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Abstract—For first order complex digital filters with two’s 

complement arithmetic, it is proved in this paper that overflow 

does not occur at the steady state if the eigenvalues of the system 

matrix are inside or on the unit circle. However, if the eigenvalues 

of the system matrix are outside the unit circle, chaotic behaviors 

would occur. For both cases, a limit cycle behavior does not occur. 

For second order complex digital filters with two’s complement 

arithmetic, if all eigenvalues are on the unit circle, then there are 

two ellipses centered at the origin of the phase portraits when 

overflow does not occur. When limit cycle occurs, the number of 

ellipses exhibited on the phase portraits is no more than two times 

the periodicity of the symbolic sequences. If the symbolic 

sequences are aperiodic, some state variables may exhibit fractal 

behaviors, at the same time, irregular chaotic behaviors may occur 

in other phase variables. 

 
Index Terms—Complex digital filters, two’s complement 

arithmetic, limit cycle behaviors, fractal behaviors, chaotic 

behaviors. 

I. INTRODUCTION 

OR practical reasons, digital filters are commonly 

implemented in hardware using two‟s complement 

arithmetic for the addition operation. Because of the adder 

overflow, the physical digital filters are actually nonlinear 

discrete time systems. Some strange phenomena, such as the 

occurrence of chaotic behaviors when all eigenvalues of the 

system matrix being inside the unit circle [1], as well as the 

convergence of state vectors to some fixed points or the 

occurrence of limit cycle behaviors when all eigenvalues of the 

system matrix being outside the unit circle [2]-[3], would occur 

in real digital filters with two‟s complement arithmetic. In this 

paper, we would investigate whether these strange phenomena 

would occur in complex digital filters with two‟s complement 
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arithmetic. The differences between the real and complex digital 

filters with two‟s complement arithmetic are compared. 

For complex digital filters with two‟s complement arithmetic, 

the order of the system matrices and the number of symbolic 

variables are doubled, as well as these matrices are no longer 

realized in the direct form. Hence, all the existing results for real 

digital filters with two‟s complement arithmetic [1]-[4] do not 

apply. In fact, behaviors of real and complex digital filters with 

two‟s complement arithmetic could be very different. For 

example, it will be shown in this paper that chaotic behavior 

never occurs if the eigenvalues of the system matrix are inside or 

on the unit circle when the system matrix is realized in the 

normal form, while it was reported in [1]-[4] that chaotic 

behaviors may occur for same eigenvalues when the system 

matrix is realized in the direct form. 

Recently, some analysis has been done on second order 

complex digital filters with two‟s complement arithmetic [5]. In 

[5], a sufficient condition for the asymptotic stability of second 

order digital filters with two‟s complement arithmetic, as well as 

bounds on limit cycles, have been derived. Although complex 

signals were considered in [5], only real filter coefficients were 

considered. Also, only fixed point and limit cycle behaviors 

have been investigated. In this paper, we would generalize the 

analysis in [5] in such a way that the filter coefficients are 

complex, and chaotic behaviors will be explored. 

The outline for this paper is as follows: the results on the first 

order and second order complex digital filters with two‟s 

complement arithmetic are, respectively, represented in Section 

II and Section III. Finally, a conclusion is presented in Section 

IV. 

II. FIRST ORDER COMPLEX DIGITAL FILTERS WITH TWO‟S 

COMPLEMENT ARITHMETIC 

Consider the following first order difference equation: 

     kukayky  1 , for 0k , (1) 

where a  is a complex number,  ku  and  ky  are, respectively, 

the input and output of the difference equation. In this paper, we 

assume that   0ku  for 0k  and the whole system is only 

influenced by the initial state. Let  kyreal
 and  kyimag

 be, 

respectively, the real and imaginary parts of  ky ; 
reala  and 
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imaga  be, respectively, the real and imaginary parts of a . Then 

(1) implies that: 

      011  kyakyaky imagimagrealrealreal
, for 0k , (2) 

and 

      011  kyakyaky imagrealrealimagimag
, for 0k . (3) 

For practical implementation of (2) and (3), accumulators with 

two‟s complement arithmetic are employed for the addition 

operation. Define 

           Timagreal

T
kykykxkxk 1121 x . 

Then the complex digital filter with two‟s complement 

arithmetic can be implemented by the following state space 

equation: 

     kkk sAxx 21  , for 0k , (4) 

where 
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A  is represented in the normal form, 

and  
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s  is the vector consists of the corresponding 

symbolic sequences   Zksi   for 2,1i  and Z  denotes the set 

of integers. Define r  and   in such a way that cosrareal   

and sinraimag  . Let the eigenvalues of A  be, respectively, 

1  and 
2 . Then it can be shown easily that  jre1

 and 

 jre2
. Denoting Z  as the set of positive integers, we have 

the following lemmas: 

Lemma 1 

For 1r  and      1,11,10 2  Ix ,  01  Zk  such 

that   0s k  for all 
1kk  . 

Proof: 

Since 1r , 
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ks . 

Consider the case when   0s 0k . Denoting   














sin
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0kx , 

then  
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10 rkx  and we have 

   
2020 1 krk xx   . Now consider the case when 
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0ks . We have  
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rkx  and 

      cos141 22

20 rrkx . Since   1cos r  

because of the occurrence of overflow, we have 

   
2020 1 krk xx   . For other values of  0ks , using 

the same argument, it can be shown that 

   
2020 1 krk xx   . Hence   nrnk 

20x  for 

0n . For 1r , there exists 00 n  such that 10 n
r , so 

  0s k  for 
00 nkk  . For 1r , since    

2020 1 kk xx   

only when   0s 0k  and    
2020 10 kk xx   for   0s 0k , 

so there exists 00 n  such that   0s k  for 
00 nkk  . This 

completes the proof.  

Lemma 1 tells us that overflow does not occur at the steady 

state if 1r , even though it may occur during the transient 

state. This result is different from that discussed in [1] in which 

chaotic behaviors may occur even though the eigenvalues of 

these two system matrices are the same. This is because the 

occurrence of nonlinear behaviors depends on the realization of 

the system. In [1], the system matrix is realized in the direct 

form, while in this paper it is realized in the normal form. 

Now, let‟s consider the case when the system matrix is 

unstable. 

Lemma 2 

For 1r , there does not exist  00 Zk , ZM  and 

   0x \2

0 Ik   such that    Mkk  ss  for 
0kk  . 

Proof: 

Suppose  00  Zk , ZM  and    0x \2

0 Ik   such 

that    Mkk  ss  for 
0kk  . Define  
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D . Let T  be a 22  matrix such that 

1 TDTA .  Then we have: 
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, (5) 

for 1k . Since M  is finite, v  is a vector with finite 

magnitude. Since T  and  0kx  are independent of r , if 

  0xTT 
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 , then the first term will grow faster 

than the second term because 1r . As a result,  kx  will 

eventually unbound. As 
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for   0x 0k , so  kx  will eventually unbound. However, 

  2Ik x  for  0k , there is a contradiction. This implies that 

for 1r , there does not exist  00 Zk , ZM  and 

   0x \2

0 Ik   such that    Mkk  ss  for 
0kk  , and it 

completes the proof.  

Lemma 2 says that the symbolic sequences are aperiodic for 

1r  no matter what values of   and initial conditions are 

(except the case when the initial state is at the origin). Hence, 

chaotic behaviors occur and the trajectory will neither converge 

to some fixed points nor exhibit limit cycle behaviors. This 

result is also different from that discussed in [2]-[3], in which 

the trajectory may converge to some fixed points or limit cycle 

behaviors occur even though the eigenvalues of these two 

system matrices are the same. This is because these two system 

matrices are realized in different forms. The importance of 

Lemma 1 and 2 is that they provide information for engineers to 

avoid or utilize chaotic behaviors because chaotic behaviors can 



> Paper ID: T-SP-03587-2005.R1 < 

 

3 

be guaranteed to be avoided if the system matrix is stable and 

occurred only if the system matrix is unstable, which is 

independent of the initial conditions (except zero initial 

condition). 

III. SECOND ORDER COMPLEX DIGITAL FILTERS WITH TWO‟S 

COMPLEMENT ARITHMETIC 

Now, consider the following second order difference 

equation: 

       kukybkyaky  21 , for 0k , (6) 

where a  and b  are complex numbers and   0ku  for 0k . 

Let 
realb  and 

imagb  be, respectively, the real and imaginary parts 

of b . Then we have: 

     

    022

11





kybkyb

kyakyaky

imagimagrealreal

imagimagrealrealreal , (7) 

for 0k , and 

     

    022

11





kybkyb

kyakyaky

imagrealrealimag

imagrealrealimagimag , (8) 

for 0k . Define 

          

        Timagimagrealreal

T

kykykyky

kxkxkxkxk

1212
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x ; 

the second order complex digital filter with two‟s complement 

arithmetic can be represented by the following state space 

equation: 

     kkk sBxAx 21  , for 0k , (9) 

where 
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s . It is worth noting that the system matrix A  is 

neither represented in the direct form nor in the normal form. 

Let the eigenvalues of A  be 
i , for 4,3,2,1i . Then it can be 

shown easily that: 

2
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1

imagimagrealrealimagrealrealimag bjaajbaaaja 
 ,(10) 
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 ,(11) 
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424
22

3

imagimagrealrealimagrealrealimag bjaajbaaaja 
 ,(12) 

and 

2

424
22

4

imagimagrealrealimagrealrealimag bjaajbaaaja 
 .(13) 

In this paper, we only consider the case when 1i  for 

4,3,2,1i . This implies that there exists   ,1   and 

  ,2   such that the set of eigenvalues  4321 ,,,   can 

be represented by the set  2211 ,,,
 jjjj

eeee
 . Assuming that 

A  is diagonalizable, then there exists a real matrix 
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A. Linear case 

Lemma 3 

If   0s k  for 0k , then by plotting the phase portraits 

 kxi
 against  kx j

 for ji  , there are two ellipses centered at 

the origin exhibited on the phase portraits. 

Proof: 

 Since 
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and   0s k  for 0k , then 
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TTTTTTp . (18) 

Since 
1p  and 

2p  are real vectors, 
1R  and 

2R  are rotation 

matrices, and each of the signals  kxi
 for 4,3,2,1i , is a 

superposition of two sinusoidal signals. Hence, by plotting the 

phase portrait  kxi
 against  kx j

 for ji  , there are two 

ellipses centered at the origin. And this completes the proof.  

As the orientations of the ellipses depend on the matrices 
iT , 

the orientations of these two ellipses may be different. 

B. Limit cycle case 

Assume that there exists ZM  such that    Mkk  ss  

for 0k . Let 

   







1

0

11

0 2
M

j

jMM jsBAAIx , (19) 

 iii sBxAx 21 



, for 2,,1,0  Mi  , (20) 

and 

      ii iMkk xxTx
1ˆ , for 1,,1,0  Mi  , and for 0k .(21) 

Then 

   kk i

M

i xRx ˆ1ˆ  , for 1,,1,0  Mi  , and for 0k . (22) 

This implies that     
 ii

MkiMk xxTRx 0ˆ , for 

1,,1,0  Mi  , and for 0k . The trajectories  kx  can be 

grouped into M  sub-trajectories  iMk x  for 

1,,1,0  Mi  . Denoting 

          TiMkxiMkxiMkxiMkxiMk  4321x (23) 
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for 1,,1,0  Mi   and for 0k , and 

 Tiiiii xxxx


 4,3,2,1,x  for 1,,1,0  Mi  , (24) 

the plot of the phase portraits of the sub-trajectory  iMkxm   

against  iMkxn   for nm   consist of two ellipses centered at 

 Tnimi xx


,,
 exhibited on the phase portraits. And, the plots of 

the phase portraits of the trajectory  kxm
 against  kxn

 for 

nm   consist of no more than M2  ellipses exhibited on the 

phase portraits. 

Compared to the case of second order real digital filters with 

two‟s complement arithmetic [4], there are exactly M  ellipses 

exhibited on the phase portrait. Since 
 ji xx  for ji  , these 

ellipses are distinct. However, for the case of complex digital 

filters with two‟s complement arithmetic, it is found that some 

of the ellipses „overlapped‟ in the plot of phase portraits of 

 kxi
 against  kx j

 for ji  . However, these „overlapped‟ 

ellipses will correspond to different ellipses in the other plots of 

the phase portraits of  kxm
 against  kxn

, where nm   and 

 jinm ,,  . For example, when 0reala , 5.0imaga , 1realb , 

0imagb  and    T616.0616.0616.0616.00 x , it can be 

checked easily that 20M . However, by plotting the phase 

portraits of  kx1
 against  kx2

, and that of  kx3
 against  kx4

, 

there are only 12  ellipses exhibited on the phase portraits. 

C. Chaotic case 

When  ks  is aperiodic, fractal behaviors may exhibit on 

some phase variables, at the same time, irregular chaotic 

behaviors may occur in other phase variables. For example, 

when 0reala , 5.0imaga , 1realb , 0imagb  and 

   T6135.06135.06135.06135.00 x , it can be checked 

easily that if  kx1
 is plotted against  kx4

 or  kx2
 is plotted 

against  kx3
, then fractal patterns may exhibit on these phase 

portraits. However, random like chaotic patterns are exhibited 

on the phase portraits plotting other phase variables. This result 

is also different from that of second order real digital filters with 

two‟s complement arithmetic [4], in which only fractal patterns 

are exhibited on the phase portrait. This is because there are 

only two state variables in the system. 

IV. CONCLUSION 

For first order complex digital filters with two‟s complement 

arithmetic, if the eigenvalues of the system matrix are inside or 

on the unit circle, then overflow does not occur at the steady 

state. If the eigenvalues are outside the unit circle, then chaotic 

behavior would occur. For both cases, limit cycle behavior does 

not occur. For second order complex digital filters with two‟s 

complement arithmetic, if all eigenvalues are on the unit circle, 

then there are two ellipses exhibited on the phase portraits 

centered at the origin when overflow does not occur. When the 

symbolic sequences are periodic, the number of ellipses 

exhibited on the phase portraits is no more than two times the 

periodicity of the symbolic sequences. If the symbolic 

sequences are aperiodic, fractal behaviors may exhibit on some 

phase variables, at the same time, irregular chaotic behaviors 

may exhibit in other phase variables. 
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