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Abstract—For first order complex digital filters with two’s
complement arithmetic, it is proved in this paper that overflow
does not occur at the steady state if the eigenvalues of the system
matrix are inside or on the unit circle. However, if the eigenvalues
of the system matrix are outside the unit circle, chaotic behaviors
would occur. For both cases, a limit cycle behavior does not occur.
For second order complex digital filters with two’s complement
arithmetic, if all eigenvalues are on the unit circle, then there are
two ellipses centered at the origin of the phase portraits when
overflow does not occur. When limit cycle occurs, the number of
ellipses exhibited on the phase portraits is no more than two times
the periodicity of the symbolic sequences. If the symbolic
sequences are aperiodic, some state variables may exhibit fractal
behaviors, at the same time, irregular chaotic behaviors may occur
in other phase variables.

Index Terms—Complex digital filters, two’s complement
arithmetic, limit cycle behaviors, fractal behaviors, chaotic
behaviors.

I. INTRODUCTION

F OR practical reasons, digital filters are commonly
implemented in hardware using two’s complement
arithmetic for the addition operation. Because of the adder
overflow, the physical digital filters are actually nonlinear
discrete time systems. Some strange phenomena, such as the
occurrence of chaotic behaviors when all eigenvalues of the
system matrix being inside the unit circle [1], as well as the
convergence of state vectors to some fixed points or the
occurrence of limit cycle behaviors when all eigenvalues of the
system matrix being outside the unit circle [2]-[3], would occur
in real digital filters with two’s complement arithmetic. In this
paper, we would investigate whether these strange phenomena
would occur in complex digital filters with two’s complement
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arithmetic. The differences between the real and complex digital
filters with two’s complement arithmetic are compared.

For complex digital filters with two’s complement arithmetic,
the order of the system matrices and the number of symbolic
variables are doubled, as well as these matrices are no longer
realized in the direct form. Hence, all the existing results for real
digital filters with two’s complement arithmetic [1]-[4] do not
apply. In fact, behaviors of real and complex digital filters with
two’s complement arithmetic could be very different. For
example, it will be shown in this paper that chaotic behavior
never occurs if the eigenvalues of the system matrix are inside or
on the unit circle when the system matrix is realized in the
normal form, while it was reported in [1]-[4] that chaotic
behaviors may occur for same eigenvalues when the system
matrix is realized in the direct form.

Recently, some analysis has been done on second order
complex digital filters with two’s complement arithmetic [5]. In
[5], a sufficient condition for the asymptotic stability of second
order digital filters with two’s complement arithmetic, as well as
bounds on limit cycles, have been derived. Although complex
signals were considered in [5], only real filter coefficients were
considered. Also, only fixed point and limit cycle behaviors
have been investigated. In this paper, we would generalize the
analysis in [5] in such a way that the filter coefficients are
complex, and chaotic behaviors will be explored.

The outline for this paper is as follows: the results on the first
order and second order complex digital filters with two’s
complement arithmetic are, respectively, represented in Section
Il and Section I11. Finally, a conclusion is presented in Section
\VA

Il. FIRST ORDER COMPLEX DIGITAL FILTERS WITH TWO’S
COMPLEMENT ARITHMETIC

Consider the following first order difference equation:
y(k)+ay(k -1)=u(k), for k>0, 1)
where a is a complex number, u(k) and y(k) are, respectively,

the input and output of the difference equation. In this paper, we
assume that u(k)=0 for k>0 and the whole system is only

influenced by the initial state. Let y (k) and y, (k) be,
respectively, the real and imaginary parts of y(k); a,,, and

real
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Bimag be, respectively, the real and imaginary parts of a. Then
(1) implies that:
Yreal (k)+ Qrear Yreal (k _1)_

and
yimag (k)+ aimag yreal(k _1)+ arealyimag (k _1): 0 for k=0. (3)

For practical implementation of (2) and (3), accumulators with
two’s complement arithmetic are employed for the addition

operation. Define
)]T = [yreal(k _l) yimag (k _1)]T '

X(k)E[Xl(k) Xz(k
Then the complex digital filter with two’s complement

arithmetic can be implemented by the following state space
equation:

aimag yimag (k _l) =0, for k>0 ) (2)

x(k +1)= Ax(k)+2s(k), for k>0, 4)
where p {_areal Binag } is represented in the normal form,
— ey &
imag real

and s(k){slikﬂ is the vector consists of the corresponding
s,k

symbolic sequences s, (k)e Z for j=1,2 and Z denotes the set
of integers. Define r and ¢ in such a way that g
and a.

imag

real =—1C0SO
=_rsin@. Let the eigenvalues of A be, respectively,
2, and 4,. Then it can be shown easily that 4 =re/’ and
A, =re’?. Denoting Z* as the set of positive integers, we have

the following lemmas:
Lemma 1

For r<1 and vx(0)e 12 =[-11)x[-11), 3k eZ*U{0} such
that s(k)=0 forall k >k,.

Proof:
Since r <1,

0ol LoJRHH AR

Consider the case when s(k,)=0. Denoting x(k, )= p cosg |
0 sing

then cos(6+ ¢ )} and we have

x(k0+l):r{ n(0+9)
Ix(k, +1)|, =rp < p=|x(k,)|, - Now consider the case when
-1 cos(@+¢)| [2
k)= . We have y(k +1)= _ and
)| o 1)=10] oo |
Ix(ky +1)], =Jr’p? +4(L—rpcos(0+¢))- Since rpcos(+4)>1
because of the occurrence of overflow, we have
Ix(k, +1)], <rp < o =|x(k, )],- For other values of s(k, ), using
the same argument, it can be shown that
(i, +2), <ro< p=|x(k;)], - Hence [x(k, +n),<r"p for
n>0. For r<1, there exists n,>0 such that r"p<1, so
s(k)=0 for k>k,+n,. For r=1, since |x(k, +1)|, =[x(k, ),
only when s(k;)=0 and 0 <|x(k, +1J, <|x(k, ), for s(k,)=0.
so there exists n >0 such that s(k)=0 for k >k, +n,. This

completes the proof. [ |
Lemma 1 tells us that overflow does not occur at the steady

state if r <1, even though it may occur during the transient
state. This result is different from that discussed in [1] in which
chaotic behaviors may occur even though the eigenvalues of
these two system matrices are the same. This is because the
occurrence of nonlinear behaviors depends on the realization of
the system. In [1], the system matrix is realized in the direct
form, while in this paper it is realized in the normal form.
Now, let’s consider the case when the system matrix is
unstable.
Lemma 2
For r>1, there does not exist k, ez*U{0}, M eZ" and

x(k,)e 17\ {0} such that s(k)=s(k+M) for k >k,.
Proof:

Suppose 3k, ez U{0}, Mez" and x(k,)el1?\{0} such

M-1-j

that s(k)=s(k +M) for k >k,. Define \, —» ZAM—I—JS(k +)

j=0

and DEP 0] Let T be a 2x2 matrix such that
0 4

A=TDT™*. Then we have:
kM —1-j
J+2 3 AN gl + j)

=0
1—ﬂ.lkM ]
0
a2 1—/11M 1
T (ko )+ T Tv
0

x(k, +kM)= A" x(k,
®)

AlkM 0
= |: o lsz 1_/1sz
1-4,"
for k>1. Since M is finite, v is a vector with finite
magnitude. Since T and x(k,) are independent of r , if

T|: ﬂikM
0

than the second term because r>1. As a result, x(k) will
eventually unbound. As

T|:/llkM AQOkM :|T1x(ko) _ p|:COS(k M 6+ ¢):| 40

(ZM :|—|—1X(k0) « 0 then the first term will grow faster

0 sin(k M 6 +¢)
for x(k,)=0, so x(k) will eventually unbound. However,
x(k)e 1% for k>0, there is a contradiction. This implies that

for r>1, there does not exist k,ez*U{0}, MeZz" and
x(k,)e 17\ {0} such that s(k)=s(k+M) for k>k,, and it
completes the proof. [ ]

Lemma 2 says that the symbolic sequences are aperiodic for
r >1 no matter what values of ¢ and initial conditions are
(except the case when the initial state is at the origin). Hence,
chaotic behaviors occur and the trajectory will neither converge
to some fixed points nor exhibit limit cycle behaviors. This
result is also different from that discussed in [2]-[3], in which
the trajectory may converge to some fixed points or limit cycle
behaviors occur even though the eigenvalues of these two
system matrices are the same. This is because these two system
matrices are realized in different forms. The importance of
Lemma 1 and 2 is that they provide information for engineers to
avoid or utilize chaotic behaviors because chaotic behaviors can
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be guaranteed to be avoided if the system matrix is stable and
occurred only if the system matrix is unstable, which is
independent of the initial conditions (except zero initial
condition).

I1l. SECOND ORDER COMPLEX DIGITAL FILTERS WITH TWO’S
COMPLEMENT ARITHMETIC

Now, consider the following second order difference
equation:

y(k)+ay(k-1)+by(k —2)=u(k), for k>0, (6)

where a and b are complex numbers and u(k)=0 for k>0.

Let b, and Binag be, respectively, the real and imaginary parts

of b. Then we have:

Yreal (k)+ Qrcal Yreal (k _1)_ Qimag Yimag (k _1) ' ©)
+ breal Yreal (k - 2)_ bimag Yimag (k - 2) =0

for k>0, and
Yimag (k)+ Qinag Yreal (k _1)+ Areat Yimag (k _1) 7 (8)
+ bimag Yreal (k - 2)"" breal Yimag (k - 2) =0

for k>0. Define

x(K)=[x(k) x,(k) xy(k) x, ()]

= [yreal(k - 2) yreal(k _1) yimag (k - 2) yimag (k _1)]T
the second order complex digital filter with two’s complement
arithmetic can be represented by the following state space
equation:

x(k+1)= Ax(k)+2Bs(k), for k>0, €)
where
0 1 0 0 00
_b | —a | b a 1 0 and
A= rea rea imag imag ’ =
0 0 0 1 B 00
-b -a -b -a 0 1

imag imag real real

S(k){sl((k))] It is worth noting that the system matrix A is
s,k

neither represented in the direct form nor in the normal form.
Let the eigenvalues of A be 4, for i=1,2,34. Then it can be

shown easily that:

H 2 2 - R
a'imag 1= a'real + \/areal - aimag - 4'breal -2 J areal aimag +4 J bi

T= T T2 |and another real matrix R= R 0 1 such that
T, T, 0 R,

sin@l} 'R, E[ cos 6,

A=TRT*, g =| % )
cos g, —sing,

sin g,
-sing,

cosd,
and

n-1
x(n)=A"x(0)+ 2> A Bs(k), for n=1. (14)
k=0

A. Linear case
Lemma 3
If s(k)=0 for k>0, then by plotting the phase portraits

x; (k) against X,—(k) for i« j, there are two ellipses centered at

the origin exhibited on the phase portraits.
Proof:
Since

, _ 1 _ » 1
Ti= _Ta 1T4 (Tz _T1T3 11T4T _Tl sz (T4 _T3T1 1sz) (15)
Tz _T1 Ts_l T4 )7 T4 _Ts Tl_l Tz )7
and s(k)=0 for k>0, then

X(k)=|:T2 Rz: pl_-rlth p2:|, (16)
T4 Rz P; _Ts Rl P
where
p. = (Tz -TTT, )1 [Xl(o) X (0)]T an
+ (T4 - T3 Tlil Tz )71 [Xs (O) Xy (O)]T
and
p. =T T (L-T T T) [0 %O g

_ _ 1
+T1 sz (T4 _T3 Tl 1T2y [XS(O) )(4(0)]T
Since p, and p, are real vectors, R, and R, are rotation
matrices, and each of the signals x (k) for i=1234, is a
superposition of two sinusoidal signals. Hence, by plotting the
phase portrait x (k) against X,-(k) for j= j, there are two
ellipses centered at the origin. And this completes the proof. ®
As the orientations of the ellipses depend on the matrices T,

the orientations of these two ellipses may be different.
B. Limit cycle case
Assume that there exists M eZ* such that s(k)=s(k +M)

A= 5 ™9 ,(10)for k> 0. Let
X M i .

22 _ aimag J — Qpal _\/arealz _aimag2 _4breal -2 J Areal aimag +4 J bimag ,(11) % = Z(I A" ) JZ:;‘AM l JBS(J)’ (19)

_ — _ _ %, =Ax +2Bs(i), for i=01,- M -2, (20)
/13 _ ~ QApag J — Qpear + \/areal ~ Qynag _4breal +2] Acal Qimag —4j bimag ,(12)and

2 %,(k) =T (x(kM +i)-x,"), for i=01,---,M -1, and for k >0.(21)

and - . Then
ja = ~ g J—area.—\/area. ~Binag ~ADrear + 2 Breat Binag —4 IBinag (13) K (k+1)=R" %,(k). for i=04,---,M —1, and for k>0. (22)

2

In this paper, we only consider the case when |4|=1 for
i=1234 . This implies that there exists ¢ [-r,z| and
6, e[, x| such that the set of eigenvalues {1,4,,4,,4,} can
be represented by the set % 714 el% e71% | Assuming that
A is diagonalizable, then there exists a real matrix

This  implies  that x(kM +i)=TR*"" %,(0)+x~ , for
i=01--,M -1, and for k>0. The trajectories x(k) can be
grouped into M  sub-trajectories  x(kM+i)  for

i=01---,M —1. Denoting
(kM +i)=[x(kM+i) x(KkM+i) x(kM+i) x,(kM+i)[ (23)
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for i=01,---,M -1 and for k>0, and

X;" :[xi,l* X, X xm*]r fori=01---,M-1, (24)
the plot of the phase portraits of the sub-trajectory x_(k M +i)
against x (kM +i) for msn consist of two ellipses centered at
[Xi,m* Xi,n*]r exhibited on the phase portraits. And, the plots of
the phase portraits of the trajectory x (k) against x (k) for

m=n consist of no more than 2 M ellipses exhibited on the

phase portraits.

Compared to the case of second order real digital filters with
two’s complement arithmetic [4], there are exactly M ellipses
exhibited on the phase portrait. Since x,* #X; for j = j, these

ellipses are distinct. However, for the case of complex digital
filters with two’s complement arithmetic, it is found that some
of the ellipses ‘overlapped’ in the plot of phase portraits of
x, (k) against xj(k) for j= j. However, these ‘overlapped’
ellipses will correspond to different ellipses in the other plots of
the phase portraits of x (k) against x (k), where m=n and
m,ne i, j}. Forexample, when a__ =0, Bipag = 0.5+ By =—1,

binag =0 Nd x(0)=[-0.616 0.616 0.616 —0.616] , it can be
checked easily that M =20. However, by plotting the phase
portraits of x (k) against x,(k), and that of x, (k) against x,(k),

there are only 12 ellipses exhibited on the phase portraits.
C. Chaotic case
When s(k) is aperiodic, fractal behaviors may exhibit on

some phase variables, at the same time, irregular chaotic
behaviors may occur in other phase variables. For example,
when a_ =0 ., a,,=05 . b,=-1. b, =0 and
x(0)=[-0.6135 0.6135 0.6135 -0.6135], it can be checked
easily that if x (k) is plotted against x,(k) or x,(k) is plotted
against x,(k), then fractal patterns may exhibit on these phase

real real imag

portraits. However, random like chaotic patterns are exhibited
on the phase portraits plotting other phase variables. This result
is also different from that of second order real digital filters with
two’s complement arithmetic [4], in which only fractal patterns
are exhibited on the phase portrait. This is because there are
only two state variables in the system.

IV. CONCLUSION

For first order complex digital filters with two’s complement
arithmetic, if the eigenvalues of the system matrix are inside or
on the unit circle, then overflow does not occur at the steady
state. If the eigenvalues are outside the unit circle, then chaotic
behavior would occur. For both cases, limit cycle behavior does
not occur. For second order complex digital filters with two’s
complement arithmetic, if all eigenvalues are on the unit circle,
then there are two ellipses exhibited on the phase portraits
centered at the origin when overflow does not occur. When the
symbolic sequences are periodic, the number of ellipses
exhibited on the phase portraits is no more than two times the
periodicity of the symbolic sequences. If the symbolic
sequences are aperiodic, fractal behaviors may exhibit on some

phase variables, at the same time, irregular chaotic behaviors
may exhibit in other phase variables.
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