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Proof Levels of Graph Theory Students under the Lens of the Van Hiele 

Model 

This work is devoted to exploring proof abilities in graph theory of undergraduate 

students of the Degree in Computer Engineering and Technology of the University 

of Seville. To do this, we have designed a questionnaire consisting of five open-

ended items that serve as instrument to collect data concerning their proof skills 

when dealing with graphs. We have thus analysed them adapting the methodology 

for computing the degrees of acquisition of the Van Hiele levels. Our analysis leads 

to different proof profiles of graph theory students whose characteristics provide 

empirical support to consider proof levels in graph theory from the perspective of 

the Van Hiele model. 

Keywords: levels of reasoning; proof; graph theory; Van Hiele model. 

Subject classification codes: 97K30 

1. Introduction 

Mathematics Education at the university level has emerged as a focus of research interest 

in the last decade (Durand-Guerrier et al., 2021). As a sign of this, some of the most 

relevant international conferences on mathematics education have dedicated specific 

working groups or specific meetings to this topic in recent years. Indeed, CERME1 has a 

Thematic Working Group (TWG) on University Mathematics Education and ICME2 on 

Mathematics Education at Tertiary Level. Likewise, new conferences publishing 

proceedings have recently emerged such as the congress of the INDRUM3 or the RUME4 

Conference in the United States. Moreover, there are long-established journals that have 

university mathematics education among their priority objects of study, such as The 

                                                           
1 Congress of the European Society for Research in Mathematics Education. 
2 International Congress on Mathematical Education. 
3 International Network for Didactic Research in University Mathematics. 
4 Research in Undergraduate Mathematics Education. 
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College Mathematics Journal and PRIMUS5, published since 1970 and 1991, 

respectively. In addition to these publications, since 2006 the Polish journal Annales 

Universitates Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae 

Pertinentia publishes studies more focused on didactic aspects. All this educational 

research at tertiary level has helped to deepen into the study of the skills involved in the 

so called Advanced Mathematical Thinking (Tall, 1991). Among these skills, the ability 

of proof, which is the focus of this work, stands out (Arnal-Bailera & Oller-Marcén, 2017; 

Demiray & Işiksal, 2017; Stylianides et al., 2007; Uğurel et al., 2015). 

A relevant mathematical topic at tertiary level is graph theory because of its 

multiple applications in other areas such as ecology, chemistry, transportation, biology, 

social networks, information and communication, circuits, computer networks, and 

software design; among others (Rosen, 2019). Furthermore, several studies in 

mathematics education (Cartier, 2008; DeBellis & Rosenstein, 2004; Grenier & Payan, 

1999; Heinze et al.; 2004; Leon et al., 2020) show the importance of the role that graphs 

can play in the acquisition of mathematical skills, specifically proof. Besides these works, 

much educational research has centred its attention in different aspects of the teaching 

and learning of graphs theory such as task design (Niman, 1975; Santoso, 2018), 

resources for enhancing learning (Costa et al., 2014; Geschke et al., 2005) or the teaching 

of graphs in levels other than tertiary (Rosenstein, 2018), among others. However, 

different authors (Hazzan & Hadar, 2005; Medová et al., 2019) highlight the lack of 

research on the reasoning of graph theory students, which requires the development of 

adequate theoretical frameworks. This last issue is approached by Gavilán-Izquierdo and 

González (2016), who first point out the Van Hiele model to be applied in the teaching 

                                                           
5 Problems, Resources, and Issues in Mathematics Undergraduate Studies. 
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and learning of graph theory, and subsequently by Ferrarello and Mammana (2018), who 

present an experimental teaching activity which considers the nature of Van Hiele levels. 

The Van Hiele model has mainly been applied to the field of geometry (Burger & 

Shaughnessy, 1986; Chen et al., 2019; Gutiérrez & Jaime, 1995; Hoffer, 1983; Lee, 2015; 

Pandiscio & Knight, 2010; Perdikaris, 2004; Usiskin, 1982; Wang & Kinzel, 2014), 

specifically to undertake studies on the abilities of students in proof practices (Gutiérrez 

et al., 2004; Manero & Arnal-Bailera, 2021; Senk, 1989). In addition, this model has 

proved to be useful to describe the learning of other mathematical topics such as local 

approximation (Llorens & Pérez-Carreras, 1997), convergence of sequences (Navarro & 

Pérez-Carreras, 2006), convergence of series (Jaramilllo, 2000) or functions (Nisawa, 

2018). Thus, González et al. (2021) perform a theoretical analysis that produces a 

characterization of the learning of graph theory through four levels of reasoning under 

the lens of the Van Hiele model, whose validity must be tested in empirical studies as the 

present paper. This characterization is organised through the development of the 

processes of reasoning that students may activate when dealing with graphs: recognition, 

use and formulation of definitions, classification, and proof, thus providing descriptors of 

levels for each process. 

The purpose of this work is to provide empirical support for the validity of the 

levels of proof in graph theory through the lens of the Van Hiele model proposed by 

González et al. (2021). This implies the search for evidence of the indicators provided by 

these authors for the levels, as well as the study of their adequacy to the particularities of 

the Van Hiele model. 

2. Theoretical considerations 

2.1. The Van Hiele model for geometry 

In the 1950s, Van Hiele (1957) and Van Hiele-Geldof (1957) propose a model that 

characterizes the development of geometric thinking through a sequence of five levels. 
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However, we do not consider here the fifth level since it mainly concerns professional 

mathematicians’ reasoning which are out of the scope of this study. The first four levels 

have the following descriptors (Van Hiele, 1986): 

● Level 1 (visualization). Students at this level recognize geometric figures by their 

appearance and as a whole. Also, they describe figures using their physical 

characteristics or comparisons with everyday objects by means of a non-

mathematical language. 

● Level 2 (analysis). This level is characterised by the students’ ability to handle the 

parts and properties of figures, which allows them to deal with mathematical 

descriptions of geometric concepts. 

● Level 3 (informal deduction). The reasoning of this level uses logical deductions 

in the first place, which enable students to interrelate properties of geometric 

figures. Thus, these students can understand logical classifications of families of 

figures, construct definitions as sets of necessary and sufficient conditions and 

provide some general arguments to justify the validity of a mathematical 

statement. 

● Level 4 (formal deduction). Students at this level can produce formal proofs and 

deal with equivalent definitions of a concept. 

These levels have a series of characteristics (Jaime & Gutiérrez, 1990) that 

differentiate them from levels proposed in other theoretical frameworks (Arnon et al., 

2014; Biggs & Collis, 1982; Pirie & Kieren, 1989). Specifically, Van Hiele levels are 1) 

hierarchical and sequential, which means that for students to completely acquire a certain 

level it is necessary that they go across the preceding ones in a specific order; 2) highly 

related with language, this is, each level has specific vocabulary and different ways to 

understand mathematical concepts; and 3) continuous, which means that the acquisition 
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of a certain level is not instantaneous and can start before the complete acquisition of a 

preceding level. 

Gutiérrez and Jaime (1998) propose a way to regard the geometrical reasoning as 

decomposed into different processes of reasoning: recognition (i.e., identification of types 

of figures, as well as their components and properties), use of definitions (i.e., handling 

of geometrical concepts), formulation of definitions (i.e., elaboration of descriptions or 

characterizations of geometrical notions), classification (i.e., placement of geometrical 

objects into different families), and proof (i.e., explanation in some convincing way that 

a statement is true). Thus, these authors characterize the Van Hiele levels according to 

the degree of development of each of these processes. We next describe the development 

of the proof process, which is the focus of this paper. 

Proof at level 1 is not considered by Gutiérrez and Jaime (1998). At level 2, proofs 

are characterized by verifications in particular cases. Students at level 3 can verify 

statements by using informal explanations based on mathematical properties. Moreover, 

they are able to understand formal proofs and even reproduce a few logical steps but they 

cannot produce themselves formal proofs, which characterizes level 4 students. 

2.2 The Van Hiele model for graphs 

González et al. (2021) provide a theoretical characterization of students’ reasoning in 

graph theory based on Van Hiele levels. To present this characterisation, we first provide 

some fundamentals of graph theory for the sake of completeness. Indeed, a graph G 

consists of a pair (V, E) where V is any set, which is called the vertex set, and E is a set of 

pair of non-ordered pairs of elements from V, which is called edge set. The pictorial 

representation, which is the most common way to represent graphs, consists of drawing 

vertices as points in the plane which are joined by (non-necessarily straight) segments 

whenever the corresponding pairs of vertices form edges. Figure 1(a) shows such a 
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representation for the graph G1 = ({v1, v2, v3, v4, v5}, {v1v2, v2v3, v3v4, v4v5}), which is not 

unique as one can see in Figure 1(b). In fact, any continuous deformation applied to a 

representation of a graph is also a representation of that graph whenever the original 

connections between points are kept. The graph G1 belongs to a classical family of graphs 

named paths, as it can be given by any expression of the form ({v1, v2, …, vn}, {v1v2, v2v3, 

…, vn-1vn}). There exist other families of graphs such as cycles, given by any expression 

like ({v1, v2, …, vn}, {v1v2, v2v3, …, vn-1vn, vnv1}), or complete graphs, which have any 

pair of vertices joined by an edge. (Figure 1(c) and 1(d) show examples of these graphs, 

respectively). 

 
(a) (b) (c) (d) 

Figure 1. Representations of (a) the graph G1, (b) the graph G1, (c) the cycle on 7 

vertices, and (d) the complete graph on 6 vertices. 

Delving into the parts and properties of graphs, we say that two vertices are 

adjacent whenever they form an edge, and the degree of a vertex is the number of vertices 

adjacent to it. Also, a graph G = (V, E) contains a graph G’ = (V’, E’) as a subgraph if V 

⊆ V’, E ⊆ E’, and V’ contains all vertices of edges of E’. Finally, a graph is said to be 

Eulerian when it admits a sequence of adjacent vertices containing each of its edges 

exactly once and starting and finishing at the same vertex. Eulerian graphs are 

characterized by having all their vertices of even degree. Note that properties of graphs 

can be divided into local (i.e., associated with parts of the graph) and global (i.e., 

associated with the whole graph). Thus, the degree is local, while the Eulerian character 



7 
 

is global. (We refer the reader to the book of Rosen (2019) for more information on graph 

theory). 

We can now describe the main indicators of the Van Hiele levels for graph theory 

(González et al., 2021). It is easy to see that they have the same nature as the Van Hiele 

levels for geometry: 

● Level 1 (visualization). Students at this level have a visual type of recognition that 

limits them when identifying graphs and global properties. Also, they can handle 

definitions that do not require any knowledge on graph theory and describe graph 

concepts using a non-mathematical language. 

● Level 2 (analysis). The reasoning at this level is mainly supported by students’ 

ability to identify global and local properties and subgraphs of graphs, which 

enables them to distinguish graphs independently from their representations and 

handle graph notions given in mathematical terms. 

● Level 3 (informal deduction). Students at this level can interrelate properties so 

they can recognize them more efficiently. This ability helps them to construct 

proper definitions of graph concepts as sets of necessary and sufficient conditions, 

make logical classifications and provide informal arguments to check the veracity 

of a statement. 

● Level 4 (formal deduction). At this level, students perceive graphs as formal 

mathematical objects, and so they can work with equivalent definitions of the 

same concept and construct formal proofs of mathematical results. 

Furthermore, González et al. (2021) organize the descriptors of each level 

according to the processes proposed by Gutiérrez and Jaime (1998) adapted to the field 

of graphs. In particular, the evolution of the process of proof in graph theory and in 

geometry are analogous from levels 2 to 4. However, the proof of level 1, which is not 
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considered by Gutiérrez and Jaime (1998), is taken into account by González et al. (2021) 

due to the peculiarities of graphs. Indeed, proofs at level 2 are given by verifications in 

specific examples; students at level 3 are able to produce informal proofs to justify the 

truth of a statement, and they can understand the steps of a formal proof but they cannot 

write it themselves; and level 4 students can elaborate formal proofs, thus being able to 

perform classic techniques in graph theory such as induction, proof by contradiction, or 

proof by contraposition. Level 1 students just provide visual arguments to justify the truth 

of a statement or verify it in specific examples, as well as level 2 students do, but being 

very limited by the representations that they know for a graph. 

3. Method 

3.1. Data collection instrument 

In order to evaluate the proof process in graph theory we have designed a five items 

questionnaire focused on detecting evidence of the indicators of the proof levels proposed 

by González et al. (2021). This instrument has been developed following the same ideas 

as the proof tasks proposed by Gutiérrez and Jaime (1998) to evaluate the proof process, 

which are open ended tasks that bring to light the reasoning of the students more clearly 

than multiple choice questions (Jaime & Gutiérrez, 1994). For more examples of this type 

of tasks, we refer the reader to the works of Aravena et al. (2016) and Burger and 

Shaughnessy (1986). 

The first version of this questionnaire was validated by doctors in didactics of 

mathematics and doctors in graph theory who are familiar with the Van Hiele model, none 

of them being involved in this work. Subsequently, this questionnaire was first 

administered to students enrolled in the course Logic and discrete mathematics of the 

Degree in Software Engineering of the Polytechnical University of Madrid, which 

allowed us to create an improved version of the questionnaire employed in this work. 

Moreover, we studied the scalability and internal coherence of the questionnaire, which 
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have been measured through the Guttman and Cronbach’s Alpha coefficients, 

respectively. The former provides an idea of the extent to which an observed set of 

responses patterns agrees with that expected from a perfect scale, which reveals in our 

context to what extent the hierarchical nature of the Van Hiele levels appears in our 

results. We have obtained for the Guttman coefficient a value of 0.931, which is an 

indicator of the reliability of the questionnaire as it is greater than 0.9 (Torgerson, 1967). 

Regarding the latter, the Cronbach’s Alpha coefficient shows to which extent the answers 

given by each student to the different tasks of the test manifest similar levels of reasoning. 

We have obtained a value of 0.874 for this parameter, which is another indicator of the 

reliability of the test since it is greater than 0.7 (Fraenkel & Wallen, 1996). 

The questionnaire, that we next describe, consists of five items to evaluate 

students’ proof skills in graph theory, which were answered independently. The tasks 

included in each item, all containing concepts familiar to the students, were selected in 

order to detect the different types of proof that can appear when dealing with graphs: 

visual (level 1), empirical (level 2), informal (level 3) and formal (level 4).  

Item 1. Remember that the degree of a vertex is the number of vertices adjacent to 

it (i.e., they are connected by an edge). What is the sum of the degrees of all the 

vertices of a graph? Give a proof of your answer. 

The first item, which demands to prove that the sum of the degrees of the vertices 

of a graph is twice the number of its edges, assesses levels from 2 to 4. Indeed, the item 

does not serve to evaluate level 1 because the statement to be proved necessarily induces 

to explore a local property such as the degree of each vertex, which is not manageable at 

level 1. Thus, expected level 2 answers contain a specific value for the required sum and 

verifications in concrete examples. In contrast, level 3 answers, which may also contain 

verifications in specific examples, provide general mathematical reasoning but they do 
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not explicitly show the double edge counting that appears in level 4 answers. Moreover, 

this last type of answers might be given using mathematical induction. 

Item 2. Fill in the gaps of the following sentences: 

For a complete graph with 4 vertices, the number of its edges is … and the sum of 

the degrees of all its vertices is … 

For a cycle with 5 vertices, the number of its edges is … and the sum of the degrees 

of all its vertices is … 

For a graph on m edges, the sum of the degrees of all vertices is … Justify your 

answer. 

The second item provides a scaffolding for the proof of the preceding statement, 

thus demanding students to first count the sum of degrees and the number of edges of two 

specific graphs. Hence, this scaffolding helps students to find the general relation for any 

graph and deduce the corresponding proof, which precisely requires a double counting of 

its edges. Note that students could not go back to previous items during the replying of 

the questionnaire. Thus, this item does not assess level 1 for the same reasons provided 

for item 1 since it requires a proof of the same result. Level 2 expected answers, just like 

in item 1, are based on verifications in particular graphs. Also, any answers containing 

reasoning beyond verifications in examples reflect level 3, even if they explicitly contain 

the double edge counting idea. Indeed, this item does not assess level 4 because students 

have enough information to give the required proof just by linking a few logical steps, 

which is feasible by level 3 students. 

Item 3. Remember that the complete bipartite graph Kn,m is composed of two sets 

of vertices such that no edge has both vertices in the same set, and has every 

possible edge connecting vertices of both sets. Figure 2 shows the graph K3,5. 
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Figure 2. The complete bipartite graph K3,5. 

Try to prove that no complete bipartite graph with an odd number of vertices is 

Eulerian. 

The third item, which serves to assess all levels, asks for proving that no complete 

bipartite graph with an odd number of vertices is Eulerian. Answers with evidence of 

indicators of level 1 could contain visual arguments such as the impossibility to draw the 

graph without lifting the pencil from the paper, for instance in the example of graph 

provided in the questionnaire. Level 2 answers are limited to verifications in specific 

complete bipartite graphs, whilst level 3 answers contain reasoning made on 

mathematical properties and relations between these properties. This type of answers may 

contain gaps and provide conclusions obtained via a non-rigorous process, for instance, 

they could avoid a justification of the fact that a complete bipartite graph with an odd 

number of vertices must contain vertices of odd degree. Finally, level 4 answers are 

characterised by its degree of formality, showing proofs with a series of justified steps 

that logically lead us from the hypothesis to the thesis of the statement. Thus, these 

answers necessarily include the following ideas: 1) the degree of a vertex of a set of the 

complete bipartite graph equals the cardinality of the other set, and 2) in a complete 

bipartite graph with an odd number of vertices, exactly one of the two sets has odd 

cardinality. 

Item 4. Claim 1. If a graph has a vertex of odd degree, then that graph is not 

Eulerian. 
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Claim 2. If the complete bipartite graph Kn,m has an odd number of vertices, then 

either n is odd and m is even or vice versa. 

Considering the preceding claims, prove that no complete bipartite graph with an 

odd number of vertices is Eulerian. 

The fourth item provides some hints to proof the statement of the preceding item. 

Thus, if this scaffolding does not work as a deterrent for students that use visual 

arguments, then they are assigned level 1. Level 2 expected answers, just like in item 3, 

lie in specific verifications in examples, in contrast with level 3 answers, which provide 

mathematical reasoning beyond examples. This item does not allow to assess level 4 of 

proof since students have enough information to construct the required proof just by 

properly relating the claims provided in the statement of the item. 

Item 5. Here you have a proof of the fact that no complete bipartite graph with an 

odd number of vertices is Eulerian. Read it and try to understand it: 

● The vertex set of the complete bipartite graph is partitioned into two sets, one 

having n vertices and the other having m vertices. Each vertex of a set is adjacent 

to all the vertices of the other set, and there are no adjacencies among vertices of 

the same set. (See Figure 3). 

 
Figure 3. The complete bipartite graph Kn,m. 

● Thus, the vertices of one set have degree m and the vertices of the other set have 

degree n. 

● As the total number of vertices is n + m, which is an odd number, then either m is 

odd, and n is even or vice versa. 

● Therefore, the graph has vertices of odd degree and so it is not Eulerian. 
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You have just seen a proof of the fact that no complete bipartite graph with an odd 

number of vertices is Eulerian. Give a similar proof for the following statement: 

“A complete bipartite graph Kn,m is Eulerian if and only if n and m are both even”. 

The last item exhibits a formal proof of the result of item 3, and then it asks 

students to understand it and provide a similar proof for a different statement. Thus, this 

item does not assess the features of level 1 since it is required to be at level 2 to at least 

handle the mathematical properties appearing in the given proof. Again, level 2 answers 

should be made of specific verifications. Level 3 expected answers include general 

reasonings to prove the statement but only concerning one of the implications. Although 

the task demands the replication of a proof, which could be done in principle by level 3 

students, it is remarkable that the proof provided to students requires arguments for only 

one implication, while the proof demanded to students requires to consider two 

implications. Thus, it is necessary to possess sufficient formality to be aware of the 

necessity of proving both implications, which is characteristic of level 4 students. 

We summarize the information provided in this section in Table 1 for the sake of 

readability. 

Table 1. Levels assessed by each item. 

Item Level 
1      2   3   4 

2      2   3 

3 1   2   3   4 

4 1   2   3 

5      2   3   4 

3.2. Sample 

The questionnaire was administered to 59 students (labelled from S1 to S59) enrolled in 

the course Discrete Mathematics, which corresponds to the second year of the Degree in 

Computer Engineering and Technology of the University of Seville. We point out that we 
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have discarded the productions of 5 students (namely S1, S3, S7, S27 y S55) because they 

provided non-assessable answers to at least three items of the questionnaire (i.e., more 

than a half of the items). 

3.3. Assessment of the proof process in graph theory 

The data obtained in this study have been analysed by means of the method introduced 

by Gutiérrez et al. (1991) to compute the degrees of acquisition of the Van Hiele levels, 

which has been applied in several studies in the field of geometry (Abdullah & Zakira, 

2013; Aravena et al., 2016; Gutiérrez & Jaime, 1995; Gutiérrez & Jaime, 1998; Huerta, 

1999; Manero & Arnal-Bailera, 2021). This method, which provides a description of the 

development of the students’ skills associated with each of the Van Hiele levels, is 

adequate in our study since the descriptors of the Van Hiele levels of graphs (González 

et al., 2021) have been mainly obtained by analogy with the descriptors of the Van Hiele 

levels for the geometrical case. We next summarize the steps of the procedure for 

applying such method. 

Given the answers of a student to the five items, this method first assigns a level 

to each answer, according to the criteria developed in the subsection devoted to the data 

collection instrument, and also a type in accordance with the indicators described in the 

second column of Table 2. 

Table 2. Description of the types of answers and their corresponding weights 

(Gutiérrez et al., 1991, pp. 240-241). 

Type Description Weight (%) 

1 

No reply or answers that cannot be codified or that indicate that 

the learner has not attained a given level but that give no 

information about any lower level. 

0 

2 

Wrong and insufficiently worked out answers that give some 

indication of a given level of reasoning; answers that contain 

incorrect and reduced explanations, reasoning processes, or 

results. 

20 
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3 

Correct but insufficiently worked out answers that give some 

indication of a given level of reasoning; answers that contain very 

few explanations, inchoate reasoning processes, or very 

incomplete results. 

25 

4 

Correct or incorrect answers that clearly reflect characteristic 

features of two consecutive van Hiele levels and that contain clear 

reasoning processes and sufficient justifications. 

50 

5 

Incorrect answers that clearly reflect a level of reasoning; answers 

that present reasoning processes that are complete but incorrect or 

answers that present correct reasoning processes that do not lead 

to the solution of the stated problem. 

75 

6 
Correct answers that clearly reflect a given level of reasoning but 

that are incomplete or insufficiently justified. 
80 

7 
Correct, complete, and sufficiently justified answers that clearly 

reflect a given level of reasoning. 
100 

 

Subsequently, each answer is marked with a percentage of acquisition for each of 

the levels evaluated by the corresponding item. Indeed, the percentage of acquisition of 

the level assigned to the answer corresponds with those given in the third column of Table 

2; higher levels evaluated by the item are assigned 0%; and lower levels evaluated by the 

item are assigned 100%. This allows associating each answer with a 4-component vector 

corresponding with the four levels, being empty the components whose corresponding 

levels are not assessed by the item. 

Once we have obtained the five vectors corresponding to the five items answered 

by a student, we consider the items evaluating each level and compute the arithmetical 

mean of the percentages of acquisition obtained. Therefore, each student is assigned a 

vector of 4 numerical components with the percentages of acquisition of each level 

(quantitative vector), which is assigned another vector in accordance with the terms of 

Table 3 (qualitative vector). The diagram provided in Figure 4 shows an example of 

application of the method that we have described in this subsection. 
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Table 3. Correspondence between quantitative and qualitative values of the degrees of 

acquisition (Gutiérrez et al., 1991, p. 238). 

Quantitative acquisition Qualitative acquisition 

[0, 15] No acquisition 

(15, 40) Low 

[40, 60] Intermediate 

(60, 85) High 

[85, 100] Complete 

 

Note that, during the analysis of the answers given by the students to each item, 

we directly assigned a level and a type whenever the categorisations made individually 

by the four researchers agreed. In case of discrepancies, the researchers opened a 

discussion to finally reach a consensus. 

 

Figure 4. Scheme of application of the method to obtain the degrees of acquisition in a 

specific example. 

4. Results 

4.1. Levels and types of answers obtained for each item 

We next show examples of answers for each level of proof to illustrate the diversity found 

in the students’ productions. Due to space limitations, we cannot show examples of each 

type for all levels, but we provide four answers given by students (one per level) of 

different type to the same item. Concretely we have chosen item 3 since it assesses the 

four levels, allowing the reader to compare the features of the different levels and types 

while keeping the underlying content. 



17 
 

An example of level 1 answer to item 3 was given by student S23 (see Table 4) 

since the lack of Eulerian character was justified using a particular representation and 

visual arguments through a non-mathematical language: ‘you could lift the pencil from 

the paper […] there is a moment when’. The answer is assigned type 6 since it is correct 

in the sense of level 1 because Eulerian character can be recognised in visual terms as the 

possibility to draw the edges of the graph without lifting the pencil from the paper and 

without repeating visited edges. Also, the features observed in the answer clearly reflect 

level 1 of proof. We have considered it as insufficiently justified since it remains to 

mention the fact that the Eulerian character requires starting and finishing at the same 

place. 

Table 4. Example of level 1 and type 6 answer, given by student S23 (above) and its 

translation into English (below). 

 

I don’t remember exactly if to be Eulerian you could lift the pencil from the paper. Assuming 

that you cannot… You couldn’t as there is a moment when you have to repeat an already drawn 

Edge. 

 

A level 2 answer to the same item is provided by student S24 (see Table 5) since 

it contains a verification in a specific graph using mathematical vocabulary instead of 

visual arguments (typically found in level 1 answers). Indeed, the student considers the 



18 
 

number of vertices and edges thus exhibiting the relation between them: ‘It should fulfil 

the following characteristic: A = 2V-1’. This answer has been labelled with type 5 since 

it is incorrect, as the student has checked a property that do not characterize Eulerian 

graphs, and it clearly shows level 2 analytic characteristics. 

Table 5. Example of level 2 and type 5 answer, given by student S24 (above) and its 

translation into English (below). 

 

Example: Vertices = 7; Edges = 12; It should fulfil the following characteristic; A = 2V - 1; 

And a bipartite graph of 7 vertices as the preceding does not: 12 = 2(7) - 1; 12 ≠ 13 

 

Student S4 gives a level 3 answer (see Table 6) since it exhibits a certain use of 

propositional logic and its associated vocabulary (‘all vertices …, then in a …, there are 

always’), which is inner to the informal proofs that students at this level usually produce. 

It is a type 3 answer because it is wrong, as the second claim provided by the student is 

not a consequence of the first one, and insufficiently worked out (reduced explanations), 

thus reflecting only some indicators of the level. 
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Table 6. Example of level 3 and type 2 answer, given by student S4 (above) and its 

translation into English (below). 

 
In order to be Eulerian the degrees of all vertices should be even, then in a bipartite graph with 

an odd number of vertices, there are always odd vertices 

 

Finally, a level 4 proof is given by student S49 (see Table 7), who starts from the 

hypothesis of the statement to be proved and, through a series of logical steps, deduces 

the thesis. Note the vocabulary of formal proofs: ‘Let G(V,A) bipartite … for any v1∈V1’. 

Also, this is a type 7 answer because it is complete, as it clearly displays the formality 

that this level requires, and correct, since it contains an argumentation that properly links 

each of the steps conforming the proof. 

Table 7. Example of level 4 and type 7 answer, given by student S49 (above) and its 

translation into English (below). 
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Let G(V, A) bipartite with |V1| = n and |V2| = m; |V| = |V1| + |V2| = n + m; |V| ≡ 1 (mod 2) ⇔ n is 

odd and m is even or vice versa; Since for any v1 ∈ V1 there are edges with all vertices of V2; ∀ 

v1 ∈ V1 ∃ a ∈ A | a = (v1, v2) ∀ v2 ∈ V2; Hence the degree of v1 ∈ V1 is |V2| and vice versa. 

Therefore at least min{n, m} vertices have odd degree. Since a graph is Eulerian ⇔ ∀ v ∈ V 

δ(v) ≡ 0 (mod 2); G is not Eulerian 

 

We now present the results obtained for each item in Table 8, where the row with 

non-classifiable answers corresponds with those of type 1, which are not assigned to any 

level. We point out that we have found answers of each level of proof that is measured 

by the instrument. Also, note that the lowest percentages appear at level 1, while the 

highest values correspond with level 3 in most of the items, specifically, all except for 

item 1. 

Table 8. Distribution of levels assigned to each item. 

 Number of students (Percentage*) 

 Item 1 Item 2 Item 3 Item 4 Item 5 

Non-classifiable 5 (9.3%) 5 (9.3%) 15 (27.8%) 4 (7.4%) 3 (5.6%) 

Level 1 -- -- 3 (5.6%) 0 (0.0%) -- 
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Level 2 18 (33.3%) 15 (27.8%) 4 (7.4%) 11 (20.4%) 5 (9.3%) 

Level 3 12 (22.2%) 34 (63.0%) 18 (33.3%) 39 (72.2%) 37 (68.5%) 

Level 4 19 (35.2%) -- 14 (25.9%) -- 9 (16.7%) 

* As a consequence of rounding, the sum of the values of some columns do not sum up 100%. 

4.2. Levels of proof obtained by students 

The degrees of acquisition of each level obtained by the students of the sample (see Table 

9) show that most of them have high or complete acquisition of levels 1 (70.4%) and 2 

(74.0%). This evinces sufficient proof skills to provide visual arguments and check 

statements in specific examples. Concerning level 3, there is at least 14% of the students 

in each of the five intervals of acquisition considered. Also, 64.8% of the sample shows 

at most intermediate acquisition of level 3, which indicates some difficulties of these 

students when trying to prove the truthfulness of a statement using generic arguments 

instead of checking in examples. Finally, the vast majority of students (92.6%) feature at 

most intermediate acquisition of level 4, which is insufficient to perform formal proofs 

of mathematical results. 

Table 9. Distribution of the degrees of acquisition of each level of proof obtained for the 

sample. 

 Number of students (Percentage*) 

 No 

acquisition 
Low Intermediate High Complete 

Level 1 3 (5.6%) 0 (0.0%) 13 (24.1%) 0 (0.0%) 38 (70.4%) 

Level 2 0 (0.0%) 2 (3.7%) 12 (22.2%) 18 (33.3%) 22 (40.7%) 

Level 3 11 (20.4%) 16 (29.6%) 8 (14.8%) 10 (18.5%) 9 (16.7%) 

Level 4 32 (59.3%) 6 (11.1%) 12 (22.2%) 3 (5.6%) 1 (1.9%) 

* As a consequence of rounding, the sum of the values of some rows do not sum up 100%. 

 

Concerning the quantitative vectors of the degrees of acquisition of the students, 

we observe that 72.2% of them have their components in decreasing order for the four 
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levels of proof. With regard to the 15 remaining vectors (27.8%), 13 of them have less 

acquisition of level 1 than level 2, while the other two present less acquisition of level 3 

than level 4. Specifically, students S14 and S32 have respectively (100, 70, 55, 60) and 

(100, 80, 50, 60) as quantitative vectors. However, both vectors are associated to the same 

qualitative vector (complete, high, intermediate, intermediate), whose components are in 

decreasing order. 

We have obtained 6 profiles of students according to their qualitative vectors (see 

Table 10). To do this, we have grouped the students first according to the highest level of 

proof acquired by the student (high or complete acquisition), and then depending on 

whether they have some acquisition (low or intermediate) or not (no acquisition) of the 

higher levels. Indeed, profile P1 contains students showing the maximum development 

of proof skills, thus featuring most of the abilities that characterize level 4, and profile P2 

has level 3 students who are acquiring level 4. Profiles P3 and P4 are made up of level 2 

students, differing in the fact that the former are acquiring higher levels and the latter do 

not show any acquisition of them. Finally, profile P5 contains level 1 students featuring 

some level 2 and 3 proof skills, while students of profile P6, who also handle some level 

2 and 3 abilities, have not attained level 1. 

Table 10. Proof profiles obtained in the study, considering the order No acquisition ≤ Low 

Intermediate ≤ High ≤ Complete. 

 Degrees of acquisition 

 Level 1 Level 2 Level 3 Level 4 
Number of students 

(Percentage*) 

Profile P1 
High or 

Complete 

High or 

Complete 

High or 

Complete 

High or 

Complete 
4a (7.4%) 

Profile P2 
High or 

Complete 

High or 

Complete 

High or 

Complete 

Low or 

Intermediate 
15 (27.8%) 

Profile P3 
High or 

Complete 

High or 

Complete 

Low or 

Intermediate 
≤ Intermediate 14b (25.9%) 
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Profile P4 
High or 

Complete 

High or 

Complete 
No acquisition No acquisition 7c (13.0%) 

Profile P5 Complete Intermediate ≤ Intermediate No acquisition 5 (9.3%) 

Profile P6 Intermediate 
Low or 

Intermediate 
≤ Low No acquisition 9d (16.7%) 

* As a consequence of rounding, the sum of the values of this column does not sum up 100%. a One student 

does not satisfy the level 1 condition. b Four students do not satisfy the level 1 condition. c Two students 

do not satisfy the level 1 condition. d Three students do not satisfy the level 1 condition. 

 

5. Discussion and conclusions 

The results presented in the preceding section give empirical support to the validity of the 

proposal of proof levels in graph theory through the lens of the Van Hiele model 

(González et al., 2021), thus reaching the objective proposed in the beginning of this 

study. Indeed, all descriptors for every level of proof have been observed in our data since 

we have categorised students’ answers with each of these levels. Furthermore, we have 

obtained evidence for the properties of the Van Hiele levels, as we next discuss. 

The diversity of answers has allowed to verify the specificity of language 

displayed at each level. Indeed, we have shown four particular answers that clearly 

illustrate the nature of each type of vocabulary. Thus, level 1 students use everyday 

language to provide visual arguments, in contrast to the analytical language employed by 

level 2 students to check mathematical properties in concrete examples. At level 3, we 

can observe the use of some words typical of propositional logic that students use to make 

informal proofs. Finally, level 4 students use a more precise language than in the previous 

level, which is necessary to produce formal proofs with the rigor that this level demands.  

Regarding the hierarchical and sequential character of Van Hiele levels, the 

degrees of acquisition of each level obtained by students reflect this property since the 

higher the level, the lower the degree of acquisition. Indeed, on the one hand, the most 

frequent degree of acquisition for each level decreases: complete for levels 1 and 2, low 
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for level 3, and no acquisition for level 4. Furthermore, we find that the frequency of 

complete acquisition decreases with respect to the levels. Thus, these facts are global 

validation factors of this characteristic of the Van Hiele levels (Gutiérrez et al., 1991). On 

the other hand, if we individually examine the quantitative vectors of the degrees of 

acquisition assigned to each student, the high percentage of them whose components 

appear in decreasing order is a local validation factor. Also, considering the six profiles 

obtained in the study, it is remarkable that they fit the expected hierarchical character for 

the Van Hiele levels. Specifically, the qualitative vectors associated with profiles P1, P2 

and P4 strictly agree with this characteristic, since those featuring low or intermediate 

acquisition of a certain level, have high or complete acquisition of the previous levels; 

the qualitative vectors of the profiles P3, P5 and P6 are not strictly adapted to this 

characteristic because they have low or intermediate acquisition of at least two levels, 

although they also have their components in decreasing order. 

Looking now into the transition from a level to another, we can see from our 

results that this occurs continuously, which is also observed in works exploring 

geometrical reasoning (Burger & Shaughnessy, 1986; Gutiérrez et al., 1991; Perdikaris, 

2011; Voskoglou, 2017). This is, students who have attained a certain level (i.e., with 

high or complete acquisition) have already begun the acquisition of the next level. Thus, 

the profiles obtained in our study reinforce continuity since all but profile P4 show 

students in transition between levels. (Obviously, this does not have sense for students of 

profile P1 since they have reached the maximum degree of reasoning in the proof 

process). Indeed, we have only found level 2 students who have not started the acquisition 

of higher levels, which are precisely those of P4 profile. This points out the fact that the 

transition between levels 2 and 3 could occur less gradually than in other levels, at least 

for the proof process. This is not surprising since achieving level 3 implies to understand 
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what a proof really is, as remarked by Senk (1989) for the geometrical context, who points 

out that this implies students to move from verifications in concrete examples to proofs 

based on general mathematical arguments. 

We have detected certain anomalies in the results whose possible causes could be 

explored in future works. Indeed, we have obtained a remarkable number of students with 

more acquisition of a certain level than the previous one, mostly students with more 

acquisition of level 2 than 1, in contrast to the hierarchical nature expected for the levels 

of proof under study. This could be due to two main reasons, both of methodological 

nature. The first reason could be related to our questionnaire because it only contains two 

items evaluating level 1, which might generate unreliable values. This could be fixed by 

increasing the number of tasks in the corresponding questionnaire that serve to assess 

level 1. The second, according to the methodology of Gutiérrez et al. (1991), refers to 

non-assessable responses (type 1), which are assigned no acquisition for all levels 

evaluated by the corresponding task. Thus, these responses are weighted with 0 at level 1 

(whenever it is assessed by the task) even for students who could have attained this level. 

We could explore possible modifications of this methodology in future studies in order 

to solve this issue.  

Our work has shown evidence of the suitability of employing the Van Hiele model 

to analyse students’ development in the proof process for graph theory. We could then 

investigate whether the same is true for the rest of the processes that students activate 

when learning graphs: recognition, use and formulation of definitions, and classification. 

Regarding teaching issues, it would be also interesting to explore whether the 

instructional aspects of the Van Hiele model, such as the sequencing according to its 

phases, produce a better acquisition of the levels in graph theory. 
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