monte Carlo Integration

The rendering equation is tricky: light contributions have complex occlusion dis-

tributions, making the function discontinuous. Light paths can have an unbounded num-

ber of vertex, making its domain infinitely-dimensional. All of these factors combine to

make the equation impossible to solve analytically. We can, however, sample it easily by

tracing rays in the scene. This allows the use of a very powerful technique: Monte Carlo

integration.

The Monte Carlo method is numerical (not analytical) and uses random samples

to approximate the solution of a difficult integral. As the number of samples increases,

the approximated result will also get closer to the real solution. It has several interesting

properties, including a convergence rate that is not dependent on the dimensionality of the

integrand. Figure 3.3 showcases one of the most famous (and simple) problems that can

be solved by this method.

Figure 3.3 – A classic example of Monte Carlo integration: computing the area of a circle via
random sampling of points. All that is needed is a way to check if each sample is within the circle

and know the square’s area.

Source: extracted from Wikipedia

Differently than Las Vegas algorithms, that have random elements but always re-

turn the same result, Monte Carlo algorithms are not guaranteed to return the same thing:

every independent execution of the method can return different values. On average, they

will all converge to the integral’s true mathematical result.

To use the Monte Carlo method, all that is needed is a way to randomly sample the

function domain that we’re trying to integrate. In rendering, that is done by sampling each

28

dimension of the path: things like the original position of the ray in a pixel’s boundary; a

direction in a unit sphere to reflect a ray when an object is intersected; a point in an area

light source to be sampled by an object.

Undersampling with the Monte Carlo method, in rendering, will result in noise:

pixels in the image with lower or higher value than expected. There are several ways of

mitigating this noise (and some of them will be covered later). Increasing the number

of samples is an option, but it is extremely expensive: the convergence of Monte Carlo

algorithms is O(n−1/2). This means that to cut the error in half, we need to use four more

samples.

3.2.2.1 Random Variables

To create our samples, we will need to use several random variables ξ, which have

continuous values where ξ ∈ [0, 1). Every ξ is an uniform variable, meaning that every

value has the same probability of being chosen. Since for rendering we need to randomly

sample many dimensions with different domains and every ξ has the same range of values,

we need to apply many different transformations to map the variables to their desired

results.

With computers, deterministic by nature, generating true random values is actually

an extremely complicated task. Even though those methods exist, generally consisting on

measuring natural phenomena like atmospheric noise or ocean waves, random numbers

are generally approximated with pseudo-random number generation. These are sequences

that have an approximated uniform distribution but can have noticeable patterns.

For our purposes, this method of generating samples is more than enough and

even has some advantages: using pseudo-random sequences guarantees that each run of

the algorithm is deterministic and always results on the same value (if, of course, the same

initial random seed is provided). The algorithm used in the implementation (that will be

detailed later) is a Linear Congruential Generator (LCG), one of the simpler pseudo-

random number generators there is. It uses a minimal memory footprint and is extremely

fast to compute the next number in the series.

3.2.2.2 Probability Functions

In a random uniform variable, each value x in the domain has a chance to be

chosen. This probability is called p, and is defined by the probability density function

29

(PDF) p(x). An uniform random variable like ξ has a constant p over its entire domain,

which means that every value has the same probability of being chosen. The integral of

p(x) must also integrate to 1 when taken over the whole domain.

It is also useful to know the probability of a random variable being less or equal

than a value x. For that, we utilize the cumulative distribution function (CDF) P (x). For

example, when rolling a 20-sided dice (commonly known as D20), P (5) = 1/4 because

there are 5 values out of 20 that is less or equal than 5.

3.2.2.3 Expected Value

When paired with a probability distribution p(x), the expected value of a function

f(x) over a domain is:

Ep[f(x)] =

∫
D

f(x)p(x)dx. (3.3)

3.2.2.4 Variance

To measure the error in our approximations, we utilize variance. The variance of

a function is defined as:

V [f(x)] = E[(f(x)− E[f(x)])2]. (3.4)

There are several techniques designed to improve Monte Carlo convergence. Vari-

ance and expected value are both extremely useful tools in measuring how good each of

them are, and allow for a baseline to compare different approaches.

3.2.2.5 Bias

When the expected value of our approximation is the same as the function it is

trying to replicate we say that our method is unbiased. An unbiased estimator will always

eventually converge to the right result. We can, however, have a biased estimator, where

the bias β is defined as:

β = E[F]−
∫
f(x)dx. (3.5)

Bias is generally avoided in rendering: we want to represent the light interactions

30

in the most "pure" way possible. There are, however, some techniques that are considered

worth this downside, since they can drastically reduce convergence times.

3.2.2.6 Monte Carlo Estimator

The Monte Carlo estimator is defined, for an integral
∫ b
a
f(x)dx and random vari-

ables Xi ∈ [a, b], as:

FN =
b− a
N

N∑
i=1

f(Xi), (3.6)

where N is the number of samples. This is only valid for a constant probability

function, so for every x, p(x) = 1/(b − a). This is limiting, but a simple modification

allows for the more general:

FN =
1

N

N∑
i=1

f(Xi)

p(Xi)
. (3.7)

This formulation has a clear limitation: p(x) must be higher than 0 for every x in

the domain.

The rate of convergence can also now be calculated. This estimator converges at

the rate of O(
√
N). In lower dimensions this is not the optimal convergence rate, but it is

great for our possibly infinite dimensional integral. This convergence rate also shows why

simply throwing more samples may not be the best idea to improve our approximation: in

our case, more samples means casting more rays, which has a significant computational

cost. Luckily, there are lots of mathematical tools to improve convergence.

3.2.2.7 Russian Roulette

Apart from variance, running time is also an important parameter to keep in mind

when comparing two different estimators. Russian roulette is a technique designed to

trade off variance for a lower running time.

The key concept in russian roulette is that each sample has a probability q to not

be evaluated and added to the sum. Instead, a constant c is used (often 0). The probability

can be defined in any way, but the way this value is defined is key to the success of this

method. 
F−qc
1−q ξ > q

c otherwise.
(3.8)

31

Samples that are still evaluated have the probability of 1−q, and must be weighted

by the term 1− (1− q) to compensate for the lost samples.

Russian roulette will never reduce variance. In fact, a bad implementation will

significantly increase it, even though the approximation would still eventually converge

to the right result, since the expected value of the new estimator is the same as the old

one. The advantage of using russian roulette is that samples that add little to the overall

result may not even be computed, saving computational time and improving the chances

that the computed samples are actually good.

3.2.2.8 Splitting

Splitting consists on separating the number of samples per dimension of the inte-

grand to achieve better results. This can be useful when certain parts of the domain do

not contribute more to the final result with a higher number of samples.

A classic example is in rendering itself: splitting is traditionally used to sample

more than one light sample per surface interaction, or even for sampling more than one

distribution. Without this key insight, to draw more light samples we would need to

compute another whole light path.

3.2.2.9 Importance Sampling

Importance Sampling is an essential Monte Carlo technique. It is based on the

notion that an estimation will converge faster if p(x) is proportional to f(x). What that

means, intuitively, is that parts of the domain a with higher contribution should have a

higher probability of being sampled than parts with a lower value. The impact caused by

different sampling strategies can be seen in Figure 3.4.

Ideally, we would have a p(x) so that p(x) = cf(x), with a normalizing constant.

Of course, this is not possible, since the value of f(x) is what we’re looking for in the first

place. Luckily, even general approximations can result in a good reduction of variance.

In rendering, our function f(x) is a product of several other functions, as we’ve

seen on the rendering equation. Even though an approximation of some of these terms

can be easily found, an accurate approximation of the final product is usually not. These

single-term approximations can still be used, and in some cases result in satisfactory im-

provements. A commonly used, extremely versatile p(x) is a cosine-weighted hemisphere

distribution, since the geometric term | cos θi| is present in the rendering equation.

32

Figure 3.4 – A comparison between two sampling strategies: the first figure samples based on a
BSDF-shaped distribution, and the second figure samples the light sources directly. Each plate

has different surface roughness.

Source: extracted from (VEACH, 1997)

3.2.2.10 Multiple Importance Sampling

The rendering equation’s integrand is a product of many different terms. Each

of these terms can be easily approximated, but there’s no easy way to multiply all of

these probability functions to create an all encompassing p(x). Using only one of these

distributions may not be enough in many cases. With a near-specular BSDF, for example,

there is only a small part of the hemisphere where any light is actually reflected from,

so using a distribution not based on the fs(p, ωi, ωo) term will result in bad samples.

Likewise, in the case of a small light, drawing samples directly from the light distribution

is optimal, otherwise very few rays will actually find the light in question.

Multiple Importance Sampling (VEACH, 1997) addresses this problem, by allow-

ing for the combination of different samples from different distributions. These samples

are weighted by a term designed to reduce these large variance spikes. The impact that

MIS can have in an image can be seen in Figure 3.5.

Trying to approximate
∫
f(x)g(x)dx, with probabilities pf and pg, the MIS Monte

Carlo estimator is:

1

nf

nf∑
i=1

f(Xi)g(Xi)wf (Xi)

pf (Xi)
+

1

ng

ng∑
j=1

f(Yj)g(Yj)wg(Yj)

pg(Yj)
. (3.9)

The term wf and wg are the weight terms for each sample, and nf and ng are the

number of samples of each distribution. There are some common weighting functions

33

used, starting with the balance heuristic:

ws(x) =
nsps(x)∑
i nipi(x)

. (3.10)

If a sample X is taken from pf and pf (X) is small, f(X) will probably be small

too (considering that pf is an approximation of fx). But if g(X) ends up having a big con-

tribution, f(X)g(X) will be divided by a very small pf , drastically enlarging an already

big value and resulting in big variance. The balance heuristic counteracts this, by adding

ngpg(X) in the denominator.

Figure 3.5 – The same scene from figure 3.4, but now using both samples weighted by the
balance heuristic.

Source: extracted from (VEACH, 1997)

A common modification of this weighting function is called the power heuristic.

With β being an arbitrary exponent:

ws(x) =
(nsps(x))β∑
i(nipi(x))β

. (3.11)

A common value for β is 2, but other values can also be used.

3.2.3 Distribution Functions

In our rendering equation formulation, the term fs represents a bidirectional scat-

tering distribution: a function that, given two directions, determines how much light is

transmitted from one to the next. This is the term that will determine all of the character-

34

Figure 3.6 – A figure illustrating a BSDF with both reflectance (BRDF) and transmittance
(BTDF).

Source: extracted from Wikipedia

istics of the material of the intersected object. For example: if a ray intersects a car, its

BSDF will determine if the car’s paint is matte or glossy, or if the car is made of metal or

glass.

The BSDF is generally also represented as a combination of two other functions:

a bidirectional reflectance distribution function (BRDF) and a bidirectional transmitance

distribution function (BTDF). When a light ray hits a surface, reflection will make the ray

"bounce" and leave the surface through the same hemisphere it entered, and transmission

will make the ray go through the surface and leave the surface from the other side. Figure

3.6 illustrates the difference between BRDFs and BTDFs.

BSDFs can come from a lot of different places. They can be simple formulas that

approximate real materials with acceptable precision; they can also be data-driven, via

measurements made in labs with real world objects. Most BSDFs also have independent

terms that can be tweaked to create different looks, which are extremely useful for artists

trying to make an object look a certain way.

35

Figure 3.7 – A model (the white dragon) rendered with a perfectly Lambertian distribution.
Original "dragon" model by Christian Schüller.

Source: our system.

3.2.3.1 Lambertian

The Lambertian reflection function is a theoretical distribution that is commonly

used in computer graphics. It is characterized by scattering light equally in all direc-

tions. It is considered theoretical because a perfectly Lambertian object does not really

exist, even though very close approximations are possible. The distribution is named after

Johann Heinrich Lambert, for his work on photometry.

A surface that has this distribution will reflect the same color (that is, amount of

light) independent of the observer’s direction. It can be said, then, that this surface is

ideally diffuse, and that it presents perfectly diffuse reflection. Figure 3.7 shows an object

rendered with such a distribution.

When dealing with a Lambertian surface, we use a cosine-weighted hemisphere

function as our importance sampling distribution. The reason for that is simple: since light

is scattered equally in every direction, for any x and x′ in the hemisphere: p(x) = p(x′).

3.2.3.2 Specular

A perfect mirror can be considered the opposite of a Lambertian surface: instead

of reflecting incoming light to all directions, it will only reflect to a single direction. This

means that the color of a specular object will change depending on the observer’s position.

In a specular distribution, the reflected ray will always be the same for an incom-

ing direction, and it can be found by "mirroring" the original ray around the normal of

36

Figure 3.8 – A model rendered with the distribution of perfectly specular reflection. Original
"dragon" model by Christian Schüller.

Source: our system.

the surface. This means that, for the direction vector of an incoming ray vi and for the

direction vector of the reflected ray vr:

(vi · n) = (−vr · n). (3.12)

A specular distribution needs special care during sampling. Since for every pos-

sible outgoing direction there’s only a single relevant incoming direction, usual multiple

importance sampling techniques might be useless. In those cases, only the surface distri-

bution should matter for sampling purposes, and the sampled direction should always be

the perfect reflection.

The best example of a specular distribution is a mirror: once again, a perfectly

specular surface is also not possible, but mirrors are a very close approximation. Figure

3.8 shows an object rendered with a mirror-like distribution. A specular distribution can

also be used for transmission: in this case, we would have perfectly smooth glass. The

perfect transmission direction is calculated by Snell’s law:

ηi sin θi = ηt sin θt. (3.13)

Both η terms are called the indices of refraction, which are the ratio between the

speed of light in a vacuum (represented by c, where c ≈ 3 ∗ 105km/s) and the speed of

37

light in the medium v:

η =
c

v
. (3.14)

Indices of refraction tend to vary by wavelength, causing dispersion on transmis-

sion (an effect immortalized in pop culture by the album cover of Pink Floyd’s Dark Side

of the Moon). A common simplification used by rendering algorithms is to ignore this

property, and treat every wavelength as having the same index of refraction.

3.2.3.3 Dieletrics and Conductors

An important distinction to make is between dieletric and conductor mediums.

The first does not absorb light, so all of it is either reflected or transmitted. Dieletrics do

not conduct electricity. Examples of dieletrics include glass, air and water.

Conductors, obviously, conduct electricity, and are generally metals. They also

absorb a significant portion of light. This causes any transmitted light that travels through

the conducting media to be absorbed really quickly. For that reason, only reflection is

calculated for conductor-based materials. Because of this conductors have a complex

index of refraction η = η + ik.

3.2.3.4 Fresnel Equations

For physically accurate materials, the proportion of light that is reflected or trans-

mitted is described by the Fresnel equations. They can be computed by solving Maxwell’s

equations at smooth surfaces.

The equations are defined for polarized light, and as such, have both perpendicular

and parallel terms. The value of reflectance for dieletrics can be defined as:

r‖ =
ηt cos θi − ηi cos θt
ηt cos θi + ηi cos θt

, (3.15)

r⊥ =
ηi cos θi − ηt cos θt
ηi cos θi + ηt cos θt

. (3.16)

We do not take into account polarized light, so we need to use the Fresnel re-

flectance for unpolarized light:

Fr =
1

2
(r2
‖ + r2

⊥). (3.17)

38

Since dieletrics either reflect or transmit light, Fresnel transmittance is defined as

1− Fr.

Conductors have a slightly more complicated Fresnel reflectance, since we also

need to account for absorption. The Fresnel reflectance between a conductor and a dielet-

ric medium is:

r⊥ =
a2 + b2 − 2a cos θ + cos2 θ

a2 + b2 + 2a cos θ + cos2θ
, (3.18)

r‖ = r⊥
cos2 θ(a2 + b2)− 2a cos θ sin2 θ + sin4 θ

cos2 θ(a2 + b2) + 2a cos θ sin2 θ + sin4 θ
, (3.19)

a2 + b2 =
√

(η2 − k2 − sin2 θ)2 + 4η2k2. (3.20)

When k = 0 the result will be the same as the previous formulation. Since the

complex equation is significantly more costly to compute, we should only use it when

needed.

3.2.3.5 Fresnel-Specular

Figure 3.9 – A model rendered with the distribution of specular reflection and refraction weighted
by the fresnel equations. Original "dragon" model by Christian Schüller.

Source: our system.

We now can simulate a more physically accurate dieletric material, like glass.

This distribution will reflect and transmit light according to the Fresnel equations. The

proportion of light reflected is Fr, and 1− Fr is the proportion of light transmitted.

39

This Fresnel term will be dependent on the viewing angle. This phenomenon can

even be observed in the real world: when looking straight at a water surface it will be

close to transparent, allowing for what’s underwater to be seen, but at grazing angles the

surface will behave more and more like a mirror. An object rendered with this glass-like

distribution can be seen in Figure 3.9.

3.2.3.6 Microfacet Models

A common abstraction to represent photorealistic materials are microfacet-based

models. The basic intuition behind them is that any surface is composed of tiny height

variances that can be approached by microfacets, and the overall material scattering prop-

erties are affected by their distribution. Diffuse objects would have more microfacet vari-

ance, and smoother ones would have less.

The nomenclature can cause some confusion. The overall geometry of the object

is called macrosurface (represented by a triangle mesh, for example) as opposed to the

tiny microsurface that contains the microfacets.

Microfacets are extremely tiny, so we consider that whenever the macrosurface is

lit a significant amount of microsurfaces are hit as well. This means that most microfacet-

based approximations are represented by statistical models that represent the overall dis-

tribution of microfacets that contribute light to the desired direction.

There are also several popular microfacet models, and some of them will be dis-

cussed here. Some of the problems that these models need to account for are the way that

microfacets interfere with each other. Just like scene geometry, they can end up occlud-

ing each other in regards to the light, and the light also can reflect over more then one

microsurface before leaving the surface.

3.2.3.7 Microfacet Definitions

There are important definitions that tend to be common between microfacet mod-

els. Even though the value of these properties may change, each model can be represented

by their own formulas to compute these values. This creates a lot of variability on the re-

sulting BSDF, allowing for a number of different materials to be represented by the same

models.

The first important concept isD(ωh), where ωh is the surface normal. It represents

the differential area of microfacets with the surface normal. It has some limitations if we

40

want the model to be physically plausible:

∫
H2(n)

D(ωh) cos θhdωh = 1. (3.21)

To represent the occlusion effects described at the end of the last section, we use

Smith’s masking-shadowing function G1(ω, ωh), that returns the proportion of micro-

facets with normal ωh that are visible to the direction ω. Meaning that, if A+(ω) is the

distribution of forward-facing microfacets and A−(ω) is the equivalent for backwards-

facing ones, then:

G1(ω) =
A+(ω)− A−(ω)

A+(ω)
. (3.22)

The Λ(ω) function measure the proportion of occluded microfacets to visible mi-

crofacet area:

Λ(ω) =
A−(ω)

A+(ω)− A−(ω)
=
A−(ω)

cos θ
. (3.23)

This leaves the simplified G1 term to be defined as:

G1(ω) =
1

1 + Λ(ω)
. (3.24)

There are several ways to define a Λ(ω) function, and each model can decide their

approach. One common distinction is if this function will assume no correlation between

heights of nearby points, which may result in a unique Lambda(ω) for a determined

D(ωh).

Finally, we also have G(ωo, ωi), which gives the fraction of microfacets visible to

both directions. There are also several ways of representing this function, but a common

model is:

G(ωo, ωi) =
1

1 + Λ(ωo) + Λ(ωi)
. (3.25)

These concepts are common to most microfacet models, and their definition will

be what gives each model its characteristics.

41

Figure 3.10 – A model rendered with the Oren-Nayar distribution. Original "dragon" model by
Christian Schüller.

Source: our system.

3.2.3.8 Oren-Nayar

The Oren-Nayar model (OREN; NAYAR, 1994) is a distribution utilized to render

diffuse objects. It is more physically accurate than the more simple Lambertian model.

In practice, Oren-Nayar objects will be brighter when lit from a light close to the viewing

direction. Figure 3.10 shows an object rendered with an Oren-Nayar BRDF.

The model represents the microsurface as many V-shaped diffuse microfacets.

Their distribution is then defined by a spherical Gaussian function, with σ being the stan-

dard deviation of the orientation angle.

The full model is not suitable for our purposes (it does not have a a closed form

solution), but there exists a suitable approximation where (σ in radians):

fr(ωi, ωo) =
R

π
(A+Bmax(0, cos(φi − φo)) sinα tan β), (3.26)

A = 1− σ2

2(σ2 + 0.33)
, (3.27)

B =
0.45σ2

σ2 + 0.09
, (3.28)

α = max(θi, θo), (3.29)

42

β = min(θi, θo). (3.30)

For importance sampling, the same strategy used for the Lambertian distribution

can also be used for the Oren-Nayar model.

3.2.3.9 Beckmann-Spizzichino

Figure 3.11 – A model rendered with the Beckmann-Spizzichino microfacet distribution, and
with the Torrance-Sparrow BRDF model. Original "dragon" model by Christian Schüller.

Source: our system.

The Beckmann-Spizzichino model (BECKMANN; SPIZZICHINO, 1963) repre-

sents each microsurface as a perfect reflector/transmitter. It is also based on a gaussian

distribution of microfacets. The isotropic formulation of this model is:

D(ωh) =
e− tan2 θh/α

2

πα2 cos4 θh
, (3.31)

where if σ is the root mean square slope, α =
√

2σ. The representation can also

be extended to support an anisotropic distribution:

D(ωh) =
e− tan2 θh(cos2 φh/α

2
x+sin2 φh/α

2
y)

παxαy cos4 θh
. (3.32)

Note that this distribution will become equal as its isotropic counterpart when

ax = ay. The distribution’s Λ(ω) function assumes that there are no correlation of height

43

between nearby points. Its definition for the isotropic distribution is:

Λ(ω) =
1

2

(
erf(a)− 1 +

e−a
2

a
√
π

)
, (3.33)

where a = 1/(α tan θ) and erf, the error function, is:

erf(x) =
2√
π

∫ x

0

e−x
′2
dx′. (3.34)

Figure 3.11 shows an object rendered with this BRDF. For anisotropic distri-

butions, a common technique is interpolating an alpha value and using that with the

isotropic Λ function.

3.2.3.10 Trowbridge-Reitz (GGX)

Figure 3.12 – A model rendered with the Trowbridge-Reitz (GGX) microfacet distribution, and
with the Torrance-Sparrow BRDF model. Original "dragon" model by Christian Schüller.

Source: our system.

The Trowbridge-Reitz model (TROWBRIDGE; REITZ, 1975) is another useful

model, which can be seen in Figure 3.12. It was popularized later (WALTER et al.,

2007), when it was independently derived and named ’GGX’. Its anisotropic microfacet

distribution is given by:

D(ωh) =
1

παxαy cos4 θh(1 + tan2 θh(cos2 φh/α2
x + sin2 φh/α2

y)
2
. (3.35)

44

The Λ function of this model is quite simple, and also assumes no height correla-

tion between nearby points:

Λ(ω) =
−1 +

√
1 + α2 tan2 θ

2
. (3.36)

The same technique (interpolating α) can be used for anisotropic distributions.

3.2.3.11 Torrance-Sparrow

The Torrance-Sparrow model (TORRANCE; SPARROW, 1967) was designed to

model metallic surfaces. It was introduced to computer graphics by Blinn (BLINN, 1977),

and one variant of this model was used by Cook and Torrance (COOK; TORRANCE,

1981) (COOK; TORRANCE, 1982), which became an extremely popular model on its

own right.

This model uses perfectly smooth mirrored microfacets. This means that only the

ones that have the normal aligned with the half-vector between the incident and outgoing

directions reflect light from ωi to ωo.

The Torrance-Sparrow model finally gives us a BRDF that we can utilize in the

rendering equation:

fr(ωo, ωi) =
D(ωh)G(ωo, ωi)Fr(ωo)

4 cos θo cos θi
. (3.37)

The only thing that the Torrance-Sparrow model assumes is the perfectly specular

microfacets. Apart from that, it can be used with any microfacet distribution and with any

Fresnel function Fr. A BTDF can also be derived:

ft(ωo, ωi) =
D(ωh)G(ωo, ωi)(1− Fr(ωo))

((ωo · ωh) + η(ωi · ωh))2

|ωi · ωh||ωo · ωh|
cos θo cos θi

, (3.38)

where η = ηi/ηo. The half-angle transmission vector is ωh = ωo + ηωi.

3.2.4 Light Sources

In our abstraction, only light sources are allowed to emit light in the scene. Be-

cause of that, all the energy present in the scene must come from them. That also means

any scene without light sources would be pitch black.

There are several different types of light sources that are useful when creating

45

scenes. Some of them are not completely realistic, but are still powerful tools when

designing interesting scenes.

3.2.4.1 Point Lights

Point lights are infinitely small, and have constant radiance throughout its entire

hemisphere. For ray tracing, since the light consists of a single point, there is only one

point to sample.

Point lights are the cheapest to incorporate in a scene, but have known problems:

they are theoretical and don’t really exist in the real world, so point lights almost always

are approximation of area lights. That can be problematic, since point lights will cast very

defined shadows, as opposed to the soft shadows created by area lights.

These lights are defined by a delta function. Since they are infinitely small, we

need to sample the light directly to get valid samples, after all the chances of finding

this point in space by sampling a separate distribution is mathematically 0. This makes

implementing point lights quite tricky.

3.2.4.2 Area Lights

Area lights are an interesting abstraction: we define an area that has constant

flux, and that flux will influence the scene accordingly. This area is generally defined

via a geometric primitive, like a triangle. Area lights are more accurate to the real-world

compared to their point counterparts, allowing for more sophisticated light interactions.

Figure 3.13 – Area lights are capable of casting soft shadows, like the one shown in this picture.

Source: extracted from Wikipedia

46

Area lights are capable of casting soft shadows in the scene, an interaction that

can be seen in Figure 3.13. This effect comes from what is called partial occlusion: since

the light is defined as an area, any point in the scene can see a fraction of the total area of

the light. This proportion will then inform how big the contribution of the light is to that

point.

Area lights can be sampled based on the geometry they are based on. These sam-

ples are important when raycasting for visibility checks. Ideally, a sampling strategy

should be uniform in the whole area (if flux is constant). The implementation used will

be described in the Implementation chapter.

3.2.4.3 Infinite Area Lights

For certain scenes, it makes sense to have a "background": pre-computed radiance

values that are used when a ray misses everything in the scene. For that, we define an

infinite area light, which is a light that encapsulates the whole scene and traditionally has

its radiance values based on an already existing distribution.

This distribution can come from a lot of different places, but it generally comes

from a high dynamic range image. This image contains values that are unbounded (not

capped to 1), which represent radiance values for each direction in the hemisphere.

Mapping texture coordinates to the hemisphere is pretty simple. Considering

u, v ∈ [0, 1), and an outgoing ray defined by the angles θ and φ:

u =
φ

2π
, (3.39)

v =
θ

π
. (3.40)

Sampling this type of infinite area light is simple: we just need to sample a point in

the sphere that surrounds the scene. However, since the distributions used here generally

contain a wide range of values, there are some caveats that will be discussed in a future

section.

47

3.2.5 Summary

Now that we are familiar with each of its parts, let’s summarize the full path

tracing algorithm. The process that will be described here will happen for each pixel in

the image, every frame. Each pixel is also completely independent from each other, which

is great news for optimization purposes.

We start by sampling a point in the boundary of the current pixel. This point can be

sampled by utilizing two independent random variables. As we’ve discussed, the number

of samples of this initial dimension is directly responsible by the aliasing present in the

final image.

Then, we trace a ray that starts in the camera’s origin and goes through the sampled

point. The film plane is generally defined at the focal distance from the camera, and its

width and height will be defined by camera properties (vertical and horizontal FOV). The

camera’s origin can also be perturbed by a random number, simulating a lens with non-

zero area. This can be useful for simulating effects such as defocus blur.

Now that we have our ray, we need to figure out which geometry in the scene

is the closest possible intersection. This operation is made faster by using acceleration

structures that represent the scene in tree-like fashion. Due to the number of primitives,

intersection checking is generally the most costly operation of the whole process.

Once we reach an intersection, we have to figure out how much light that point is

reflecting in the opposite direction of the ray. For that, we do two things: we first compute

the effect of direct light on the surface, by directly sampling lights on the scene. This can

either be done by sampling a probability distribution based on the light distribution of

the scene, or by sampling a probability distribution based on the surface’s light scattering

distribution. Both can also be done, by weighting the samples with an heuristic. This is

known as multiple importance sampling.

We also need to compute the light that comes reflected from other, non-emissive

surfaces. For that, we cast another ray into the scene. This ray will start from this inter-

sected point, and will go to a random direction on the unit sphere. The contribution of

light found will be weighted by the surface’s distribution, so the next ray’s direction can

also be importance sampled with the surface’s distribution.

For each bounce, we have a chance q of ending the ray (russian roulette). At the

end of the path, all the contributions are then computed, and the final color of the sample

is finished. For simplicity we use a simple box filter, so the final pixel color (before any

48

post processing, like temporal refinement, denoising or gamma correction) will be the

average value of all samples in a pixel.

49

4 SYSTEM DESIGN

This chapter discusses our system, which implements most of the techniques dis-

cussed on Chapter 3. We discuss the approach taken for each of our requisites (defined

on Chapter 1), and the decisions made when designing our system. We also discuss the

technologies we used and how they affected our design.

4.1 Design Goals

Scene creation is a complicated process, but our system was designed to make it

as simple as possible. To achieve this objective, our system had to be designed with some

goals in mind.

4.1.1 Intuitive and Easy to Use

A big part of the difficulty in scene manipulation is created by the lack of acces-

sibility in available tools. Our system should be easy to understand and use, and should

not have a steep learning curve. We attack this problem by having a simple and clear user

interface, alongside other straightforward commands. Most of the work should be done

in the background by the system (and not by the user). If the user wants to simply change

a material, then this operation should be as simple as selecting the new material itself.

4.1.2 Fast and High Quality Rendering

Even experienced artists may have difficulty understanding how a material change

in a scene may affect the final result. This problem is aggravated if the user is not inti-

mately familiar with PBR pipelines, requiring lots of iteration to perfect a certain look.

This makes it immediately obvious why having fast feedback is important, but it also

shows why having good feedback is crucial: ideally, the working image should not be an

approximation, but as close as possible to a final render. Having different techniques for

working and final rendering may cause unwanted visuals in the scene.

Recent progresses in hardware and software made real-time path tracing possible,

allowing for scenes with complex light interactions to be rendered in a matter of millisec-

50

onds. To achieve this design goal, we utilize this advancements by rendering the working

image directly with GPU-accelerated path tracing. To improve our results, we utilize of

temporal refinement and machine learning-based denoising, greatly improving the quality

of undersampled images and allowing for interactive framerates.

4.1.3 Familiar and Extendable

Graphics professionals are already familiar with a lot of other similar applications,

which would mean that ignoring established conventions would not be wise. We designed

our controls so that they can be as similar as possible to existing software, without sacri-

ficing our other goals of ease of use and accessibility.

The architecture of the system itself should also be familiar. Adding new com-

ponents, like materials, should be as easy as possible. And of course, perhaps the most

important of all: the system should be compatible with existing scenes, since we want to

use them as a base to create our own.

To achieve all of those goals, we heavily based our solution on PBRT (PHARR;

JAKOB; HUMPHREYS, 2016), even though its use case is significantly different than

ours: by aiming for GPU acceleration and user interaction, several changes and com-

promises are required when compared to a more traditional offline renderer. Still, this

provided us a good baseline of comparison, and also easy compatibility of existing PBRT

scenes and materials.

4.2 Architecture

Figure 4.1 shows a simplified overview of our system’s architecture. In it, we see

how the different modules communicate with one another, and also have a better idea of

each part of the system’s dependencies.

The nodes "Scenes" and "Components" represent files that are outside of our sys-

tem, but can be loaded by their respective modules. We use external libraries to help the

load process as well. At any time, the user can choose to load a new scene, or to load a

new component (like a new texture) and use it in the current scene.

The "Scene Editing" node encapsulates all changes to the scene. It can modify

a wide array of parameters, including material properties and position of objects, the

51

Figure 4.1 – An abstraction of our system’s architecture.

Source: the authors.

current skybox, and path tracing parameters. Section 4.8 contains further discussion on

its capabilities. The scene modifications can also be saved to create a new scene.

The information contained in the scene editing node will also be used to create a

representation of the scene that can be rendered. This representation must also be updated

whenever the scene is modified. More details on our renderer will also be provided on

later sections.

4.3 Base Technologies

The code utilizes several established technologies to reach real-time performance.

The main CPU code is written in C++. The GPU code utilizes CUDA via the OptiX

framework (PARKER et al., 2010), optimized to utilize the existing ray-tracing accelera-

tion hardware. We use Dear ImGui (CORNUT, 2021) for UI purposes.

A particularly influential work to us is NVIDIA’s 2019 SIGGRAPH OptiX 7

course (WALD; PARKER, 2019). The original code of our renderer started with the

course’s provided code as a base, and until this day it uses some parts of it (like basic

math classes).

52

4.3.1 NVIDIA CUDA

One of the most popular technologies among researchers today, CUDA (acronym

for Compute Unified Device Architecture) allows for compiling code to run on the GPU.

The code itself can be written with a traditional programming language (with extensions),

before being compiled into PTX (CUDA’s instruction set architecture).

After compiling, CUDA programs (called kernels) are dispatched to the GPU in

grids, blocks and threads. This configuration can be changed by the programmer, and it

is crucial for performance. They are then mapped to GPU lanes, wraps and streaming

multiprocessors (SM). Threads mapped to the same SM have their own local memory,

but they can also have access to their multiprocessor’s shared memory (which also has its

own cache). A lot of GPU optimizations involve optimizing memory fetches and writes

for these reasons.

We write our GPU code in C++, and compile to CUDA at build time with NVIDIA’s

own nvcc compiler. It is interesting to note that there are ways of compiling CUDA code

at runtime, but those result in a performance cost so they were not used. After compiling,

we can utilize our PTX code with OptiX’s API.

4.3.2 NVIDIA OptiX

To utilize the existing ray tracing hardware, we use the NVIDIA OptiX API. Since

version 7, it is stateless and asynchronous. It can be considered an extension of CUDA,

and much of its functionalities are based on top of the existing CUDA framework.

Differently than traditional CUDA, OptiX programs can’t assume some key fac-

tors of GPU allocation: tasks (like rays) can be moved at any time to a different lane,

warp or streaming multiprocessor. For this reason, many of CUDA’s tools (like barriers

or shared memory) are unavailable.

OptiX is designed to facilitate ray-tracing applications. To use it, we need to

comply with its directives and data structures. Even though OptiX takes care of some

important steps, there are still things that need to be defined by the programmer. Further

discussion on OptiX’s requirements and specification will occur on later sections.

53

4.3.3 OpenGL

For a simple way to draw a texture on the screen, we utilize OpenGL. It is a very

high level API, and as such, is generally slower than its lower-level counterparts (like

Vulkan or DirectX). We utilize it in conjunction with the GLFW library, which interacts

with the current operating system’s API to create and manage windows.

4.3.4 Scene Loading

To parse and include PBRT scenes, we utilize Ingo Wald’s PBRT-Parser (WALD,

2021). Not all PBRT features are supported by our renderer, so only a subset of scenes

work properly.

To parse and include obj files, we utilize tinyobjloader (FUJIYA, 2021b). It is

single file with no dependencies (except C++’s standard library).

For loading images, we utilize stb (BARRETT, 2021) for standard formats, and

for high dynamic range one we use tinyexr (FUJIYA, 2021a).

4.4 Acceleration Structures

To accelerate ray tracing, OptiX uses traditional acceleration structures. They

must be built calling OptiX’s respective functions, obfuscating the underlying algorithms

to the user. The resulting acceleration structure will be a BVH, but its properties will

be defined by the current device (like GPU model). This makes the tree optimized for

different architectures automatically.

To construct the tree itself, the user has two building blocks: they are called

"Geometry Acceleration Structure" (GAS) and "Instance Acceleration Structures" (IAS).

GAS-type nodes can be seen as leaves of the tree, as they contain geometric primitives.

IAS-type can point to other nodes, including transform nodes, that are used to differenti-

ate between instances of the same geometry. Figure 4.2 shows the different type of "tree

nodes" that OptiX provides.

In our system, we build one GAS for every mesh when they are loaded. These

GASes are then instantiated and linked by an IAS, resulting in a two-level scene over-

all. Duplicating meshes will only result in a new instance being created, which is way

54

Figure 4.2 – An example of acceleration structure tree, showing possible connections between
nodes.

Source: Extracted from Optix Programming Guide

faster and less memory intensive than duplicating geometry information (like triangles).

Instances are differentiated by their transform.

When the transform properties of any instance is changed or when a instance is

duplicated or deleted, the acceleration structures must be updated. When this happens,

the overlying IAS must always be rebuilt, but only the affected instance structure must be

changed. GASes are never rebuilt.

4.5 Ray Programs

The actual code that is run on the GPU is called a program (by the OptiX API).

These are functions written in CUDA with special keywords that indicate their extra ray-

tracing capabilities. Other ray tracing APIs also have similar paradigms in regards to

program flow.

4.5.1 Types

A program can have several different types, indicating the role that they play in

the overall ray tracing algorithm. Figure 4.3 shows the possible data flows that an OptiX

application can have.

The ray generation type (also called "raygen") is the first one in the pipeline, and

will be the one that will be directly called by the OptiX launch. The launch itself will

55

Figure 4.3 – A diagram showing the usual data flow of an OptiX program. Green nodes
represents fixed function code, and gray represents user programs.

Source: Extracted from Optix Programming Guide

specify some parameters (e.g. the launch dimensions), and those parameters will deter-

mine how many instances of the ray generation program will be called. Rays can be traced

from the ray generation code via API calls, and as such, at the ray generation program we

must determine the position and direction of the rays we will trace.

The miss program is called whenever a ray does not intersect anything from its

minimum t value to its maximum t value. The miss program can be used to add the

skybox contribution to the scene, allowing for the incorporation of synthetic or real life

probes that light the entire scene.

The intersection program is an optional step that must be invoked for every custom

primitive in the scene. It is called if the bounding box of the primitive is intercepted

by a ray, and will determine if the hit is valid or not. For triangle meshes there is no

need for this kind of program, since the ray-triangle intersection is directly accelerated

by hardware. The context change caused by intersection program calls (and running the

code itself) is significant, and as such, it can be beneficial to represent custom geometry

with triangle meshes approximations.

The any-hit program is called for every possible closest hit intersection in the

scene. Then, its code can determine if the hit is accepted or discarded and if the trace

should continue or not. Since it can also write on the ray payload (and memory) it can

also be used for more sophisticated uses. A common use for these kinds of programs is for

checking shadow rays1, since they are generally only interested if there’s a intersection at

all as opposed to figuring out the closest hit. Another common use is alpha testing, where

a texture lookup is required to determine if the hit is valid or not.

1OptiX also allows for ray flags on each trace, allowing for instant termination on first hit and, in the
case of shadow rays, not even requiring an any-hit shader.

56

The closest-hit program is called after the closest point of intersection is found.

It’s generally where the actual shading is done, even though some architectures just use it

to write intersection information on the payload and shade elsewhere.

There are also callable programs: essentially, functions that can be called from

any program, but since they are declared on the shader binding table (discussed in section

4.6), a different callable program can be called at runtime based on its index. This allows

for greater flexibility in general. Callables were not used in our renderer.

4.5.2 Compilation

All OptiX programs must be written in CUDA code, and compiled before the

OptiX launch. We decided to compile our programs at build time using NVIDIA’s nvcc

compiler, but there are alternatives that allow for runtime compilation. Obviously, this

would cost runtime performance.

The resulting PTX code is then utilized by the API functions to create the required

internal structures, allowing for them to be used by the ray tracing pipeline.

4.6 Shader Binding Table

When a ray intersects geometry, it needs to know which programs to call. That is

determined by the shading binding table (SBT), which associates each instance with its

hitgroup programs. Using information contained in the instance’s acceleration structure,

the OptiX framework knows which address of the SBT to access for each primitive.

The SBT may also store any information related to the primitive that can be ac-

cessed in the GPU programs. These can be any parameter traditionally used in shading,

like vertex normals, albedo, textures or anything else that the shading model requires. The

SBT also has similar entries for miss and raygen programs, allowing for those parameters

and resources to be accessed on the GPU by each instance.

When any instance’s properties change or when a instance is created or deleted,

the hitgroup’s shader binding table entry must be rebuilt to account for the change.

OptiX also supports the concept of ray types: each ray type may call different

programs. For each ray type, the SBT must point correctly to the desired program for

every primitive, and each ray type must also point correctly to a miss program. In our

57

renderer, we utilize this concept for light sampling.

4.7 Initialization

To aid users with easy scene and skybox selection, we load a config file at startup.

It can register several scenes and skyboxes’ system path, which may then be utilized at

any time. The default config file should be in the same directory as the executable, but a

different config file can be passed via command line arguments. The program only uses

the config file to save a list of paths, which will then be loaded when requested by the

user.

After that, initialization is pretty straightforward: the first scene in the list is parsed

and loaded. It’s here that the PBRT materials are adapted to our own representation: while

our material implementations are very close to PBRT’s, we only support a subset of PBRT

materials. Unsupported ones, when possible, are approximated. This will be discussed

further on chapter 5.

There are several APIs that need initialization too: not only CUDA and OptiX,

but also Dear ImGui (that we use for our UI) and OpenGL. Initializing the OptiX data

structures takes most of the initialization process. Luckily, most of this work will not be

repeated after the initialization process is done.

At initialization, we also need to build both the SBT and acceleration structures

that OptiX will use. The SBT is built on the CPU and then transferred to the GPU, and

the AS nodes are built using OptiX’s own API and structures. After the build step (that

happens on the GPU), the AS is ready to be traced against. Both will be rebuilt when

necessary, as described in sections 4.4 and 4.6.

4.8 User Interaction

In this section, we will describe some of the features that can be utilized to modify

scenes in real-time. Most of them are implemented using GLFW and Dear ImGui.

Figure 4.4 shows the main window, displaying the current approximated image to

the user.

58

Figure 4.4 – A screenshot of our system, with menus minimized.

Source: our system.

4.8.1 Basic Controls

Figure 4.5 – A screenshot of our system, with menus minimized. The camera was altered by the
user, getting closer to the dragon object and changing the angle.

Source: our system.

The scene’s camera can be re positioned, allowing for inspecting elements more

closely or just changing the final image’s framing (shown in Figure 4.5). Resizing the

window will also change the resolution of the final image.

59

4.8.2 Scene Properties

Figure 4.6 – The scene properties menu, displaying all sections.

Source: our system.

The Scene Properties menu (Figure 4.6) controls several scene parameters. All of

them can be changed at runtime. We will discuss some of the most important ones here.

Using the scene load list, the user can load different scenes at runtime. This list

of scenes is built by reading a config file provided at startup. The scenes are loaded into

memory when the selection is made, the list of strings is only presented to help the user.

We also can control skybox-related parameters. First, the texture itself can be

changed at runtime, by simply selecting a new one from a list. This list is also built by the

config file loaded at startup, and a skybox can also be provided directly by loading PBRT

scenes that have a built in skybox. This feature is showcased in figure 4.7.

The current transform matrix applied to the map can also be modified. This trans-

form is applied to all rays that hit the skybox’s miss programs. It can determine things

like the rotation of the skybox. The skybox’s value itself can also be scaled directly by a

constant vector that can be changed at runtime.

The "Launch Parameters" section controls properties for the path tracing algorithm

itself.

Ray-triangle intersections are prone for floating point precision errors. For that

reason, we need methods to avoid self-intersection when casting a ray starting at a trian-

gle. The most common method is to add a very small value to the minimum ray distance.

This small value (called epsilon) can be controlled here.

The max path depth can be also be determined. The ray may be terminated before

this depth is reached by reaching a light source, having no throughput left or russian

60

Figure 4.7 – The dragon scene, with a modified skybox texture.

Source: our system.

roulette.

To improve convergence rates, it is common to clamp very high valued samples

in your image. These values are called "fireflies" (they appear as white pixels on the

screen). This method adds bias to the algorithm, but can help a lot in certain scenes, so

it is generally considered an acceptable trade-off. The clamping threshold can also be

changed at runtime. It is interesting to note that the denoiser (that will be discussed later)

is particularly sensitive to fireflies, so this feature is very important.

And finally, we also can change some camera properties in the "Camera" section.

By changing the aperture, field of view and focal distance, we can directly influence how

the rays are generated in the raygen program.

4.8.3 Object Inspector

One of the most useful features of our renderer is the object inspector. This menu

can be seen in Figure 4.8. By selecting the desired instanced mesh, we can analyze its

current material and change it or any of its properties. We can also change the instance’s

transform, duplicate it or delete it from the scene. Such an example is shown in Figure

4.9.

For the mesh selection to work, we use the mesh ID buffer. It is built in the OptiX

launch, and it works essentially as a lookup that informs the mesh that was closest hit by

a ray in each pixel.

61

Figure 4.8 – The object inspector menu, after selecting the dragon mesh and modifying it with a
different material. It shows the current material (Metal), with its properties.

Source: our system.

Figure 4.9 – A modified dragon scene, with duplicated instances, each with their own materials
and transforms.

Source: our system.

Each material has its own list of properties, and the UI will update accordingly

to reflect that. Our material list is based on a subset of PBRT. The equivalence of our

materials with PBRT’s will be discussed later on Chapter 5.

Instances can be transformed using the UI, but they can also be manipulated using

the mouse directly. Any instance can be translated, rotated or scaled. This is applied

directly via a transform matrix that is composed by the individual transformation matrices.

As such, these operations are limited by existing characteristics of the mesh (for example,

texture coordinates will be stretched when a scale operation is performed).

New textures can be applied to an object at runtime. When selected, the texture

will be loaded and applied correctly on an object using its texture coordinates. Textures

62

are only created once, and are shared for every object that uses them.

4.9 Render Loop

Starting the render process, we assume that the acceleration structures and the SBT

are already built. Any changes necessary should be completed before rendering starts.

Every frame starts by updating the current launch parameters. The structure con-

tains information that must be utilized by the next launch and that can changed at any

time. For example, our launch parameters include properties of the current camera: not

only position and direction, but also aperture and focal distance. These will be read by

the next step in the pipeline when generating rays. It also contains pointers to all final

buffers that must be written (which will be discussed later), and final image sizes. These

can change based on the active window, so they must be updated accordingly.

4.9.1 Raygen Program

After the launch parameters update we can finally deploy GPU code. One instance

of our raygen program for each final image pixel is deployed. All of them can be run at

parallel, and will be scheduled by OptiX itself.

The raygen program is responsible for the core loop in the path tracing algorithm.

To avoid wasteful stacking and maximize memory usage, the algorithm is iterative (as

opposed to recursive), and always returns to the raygen program between new nodes in

the path. It starts by generating a pixel sample, which will then be converted to a ray

based on camera properties. This pixel sample is randomized for each pixel and each

pixel starts with a different random seed (using LCG), avoiding noise that might arise

from correlation between pixels.

After that, the ray payload is prepared. A pointer to this structure will be passed to

subsequent programs in the ray path, making it the main form of communication between

the programs in this pipeline. With all of the preparations done, we finally trace the

prepared ray.

63

4.9.2 Closest-Hit Program

If a primitive is hit, its associated closest hit program will be deployed. Most of

the material-dependent calculations are done via this program: as such, there are a lot of

different closest-hit program variants implemented by our code. The program associated

with the mesh is decided based on the desired material. Each material expects different

parameters, and as such, they must be prepared beforehand in the SBT build step. To

avoid stacking (and declaring OptiX callables), our implementations make heavy use of

function inlining.

After getting from SBT the current primitive’s properties, we start by calculating

the direct lighting contribution for that particular point (a practice that is popularly called

as next event estimation). We draw two samples per point: one will be sampled from a

distribution that approximates the light contribution, and the other from one that approx-

imates the material’s BSDF distribution. In this context, sampling means tracing rays in

the sampled directions to check for emissive contributions. Of course, if the closest hit

intersection of that ray is not emissive, the contribution will be zero. These two samples

will then be scaled by multiple importance sampling (MIS) using the power heuristic.

The light distribution is sampled by randomizing one of the light sources in the

scene to sample. This is a uniform selection: for improvements, a distribution based

on light power could be utilized. If the chosen light is a triangle area light, a point is

uniformly sampled across the triangle area, which will then be used as the ray destination.

If the chosen light is the skybox of the scene, a simple cosine distribution based on the

surface normal is utilized.

The material distribution, obviously, changes depending on the material. For ex-

ample, Lambertian materials sample the cosine distribution (again, based on the surface’s

normal), and microfacet models have each their own way of sampling (mostly using a

sample of its microfacets normal distributions).

It is interesting to note that perfectly specular materials do not have two samples:

since it has only one direction where any contribution counts, checking for other direc-

tions would be wasteful. Because of this, specular materials require special attention even

on the main path tracing loop in the raygen program.

Each ray will then be traced using a different ray type than the usual path-node

one. This ray type will only return contribution from light sources, and will terminate if it

hits anything else on the way. These rays are traced directly from the closest hit programs

64

(without returning to the raygen program), but since the resulting programs can’t spawn

more rays themselves it still caps the maximum program depth at 3.

The contributions are then scaled by the power heuristic and written into the pay-

load structure. The next ray in the path is sampled from the material distribution, and as

such, must also be done in the closest-hit. Next-ray properties and the new overall path

throughput (based on the next ray’s PDF) are also written in the payload.

4.9.3 Miss Program

If the raygen-traced ray misses the scene’s primitives, the miss program is de-

ployed. It samples the scene’s skybox (if it has any) based on the ray direction, and

returns the appropriate contribution. This contribution can also be scaled by a parameter

provided by the scene (or overwritten by the user at runtime).

4.9.4 Accumulation and Denoising

After that, the program returns to the main loop. The current frame’s contribu-

tions are accumulated, and if this was the first bounce, the values for albedo, normal and

mesh ID buffers are saved. If the path is past a threshold then Russian roulette is en-

abled, allowing for paths to be terminated by a stochastic process. After that, the actual

buffers pointed to by the launch parameters are updated, accumulating the current frames’

samples with the already existing ones.

This process (called temporal refinement) works wonderfully for us: it allows each

frame to be reasonably fast (only drawing one sample per pixel) and, with accumulation,

still result in a converged image in a short period of time.

The resulting buffers will then be used for denoising the current image. We use

OptiX’s built-in denoiser, that takes as parameters all three: color, albedo and normal

buffers. The denoising itself is AI-based, and runs on the GPU. It runs on the image still

on linear space (before gamma correction), and greatly reduces noise. Figure 4.10 shows

the impact that the denoiser has on the final output.

Denoising is crucial to achieving real-time performance: even with all the opti-

mizations possible, it still isn’t viable to path trace the amount of samples required to

eliminate noise from an image and still have frame times that are low enough to be inter-

65

Figure 4.10 – Living Room scene, rendered with a small number of samples (a). This image,
when applied to the denoiser, produces a much more appealing result (b).

(a) Original

(b) Denoised

Source: our system.

active.

After all those steps, a simple gamma correction is applied to map the radiance to

image values. This buffer is only used for showing the image (and saving it, if the user

chooses to), temporal refinement is done directly on the output buffers from the OptiX

launch. The final image is then rendered to the window with OpenGL.

66

5 RESULTS

This chapter presents some scenes rendered by our system. We also discuss sim-

ilarities and differences from their PBRT counterparts, and some limitations of our ren-

derer. All results reported in the paper were rendered using a Core i5 6500 3.2 GHz CPU

with 16 GBs of RAM, NVIDIA RTX 2080 TI. The images generated with our system

were rendered on the GPU, while the PBRT images shown for comparison were rendered

on the CPU.

5.1 Modified Scenes

Figure 5.1 – Modified "Country Kitchen" scene, with instance duplication, deletion, material
changes and transform manipulation.

(a) Original Scene

(b) Modified Scene

Source: our system.

We present here some scenes created by our system based on existing ones. The

original scenes are compared with our modified versions directly, since in this section

67

Figure 5.2 – Modified "The White Room" scene, with a different camera, materials and textures.
(a) Original Scene

(b) Modified Scene

Source: our system.

the original scenes had their camera moved for a closer comparison. The original scenes

(with their original cameras) can be seen in the next section.

Figure 5.1 shows a kitchen scene created with our system by modifying an existing

one. Figure 5.1 (a) shows the original scene. Its edited version is shown in Figure 5.1 (b).

It showcases a bigger table with additional rearranged chairs, plates and cups. For this

scene, the kitchen island was removed and two of the walls were recolored with different

materials. This scene was created during an interactive session under just a few minutes

by a non-artist. The quality of this result supports our claim that while creating new

scenes from scratch is a difficult task, editing existing ones can be successfully done by

an average user.

Figure 5.2 shows another example of modified scene. Figure 5.2 (a) shows a view

of the original scene. Figure 5.2 (b) shows the resulting scene created using our system

and illustrates several of its features. These include, for instance, change of material

properties (e.g., coffee table, teapot, and teacup), texture change (pillow and small table

68

Figure 5.3 – Variations of "The White Room" scene, with different cameras, materials and
textures.

Source: our system.

cloth), object replication (teacup and fruits), object translation (pillow and fruits), and

color changes (walls and fruit). This modified scene was created in just three minutes and

the entire process is illustrated in the supplementary video.

Figure 5.3 shows more variations that can be created using the same initial scene

as Figure 5.2. Both variations only differ in material properties and textures. This shows

that meaningfully different scenes can be created by only using simple changes that can

be done in a matter of minutes.

Figure 5.4 provides another example of scene edited with our system. Figure 5.4

(a) shows a view of the original Bathroom scene exhibiting different kinds of materials

and textures. Figure 5.4 (b) show a modified version of this scene created using our system

in just a few minutes. Among the many changes, the larger mirror has been replaced by

two smaller ones.

Figure 5.5 provides an additional example of scene edited with our system. Fig-

ure 5.5 (a) shows a modified view of the original Wooden Staircase scene exhibiting stan-

dard materials and textures, while Figure 5.4 (b) shows the same view but with vastly

69

Figure 5.4 – Modified "Bathroom" scene, with a different camera, materials and textures. The
large mirror has also been replaced by two smaller ones.

(a) Original Scene (b) Modified Scene

Source: our system.

different materials and textures.

5.2 Scene Comparisons

Table 5.1 – Render times (128 spp)
Scene PBRT Our Renderer Speedup

Contemporary Bathroom 617.2s 8.795s 70.17x
Salle de bain 597.4s 6.409s 93.21x

Bedroom 742.5s 6.378s 116.41x
Cornell Box 252.9s 2.173s 116.38x

The Breakfast Room 637.2s 7.269s 87.66x
Country Kitchen 602.5s 5.484s 109.86x

The Grey & White Room 767.6s 5.481s 140.06x
The White Room 682.8s 5.588s 122.19x

The Wooden Staircase 418.8s 2.471s 169.49x
Modern Hall 449.8s 7.856s 57.26x

We present some results comparisons between PBRT and our own renderer. All

images were rendered with 128 samples, and with the denoiser post-pass in our solution.

These scenes were all taken from Bitterli’s rendering resources (BITTERLI, 2016) and

PBRT’s own scene repository. Figures 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13 and 5.14

show direct comparisons between our system’s renders and PBRT’s. The images show the

quality of the rendering results produced by our system at interactive framerates, while

the scenes themselves contain several interesting features, such as area light sources and

70

Figure 5.5 – Modified "The Wooden Staircase" scene, with different camera, materials and
textures.

(a) Original Scene (b) Modified Scene

Source: our system.

translucent materials.

Despite being generated by an interactive system, the quality of the images gener-

ated by our system is comparable to ones produced by offline physically-based renderers,

such as PBRT. When using the same number of samples, the use of temporal refinement

and denoising allows our system to produce better results than plain PBRT without de-

noising. This is illustrated in Figure 5.7, where both images were rendered using 128

samples per pixel. Figure 5.7 (a) shows the results produced by our system using denois-

ing, while the results in (b) were generated by PBRT without denoising. Note how our

denoised results are significantly better than the noisy ones. If noise is disregarded, one

can see that the results produced by both systems are qualitatively similar.

Our renderer was heavily based on PBRT’s architecture, so it’s natural that the

images are very close. They are not equal, however: we can notice subtle differences

on most comparisons. These can come from a variety of factors, like purposeful design

decisions to simple bugs.

71

Figure 5.6 – "Cornell Box" scene, rendered (128 spp) in our renderer (a) and PBRT (b).
(a) Our Renderer (b) PBRT

Figure 5.7 – "Contemporary Bathroom" scene, rendered (128 spp) in our renderer (a) and PBRT
(b).

(a) Our Renderer (b) PBRT

A good example of purposeful changes can be seen in figure 5.10. The way that

the plant’s materials deal with textures was changed so that it behaves better with scenes

like this (these scenes were converted from Tungsten, another renderer).

It can also be noted that some of these images have not yet converged on PBRT

with 128 samples, but generally, the OptiX denoiser makes so that is more than enough

for us. It could be said that, for a more accurate comparison, PBRT’s number of samples

should be higher, increasing convergence but also render times. Table 5.1 shows a perfor-

mance comparison between both renderers using the same number of samples per pixel.

72

Figure 5.8 – "Salle de bain" scene, rendered (128 spp) in our renderer (a) and PBRT (b).
(a) Our Renderer

(b) PBRT

5.3 Material Comparisons

Our renderer implements several BRDFs (see section 3.2.3 for explanations and

more result images). Some of them can be utilized to replicate or approximate PBRT’s

materials. This is shown in Figures 5.15, 5.16, 5.17, and 5.18.

All of our materials are implemented with closest-hit programs. This raises some

challenges when adapting PBRT materials, since their collection of BRDFs can change

based on each intersection point’s properties. This adaptation process can result in slightly

different end results.

Another challenge was adapting PBRT’s coordinate system to our own. Skybox

rotation in particular was hard to replicate, and incorrect rotation might still be a problem

in some scenes (like 5.17).

73

Figure 5.9 – "Country Kitchen" scene, rendered (128 spp) in our renderer (a) and PBRT (b).
(a) Our Renderer

(b) PBRT

Figure 5.17 also highlights another challenge: PBRT has a robust method of deal-

ing with floating point precision, severely mitigating the self-intersection problem. Our

solution is a simple (but common) one: we simply add a little epsilon value for each inter-

section (that is controllable by the user at runtime as described in section 4.8). This is not

nearly as accurate as PBRT’s method, and results in self-intersection artifacts. To further

mitigate this problem we also use a index-based method (an intersection is ignored if the

previous intersection has the same primitive and mesh index).

Figure 5.18 showcases that even though the overall surface "roughness" is very

close, the color of our metal material approximation is a little bit off.

74

Figure 5.10 – "The Grey & White Room" scene, rendered (128 spp) in our renderer (a) and PBRT
(b).

(a) Our Renderer

(b) PBRT

5.4 Limitations

Our renderer supports only a subset of PBRT scenes. Features like participating

media and subsurface scattering were not implemented, and more complex materials (like

the Uber Material) were greatly simplified. The decision to not implement these features

was taken to limit the scope of this project, but future improvements to the system are

extremely likely.

A particularly interesting subject to discuss is that our renderer only supports tra-

ditional path tracing. Future work could implement more robust rendering techniques,

like bidirectional path tracing and Metropolis-Hastings based approaches. Hardware-

accelerated ray tracing is so fast, however, that in most scenes these methods are beyond

75

Figure 5.11 – "The White Room" scene, rendered (128 spp) in our renderer (a) and PBRT (b).
(a) Our Renderer

(b) PBRT

overkill, and convergence (with a denoiser) is reached in a few seconds.

A characteristic of our renderer (and other GPU-based solutions) is that a scene

must be able to be loaded entirely in memory. Techniques like instancing do help, but for

extremely complex movie-quality scenes that might not be enough.

76

Figure 5.12 – "The Wooden Staircase" scene, rendered (128 spp) in our renderer (a) and PBRT
(b).

(a) Our Renderer (b) PBRT

Figure 5.13 – "Modern Hall" scene, rendered (128 spp) in our renderer (a) and PBRT (b).
(a) Our Renderer (b) PBRT

77

Figure 5.14 – "Bedroom" scene, rendered (128 spp) in our renderer (a) and PBRT (b).
(a) Our Renderer

(b) PBRT

Figure 5.15 – Dragon model, with a "Matte" material. Rendered with the same parameters on our
renderer (a) and PBRT (b).

(a) Our Renderer (b) PBRT

78

Figure 5.16 – Dragon model, with a "Substrate" material. Rendered with the same parameters on
our renderer (a) and PBRT (b).

(a) Our Renderer (b) PBRT

Figure 5.17 – Dragon model, with a "Glass" material. Rendered with the same parameters on our
renderer (a) and PBRT (b).

(a) Our Renderer (b) PBRT

Figure 5.18 – Dragon model, with a "Metal" material. Rendered with the same parameters on our
renderer (a) and PBRT (b).

(a) Our Renderer (b) PBRT

79

6 CONCLUSION AND FUTURE WORK

We presented a powerful scene creation system, with cutting edge rendering pow-

ered by modern technology that achieves interactive frame rates while doing full path

tracing on the GPU. It allows for easy and powerful modifications of existing scenes,

empowering users with the capability to unleash their creativity without having to learn

complex toolsets and concepts.

Real time ray tracing techniques are no longer a distant future. With the advent

of dedicated intersection hardware, even offline renderers present significantly improved

performance. The incorporation of machine learning for denoising images was also key to

achieving faster convergence. Our system shows that there’s already a place for real-time

path tracing solutions in problems that we face today.

We showed that our solution’s results are comparable to PBRT, an established

render, while still being faster by at least an order of magnitude. When compared to even

higher sampled images, it can still present better results by utilizing the built-in OptiX

denoiser.

This system could be easily extended in the future, and logical follow-up work

could add more interactive functionalities to the already existing ones. The renderer

could also be improved, since not all of PBRT features are implemented (and possibly

features that aren’t even on PBRT). Another interesting addition would be to add support

for more scene formats, allowing for easy manipulation of scenes from different solutions

altogether.

80

REFERENCES

BARRETT, S. stb. 2021. Available from Internet: <https://github.com/nothings/stb>.

BECKMANN, P.; SPIZZICHINO, A. The scattering of electromagnetic waves from
rough surfaces. Pergamon, New York, NY, USA, 1963.

BITTERLI, B. Rendering resources. 2016. Https://benedikt-bitterli.me/resources/.

Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Institute, Amsterdam, 2018. Available from Internet: <http://www.blender.org>.

BLINN, J. F. Models of light reflection for computer synthesized pictures. SIGGRAPH
Comput. Graph., Association for Computing Machinery, New York, NY, USA,
v. 11, n. 2, p. 192–198, jul. 1977. ISSN 0097-8930. Available from Internet:
<https://doi.org/10.1145/965141.563893>.

CHAOS-GROUP. V-Ray. 2021. Available from Internet: <https://www.chaosgroup.com/
vray/collection>.

COOK, R. L.; PORTER, T.; CARPENTER, L. Distributed ray tracing. SIGGRAPH
Comput. Graph., Association for Computing Machinery, New York, NY, USA,
v. 18, n. 3, p. 137–145, jan. 1984. ISSN 0097-8930. Available from Internet:
<https://doi.org/10.1145/964965.808590>.

COOK, R. L.; TORRANCE, K. E. A reflectance model for computer graphics.
In: Proceedings of the 8th Annual Conference on Computer Graphics and
Interactive Techniques. New York, NY, USA: Association for Computing Machinery,
1981. (SIGGRAPH ’81), p. 307–316. ISBN 0897910451. Available from Internet:
<https://doi.org/10.1145/800224.806819>.

COOK, R. L.; TORRANCE, K. E. A reflectance model for computer graphics.
ACM Trans. Graph., Association for Computing Machinery, New York, NY,
USA, v. 1, n. 1, p. 7–24, jan. 1982. ISSN 0730-0301. Available from Internet:
<https://doi.org/10.1145/357290.357293>.

CORNUT, O. Dear ImGui. 2021. Available from Internet: <https://github.com/ocornut/
imgui>.

FUJIYA, S. tinyexr. 2021. Available from Internet: <https://github.com/syoyo/tinyexr>.

FUJIYA, S. tinyobjloader. 2021. Available from Internet: <https://github.com/
tinyobjloader/tinyobjloader>.

GROSS, M. H. Computer graphics in medicine: From visualization to surgery simulation.
SIGGRAPH Comput. Graph., Association for Computing Machinery, New York,
NY, USA, v. 32, n. 1, p. 53–56, feb. 1998. ISSN 0097-8930. Available from Internet:
<https://doi.org/10.1145/279389.279462>.

HAGEMANN, L.; OLIVEIRA, M. Scene conversion for physically-based renderers. In:
. [S.l.: s.n.], 2018. p. 226–233.

https://github.com/nothings/stb
http://www.blender.org
https://doi.org/10.1145/965141.563893
https://www.chaosgroup.com/vray/collection
https://www.chaosgroup.com/vray/collection
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/800224.806819
https://doi.org/10.1145/357290.357293
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://github.com/syoyo/tinyexr
https://github.com/tinyobjloader/tinyobjloader
https://github.com/tinyobjloader/tinyobjloader
https://doi.org/10.1145/279389.279462

81

KAJIYA, J. T. The rendering equation. SIGGRAPH Comput. Graph., ACM, New
York, NY, USA, v. 20, n. 4, p. 143–150, aug. 1986. ISSN 0097-8930. Available from
Internet: <http://doi.acm.org/10.1145/15886.15902>.

LAFORTUNE, E. P.; WILLEMS, Y. D. Bi-directional path tracing. In: Proceedings
of Third International Conference on Computational Graphics and Visualization
Techniques (Compugraphics ’93). Alvor, Portugal: [s.n.], 1993. p. 145–153.

LOMMEL, B. V. Cycles X. 2021. Available from Internet: <https://code.blender.org/
2021/04/cycles-x/>.

NIMIER-DAVID, M. et al. Mitsuba 2: A retargetable forward and inverse renderer.
Transactions on Graphics (Proceedings of SIGGRAPH Asia), v. 38, n. 6, dec. 2019.

NVIDIA. Nvidia turing gpu architecture. sep. 2018. Available from Internet: <https:
//www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf>.

O’CONNOR, R. Autodesk 3Ds Max 2016 - Modeling and Shading Essentials. 1st.
ed. USA: CreateSpace Independent Publishing Platform, 2015. ISBN 1517185815,
9781517185817.

OREN, M.; NAYAR, S. K. Generalization of lambert’s reflectance model. In:
Proceedings of the 21st Annual Conference on Computer Graphics and
Interactive Techniques. New York, NY, USA: Association for Computing Machinery,
1994. (SIGGRAPH ’94), p. 239–246. ISBN 0897916670. Available from Internet:
<https://doi.org/10.1145/192161.192213>.

PARKER, S. G. et al. Optix: A general purpose ray tracing engine. ACM Trans. Graph.,
Association for Computing Machinery, New York, NY, USA, v. 29, n. 4, jul. 2010. ISSN
0730-0301. Available from Internet: <https://doi.org/10.1145/1778765.1778803>.

PHARR, M.; HUMPHREYS, G. PBRT, Version 3. 2015. Available from Internet:
<https://github.com/mmp/pbrt-v3>.

PHARR, M.; HUMPHREYS, G. PBRT, Version 4. 2021. Available from Internet:
<https://github.com/mmp/pbrt-v4>.

PHARR, M.; JAKOB, W.; HUMPHREYS, G. Physically Based Rendering, from
Theory to Implementation. 3. ed. [S.l.]: Morgan Kaufmann, 2016.

TORRANCE, K. E.; SPARROW, E. M. Theory for off-specular reflection from roughened
surfaces∗. J. Opt. Soc. Am., OSA, v. 57, n. 9, p. 1105–1114, Sep 1967. Available from
Internet: <http://www.osapublishing.org/abstract.cfm?URI=josa-57-9-1105>.

TRIMBLE. SketchUp. 2021. Available from Internet: <https://www.sketchup.com/>.

TROWBRIDGE, T. S.; REITZ, K. P. Average irregularity representation of a rough
surface for ray reflection. J. Opt. Soc. Am., OSA, v. 65, n. 5, p. 531–536, May
1975. Available from Internet: <http://www.osapublishing.org/abstract.cfm?URI=
josa-65-5-531>.

http://doi.acm.org/10.1145/15886.15902
https://code.blender.org/2021/04/cycles-x/
https://code.blender.org/2021/04/cycles-x/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://doi.org/10.1145/192161.192213
https://doi.org/10.1145/1778765.1778803
https://github.com/mmp/pbrt-v3
https://github.com/mmp/pbrt-v4
http://www.osapublishing.org/abstract.cfm?URI=josa-57-9-1105
https://www.sketchup.com/
http://www.osapublishing.org/abstract.cfm?URI=josa-65-5-531
http://www.osapublishing.org/abstract.cfm?URI=josa-65-5-531

82

VEACH, E. Robust Monte Carlo Methods for Light Transport Simulation. Thesis
(PhD) — Stanford University, 1997.

VEACH, E.; GUIBAS, L. Bidirectional estimators for light transport. In: . [S.l.: s.n.],
1995.

WALD, I. PBRT-Parser. 2021. Available from Internet: <https://github.com/ingowald/
pbrt-parser>.

WALD, I.; PARKER, S. G. Rtx accelerated ray tracing with optix. In: ACM
SIGGRAPH 2019 Courses. New York, NY, USA: Association for Computing
Machinery, 2019. (SIGGRAPH ’19). ISBN 9781450363075. Available from Internet:
<https://doi.org/10.1145/3305366.3340297>.

WALTER, B. et al. Microfacet models for refraction through rough surfaces. In: . [S.l.:
s.n.], 2007. p. 195–206.

WHITTED, T. An improved illumination model for shaded display. Commun. ACM,
ACM, New York, NY, USA, v. 23, n. 6, p. 343–349, jun. 1980. ISSN 0001-0782.
Available from Internet: <http://doi.acm.org/10.1145/358876.358882>.

https://github.com/ingowald/pbrt-parser
https://github.com/ingowald/pbrt-parser
https://doi.org/10.1145/3305366.3340297
http://doi.acm.org/10.1145/358876.358882

83

APPENDIX A — MATH CONCEPTS

There are some basic key math concepts that are crucial for understanding the

techniques presented here. These concepts are all applicable to 3D space, and most of

these concepts are also applicable to other dimensions. All formulas and explanation will

focus on their 3-dimensional versions.

A.1 Points

We need to represent places in our space. Points, represented by (x, y, z), are

infinitely small. The coordinates x, y and z are determined by the current coordinate

space. The origin of a coordinate space can be represented by the point (0, 0, 0). For any

point, x, y and z are also their distance from the origin in each axis.

A.2 Vectors

Vectors are represented with v = (x, y, z). They have significant differences from

points. First, they are not a "place" in space: they have direction and magnitude, but

vectors don’t start or end in predetermined locations. A vector’s magnitude (that can also

be called length) can be represented by ‖v‖ =
√
x2 + y2 + z2.

Two vectors are considered orthogonal to each other if they have a 90° angle be-

tween them.

A.2.1 Vector Math

Vectors can be added or subtracted easily, by adding or subtracting each individ-

ual component. Subtracting two points (also done by subtracting each component) also

results in a vector, with length equal to the distance between them. Adding a vector to a

point will result in another point, which can be visualized as the original point dislocated

in the direction and length of the original vector.

84

A.2.2 Normalization

A vector which has a magnitude of 1 is called a normalized or unit vector. They

are generally utilized when only direction information is required. To normalize a vector,

we just need to divide each component by the vector’s length. Normalization will preserve

the original direction of the vector.

If two unit vectors are also orthogonal to each other they are considered orthonor-

mal vectors.

A.2.3 Dot Product

A dot product is a very important operation in computer graphics. A dot product

between vectors a and b is defined by:

a · b = ‖a‖‖b‖ cos θ. (A.1)

The smaller angle between the two vectors is called θ. As we can see, the result

of a dot product is a scalar value. There is an easier way to compute the dot product:

multiplying each correspondent axis and then adding everything together.

a · b = axbx + ayby + azbz. (A.2)

This is extremely efficient for a computer to do. For that reason, a dot product

is even commonly used to compute an easy cosine of the angle between two vectors:

normalize both vectors first (if needed) then multiply and add their components.

A.2.4 Cross Product

The cross product can be represented as a× b, and its result will be a vector that

is orthogonal to both a and b. Each component of the cross product can be defined as:

(a× b)x = aybz − azby, (A.3)

(a× b)y = azbx − axbz, (A.4)

85

(a× b)z = axby − aybx, (A.5)

which means that:

‖a× b‖ = ‖a‖‖b‖| sin θ|. (A.6)

A.3 Triangle meshes

A single triangle can be defined by three points. Multiple triangles that are con-

nected by common edges are called triangle meshes. Triangle meshes are the most tradi-

tional way of representing a 3D scene in computer graphics.

A.4 Normals

A normal is a vector that has a 90° angle with a surface. Normals are extremely

important for computing several things, including shading calculations and orientation

checking.

The normal of a triangle can be easily computed with a cross product between the

vectors defined by subtracting its points and normalizing.

A.5 Bounding Boxes

Bounding boxes are generally used to represent boundaries of complex objects.

The boxes serve as a simplification of the shape of the bounded object (or objects). Bound-

ing boxes are useful for a various of reasons in computer graphics, including occlusion

queries and ray tracing acceleration.

Bounding boxes have several representations. If it is aligned with the axes of the

coordinate space it is called an axis-aligned bounding box (AABB). In this case it can be

represented by only two points, with the drawback of less flexibility in approximating the

underlying shape.

86

A.6 Rays

A ray is part of a line that points to a direction infinitely from a starting point.

Different than vectors, a ray is placed in space and has infinite magnitude. The points that

belong to the ray can be represented by a function:

R(t) = O + vt, (A.7)

where O is the point of origin and v is the direction vector.

87

APPENDIX B — RADIOMETRY

Radiometry is a series of tools, metrics and concepts designed to describe light

interactions. It comes from an abstraction of light as a particle, and as such, is not capable

of describing some light properties. It is, however, easily extendable to include most of

them: for example, it was connected to Maxwell’s equations by Preisendorfer in 1965.

The understanding of radiometry was directly taken from PBRT, and as such, they

imply the same assumptions here as they did there. Perhaps the most important one is

energy conservation: at any non-emissive point scattering light, the amount of energy that

goes out must not surpass the energy that goes in.

This section will establish a basic glossary for radiometric quantities, and it is

heavily based on PBRT’s Radiometry section (PHARR; JAKOB; HUMPHREYS, 2016).

B.1 Energy

A photon is a particle that is emitted by light sources. It resides in a particular

wavelength, and carries an amount of energy. The energy of a photon at wavelength λ is

measured in joules (J):

Q =
hc

λ
, (B.1)

where c is the speed of light in the vacuum (299, 472, 458m/s) and h is Planck’s

constant ≈ 6.626 ∗ 10−34m2kg/s.

B.2 Flux

Radiant Flux (or Power) is the total energy that reaches a region per unit of time

(t). It is measures in watts (W) or joules per second and can be calculated by:

Φ = lim
∆t→0

∆Q

∆t
=
dQ

dt
. (B.2)

Flux is used to describe total emission from light sources.

88

B.3 Irradiance and Radiant Exitance

A measurement of the density of flux that reaches a certain area A is called irra-

diance (if the flux is arriving at the surface) or radiant exitance (if the flux is leaving the

surface). It is measured with W/m2, and can be calculated by:

E =
Φ

A
. (B.3)

B.4 Intensity

Intensity is the measurement of flux per solid angle. It is measured in watts per

steradians (W/sr):

I = lim
∆ω→0

∆Φ

∆ω
=
dΦ

dω
. (B.4)

B.5 Radiance

Finally, radiance is the flux density per unit area per solid angle. That means,

intuitively, that radiance is different than irradiance by also distinguishing the directional

distribution of power:

L(p, ω) = lim
∆ω→0

∆Eω(p)

∆ω
=
dEω(p)

dω
, (B.5)

where Eω is the irradiance at a surface that is perpendicular to the direction ω.

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 The Rendering Problem
	1.2 Uses for Realistic Rendering
	1.3 Physically-Based Rendering
	1.4 Hardware-Accelerated Ray Tracing
	1.5 Scene Creation
	1.6 Thesis Structure

	2 Related Work
	2.1 Light Transport
	2.2 Other Renderers
	2.2.1 PBRT
	2.2.2 Mitsuba 2

	2.3 Modeling Software
	2.4 Other Work

	3 Global Illumination Background
	3.1 Ray Tracing
	3.1.1 Camera Model
	3.1.1.1 Pinhole Camera
	3.1.1.2 Aperture
	3.1.1.3 Ray Direction

	3.1.2 Acceleration Structures
	3.1.2.1 Bounding Volume Hierarchies

	3.2 Path Tracing
	3.2.1 Rendering Equation
	3.2.2 Monte Carlo Integration
	3.2.2.1 Random Variables
	3.2.2.2 Probability Functions
	3.2.2.3 Expected Value
	3.2.2.4 Variance
	3.2.2.5 Bias
	3.2.2.6 Monte Carlo Estimator
	3.2.2.7 Russian Roulette
	3.2.2.8 Splitting
	3.2.2.9 Importance Sampling
	3.2.2.10 Multiple Importance Sampling

	3.2.3 Distribution Functions
	3.2.3.1 Lambertian
	3.2.3.2 Specular
	3.2.3.3 Dieletrics and Conductors
	3.2.3.4 Fresnel Equations
	3.2.3.5 Fresnel-Specular
	3.2.3.6 Microfacet Models
	3.2.3.7 Microfacet Definitions
	3.2.3.8 Oren-Nayar
	3.2.3.9 Beckmann-Spizzichino
	3.2.3.10 Trowbridge-Reitz (GGX)
	3.2.3.11 Torrance-Sparrow

	3.2.4 Light Sources
	3.2.4.1 Point Lights
	3.2.4.2 Area Lights
	3.2.4.3 Infinite Area Lights

	3.2.5 Summary

	4 System Design
	4.1 Design Goals
	4.1.1 Intuitive and Easy to Use
	4.1.2 Fast and High Quality Rendering
	4.1.3 Familiar and Extendable

	4.2 Architecture
	4.3 Base Technologies
	4.3.1 NVIDIA CUDA
	4.3.2 NVIDIA OptiX
	4.3.3 OpenGL
	4.3.4 Scene Loading

	4.4 Acceleration Structures
	4.5 Ray Programs
	4.5.1 Types
	4.5.2 Compilation

	4.6 Shader Binding Table
	4.7 Initialization
	4.8 User Interaction
	4.8.1 Basic Controls
	4.8.2 Scene Properties
	4.8.3 Object Inspector

	4.9 Render Loop
	4.9.1 Raygen Program
	4.9.2 Closest-Hit Program
	4.9.3 Miss Program
	4.9.4 Accumulation and Denoising

	5 Results
	5.1 Modified Scenes
	5.2 Scene Comparisons
	5.3 Material Comparisons
	5.4 Limitations

	6 Conclusion and Future Work
	References
	Appendix A — Math Concepts
	A.1 Points
	A.2 Vectors
	A.2.1 Vector Math
	A.2.2 Normalization
	A.2.3 Dot Product
	A.2.4 Cross Product

	A.3 Triangle meshes
	A.4 Normals
	A.5 Bounding Boxes
	A.6 Rays

	Appendix B — Radiometry
	B.1 Energy
	B.2 Flux
	B.3 Irradiance and Radiant Exitance
	B.4 Intensity
	B.5 Radiance

