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 

Abstract—For first order complex digital filters with two’s 

complement arithmetic, it is proved in this paper that overflow 

does not occur at the steady state if the eigenvalues of the system 

matrix are inside or on the unit circle. However, if the eigenvalues 

of the system matrix are outside the unit circle, chaotic behaviors 

would occur. For both cases, a limit cycle behavior does not occur. 

For second order complex digital filters with two’s complement 

arithmetic, if all eigenvalues are on the unit circle, then there are 

two ellipses centered at the origin of the phase portraits when 

overflow does not occur. When limit cycle occurs, the number of 

ellipses exhibited on the phase portraits is no more than two times 

the periodicity of the symbolic sequences. If the symbolic 

sequences are aperiodic, some state variables may exhibit fractal 

behaviors, at the same time, irregular chaotic behaviors may occur 

in other phase variables. 

 
Index Terms—Complex digital filters, two’s complement 

arithmetic, limit cycle behaviors, fractal behaviors, chaotic 

behaviors. 

I. INTRODUCTION 

OR practical reasons, digital filters are commonly 

implemented in hardware using two‟s complement 

arithmetic for the addition operation. Because of the adder 

overflow, the physical digital filters are actually nonlinear 

discrete time systems. Some strange phenomena, such as the 

occurrence of chaotic behaviors when all eigenvalues of the 

system matrix being inside the unit circle [1], as well as the 

convergence of state vectors to some fixed points or the 

occurrence of limit cycle behaviors when all eigenvalues of the 

system matrix being outside the unit circle [2]-[3], would occur 

in real digital filters with two‟s complement arithmetic. In this 

paper, we would investigate whether these strange phenomena 

would occur in complex digital filters with two‟s complement 
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arithmetic. The differences between the real and complex digital 

filters with two‟s complement arithmetic are compared. 

For complex digital filters with two‟s complement arithmetic, 

the order of the system matrices and the number of symbolic 

variables are doubled, as well as these matrices are no longer 

realized in the direct form. Hence, all the existing results for real 

digital filters with two‟s complement arithmetic [1]-[4] do not 

apply. In fact, behaviors of real and complex digital filters with 

two‟s complement arithmetic could be very different. For 

example, it will be shown in this paper that chaotic behavior 

never occurs if the eigenvalues of the system matrix are inside or 

on the unit circle when the system matrix is realized in the 

normal form, while it was reported in [1]-[4] that chaotic 

behaviors may occur for same eigenvalues when the system 

matrix is realized in the direct form. 

Recently, some analysis has been done on second order 

complex digital filters with two‟s complement arithmetic [5]. In 

[5], a sufficient condition for the asymptotic stability of second 

order digital filters with two‟s complement arithmetic, as well as 

bounds on limit cycles, have been derived. Although complex 

signals were considered in [5], only real filter coefficients were 

considered. Also, only fixed point and limit cycle behaviors 

have been investigated. In this paper, we would generalize the 

analysis in [5] in such a way that the filter coefficients are 

complex, and chaotic behaviors will be explored. 

The outline for this paper is as follows: the results on the first 

order and second order complex digital filters with two‟s 

complement arithmetic are, respectively, represented in Section 

II and Section III. Finally, a conclusion is presented in Section 

IV. 

II. FIRST ORDER COMPLEX DIGITAL FILTERS WITH TWO‟S 

COMPLEMENT ARITHMETIC 

Consider the following first order difference equation: 

     kukayky  1 , for 0k , (1) 

where a  is a complex number,  ku  and  ky  are, respectively, 

the input and output of the difference equation. In this paper, we 

assume that   0ku  for 0k  and the whole system is only 

influenced by the initial state. Let  kyreal
 and  kyimag

 be, 

respectively, the real and imaginary parts of  ky ; 
reala  and 
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imaga  be, respectively, the real and imaginary parts of a . Then 

(1) implies that: 

      011  kyakyaky imagimagrealrealreal
, for 0k , (2) 

and 

      011  kyakyaky imagrealrealimagimag
, for 0k . (3) 

For practical implementation of (2) and (3), accumulators with 

two‟s complement arithmetic are employed for the addition 

operation. Define 

           Timagreal

T
kykykxkxk 1121 x . 

Then the complex digital filter with two‟s complement 

arithmetic can be implemented by the following state space 

equation: 

     kkk sAxx 21  , for 0k , (4) 

where 














realimag

imagreal

aa

aa
A  is represented in the normal form, 

and  
 

 








ks

ks
k

2

1
s  is the vector consists of the corresponding 

symbolic sequences   Zksi   for 2,1i  and Z  denotes the set 

of integers. Define r  and   in such a way that cosrareal   

and sinraimag  . Let the eigenvalues of A  be, respectively, 

1  and 
2 . Then it can be shown easily that  jre1

 and 

 jre2
. Denoting Z  as the set of positive integers, we have 

the following lemmas: 

Lemma 1 

For 1r  and      1,11,10 2  Ix ,  01  Zk  such 

that   0s k  for all 
1kk  . 

Proof: 

Since 1r , 

 


























































































1

1
,

1

1
,

1

0
,

1

1
,

1

1
,

1

0
,

0

1
,

0

1
,

0

0
ks . 

Consider the case when   0s 0k . Denoting   














sin

cos
0kx , 

then  
 

 

















sin

cos
10 rkx  and we have 

   
2020 1 krk xx   . Now consider the case when 

  









0

1
0ks . We have  

 

  






















0

2

sin

cos
10




rkx  and 

      cos141 22

20 rrkx . Since   1cos r  

because of the occurrence of overflow, we have 

   
2020 1 krk xx   . For other values of  0ks , using 

the same argument, it can be shown that 

   
2020 1 krk xx   . Hence   nrnk 

20x  for 

0n . For 1r , there exists 00 n  such that 10 n
r , so 

  0s k  for 
00 nkk  . For 1r , since    

2020 1 kk xx   

only when   0s 0k  and    
2020 10 kk xx   for   0s 0k , 

so there exists 00 n  such that   0s k  for 
00 nkk  . This 

completes the proof.  

Lemma 1 tells us that overflow does not occur at the steady 

state if 1r , even though it may occur during the transient 

state. This result is different from that discussed in [1] in which 

chaotic behaviors may occur even though the eigenvalues of 

these two system matrices are the same. This is because the 

occurrence of nonlinear behaviors depends on the realization of 

the system. In [1], the system matrix is realized in the direct 

form, while in this paper it is realized in the normal form. 

Now, let‟s consider the case when the system matrix is 

unstable. 

Lemma 2 

For 1r , there does not exist  00 Zk , ZM  and 

   0x \2

0 Ik   such that    Mkk  ss  for 
0kk  . 

Proof: 

Suppose  00  Zk , ZM  and    0x \2

0 Ik   such 

that    Mkk  ss  for 
0kk  . Define  





 
jM

j

jM jk
1

0

0

12 sAv  

and 










2

1

0

0




D . Let T  be a 22  matrix such that 

1 TDTA .  Then we have: 

     

  vTTxTT

sAxAx

1

2

2

1

1

0

1

2

1

1

0

0

1

00

1

1
0

0
1

1

0

0

2













































 

M

kM

M

kM

kM

kM

jkM

j

jkMkM

k

jkkkMk













, (5) 

for 1k . Since M  is finite, v  is a vector with finite 

magnitude. Since T  and  0kx  are independent of r , if 

  0xTT 









0

1

2

1

0

0
k

kM

kM



 , then the first term will grow faster 

than the second term because 1r . As a result,  kx  will 

eventually unbound. As 

 
 
 

0xTT 































Mk

Mk
rk kM

kM

kM

sin

cos

0

0
0

1

2

1  

for   0x 0k , so  kx  will eventually unbound. However, 

  2Ik x  for  0k , there is a contradiction. This implies that 

for 1r , there does not exist  00 Zk , ZM  and 

   0x \2

0 Ik   such that    Mkk  ss  for 
0kk  , and it 

completes the proof.  

Lemma 2 says that the symbolic sequences are aperiodic for 

1r  no matter what values of   and initial conditions are 

(except the case when the initial state is at the origin). Hence, 

chaotic behaviors occur and the trajectory will neither converge 

to some fixed points nor exhibit limit cycle behaviors. This 

result is also different from that discussed in [2]-[3], in which 

the trajectory may converge to some fixed points or limit cycle 

behaviors occur even though the eigenvalues of these two 

system matrices are the same. This is because these two system 

matrices are realized in different forms. The importance of 

Lemma 1 and 2 is that they provide information for engineers to 

avoid or utilize chaotic behaviors because chaotic behaviors can 
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be guaranteed to be avoided if the system matrix is stable and 

occurred only if the system matrix is unstable, which is 

independent of the initial conditions (except zero initial 

condition). 

III. SECOND ORDER COMPLEX DIGITAL FILTERS WITH TWO‟S 

COMPLEMENT ARITHMETIC 

Now, consider the following second order difference 

equation: 

       kukybkyaky  21 , for 0k , (6) 

where a  and b  are complex numbers and   0ku  for 0k . 

Let 
realb  and 

imagb  be, respectively, the real and imaginary parts 

of b . Then we have: 

     

    022

11





kybkyb

kyakyaky

imagimagrealreal

imagimagrealrealreal , (7) 

for 0k , and 

     

    022

11





kybkyb

kyakyaky

imagrealrealimag

imagrealrealimagimag , (8) 

for 0k . Define 

          

        Timagimagrealreal

T

kykykyky

kxkxkxkxk

1212

4321



x ; 

the second order complex digital filter with two‟s complement 

arithmetic can be represented by the following state space 

equation: 

     kkk sBxAx 21  , for 0k , (9) 

where 


























realrealimagimag

imagimagrealreal

abab

abab

1000

0010

A
, 





















10

00

01

00

B
 and 

 
 

 








ks

ks
k

2

1
s . It is worth noting that the system matrix A  is 

neither represented in the direct form nor in the normal form. 

Let the eigenvalues of A  be 
i , for 4,3,2,1i . Then it can be 

shown easily that: 

2

424
22

1

imagimagrealrealimagrealrealimag bjaajbaaaja 
 ,(10) 

2

424
22

2

imagimagrealrealimagrealrealimag bjaajbaaaja 
 ,(11) 

2

424
22

3

imagimagrealrealimagrealrealimag bjaajbaaaja 
 ,(12) 

and 

2

424
22

4

imagimagrealrealimagrealrealimag bjaajbaaaja 
 .(13) 

In this paper, we only consider the case when 1i  for 

4,3,2,1i . This implies that there exists   ,1   and 

  ,2   such that the set of eigenvalues  4321 ,,,   can 

be represented by the set  2211 ,,,
 jjjj

eeee
 . Assuming that 

A  is diagonalizable, then there exists a real matrix 











43

21

TT

TT
T and another real matrix 











2

1

R0

0R
R  such that 

1 TRTA , 












11

11

1
cossin

sincos




R , 













22

22

2
cossin

sincos




R  

and 

     





1

0

120
n

k

knn kn sBAxAx , for 1n . (14) 

A. Linear case 

Lemma 3 

If   0s k  for 0k , then by plotting the phase portraits 

 kxi
 against  kx j

 for ji  , there are two ellipses centered at 

the origin exhibited on the phase portraits. 

Proof: 

 Since 

   
    
























1

2

1

134

1

4

1

312

1

2

1

1342

1

1

1

4

1

3124

1

31

TTTTTTTT

TTTTTTTTTTTT
T (15) 

and   0s k  for 0k , then 

  













213124

211122

pRTpRT

pRTpRT
x

kk

kk

k , (16) 

where 

      

      T

T

xx

xx

00

00

43

1

2

1

134

21

1

4

1

3121









TTTT

TTTTp  (17) 

and 

      

      T

T

xx

xx

00

00

43

1

2

1

1342

1

1

21

1

4

1

3124

1

32









TTTTTT

TTTTTTp . (18) 

Since 
1p  and 

2p  are real vectors, 
1R  and 

2R  are rotation 

matrices, and each of the signals  kxi
 for 4,3,2,1i , is a 

superposition of two sinusoidal signals. Hence, by plotting the 

phase portrait  kxi
 against  kx j

 for ji  , there are two 

ellipses centered at the origin. And this completes the proof.  

As the orientations of the ellipses depend on the matrices 
iT , 

the orientations of these two ellipses may be different. 

B. Limit cycle case 

Assume that there exists ZM  such that    Mkk  ss  

for 0k . Let 

   







1

0

11

0 2
M

j

jMM jsBAAIx , (19) 

 iii sBxAx 21 



, for 2,,1,0  Mi  , (20) 

and 

      ii iMkk xxTx
1ˆ , for 1,,1,0  Mi  , and for 0k .(21) 

Then 

   kk i

M

i xRx ˆ1ˆ  , for 1,,1,0  Mi  , and for 0k . (22) 

This implies that     
 ii

MkiMk xxTRx 0ˆ , for 

1,,1,0  Mi  , and for 0k . The trajectories  kx  can be 

grouped into M  sub-trajectories  iMk x  for 

1,,1,0  Mi  . Denoting 

          TiMkxiMkxiMkxiMkxiMk  4321x (23) 
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for 1,,1,0  Mi   and for 0k , and 

 Tiiiii xxxx


 4,3,2,1,x  for 1,,1,0  Mi  , (24) 

the plot of the phase portraits of the sub-trajectory  iMkxm   

against  iMkxn   for nm   consist of two ellipses centered at 

 Tnimi xx


,,
 exhibited on the phase portraits. And, the plots of 

the phase portraits of the trajectory  kxm
 against  kxn

 for 

nm   consist of no more than M2  ellipses exhibited on the 

phase portraits. 

Compared to the case of second order real digital filters with 

two‟s complement arithmetic [4], there are exactly M  ellipses 

exhibited on the phase portrait. Since 
 ji xx  for ji  , these 

ellipses are distinct. However, for the case of complex digital 

filters with two‟s complement arithmetic, it is found that some 

of the ellipses „overlapped‟ in the plot of phase portraits of 

 kxi
 against  kx j

 for ji  . However, these „overlapped‟ 

ellipses will correspond to different ellipses in the other plots of 

the phase portraits of  kxm
 against  kxn

, where nm   and 

 jinm ,,  . For example, when 0reala , 5.0imaga , 1realb , 

0imagb  and    T616.0616.0616.0616.00 x , it can be 

checked easily that 20M . However, by plotting the phase 

portraits of  kx1
 against  kx2

, and that of  kx3
 against  kx4

, 

there are only 12  ellipses exhibited on the phase portraits. 

C. Chaotic case 

When  ks  is aperiodic, fractal behaviors may exhibit on 

some phase variables, at the same time, irregular chaotic 

behaviors may occur in other phase variables. For example, 

when 0reala , 5.0imaga , 1realb , 0imagb  and 

   T6135.06135.06135.06135.00 x , it can be checked 

easily that if  kx1
 is plotted against  kx4

 or  kx2
 is plotted 

against  kx3
, then fractal patterns may exhibit on these phase 

portraits. However, random like chaotic patterns are exhibited 

on the phase portraits plotting other phase variables. This result 

is also different from that of second order real digital filters with 

two‟s complement arithmetic [4], in which only fractal patterns 

are exhibited on the phase portrait. This is because there are 

only two state variables in the system. 

IV. CONCLUSION 

For first order complex digital filters with two‟s complement 

arithmetic, if the eigenvalues of the system matrix are inside or 

on the unit circle, then overflow does not occur at the steady 

state. If the eigenvalues are outside the unit circle, then chaotic 

behavior would occur. For both cases, limit cycle behavior does 

not occur. For second order complex digital filters with two‟s 

complement arithmetic, if all eigenvalues are on the unit circle, 

then there are two ellipses exhibited on the phase portraits 

centered at the origin when overflow does not occur. When the 

symbolic sequences are periodic, the number of ellipses 

exhibited on the phase portraits is no more than two times the 

periodicity of the symbolic sequences. If the symbolic 

sequences are aperiodic, fractal behaviors may exhibit on some 

phase variables, at the same time, irregular chaotic behaviors 

may exhibit in other phase variables. 
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