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Abstract

In this paper we design and analyze a numerical method to solve a type of reaction-
diffusion 2D parabolic singularly perturbed systems. The method combines the cen-
tral finite difference scheme on an appropriate piecewise uniform mesh of Shishkin
type to discretize in space, and the fractional implicit Euler method together with
a splitting by directions and components of the reaction-diffusion operator to inte-
grate in time. We prove that the method is uniformly convergent of first order in
time and almost second order in space. The use of this time integration technique
has the advantage that only tridiagonal linear systems must be solved to obtain
the numerical solution at each time step; because of this, our method provides
a remarkable reduction of computational cost, in comparison with other implicit
methods which have been previously proposed for the same type of problems. Full
details of the uniform convergence are given only for systems with two equations;
nevertheless, our ideas can be easily extended to systems with an arbitrary number
of equations as it is shown in the numerical experiences performed. The numerical
results show in practice the qualities of our proposal.

Key words: coupled 2D parabolic systems, reaction-diffusion, fractional step
methods, splitting by components, piecewise uniform Shishkin meshes, uniformly
convergent methods
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1 Introduction

Reaction-diffusion systems appear in the modeling of multiple biological and
physical problems like the models of predator-prey in [13], some models of
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turbulent interaction between waves and currents described in [23], infiltration
of liquids in porous media [2], nuclear reactor dynamics [19] as well as many
chemical processes [10,12,25]. Frequently, the solutions of these problems show
rapid variations in some narrow regions (layers) when the size of the diffusion
parameters is very small. This behavior provokes that standard approximation
techniques fail, specially in providing a good approach of the solution at these
layers.

In this paper we deal with the robust and efficient numerical resolution of two
dimensional parabolic singularly perturbed coupled reaction-diffusion systems
given by

Lε(t)u ≡ ∂u

∂t
(x, t) + Lx,ε(t)u(x, t) = f(x, t), (x, t) ∈ Q ≡ Ω× (0, T ],

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ], u(x, 0) = φ(x), x ∈ Ω,
(1)

where Ω = (0, 1)2 and the spatial differential operator Lx,ε(t) is defined as

Lx,ε(t)u ≡ −D∆u+A(x, t)u, (2)

with D = diag(ε, ε) and A(x, t) = (arp(x, t)), r, p = 1, 2.

Here we only consider the case of systems for which the diffusion parameters
are the same, or there are diffusion parameters of similar sizes in the equations
of the system. Note that when the diffusion parameters are similar in size a
simple scaling reduces the problem to (1). This case is not the most general,
but it has been considered in many papers (see [12,13,19,22,25] for instance).
The theoretical analysis for problems with diffusion parameters of very dif-
ferent sizes is much more complicated because of the presence of overlapping
boundary layers in their exact solutions; these cases will be the subject of
future works.

We assume that the diffusion parameter ε can be very small, 0 < ε ≪ 1, and
the reaction matrix A is an M -matrix, i.e., it holds

2∑
p=1

arp ≥ α > 0, arr > β > 0, r = 1, 2, arp ≤ 0, if r ̸= p, ∀(x, t) ∈ Q. (3)

Moreover, we assume that the source term f(x, t) = (f1, f2)
T , the initial con-

dition φ(x) = (φ1, φ2)
T , the boundary conditions g(x, t) = (g1, g2)

T and the
reaction matrix A are composed by sufficiently smooth functions satisfying
sufficient compatibility conditions in order to assure that the exact solution
u ∈ C4,2(Q) (see [22] for a detailed discussion).

There are many works (see for instance [4,11,16] and references therein) where
suitable numerical methods are constructed for solving elliptic and parabolic
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one dimensional coupled systems of reaction-diffusion type. The exact solution
of these problems has, in general, boundary layers close to the boundary of
the spatial domain. In all of those papers where a time dependance was con-
sidered, a time integration, via the backward Euler method, was performed,
combined with a discretization of the spatial variable by means of the classical
central finite difference scheme defined on piecewise uniform Shishkin meshes;
using this combination, several uniformly convergent methods (see [18]) were
constructed, i.e., methods which give reliable solutions for any value of the
diffusion parameter ε. The main drawback of such methods is related to the
coupling of the components of the exact solution, which provokes that banded
linear systems must be solved at each time level of the discretization. To avoid
this inconvenient and reduce substantially the computational cost, in [3] an
additive scheme (see [24]) was used to discretize in time. A similar idea based
on a splitting by components was introduced in [7]; this technique permits to
decouple the components in such way that only tridiagonal systems must be
solved at each time level; therefore, a reduction of the computational cost is
obtained which, besides, becomes more remarkable as long as the number of
components in the system increases.

As well, in other papers (see [14,15,21]) 2D elliptic singularly perturbed sys-
tems of type (1) were considered; from those studies, it is well known that
parabolic boundary layers of width O(

√
ε) appear at the boundary ∂Ω of the

spatial domain. The time dependent case for systems with two equations has
been studied in [22]; in those papers, the asymptotic behavior of the exact
solution was given and the uniform convergence of a classical implicit method
defined on a Shishkin mesh was proven; such method has a large computa-
tional cost because large block tridiagonal systems must be solved at each
time step.

The use of alternating direction implicit methods (see [17]) is a well known al-
ternative to reduce the computational cost of solving multidimensional scalar
parabolic problems, because only tridiagonal systems are involved in the in-
tegration in time. In [9], a method of this type was proposed for solving 2D
scalar singularly perturbed diffusion-reaction problems, proving that it was
uniformly convergent of first order in time and almost second order in space.
Such method can be applied to the systems considered here but its compu-
tational complexity is not optimal in terms of the number of components
because, in such case, linear systems with banded matrices should be solved
to advance in time.

To avoid the drawbacks of the existing algorithms mentioned before, here we
combine the ideas of [7] and [9] to design a new numerical algorithm which
uses the central difference scheme on a suitable special mesh to discretize in
space and the fractional implicit Euler method, together with a splitting by
directions and components, to integrate in time. In this way only tridiagonal
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linear systems must be solved at each time level getting a remarkable com-
putational cost reduction with respect to any classical implicit method which
has been used in this context.

The presence of non homogeneous boundary data is an additional difficulty
which we consider here, because their discretization provokes an order reduc-
tion phenomenon in many time integration processes (see [1] and references
therein). This order reduction enlarges the errors in time and complicates
the analysis of the uniform convergence when this phenomenon is present. In
the algorithm proposed here, we remove this drawback by making a simple
modification of the evaluations of the boundary data.

The paper is organized as follows. In Section 2 we show the asymptotic be-
havior of the exact solution u of (1) with respect to ε and we give appropriate
estimates for its derivatives. In Section 3 we construct the spatial discretiza-
tion and we prove its uniform convergence when it is defined on an adequate
Shishkin mesh. In Section 4 we give the time discretization by using the frac-
tional Euler method and the splitting by components, proving that the fully
discrete scheme is a uniformly convergent method of first order in time and
almost second order in space; moreover, we show that suitable evaluations of
the boundary data are essential to avoid the loss of consistency caused by
the order reduction phenomenon. In Section 5 we show the numerical results
obtained for different test problems, which corroborate in practice the theo-
retical results and the advantages of the proposed algorithm. We finish with
some concluding remarks.

Henceforth, we denote by ∥f∥D = max{∥f1∥D, ∥f2∥D}, where ∥ · ∥D is the
maximum norm on the domain D, |v| = (|v1|, |v2|)T , v ≥ w (analogously
v ≤ w) means vr ≥ wr, r = 1, 2, C denotes a generic positive constant which
is independent of the diffusion parameter ε and the discretization parameters
N and M , and C = (C,C)T .

2 Asymptotic behavior of the exact solution

In this section we provide estimates for the derivatives of the solution u of
problem (1), which show its asymptotic behavior with respect to the diffusion
parameter ε. The ideas to obtain those estimates follow the works [5,9,21,22],
where the decomposition solution and the extended domains technique are
used; then, the regular and the boundary layer functions (see below) are the
restriction of the solution of parabolic problems with appropriate boundary
and initial conditions, which are defined on suitable extended domains; more-
over, the corner layers (see below) are the solution of a similar problem to
(1) where the right-hand side is zero, the initial condition is also zero and the
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boundary conditions depend on the value on ∂Ω of the regular and boundary
layer functions. The regularity of each component is guaranteed using appro-
priate extended domains and the estimates of the derivatives of the exact
solution of these problems are obtained using the barrier function technique.

To prove the existence of a unique solution of problem (1) and the maximum
principle, we introduce the scalar uncoupled differential operators

Lr,εv(x, t) ≡ vt(x, t)− ε(vxx(x, t) + vyy(x, t)) + arrv(x, t), r = 1, 2,

which satisfy a maximum principle [20]. In [15] the next result was proved.
Lemma 1. Let w ∈ C(Q̄) ∩ C2(Q) be such that Lr,εw = ψ, r = 1, 2 on Q,
w = g on ∂Ω× [0, T ] and w = φ on Ω. Then, it holds

∥w∥Q̄ ≤ ∥ψ/arr∥Q̄ + ∥g∥∂Ω×[0,T ] + ∥φ∥Ω.

Moreover, following closely the proof in [15], the next result can be proved.
Lemma 2. Let u be a solution of (1). For k = 0, 1, 2, . . . , define the sequence

of functions u[k] = (u
[k]
1 , u

[k]
2 ) as follows: let u[0] be any function in (C(Q))2,

and for k = 0, 1, 2, . . . , let u[k] such that
Lr,εu

[k]
r = fr −

∑
p̸=r

arpu
[k−1]
r , on Q, u[k]r = gr on ∂Ω× [0, T ],

u[k]r (x, 0) = φr(x),x ∈ Ω, r = 1, 2;

then, it holds lim
k→∞

u[k] = u. Moreover, we have

∥u∥Q̄ ≤ 1

β(1− γ)
∥f∥Q̄,

where 0 ≤ γ ≡ max
r
γr < 1 and γr = max

Q̄

{
1

arr

∑
p̸=r

|arp|
}
, r = 1, 2.

From Lemma 2 the existence of a unique solution of problem (1) and the
following inverse positivity property are deduced.
Lemma 3. Let v ∈ (C(Q̄) ∩ C2(Q))2 be such that Lεv ≥ 0 on Q and v ≥ 0
on ∂Ω× [0, T ] ∪ Ω× {0}. Then, v ≥ 0 on Q̄.

To obtain suitable estimates for u and its derivatives, we consider the following
subsets

Γ1 = {(x, 0), 0 ≤ x ≤ 1}, Γ2 = {(0, y), 0 ≤ y ≤ 1},

Γ3 = {(x, 1), 0 ≤ x ≤ 1}, Γ4 = {(1, y), 0 ≤ y ≤ 1},

which are the edges of ∂Ω and the four corners of the spatial domain are
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denoted by cl, l = 1, 2, 3, 4, being

c1 = Γ1 ∩ Γ2, c2 = Γ2 ∩ Γ3, c3 = Γ3 ∩ Γ4, c4 = Γ4 ∩ Γ1.

Now, following the ideas of [9], we decompose the solution of (1) as

u = v +
4∑

l=1

wl +
4∑

l=1

zl, (4)

where v is the regular component of u which satisfies∣∣∣∣∣ ∂k+k0

∂xk1∂yk2∂tk0
v(x, t)

∣∣∣∣∣ ≤ C(1 + ε(2−k)/2), (x, t) ∈ Q̄, 0 ≤ k + 2k0 ≤ 4, (5)

with k = k1 + k2, wl, l = 1, 2, 3, 4 are the boundary layer components of u,
associated to Γl, which satisfy

|wl(x, t)| ≤ Ce−α0ε−1/2r(x,Γi), (x, t) ∈ Q̄, l = 1, 2, 3, 4, (6)∣∣∣∣∣ ∂k0∂tk0
wl(x, t)

∣∣∣∣∣ ≤ C, (x, t) ∈ Q̄, 1 ≤ k0 ≤ 2, l = 1, 2, 3, 4, (7)∣∣∣∣∣ ∂k

∂xk1∂yk2
wl(x, t)

∣∣∣∣∣ ≤ Cε−k1/2, (x, t) ∈ Q̄, 1 ≤ k ≤ 4, l = 2, 4, (8)∣∣∣∣∣ ∂k

∂xk1∂yk2
wl(x, t)

∣∣∣∣∣ ≤ Cε−k2/2, (x, t) ∈ Q̄, 1 ≤ k ≤ 4, l = 1, 3, (9)

and zl, l = 1, 2, 3, 4 are the corner layer components which satisfy

|zl(x, t)| ≤ Ce−α0ε−1/2r(x,cl), (x, t) ∈ Q̄, l = 1, 2, 3, 4, (10)∣∣∣∣∣ ∂k0∂tk0
zl(x, t)

∣∣∣∣∣ ≤ C, (x, t) ∈ Q̄, 1 ≤ k0 ≤ 2, l = 1, 2, 3, 4, (11)∣∣∣∣∣ ∂k

∂xk1∂yk2
zl(x, t)

∣∣∣∣∣ ≤ Cε−k/2, (x, t) ∈ Q̄, 1 ≤ k ≤ 4, l = 1, 2, 3, 4, (12)

where α0 is an arbitrary positive constant such that 0 < α0 < α, and r(x,Γl)
and r(x, cl) are the distances from the point x to the sets Γl and the corners
cl, l = 1, 2, 3, 4, respectively.

3 Spatial semidiscretization

To discretize in space problem (1), we use the classical central finite difference
scheme defined on a rectangular mesh of Shishkin type. For simplicity, we take
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the same number of grid points in both spatial directions. As the exact solution
of the continuous problem has parabolic boundary layers of width O(

√
ε)

on ∂Ω, we propose a mesh which is the tensor product of one dimensional

piecewise uniform meshes of Shishkin type, i.e., Ω
N

= I
N
x × I

N
y , with I

N
x =

{0 = x0 < x1 < . . . , < xN = 1}, INy = {0 = y0 < y1 < . . . , < yN = 1}, where,
for the variable x (and the same for the variable y) the grid points of ĪNx are
given by

xi =


ih, i = 0, . . . , N/4,

xN/4 + (i−N/4)H, i = N/4 + 1, . . . , 3N/4,

x3N/4 + (i− 3N/4)h, i = 3N/4 + 1, . . . , N,

(13)

where h = 4σ/N, H = 2(1−2σ)/N , and the transition parameter σ is defined
by

σ = min
{
1/4, 2

√
ε lnN

}
. (14)

We denote by hx,i = xi − xi−1, hy,j = yj − yj−1, i, j = 1, . . . , N , and by hx,i =
(hx,i + hx,i+1)/2, hy,j = (hy,j + hy,j+1)/2, i, j = 1, . . . , N − 1.

Let us denote by ΩN the subgrid of Ω
N

composed only by the interior points

of it, i.e., by Ω
N ⋂

Ω, ∂ΩN ≡ Ω
N\ΩN , by [v]ΩN (analogously [v]ΩN for scalar

functions) the restriction operators, applied to vector functions defined in Ω,
to the mesh ΩN , and by [v]∂ΩN (analogously [v]∂ΩN for scalar functions) the
restriction operators, applied to vector functions defined in ∂Ω, to the mesh
∂ΩN . For all (xi, yj) ∈ ΩN we introduce the semidiscrete approach UN(t) ≡
UN

ij (t), i, j = 1, . . . , N − 1, with UN
ij (t) ≈ u(xi, yj, t), as the solution of the

following Initial Value Problem



dUN

dt
(t) + LN

ε (t)U
N
(t) = [f(x, t)]ΩN , in ΩN × [0, T ],

U
N
(t) = [g(x, t)]∂ΩN , in ∂ΩN × [0, T ],

UN(0) = [φ(x)]ΩN ,

(15)

beingU
N
(t) the natural extension of the semidiscrete functionsUN(t), defined

in ΩN × [0, T ], to Ω
N × [0, T ] by adding the Dirichlet boundary values of g in

∂ΩN × [0, T ] and being LN
ε (t) the discretization, via central differences, of the

diffusion-reaction operator Lx,ε(t), i.e.,

(LN
ε (t)U

N
)ij,1 = cij,lU

N
i−1j,1 + cij,rU

N
i+1j,1 + cij,dU

N
ij−1,1+

cij,uU
N
ij+1,1 + cij,cU

N
ij,1 + a11(t)U

N
ij,1 + a12(t)U

N
ij,2,

(16)
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and

(LN
ε (t)U

N
)ij,2 = cij,lU

N
i−1j,2 + cij,rU

N
i+1j,2 + cij,dU

N
ij−1,2+

cij,uU
N
ij+1,2 + cij,cU

N
ij,2 + a21(t)U

N
ij,1 + a22(t)U

N
ij,2,

(17)

with

cij,l =
−ε

hx,ihx,i
, cij,r =

−ε
hx,i+1hx,i

, cij,d =
−ε

hy,jhy,j
, cij,u =

−ε
hy,j+1hy,j

,

cij,c = −(cij,l + cij,r + cij,d + cij,u),
(18)

for i, j = 1, . . . , N − 1.

The uniform well-posedness of (15) is a consequence of the following semidis-
crete maximum principle.

Theorem 1. Under the assumption [f(x, t)]ΩN ≤ 0, it holds that U
N
(t)

reaches its maximum componentwise value at the semidiscrete boundary ∂ΩN×
[0, T ]

⋃
ΩN × {0}.

The proof of this result is similar to the proof of the semidiscrete maximum
principle stated in [7]. From Theorem 1 the next result follows.
Theorem 2. If [f(x, t)]ΩN ≥ 0, [g(x, t)]∂ΩN ≥ 0 and [φ(x)]ΩN ≥ 0, then

U
N
(t) ≥ 0,

Using now a well known barrier-function technique, the following result can
be proved.
Theorem 3. (Uniform stability for (15)). The unique solution of problem
(15) satisfies the uniform estimate

∥UN
(t)∥

Ω
N×[0,T ]

≤

max{∥[φ(x)]ΩN∥
ΩN
, ∥[g(x, t)]∂ΩN∥∂ΩN×[0,T ],

1

α
∥[f(x, t)]ΩN∥ΩN×[0,T ]}.

(19)

In previous result the norms are the corresponding maximum discrete or semidis-
crete norms; for instance, ∥UN(t)∥

Ω
N×[0,T ]

≡ max
0≤i,j,N, 0≤t≤T

∥UN
ij (t)∥.

The last result in this section proves the uniform convergence of the spatial
discretization.
Theorem 4. Under the previous smoothness assumptions for u, the error
associated to the spatial discretization on the Shishkin mesh satisfies

∥UN
(t)− [u(x, t)]

Ω
N∥

Ω
N ≤ CN−2 ln2N, t ∈ [0, T ], (20)

where C is independent of ε and N and therefore the spatial discretization is
uniformly convergent of almost second order.

Proof. The proof follows the ideas of [7] where a 1D version of problem (1)
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was considered. We only include the minimal details to understand how the
estimate for the error can be deduced for the 2D problem considered here.

Firstly, we decompose the semidiscrete solution using an analogous decom-
position to the one which we considered in previous section for the solution
u:

U
N
(t) = V

N
(t) +

4∑
l=1

W
N

l (t) +
4∑

l=1

Z
N

l (t); (21)

these grid functions are the solution of the semidiscrete problems

dVN

dt
(t) + LN

ε (t)V
N
(t) = [Lε(t)v]ΩN , in ΩN × [0, T ],

V
N
(t) = [v(x, t)]∂ΩN , in ∂ΩN × [0, T ],

VN(0) = [v(x, 0)]ΩN ,



dWN
l

dt
(t) + LN

ε (t)W
N

l (t) = [0]ΩN , in ΩN × [0, T ],

Wl
N
(t) = [wl(x, t)]∂ΩN , in ∂ΩN × [0, T ],

WN
l (0) = [wl(x, 0)]ΩN ,

and 

dZN
l

dt
(t) + LN

ε (t)Z
N

l (t) = [0]ΩN , in ΩN × [0, T ],

Zl
N
(t) = [zl(x, t)]∂ΩN , in ∂ΩN × [0, T ],

ZN
l (0) = [zl(x, 0)]ΩN ,

for l = 1, 2, 3, 4.

On ΩN , for any t ∈ (0, T ], the vector of truncation errors is given by

τN(t)(u) ≡ [(
∂

∂t
+ Lx,ε(t))u(x, t)]ΩN − (

d

dt
[u(x, t)]ΩN + LN

ε (t)[u(x, t)]ΩN ).

For the regular component, the truncation error satisfies

|τNij (t)(v)| ≤ |D
(
∆v(xi, yj, t)−

(
δ2x + δ2y

)
v(xi, yj, t)

)
|,

where δ2x and δ2y are the discretization on a nonuniform mesh of the second
derivatives respect to x and y respectively. Using the estimates (5), it is not
difficult to obtain

|τNij,k(t)(v)| ≤

CN−1
√
ε, if xi = σ, 1− σ, or yj = σ, 1− σ, k = 1, 2,

CN−2, otherwise.
(22)
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Using (22) and Theorem 3 in a classical way we cannot prove the almost
second order of uniform convergence in space. To get this, following to [3,5]
we define the barrier function

Ψ = Cσ2ε−1N−2(θ(xi) + θ(yj)),

where θ(z) is the usual piecewise linear polynomial given by

θ(z) =



z

σ
, 0 ≤ z ≤ σ,

1, σ ≤ z ≤ 1− σ,
1− z

σ
, 1− σ ≤ z ≤ 1.

From the choice of transition points, it follows that |Ψ| ≤ C(N−1 lnN)2 and,
from Theorem 2, we obtain

|(VN − v)(xi, yj, t)| ≤ Ψ ≤ C(N−1 lnN)2. (23)

In second place, we analyze the error associated to the boundary layer func-
tions wl, l = 1, 2, 3, 4 (we only give details for w1). The analysis depends on
the location of grid point yj. First, we assume that yj ≥ σ; then, as in [3],
using the barrier function

(Bw1;ij)m =


j∏

s=1

(
1 + hy,sα0/

√
ε
)−1

, j ̸= 0,

1, j = 0,

for 0 ≤ i, j ≤ N and 1 ≤ m ≤ 2, the estimates (6) and that (Bw1;ij)m ≤
CN−2, for yj ≥ σ it follows

|(WN
1 −w1)(xi, yj, t)| ≤ C N−2, if σ ≤ yj ≤ 1. (24)

For the grid points (xi, yj) ∈ (0, 1)× (0, σ), using (7) and (9), the local error
satisfies

|τNij (t)(w1)| ≤ C ε−1h2,

and as h ≤ C ε1/2N−1 lnN it follows

|(WN
1 −w1)(xi, yj, t)| ≤ C(N−1 lnN)2, if 0 ≤ yj ≤ σ. (25)

Finally, for the corner layer functions zl, l = 1, 2, 3, 4 (we only show the details
for z1), if xi ≥ σ, we proceed as for the layer function w1 to obtain

|(ZN
1 − z1)(xi, yj, t)| ≤ Ce−α0ε−1/2yj +Bw1 ≤ CN−2, if yj ≥ σ. (26)
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On the other hand, if xi ≥ σ, using that z1 decays exponentially from x = 0,
it holds

|(ZN
1 − z1)(xi, yj, t)| ≤ Ce−α0ε−1/2xi +Bw2 ≤ CN−2, if xi ≥ σ, (27)

where

(Bw2;ij)m =


j∏

s=1

(
1 + hx,sα0/

√
ε
)−1

, j ̸= 0,

1, j = 0,

for 0 ≤ i, j ≤ N and 1 ≤ m ≤ 2.

At last, for the grid points (xi, yj) ∈ (0, σ)× (0, σ), as the mesh is fine in both
spatial directions. a classical truncation error analysis permits to prove

|(ZN
1 − z1)(xi, yj, t)| ≤ C(N−1 lnN)2, if 0 ≤ xi, yj ≤ σ. (28)

From (23)-(28) the required result follows.

4 Time integration: the fully discrete scheme

In this section we propose an efficient fully discrete scheme to solve (1), by
applying an appropriate time integrator to the semidiscrete problems (15). To
simplify the notation, we introduce the difference operators

LN
1,x(t)v

N ≡ −ε∂xxvN + a11,x(t)v
N , LN

1,y(t)v
N ≡ −ε∂yyvN + a11,y(t)v

N ,

LN
2,x(t)v

N ≡ −ε∂xxvN + a22,x(t)v
N , LN

2,y(t)v
N ≡ −ε∂yyvN + a22,y(t)v

N ,
(29)

being ∂xx and ∂yy the classical second order central differences, on the corre-
sponding one dimensional Shishkin meshes, with arr,x(x, y, t) + arr,y(x, y, t) =
arr(x, y, t), r = 1, 2 with the restriction that arr,z(x, y, t) ≥ 0, r = 1, 2, z = x, y
holds. Analogously, we decompose the non diagonal coefficients of the reaction
matrix in the form arp,x(x, y, t) + arp,y(x, y, t) = arp(x, y, t), r, p = 1, 2, r ̸= p,
and now the restriction to these splitting is that arp,z(x, y, t) ≤ 0, r, p =

1, 2, r ̸= p, z = x, y, and
2∑

p=1
arp,z(x, y, t) ≥ αz > 0, r = 1, 2, z = x, y hold,

being αx + αy = α and α is the term which was introduced in (3). Notation
arp,z(t)v

N must be understood as follows: (arp,z(t)v
N)ij ≡ arp,z(xi, yj, t)v

N
ij ;

as well, we decompose the right-hand side f(x, t) ≡ (f1, f2)
T , in the form

fx + fy ≡ (f1,x, f2,x)
T + (f1,y, f2,y)

T .

Let τ ≡ T/M be the time step, tm = mτ,m = 0, . . . ,M are the intermediate
times where the semidiscrete solution U(tm) is going to be approached by

11



UN,m and ΩN
x ≡ INx × I

N

y , Ω
N
y ≡ I

N

x × INy ; then, the fully discrete scheme is
given by

(initialize) UN,0 = [φ]
Ω

N ,



(calculus of UN,m+1),

(I + τLN
ε,l(tm+1))U

N,m+l/4 = UN,m+(l−1)/4 + τFm+l/4, in ΩN
l ,

UN,m+l/4 = GN,m+l/4, in ∂ΩN
l ,

l = 1, 2, 3, 4,

m = 0, . . . ,M − 1,

(30)

where

LN
ε,1(tm+1) ≡

LN
1,x(tm+1) a12,x(tm+1)

0 I

 , LN
ε,2(tm+1) ≡

 I 0

a21,x(tm+1) LN
2,x(tm+1)

 ,

LN
ε,3(tm+1) ≡

 I 0

a21,y(tm+1) LN
2,y(tm+1)

 , LN
ε,4(tm+1) ≡

LN
1,y(tm+1) a12,y(tm+1)

0 I

 ,

Fm+1/4 ≡

Fm+1
1,x

0

 ,Fm+2/4 ≡

 0

Fm+1
2,x

 , Fm+3/4 ≡

 0

Fm+1
2,y

 , Fm+1 ≡

Fm+1
1,y

0,

 ,
GN,m+1/2, GN,m+1 are given by

G
N,m+1/2
0 =

(
(I + τLN

1,y(tm+1))[g1(0, y, tm+1)]Īy − τ [f1,y(0, y, tm+1)]Iy+

[τa12,y(0, y, tm+1)g2(0, y, tm+1)]Iy ,

(I + τLN
2,y(tm+1))[g2(0, y, tm+1)]Īy − τ [f2,y(0, y, tm+1)]Iy+

[τa21,y(0, y, tm+1)g1(0, y, tm+1)]Iy
)T
,

G
N,m+1/2
N =

(
(I + τLN

1,y(tm+1))[g1(1, y, tm+1)]Īy − τ [f1,y(1, y, tm+1)]Iy+

[τa12,y(1, y, tm+1)g2(1, y, tm+1)]Iy ,

(I + τLN
2,y(tm+1))[g2(1, y, tm+1)]Īy − τ [f2,y(1, y, tm+1)]Iy+

[τa21,y(1, y, tm+1)g1(1, y, tm+1)]Iy
)T
,

GN,m+1
0 = [g(x, 0, tm+1)]Ix and GN,m+1

N = [g(x, 1, tm+1)]Ix .

(31)

GN,m+1/4 ≡ (G
N,m+1/2
1 , [UN,m

2 ]∂ΩN
1
)T andGN,m+3/4 ≡ ([U

N,m+1/2
1 ]∂ΩN

3
,GN,m+1

2 )T ,

being ∂ΩN
1 = ∂ΩN

2 ≡ {0, 1} × Īy and ∂ΩN
3 = ∂ΩN

4 ≡ Īx × {0, 1}.

12



Note that in the fractionary steps of (30), only tridiagonal linear systems are
involved to obtain the numerical approaches UN,m, m = 1, . . . ,M . Therefore,
the computational cost of advancing one step in time with our algorithm is
similar to the cost of any one step explicit method. If we chose, for example, the
implicit Euler method to integrate in time then a complicated block tridiagonal
system should be solved to advance in time. Therefore, we obtain a remarkable
cost reduction with our method when we compare it with classical choices.

With respect to the boundary data, it is important to remark that our proposal
improves the accuracy given by the following apparently more natural choice

G
N,m+1/2
0 = [g(0, y, tm+1)]Īy ,G

N,m+1/2
N = [g(1, y, tm+1)]Īy ,

GN,m+1
0 = [g(x, 0, tm+1)]Ix and GN,m+1

N = [g(x, 1, tm+1)]Ix .
(32)

Below, we give both theoretical and practical reasons to clarify that our choice
for the boundary data is better than (32).

Let us study the qualities of our algorithm. In first place we prove an inverse
positivity result which is the discrete analogue of Theorem 2 for the fully
discrete scheme.
Theorem 5. If all of the data (G,F1,F2, [φ]ΩN ), which take part in (30),
have non-negative components, then the solutions UN,m, m = 1, . . . ,M of
(30) have non-negative components.

Proof. It is similar to the proof which was made in Theorem 5 of [7] for 1D
singularly perturbed systems of reaction–diffusion type.

Joint to the previous inverse positivity result, we are ready to state the uniform
stability and the uniform consistency of our time integration process.
Corollary 1. (Contractivity of the time integrator). If G = 0,F1 = 0 and
F2 = 0, it holds

∥UN,m+1∥ΩN
≤ ∥UN,m∥ΩN

, m = 0, 1, . . . ,M − 1. (33)

Proof. We use a four step inductive reasoning on the fractional steps of our
scheme. Notice that now we are assuming that UN,m+1 is the solution of

(I + τLN
ε,l(tm+1))U

N,m+l/4 = UN,m+(l−1)/4, in ΩN
l ,

UN,m+l/4 = 0, in ∂ΩN
l ,

l = 1, 2, 3, 4.

(34)

Let us consider the barrier function χN defined as follows χN
ij,r = C, i, j =

0, . . . , N, r = 1, 2, being C a positive constant. It is easy to check that (I +

13



τLN
ε,l(tm+1))χ

N ≥ χN, l = 1, 2, 3, 4, i.e.,

F̂m+l/4 ≡ (I + τLN
ε,l(tm+1))χ

N − χN ≥ 0, l = 1, 2, 3, 4.

Now we take C = ∥UN,m∥ΩN
and we define U

N,m+l/4
− ≡ χN − UN,m+l/4, l =

1, 2, 3, 4. Such grid functions satisfy the following

UN,m
− ≥ 0,
(I + τLN

ε,l(tm+1))U
N,m+l/4
− = U

N,m+(l−1)/4
− + τ F̂m+l/4, in ΩN

l ,

U
N,m+l/4
− = χN, in ∂ΩN

l ,

l = 1, 2, 3, 4.

(35)

Now, resorting to the inverse positivity property of the operators (I+τLN
ε,l(tm+1)),

we can deduce that UN,m+1
− ≥ 0, i. e., χN ≥ UN,m+1. We can repeat the rea-

soning with U
N,m+l/4
+ ≡ χN + UN,m+l/4, l = 1, 2, 3, 4, to deduce that also

χN ≥ −UN,m+1. From the last two inequalities, (33) trivially follows.

To analyze the uniform consistency, we introduce the local error in time at
time tm+1, m = 0, . . . ,M − 1, as usual

eN,m+1 ≡ U
N
(tm+1)− ÛN,m+1,

being ÛN,m+1 the result given by the step m of scheme (30) if we change UN,m

by U
N
(tm).

Theorem 6. (Uniform consistency of the time integrator). Under the assump-
tion u ∈ C4,2(Q), it holds

∥eN,m+1∥ΩN
≤ CM−2, ∀ τ ∈ (0, τ0] and ∀ m = 0, 1, . . . ,M − 1. (36)

Proof. It is analogue to the proof of Theorem 6 in [8].

Remark 1. Note that if we choose the boundary data given in (32) instead
of (31), a perturbation of size O(τ) should appear, in general, in the boundary
data of (30), causing a loss of accuracy in most of cases. Nevertheless, in
the case of having homogeneous boundary conditions, a suitable partition of
the source terms permits that (32) and (31) coincide and, in such case, the
classical choice for the boundary conditions given in (32) will not cause a loss
of precision.

A classical combination of the previous consistency and stability results, per-
mits us to prove that the time integration process is uniformly convergent of

first order. The global error in time at tm, (U
N
(tm)−UN,m) for m = 1, . . . ,M ,

14



can be bounded as

∥UN
(tm)−UN,m∥

Ω
N ≤ ∥eN,m∥

Ω
N + ∥ÛN,m −UN.m∥

Ω
N .

Now, the stability result (33) ensures that

∥ÛN,m −UN,m∥ΩN
≤ ∥UN

(tm−1)−UN,m−1∥ΩN
,

and therefore

∥UN
(tm)−UN,m∥

Ω
N ≤ ∥eN,m∥

Ω
N + ∥UN

(tm−1)−UN,m−1∥
Ω

N .

Applying nowm times this recurrent bound and (36) it is immediate to deduce
that

∥UN
(tm)−UN,m∥

Ω
N ≤

m∑
i=1

∥eN,i∥
Ω

N ≤ CM−1. (37)

Therefore, the time integration process is uniformly convergent of first order.

Combining this result and the uniform convergence of the spatial discretization
process, the main uniform convergence result of the paper follows.
Theorem 7. (Uniform convergence). Assuming that u ∈ C4,2(Q) , the global
error associated to the numerical method defined by (30), (31) satisfies

max
0≤m≤M

∥UN,m − [u(x, tm)]ΩN∥
Ω

N ≤ C
(
(N−1 lnN)2 +M−1

)
, (38)

being C a positive constant independent of the diffusion parameter ε and the
discretization parameters N and M .

Proof. Using the triangle inequality, it is straightforward that it holds

∥UN,m−[u(x, tm)]ΩN∥
Ω

N ≤ ∥UN,m−U
N
(tm)∥ΩN+∥UN

(tm)−[u(x, tm)]ΩN∥
Ω

N .

Now, applying the uniform bounds (20) and (37) the required result follows.
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Fig. 1. Components u1 (left) and u2 (right) at t = 1 for ε = 10−4 with N = M = 32

5 Numerical results

In this section we show the numerical results obtained for some test problems
of type (1). In the first one the data are given by

A =

 2 + xyt −(x2 + y2)

− sin(x+ y) 1 + sin(x+ y)t2

 ,
f1 = (3 sin(πx) + sin(πy))t2, f2 = 3(cos(πx) + cos(πy))et,

g1(x, y, t) = sin(x+ y)t2, g2(x, y, t) = xy(et − 1), (x, y) ∈ ∂Ω,

φr(x, y) = 0, r = 1, 2,

(39)

and T = 1. Figure 1 displays the numerical solution at t = 1 with N =M = 32
and the diffusion parameter ε = 10−4. From it, we clearly see the boundary
layers at the four sides of the spatial domain.

As the algorithm requires a suitable smooth partition of the coefficients of the
reaction matrix, here, for simplicity, we have chosen

arp,x(x, y, t) = arp,y(x, y, t) = arp(x, y, t)/2, r, p = 1, 2. (40)

As well, it is required a partition of the source term f(x, t) ≡ (f1, f2)
T , in the

form fx + fy ≡ (f1,x, f2,x)
T + (f1,y, f2,y)

T . Here we take

fr,x(x, y, t) = fr,y(x, y, t) = fr(x, y, t)/2, r = 1, 2,

The exact solution of problem (1) is unknown; then, we cannot calculate ex-
actly the errors; to approximate them we use a variant of the double-mesh
principle (see [5,18]). The maximum errors for each value of ε are approxi-
mated by

dN,M
ε = max

0≤m≤M
max

0≤i,j≤N
||UN,m

ij − Û2N,2m
2i 2j |,

where {Û2N,m
ij } is the numerical solution on a finer mesh {(x̂i, ŷj, t̂m)}, which

has the mesh points of the coarse mesh and their midpoints. From the maxi-
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Table 1
Maximum and uniform two-mesh differences and orders of convergence for the com-
ponent u1 in problem (39)

ε N=16 N=32 N=64 N=128 N=256

M=4 M=16 M=64 M=256 M=1024

10−1 8.6216E-2 2.6793E-2 7.1193E-3 1.8085E-3 4.5397E-4

1.6861 1.9120 1.9769 1.9941

10−2 1.4341E-1 4.3562E-2 1.1492E-2 2.9181E-3 7.3228E-4

1.7190 1.9225 1.9775 1.9946

10−3 2.6012E-1 1.0823E-1 3.7068E-2 9.5571E-3 2.4156E-3

1.2651 1.5459 1.9555 1.9842

10−4 2.7122E-1 1.1435E-1 4.1927E-2 1.3841E-2 4.3706E-3

1.2460 1.4475 1.5989 1.6631

10−5 2.7436E-1 1.1611E-1 4.2566E-2 1.4057E-2 4.4409E-3

1.2406 1.4477 1.5984 1.6624

10−6 2.7531E-1 1.1665E-1 4.2761E-2 1.4124E-2 4.4626E-3

1.2389 1.4478 1.5982 1.6622

10−7 2.7561E-1 1.1681E-1 4.2823E-2 1.4145E-2 4.4694E-3

1.2384 1.4478 1.5981 1.6621

10−8 2.7570E-1 1.1687E-1 4.2842E-2 1.4151E-2 4.4715E-3

1.2382 1.4478 1.5981 1.6621

dN,M
1 2.7570E-1 1.1687E-1 4.2842E-2 1.4151E-2 4.4715E-3

qN,M
1 1.2382 1.4478 1.5981 1.6621

mum two-mesh differences dN,M
ε , we obtain the ε-uniform two-mesh differences

by

dN,M = max
ε

dN,M
ε .

From dN,M
ε , the numerical orders of convergence for each value of ε are calcu-

lated by

qN,M
ε = log

(
dN,M
ε /d2N,2M

ε

)
/log 2,

and from qN,M the numerical uniform orders of uniform convergence are cal-
culated by

pN,M = log
(
dN,M/d2N,2M

)
/log 2.

Tables 1 and 2 show the results when the improved evaluations of the boundary
conditions are used. In this case, to observe the order of convergence in space,
we multiply the discretization parameter M by 4 and the discretization pa-
rameter N by 2 in order that the errors associated to the spatial discretization
dominate in the global errors. Using this procedure a uniformly convergent be-
havior of second order, up to a logarithmic factor, is observed. As well, the use
of improved boundary data which we propose makes that the decomposition
of the source term of the system has no influence in the uniformly convergent
behavior of the algorithm, as is was shown in [6] for scalar reaction-diffusion
problems. This quality permits simpler partitions of f .
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Table 2
Maximum and uniform two-mesh differences and orders of convergence for the com-
ponent u2 in problem (39)

ε N=16 N=32 N=64 N=128 N=256

M=4 M=16 M=64 M=256 M=1024

10−1 1.4607E-1 6.1631E-2 2.0372E-2 5.8965E-3 1.5934E-3

1.2449 1.5970 1.7887 1.8878

10−2 2.7052E-1 9.5415E-2 2.9267E-2 8.2135E-3 2.1842E-3

1.5034 1.7050 1.8332 1.9109

10−3 5.2112E-1 2.8578E-1 1.1094E-1 3.2243E-2 8.5353E-3

0.8667 1.3651 1.7828 1.9175

10−4 5.3051E-1 2.8876E-1 1.2089E-1 4.5015E-2 1.5306E-2

0.8775 1.2562 1.4252 1.5563

10−5 5.3269E-1 2.8952E-1 1.2107E-1 4.5092E-2 1.5328E-2

0.8797 1.2578 1.4249 1.5567

10−6 5.3330E-1 2.8974E-1 1.2112E-1 4.5115E-2 1.5334E-2

0.8802 1.2583 1.4248 1.5568

10−7 5.3348E-1 2.8981E-1 1.2114E-1 4.5122E-2 1.5336E-2

0.8804 1.2584 1.4248 1.5569

10−8 5.3354E-1 2.8983E-1 1.2115E-1 4.5124E-2 1.5337E-2

0.8804 1.2584 1.4248 1.5569

dN,M
2 5.3354E-1 2.8983E-1 1.2115E-1 4.5124E-2 1.5337E-2

qN,M
2 0.8804 1.2584 1.4248 1.5569

To show that our technique can be easily extended to systems of larger dimen-
sions, we have considered a second example which has three components. Now,
the unknown solution is u ≡ (u1(x, y, t), u2(x, y, t), u3(x, y, t))

T , the diffusion
term is −diag(ε, ε, ε)∆u and the rest of the data are

A =


ex+y −(x+ y) −tx

−(x+ y) (t+ 1)(3 + x+ y) −t sin(y)

−tx −t sin(y) et(2 + cos(x+ y))

 ,
f1 = 10e−txy(1− x)(1− y), f2 = 5e−t sin(πxy),

f3 = 10(1− t) cos(x+ y)x2y2(1− x)(1− y),

gr(x, y, t) = 0, φr(x, y) = 0, r = 1, 2, 3.

(41)

The computed solutions at t = 1 are displayed in Figure 2. These surfaces
show the presence of boundary layers in the three components of the solution.
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Fig. 2. Components u1 (first row left), u2 (first row right) and u3 (second row left)
at t = 1 for ε = 10−4 with N = M = 32

In this example we use again

arp,x(x, y, t) = arp,y(x, y, t) = arp(x, y, t)/2, r, p = 1, 2, 3,

and

fr,x(x, y, t) = fr,y(x, y, t) = fr(x, y, t)/2, r = 1, 2, 3.

As in this example the boundary conditions are homogenous, in the same
way as in [9], to avoid the order reduction using classical (homogeneous) eval-
uations of the boundary data, it suffices to perform a suitable splitting for
(f1, f2, f3)

T ≡ (f1,x, f2,x, f3,x)
T + (f1,y, f2,y, f3,y)

T in such way that fr,x = 0 in
{0, 1} × [0, 1] × [0, T ] and fr,y = 0 in [0, 1] × {0, 1} × [0, T ] for r = 1, 2, 3.
This restriction agrees completely with the analysis which we have developed
here, because in such cases the classical and the improved evaluations of the
boundary data coincide. As this system has 3 components, the corresponding
multi-splitting algorithm has six fractional steps per time step (see [9,6] for
capturing the main ideas of its construction).

Similarly to the previous example, we show the numerical results for each
component in separate tables. The maximum two-mesh differences and the
orders of convergence for ur, r = 1, 2, 3 are given in Tables 3-5 respectively,
where the discretization parameters N and M are multiplied by a factor of 2.
The ε-uniform computed orders of convergence shows first order, because the
errors associated to the time discretization dominate in the global errors, in
agreement with Theorem 7.
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Table 3
Maximum and uniform two-mesh differences and orders of convergence for the com-
ponent u1 in problem (41)

ε N=16 N=32 N=64 N=128 N=256

M=4 M=8 M=16 M=32 M=64

10−1 2.1919E-2 1.4141E-2 7.9642E-3 4.2370E-3 2.1890E-3

0.6323 0.8283 0.9105 0.9528

10−2 3.2557E-2 1.8072E-2 9.7599E-3 5.0356E-3 2.5603E-4

0.8492 0.8888 0.9547 0.9758

10−3 3.3384E-2 1.8540E-2 9.9717E-3 5.1467E-3 2.6153E-3

0.8485 0.8947 0.9542 0.9767

10−4 3.3180E-2 1.8575E-2 9.9948E-3 5.1593E-3 2.6217E-3

0.8369 0.8941 0.9540 0.9767

10−5 3.3331E-2 1.8562E-2 9.9942E-3 5.1604E-3 2.6222E-3

0.8445 0.8932 0.9536 0.9767

10−6 3.3375E-2 1.8555E-2 9.9940E-3 5.1596E-3 2.6222E-3

0.8469 0.8927 0.9538 0.9765

10−7 3.3388E-2 1.8552E-2 9.9965E-3 5.1599E-3 2.6224E-3

0.8478 0.8921 0.9541 0.9765

10−8 3.3392E-2 1.8551E-2 9.9971E-3 5.1598E-3 2.6224E-34

0.8480 0.8919 0.9542 0.9765

dN,M
1 3.3392E-2 1.8575E-2 9.9971E-3 5.1604E-3 2.6224E-4

qN,M
1 0.8461 0.8938 0.9540 0.9766

Conclusions

In this work we have designed and analyzed a numerical algorithm to approx-
imate the solution of 2D parabolic singularly perturbed systems of reaction–
diffusion type, which have the same diffusion parameter at all equations. Al-
though this is not the most general case, it is sufficiently interesting because
it covers many applications (notice that the models with diffusion parameters
of similar size can be included in our analysis by scaling the equations by
convenient factors). The algorithm uses the central finite difference scheme
to discretize in space and a splitting implicit method to integrate in time.
We only show full details in the case of systems with two components; never-
theless, in the section devoted to numerical experiences, it is shown that the
technique can be easily extended to systems with a larger number of equa-
tions. If a suitable Shishkin mesh is chosen, then the fully discrete scheme is
uniformly convergent of first order in time and almost second order in space.
The multi-splitting technique used to discretize in time provokes that only
linear tridiagonal systems must be solved to advance in time, which is a re-
markable advantage, in terms of computational cost, with respect to classical
implicit methods. Some numerical experiences corroborate the good numerical
behavior of our method predicted by the theory.

20



Table 4
Maximum and uniform two-mesh differences and orders of convergence for the com-
ponent u2 in problem (41)

ε N=16 N=32 N=64 N=128 N=256

M=4 M=8 M=16 M=32 M=64

10−1 6.4165E-2 4.1108E-2 2.4925E-2 1.3664E-2 7.1928E-3

0.6424 0.7218 0.8672 0.9257

10−2 7.3122E-2 4.4998E-2 2.5368E-2 1.3592E-2 7.0553E-3

0.7004 0.8268 0.9003 0.9459

10−3 8.0875E-2 5.6540E-2 3.1474E-2 1.5561E-2 7.5501E-3

0.5164 0.8451 1.0162 1.0434

10−4 8.0649E-2 5.6422E-2 3.2557E-2 1.6808E-2 8.1763E-

0.5154 0.7933 0.9538 1.0397

10−5 8.0527E-2 5.6368E-2 3.2542E-2 1.6803E-2 8.1728E-3

0.5146 0.7926 0.9536 1.0398

10−6 8.0484E-2 5.6350E-2 3.2537E-2 1.6801E-2 8.1717E-3

0.5143 0.7923 0.9535 1.0398

10−7 8.0469E-2 5.6344E-2 3.2535E-2 1.6800E-2 8.1714E-3

0.5142 0.7923 0.9535 1.0398

10−8 8.0465E-2 5.6342E-2 3.2535E-2 1.6800E-2 8.1712E-3

0.5142 0.7922 0.9535 1.0398

dN,M
2 8.0875E-2 5.6540E-2 3.2557E-2 1.6808E-2 8.1763E-

qN,M
2 0.5164 0.7963 0.9538 1.0397
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