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Abstract
The analysis of record-breaking events is of interest in fields such as climatology,
hydrology or anthropology. In connectionwith the record occurrence,we propose three
distribution-free statistics for the changepoint detection problem. They are CUSUM-
type statistics based on the upper and/or lower record indicators observed in a series.
Using a version of the functional central limit theorem, we show that the CUSUM-
type statistics are asymptotically Kolmogorov distributed. The main results under
the null hypothesis are based on series of independent and identically distributed
random variables, but a statistic to deal with series with seasonal component and serial
correlation is also proposed. A Monte Carlo study of size, power and changepoint
estimate has been performed. Finally, the methods are illustrated by analyzing the
time series of temperatures at Madrid, Spain. The R package RecordTest publicly
available on CRAN implements the proposed methods.

Keywords Brownian bridge · Climate change · CUSUM · Nonparametric ·
Record-breaking · Wiener process

1 Introduction

An observation in a time series is called an upper (lower) record if it is greater (smaller)
than all previous observations in the series. Therefore a new record is a remarkable
event that attracts great attention in numerous applications, whether in environmental
fields, economy, sports, physics or biology (see, e.g., Wergen 2013, and references
therein). Particularly interesting is the study of record events in environmental sciences
and their connection with climate change. For example, Benestad (2004) compared
the observed and expected number of records under stationarity by means of a χ2-test
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and graphical tools. Respectively, Coumou et al. (2013) and Lehmann et al. (2015)
found an increase in temperature and precipitation record-breaking events with respect
to a stationary climate on a global scale. In addition to its many applications, the main
foundations in the framework of theory of records can be found in the monographs
Arnold et al. (1998) and Nevzorov (2001).

An aspect of interest is the study of the evolution of the number of records over
time, in particular the identification of changes in their behavior. To analyze this type
of change, changepoint detection methods that make use of the record occurrence
should be considered.

The changepoint problem tries to identify times when the probability distribution
function of a time series changes. In general the problem concerns both detecting
whether or not a change has occurred and identifying its time of occurrence. Although
several changes might be considered, our work resides in the at most one changepoint
(AMOC) domain. The first results on changepoint detection start with Page (1954,
1955) who introduced a cumulative sum (CUSUM) statistic to locate a shift in the
mean of independent and identically distributed (IID) normal random variables (RVs).
Since then, several methods have been proposed, many of which can be found in the
monographs Brodsky and Darkhovsky (1993) and Csörgő and Horváth (1997). Note-
worthy is the importance of changepoint detection techniques in climatology (Reeves
et al. 2007), but also in very different fields such as economy, speech processing, etc.

Traditional changepoint detection methods attempt to find changes in location or
scale, more recently, changepoint detection in the extreme values has also been an
active area of research. For example, Dierckx and Teugels (2010) introduced tests
to detect changes in the parameters of the generalized Pareto distribution based on
its likelihood for models of excesses over threshold, Kojadinovic and Naveau (2017)
studied several tests for independent samples of block maxima, and e Silva et al.
(2020) proposed a changepoint model for the r-largest order statistics. Ratnasingam
and Ning (2021) proposed procedures based on the modified information criterion and
the confidence distribution for detecting changepoints in the three-parameter Weibull
distribution. Non-homogeneous Poisson processes have also been considered to study
changepoints in the occurrence of peaks over threshold (Achcar et al. 2010, 2016;
Rodrigues et al. 2019). To the best of our knowledge, there is no changepoint detec-
tion method based on the breaking of records. There are, however, tests for trend
detection based on the breaking of records. Foster and Stuart (1954) proposed two
simple statistics based on the number of records to test the hypothesis that T obser-
vations have been independently drawn from the same continuous distribution. These
tests were later improved by Diersen and Trenkler (1996) and more recently new tests
and graphical tools were introduced by Cebrián et al. (2022).

The aim of this paper is to develop changepoint detection tests based on the record
occurrence to detect changes in the tails of the distribution. The first use of the tests
introduced in this paper is to detect changes in the record occurrence and therefore in
the extreme values, however, they are also useful against other types of change such
as a change in location or scale. When there is a gradual change in location or scale, it
will generally take time to be significantly reflected in a change in the behavior of the
number of records, so the second use of the proposed methodology lies in analyzing
how long it takes a series from when a changepoint is detected using another method
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(see, e.g., Pettitt 1979, for a change in location), until that change is reflected in the
observed records. Beyond its theoretical and descriptive interest, the third use of these
changepoint detection tests based on records is that theywould be uniquely appropriate
whenever the original data are not available while records are.

The proposed tests make use of CUSUM-type statistics based on the record indi-
cator RVs. The functional central limit theorem for independent but nonidentically
distributed RVs is used to show that the functional evolution of the number of
records adequately standardized behaves asymptotically as a Wiener process and, as
a consequence, the CUSUM-type statistics follow the Kolmogorov distribution. This
characterization allows to obtain exact p-values for the tests. The use of weights in the
statistics can improve the power of the tests under certain scenarios.However,we prove
that the weighted statistics do not have the same asymptotic properties as the previous
ones and the p-value must be calculated using Monte Carlo techniques. An approach
to analyze series with seasonal component or serial correlation is also proposed. The
statistics based on the record indicators will allow studying the extreme values of
the distribution with the advantage of not needing the specification of an underlying
distribution for the data, i.e., they are distribution-free. Also, the requirement on the
variance of data as in other CUSUM-type statistics is avoided here.

The rest of the paper is organized as follows. Section 2 introduces our records
statistics, establishes their asymptotic distribution under the null hypothesis and pro-
poses some generalizations. Section 3 compares these tests under various scenarios by
means of Monte Carlo simulations. An application to temperature data is presented in
Sect. 4, and Sect. 5 concludes the paper with final comments, conclusions and future
work.

Finally, note that the proposed tests for changepoint detection are available from
the R (R Core Team 2021) package RecordTest (Castillo-Mateo 2021).

2 Tests based on theory of records

Let X1, . . . , XT be a sequence of IID continuous RVs. The sequences of upper and
lower record indicators, (It ) and (I Lt ), are defined by I1 = I L1 = 1 and for t =
2, . . . , T , by

It =
{
1 if Xt > max{X1, . . . , Xt−1},
0 otherwise,

I Lt =
{
1 if Xt < min{X1, . . . , Xt−1},
0 otherwise.

The sequence of differences in the upper and lower record indicators, (dt ), is given by
dt = It − I Lt , while the sequence of sums, (st ), is given by st = It + I Lt .

The following lemma is a well known distribution-free result within the theory of
records that characterizes the distribution of the record indicators, equally valid for
upper and lower records (Arnold et al. 1998; Nevzorov 2001).

123



658 Environmental and Ecological Statistics (2022) 29:655–676

Lemma 2.1 Let X1, . . . , XT be a sequence of IID continuous RVs. Then, the record
indicators I1, . . . , IT are independent and

pt = P(It = 1) = 1

t
, t = 1, . . . , T .

It is easily checked that the expectations and variances for t = 2, . . . , T , are

E(It ) = 1

t
, Var(It ) = 1

t

(
1 − 1

t

)
,

E(dt ) = 0, Var(dt ) = 2

t
,

E(st ) = 2

t
, Var(st ) = 2

t

(
1 − 2

t

)
.

Given pt the probability of upper or lower record at time t , our aim is to construct
asymptotic tests with null hypothesis

H0 : pt = 1/t, 1 ≤ t ≤ T ,

against the two-sided alternative hypothesis given by

H1 : pt = 1/t, 1 ≤ t ≤ t0 and pt �= 1/t, t0 < t ≤ T , (2.1)

where t0 denotes the time of a possible change in the probabilities of observing new
records with respect to the stationary case. The alternative hypothesis supports many
nonstationary scenarios, for example a shift or a drift in location, variation or in one
or both tails.

2.1 Tests based on asymptotic results

To obtain a p-value from a changepoint detection test, the exact distribution of the
changepoint statistic is usually impractical, so it is generally preferable to have asymp-
totic results. Wiener processes, Brownian bridges and other Gaussian processes arise
as asymptotic distributions in many limit problems providing exact tail probabilities.
Our first objective is to build from the indicators above a random function WT (ν), for
ν ∈ [0, 1], in such a way that WT (ν) converges in distribution to a Wiener process.
For this purpose, we define the standardized record indicators, ξT1, . . . , ξT T as

ξT t = It − E(It )

σT
, (2.2)

where σ 2
t = ∑t

k=1 Var(Ik). We also define the standardized number of records
ST t = ∑t

k=1 ξT k , its variance νT t = ∑t
k=1 Var(ξTk) = σ 2

t /σ 2
T , and finally the
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random function

WT (ν) = ST t + ξT ,t+1
ν − νT t

νT ,t+1 − νT t
(2.3)

for ν ∈ [νT t , νT ,t+1]. Note that ST 1 = 0, νT 1 = 0 and νT T = 1. It is noteworthy
that the function WT (ν) is a random broken line connecting points in the plane with
coordinates (νT t , ST t ) for t = 1, . . . , T .

One of our major results is the asymptotic characterization of the functional evo-
lution of the standardized number of records, WT (ν), as a Wiener process. The result
is essentially a consequence of the functional central limit theorem for independent
but nonidentically distributed RVs (see, e.g., Gikhman and Skorokhod 1969). To be
under the conditions of the theorem, Lindeberg’s condition needs to be proved for the
variables ξT t in (2.2), which follows immediately from

lim
T→∞

T∑
t=1

E
(
ξ2T t × 1{|ξT t |>ε}

)
≤ lim

T→∞ 1{1/σT >ε} = 0

for all ε > 0, where 1{·} is the indicator function.

Theorem 2.1 Let X1, . . . , XT be a sequence of IID continuous RVs with WT (ν) in
(2.3). Then, as T → ∞,

WT (ν)
D−→ W (ν), ν ∈ [0, 1],

in the metric space C[0, 1], where W (ν) is a standard Wiener process.

Thus, the changepoint records statistic proposed is

KT = max
1≤t≤T

|BT (νT t )|, (2.4)

where BT (ν) = WT (ν) − νWT (1), ν ∈ [0, 1]. The time t where (2.4) takes its
maximum is the changepoint estimate t̂0. As a consequence of Theorem 2.1, BT (ν)

is asymptotically distributed as a standard Brownian bridge process. Moreover, the
distribution of the supremum of the absolute value of a Brownian bridge is known as
the Kolmogorov distribution. As sup0≤ν≤1 | f (ν) − ν f (1)| is a continuous functional
for f in C[0, 1], the asymptotic characterization under the null hypothesis of the
statistic KT is as follows.

Theorem 2.2 Let X1, . . . , XT be a sequence of IID continuous RVs with KT in (2.4).
Then, as T → ∞,

KT
D−→ K = sup

0≤ν≤1
|B(ν)|,

where B(ν) is a standard Brownian bridge process and K is a Kolmogorov distributed
RV.
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The null hypothesis is rejected when KT is too large to be explained by chance
variation. In particular, if the alternative hypothesis in (2.1) is true for some time t0,
then it follows that |BT (νT t0)| is large and can show statistical evidence that a change
occurred at time t0. Under the null hypothesis, the p-value of the two-sided test can
be calculated from any of the expressions of the Kolmogorov distribution

P(K ≥ x) = 2
∞∑
k=1

(−1)k−1 exp
{
−2(kx)2

}

= 1 −
√
2π

x

∞∑
k=1

exp

{
−

(
(2k − 1)π

2
√
2x

)2
}

.

To give a clear interpretation of KT , we define Nt = I1 + · · · + It the number of
records up to time t and Nt1:t2 = It1 + · · · + It2 the number of records between times
t1 ≤ t2. Then, BT (νT t ) can be rewritten as

BT (νT t ) = 1√
Var(NT )

(
(Nt − E(Nt )) − Var(Nt )

Var(NT )
(NT − E(NT ))

)
.

Weighting for differences in the effective sample sizes of the number of records in two
segments, {1, . . . , t} and {t +1, . . . , T }, BT (νT t ) can be viewed as a scaled difference
between Var(Nt )

−1(Nt − E(Nt )) and Var(N(t+1):T )−1(N(t+1):T − E(N(t+1):T )).
Consequently, KT compares the number of records in both segments for every t and
assigns as estimator, t̂0, the point that separates the segment that deviates the most
from the null hypothesis. The mean is E(BT (νT t )) = 0 and simple calculation leads
to Var(BT (νT t )) = νT t (1 − νT t ). The nonuniform variance, small when it is near
the ends of {1, . . . , T }, makes changepoints occurring near the beginning or the end
of the series more difficult to detect (see “Appendix A” for further details). This is a
common fact in CUSUM-type statistics.

The proposed statistic only uses the information from one tail of the distribution,
the right tail if upper records are used or the left tail if lower records are used. To study
both tails and collect more evidence with a single statistic, it is enough to consider
the variables dt and st . Since the dt ’s and st ’s also fulfill Lindeberg’s condition, all
the previous results are equally valid substituting ξT t in (2.2) by ξT t = dt/σT with
σ 2
t = ∑t

k=1 Var(dk), t = 1, . . . , T ; or respectively, ξT t = (st − E(st ))/σT with
σ 2
t = ∑t

k=1 Var(sk), t = 1, . . . , T . The statistic (2.4) based on dt can be used when
an increase in upper records and a decrease in lower records are expected with respect
to the null hypothesis, while the statistic based on st can be used when an increase in
both types of records is expected. In particular, the statistic based on dt can be useful
against the alternative hypothesis of a trend in location, while the statistic based on st
can be useful against a trend in variation.
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2.2 Tests with weighted statistics

Under the null hypothesis, the probability of record decreases as the series evolves.
To give more importance to the most recent records and thus to be able to increase the
power of the tests, we propose to give increasing weights, ωt , to the different records
according to their position in the series as

ξω
T t = ωt

It − E(It )

σT
, (2.5)

where σ 2
t = ∑t

k=1 ω2
k V ar(Ik), t = 1, . . . , T . According to Proposition 2.1 (proved

in “Appendix B”), these variables do not in general have an asymptotically normal
sum, so asymptotic results such as those of Theorem 2.1 are not available.

Proposition 2.1 Let X1, . . . , XT be a sequence of IID continuous RVs with the
sequence of RVs ξω

T t in (2.5) and ωt ∼ tn as t → ∞. If n > 0, then the central
limit theorem does not hold for the ξω

T t ’s.

Likewise, a KT -type statistic in (2.4) associated with the weighted variables can be
defined, and the distribution of which can be simulated by means of Monte Carlo
techniques under the null hypothesis.

In this work we consider two different weights. First, linear weights ωt = t − 1
(seeDiersen and Trenkler 1996, for a detailed explanation). Second, weights that make
the discrete sequence of times of the process, νT t = σ 2

t /σ 2
T , t = 1, . . . , T , equally

spaced, i.e., weights proportional to the inverse of the standard deviation (SD) of It ,
i.e., ω1 = 0 and ωt = Var(It )−1/2 = t/

√
t − 1 for t = 2, . . . , T . These weights

make the variance of BT (νT t ) symmetric in {1, . . . , T } (see “Appendix A”).
As above, the statistic has been defined in terms of the It ’s but it is equivalent for the

dt ’s or st ’s. The SD in these cases suggests that the weights making the observed times
of the process equally spaced are proportional to ω1 = 0, ωt = √

t for t = 2, . . . , T ,
for the statistic based on dt ; and ω1 = ω2 = 0, ωt = t/

√
t − 2 for t = 3, . . . , T , for

the statistic based on st .

2.3 Tests for seasonal series

Hirsch et al. (1982) introduced a seasonal version for tests of randomness based on
ranks. Following their ideas, we propose tests which are insensitive to the existence
of seasonality and serial correlation. If the time series data of interest are daily (or
monthly) data, then the null hypothesis of randomness where all the observations come
from the same continuous distribution may be too restrictive. For example, most series
of daily temperature or precipitation show very strongly the presence of seasonality
and serial correlation. Let X = (X1, . . . ,XM ) be a sequence of series where Xm =
(X1m, . . . , XTm)′ is a series of RVs. That is,X is the entire series, made up of subseries
X1 throughXM (one for each day), and each subseriesXm contains annual values from
day m, for m = 1, . . . , M . Note that for further development the M subseries must
be independent, so in general a subset of these subseries will be used. That is, below
a subset of independent subseries is considered, but the notation is maintained for
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simplicity. Then, we define the t th upper record indicator for the mth subseries as
Itm = 1 if Xtm > max{X1m, . . . , Xt−1,m} and Itm = 0 otherwise; analogously for
lower records. That is, records are calculated independently for each subseries, and
the null hypothesis is relaxed allowing observations of different subseries not to come
from the same distribution. To define a KT -type statistic that joins the information of
all the subseries, we simply take the ξT t ’s in (2.2) as

ξω
T t = ωt

1
M

∑M
m=1 Itm − E(It )

σT
,

where σ 2
t = ∑t

k=1 ω2
k V ar(Ik)/M ; or their respective versions based on dt or st .

Thus, the alternative hypothesis is that of (2.1) with common changepoint t0 for all
the subseries. This approach not only allows the analysis of series with seasonal
component, it also joins the information from several series, so the number of records
and therefore the information used by the tests is greater.

3 Monte Carlo experiments

We investigate the empirical size, power and changepoint estimate of the changepoint
tests based on the records statistics introduced in Sect. 2. Nine records statistics are
considered: N ≡ KT in (2.4) with ξT t in (2.2), d and s ≡ KT in (2.4) substituting It in
(2.2) by dt and st , respectively; and the previous statistics with weights proportional to
the inverse of the SD of It , dt and st , respectively (superscript var); and linear weights
t−1 (superscript linear). Thus, three types of records statistics are analyzed.Wedenote
by N -type statistics to the statistic N and its weighted versions, equivalently for d and
s. Recall that, under the null hypothesis, the statistics N , d and s are asymptotically
Kolmogorov distributed, while weighted statistics need Monte Carlo simulations to
estimate their distribution (1000 replicates are considered).

3.1 Analysis of size

We simulate 10,000 replicates of M independent series formed by T independent
samples from the standard normal distribution, i.e.,

Ytm = εtm ∼ N (0, 1), for t = 1, . . . , T and m = 1, . . . , M .

The size results are generalizable to any other continuous distribution given the
distribution-free property of the tests under the null hypothesis. The size of the tests is
simulated for the combination of values T = 50, 100, M = 1, 12, 36 and for a large
series T = 500, M = 1.

Table 1 reports the empirical size results of the changepoint tests based on the
records statistics N , d and s for nominal values α = 0.01, 0.05, 0.10; i.e., we count
how often the records statistics exceed the 99, 95, 90th percentile of the Kolmogorov
distribution.Wedonot show the rejection frequencies of the tests basedon theweighted
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Table 1 Test size for α = 0.01, 0.05, 0.10 level tests

Statistic α T |M
50|1 100|1 500|1 50|12 100|12 50|36 100|36

N 0.01 0.011 0.011 0.012 0.006 0.008 0.005 0.005

0.05 0.040 0.043 0.048 0.029 0.033 0.030 0.034

0.10 0.068 0.076 0.083 0.059 0.068 0.068 0.075

d 0.01 0.004 0.005 0.008 0.005 0.006 0.005 0.006

0.05 0.023 0.027 0.033 0.027 0.033 0.029 0.034

0.10 0.051 0.057 0.065 0.057 0.064 0.059 0.066

s 0.01 0.009 0.009 0.010 0.005 0.006 0.004 0.006

0.05 0.036 0.037 0.042 0.032 0.032 0.030 0.032

0.10 0.067 0.076 0.082 0.065 0.074 0.061 0.068

statistics since their size is assured by simulating their p-value under the null hypothe-
sis. All tests show an acceptable size for the levels α considered. Most of the tests are
conservative, but their size approaches the nominal values as T increases. When M
is greater than 1, the size of the statistics is considerably less than the nominal value.
The size of d is particularly low, implying that these tests are very conservative.

In conservative tests, Fisher and Robbins (2019) proposed a general method to
obtain a size closer to the nominal value and therefore increase the power of the tests.
For our proposed tests, the method simply consists of changing the KT -type statistic
by −√

T log(1 − KT /
√
T ). Although we do not apply this method in the present

paper, it may be a factor to consider in applications with low evidence since the power
can increase while maintaining a proper size.

3.2 Analysis of power

The power analysis consists of 10,000 simulations of M independent series with T
observations following two scenarios under the alternative hypothesis.

Scenario A. Linear drift model in the mean:

Ytm = μt + εtm, for t = 1, . . . , T and m = 1, . . . , M,

where εtm ∼ N (0, 1), and μt = 0 if 1 ≤ t ≤ t0 and μt = θ(t − t0) if
t0 < t ≤ T .

Scenario B. Linear drift model in the SD:

Ytm = σtεtm, for t = 1, . . . , T and m = 1, . . . , M,

where εtm ∼ N (0, 1), and σt = 1 if 1 ≤ t ≤ t0 and σt = 1+ θ(t − t0) if
t0 < t ≤ T .

We report results for T = 100, M = 1, 12, 36, t0 = 25, 50, 75 and the drift term
θ = −0.10,−0.09, . . . ,−0.02,−0.01,−0.005, 0.005, 0.01, 0.02, . . . , 0.09, 0.10
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for Scenario A and θ = 0.005, 0.01, 0.02, . . . , 0.09, 0.10 for Scenario B. N -type
statistics are analyzed against both scenarios, d-type statistics against Scenario A and
s-type statistics against Scenario B.

Figures 1 and 2 show, for α = 0.05, plots of the power of the tests versus the trend
θ for the Scenarios A and B, respectively. We make the following observations:

(1) All tests increase their power as themagnitude of the drift θ or the number of series
M increases. In Scenario A, d-type statistics have a symmetric behavior with
respect to a vertical line at θ = 0, but when the drift is negative, N -type statistics
have a power close to the nominal value unless M is large. This phenomenon is
due to the fact that the greatest effect that a negative trend can cause is that only
one record is observed in each series and under the null hypothesis it is likely to
find a single record in a small number of series but it is unlikely to find a single
record in many series. Finally, note that the power of tests with upper records
against a positive drift is equivalent to that of tests with lower records against a
negative drift.

(2) The power of the statistics according to the position of the changepoint depends
on the type of weight used. The tests have a lower power for a changepoint t0 close
to the end of the series, since the accumulated trend is smaller. The unweighted
statistics have a higher powerwhen the changepoint is at the beginning of the series
and lose power as it approaches the middle and especially the end of the series.
The statistics with weights proportional to the inverse of the SD, in Scenario A,
maintain the same power when the changepoint is in the first half of the series
and lose power if the changepoint is at the end; in Scenario B, they have a higher
power when the changepoint is in the middle of the series. The statistics with
linear weights have a higher power when the changepoint is in the middle or the
end of the series than at the beginning.

(3) For positive drifts and comparing statistics with the same type of weight. In Sce-
nario A, N -type statistics have a higher power than d-type for low M , but when
M is large this difference decreases and d-type have an equal or higher power
than N -type. In Scenario B, s-type statistics have a higher power than N -type.

(4) The statisticswithweights proportional to the inverse of the SD turn out to have the
overall best performance with the most balanced behavior. The statistics without
weights are those that have a higher powerwhen the changepoint is at the beginning
of the series, the statistics with weights proportional to the inverse of the SD have a
higher power when the changepoint is in the middle of the series and the statistics
with linear weights have a higher power when the changepoint is at the end of
the series. While the second show a power close to the best in each case, the first
and third have considerably less power than the others when they are not the most
powerful.

(5) Some cases in which the records tests reach a power between 0.85 and 1 for
T = 100 are given below. Under Scenario A, when t0 = 25, we would detect
θ = 0.05 with M = 1 for statistic N or θ = 0.02 with M = 12 for all statistics
except those with linear weights or θ = 0.01 with M = 36 for d. When t0 = 50,
we would detect θ = 0.10 with M = 1 for all statistics or θ = 0.03 with M = 12.
Under Scenario B, when t0 = 25, we would detect θ = 0.04 with M = 1 for the
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Fig. 1 Power functions of N and d-type statistics for Scenario A (T = 100)

statistic s or θ = 0.01 with M = 12 or θ = 0.005 with M = 36 for the statistics
s and svar . When t0 = 50, we would detect θ = 0.05 with M = 1 or θ = 0.01
with M = 12 for the statistics s and svar .

3.3 Analysis of changepoint estimation

The analysis of the changepoint estimation reports results for Scenarios A and B
considered in Sect. 3.2 for T = 100, M = 1 and θ = 0.10, and for T = 100, M = 36
and θ = 0.05, both for a wide range of changepoints t0 = 10, 20, . . . , 80, 90.

Figures 3 and 4 show boxplots of the estimated changepoint for the Scenarios A
and B, respectively. We remark the following conclusions:

(1) As itwas advanced in Sect. 2.1, the nonuniformvariance inCUSUM-type statistics
means that changepoints occurring near the data boundaries are more difficult to
detect, hence, they have trouble in detecting changes occurring away from the
middle of the series. This effect is reduced as the number of series M or the
magnitude of the drift θ increases.

(2) Comparing statistics with the same type of weight. In ScenarioA, N -type statistics
place the changepoint slightly better than d-type. In Scenario B, s-type statistics
place the chagepoint better than N -type.

(3) The performance of the changepoints depends on the type of weight used. The
statistics without weights properly place the changepoint when it is at the begin-
ning or the middle of the series, but not at the end. The statistics with weights
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Fig. 2 Power functions of N and s-type statistics for Scenario B (T = 100)

proportional to the inverse of the SD properly place the changepoint when it is not
found at the beginning or the end of the series. The statistics with linear weights
place the majority of changepoints in the second half of the series, so its estimate
is not reliable for practical use, although this effect is reduced by increasing M .

These changepoint detection tests based on the breaking of records only make use
of the record occurrence to determine the changepoint estimate. For that reason, the
estimated changepoint will usually be placed in the previous time of a record time, i.e.,
the effect of the drift is not immediately reflected in the observed record occurrence.
Thismeans that a proper estimate of the changepoint in the record occurrencewill often
be placed later in the series than the actual changepoint in the mean or variance. Thus,
the main question here is then whether the correctly detected, but possibly displaced,
changepoints are clustered near the actual value or not.

This section has been useful to illustrate the behavior of the tests against usual
alternative hypotheses. Other scenarios could be considered, e.g., (C) a shift model in
the mean, i.e., μt = θ if t0 < t ≤ T under Scenario A; or (D) a mixture model with
a drift in the right tail, i.e., Ytm = ε

(0)
tm if utm ≤ τ and Ytm = μt + ε

(1)
tm if utm > τ

where utm ∼ U (0, 1), τ a high quantile order (e.g., τ = 0.95), μt under Scenario A,
and ε

(0)
tm and ε

(1)
tm truncate N (0, 1) in (−∞,−1(τ )) and (−1(τ ),∞), respectively.

Preliminary analyzes show that the tests perform poorly against Scenario C, but have
great power against Scenario D, even outperforming commonly used changepoint
detection tests (e.g., the Pettitt test).
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Fig. 3 Boxplots without outliers of the estimated changepoint versus the actual changepoint of N and d-type
statistics for Scenario A (T = 100). Crosses represent the actual changepoint
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Fig. 4 Boxplots without outliers of the estimated changepoint versus the actual changepoint of N and s-type
statistics for Scenario B (T = 100). Crosses represent the actual changepoint
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4 Application to temperature series

To illustrate the practical use of the three types of records tests, we applied them to
the daily maximum temperature series measured in degree Celsius (◦C) from 1940 to
2019 atMadrid, Spain. Data are provided by European Climate Assessment &Dataset
(ECA&D; Klein Tank et al. 2002) available online at https://www.ecad.eu. Madrid is
located in the center of the Iberian Peninsula (40.4◦ N, 3.7◦ W) at 667 m a.s.l. and
its daily temperature series has a seasonal component and a strong serial correlation.
This series is analyzed using three different approaches to show the performance of
the tests in different situations. The first approach considers the series of annual max-
imum temperatures, which corresponds to the traditional block maxima. The second
approach considers the series of annual mean temperature. Finally, the series is con-
sidered on a daily scale. To do this, first we take 365 subseries each corresponding
to the data of a given day across years and then we select a subset of uncorrelated
subseries (Cebrián et al. 2022) on which the procedure of Sect. 2.3 is applied. The
three approaches have series of length T = 80, the first two with M = 1 and the third
with M = 58 uncorrelated series out of the 365 dependent subseries.

In the context of global warming, it is reasonable to assume an increasing trend in
location that can cause an increase in the number of upper records as well as decrease
the number of lower records with respect to the values expected under a stationary
climate, i.e., IID series. For this reason, only results for N and d-type statistics are
shown. These statistics are powerful against this scenario and obtained more evidence
than s-type statistics. To compare the detection time of a changepoint in location versus
a changepoint in the record occurrence, we consider the Pettitt (1979) test, which is a
nonparametric rank based test widely used to detect AMOC at location.

Figure 5 shows time series plots of annual maximum a and annual mean b tem-
perature at Madrid with their records and changepoint estimates. Table 2 shows for
the two previous series and for the series in daily scale the p-values and changepoint
estimates for the six records tests and the Pettitt test. Small p-values in the records
tests provide evidence against the null hypothesis of stationarity, in particular, all tests
are significant at a level α = 0.10, all but one are significant at a level α = 0.05 and
fourteen out of eighteen are significant at α = 0.01. The Pettitt test is also significant
for any usual significance level in both series with M = 1. The estimated change-
point for the annual maximum temperature series is t̂0 = 51 (year 1990) for all the
records statistics and t̂0 = 38 (1977) for the Pettitt test. The minimum p-value for the
records tests is 0.0013 for the statistic N var . The estimated changepoint for the annual
mean temperature series is t̂0 = 55 (1994) with the statistics without weights and with
weights proportional to the inverse of the SD, but it is t̂0 = 69 (2008) for the statistics
with linear weights and t̂0 = 41 (1980) for the Pettitt test. The minimum p-value of
the records tests is 0.0004 for the tests N var and Nlinear . For the daily scale series the
changepoint estimate is t̂0 = 38 (1977) for all records statistics and here the minimum
p-value is 4e-05 for dvar .

The results in Table 2 agree with the results obtained in Sect. 3. When M = 1,
N -type statistics obtain lower p-values than d-type, and the statistics with weights
proportional to the inverse of the SD are those that obtained the strongest evidence.
The changepoint estimate of the records tests is usually placed between 10 and 15 years
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Fig. 5 Annual maximum (a) and mean (b) temperature series, and lower and upper records at Madrid,
Spain. The vertical solid line is the estimated changepoint using the records tests, while the vertical dashed
line is the estimated changepoint using the Pettitt test

Table 2 Estimated changepoint t̂0 and p-value of the records tests and the Pettit test for the annualmaximum,
annual mean and daily scale temperature series at Madrid, Spain

Statistic Series

Annual maximum Annual mean Daily

t̂0 p-value t̂0 p-value t̂0 p-value

N 51 0.0031 55 0.0030 38 0.0003

Nvar 51 0.0013 55 0.0004 38 0.0002

Nlinear 51 0.0090 69 0.0004 38 0.0328

d 51 0.0443 55 0.0728 38 0.0013

dvar 51 0.0016 55 0.0015 38 4e-05

dlinear 51 0.0115 69 0.0018 38 0.0029

Pettitt 38 9e-07 41 8e-10 – –

The weighted statistics used 1,000,000 replicates to estimate the p-value

after the Pettitt test estimates a changepoint in location. The changepoint estimated by
the statistics with linear weights tend to locate the change very late. It is noteworthy
that the changepoint is always estimated just before a record (see Fig. 5), so the
changepoint estimate of a significant records test can be interpreted as the time from
which there is evidence that the record occurrence is no longer stationary and the tail
of the distribution begins to take on ever greater values, not previously seen. When
M > 1 the results are more stable, the estimated changepoint appears earlier as more
information is available and d-type statistics obtain smaller p-values than N -type.

Figure 6 plots the year versus the absolute value of the processes associated with
the records statistics for the annual maximum a and mean b temperature series along
with 95% confidence thresholds based on the Kolmogorov distribution (they are very
similar even for nonKolmogorov distributed statistics). These plots allow to see the
evolution of the processes and other possible pointswith greater record probability than
under the null hypothesis. Again, the stationary null hypothesis is rejected, indicating
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Fig. 6 Absolute value of the processes associated with the records statistics for changepoints of annual
maximum (a), annual mean (b) and daily (c) temperature series at Madrid, Spain. The horizontal dashed
line represents the 95th percentile of the Kolmogorov distribution

potential changepoint 1990 and 1994, respectively. The equivalent plot for the daily
scale temperature series is shown in c, showing a clear maximum in 1977.

5 Discussion, conclusions and future work

The interest in statistical tools to analyze nonstationary behaviors in the extreme values
of the distribution is growing. While extreme value analysis has been traditionally
based on block maxima and excesses over threshold, this paper proposes the use of
records to study changes in the tails of the distribution. In particular, this paper proposes
three novel distribution-free changepoint detection tests and some generalizations
based on the breaking of records to (1) detect changes in the extreme events of the
distribution, (2) learn about features of the record occurrence and (3) analyze data
when only their records are available.

The proposed statistics are CUSUM-type statistics based on the record indicators.
Statistics to deal with seasonal series have also been considered. Despite having a
very small sample information compared to the total of the series, the Monte Carlo
simulations have shown that the proposed records tests are capable of detecting devi-
ations from the null hypothesis and a reasonable changepoint at which this deviation
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becomes significant in the probabilities of record. However, care must be taken in the
interpretation of the changepoint estimate, on the one hand it is usually misplaced
when the actual changepoint is located in the ends of the series. On the other hand,
when it is well located, it is often slightly after the actual changepoint in location
or scale if it exists, i.e., the effect of the change is not immediately reflected in the
observed record occurrence.

The recommendation for use according to the power and changepoint estimate
accuracy of the tests is as follows. If an increase in the number of records with respect
to the stationary case is expected in a single tail of the distribution, the results show that
N -type statistics are usually recommended. If an increase in the number of records
is expected in both tails, then s-type statistics are preferred. The statistics without
weights have the advantage of having a known asymptotic distribution, while the
statistics with weights proportional to the inverse of the SD have shown to have a
more balanced behavior against the alternative hypothesis in the simulation results,
with the disadvantage that their distribution must be calculated using Monte Carlo
techniques.

The proposed tests join two important aspects in the study of climate change,
changepoint detectionmethods and record-breaking events. This last concern has been
made apparent when applying the tests on different summary series (block maxima
and annual mean) and on the series on a daily scale of temperatures at Madrid, Spain;
detecting significant evidence of warming since the late 1970s and early 1990s.

Future workmay go in different directions. (1) Combining the information from the
different statistics could be of interest to increase the power and decrease the chance
of mis-detection, e.g., the harmonic mean p-value by Wilson (2019) could be used to
have a single p-value of all tests. (2) The idea of splitting the series is fundamental to
dealing with seasonal behavior. Here we use the method by Cebrián et al. (2022) to
extract uncorrelated subseries. Another alternative to consider would be to implement
permutation tests, i.e., the test statistic under the null hypothesis would be obtained by
calculating all possible values of the test statistic under all possible rearrangements of
the observed years, t = 1, . . . , T . In this way we maintain the dependence structure
between the subseries without the need to have a subset of independent subseries.
(3) Our method has been developed within the AMOC domain, however its extension
to themultiple changepoint domain could be of interest. The simplest procedure would
be to split the series where the changepoint is detected and retest the two subseries
separately. However, this can cause the number of records in the new subseries to be
too small to detect new changepoints, so other alternatives should be studied.

Finally, it is noteworthy that the proposed changepoint detection records tests are
not only useful for analyzing the effect of global warming on the occurrence of records,
but also in other fields where records are important. Other applications of these tests
are in other environmental sciences in the presence of climate change, in the study of
extreme values in stock prices or in the influence that new sports equipment has on
the occurrence of sports records. To facilitate its use, all the statistical tools proposed
in this paper are included in the R package RecordTest (Castillo-Mateo 2021)
available from CRAN at https://CRAN.R-project.org/package=RecordTest.
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A Appendix: The variance of BT (�Tt)

Figure 7 shows the variance of BT (νT t ) for T = 100 and 1000 across t = 1, . . . , T .
In particular, it is shown for the unweighted statistic, the statistics with weights pro-
portional to the inverse of the SD and linear weights (see Sect. 2.2). While the second
one generates a symmetric variance in {1, . . . , T } by construction, this does not hap-
pen with the other two. In all three cases the variance is zero for t ∈ {1, T } and the
maximum value is 1/4.

The nonuniform variance makes changepoints occurring near the beginning or
the end of the series (small variance times) more difficult to detect. Under the null
hypothesis, the process reaches its maximum (in absolute value) with the highest
probability at time t where it has the highest variance. Then, deviations from the
null hypothesis at small variance times generate smaller deviations in BT (νT t ) than
deviations at times of maximum variance. Thus, it is expected that the unweighted
statistic will have more power when the changepoint is at the beginning of the series,
the statistic with weights proportional to the inverse of the SDwhen the changepoint is
in the middle of the series and the statistic with linear weights when the changepoint is
at the end of the series. These conclusions agree with the analysis of power in Sect. 3.2.
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Fig. 7 The Var(BT (νT t )) = νT t (1− νT t ) across t = 1, . . . , T (T = 100, 1000) and weights ωt given in
Sect. 2.2

B Appendix: Proof of Proposition 2.1

We prove that the weighted statistics with polynomial weights ωt ∼ tn as t → ∞ for
n > 0 do not have asymptotic Gaussian properties. In particular, the distribution of the
weighted number of records do not approach the normal distribution for increasing
T . This is verified by using its asymptotic skewness and showing that it is different
from 0 (the skewness of any normal RV) for n > 0. As a consequence, the asymptotic
distribution of the functional evolution of the weighted number of records does not
approach that of the Wiener process.

Proof (of Proposition 2.1) To prove that the ξω
T t ’s do not satisfy the central limit

theorem, it is sufficient to prove that the sum Nω
T = ∑T

t=1 ωt It does not have skewness
0 as T → ∞. Using the basic properties of the central moments of a RV,

μ ≡ μ1(N
ω
T ) = E(Nω

T ) =
T∑
t=1

ωt
1

t
,

σ 2 ≡ μ2(N
ω
T ) = E

[
(Nω

T − μ)2
]

=
T∑
t=1

ω2
t
t − 1

t2
,

μ3(N
ω
T ) = E

[
(Nω

T − μ)3
]

=
T∑
t=1

ω3
t
t2 − 3t + 2

t3
.

Then, the following is a consequence of the properties of the generalized harmonic
numbers, as T → ∞,

Skew(Nω
T ) = μ3(Nω

T )

σ 3 ∼
∑T

t=1 t
3n−1(∑T

t=1 t
2n−1

)3/2 −→ 2

3

√
2n.

Consequently the skewness of Nω
T is asymptotically different from 0 for n > 0. �
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This proposition is easily extended to the weighted statistics based on the dt ’s and
st ’s. The former requires the calculation of the kurtosis since its skewness is 0 because
it is a symmetric RV. We omit the details for the sake of brevity.
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