
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 41

Elementary Analysis of the Communication
Complexity of Divide-and-Conquer Diffie-Hellman

Key Agreement Protocol
Muhammad Arzaki

Abstract—We present a rigorous elementary analysis of the
communication complexity of the Divide-and-Conquer Diffie-
Hellman Key Agreement Protocol (DC-DHKA). The analysis is
conducted by first determining the number of transmissions in
DC-DHKA and then comparing the resulting communication
complexity of this protocol with other variants of Diffie-Hellman
key agreement protocols that utilize regular Diffie-Hellman key,
namely the ING, GDH.1, GDH.2, and GDH.3 protocols. The
mathematical and numerical analyses show that the total number
of bits transmitted in the DC-DHKA protocol is always fewer
than those of ING, GDH.1, and GDH.2 protocols for a group of
N ≥ 19 participants. In addition, we also prove that the total
number of bits required for the entire messages’ transmissions
in DC-DHKA protocol for N participants that uses the multi-
plicative group F∗q is dlog2 qe ·

[
2dlog2 Ne(dlog2 Ne+ 1)− 2

]
.

Index Terms—communication complexity, DC-DHKA, Diffie-
Hellman, key agreement.

I. INTRODUCTION

ELECTRONIC and digital messages are now ubiquitously
used as communication mediums, which are often trans-

mitted using the Internet and may contain confidential in-
formation. Consequently, messages are usually secured using
either a symmetric or an asymmetric cryptosystem. In many
cases, symmetric encryption is more preferred because it is
generally faster than the asymmetric one [1], [2]. In a sym-
metric cryptosystem, encryption and decryption are performed
using the same key. When the message transmission involves
more than two communicating parties, the key management
protocol is indispensable.

There are three fundamentally different approaches to group
key management protocols [3], [4]. The first one depends on a
single entity called a trusted third party (TTP) to generate and
distribute the key to all group members. This method has a
drawback because it requires the key to be sent using a secure
channel and the TTP must be constantly available during the
entire process of key distribution. The second approach is
called the decentralized group distribution, which involves a
dynamic selection of a subset of group members to generate
and distribute keys to another subset of communicating parties.
Although this method does not require a single entity like the
TTP, it still needs a considerable cost to construct a secure
communication channel. The last approach is the contributory

Muhammad Arzaki is with the Computing Laboratory, School of
Computing, Telkom University, Bandung 40257, Indonesia; email:
arzaki@telkomuniversity.ac.id.

Manuscript received June 23, 2022; accepted August 3, 2022.

group key agreement protocol. Unlike the previous two ap-
proaches, this method requires every participant to contribute
an equal portion to the mutual group key. Such a key is
computed as a function of all members’ shares. The term
agreement is used instead of distribution to emphasize the
contributory character of the key management. In this method,
all participants somewhat agree with the mutual secret key.

Since the development of the two-party key agreement
protocol by W. Diffie and M. Hellman [5], numerous solutions
have been offered to address the multi-party (group) key
agreement. Some of these methods are those proposed by
Ingemarsson et al. [6], Burmester and Desmedt [7], Steiner et
al. [8], Becker and Wille [9], Kim et al. [3], Gaonkar and Pai
[10], and Dewoprabowo et al. [11]. The protocols discussed
by Ingemarsson (hereinafter referred to as ING protocol),
Steiner et al. (hereinafter referred to as GDH protocol), and
Dewoparabowo et al. (hereinafter referred to as DC-DHKA)
are particularly interesting to investigate because the resulting
mutual keys in these protocols are regular Diffie-Hellman key
(regular DH key). A regular DH key is a key of the form ge

where g is the generator of a particular finite multiplicative
group and e is the product of all secret exponents of all
communicating parties.

A comparative analysis of computation and communication
costs among ING, BD, GDH.1, GDH.2, GDH.3, and DC-
DHKA protocols have been discussed in [11]. From this anal-
ysis, the number of modular exponentiations in the DC-DHKA
protocol is asymptotically fewer than those of ING, BD,
GDH.1, and GDH.2 protocols, but it is asymptotically more
than that of GDH.3. The communication complexity analysis
in [11] discusses the total number of transmission phases, the
total number of messages sent and received per participant,
and the types of transmission phases that occurred in the
entire protocol. Analysis in [11] is also supplemented with a
discussion about the homogeneity of the computational burden
for each participant in all relevant protocols. Nevertheless, this
analysis does not discuss an elementary aspect regarding the
number of bits required to be communicated for constructing
the mutual secret key. Although the key agreement protocols
that use regular DH keys are not the most efficient ones,
theoretical exploration related to the elementary analysis of
communication complexity for these protocols is important
and interesting to investigate.

Our objective is to investigate the elementary communica-
tion complexity of the DC-DHKA protocol. Here, the term
elementary refers to the investigation regarding the number of

mailto:arzaki@telkomuniversity.ac.id


INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 42

bits required to be transmitted for constructing the mutual se-
cret key. To do so, we discuss the total number of transmissions
in the protocol as well as the size of each message transmitted.
We perform both mathematical analysis and numerical experi-
ments to investigate the elementary communication complexity
of DC-DHKA protocols. For comparative purposes, we also
present similar investigations on ING, GDH.1, GDH.2, and
GDH.3 protocols to derive a conclusion regarding the elemen-
tary communication complexities of pertinent key agreement
protocols that use the regular DH key. Thus, our analysis com-
plements the previous evaluation of the DC-DHKA protocol
regarding its complexity and security in [11], [12].

II. COMMUNICATION COMPLEXITY OF KEY AGREEMENT
PROTOCOLS

Communication complexity is a mathematical study that
addresses the amount of communication required by the com-
municating parties to achieve a common goal [13]. It was
first introduced by Yao [14] and it is also defined as the
minimum number of bits that the communicating parties need
to exchange (or transmit) for achieving a particular objective
[15]. The notion of communication complexity has been used
to determine the efficiency of communication in key agreement
protocols as discussed in [9]. The discussion regarding the
communication complexity of key agreement protocols is also
recently addressed by Haitner et al. [16].

Analyses regarding the communication complexity of
Diffie-Hellman-based group key agreement protocols are dis-
cussed by Steiner et al. [8], Becker and Wille [9], and
Dewoprabowo et al. [11]. In [8], [9], [11], the measurement
of the communication complexity is performed by considering
the number of messages transmitted in the entire protocol, the
number of exchanges or transmissions, and the type of phases
as well as the number of phases required in the transmission.

Assuming that a broadcast transmission (a transmission of
a message from one participant to all other participants) is
not allowed, it is proven that for any key agreement protocol
involving N ≥ 4 participants, the total number of messages is
bounded below by 2(N−2), the total number of exchanges is
bounded below by 2(N − 4), and the total number of simple
rounds (a round in which every party sends and receives at
most one message) is bounded below by dlog2Ne [9]. In
contrast, if the broadcast transmission is allowed, then the total
number of messages, as well as the number of exchanges in
the protocol, is bounded below by N . Some examples of key
agreement protocols that achieve the aforementioned efficiency
are the octopus and hypercube protocols described in [9] as
well as the tree-based group Diffie-Hellman protocol (TGDH)
described in [3]. However, it should be noted that all of these
protocols do not use the regular DH key as their mutual secret
key.

Although the communication complexity of group key
agreements that employ the regular DH key has been discussed
in [8], [9], [11], all of its investigations do not address the
number of bits required in the transmission process to obtain
the mutual secret key. In this paper, we conduct elementary
analyses of the communication complexity of group key

agreements by considering the number of bits used in the
entire protocol. Hence, even though two protocols might have
different quantity in terms of the number of transmissions,
they can have an identical number of bits that needs to be
transmitted to agree on a mutual secret key.

III. RELATED DIFFIE-HELLMAN KEY AGREEMENT
PROTOCOLS AND THEIR COMMUNICATION COMPLEXITIES

In this section, we perform elementary analyses of the
communication complexities of several Diffie-Hellman key
agreement protocols that utilize the regular Diffie-Hellman
key (DH key), namely the ING, GDH.1, GDH.2, and GDH.3
protocols, for comparative purposes. We begin our analyses
by introducing some mathematical notations and definitions
we use throughout this paper which are adapted from previous
works such as [8], [11], [12]. These theoretical assumptions
are used to analyze the related Diffie-Hellman key agreement
protocols as well as the DC-DHKA.

A. Mathematical Preliminaries and Assumptions

Throughout this paper—unless it is specified otherwise—
a key agreement protocol is always observed in a collection
of N participants, denoted by M0,M1, . . . ,MN−1, where
N > 1 is an integer. In practice, these participants can be
any communicating parties. All computations in a protocol are
observed in the multiplicative group of a finite field Fq which
is denoted by F∗q . Here, we have F∗q = Fq r {0}. We denote a
generator of F∗q by g, i.e., every a ∈ F∗q can be expressed as
a = gy for some integer 0 ≤ y ≤ q − 1.

Although in algebra the finite field Fq is well-defined as long
as q is a prime power, our investigation generally assumes that
q is a prime number. This assumption is used in conformity
with the underlying theories in [8], [11], [12]. For any two
elements a, b ∈ Fq , we write c = a mod b if a = α · b+ c for
some α ∈ Fq and 0 ≤ c ≤ b−1. In this paper, we use the mod
operator in Fq interchangeably with the usual mod operator
in the set of integers. The semantics of this operator is referred
from the context of a mathematical expression. Furthermore,
since Fq is a field, the value a−1 mod q ∈ Fq for any non-zero
a refers to the multiplicative inverse of a, that is a · (a−1 mod
q) = 1 in Fq . When q is a prime number, a−1 mod q can be
easily determined using the extended Euclid’s algorithm (see,
e.g., [17, Theorem 1.11] and [18, p. 286]).

Message transmissions in ING, GDH.1, GDH.2, GDH.3,
and DC-DHKA protocols involve sending at least one value
of an expression gx where x is a positive integer and g is a
fixed and publicly known generator of F∗q . Since gx ∈ F∗q and
every element of Fq can be represented using dlog2 qe bits,
then we assume that any message of the form gx requires a
data representation of dlog2 qe bits.

Every participant Mi for 0 ≤ i ≤ N − 1 possesses a
secret exponent si. Theoretically, the value of si is unknown to
anyone except Mi. We generally assume that 1 ≤ si ≤ q− 1.
Although in practice the value of si can be any positive
integer provided that si 6≡ 0(mod q), the value of gsi is
always restricted to the set F∗q . Moreover, notice that the



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 43

condition si 6≡ 0(mod q) ensures that si is invertible in F∗q
and gsi ∈ F∗q .

Suppose we consider a sequence of positive integers
αi, αi+1, . . . , αj−1, αj . For two integers i and j such that
i ≤ j, we define

∏j
k=i αk = αiαi+1 · · ·αj−1αj . We also

define
∏i

k=i αk = αi and if i > j we define the empty product∏j
k=i αk = 1.
In a Diffie-Hellman key agreement with N participants

M0,M1, . . . ,MN−1 whose secret exponents are respectively
s0, s1, . . . , sN−1, we define the regular Diffie-Hellman key
(regular DH key) as the value ge where e =

∏N−1
i=0 si.

The security of a DHKA protocol is related to the group
Diffie-Hellman problem, that is, we assume that it is currently
computationally intractable to find the value of ge using one
or more values of the form gy where y =

∏
s∈S′ s where

S′ ⊂ S and S = {s0, s1, . . . , sN−1} [11, Definition 2]. This
mathematical problem is generalized from the conventional
two-party Diffie-Hellman problem in [17, p. 69].

Some key agreement protocols use list data structure to
store one or more values over F∗q . Throughout this paper, we
consider the zero-based index convention for list. A list L of
length n over F∗q is denoted as L =

[
L[0], L[1], . . . , L[n− 1]

]
where L[i] ∈ F∗q for each i such that 0 ≤ i ≤ n− 1.

B. The ING Protocol and Its Analysis

The ING1 protocol was first formalized by Ingemarsson
et al. in [6]. Suppose there are N participants, labeled as
M0,M1, . . . ,MN−1, and each participant Mi has a secret
exponent si. The common secret key of this protocol is ge

where e =
∏N−1

i=0 si. To obtain this key, the protocol requires
N − 1 phases of message transmissions.

The ING protocol works in a straightforward way. To begin
with, the participants are arranged in a somewhat circular
configuration. For simplicity, suppose the message sent by Mi

in the phase j where 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 2
is denoted by Message(i, j). Before any transmission takes
place, every participant Mi for 0 ≤ i ≤ N − 1 computes
Message(i, 0) = gsi . In the initial phase of transmission,
Mi sends Message(i, 0) to M(i+1) mod N . Once receiving
this message, M(i+1) mod N computes Message((i + 1) mod
N, 1) = Message(i mod N, 0)si+1 and then sends this value
to M(i+2) mod N . In general, in phase j where 1 ≤ j ≤
N − 2, every participant Mi for 0 ≤ i ≤ N − 1 computes
Message((i− 1) mod N, j − 1)si and subsequently sends the
result to M(i+1) mod N . In the last phase (phase N −1), every
participant Mi calculates Message((i − 1) mod N,N − 2)si .
This value is not sent anywhere but it is used as the common
secret key. Using mathematical induction, we can prove that at
the end of phase N − 1 every participant Mi (0 ≤ i ≤ N − 1)
obtains Message((i − 1) mod N,N − 2)si = ge, where
e =

∏N−1
i=0 si. In addition, we observe that every participant

in this protocol eventually obtains the common secret key at
the same time.

Notice that ING protocol involves N − 1 phases of trans-
missions (namely phase 0 to N − 2) and a message sent from

1The original name of this protocol is CDKS (Conference Key Distribution
System). The term ING was popularized in [8].

Mi to M(i+1) mod N is of the form gx where x =
∏

s∈S′ s
and S′ is a proper subset of the set of secret exponents
{s0, s1, . . . , sN−1}. Using the previous assumption that any
value of the form gx requires dlog2 qe bits of data rep-
resentation, then the total number of bits involved in the
entire transmissions in ING protocol with N participants is
dlog2 qe ·N · (N − 1).

C. The GDH.1 Protocol and Its Analysis

The GDH.1 protocol was one of the first non-trivial Diffie-
Hellman key agreement protocols that use a regular DH key.2

This protocol was first introduced by Steiner et al. in [8].
It uses two main phases, namely the upflow and downflow
phases. Unlike the ING protocol in which the participants
are arranged in a somewhat circular configuration, in GDH.1
protocol the communicating parties are set up in a linear
configuration. In both upflow and downflow phases, a message
is a list whose entries are elements of F∗q .

At the beginning of the upflow phase, M0 defines a list
U0 = [gs0 ] and sends this list to M1. For each i such that
1 ≤ i ≤ N − 2, the participant Mi constructs a list Ui using
the following procedure:

1) Mi takes the last entry of the list Ui−1 and raises it to
the power of si, suppose we denote this operation by
(Ui−1[last])

si ;
2) Mi defines the list Ui = Ui−1 ‖ [(Ui−1[last]

si)], where
‖ represents the concatenation operator for two lists.

At the end of the upflow phase, MN−1 takes the last entry of
UN−2 and raises it to the power of sN−1. We can easily prove
that the result of this calculation, namely (UN−2[last])

sN−1 ,
is the common secret key (the regular DH key). Here, MN−1
obtains the common secret key before any other participant.

To distribute the key to other participants, MN−1 initializes
a downflow list DN−1 of length N − 1 as

DN−1 =
[
g

(∏N−1
k=N−1 sk

)(∏j−1
k=0 sk

)
: 0 ≤ j ≤ N − 2

]
=
[
gsN−1 , gsN−1s0 , . . . , gsN−1s0s1···sN−4sN−3

]
.

(1)

Each participant Mi for 0 ≤ i ≤ N −2 in descending order
(starting from N − 2) performs the following steps:

1) Mi takes the last entry of Di+1 and raises it to the power
of si to obtain the common secret key;

2) if i 6= 0, Mi defines Di by removing the last entry of
Di+1 and then raising all remaining entries to the power
of si, this list is then sent to Mi−1.

Observe that every participant Mi for 1 ≤ i ≤ N − 2 obtains
the list Di+1 from Mi+1 of the form

Di+1 =
[
g

(∏N−1
k=i+1 sk

)(∏j−1
k=0 sk

)
: 0 ≤ j ≤ i

]
. (2)

To acquire the common secret key Mi needs to take the

last entry of Di+1, namely g
(∏N−1

k=i+1 sk

)(∏i−1
k=0 sk

)
, and raises

it to the power of si. Notice that for i = 0, M0 obtains

D1 =
[
g

(∏N−1
k=1 sk

)(∏j−1
k=0 sk

)
: 0 ≤ j ≤ 0

]
=
[
g
∏N−1

k=1 sk
]
.

2The term GDH is an abbreviation of Group Diffie-Hellman.



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 44

Thus, to obtain the common secret key M0 needs to raise the
only element in D1 to the power of s0. The correctness of
this protocol relies on the fact that the exponent product, i.e.,
the value

∏
k∈[0,N−1] sk, is always identical regardless of the

order of the exponents. This happens due to the commutativity
of integer multiplication.

From the description of this protocol, we observe that the
participant Mi is the (N − i)-th participant to retrieve the
mutual secret key. That is, the first group member to obtain
the key is MN−1, followed by MN−2, and so on until M0.
Hence, unlike the ING protocol, every participant in GDH.1
obtains the common secret key at different times.

To analyze the number of bits required in the entire trans-
mission of GDH.1 we assume that every value of the form
gx where x is a positive integer requires a data representation
of dlog2 qe bits. Notice that during the upflow phase every
participant Mi for 0 ≤ i ≤ N − 2 sends a list Ui of length
i+1 whose entries are of the form gx for some positive integer
x. As a result, the total number of bits required to send all
messages during the upflow phase is given by

N−2∑
i=0

(i+ 1)dlog2 qe = dlog2 qe ·
N−1∑
i=1

i

= dlog2 qe ·
N · (N − 1)

2
. (3)

For the downflow phase, each participant Mi for 1 ≤ i ≤
N−1 in descending order sends a list Di of length i to Mi−1.
Every entry of Di is of the form gx for some positive integer
x and requires dlog2 qe bits of data representation. As a result,
the total number of bits required to send all messages during
the downflow phase is given by

N−1∑
i=1

i · dlog2 qe = dlog2 qe ·
N · (N − 1)

2
. (4)

Finally, by combining (3) and (4) we infer that the total
number of bits required to represent the transmissions in the
GDH.1 protocol is dlog2 qe · N · (N − 1), which is identical
to the number of bits required in the entire transmissions of
ING protocol described in Section III-B.

D. The GDH.2 Protocol and Its Analysis

The GDH.2 protocol was first formalized by Steiner et al.
and it uses two phases, namely the upflow and broadcast
phases [8]. As in GDH.1 protocol, the objective of the upflow
phase is to gather the contribution of each participant except
MN−1. However, unlike GDH.1 protocol in which the par-
ticipants acquire the common secret key at different times, in
GDH.2 every participant apart from MN−1 gets the common
secret key simultaneously.

During the upflow phase, all participants are set up in
a linear configuration as in the upflow phase in GDH.1.
Nevertheless, the computations performed in the upflow phase
in GDH.2 are different from those calculations carried out in
the upflow phase in GDH.1. Initially participant M0 defines a
list U0 =

[
gs0
]

and sends this list to M1. Once receiving U0

from M0, M1 defines a list U1 =
[
gs0s1 , gs0 , gs1

]
and sends

this list to M2. Afterward, for each i such that 2 ≤ i ≤ N−2,
participant Mi receives Ui−1 of length i+ 1 from Mi−1 and
construct a list Ui of i+ 2 entries defined as follows:

1) Ui[0] = (Ui−1[0])
si ,

2) Ui[1] = Ui−1[0], and
3) Ui[j] = Ui−1[j − 1] for all j satisfying 2 ≤ j ≤ i+ 1.

Notice that for all i such that 2 ≤ i ≤ N −1 we have Ui−1 =[
g
∏i−1

k=0 sk , g
∏i−1

k=0,k 6=i−1 sk , g
∏i−1

k=0,k 6=i−2 sk , . . . , g
∏i−1

k=0,k 6=0 sk
]
.

At the end of the upflow phase MN−1 obtains the common
secret key by taking the first element of UN−2 and raising it
to the power of sN−1, i.e., calculating (UN−2[0])

sN−1 .
Unlike the GDH.1 protocol, in GDH.2 all participants apart

from MN−1 can obtain the mutual secret key at the same
time. This is possible using the broadcast phase performed by
MN−1. Initially, MN−1 defines a broadcast list B of length
N − 1 using the upflow list UN−2 as follows:

B[j] = (UN−2[j + 1])sN−1 for all 0 ≤ j ≤ N − 2

B =
[
g
∏N−1

k=0,k 6=N−2 sk , . . . , g
∏N−1

k=0,k 6=0 sk
]
.

(5)

List B is then broadcasted by MN−1 to all other participants.
To obtain the common secret key, the participant Mi needs
to read B[N − 2 − i] and then raises it to the power of si.
Notice that instead of broadcasting the whole list B, MN−1
can also directly send a value B[N − 2 − i] to Mi. In either
way, MN−1 needs to send N −1 values of the form gx where
x is a positive integer. The correctness of this protocol relies
on the commutativity of the exponent product as explained in
the correctness of GDH.1 protocol in Section III-C.

To analyze the number of bits required in the communi-
cation of GDH.2, we split our analysis for the upflow and
broadcast phases. For the upflow phase, initially M0 sends a
list of an element to M1, namely

[
gs0
]
. Subsequently, M1

sends a list of three entries to M2, namely
[
gs0s1 , gs0 , gs1

]
.

Furthermore, for any i such that 2 ≤ i ≤ N−2, Mi sends a list
Ui of length i+2 as described in the definition of Ui. Hence,
the total number of bits required in the entire transmission for
the upflow phase is

dlog2 qe+ 3dlog2 qe+
N−2∑
i=2

dlog2 qe · (i+ 2)

= 4dlog2 qe+ dlog2 qe
N∑
i=4

i

= 4dlog2 qe+ dlog2 qe
(N + 4)(N − 3)

2

=
1

2
· dlog2 qe · (N2 +N − 4) (6)

For the broadcast phase, observe that MN−1 sends a list
B of length N − 1 whose entries are the elements of F∗q .
Consequently, this phase requires dlog2 qe · (N − 1) bits of
data representation. By combining this result with (6) the total
bits required in the entire transmission of GDH.2 protocol is
1
2 · dlog2 qe · (N

2 + 3N − 6).

E. The GDH.3 Protocol and Its Analysis

The GDH.3 protocol uses four phases for constructing
the common secret key, namely upflow, response, and two



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 45

broadcast phases. This protocol is more efficient than GDH.1,
GDH.2, and DC-DHKA protocols in terms of exponentiation
operations [11], [12]. At the beginning of the upflow phase,
M0 computes gs0 and sends it to M1. Afterward, every
participant Mi for 1 ≤ i ≤ N − 2 receives g

∏i−1
k=0 sk from

Mi−1, and subsequently raises this value to the power of si
to produce g

∏i
k=0 sk , which is then sent to Mi+1. At the end

of the upflow phase, MN−1 obtains g
∏N−2

k=0 sk and raises this
value to the power of sN−1 to get the mutual secret key. Hence,
as in the GDH.1 and GDH.2 protocols, participant MN−1
in GDH.3 obtains the common secret key before any other
participant.

The first broadcast phase is performed by MN−2 by send-
ing the value g

∏N−2
k=0 to every participant except MN−1.

Here MN−2 sends this value to N − 2 participants
M0,M1, . . . ,MN−3.

The response phase is carried out by every participant Mi

where 0 ≤ i ≤ N − 2 and its objective is to remove the
secret exponent si from the value g

∏N−2
k=0 sk . Here, initially,

each participant computes the multiplicative inverse of their
secret exponent in modulo q, i.e., s−1i . Subsequently, each
participant uses the value obtained from the first broadcast
phase and computes R[i] =

(
g
∏N−2

k=0 sk
)s−1

i = g
∏N−2

k=0,k 6=i sk .
The value of R[i] is then sent to MN−1.

Upon receiving R[i] from all other participants, MN−1
defines the broadcast list B of length N − 1 such that
B[j] = (R[j])sN−1 = g

∏N−1
k=0,k 6=j for all 0 ≤ j ≤ N − 2. The

list B is then broadcasted to all other participants. However,
as in the broadcast phase of GDH.2, MN−1 can send an
individual value of B[i] instead of the entire list B to Mi for
0 ≤ i ≤ N−2. Nevertheless, in either approach, MN−1 needs
to send N −1 values of the form gx for some positive integer
x. To obtain the mutual secret key, every other participant
Mi for 0 ≤ i ≤ N − 2 reads B[i] = g

∏N−1
k=0,k 6=i and then

raises this value to the power of si to obtain g
∏N−1

k=0 sk . Notice
that as in the GDH.1 and GDH.2 protocols, the correctness
of GDH.3 protocol comes from the commutativity of the
exponent product.

To determine the number of bits transmitted in the entire
communication of GDH.3, we divide our analysis for each
of the phases. For the upflow phase, every participant Mi

for 0 ≤ i ≤ N − 2 sends g
∏i

k=0 sk to Mi+1. Using the
assumption in Section III-A, each transmission from Mi to
Mi+1 for 0 ≤ i ≤ N − 2 requires dlog2 qe bits of data
representation. As a consequence, the entire transmissions in
the upflow phase requires

∑N−2
i=0 dlog2 qe = dlog2 qe · (N −1)

bits of data representation.
Next, in the first broadcast phase, MN−2 transmits g

∏N−2
k=0 sk

to all other participants except MN−1. Since only one value
of the form gx is transmitted, then this phase requires dlog2 qe
bits of data representation. However, if instead MN−2 sends
this value individually to every Mi except MN−1, then the
total number of bits needed for the transmissions in this phase
is dlog2 qe · (N − 2).

The response phase involves N − 1 independent transmis-
sions of the value R[i] =

(
g
∏N−2

k=0 sk
)s−1

i = g
∏N−2

k=0,k 6=i sk , each
value R[i] is sent by Mi where 0 ≤ i ≤ N − 2 to MN−1.

Thus, the total number of bits transmitted in this phase is
dlog2 qe · (N − 1).

The second broadcast phase is performed by MN−1 by
transmitting a list B of length N − 1 to every participant Mi

where 0 ≤ i ≤ N − 2. The total number of bits required in
this phase is dlog2 qe · (N − 1).

If we assume that the first broadcast phase requires a single
transmission of the value g

∏N−2
k=0 sk , then the total number of

bits required in the entire transmissions of GDH.3 protocol is

dlog2 qe · (N − 1) + dlog2 qe+ dlog2 qe · (N − 1)

+dlog2 qe · (N − 1) = dlog2 qe · (3N − 2).
(7)

However, if we consider that MN−2 sends the value
g
∏N−2

k=0 sk to each Mi for 0 ≤ i ≤ N − 3 individually, then
the total number of bits needed in the entire transmissions of
GDH.3 protocol is

dlog2 qe · (N − 2) + dlog2 qe · (N − 1) + dlog2 qe · (N − 1)

+dlog2 qe · (N − 1) = dlog2 qe · (4N − 5).
(8)

Notice that both (7) and (8) are linear polynomials in N ,
that is, the total number of bits communicated in GDH.3 is
bounded by a constant factor of the number of participants.

IV. DC-DHKA PROTOCOL AND ITS ELEMENTARY
COMMUNICATION COMPLEXITY ANALYSIS

The divide-and-conquer approach for the Diffie-Hellman
key agreement was first proposed by Gaonkar and Pai [10].
The objective of this approach is to reduce the number of
exponentiations performed during the common secret key con-
struction. This protocol is further formalized and generalized
by Dewoprabowo et al. [11]. It is theoretically proven that the
number of exponentiations in DC-DHKA3 is asymptotically
fewer than those in ING, GDH.1, and GDH.2 protocols.
Although the overall number of exponentiations in DC-DHKA
is asymptotically greater than those in GDH.3, DC-DHKA out-
performs GDH.3 in several aspects. First, every participant in
DC-DHKA performs homogeneous mathematical operations
and thus the number of computations for each participant are
identical [11]. This does not happen in GDH.3 since MN−2
and MN−1 perform more computations than other participants.
Second, in DC-DHKA every communicating party obtains the
mutual secret key at the same time [12]. Such a condition does
not happen in GDH.1, GDH.2, and GDH.3 protocols. We refer
the reader to [11], [12] for more comprehensive references
regarding the complexity analysis (in terms of exponentiation
operations) and security analysis of the protocol. Nevertheless,
to our knowledge, an investigation into the communication
complexity of DC-DHKA has not been performed rigorously.
Before we discuss the communication complexity of DC-
DHKA, we first recall the workflow of the protocol.

3DC-DHKA stands for Divide-and-Conquer-based Diffie-Hellman Key
Agreement.



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 46

A. The Workflow of DC-DHKA Protocol

The DC-DHKA protocol works recursively using the divide-
and-conquer approach and assumes that the number of com-
municating parties is not fewer than four. Before any trans-
mission takes place, the communicating parties are arranged
in sequential order. Suppose we consider a group of N ≥ 4
participants, M0,M1, . . . ,MN , then the position of each Mi

must be fixed before any message is sent.
The original description of DC-DHKA only works if the

number of communicating parties is an exact power of two.
This is because the number of participants must be split
equally in every transition between two consecutive phases.
Nevertheless, DC-DHKA can still be implemented if the num-
ber of participants is not an exact power of two by inserting
some dummy participants. This process is called padding and
it is explained in [11], [12]. The purpose of this padding is
to make the number of participants an exact power of two. In
general, every dummy participant is located between two non-
dummy participants whenever such a condition is possible.
Moreover, the secret exponent of every dummy participant is
set to 1 to prevent additional unnecessary exponentiations.
For example, if we consider a group of five participants
M0,M1, . . . ,M4, then to perform DC-DHKA we need to
add three dummies M5,M6,M7 and the configuration of the
group is M0,M5,M1,M6,M2,M7,M3,M4. Here, the secret
exponents of M5, M6, and M7 are set to 1.

Analysis and numerical experiments show that the number
of exponentiations in DC-DHKA is fewer than those of ING,
GDH.1, and GDH.2 protocols if the number of participants
is at least 19 [11]. Henceforth, we typically assume that the
number of participants in DC-DHKA is N where N is an exact
power of two and N ≥ 19 except it is specified otherwise.

We first explain the base case of DC-DHKA protocol involv-
ing four participants M0,M1,M2,M3 whose secret exponents
are respectively a, b, c, d. The common secret key construction
is performed in three phases as follows:

1) In the first phase M0 computes ga and sends this value
to M1. At the same time M2 computes gc and sends
this value M3. Subsequently, M1 calculates (ga)b and
transmits it to M2 and M3, while M3 calculates (gc)d

and transmits it to M0 and M1.
2) In the second phase, M0 and M1 that receive gcd from

M3 respectively compute (gcd)a and (gcd)b. At the same
time, M2 and M3 that receive gab from M0 respectively
compute (gab)c and (gab)d.

3) In the third phase, M0 and M1 exchange their messages,
hence M0 gets gcdb and M1 gets gcda. In parallel,
M2 and M3 also exchange their messages, hence M2

gets gabd and M3 gets gabc. Observe that to obtain the
mutual secret key, all participants raise their values with
their own secret exponent, here M0 computes (gcdb)a,
M1 computes (gcda)b, M2 computes (gabd)c, and M3

computes (gabc)d.
As in GDH.1, GDH.2, and GDH.3 protocols, the correctness

of the DC-DHKA protocol comes from the commutativity of
the exponent product. The message sequence chart for the base
case of the DC-DHKA protocol is illustrated in Fig. 1.

We can generalize the aforementioned base case of the DC-
DHKA protocol for N participants where N = 2K for any
integer K ≥ 3. Before we discuss the generalization of DC-
DHKA for N participants, we first explain the DC-DHKA
protocol for eight participants labeled as M0,M1, . . . ,M7

whose secret exponents are respectively a, b, c, d, k, `,m, n.
The construction of the mutual secret key is achieved in four
phases as follows:

1) The first phase commences when M0 computes ga and
sends it to M1, while at the same time M4 computes gk

and sends it to M5. After receiving ga, M1 computes
(ga)b and sends it to M2, while simultaneously M5

computes (gk)` and sends it to M6. Afterward M2

computes (gab)c and sends this value to M3, while
concurrently M6 computes (gk`)m and sends it to M7.
At the end of the first phase, M3 computes (gabc)d and
transmits this value to M4 and M6, while in parallel
M7 computes (gk`m)n and transmits this value to M0

and M2. When the first phase is concluded, two new
subgroups is formed, namely:

a) the first subgroup of M0,M1,M2,M3, where M0

and M2 possess the value gk`mn,
b) the second subgroup of M4,M5,M6,M7, where

M4 and M6 possess the value gabcd.
In the subsequent phases, each participant in each sub-
group does not communicate (send or receive messages)
with other participants in another subgroup.

2) In the second phase, there are two parallel processes
of computations and transmissions in each subgroup
as explained at the end of the first phase. The overall
workflow occurring in each subgroup involves four
participants and it is analogous to the first phase of the
base case for DC-DHKA, namely:

a) In the first subgroup, participant M0 computes
(gk`mn)a and sends it to M1, while simultaneously
M2 computes (gk`mn)c and sends it to M3. Af-
terward, M1 computes (gk`mna)b and transmits it
to M2 and M3, while concurrently M3 computes
(gk`mnc)d and transmits it to M0 and M1. At
the end of this phase M0 and M1 have gk`mncd,
whereas M2 and M3 have gk`mnab.

b) In the second subgroup, participant M4 computes
(gabcd)k and sends it to M5, while at the same
time M6 computes (gabcd)m and sends it to M7.
After that, M5 computes (gabcdk)` and transmits it
to M6 and M7, while simultaneously M7 computes
(gabcdm)n and transmits it to M4 and M5. At
the end of this phase M4 and M5 own gabcdmn,
whereas M6 and M7 own gabcdk`.

3) In the third phase, each participant raises its own value
with its secret exponent and perform a message ex-
change between two participants, namely: M0 and M1,
M2 and M3, M4 and M5, and M6 and M7.

4) In the fourth phase, each participant raises the value
obtained from the third phase with its secret exponent
to obtain the mutual secret key.

The message sequence chart for DC-DHKA of eight partic-



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 47

Fig. 1: The message sequence chart for the base case of DC-DHKA protocol as explained in [11], [12]. The participants are
M0,M1,M2,M3 and their corresponding secret exponents are a, b, c, d.

Fig. 2: The message sequence chart for DC-DHKA protocol for eight participants labelled as M0,M1, . . . ,M7 whose
respective secret exponents are a, b, c, d, k, `,m, n.

ipants is illustrated in Fig. 2.
The public parameters of the DC-DHKA protocol are iden-

tical to those of ING, GDH.1, GDH.2, and GDH.3 protocols.
The construction of the mutual secret key involving N partic-
ipants requires dlog2 qe + 1 phases. Initially, if N is not an
exact power of two, then padding is performed. The number
of participants after this padding is 2dlog2 Ne. Notice that if
N is already an exact power of two, then N = 2dlog2 Ne.
Assuming that N is an exact power of two, the first phase of
the DC-DHKA protocol consists of two following steps:

1) Initially all participants are labeled with integers from 0
to N − 1 (inclusive), suppose we denote these partici-
pants with M0,M1, . . . ,MN−1 and their corresponding
secret exponents are s0, s1, . . . , sN−1. These partici-

pants are divided into two subgroups, the first group
consists of M0,M2, . . . ,MN/2−1, whereas the second
group consists of MN/2,MN/2+1, . . . ,MN−1. In the
first group, M0 starts the first phase by computing
gs0 and sends this value M1, while in parallel MN/2

computes gsN/2 and sends this value to MN/2+1.
2) The second step involves every participant Mi where

1 ≤ i ≤ N/2 − 1 or N/2 + 1 ≤ i ≤ N − 1. Here, Mi

receives a value from Mi−1 and raises it to the power
of si. Subsequently, one of the following procedures is
performed:

a) if 1 ≤ i ≤ N/2− 2 or N/2 + 1 ≤ i ≤ N − 2, i.e.,
Mi is not the last participant in its subgroup, then
Mi sends the value from its calculation to Mi+1;



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 48

b) if i = N/2− 1, then MN/2−1 transmits the result
of its calculation to MN/2 and M3N/4 (in other
words, the last participant of the first subgroup
transmits a message to two participants of the
second subgroup, namely MN/2 and M3N/4);

c) if i = N − 1, then MN−1 transmits the result
of its calculation to M0 and MN/4 (that is, the
last participant of the second subgroup transmits a
message to two participants of the first subgroup,
namely M0 and MN/4).

A the end of the first phase, DC-DHKA yields
two groups of equal size. The first group consist of
M0,M1, . . . ,MN/2−1, whereas the second one comprises
MN/2,MN/2+1, . . . ,MN−1. Each group then concurrently
performs an analogous phase as described in the first phase of
DC-DHKA. Theoretically, this procedure is repeated until the
size of the group is 4, which is the base case of the DC-DHKA
(see [11], [12]).

B. The Number of Bits Involved in the Transmissions of DC-
DHKA Protocol

We are now ready to perform an elementary analysis of
the communication complexity of the DC-DHKA protocol. As
described in Section III-A, we assume that every message of
the form gx where x is a positive integer requires dlog2 qe bits
of data representation. This convention allows us to compare
the number of bits required to construct the mutual secret
key in DC-DHKA with the aforementioned results in Section
III-C, Section III-D, and Section III-E. Notice that we typically
assume that the number of participants in DC-DHKA (denoted
by N ) is an exact power of two. We first discuss the following
lemma.

Lemma 1. If N is an exact power of two, then the total
number of transmissions involving values of the form gx where
x is a positive integer can be expressed as a function T (N)
defined recursively as

T (N) = 2T

(
N

2

)
+N +2, with base case T (4) = 10. (9)

Notice that we consider two transmissions of an identical
message as separate transmissions if at least one of the sender
or receiver is different from one transmission to another. For
instance, in Fig. 1, the transmissions of gab from M1 to M2

and M3 are defined as two distinct transmissions. By counting
the number of transmissions in the message sequence chart of
DC-DHKA for four participants in Fig. 1 we have T (4) = 10.
Moreover, from the message sequence chart of DC-DHKA for
eight participants in Fig. 2 we have T (8) = 30. Notice that
T (8) can also be obtained from the formula T (8) = 2T (4) +
8 + 2. The proof of Lemma 1 is as follows.

Proof of Lemma 1: Assume that initially we have
N participants and N is an exact power of two. As in
the protocol description, these N participants are divided
into two subgroups at the end of the first phase, each
group consists of N/2 members. The first group comprises
M0,M1, . . . ,MN/2−1, whereas the second group comprises

MN/2,MN/2+1, . . . ,MN−1. Before the first phase is con-
cluded, each participant Mi where i = 0, 1, . . . , N/2 − 1 or
i = N/2, N/2 + 1, . . . , N − 2 transmits one message of the
form gx where x is a positive integer to Mi+1. Thus, there
are 2 · (N/2− 1) = N − 2 transmissions of this category.

For the last participant in each subgroup, observe that
MN/2−1 sends a message of the form gx for some positive
integer x to MN/2 and M3N/4, whereas MN−1 sends a
message of the same form to M0 and MN/4. Hence, there are
four additional transmissions for the first phase. By combining
this result with the previous one, we obtain N−2+4 = N+2
transmissions that occur in the first phase.

Notice that T (N/2) represents the number of trans-
missions occurring in a group of N/2 participants.
Since the groups containing M0,M1, . . . ,MN/2−1 and
MN/2,MN/2+1, . . . ,MN−1 are disjoint and independent
(there is no communication between any two participants from
two disjoint groups after the first phase is finished), then the
total number of transmissions in the entire protocol is equal
to N + 2 plus the total number of transmissions occurring
in two subgroups of size N/2. Therefore, we conclude that
T (N) = 2T (N/2) +N + 2.

The solution of the recursive function (9) is discussed in
the following theorem.

Theorem 1. If N is an exact power of two, then the solution
(the closed form) of the recursive function (9) is

T (N) = N(log2N + 1)− 2. (10)

Proof: We prove Theorem 1 using induction on N . If
N = 4, the statement is true because T (4) = 10 from the
message sequence chart given in Fig. 1 and 4(log2 4+1)−2 =
10.

Now suppose the statement holds for some N = 2K where
K ∈ N, that is, T (N) = T (2K) = 2K(log2 2

K + 1) − 2 =
2K(K + 1) − 2. We need to show that the statement also
holds if the number of participants is doubled (the next power
of two after N is 2N ). Using (9) and the aforesaid induction
hypothesis, we have

T (2N) = 2T (N) + 2N + 2 (using (9))

= 2T (2K) + 2 · 2K + 2 (N = 2K where K ∈ N)

= 2(2K(K + 1)− 2) + 2K+1 + 2 (induction hypothesis)

= 2K+1(K + 1) + 2K+1 − 2

= 2K+1((K + 1) + 1)− 2.

Since N = 2K , then 2K+1 = 2N and K + 1 = log2 2N .
Thus we obtain T (2N) = 2N(log2 2N + 1) − 2, i.e., the
equation holds if the number of participant is doubled. By
mathematical induction, we conclude that (10) holds for any
N ≥ 4 whenever N is an exact power of two.

The result in Theorem 1 provides an accurate number of
transmissions in DC-DHKA if the number of communicating
parties is N and N is an exact power of two. If N is not
an exact power of two, then padding must be performed by
adding several dummy participants as explained in [11], [12].
Here, the initial number of group members is transformed so



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 49

that it is an exact power of two. Notice that the nearest exact
power of two that is not less than N is 2dlog2 Ne. As a result,
we have the following corollary.

Corollary 1. Let T (N) be the total number of transmissions
in DC-DHKA protocol involving N participants where N ≥ 4,
then

T (N) = 2dlog2 Ne · (dlog2Ne+ 1)− 2. (11)

Proof: If N is an exact power of two, then 2dlog2 Ne = N
and dlog2Ne = log2N and thus (10) and (11) are identical.
Otherwise, the number of participants after the padding is
M = 2dlog2 Ne and M is an exact power of two. Based on
Theorem 1, we have T (M) =M ·(log2M+1)−2. The result
follows from the assumption that the number of participants
(including dummies) must be an exact power of two and
dummies are also involved in the message transmission.

Since we assume that every single transmission in DC-
DHKA involves sending a message of the form gx where x is a
positive integer, then each transmission requires a dlog2 qe bits
of data representation if the protocol uses the multiplicative
group F∗q . Accordingly, we obtain the following corollary.

Corollary 2. Let tDC(N) be the total number of bits required
in the entire transmissions of DC-DHKA protocol for N
participants that uses the multiplicative group F∗q , then

tDC(N) = dlog2 qe ·
[
2dlog2 Ne · (dlog2Ne+ 1)− 2

]
. (12)

V. COMPARISON OF THE NUMBER OF BITS TRANSMITTED
IN PERTINENT PROTOCOLS

In this section, we compare the of number bits required
in the entire communications of GDH.1, GDH.2, GDH.3,
and DC-DHKA protocols. We refer to these quantities as
the elementary communication complexities of such protocols.
Using the result from Section III-B, Section III-C, Section
III-D, Section III-E, and Section IV-B, we summarize the
elementary communication complexity of each protocol in
Table I. For brevity, we refer to GDH.3 version 1 as the variant
of GDH.3 protocol that assumes a single transmission of the
value g

∏N−2
k=0 sk during the first broadcast phase, while GDH.3

version 2 assumes individual transmissions of the same value
during the first broadcast phase (which is performed by MN−2
to every Mi such that 0 ≤ i ≤ N − 3).

Assuming that all protocols are defined using an identical
finite multiplicative group F∗q , we notice from Table I that
the size of this mathematical structure does not affect the
comparison of elementary communication complexity between
two different protocols. As a consequence, a comparative
analysis of such a complexity between two different protocols
can be carried out by determining the number of elementary
transmissions that occurred in each protocol. Here, an elemen-
tary transmission is defined as a transmission of a value in F∗q ,
which requires dlog2 qe bits of data representation.

From Table I, we notice that DC-DHKA protocol asymp-
totically uses fewer bits than ING, GDH.1, GDH.2 proto-
cols to agree on the mutual secret key. Nevertheless, DC-
DHKA protocol asymptotically uses more bits than GDH.3

to achieve the mutual secret key agreement for all commu-
nicating parties. Despite this downside, DC-DHKA protocol
strictly ensures that all participants obtain the mutual secret
key simultaneously and the computational burden (i.e., ex-
ponentiation) of each participant is relatively uniform (every
member of the group performs one or two exponentiations
in each phase, see [11] for details). To provide a more
comprehensive comparative analysis among related protocols,
we define tX(N) as a function that returns the number of
elementary transmissions that occurred in protocol X with
N participants. Thus, we have tING = tGDH.1 = N(N −
1), tGDH.2 = (N2 + 3N − 6)/2, tGDH.3v1 = 3N − 2,
tGDH.3v2 = 4N − 5, and tDC = 2dlog2 Ne · (dlog2Ne +
1) − 2. Notice that we override the definition of tDC in
(12) by ignoring the term dlog2 qe. For all related proto-
cols, we perform a numerical experiment to compute tX(N)
for all 4 ≤ N ≤ 100. The graph for all tX(N) where
X ∈ {ING,GDH.1, GDH.2, GDH.3v1, GDH.3v2, DC}
and 4 ≤ N ≤ 30 is depicted in Fig. 3.

From the numerical experiment, we obtain that the number
of elementary transmissions of DC-DHKA is always fewer
than those in ING, GDH.1, and GDH.2 protocols for N ≥ 19
participants. Moreover, DC-DHKA is always more efficient
than ING and GDH.1 protocols in terms of communications
if we consider a group of at least ten participants. We infer
the following proposition using the experimental data and
mathematical induction on the number of communicating
parties.

Proposition 1. Let tING(N), tGDH.1(N), tGDH.2(N), and
tDC(N) respectively denote the number of elementary trans-
missions occurred in ING, GDH.1, GDH.2, and DC-DHKA
protocols for a group of N participants, then

1) tDC(N) < tING(N) = tGDH.1(N) for every N ∈
{4, 7, 8} and N ≥ 10,

2) tDC(N) < tGDH.2(N) for every N ∈ {4, 7, 8}, N ∈
{12, . . . , 16}, and N ≥ 19.

From experimental data, we also obtain that tGDH.3v2(4) >
tDC(4). Thus N = 4 is the only condition in which the DC-
DHKA protocol requires fewer bits in the communication than
the GDH.3 version 2 protocol.

VI. CONCLUDING REMARKS

In Corollary 1, we show that the total number of elementary
transmissions in DC-DHKA protocol involving N ≥ 4 partic-
ipants is 2dlog2 Ne · (dlog2Ne+1)−2. Furthermore, assuming
that each elementary transmission requires dlog2 qe bits of
data representation, we arrive with a conclusion that the total
number of bits needed to be communicated in the entire DC-
DHKA protocol is dlog2 qe·

[
2dlog2 Ne·(dlog2Ne+1)−2

]
. This

result shows that the DC-DHKA protocol asymptotically uses
fewer bits in communication than ING, GDH.1, and GDH.2
protocols to agree on a mutual secret key. By combining this
outcome with the previous conclusion regarding the total num-
ber of exponentiations involved in ING, GDH.1, and GDH.2
protocols in [11], we infer that DC-DHKA is asymptotically
more efficient than the other three protocols in terms of the



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 50

TABLE I

The number of bits involved in the entire communications of ING, GDH.1, GDH.2, GDH.3, and DC-DHKA protocols with
N participants. All protocols use the multiplicative group F∗q .

protocol name number of bits used in the entire transmissions asymptotic expression in N

ING dlog2 qe ·N · (N − 1) O(N2)
GDH.1 dlog2 qe ·N · (N − 1) O(N2)
GDH.2 1

2
· dlog2 qe(N2 + 3N − 6) O(N2)

GDH.3 version 1 dlog2 qe · (3N − 2) O(N)
GDH.3 version 2 dlog2 qe · (4N − 2) O(N)

DC-DHKA dlog2 qe ·
[
2dlog2 Ne · (dlog2 Ne+ 1)− 2

]
O(N logN)

Fig. 3: The number of elementary transmissions in ING, GDH.1, GDH.2, GDH.3 and DC-DHKA protocols. The GDH.3
version 1 protocol (GDH.3v1) assumes single transmission of the value g

∏N−2
k=0 sk , whereas the GDH.3 version 2 protocol

(GDH.3v2) assumes that the same value is transmitted individually by MN−2 to all Mi such that 0 ≤ i ≤ N − 3. Notice that
since tING(N) = tGDH.1(N), then the graphs of both functions are coincide.

number of exponentiations and the number of bits needed to
be communicated for constructing the mutual secret key. In
addition, by considering the numerical experiments in Section
V and [11], we obtain N = 19 as the theoretical crossover
point at which the DC-DHKA protocol is more efficient than
the other three protocols in respect of the two aforesaid criteria.

Our analysis and experiment show that DC-DHKA asymp-
totically uses more bits in its transmission than the GDH.3
protocol. Combined with the outcome in [11], we infer that
GDH.3 is more efficient than DC-DHKA in the matter of
the number of exponentiations and bits required in the entire
transmission. Moreover, Steiner et al. show that GDH.2 and
GDH.3 have efficient procedures for addressing group mem-
bership modification (i.e., insertion and removal of members
to the group) [8], and such procedures are not available in
DC-DHKA. Despite these advantages, formal analysis in [12]
shows that the mutual key retrievals in GDH.1, GDH.2, and
GDH.3 do not occur strictly all at once for all communicating
parties. As a result, the DC-DHKA protocol is preferred
to GDH.1, GDH.2, and GDH.3 protocols if we consider a
scenario in which every participant must obtain the mutual

key strictly simultaneously. Another group key agreement with
the regular DH key that obliges its participant to retrieve the
mutual key strictly at the same time is the ING protocol.
However, as discussed in Section III-B and [11], the ING
protocol asymptotically uses more bits in its communication
and requires more exponentiations.

Our analysis provides elementary communication complex-
ities for pertinent protocols that use regular DH keys as their
mutual secret keys. This complexity measures the number
of bits required to be communicated for constructing the
group key. We show that two different protocols may have
identical elementary communication complexity even though
the number of transmissions in each protocol is different.
For example, GDH.1 involves fewer transmissions than the
ING protocol (regarding the number of messages sent and
received as well as the number of communications), but the
total number of bits required for creating the mutual secret key
in both protocols are identical. This type of analysis can also
be performed to investigate the communication complexities
of non-Diffie-Hellman-based group key agreements, such as
matrix-vector-based group key agreements (such as in [19])



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 8, NO. 2, SEPTEMBER 2022 51

or post-quantum key agreement protocol (such as in [20]).

REFERENCES

[1] T. Hardjono and L. R. Dondeti, Security in Wireless LANS and MANS
(Artech House Computer Security). Artech House, Inc., 2005.

[2] M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini, and
Y. Khamayseh, “Comprehensive study of symmetric key and asymmetric
key encryption algorithms,” in 2017 international conference on engi-
neering and technology (ICET). IEEE, 2017, pp. 1–7.

[3] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agreement,”
ACM Transactions on Information and System Security (TISSEC), vol. 7,
no. 1, pp. 60–96, 2004.

[4] P. Jaiswal, A. Kumar, and S. Tripathi, “Design of Secure Group Key
Agreement Protocol using Elliptic Curve Cryptography,” in High Per-
formance Computing and Applications (ICHPCA), 2014 International
Conference on. IEEE, 2014, pp. 1–6.

[5] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE
Transactions on Information Theory, vol. IT.22 No. 6, pp. 644–654,
1976.

[6] I. Ingemarsson, D. T. Tang, and C. K. Wong, “A Conference Key
Distribution System,” IEEE Transactions on Information Theory, vol. 28,
no. 5, pp. 714–720, 1982.

[7] M. Burmester and Y. Desmedt, “A Secure and Efficient Conference Key
Distribution System,” in Workshop on the Theory and Application of of
Cryptographic Techniques. Springer, 1994, pp. 275–286.

[8] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman Key Distri-
bution Extended to Group Communication,” in Proceedings of the 3rd
ACM Conference on Computer and Communications Security. ACM,
1996, pp. 31–37.

[9] K. Becker and U. Wille, “Communication complexity of group key
distribution,” in Proceedings of the 5th ACM conference on Computer
and communications security, 1998, pp. 1–6.

[10] S. A. Gaonkar and H. M. Pai, “Extension of Diffie Hellman Algorithm
for Multiple Participants,” International Journal of Innovative Research
in Electrical, Electronics, Instrumentation and Control Engineering, pp.
42–47, 2015.

[11] R. Dewoprabowo, M. Arzaki, and Y. Rusmawati, “On Generalized
Divide and Conquer Approach for Group Key Distribution: Correctness
and Complexity,” in 2018 6th International Conference on Information
and Communication Technology (ICoICT). IEEE, 2018, pp. 416–424.

[12] ——, “Formal Verification of Divide and Conquer Key Distribution Pro-
tocol Using ProVerif and TLA+,” in 2018 10th International Conference
on Advanced Computer Science and Information Systems (ICACSIS).
IEEE, 2018, pp. 451–458.

[13] A. Rao and A. Yehudayoff, Communication Complexity: and Applica-
tions. Cambridge University Press, 2020.

[14] A. C.-C. Yao, “Some complexity questions related to distributive com-
puting (preliminary report),” in Proceedings of the eleventh annual ACM
symposium on Theory of computing, 1979, pp. 209–213.

[15] E. Kushilevitz, “Communication complexity,” in Advances in Comput-
ers. Elsevier, 1997, vol. 44, pp. 331–360.

[16] I. Haitner, N. Mazor, R. Oshman, O. Reingold, and A. Yehudayoff,
“On the communication complexity of key-agreement protocols,” arXiv
preprint arXiv:2105.01958, 2021.

[17] J. Hoffstein, J. C. Pipher, and J. H. Silverman, An introduction to
mathematical cryptography, 2nd ed. Springer, 2014.

[18] K. H. Rosen, Discrete Mathematics and Its Applications, 8th
Edition. McGraw-Hill Education, 2018. [Online]. Available: https:
//books.google.co.id/books?id=rwZLAgAAQBAJ

[19] M. Arzaki, “On the Generalizations of Megrelishvili Protocol for Group
Key Distribution,” Indonesian Journal on Computing (Indo-JC), vol. 2,
no. 2, pp. 55–78, 2017.

[20] X. L. Jintai Ding, Xiang Xie, “A simple provably secure key exchange
scheme based on the learning with errors problem,” Cryptology ePrint
Archive, Report 2012/688, 2012, https://eprint.iacr.org/2012/688.

https://books.google.co.id/books?id=rwZLAgAAQBAJ
https://books.google.co.id/books?id=rwZLAgAAQBAJ

	Introduction
	Communication Complexity of Key Agreement Protocols
	Related Diffie-Hellman Key Agreement Protocols and Their Communication Complexities
	Mathematical Preliminaries and Assumptions
	The ING Protocol and Its Analysis
	The GDH.1 Protocol and Its Analysis
	The GDH.2 Protocol and Its Analysis
	The GDH.3 Protocol and Its Analysis

	DC-DHKA Protocol and Its Elementary Communication Complexity Analysis
	The Workflow of DC-DHKA Protocol
	The Number of Bits Involved in the Transmissions of DC-DHKA Protocol

	Comparison of the Number of Bits Transmitted in Pertinent Protocols
	Concluding Remarks
	References

