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Abstract
The standard proof of Khrushchev’s formula for orthogonal polynomials on the unit
circle given in Khrushchev (J Approx Theory 108:161–248, 2001, J Approx Theory
116:268–342, 2002) combines ideas from continued fractions and complex analysis,
depending heavily on the theory of Wall polynomials. Using operator theoretic tools
instead, Khrushchev’s formula has been recently extended to the setting of orthogonal
polynomials on the real line in the determinate case (Grünbaum and Velázquez in Adv
Math 326:352–464, 2018). This paper develops a theory of Wall polynomials on the
real line, which serves as a means to prove Khrushchev’s formula for any sequence of
orthogonal polynomials on the real line. This real line version ofKhrushchev’s formula
is used to rederive the characterization given in Simon (JApprox Theory 126:198–217,
2004) for the weak convergence of p2ndμ, where pn are the orthonormal polynomials
with respect to a measure μ supported on a bounded subset of the real line (Theo-
rem 8.1). The generality and simplicity of such a Khrushchev’s formula also permits
the analysis of the unbounded case. Among other results, we use this tool to prove
that no measure μ supported on an unbounded subset of the real line yields a weakly
convergent sequence p2ndμ (Corollary 8.10), but there exist instances such that p2ndμ
becomes vaguely convergent (Example 8.5 and Theorem 8.6). Some other asymptop-
tic results related to the convergence of p2ndμ in the unbounded case are obtained
via Khrushchev’s formula (Theorems 8.3, 8.7, 8.8, Proposition 8.4, Corollary 8.9). In
the bounded case, we include a simple diagrammatic proof of Khrushchev’s formula
on the real line which sheds light on its graph theoretical meaning, linked to Pólya’s
recurrence theory for classical random walks.
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1 Introduction

The beginning of this century has witnessed a revolution in the theory of orthog-
onal polynomials on the unit circle (OPUC) by the hand of Sergei Khrushchev [9,
10]. In Appendix C—“Twelve Great Papers”—of his OPUC monograph [16], Barry
Simonhighlights these contributions among themost significant ones inOPUChistory.
Khrushchev’s approach exploits the OPUC connections with continued fractions and
complex analysis provided by certain analytical functions known as Schur functions.
S. Khrushchev realized the interest in translating OPUC questions to the language
of Schur functions, what led to many innovative techniques and novel findings for
OPUC, a body of results currently known as Khrushchev’s theory. The cornerstone of
this theory is Khrushchev’s formula, a factorization of the Schur function for |ϕn|2dμ,
where ϕn are the orthonormal polynomials with respect to a measure μ on the unit
circle.

Surprisingly, apart from isolated results—see for instance [15]—no analog of the
whole Khrushchev’s theory has been established for orthogonal polynomials on the
real line (OPRL). Behind this, there is the absence of a clear real line counterpart
of the Schur function for a measure on the unit circle, in terms of which an OPRL
Khrushchev’s formula should look like as simple as its OPUC version. A proposal for
such a real line extension of the standard link between Schur functions and measures
on the unit circle has been established in [5]. It yields a new connection between mea-
sures on the real line and the so called Nevanlinna functions. The strongest argument
supporting the relevance of this connection is the simplicity of an OPRLKhrushchev’s
formula originated by it, also obtained in [5]. It takes the form of a decomposition of
the Nevanlinna function for p2ndμ as a sum of two other ones, with pn the orthonormal
polynomials with respect to a measure μ on the real line.

The referred OPRL Khrushchev’s formula was uncovered in [5] in an operator
theoretic way, resorting to the self-adjointness of the operator defined by the Jacobi
matrix encoding the OPRL recurrence relation. Therefore, its validity is limited to
OPRL related to determinate moment problems. In contrast, a continued fraction
expansion of Schur functions based on the so called Schur algorithm was the key to
obtain OPUC Khrushchev’s formula in the seminal papers [9, 10]. In this strategy
the Wall polynomials—numerators and denominators of the approximants for the
continued fraction expansion of Schur functions—play an essential role.

This work presents a continued fraction approach to OPRL Khrushchev’s formula
in complete parallelism with [9, 10]. This approach is based on the real line extension
proposed in [5] for the notion of Schur function and the correspondingSchur algorithm.
This leads to the development of the real line version for the Wall polynomials. Apart
from the novelty of this result, in contrast with [5], this approach allows us to prove
Khrushchev’s formula for arbitrary OPRL, no matter if the corresponding moment
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problem is determinate or not. This constitutes an essential advantage regarding the
eventual use of Khrushchev’s formula to establish a general Khrushchev’s theory for
OPRL which could cover even the indeterminate case.

Among the results which such OPRL Khrushchev’s theory should include is the
characterization of the measures μ on real line which make p2ndμ vaguely convergent
(as it is shown in Sect. 4, this is the natural convergence notion when dealing with
measures on the real line with not necessarily bounded support). This was answered
by B. Simon [15,Theorem 2] in the case of measures with bounded support, a situation
whichmakes vague convergence equivalent toweak convergence.The simplicity of our
OPRLKhrushchev’s formula not only permits us to rederive this result, but the general
validity of such a formula also allows us to take the first steps towards the analysis
of the vague convergence of p2ndμ for measures μ with unbounded support. The
translation of this problem—via Khrushchev’s formula—as a convergence question
about Nevanlinna functions will be the key to prove in this work that the unbounded
case includes new instances of vaguely convergent sequences p2ndμ, not considered
in [15,Theorem 2]. This points to an OPRL Khrushchev’s theory which is expected to
become particularly interesting in the unbounded case—the most relevant difference
with respect to OPUC– where new qualitative results should arise, requiring the use of
novel techniques.Although the full development of such ageneralOPRLKhrushchev’s
theorywill be the goal of subsequent publications, thiswork presents new results on the
convergence of p2ndμ in the unbounded case, which illustrate the effectiveness of our
real line version of Khrushchev’s formula, and are by themselves central contributions
of the paper: see Theorems 8.3, 8.6, 8.7, 8.8, Proposition 8.4 and Corollaries 8.9, 8.10.

The content of the paper is structured as follows: Sect. 2 summarizes some results
on Schur functions, Khrushchev’s formula and Wall polynomials on the unit circle, to
compare with the analogues on the real line that will appear in the rest of the paper.
Section 3 details the relation between measures on the real line and Nevanlinna func-
tions used throughout this work, including the real line version of the Schur algorithm.
This establishes a triple connection between the sequences of real parameters coming
from such an algorithm, Nevanlinna functions and measures on the real line. Different
convergence notions in the corresponding spaces and their relations are analyzed in
Sect. 4, including the quirks of the unbounded case. The Wall polynomials on the real
line are introduced in Sect. 5, which also discusses their properties and relations with
OPRL. Section 6 identifies the Wall polynomials as the numerators and denominators
of the approximants for a continued fraction expansion ofNevanlinna functions,whose
convergence is also addressed. The results of the previous sections give rise to OPRL
Khrushchev’s formula in Sect. 7, which is exploited in Sect. 8 for the analysis of the
convergence of p2ndμ, including examples and general results for the case of measures
with unbounded support. Finally, in the bounded case, Sect. 9 gives a diagrammatic
approach to OPRL Khrushchev’s formula based on a graph theoretic interpretation of
Nevanlinna functions.
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2 OPUC Khrushchev’s Formula andWall Polynomials

Before introducing the Wall polynomials on the real line and proving OPRL
Khrushchev’s formula, we will summarize the OPUC precedents of these results.
This will permit the reader to appreciate the extent to which the present work is a
natural OPRL extension of that one developed in [9, 10] for OPUC. For a detailed
exposition the reader may consult the original Khrushchev’s papers [9, 10], for a very
quick introduction one may resort to Section 1.3 of Simon’s OPUC monograph [16].

Schur functions are the analytic mappings f on the open unit disk D = {z ∈ C :
|z| < 1} such that | f (z)| ≤ 1 for z ∈ D. A Schur function f is associated to each
measure μ on the unit circle T = {z ∈ C : |z| = 1} such that μ(T) = 1—also called
a probability measure on T—via the equality

1 + z f (z)

1 − z f (z)
=

∫
T

t + z

t − z
dμ(t), (1)

which may be rewritten as

1

1 − z f (z)
=

∫
T

dμ(t)

1 − zt
. (2)

Indeed, (2) establishes a one-to-one correspondence between the set of Schur functions
and the set of probability measures on T. It is worth stressing that (1) actually defines
an analytic function on C \ T such that

f (z) = f (z−1)−1,
1 − | f (z)|
1 − |z| ≥ 0. z ∈ C \ T. (3)

This constitutes a natural way of extending Schur functions to C \ T, which thus may
be equivalently defined as the analytic functions on C \ T satisfying (3).

The simplest examples of the above relation between Schur functions andmeasures
on T are given by

f (z) =
{
c, |z| < 1,

1/c |z| > 1,
c ∈ C, |c| ≤ 1, ⇒ dμ(x) =

{
δ(x − c), c ∈ T,

1
2π

1−|c|2
|t−c|2 dt, c ∈ C \ T,

(4)
where δ(x − c) is the Dirac delta at c.

Given a Schur function f , the Schur algorithm

fn+1(z) = 1

z

fn(z) − fn(0)

1 − fn(0) fn(z)
, f0 = f ,

generates a sequence of Schur functions fn called the Schur iterates of f . The sequence
is finite if | fn(0)| = 1 for some n, which stops the algorithm at the n-th step and implies
that fn is constant due to Schwarz’s lemma. The Schur function f is determined
by the—finite or infinite—sequence αn = fn(0), known as the sequence of Schur
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parameters of f . This yields a one-to-one correspondence between the set of Schur
functions and the set of sequences of Schur parameters,

D
∞ ⋃ ( ∞⋃

n=0

D
n × T

)
.

Equipped with the pointwise convergence, the above set of sequences becomes home-
omorphic to the set of Schur functions with the uniform convergence on compacts
subsets of C \ T, and also to the set of probability measures on T with the weak
convergence.

A result that helps to exploit the above homeomorphims is a factorization of the
Schur function for the measure |ϕn|2dμ, where ϕn are the orthonormal polynomials
with respect to the measure μ on T. Such a Schur function factorizes as

fn
ϕn

ϕ∗
n
, (5)

where ϕ∗
n (z) = znϕn(1/z) and fn are the iterates of the Schur function f of μ. While

the iterates fn are characterized by the Schur parameters (αn, αn+1, . . . ), the rational
functions ϕn/ϕ

∗
n , known as the inverse Schur iterates of f , are the Schur functions

with Schur parameters (−αn−1,−αn−2, . . . ,−α0, 1). The factorization (5) is known
as Khrushchev’s formula.

Inverse iterates provide the universal form of the Schur functions for finitely sup-
ported measures, which may be identified as the Schur functions with a finite number
of Schur parameters and are given by finite Blaschke products

ζ

n∏
k=1

z − zk
1 − zk z

, zk ∈ D, ζ ∈ T.

A finite number of steps of the Schur algorithm may be condensed into a direct
relation between a Schur function f and its iterates,

f = An + zXn fn+1

Bn + zYn fn+1
,

where Xn = B∗
n , Yn = A∗

n and An , Bn are the so called Wall polynomials, given by
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Xn = zXn−1 + αn An−1, X0 = α0,

An = αnzXn−1 + An−1, A0 = α0,

Yn = zYn−1 + αn Bn−1, Y0 = 1,

Bn = αnzYn−1 + Bn−1, B0 = 1.

Rewriting the Schur algorithm as

( fn − αn)

(
αnz + 1

fn+1

)
= ρ2

n z, ρn =
√
1 − |αn|2,

leads to the following continued fraction expansion of the Schur function f ,

f = α0 + ρ2
0 z

α0z
+ 1

α1
+ ρ2

1 z
α1z

+ · · · + 1
αn

+ ρ2
n z

αnz
+ 1

fn+1
.

As a consequence, An/Bn and Xn/Yn are respectively the even and odd approximants
of the Wall continued fraction

α0 + ρ2
0 z

α0z
+ 1

α1
+ ρ2

1 z
α1z

+ · · · + 1
αn

+ ρ2
n z

αnz
+ · · · .

Besides,

f [n] =
{
An/Bn, |z| < 1,

Xn/Yn, |z| > 1,

defines a sequence of Schur functions with Schur parameters (α0, α1, . . . , αn) which
converges to f uniformly on compact subsets of C \ T.

3 Schur Algorithm on R

The Wall polynomials associated to a measure on T arise from the continued frac-
tion expansion induced for the corresponding Schur function by the Schur algorithm.
Therefore, the identification of the Wall polynomials for a measure on R calls for a
right definition of the analogue of a Schur function for such a measure, a proper ver-
sion of the Schur algorithm for this kind of function and the analysis of the continued
fraction expansion generated by such an algorithm. These are the main objectives of
the present section, as well as Sects. 5 and 6.

The natural real line analogue of the Schur functions are the so called Nevanlinna
functions, i.e. the analytic mappings f on C \ R which satisfy the real line version of
(3), namely,

f (z) = f (z),
Im f (z)

Im z
≥ 0, z ∈ C \ R. (6)
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Wewill denote byN the set of Nevanlinna functions. To prove that a given function
is a Nevanlinna one is often aided by simple invariance properties such as

f ∈ N \ {0}, g ∈ N, λ > 0 ⇒ f + g, λ f , −1/ f ∈ N \ {0}. (7)

The analyticity of −1/ f follows from the fact that the imaginary part of a Nevanlinna
function cannot vanish on C \ R unless it is a real constant, thus f ∈ N \ {0} means
that f ∈ N does not vanish at any non-real point.

Concerning integral representations, it has been argued [16,App. B.2]—for a more
detailed presentation, see [14]—that the Schur function of a measure on T may be
viewed as a unit circle counterpart of the m-function of a measure μ on R, a kind of
Nevanlinna functions defined by

m(z) =
∫
R

dμ(x)

x − z
, z ∈ C \ R. (8)

However, this comparison has a serious drawback: the above relation does not exhaust
the set N of Nevanlinna functions, in contrast with the role of (1) concerning Schur
functions.

A new proposal [5] takes a real line version of (2) as a starting point for another
connection between Nevanlinna functions and measures. For details of the subsequent
discussion, see [5].

Definition 3.1 The Nevanlinna function of a measureμ onR such that 0 < μ(R) ≤ 1,
is the function f defined by

1

1 − z f (z)
=

∫
R

dμ(x)

1 − zx
, z ∈ C \ R. (9)

The abovedefinition is consistentwith the fact that 1−z f (z) = −z( f (z)−z−1)does
not vanish onC\R for any f ∈ Nbecause | Im( f (z)−z−1)| ≥ | Im z−1|.Nevertheless,
that (9) defines aNevanlinna function f is a non-trivial factwhich follows fromgeneral
properties of Nevanlinna functions [8]. Also, in contrast with (8) and more general
integral representations of Nevanlinna functions (see e.g. [4] and references therein),
the relation (9) establishes a one-to-one correspondence between the whole set N of
Nevanlinna functions andM\{0}, whereM is the set of subprobabilitymeasures onR,
constituted by those measures μ such that μ(R) ≤ 1 [5,Thm. 4.1]. Although it is not
the aim of this paper, we should mention that other linear fractional transformations
might be combined with (9) to improve the behaviour of the measure in the integral
representation.

The freedom 0 < μ(R) ≤ 1 in the normalization of the measure for (9)—which
makes a difference with respect to the case of the unit circle—is linked to the presence
of the Nevanlinna function −z−1. Actually, applying dominated convergence to (9),
we find that

lim
z→0
z∈iR

z f (z) = 1 − 1

μ(R)
, (10)
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which implies that, for z ∈ iR around the origin,

f (z) = −cz−1 + o(z−1),

{
c = 0, if μ(R) = 1,

c > 0, if μ(R) < 1.

This shows that no Nevanlinna function has on the imaginary axis an asymptotic
behaviour around the originwith a divergence greater than−z−1, and such amaximum
divergence is absent only when the related subprobability measure μ is a probability
one, i.e. μ(R) = 1. The case c = 0 does not exclude other lower order singularities
at the origin, as it is the case for instance of f (z) = √

z, f (z) = ln z or f (z) = ±i ,
z ∈ C±. Bearing in mind that any real translation f (z) → f (z− x), x ∈ R, preserves
the setN of Nevanlinna functions, we also conclude that −(z− x)−1 is the maximum
singularity that may arise in a Nevanlinna function when approaching to a real point
x orthogonally to the real line.

A direct application of (9) yields, for instance, the Nevanlinna functions for the
simplest non-null subprobability measures on R,

dμ(x) = λδ(x−c), c ∈ R, λ ∈ (0, 1] ⇒ f (z) = λ−1c−(λ−1−1)z−1. (11)

As expected, the term proportional to −z−1 appears only for μ(R) = λ < 1. On the
other hand, (10) implies that μ(R) = 1 for the measure μ of the simplest Nevanlinna
functions, i.e. those which are constant in each half-plane,

f (z) =
{
c, Im z > 0,

c Im z < 0,
c ∈ C, Im c ≥ 0 ⇒ dμ(x) =

{
δ(x − c), c ∈ R,
1
π

Im c
|x−c|2 dx, c ∈ C \ R.

These examples should be compared with (4). More instances of the correspondence
between measures and Nevanlinna functions established by (9) can be found in [5].

For convenience, we will distinguish the following types of Nevanlinna functions
according to the qualitative properties of the related measure.

Definition 3.2 ANevanlinna function f with subprobability measureμwill be called:
Normalized if μ is a probability measure.
In this case, it will be called:
Regular if the moments μn = ∫

R
xn dμ(x) are finite for n ∈ N.

Trivial if μ is finitely supported.
Degenerate if μ is supported on a single point.

Obviously, the above classes of Nevanlinna functions are progressively smaller.
As (11) shows, the degenerate situation corresponds to the constant Nevanlinna func-
tions, which must be real due to the first condition in (6). This parallels the case of
Schur functions. Schwarz’s lemma implies that the only Nevanlinna functions whose
imaginary part vanishes on a non-real point are the degenerate ones. Trivial Nevan-
linna functions play the same role as Blaschke products do regarding Schur functions.
Concerning regular Nevanlinna functions, as we will show, they have a close relation
with the Schur algorithm on the real line (see Proposition 3.6). According to (10),
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normalized Nevanlinna functions may be characterized by their behaviour around the
origin,

f ∈ N : f is normalized ⇔ lim
z→0
z∈iR

z f (z) = 0. (12)

The following result provides a simple transformation that “normalizes”anyNevan-
linna function by simply deleting any −z−1 behaviour at the origin. This allows us to
restrict our attention to normalized Nevanlinna functions, i.e. to probability measures
on R.

Proposition 3.3 If f is a Nevanlinna function and f (z) = −cz−1+o(z−1) for z → 0,
z ∈ iR, then f̂ (z) = f (z) + cz−1 is a normalized Nevanlinna function. We refer to
the transformation f �→ f̂ as the normalization of the Nevanlinna function f .

Proof Bearing in mind the characterization (12) of normalized Nevanlina functions,
we only need to show that f̂ is indeed a Nevanlinna function. To prove this, consider
the measure μ of f . From (10) we know that c = 1/μ(R) − 1. On the other hand, (9)
implies that the probability measure ν = μ/μ(R) corresponds to the Nevanlinna func-
tion g(z) = μ(R) f (z) + (1 − μ(R))z−1 = μ(R) f̂ (z). Therefore, f̂ is a Nevanlinna
function too. �


The relation between theNevanlinna function f of ameasure and the corresponding
m-function follows from (9),

f (z) = z−1 + m(z−1)−1. (13)

It reveals a curious fact about the setN of Nevanlinna functions: the mappingm �→ f
transforms a proper subset of N, the m-functions generated by M \ {0}, onto the
whole set N. As we will see, the integral representation (9) of Nevanlinna functions
has other advantages: it will be key to establish a very simpleKhrushchev’s formula for
OPRL, which will come with the development of the correspondingWall polynomials
originated by a suitable version of the Schur algorithm for Nevanlinna functions.

To introduce such an algorithm, let us consider a normalized Nevanlinna function
f whose restriction to the imaginary axis is derivable, i.e. such that there exist

f (0) := lim
z→0
z∈iR

f (z), f ′(0) := lim
z→0
z∈iR

f (z) − f (0)

z
. (14)

Note that f (0) ∈ R because f (z) = f (z), while Im f (z)/ Im z ≥ 0 guarantees that
f ′(0) ≥ 0 since

f ′(0) = lim
y→0
y∈R

f (iy) − f (−iy)

2iy
= lim

y→0
y∈R

Im f (iy)

y
.
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The equality f ′(0) = 0 characterizes the degeneracy of f [5,Appendix B]. Therefore,
assuming f ′(0) > 0 implies that f (z) − f (0) ∈ N \ {0}, so that

g(z) = − f ′(0)
f (z) − f (0)

defines a Nevanlinna function with asymptotic behaviour g(z) = −z−1 + o(z−1)

for z ∈ iR around the origin. According to Proposition 3.3, we may define a new
Nevanlinna function f1 by normalizing g,

f1(z) = ĝ(z) = − f ′(0)
f (z) − f (0)

+ z−1 = 1

z

f (z) − f (0) − f ′(0)z
f (z) − f (0)

.

This transformation may be iterated to give an algorithm generating a sequence fn of
normalized Nevanlinna functions

fn+1(z) = 1

z

fn(z) − fn(0) − f ′
n(0)z

fn(z) − fn(0)
, f0 = f , (15)

as long as each fn(z), z ∈ iR, has a non-null derivative f ′
n(0) in the sense of (14). If

f ′
n(0) = 0 then fn is degenerate, i.e. fn(z) = fn(0), and the algorithm terminates at

the n-th step.

Definition 3.4 Following [5], we refer to (15) as the ‘Schur’ algorithm on the real
line. If μ is the measure related to f , the Nevanlinna functions fn will be called the
‘Schur’ iterates of f or μ, while

γ = (γ0, γ1, γ2, γ3, . . . ) = (b0, a0, b1, a1, . . . ), bn = fn(0), an = f ′
n(0)

1/2,

will be named the sequence of ‘Schur’ parameters of f or μ. If an = 0,
then fn(z) = bn and the algorithm terminates at the n-th step, leading to
a finite sequence of Schur parameters, (b0, a0, b1, a1, . . . , bn−1, an−1, bn, an) =
(b0, a0, b1, a1, . . . , bn−1, an−1, bn, 0).

In terms of the Schur parameters, the forward and backward Schur algorithm read
as

fn+1(z) = 1

z

fn(z) − bn − a2n z

fn(z) − bn
, fn(z) = bn + a2n z

1 − z fn+1(z)
. (16)

Another useful way of expressing these relations is

( fn(z) − bn)(1 − z fn+1(z)) = a2n z. (17)

The Schur algorithm on the real line does not apply to every Nevanlinna function.
For instance,−z−1, ln z, zr with r ∈ (0, 1) or the non-degenerateNevanlinna functions
which are constant in each half-plane, are examples for which even the first step of
the algorithm is not possible. Regarding the class of Nevanlinna functions for which
the Schur algorithm makes sense, it is convenient to introduce the following notation.
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Definition 3.5 In what follows, by a slight abuse of notation, given a Nevanlinna
function f we will denote by f (n)(0) the n-th derivative at z = 0 of f (z) restricted to
z ∈ iR.

Then, we have the following result.

Proposition 3.6 Given a Nevanlinna function f , the following statements are equiva-
lent:

(i) f is regular.
(ii) f (n)(0) exists for every n ∈ N.
(iii) The Schur algorithm on the real line applies to f .

Proof The finiteness of the moments μ0, μ1, . . . , μn for the measure μ related to f
is equivalent to the existence of the following asymptotic expansion of order n around
the origin,

∫
R

dμ(x)

1 − xz
= μ0 + μ1z + · · · + μnz

n + o(zn), z ∈ iR. (18)

When μ0 = 1, this is the same as stating that the Nevanlinna function f , given by (9),
has an asymptotic expansion of order n − 1 around the origin,

f (z) = s0 + s1z + · · · + sn−1z
n−1 + o(zn−1), z ∈ iR \ {0}, (19)

proving the equivalence (i) ⇔ (ii).
The statement (iii)means that, for each iterate fn , there exist fn(0) and f ′

n(0) in the
sense of (14). In other words, fn−1(z), z ∈ iR, has an asymptotic expansion around
the origin of order 1. Hence, rewriting (16) for the relation between fn−1 and fn−2
shows that fn−2(z), z ∈ iR, has an asymptotic expansion around the origin of order 3.
By induction we conclude that f (z), z ∈ iR, has an asymptotic expansion around the
origin of order 2n−1, i.e. there exist the first 2n−1 derivatives of f at the origin in the
sense of Definition 3.5. If the Schur algorithm does not stop, then all the derivatives
f (n)(0) exist. Otherwise, there is an iterate fn which is a real constant and therefore
fn , and hence f (z), z ∈ iR, are derivable infinitely many times at the origin. This
proves (iii) ⇒ (ii).

Conversely, (ii)means that f (z), z ∈ iR, has an asymptotic expansion (19) around
the origin of any order. Then, using (16) one gets by induction that fn(z), z ∈ iR, has
also an asymptotic expansion around the origin of any order for every n ∈ N. This
means that every iterate fn has derivatives of all orders at the origin in the sense of
Definition 3.5. �


Although the above Schur algorithm only applies to a regular Nevanlinna function
f , the first N steps of the algorithm make sense in a broader situation: it suffices that
the moments of the related measure μ satisfy μ0 = 1 and μ1, . . . , μ2N < ∞, which
in view of the proof of Proposition 3.6, is equivalent to the existence of the first 2N −1
derivatives of f (z), z ∈ iR, at z = 0. This condition guarantees that f1 exists and
has an asymptotic expansion around the origin of order 2N − 3, as follows from (15).
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By induction we find that fN exists, i.e. the first N steps of the Schur algorithm make
sense, originating 2N Schur parameters bn, an , 0 ≤ n ≤ N − 1.

The proof of Proposition 3.6 shows that, if the first N steps of the Schur algorithm
go well with a Nevanlinna function f , the 2N Schur parameters generated by these
steps determine the coefficients of a Taylor expansion like (19) for f of order 2N −1.
The following result gives more details on this dependence.

Proposition 3.7 If a Nevanlinna function f admits N steps of the Schur algorithm
with Schur parameters (γn)

2N
n=0, then f (z) = ∑2N−1

n=0 snzn + o(z2N−1) for z ∈ iR,
with s0 = b0 and sn = sn(γ1, . . . , γn) an homogeneous polynomial of degree n + 1
in the Schur parameters for n ≥ 1. More precisely, if ϒn = a0a1 · · · an,

s2n+1 = ϒ2
n + a20 r2n+1(b1, a1, . . . , bn),

s2n+2 = ϒ2
n bn+1 + a20 r2n+2(b1, a1, . . . , bn, an),

n ≥ 0, (20)

where r1 = r2 = 0 and rn = rn(γ2, . . . , γn−1) is an homogeneus polynomial of degree
n − 1 in the Schur parameters for n ≥ 3. The Taylor coefficients of f are related to
the moments μn of the corresponding measure μ by

μn = s0μn−1 + s1μn−2 + · · · + sn−2μ1 + sn−1. (21)

Proof We know that s0 = b0 and s1 = a20 . The rest of the Taylor coefficients follow
from (16), which for n = 0 is

( f − b0)(1 − z f1) = a20 z.

Denoting by s(1)
n the Taylor coefficients of f1, the above identity leads to

sn+1 = sns
(1)
0 + sn−1s

(1)
1 + · · · + s1s

(1)
n−1, n ≥ 1. (22)

Using this recurrence relation, all the properties of the relations between the Taylor
coefficients and the Schur parameters follow by induction, using as induction hypoth-
esis that they hold for any previous Taylor coefficient of any Nevanlinna function, in
particular for f and f1.

The relation between the Taylor coefficients of f and the moments μn of the
corresponding measure μ arises by introducing the asymptotic expansions (18) and
(19) into (9). �


The polynomials rn become quite involved soon, something that can be observed
from the list below, which summarizes the first non-null ones:

r3 = b21, r4 = b31 + 2b1a
2
1 , r5 = b41 + 3b21a

2
1 + a41 + 2b1a

2
1b2 + a21b

2
2, . . . .

(23)
When the Nevanlinna function f is trivial, fN = bN is a real constant for some
index N . Then, the expressions for rn follow from the general ones (23) assuming that
aN = 0, which amounts to the cancellation of all the terms including aN .
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Proposition 3.6 states that a Nevanlinna function f admits the Schur algorithm
on the real line when the corresponding measure μ is a probability one with finite
moments. These are precisely themeasures having an associated sequence of orthonor-
mal polynomials pn with p0 = 1. Such polynomials are given by a three term
recurrence relation

J p(x) = xp(x), p = (p0, p1, . . . )
T, (24)

encoded by a Jacobi matrix J .
On the other hand, rewriting the Schur algorithm on the real line for them-functions

mn of the iterates fn leads to the relation

mn(z) = 1

bn − z − a2nmn+1(z)
, m0 = m. (25)

This identifies an and bn as the parameters of the three term recurrence relation for
the orthonormal polynomials [13,Sect. 5], so that the corresponding Jacobi matrix is
given by

J =

⎛
⎜⎜⎜⎜⎜⎝

b0 a0
a0 b1 a1

a1 b2 a2
a2 b3 a3

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

, an > 0, bn ∈ R. (26)

The Schur algorithm on the real line stops at the n-th step if the n-th iter-
ate fn is degenerate, which means that fn must be the real constant bn = fn(0)
and an = f ′

n(0)
1/2 = 0. This leads to a finite sequence of Schur parameters,

(b0, a0, b1, a1, . . . , bn−1, an−1, bn, 0), which identifies f as a trivial Nevanlinna func-
tion whose finitely supported measure μ is associated to the finite Jacobi matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b0 a0
a0 b1 a1

a1 b2 a2
. . .

. . .
. . .

an−2 bn−1 an−1
an−1 bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Otherwise, the algorithm generates infinitelymany Schur parameters giving an infinite
Jacobi matrix, hence μ is supported on infinitely many points and f is non-trivial.
Every regularNevanlinna function determines a—finite or infinite—sequence of Schur
parameters. However, the Schur parameters determine a unique Nevanlinna function
or infinitely many ones depending whether the corresponding Jacobi matrix is related
to a determinate or indeterminate moment problem.
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The following example of trivial Nevanlinna functions is an especially important
one.

Proposition 3.8 Let Pn be a sequence of monic orthogonal polynomials on the real
line with three term recurrence relation given by

x Pn−1(x) = Pn(x) + bn−1Pn−1(x) + a2n−2Pn−2(x),

P0 = 1, P−1 = 0, an > 0, bn ∈ R.

Defining the reversed polynomials by

P∗
n (z) = zn Pn(z

−1),

the rational function

Rn(z) = bn + a2n−1z
P∗
n−1(z)

P∗
n (z)

= bn + a2n−1
Pn−1(z−1)

Pn(z−1)
(27)

is a trivial Nevanlinna function with Schur parameters (bn, an−1, bn−1, . . . , a0, b0, 0)
and iterates Rn−1, Rn−2, . . . , R0.

Proof Rewritten in terms of the reversed polynomials, the three term recurrence rela-
tion becomes

P∗
n−1 = P∗

n + bn−1zP
∗
n−1 + a2n−2z

2P∗
n−2. (28)

Dividing by P∗
n−1, this gives

1 = a2n−1z

Rn − bn
+ zRn−1.

Equivalently,

Rn−1 = 1

z

Rn − bn − a2n−1z

Rn − bn
.

This proves the result, bearing in mind that Rn(0) = bn , R′
n(0) = a2n−1 and R0 = b0.

�

Definition 3.9 In analogy with the terminology in [10], if a probability measure μ is
an orthogonality measure for Pn—i.e., (b0, a0, b1, a1, . . . ) are the Schur parameters
of μ—and f is the related Nevanlinna function, Rn will be called the inverse ‘Schur’
iterates of f or μ. Bearing in mind the compact form (17) of the Schur iterations, the
inverse iteratesmay be viewed as theNevanlinna functions generated by the recurrence
relation

(Rn+1(z) − bn+1)(1 − zRn(z)) = a2n z, R0 = b0. (29)

The monic orthogonal polynomials Pn are related to the orthonormal polynomials
pn satisfying (24) by
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Pn = ϒn−1 pn, ϒn = a0a1 · · · an . (30)

Therefore, the inverse Schur iterates (27) may be also rewritten as

Rn(z) = bn + an−1z
p∗
n−1(z)

p∗
n(z)

= bn + an−1
pn−1(z−1)

pn(z−1)
, (31)

where p∗
n(z) = zn pn(z−1).

Inverse Schur iterates constitute more than mere examples of trivial Nevanlinna
functions, but characterize such kind of functions, which are the Nevanlinna version
of the Schur functions given by finite Blaschke products. The next result provides
several characterizarions of trivial Nevanlinna functions which, analogously to the
case of the unit circle, will play a prominent role in Khrushchev’s formula on the real
line.

Proposition 3.10 The following statements are equivalent:

(i) f is a trivial Nevanlinna function.
(ii) f has the form (27) for some sequence of monic orthogonal polynomials on the

real line.
(iii) f is a real rational function analytic at the origin such that f ′(0) > 0 and

f (z) − f (0) has simple zeros and poles in the extended complex plane, all of
them lying in the extended real line and interlacing.

(iv) f (z) = b + ∑n
k=1

Nk
z−1−xk

with b, xk ∈ R and Nk > 0.

Proof (i) ⇔ (ii) is a direct consequence of the fact that the rational functions Rn given
in (27) exhaust all the trivial Nevanlinna functions with 2n + 1 Schur parameters by
running bk ∈ R and ak > 0.

(ii) ⇔ (iii) follows from the properties of the zeros of orthogonal polynomials
on R. As a consequence of Geronimus-Wendroff’s theorem, a rational function pro-
portional to the quotient Pn−1/Pn of consecutive orthogonal polynomials on R is
characterized by having n simple poles and n − 1 simple zeros on R which interlace.
In other words, such a rational function is characterized by having simple interlacing
poles and zeros on the extended real line R, being the infinity one of the simple
zeros (which means that substituting z by 1/z gives a simple zero at the origin
because deg Pn−1 = deg Pn − 1). Equivalently, a rational function proportional to
zP∗

n−1(z)/P
∗
n (z) = Pn−1(z−1)/Pn(z−1) is characterized by having simple interlacing

poles and zeros on R, the origin being one of the zeros.
On the other hand, the parameters bn = Rn(0) ∈ R and an−1 = R′

n(0) > 0 in (27)
are independent of Pn−1/Pn , which only depends on b0, a0, . . . , bn−2, an−2, bn−1. A
rational function f satisfies (iii) iff f = b + ag where a > 0, b ∈ R and g is a real
rational function vanishing at the origin, whose zeros and poles lie on R, are simple
and interlace. Therefore, the previous comments prove that f has the form (27) iff it
satisfies (iii).

(i) ⇔ (iv) may be proved resorting to the fact that a Nevanlinna function f and its
iterate f1 are simultaneously trivial. Hence, f is trivial iff the measure μ(1) of f1 is
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finitely supported, i.e.

dμ(1)(x) =
n∑

k=1

Mk δ(x − xk), xk ∈ R, Mk > 0,
n∑

k=1

Mk = 1.

From (16) and (9) we find that μ(1) has the above form iff

f (z) = f (0) + f ′(0)z
1 − z f1(z)

= f (0) + f ′(0)z
∫
R

dμ(1)(x)

1 − zx

= b +
n∑

k=1

Nkz

1 − zxk
,

b = f (0) ∈ R,

Nk = f ′(0)Mk > 0,

which proves the equivalence. �


4 Convergence Properties

In this section we will discuss some convergence properties relating Nevanlinna func-
tions, measures on R and Schur parameters. Apart from their own interest, they are
useful for the analysis of the convergence of the continued fraction generated by the
Schur algorithm on the real line, as well as for the development and applications of
Khrushchev’s formula on the real line.

We are dealing with the setN of Nevanlinna functions, the setM of subprobability
measures onR and the set of—finite or infinite– sequences of Schur parameters, given
by

S = (R × R
+)∞

⋃ ( ∞⋃
n=0

(R × R
+)n × (R × {0})

)
, R

+ = {x ∈ R : x > 0}.

Several convergence notions will be considered in these sets. Given f ∈ N,μ ∈ M,
γ ∈ S and sequences f [k] ∈ N, μ[k] ∈ M, γ [k] ∈ S, we will use the following
notation:

f [k] → f ≡ pointwise convergence on C \ R,

f [k] ⇒ f ≡ local uniform convergence on C \ R, i.e. uniform convergence
on compact subsets of C \ R,

μ[k] v−→ μ ≡ vague convergence, i.e. limk→∞
∫
R
h dμ[k] = ∫

R
h dμ

for every continuous function h on R such that lim|x |→∞ h(x) = 0,

μ[k] w−→ μ ≡ weak convergence, i.e. limk→∞
∫
R
h dμ[k] = ∫

R
h dμ

for every bounded continuous function h on R,

γ [k] → γ ≡ pointwise convergence on S, i.e. limk→∞ γ
[k]
n = γn

for each n such that γn exists.
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The pointwise convergence inSmakes sense even if the number of Schur parame-
ters of γ [k] depends on k and is different from the number of Schur parameters of γ . In
that case the convergence requires implicitly that, for each n such that γn exits, there
is an index k0(n) such that γ

[k]
n exists for k ≥ k0(n). For instance, if γ [k] are finite

but of increasing length, they may converge to an infinite sequence of Schur param-
eters. Also, the convergence of γ [k] = (b[k]

0 , a[k]
0 , b[k]

1 , a[k]
1 , . . . ) to a finite sequence

(b0, a0, b1, a1, . . . , bn, 0) means that

lim
k→∞ b[k]

j = b j , 0 ≤ j ≤ n; lim
k→∞ a[k]

j = a j , 0 ≤ j ≤ n − 1; lim
k→∞ a[k]

n = 0.

The presence of the last condition is necessary to guarantee the uniqueness of the limit,
otherwise the convergence of γ [k] to a finite or infinite sequence γ would imply also
the convergence of γ [k] to any finite part of γ .

Concerning the vague and weak convergence inM, they are related by

μ[k] w−→ μ ⇔ μ[k] v−→ μ, lim
k→∞ μ[k](R) = μ(R). (32)

The right implication is obvious. The left onemay be reduced to the case of probability
measures by consideringμ[k]/μ[k](R) andμ/μ(R), inwhich case a proof can be found
in [2,Theorem 4.4.2]. The vague convergence only has the following consequence,

μ[k] v−→ μ ⇒ lim inf
k→∞ μ[k](R) ≥ μ(R), (33)

as follows by taking n → ∞ in μ([−n, n]) = limk→∞ μ[k]([−n, n]) ≤
lim infk→∞ μ[k](R). Obviously, a situation where vague convergence becomes weak
convergence is when the supports of the measuresμ[k] lie on the same bounded subset
of R.

As a consequence ofMontel’s normality criteria [11] and Helly’s selection theorem
[6], local uniform convergence and vague convergence yield similar compactness
properties to N and M:

• Let f [k] ∈ N be a locally uniformly bounded sequence, i.e. uniformly bounded
on compact subsets of C \ R. Then, f [k] has a locally uniformly convergent
subsequence [12,Section 2.2]. Besides, if all the locally uniformly convergent
subsequences of f [k] have the same limit function f , then f [k] ⇒ f [12,Theorem
2.4.2].

• Every sequence μ[k] ∈ M has a vaguely convergent subsequence [2,Theorem
4.3.3]. Besides, if all the vaguely convergent subsequences of μ[k] have the same
limit measure μ, then μ[k] v−→ μ [2,Theorem 4.3.4].

These results shed light on the relation between pointwise and local uniform con-
vergence,

f [k] ⇒ f ⇔ f [k] → f , f [k] locally uniformly bounded. (34)
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The right implication is trivial. The left one follows by noticing that any locally uni-
formly convergent subsequence of f [k] must have the limit f if f [k] → f .

Although the boundedness condition in (34) cannot be avoided for general analytic
functions, pointwise and local uniform convergence become equivalent inN. Despite
being a known result, the following proposition includes a new proof based on the
representation (13) for Nevanlinna functions. The aim of the proposition is a relation
with the convergence notions in M which will be of interest for the discussion of
Khrushchev’s formula on the real line.

Proposition 4.1 If f [k], f are Nevanlinna functions with associated measuresμ[k],μ,
respectively, then

f [k] ⇒ f ⇔ f [k] → f ⇔ μ[k] v−→ μ.

Furthermore, when f is normalized, μ[k] v−→ μ becomes μ[k] w−→ μ in the above
equivalence.

Proof Let m[k], m be the m-functions of μ[k], μ, respectively.
Suppose that μ[k] v−→ μ. Then m[k] → m because, for z ∈ C \ R, 1/(x − z) is a

continuous function of x ∈ R which vanishes for |x | → ∞. The relation (13) shows
that f [k] → f because, as the m-function of a non-null measure μ, m is a non-null
Nevanlinna function which thus vanishes at no point of C \ R. Besides, since μ[k]
is a subprobability measure, |m[k](z)| ≤ 1/| Im z| so that m[k] is locally uniformly
bounded. This implies that m[k] ⇒ m. Also, −1/m is bounded on compact subsets of
C\R because it is a Nevanlinna function, hence the relation |m[k]| ≥ |m|− |m[k] −m|
shows that the sequence −1/m[k] ∈ N is locally uniformly bounded. In consequence,
(13) yields f [k] ⇒ f .

Assume now that f [k] → f . Then, (13) shows thatm[k] → m because f − z−1 is a
non-null Nevanlinna function. If a subsequence μ[k j ] converges vaguely to a measure
μ̃withm-function m̃, the previous arguments show thatm[k j ] → m̃. Therefore, m̃ = m
and μ̃ = μ. That is, the limit of every vaguely convergent subsequence of μ[k] must
be μ, which proves that μ[k] v−→ μ.

Finally, if f [k] → f with f normalized, then μ[k] v−→ μ with μ a probability mea-
sure. Since lim infk→∞ μ[k](R) ≥ μ(R) = 1, we get limk→∞ μ[k](R) = 1 = μ(R)

because μ[k](R) ≤ 1. Therefore, the vague convergence is indeed weak convergence.
�


Remark 4.2 It is worth remarking that, in the above result, the assumption that μ is a
non-null measure—as a measure of a Nevanlinna function—is crucial. For instance,
μ[k] v−→ 0 for μ[k] the Dirac delta at x = k, while f [k] = k is non-convergent in this
case. Actually, this example illustrates a general rule: if f [k] and m[k] are respectively
the Nevanlinna functions and m-functions of the measures μ[k], similar arguments to
those given in the proof of Proposition 4.1 show that

μ[k] v−→ 0 ⇔ m[k] ⇒ 0 ⇔ m[k] → 0 ⇔ f [k] → ∞.
�


123



Constructive Approximation

As a consequence of Proposition 4.1 and (7),

f [k], f ∈ N : f [k] → f �= 0 ⇒ 1/ f [k] ⇒ 1/ f . (35)

Another consequence of the previous proposition is that f [k] → f inN implies that
f [k] is locally uniformly bounded. The following proposition yields another locally
uniformly boundedness condition in N. It will be key for the subsequent discussion
of the relation between the convergence inN and S.

Proposition 4.3 Let F be a family of normalized Nevanlinna functions. If f (0) and
f ′(0) exist—in the sense of Definition 3.5—and are bounded for f ∈ F, then F is
locally uniformly bounded.

Proof We need to prove that every f ∈ F is bounded on any compact K ⊂ C \ R

by a bound depending on K but not on f . If f ′(0) = 0, then f (z) = f (0) because
it is degenerate [5,Appendix B]. Otherwise, f ′(0) > 0 and the first step of the Schur
algorithm on the real line applies to f . If f1 is the first iterate of f , (16) yields

f (z) = f (0) − f ′(0)
f1(z) − z−1 .

Hence, bearing in mind that | f1(z) − z−1| ≥ | Im( f1(z) − z−1)| ≥ | Im z−1| because
f1 is a Nevanlinna function, we find that

sup
z∈K

| f (z)| ≤ | f (0)| + | f ′(0)|
inf
z∈K

∣∣∣Im z−1
∣∣∣
.

The desired bound follows from that of f (0) and f ′(0) for f ∈ F. Obviously, the
degenerate case f (z) = f (0) is also covered by such a bound. �


Regarding the relation between the convergence notions in N and S, similarly to
the case of Schur functions, one could expect that the convergence f [k] ⇒ f for
regular Nevanlinna functions implies the convergence γ [k] → γ for the related Schur
parameters. This is not the case, as the following simple example clearly shows.

Example 4.4 Consider the sequence of Nevanlinna functions given by

f [k](z) = 1

1 − kz
,

which satisfies f [k] ⇒ f = 0. The corresponding Schur parameters are

γ [k] = (1,
√
k, k, 0), γ = (0, 0),

thus, not only γ [k]
� γ , but γ [k] is non-convergent.
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In the previous example the lack of convergence of γ [k] is due to the divergence
of some of the coefficients. This suggests to try a boundedness condition on γ [k]
necessary for its convergence, as a minimal requirement to get such a convergence.
This idea is materialized in the next theorem.

Theorem 4.5 Let f [k], f be regular Nevanlinna functions with Schur parameters γ [k],
γ , respectively. If, for each fixed n ≥ 0 such thatγn exists, the sequenceγ

[k]
n is bounded,

then
f [k] → f ⇒ γ [k] → γ , f [k]

n ⇒ fn i f fn exists. (36)

Conversely, if the moment problem for γ is determinate, then

γ [k] → γ ⇒ f [k] ⇒ f . (37)

Proof Assume that f [k] → f and γ
[k]
n is bounded in k for each n such that γn exists.

Although we know that actually f [k] ⇒ f , we will rederive this using a kind of
argument that will be necessary later on in situations where no pointwise convergence
is available. Since f has at least the first two Schur parameters, b0 and a0—this
last one vanishing in the degenerate case–, the boundedness hypothesis on the Schur
parameters guarantees that Proposition 4.3 applies to the sequence f [k], hence f [k] is
locally uniformly bounded and f [k] ⇒ f . Denoting by f [k]

n the iterates of f [k], (16)
leads to

f [k] = b[k]
0 + a[k]

0
2
z

1 − z f [k]
1

= b[k]
0 + a[k]

0
2
z + a[k]

0
2
z2

f [k]
1

1 − z f [k]
1

. (38)

This expression remains valid when f [k] is degenerate because, although this means
that it has no iterates, in that case a[k]

0 = 0 and we can take for instance f [k]
1 = 0. Let

b̃0 be a limit point of the bounded sequence b[k]
0 . Since a[k]

0 is also bounded, we may

suppose without loss that there exists a subsequence k j such that b
[k j ]
0 converges to

b̃0 and a
[k j ]
0 converges to some ã0. Due to the boundedness of the Schur parameters,

Proposition 4.3 also applies to the sequence f [k]
1 . Hence, f [k]

1 is locally uniformly

bounded, thus we also may assume without loss that f
[k j ]
1 ⇒ g for some g ∈ N. Since

f
[k j ]
1 −z−1 ⇒ g−z−1 ∈ N\{0}, in view of (35), we get 1/(1−z f

[k j ]
1 ) ⇒ 1/(1−zg).

Therefore, taking subsequential limits in (38) gives

b̃0 + ã20 z + ã20 z
2 g

1 − zg
= b0 + a20 z + a20 z

2 f1
1 − z f1

,

so that b̃0 + ã20 z + o(z) = b0 + a20 z + o(z). This implies that b̃0 = b0 and ã0 = a0,

proving that b0 is the only limit point of b[k]
0 , i.e. b[k]

0 converges to b0. A similar

reasoning starting with a limit point of a[k]
0 shows that this sequence converges to a0.

Also, if a0 > 0—so that f1 is the true iterate of f—the same arguments, but starting
with a subsequential limit of f [k]

1 with respect to the local uniform convergence, yield

f [k]
1 ⇒ f1.
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At this stage, if a0 > 0, there is a second iterate f2 of f , which is the first iterate of
f1. Then, the sequence f [k] may be replaced in the above arguments by f [k]

1 to prove

that b[k]
1 , a[k]

1 and f [k]
2 converge to b1, a1 and f2, respectively. The general result (36)

follows by induction.
Suppose now that γ [k] → γ . Then, the boundedness hypothesis on γ [k] is guaran-

teed, thus Proposition 4.3 applies to f [k], which is therefore locally bounded. Consider
a locally uniformly convergent subsequence f [k j ] ⇒ f̃ . In view of (36), γ [k] → γ̃

where γ̃ is the sequence of Schur parameters of f̃ . Therefore, γ̃ = γ and the deter-
minacy of the moment problem related to γ ensures that f̃ = f . Since f̃ was any
subsequential limit of the locally bounded sequence f [k], (37) is proved. �


The above theorem is the central result of this section. It will trivialize the conver-
gence of the continued fraction expansion of a regular Nevanlinna function discussed
in Sect. 6. Even more important, as in the case of the unit circle, in Sect. 7 it will be key
to extend the real line version of Khruschev’s formula beyond the case of absolutely
continuous measures. The following restatements of the convergence of the Schur
parameters are useful for this purpose.

Proposition 4.6 Let f [k], f be regular Nevanlinna functions with measures μ[k], μ

and Schur parameters γ [k], γ , respectively. If s[k]
n , sn are the Taylor coefficients for

the asymptotic expansion around the origin of f [k](z), f (z), z ∈ iR, and μ
[k]
n , μn are

the moments of μ[k], μ, respectively, the following conditions are equivalent:

(i) limk→∞ γ
[k]
n = γn for n ≤ N.

(ii) limk→∞ s[k]
n = sn for n ≤ N.

(iii) limk→∞ μ
[k]
n = μn for n ≤ N + 1.

Proof The equivalence (i) ⇔ (ii) follows by induction from Proposition 3.7, since it
gives γ0 = s0, γ 2

1 = s1, while (20) yields

γ 2
2n+1 = s2n+1 − γ 2

1 r2n+1(γ2, . . . , γ2n)

γ 2
1 · · · γ 2

2n−1

, γ2n+2 = s2n+2 − γ 2
1 r2n+2(γ2, . . . , γ2n+1)

γ 2
1 · · · γ 2

2n+1

.

Relation (21) from the same proposition also leads by induction to (ii) ⇔ (iii). �


5 Wall Polynomials on R

The previous real line version of the Schur algorithm will be used as a starting point
for the introduction of the Wall polynomials on R. For this purpose, given a regular
Nevanlinna function f , we express the relation (16) between consecutive iterates in
the matrix form

(
fn(z)
1

)
= 1

1 − z fn+1(z)

(−bnz bn + a2n z
−z 1

) (
fn+1(z)

1

)
,
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which we denote in short by

fn(z)
.=

(−bnz bn + a2n z
−z 1

)
fn+1(z).

Iterating this relation yields

f (z)
.=

(−b0z b0 + a20 z−z 1

) (−b1z b1 + a21 z−z 1

)
· · ·

(−bnz bn + a2n z
−z 1

)
fn+1(z).

Equivalently,

f
.=

(
Cn An

Dn Bn

)
fn+1, (39)

with An , Bn , Cn and Dn real polynomials given by

(
Cn An

Dn Bn

)
=

(
Cn−1 An−1
Dn−1 Bn−1

) (−bnz bn + a2n z
−z 1

)
,

(
C−1 A−1
D−1 B−1

)
=

(
1 0
0 1

)
.

The relation (39) means that

f = An + Cn fn+1

Bn + Dn fn+1
. (40)

Since z divides Cn and Dn , we can define new polynomials Xn and Yn by

Cn = zXn, Dn = zYn .

We conclude that

f = An + zXn fn+1

Bn + zYn fn+1
, (41)

where the polynomials An , Bn , Xn and Yn satisfy

(
Xn An

Yn Bn

)
=

(
Xn−1 An−1
Yn−1 Bn−1

) (−bnz cnz
−1 1

)
,

(
X−1 A−1
Y−1 B−1

)
=

(
z−1 0
0 1

)
. (42)

cn = bn + a2n z,

Writing (42) explicitly yields

Xn = −bnzXn−1 − An−1, X0 = −b0, (43)

An = cnzXn−1 + An−1, A0 = c0, (44)

Yn = −bnzYn−1 − Bn−1, Y0 = −1, (45)

Bn = cnzYn−1 + Bn−1, B0 = 1. (46)

We call An , Bn , Xn and Yn theWall polynomials for the Nevanlinna function f ,
in short, the Wall polynomials on R. The existence of all the Wall polynomials only
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holds for regular Nevanlinna functions. Nevertheless, as it is the case for the first n+1
steps of the Schur algorithm on the real line, the Wall polynomials An , Bn , Xn and
Yn exist as long as μ has finite moments μ1, . . . , μ2n+2—equivalently, there exist the
first 2n + 1 derivatives at the origin of f (z), z ∈ iR—which is the only requirement
for the validity of (41).

We should remark that, as follows from (42), the Wall polynomials only depend on
the Schur parameters of f , hence, in the indeterminate case, they are common to the
Nevanlinna functions of all the probability measures related to the same Jacobi matrix.
More precisely, (43)–(46) show that Xn andYn are determined by the Schur parameters
(b0, a0, . . . , bn−1, an−1, bn), while An and Bn also depend on the additional parameter
an . This dependence is clarified in the next proposition, which establishes some of the
properties of the Wall polynomials on the real line, which should be compared with
those of their unit circle counterparts.

Theorem 5.1 Let An, Bn, Xn, Yn be the Wall polynomials of a Nevanlinna function
f with Schur parameters (b0, a0, b1, a1, . . . ) and iterates fn. If ϒn is given by (30),
then:

(i) Xn Bn − Yn An = ϒ2
n z

2n+1.
(ii) deg Xn, deg Yn ≤ n and deg An, deg Bn ≤ n + 1 for n ≥ 0.
(iii) The zeros of An, Bn, Xn and Yn are real for n ≥ 1. These zeros lie on R \ {0}

except for Xn and An when b0 = 0, in which case both have a simple zero at the
origin.

(iv) The rational functions An/Bn, Xn/Yn, zYn/Bn and zXn/An are irreducible for
n ≥ 1, except for the last one when b0 = 0, in which case the irreducible
representation is z X̂n/ Ân with An = z Ân and Xn = z X̂n.

(v) An/Bn, Xn/Yn, −zYn/Bn and −zXn/An are regular Nevanlinna functions.
(vi) An/Bn has Schur parameters (b0, a0, . . . , bn, an, 0, 0), Xn/Yn has Schur param-

eters (b0, a0, . . . , bn−1, an−1, bn, 0).
(vii) An + zXn fn+1 = f

∏n+1
k=1(1 − z fk), Bn + zYn fn+1 = ∏n+1

k=1(1 − z fk).

(viii) Bn f − An = ϒ2
n z

2n+2 fn+1∏n+1
k=1(1 − z fk)

= zn+1 fn+1

n∏
k=0

( fk − bk),

Xn − Yn f = ϒ2
n z

2n+1

∏n+1
k=1(1 − z fk)

= zn
n∏

k=0

( fk − bk).

Proof Denoting

�n = det

(
Xn An

Yn Bn

)
,

(42) yields �n = a2n z
2�n−1 with �−1 = z−1. This implies that �n = ϒ2

n z
2n+1,

proving (i).
Statement (ii) follows from (43)–(46) by an inductive argument.
To prove (iv) note that, in view of (i), the origin is the only possible common zero of

the numerator and the denominator for each of the rational functions. Evaluating (43)–
(46) at z = 0 we find that Bn(0) = 1, Yn(0) = −1, An(0) = b0 and Xn(0) = −b0
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for n ≥ 0. This shows that no Wall polynomial vanishes at z = 0, unless b0 = 0,
in which case An and Xn are the only ones with a zero at the origin. If b0 = 0, the
polynomials Ân = z−1An and X̂n = z−1Xn satisfy the same recurrence relations
(43), (44) as Xn and An , but with initial conditions, X̂0 = 0 and Â0 = a20 . Evaluating
such recurrence relations at z = 0 we get X̂n(0) = −a20 and Ân(0) = a20 for n ≥ 1,
which are non-null. This proves (iv) and the second part of (iii). To complete the proof
of (iii) it only remains to see that the n-th Wall polynomials do not vanish on C \ R

for n ≥ 1. This is a consequence of the previous results and (v)—which we are about
to prove below—because a Nevanlinna function is analytic out of the real line and
cannot vanish there unless it is null.

To prove that An/Bn and Xn/Yn are regular Nevanlinna functions, let us exploit
the fact that (41) is valid for any Nevanlinna function for which the first n + 1 steps
of the Schur algorithm on the real line make sense. This is the case of the regular
Nevanlinna function g with Schur parameters (b0, a0, . . . , bn, an, 0, 0). Since gn+1 =
0, the application of (41) to g identifies it with An/Bn . A similar reasoning proves that
the regular Nevanlinna functionwith Schur parameters (b0, a0, . . . , bn−1, an−1, bn, 0)
is (An−1 + bnzXn−1)/(Bn−1 + bnzYn−1), which coincides with Xn/Yn , as follows
from (43) and (45). Hence, (vi) is true.

In the case of the rational function φn = −zYn/Bn we will use a different strategy.
Starting from the non-null Nevanlinna function φ0 = z, we will show by induction
that φn is obtained by a finite number of the operations (7) which preserve the set
N \ {0} of non-null Nevanlinna functions. Indeed, it suffices to see that the relation
between φn and φn−1 is a composition of such Nevanlinna preserving operations. This
is accomplished by expressing such a relation in the following way, using (45) and
(46),

φn = z
bnzYn−1 + Bn−1

bnzYn−1 + a2n z
2Yn−1 + Bn−1

= 1

1

z
+ a2n zYn−1

bnzYn−1 + Bn−1

= − 1

−1

z
− a2n

bn − 1

φn−1

.

Since Bn(0) �= 0, the rational Nevanlinna function φn is analytic at the origin and
therefore regular.

A similar reasoning proves that −zXn/An ∈ N, starting from the non-null Nevan-
linna function

− zX0/A0 = b0z

b0 + a20 z
= − 1

−1

z
− a20

b0

, b0 �= 0,

− zX1/A1 = z, b0 = 0.

Besides, the rational Nevanlinna function −zXn/An is regular because in its irre-
ducible form its denominator does not vanish at the origin. This completes the proof
of (v).
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The identities in (vii) follow from (42), which implies that

(
An + zXn fn+1

Bn + zYn fn+1

)
=

(
Xn An

Yn Bn

)(
z fn+1

1

)
=

(
Xn−1 An−1

Yn−1 Bn−1

)(
a2n z

2 + bnz(1 − z fn+1)

1 − z fn+1

)

= (1 − z fn+1)

(
Xn−1 An−1

Yn−1 Bn−1

)(
z fn
1

)
= (1 − z fn+1)

(
An−1 + zXn−1 fn
Bn−1 + zYn−1 fn

)
,

where we have used (17) in the second line. The above relation, together with the
values of A−1, B−1, X−1 and Y−1, give (vii).

Finally, introducing (41) into Bn f − An , Xn − Yn f , and resorting to (i), (vii), we
arrive at the left equalitites in (viii). The right ones follow by using (17). �


The Wall polynomials may be expressed in terms of more familiar ones. Consider
for instance the pair Xn and An . Adding (43) and (44) yields

Xn + An = a2n z
2Xn−1.

Combining this with (43) to eliminate An leads to

Xn = Xn+1 + bn+1zXn + a2n z
2Xn−1.

Finally, introducing the new polynomials Qn(x) = z−n Xn(z), x = z−1, the above
relation becomes

xQn = Qn+1 + bn+1Qn + a2n Qn−1. (47)

Due to the similarity between the recurrence relations for the pairs Xn , An and Yn ,
Bn , defining Qn(x) = z−nYn(z), x = z−1, also leads to (47).

The recurrence relation (47) has two distinguished independent solutions which
span the the rest of them: the monic orthogonal polynomials Qn = Pn+1 whose Jacobi
matrixJ is given by the Schur parameters of theWall polynomials, and the associated
polynomials Qn = P(1)

n , related to the stripped JacobimatrixJ (1) obtainedbydeleting
the first row and column in J . These two solutions are generated respectively by the
initial conditions

Q0 = P1 = x − b0, Q−1 = P0 = 1,

Q0 = P(1)
0 = 1, Q−1 = P(1)

−1 = 0.

The general solution of (47) is Qn = αPn+1 + βP(1)
n , with α and β arbitrary

functions of x . Bearing in mind the initial conditions for Xn and Yn , pointed out in
(42), (43) and (45), and using the notation P∗(z) = zn P(z−1) for a polynomial P of
degree n, we find that

Xn = P∗
n+1 − P(1)∗

n

z
, Yn = −P(1)∗

n . (48)
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Then, (43) and (45) allow us to express the the remainingWall polynomials in terms
of the monic orthogonal polynomials and the associated ones,

An = − P∗
n+2 − P(1)∗

n+1

z
− bn+1(P

∗
n+1 − P(1)∗

n ), Bn = P(1)∗
n+1 + bn+1zP

(1)∗
n .

(49)

6 Wall Continued Fraction on R

The Schur algorithm on the real line provides a continued fraction expansion for every
regular Nevanlinna function f . If an and bn are the Schur parameters of f , rewriting
the backward n-th step of the algorithm in (16) as

fn = bn + a2n
z−1 − fn+1

, (50)

and iterating it starting from f , leads to

f = b0 + a20
z−1 − f1

= b0 + a20

z−1 − b1 − a21
z−1 − f2

= b0 + a20

z−1 − b1 − a21

z−1 − b2 − a22
z−1 − f3

= · · · = b0 + a20
z−1 − b1

− a21
z−1 − b2

− a22
z−1 − b3

− · · · − a2n−1
z−1 − bn

− a2n
z−1 − fn+1

,

(51)
which is a continued fraction version of (41). Therefore, the Schur algorithm for a
regular Nevanlinna function is closely related to a continued fraction built up out of
its Schur parameters, namely,

K (z) = b0 + a20
z−1 − b1

− a21
z−1 − b2

− a22
z−1 − b3

− · · · − a2n−1
z−1 − bn

− · · · . (52)

Wewill refer to K as theWall continued fraction for the regularNevanlinna function
f . It has a simple connection with the standard continued fraction for the associated
m-function. Rewriting (13) as

m(z) = − 1

z − f (z−1)
, (53)

and substituting f by K in the above expression yields

− 1

z − K (z−1)
= − 1

z − b0
− a20

z − b1
− a21

z − b2
− a22

z − b3
−· · ·− a2n−1

z − bn
−· · · , (54)
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which is the known Jacobi continued fraction related tom. One should not understimate
the importance of the new continued fraction (52) due to the simplicity of its relation
with the Jacobi one. This small change will be key to uncover an extremely simple
OPRL version of Khrushchev’s formula.

The approximants of the continued fraction (52) are closely related to the Wall
polynomials. The results (vi) and (vii) of Theorem 5.1, combined with (51), imply that

K−
n (z) = b0 + a20

z−1 − b1
− a21

z−1 − b2
− a22

z−1 − b3
− · · · − a2n−1

z−1 − bn
= Xn(z)

Yn(z)
,

K+
n (z) = b0 + a20

z−1 − b1
− a21

z−1 − b2
− a22

z−1 − b3
− · · · − a2n−1

z−1 − bn
− a2n

z−1 = An(z)

Bn(z)
.

That is, An/Bn and Xn/Yn are the approximants of K obtained by taking fn+1 = 0,∞
in (41)–equivalently, in (51)—respectively.

The convergence of the above approximants in the determinate case is a direct
consequence of Theorem 4.5.

Corollary 6.1 Let An, Bn, Xn, Yn beWall polynomials of a regular Nevanlinna function
f whose measure solves a determinate moment problem. Then,

An

Bn
⇒ f ,

Xn

Yn
⇒ f .

Proof If f has Schur parameters γ = (b0, a0, b1, a1, . . . ), Theorem 5.1 shows
that An/Bn and Xn/Yn are trivial Nevanlinna functions with Schur parameters
γ [n] = (b0, a0, . . . , bn, an, 0, 0) and γ̃ [n] = (b0, a0, . . . , bn−1, an−1, bn, 0), respec-
tively. Both, γ [n] and γ̃ [n], converge trivially to γ , hence the result follows from
Theorem 4.5. �


From (48) we find that

Xn(z)

Yn(z)
= z−1 − Pn+1(z−1)

P(1)
n (z−1)

.

Therefore, the convergence Xn/Yn ⇒ f is equivalent to

− P(1)
n /Pn+1 ⇒ m, (55)

where m is the m-function (53) of the underlying measure on R. In other words,
the convergence of the approximants Xn/Yn of the Wall continued fraction (52) is
equivalent to that of the standard approximants −P(1)

n /Pn+1 of the Jacobi continued
fraction (54). On the other hand, (49) yields

An(z)

Bn(z)
= z−1 − Pn+2(z−1) + bn+1Pn+1(z−1)

P(1)
n+1(z

−1) + bn+1P
(1)
n (z−1)

,

123



Constructive Approximation

so that the convergence An/Bn ⇒ f means that

− P(1)
n + bn P

(1)
n−1

Pn+1 + bn Pn
⇒ m.

This result does not follow naively from (55) because the asymptotic behaviour of
xn/yn does not necessarily coincide with that of (xn + bnxn−1)/(yn + bn yn−1) for
xn, yn ∈ C, bn ∈ R, as it is shown for instance by the example xn = n+a(n mod 2),
yn = n, bn = −1, with a ∈ C \ {0}.

The error of the approximationof a regularNevanlinna functionby the approximants
of the corresponding Wall continued fraction may be compactly expressed by using
Theorem 5.1.(viii) and relations (48), (49),

f (z) − Xn(z)

Yn(z)
=

∏n
k=0( fk(z) − bk)

P(1)
n (z−1)

,

f (z) − An(z)

Bn(z)
= fn+1(z)

∏n
k=0( fk(z) − bk)

P(1)
n+1(z

−1) + bn+1P
(1)
n (z−1)

.

The use of these expressions to obtain a bound for the rate of convergence remains
as a challenge.

7 OPRL Khrushchev’s Formula

Analogously to the case of Schur functions, the normal boundary values limy↓0 f (x+
iy) of a Nevanlinna function f exist for almost every x ∈ R (see for instance [4] and
references therein). Actually, except for f = 0, these normal boundary values must be
non-null a.e. in R, otherwise the Nevanlinna function −1/ f would not have normal
boundary values a.e. in R. Upper and lower normal boundary values are related by
limy↑0 f (x + iy) = limy↓0 f (x + iy), as follows from (6).

In the subsequent discussions, a key role will be played by the relation between the
boundary values of the m-function m of a measure μ on R and its Radon-Nikodym
derivative μ′ with respect to the Lebesgue measure. This relation states that

μ′(x) = 1

π
lim
y↓0 Imm(x + iy), a.e. in R, (56)

a relation that holds for every x ∈ R ifμ is absolutely continuous andμ′ is continuous
on R. In view of (53), if f is the Nevanlinna function of μ, (56) also reads as

μ′(x) = 1

π
lim
y↓0 Im

(
1

f (z−1) − z

)
= − 1

π
lim
y↓0

Im f (z−1)

| f (z−1) − z|2 , z = x+iy, a.e. in R.

(57)
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Concerning the denominators in the above expressions, note that f (z−1)−zmust have
non-null normal boundary values a.e. in R since f (z) − z−1 is a non-null Nevanlinna
function.

The real line version of Khrushchev’s formula on the unit circle would answer
the following question: given a regular Nevanlinna function f whose measure μ

has a sequence pn of orthonormal polynomials, what is the Nevanlinna function of
the measure p2ndμ? This question makes sense because the modified measure is a
probability one and has finite moments whenever the original one does. In analogy
with the case of the unit circle, we expect a close relationship between the Nevanlinna
function of p2ndμ and the n-th iterate fn of f . The first step to Khrushchev’s formula
will be to find a relation between fn and p2nμ

′ in the spirit of (57). Such a relation is
given by the following theorem, which may be considered as a preliminary version of
Khrushchev’s formula.

Theorem 7.1 Let pn be the orthonormal polynomials related to a probability measure
μ on R with finite moments. If the regular Nevanlinna function f associated to μ has
iterates fn and Schur parameters (b0, a0, b1, a1, . . . ), then,

pn(x)
2 μ′(x) = − 1

π
lim
y↓0

Im fn(z−1)

| fn(z−1) + gn(z−1) − z|2 , z = x + iy, a.e. in R.

(58)
where

gn(z) = an−1z
p∗
n−1(z)

p∗
n(z)

= an−1
pn−1(z−1)

pn(z−1)
. (59)

Proof For convenience we will prove the relation for the index n+1 instead of n. This
proof consists simply in rewriting (57) in terms of fn+1 by using its relation with f
given in (41). In this process, the Wall polynomials appearing in (41) should be also
expressed in terms of the orthogonal polynomials via (48) and (49).

First, from (41) we get

f − z−1 = An + zXn fn+1

Bn + zYn fn+1
− z−1 = z−1(zAn − Bn) + (zXn − Yn) fn+1

Bn + zYn fn+1
.

Besides, (48) and (49), combined with (28), yield

zXn − Yn = P∗
n+1, zAn − Bn = −P∗

n+2 − bn+1zP
∗
n+1 = −P∗

n+1 + a2n z
2P∗

n .

Bearing in mind (30), the above expressions lead to

f − z−1 = P∗
n+1

Bn + zYn fn+1

(
fn+1 + a2n z

P∗
n

P∗
n+1

− z−1

)

= ϒn p∗
n+1

Bn + zYn fn+1

(
fn+1 + gn+1 − z−1

)
.

(60)
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On the other hand, bearing in mind that the Wall polynomials have real coefficients
and that the Nevanlinna functions fn+1 have normal boundary values a.e. in R, (41)
and Theorem 5.1.(i) give for z = x + iy,

lim
y↓0 Im f = lim

y↓0
Im (z(BnXn − AnYn) fn+1)

|Bn + zYn fn+1|2 = lim
y↓0

ϒ2
n z

2n+2 Im fn+1

|Bn + zYn fn+1|2 , a.e. in R.

(61)
Herewehaveused that, due toTheorem5.1.(vii), Bn+zYn fn+1 = (−z)n+1 ∏n+1

k=1( fk−
z−1) is a product of non-null Nevanlinna functions up to the factor (−z)n+1, hence it
has non-zero normal boundary values a.e. in R. Therefore, N/|Bn + zYn fn+1|2 has
null normal boundary values a.e. in R whenever the numerator N does.

Combining (57), (60) and (61) ends in

μ′(x) = − 1

π
lim
y↓0

1

pn+1(z)2
Im fn+1(z−1)

| fn+1(z−1) + gn+1(z−1) − z|2 , z = x + iy, a.e. in R,

where we have substituted z by z−1, which causes no problem a.e. in R and does not
change the equalities because, according to (6), f (x − iy) = f (x + iy) and similarly
for fn+1. The last equality proves the theorem. �


As we will see, the above result becomes Khrushchev’s formula for OPRL related
to absolutely continuous measures on R. Extending Khrushchev’s formula to any
measure on R relies on a limiting process based on the following result.

Theorem 7.2 For every regular Nevanlinna function f there exists a sequence f [k]
of regular Nevanlinna functions with absolutely continuous measures μ[k] such that
f [k] ⇒ f . In addition, this sequence may be chosen such that

μ[k] w−→ μ, γ [k] → γ , lim
k→∞ s[k]

n = sn, lim
k→∞ μ[k]

n = μn, n ≥ 0, (62)

with μ the measure of f ; μ
[k]
n , μn the moments of μ[k], μ respectively; s[k]

n , sn the
Taylor coefficients for the expansion around the origin of f [k], f respectively and γ [k],
γ the corresponding Schur parameters.

Proof Let m̃ be the m-function of a measure μ̃ on R with finite moments. Then,
f [k] ⇒ f for the sequence of Nevanlinna functions

f [k](z) = f (z) − 1

k
m̃(z−1) = f (z) + z

k

∫
R

dμ̃(x)

1 − xz
.

Besides, the asymptotic expansion (18) for μ̃ shows that, according to Proposi-
tion 3.6, f [k] is regular with Taylor coefficients of the expansion around the origin
given by

s[k]
0 = s0, s[k]

n = sn + 1

k
μ̃n−1, n ≥ 1.
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Obviously, limk→∞ s[k]
n = sn , thus Proposition 4.6 ensures that limk→∞ μ

[k]
n = μn

and γ [k] → γ . Besides, μ[k] w−→ μ as a consequence of Proposition 4.1.
It only remains to see that μ̃ may be chosen to guarantee that μ[k] is absolutely

continuous for every k. Let μ̃ be given by a continuous weight which is strictly positive
on R, i.e.

dμ̃(x) = w(x) dx, w continuous on R, w(x) > 0 ∀x ∈ R.

This weight follows from its m-function m̃ by the inversion formula

w(x) = 1

π
lim
y↓0 Im m̃(x + iy).

Therefore, for every x ∈ R, there exists ε(x) > 0 such that

Im m̃(x + iy) >
π

2
w(x), 0 < y < ε(x).

On the other hand, the singular part of μ[k] is concentrated on the set of points
x ∈ R satisfying

lim
y↓0 Imm[k](x + iy) = ∞,

which, due to the relation

m[k](z) = − 1

z − f [k](z−1)
,

is contained in the set of points x ∈ R such that

lim
y↓0 f [k](z−1) = x, z = x + iy.

Bearing in mind that − f (z−1) ∈ N, we find that

∣∣∣Im f [k](z−1)

∣∣∣ ≥ 1

k
Im m̃(z) >

π

2k
w(x), z = x + iy, 0 < y < ε(x), x ∈ R.

This proves that μ[k] has no singular part whenever μ̃ is given by a continuous weight
which is strictly positive on the whole real line. �


The above two results lead to Khruschchev’s formula for arbitrary OPRL.

Theorem 7.3 (Khrushchev’s formula for OPRL) Let pn be the orthonormal polyno-
mials related to a probability measure μ on R with finite moments. If the Nevanlinna
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function f of μ has Schur parameters (b0, a0, b1, a1, . . . ), then the Nevanlinna func-
tion of the probability measure p2ndμ is

h[n] = fn + gn, (63)

where fn stands for the n-th iterate of f and gn is given by (59). In other words,

1

1 − z( fn(z) + gn(z))
=

∫
R

pn(x)2 dμ(x)

1 − zx
,

where fn and gn are Nevanlinna functions with Schur parameters (bn, an, bn+1,

an+1, . . . ) and (0, an−1, bn−1, . . . , a0, b0, 0) respectively.

Proof Let us see first that (58) becomes Khrushchev’s formula when μ is absolutely
continuous, i.e. when dμ(x) = μ′(x) dx . Taking into account that gn is a quotient of
real polynomials and, as a non-null Nevanlinna function, fn + gn − z−1 has non-zero
normal boundary values a.e. in R, (58) may be rewritten as

pn(x)
2 μ′(x) = − 1

π
lim
y↓0

Im( fn(z−1) + gn(z−1))

| fn(z−1) + gn(z−1) − z|2 , z = x + iy, a.e. in R.

If ν is the measure related to the Nevanlinna function fn + gn , in view of (57), the
above relation implies that ν′ = p2nμ

′. Since fn and gn are normalized Nevanlinna
functions, the same applies to fn+gn due to (12). Therefore, ν is a probabilitymeasure,
which implies that

1 =
∫
R

dν(x) ≥
∫
R

ν′(x) dx =
∫
R

pn(x)
2 μ′(x) dx =

∫
R

pn(x)
2 dμ(x) = 1.

Hence, dν = p2ndμ, which identifies fn + gn as the Nevanlinna function of p2ndμ.
Suppose now thatμ is an arbitrary measure onRwith finite moments. Theorem 7.2

guarantees the existence of a sequence μ[k] of absolutely continuous measures with
finitemoments such that (62) holds and f [k] ⇒ f for the relatedNevanlinna functions.
Using the supersript [k] for the objects related to the measure μ[k], we already have
proved that

1

1 − z( f [k]
n (z) + g[k]

n (z))
=

∫
R

p[k]
n (x)2 dμ[k](x)

1 − zx
. (64)

The convergence γ [k] → γ of the Schur parameters ensures that γ
[k]
n is bounded

for each fixed n such that γn exists. Hence, f [k]
n ⇒ fn whenever fn exists, as a

consequence of Theorem 4.5. On the other hand, bearing in mind (24), γ [k] → γ also
implies that p[k]

n ⇒ pn , thus g
[k]
n ⇒ gn because pn has no zeros on C \ R. Since

1 − z( fn + gn) does not vanish on C \ R because fn + gn − z−1 ∈ N \ {0}, we find
that

1

1 − z( f [k]
n + g[k]

n )
⇒ 1

1 − z( fn + gn)
.
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Besides, the equality

xnzn

1 − xz
= 1

1 − xz
− (1 + xz + x2z2 + · · · + xn−1zn−1)

yields

∫
R

xn dμ(x)

1 − xz
= z−n

∫
R

dμ(x)

1 − xz
− (z−n + μ1z

1−n + μ2z
2−n + · · · + μn−1z

−1).

A similar relation for μ[k], together with the weak convergence μ[k] w−→ μ and the
convergence limk→∞ μ

[k]
n = μn of the moments, leads to

∫
R

xn dμ[k](x)
1 − zx

⇒
∫
R

xn dμ(x)

1 − zx
, n = 0, 1, 2, . . .

This result, combined with the convergence p[k]
n ⇒ pn , shows that

∫
R

p[k]
n (x)2 dμ[k](x)

1 − zx
⇒

∫
R

pn(x)2 dμ(x)

1 − zx
.

As a consequence of the previous results, taking limits in (64) we conclude that

1

1 − z( fn(z) + gn(z))
=

∫
R

pn(x)2 dμ(x)

1 − zx
,

which is Khrushchev’s formula for the measure μ.
Finally, the identification of the Schur parameters of gn follows from Proposi-

tion 3.8. �

Maybe amore naturalwayof expressingKhrushchev’s formula forOPRL is in terms

of theNevanlinna functionswith Schur parameters (bn, an−1, bn−1, . . . , a0, b0, 0), i.e.
the inverse Schur iterates Rn of μ given in (31). Since Rn = bn + gn , Khrushchev’s
formula also reads as

h[n] = fn + Rn − bn .

Khrushchev’s formula may be translated to the m-function m of a measure μ by
using its relation (13) with the Nevanlinna function f of μ. This results in the identi-
fication of the m-function of p2ndμ as

1
1
mn

+ an−1
pn−1
pn

= pnmn

pn + an−1 pn−1mn
,

wheremn is them-function related to the iterate fn . The intricacy of the above relation,
comparedwith (63), is a clear indication thatDefinition 3.1 for theNevanlinna function

123



Constructive Approximation

of a measure establishes a much more natural relation between Nevanlinna functions
and measures on R than the standard connection given by m-functions.

8 Applications

As a first application of Khrushchev’s formula for OPRL, we will give a new proof of
a result obtained by Barry Simon in [15]. It extends to OPRL a result for OPUC due
to Sergei Khrushchev [10]. Khrushchev’s formula for OPRL, as stated in the previous
section, is a ready-made tool to tackle this kind of questions.

More precisely, if pn are the orthonormal polynomials related to a probability mea-
sure μ on R, one can ask about the vague convergence of the sequence of probability
measures given by p2ndμ. Proposition 4.1 and Remark 4.2 state that this question
can be translated into the analysis of the convergence or divergence of the corre-
sponding sequence of Nevanlinna functions, which by Khrushchev’s formula has
the form h[n] = fn + gn , with fn , gn Nevanlinna functions with Schur parameters
(bn, an, bn+1, an+1, . . . ) and (0, an−1, bn−1, . . . , a0, b0, 0) respectively. The Nevan-
linna function gn is always determined by its (finite) sequence of Schur parameters,
while for fn this is the case for instancewhenan and bn are bounded because thismeans
that μ has bounded support, so that the moment problem for p2ndμ is determinate. In
the bounded case we know that vague convergence becomes weak convergence, while
Theorem 4.5 states that the convergence of h[n] holds simultaneously to that of the
corresponding Schur parameters which, in view of Proposition 3.7, yields the conver-
gence of the Taylor coefficients of h[n]. These remarks lead to the following result (see
[15]).

Theorem 8.1 Let pn be the orthonormal polynomials with respect to a probability
measure μ supported on a bounded subset of R. Then, the sequence p2ndμ converges
weakly if and only if the sequences bn, a2n and a2n+1 are convergent, where an and
bn are the coefficients of the recurrence relation (24) for pn.

Proof In the bounded case, weak convergence is equivalent to vague convergence, and
the limit of p2ndμ is again a probability measure. Thus, according to the comments
at the beginning of this section, we only need to characterize the convergence of the
sequence h[n] = fn + gn of Nevanlinna functions which, due to the boundedness of
the support of p2ndμ, implies the convergence of the Taylor coefficients s[n]

k of h[n].
Using Proposition 3.7 for fn and gn we get

s[n]
0 = bn, s[n]

1 = a2n + a2n−1, s[n]
3 = a2n(a

2
n+1 + b2n+1) + a2n−1(a

2
n−2 + b2n−1).

(65)
Therefore, the convergence of h[n] implies that ofbn ,a2n+a2n−1 anda

2
n+1a

2
n+a2n−1a

2
n−2,

which guarantees the convergence of a2n and a2n+1 (see [15,pp 208-209]).
Suppose now that bn → b, a2n → a and a2n+1 → a′. Let us rewrite

h[n] = fn + Rn − bn , where Rn are the inverse iterates (31) with Schur parame-
ters (bn, an−1, bn−1, . . . , a0, b0, 0). From Theorem 4.5 we find that

f2n ⇒ fb,a,a′ , f2n+1 ⇒ fb,a′,a, R2n ⇒ fb,a′,a, R2n+1 ⇒ fb,a,a′ ,
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where fb,a,a′ stands for the Nevanlinna function with Schur parameters (b, a, b, a′,
b, a, b, a′, . . . ). Herewe understand that fb,0,a′ and fb,a,0 (a �= 0) are actually defined
by the Schur parameters (b, 0) and (b, a, b, 0) respectively. Therefore, we conclude
that

h[n] = fn + Rn − bn ⇒ fb,a,a′ + fb,a′,a − b. �


Khrushchev’s formula for OPRL not only gives a proof of Simon’s result in [15],
but paves the way to other kinds of results which could constitute the OPRL extension
of Khrushchev’s theory for OPUC [9, 10] (see also [16,Chapter 9]). Such an extension
may present some subtleties in the unbounded case, absent for OPUC. An example
of this is the generalization of the previous result to measures with unbounded sup-
port. Khrushchev’s formula allows one to translate the vague convergence of p2ndμ
into the convergence/divergence of their Nevanlinna functions h[n] = fn + Rn − bn
even in the unbounded case, but in this situation vague convergence might not imply
weak convergence—indeed, we will see that this is always the case. Also, such a
convergence might not be accompanied by that of the Schur parameters or the Taylor
coefficients of h[n], as it is shown by Example 4.4. Therefore, although (65) proves
that the boundedness of the support of μ is guaranteed by the convergence—even
by the boundedness—of the first two Taylor coefficients of h[n]—equivalently, by the
convergence of the momentμ[n]

2 = b2n +a2n +a2n−1 of dμ
[n] = p2ndμ, as it was already

noticed in [15]–, the existence of vaguely convergent sequences p2ndμ when μ has an
unbounded support is not excluded by Theorem 8.1. Actually, we will see that such
sequences do exist.

Our first example will show the difficulties in finding vaguely convergent sequences
p2ndμ for measures μ with unbounded support. According to Proposition 4.1 and
Remark 4.2, this is equivalent to finding convergent or divergent sequences h[n] =
fn + Rn −bn when an or bn are unbounded. To understand the constraints imposed by
such a situation, let us first derive a general relation between consecutive functions, h[n]
and h[n+1], which will provide asymptotic necessary conditions for the convergence
of h[n] in the unbounded case.

Lemma 8.2 For any probability measure μ on R with orthonormal polynomials pn,
the Nevanlinna function h[n] of p2ndμ satisfies

h[n+1] − z−1

h[n] − z−1 = fn+1 − z−1

Rn − z−1 = ( fn+1 − z−1)( fn+1 − h[n+1])
a2n

= a2n
(Rn − z−1)(Rn − h[n])

,

where an, bn are the coefficients of the recurrence relation (24) for pn and fn, Rn are
the iterates and inverse iterates of μ.
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Proof Rewritting the Schur algorithm (17) for the iterates and (29) for the inverse
iterates as

a2n z = ( fn − bn)(1 − z fn+1) = (h[n] − Rn)(1 − z fn+1),

a2n z = (Rn+1 − bn+1)(1 − zRn) = (h[n+1] − fn+1)(1 − zRn),
(66)

leads to

[(h[n+1] − z−1) − ( fn+1 − z−1)](Rn − z−1) = [(h[n] − z−1) − (Rn − z−1)]( fn+1 − z−1).

This yields the first equality of the lemma which, combined with (66), gives the
remaining ones. �


The above relations permits us to shows that, in the unbounded case, the convergence
of h[n]—even certain subsequential convergence—has strong consequences. As a first
result, we find that the convergence of h[n] cannot hold if only the sequence bn is
unbounded.

Theorem 8.3 Let an, bn be the coefficients of the recurrence relation (24) for the
orthonormal polynomials pn with respect to a probability measure μ with unbounded
support on R. Then, the vague convergence of p2ndμ to a non-null measure implies
that the sequence an is unbounded.

Proof Suppose h[n] convergent, which is equivalent to the vague convergence of p2ndμ
to a non-null limit. Then, Lemma 8.2 shows that an bounded guarantees that fn and
Rn are locally uniformly bounded. Thus,

bn = fn + a2n
fn+1 − z−1

is also bounded because

|bn| ≤ | fn| + a2n
| fn+1 − z−1| ≤ | fn| + a2n

| Im z−1| .

We conclude that, when μ has unbounded support, the convergence of h[n] needs
an unbounded.

The previous theorem states that the vague convergence of p2ndμ to a non-null mea-
sure when μ has unbounded support requires the presence of a divergent subsequence
of an . On the contrary, the next result shows that such a divergence gives information
about the asymptotic behaviour of related subsequences of iterates and inverse iterates,
even assuming only some subsequential vague convergence for p2ndμ.

Proposition 8.4 Let an, bn be the coefficients of the recurrence relation (24) for the
orthonormal polynomials pn with respect to a probability measure μ on R. If a sub-
sequence an j diverges and the contiguous subsequences p2n j

dμ and p2n j+1dμ are
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vaguely convergent to non-null measures, then the iterates fn and inverse iterates Rn

of μ satisfy

κ f 2n j+1 ∼ 1

κ
R2
n j

∼ a2n j
, Rn j ∼ κ fn j+1, κ > 0.

In particular, κ = 1 when p2n j
dμ and p2n j+1dμ have the same non-null vague limit.

Proof The convergence p2n j
dμ

v−→ ν �= 0 and p2n j+1dμ
v−→ ρ �= 0 translates into the

convergence h[n j ] → h1 and h[n j+1] → h2 for some Nevanlinna functions h1, h2.
Then, from Lemma 8.2 we find that

(
Rn j

an j

− z−1

an j

) (
Rn j

an j

− h[n j ]

an j

)
→ � = h1 − z−1

h2 − z−1 ,

with � a quotient of non-null Nevanlinna functions. This implies that R2
n j

/a2n j
→ �

due to the divergence of an j . Analogously, Lemma 8.2 yields f 2n j+1/a
2
n j

→ 1/�. The
same Lemma gives

fn j+1 − z−1

Rn j − z−1 → 1

�
,

which implies that fn j+1/Rn j → 1/� because we have proved that fn j+1 and Rn j

diverge.
The above results imply that any limit point of the sequence ofNevanlinna functions

Rn j /an j must be a square root
√

�. Then, fn j+1/Rn j → 1/� implies that the inverse

1/
√

� of the same square root must be a limit point of the sequence of Nevanlinna
functions fn j+1/an j . Therefore,

√
� and 1/

√
�must be Nevanlinna functions, which

only holds in the non-null degenerate case, i.e. when
√

� is a non-null real constant.
As a consequence,�must be a positive constant κ . This finishes the proof of the main
statement of the proposition.

When p2n j
dμ and p2n j+1dμ have the same vague limit, h1 = h2 so that κ = 1. �


These results will be used later on to obtain general convergence properties of p2ndμ
when μ has unbounded support. Nevertheless, our first goal is to use them as a guide
to surmise an example of a vaguely convergent sequence p2ndμ in the unbounded case.

To simplify things, let us assume the divergence of the whole sequence an . Accord-
ing to Proposition 8.4, assuming the vague convergence of p2ndμ to a non-null measure
yields

fn+1 ∼ Rn, f 2n+1 ∼ a2n ∼ R2
n .

A situation compatible with these requirements is, for instance,

fn+1 ∼ an ∼ Rn,
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which also gives

bn ∼ an−1 + an,

because

∣∣∣∣ bn + h[n]

an−1 + an
− 1

∣∣∣∣ =
∣∣∣∣ fn + Rn

an−1 + an
− 1

∣∣∣∣ ≤
∣∣∣∣ fn − an−1

an−1 + an

∣∣∣∣ +
∣∣∣∣ Rn − an
an−1 + an

∣∣∣∣
≤

∣∣∣∣ fn
an−1

− 1

∣∣∣∣ +
∣∣∣∣ Rn

an
− 1

∣∣∣∣ .

Since gn+1 = Rn+1 − bn+1 = −a2n/(Rn − z−1), these conditions also lead to

gn ∼ −an−1, − pn
pn+1

∼ 1.

There is a well known example which fits with the above constraints: the Laguerre
polynomials. It should be an ideal candidate to provide an example of the kind of
convergence we are looking for in the unbounded case.

Example 8.5 Laguerre Polynomials
The Laguerre polynomials correspond to the measure e−xdx on [0,∞), whose

associated Schur parameters are

an = n + 1, bn = an + an−1 = 2n + 1.

The ratio asymptotics of the orthonormal Laguerre polynomials Ln with positive
leading coefficients is given by [3]

− Ln+1(z)

Ln(z)
= 1 +

√−z√
n

−
(
1

4
+ z

2

)
1

n
+ O(n−3/2),

uniformly on compacts of C \ [0,∞), the branch of the square root being (−∞, 0].
Therefore,

gn(z) = n
Ln−1(z−1)

Ln(z−1)
= −n +

√
−z−1

√
n +

(
1

2z
− 1

4

)
+ O(n−1/2).

On the other hand, the m-function of the measure associated to the iterate fn is [7]

mn(z) = �(n + 1, 1,−z)

�(n, 1,−z)
,

where �(a, b, z) is the confluent hypergeometric function of the second kind. As for
the large n asymptotics, we have that, uniformly on compacts of the Riemann surface
of the logarithm [17, 18],
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�(n, 1, z2) = ez/2
2

(n − 1)!
(
K0(unz)

[
1 + α(z)

u2n
+ O(u−4

n )

]
− K1(unz)

[
β(z)

un
+ O(u−3

n )

])
,

un = 2

√
n − 1

2
, α(z) = z6

72
− z2

6
, β(z) = z3

6
,

where Km are the modified Bessel functions of the second kind. Resorting to the
asymptotics of these functions for large argument,

Km(z) =
√

π

2z
e−z

(
1 + 4m2 − 1

8z
+ 16m4 − 40m2 + 9

128z2
+ O(z−3)

)
,

|arg z| <
3π

2
, z → ∞,

a tedious but straightforward calculation gives

fn(z) = z−1 + 1

mn(z−1)
= z−1 + �(n, 1,−z−1)

�(n + 1, 1,−z−1)
= n +

√
−z−1

√
n + 1

4
+ O(n−1/2).

Hence,

h[n](z) = fn(z) + gn(z) = 2
√

−z−1
√
n + 1

2z
+ O(n−1/2)

becomes finally divergent.
One may wonder if the coefficients

√−z−1 of
√
n could have opposite sign for fn

and gn , so that they cancel each other and h[n] converges. If this were the case then
the sequence h[n] of Nevanlinna functions would converge to 1/(2z), which is not
possible because it is not a Nevanlinna function. Another way to understand this is by
noticing that both,

gn(z) + n√
n

=
√

−z−1 + O(n−1/2),
fn(z) − n√

n
=

√
−z−1 + O(n−1/2),

are convergent sequences of Nevanlinna functions whose limit
√−z−1 must be a

Nevanlinna function too, thus the corresponding square roots cannot have opposite
sign.

We conclude that the dominant divergences fn and gn , with a behaviour ∝ n,
cancel each other in h[n] = fn + gn . However, this is not the case for the subdominant
divergences with a behaviour ∝ √

n. This causes the divergence of h[n], which means
that the sequence of measures L2

n(x)e
−xdx on [0,∞) converges vaguely to the null

measure, as follows from Remark 4.2.

TheLaguerre examplewas selected to fitwith a vague convergence p2ndμ
v−→ ν �= 0.

In spite of this, it surprised us as an example with p2ndμ
v−→ 0 due to the presence of

subdivergences in fn and gn which made h[n] finally divergent. The message from this
example is that one should avoid subdivergences in fn and gn to guarantee the vague
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convergence of p2ndμ to a non-null measure in the unbounded case. The next theorem
provides a recipe to build examples falling in this situation. This theorem not only
shows the use of OPRL Khrushchev’s formula for the study of the vague asymptotics
of p2ndμ in the non-convergent case, but also provides new examples of measures
μ with unbounded support such that p2ndμ converges vaguely. Both, the Laguerre
example and the theorem below, prove that the measures on the real line covered by
Theorem 8.1 are not the unique instances which make p2ndμ vaguely convergent.

Theorem 8.6 Let pn be the orthonormal polynomials with respect to a probability
measure μ on the real line. Suppose that the coefficients an and bn of the recurrence
relation (24) for pn satisfy

a2n → ∞, a2n+1 → 0, b2n − ca2n → d,

b2n+1 − c′a2n → d ′, c, c′ ∈ R \ {0}, d, d ′ ∈ R.

Then, denoting by δ(x−x0) the Dirac delta at x0 ∈ R, we have the following cases:

(i) If cc′ �= 1, the sequence p2ndμ converges vaguely to the null measure.
(ii) If cc′ = 1, the even and odd subsequences of p2ndμ are vaguely convergent.

Actually,

p22n(x) dμ(x)
v−→ 1

1 + c2
δ(x − d+c2d ′

1+c2
), p22n+1(x) dμ(x)

v−→ c2

1 + c2
δ(x − d+c2d ′

1+c2
).

In particular, the sequence p2ndμ is vaguely convergent when c′ = c = ±1, in
which case

p2n(x) dμ(x)
v−→ 1

2
δ(x − d+d ′

2 ).

Proof From (66) we find that

|R2n − b2n| = a22n−1

|R2n−1 − z−1| ≤ a22n−1

| Im z−1| , R2n+1 = b2n+1 − a22n
R2n − z−1 ,

| f2n+1 − b2n+1| = a22n+1

| f2n+2 − z−1| ≤ a22n+1

| Im z−1| , f2n = b2n − a22n
f2n+1 − z−1 .

Therefore,

R2n = b2n + o(1), f2n+1 = b2n+1 + o(1),

so that

h[2n] = f2n + R2n − b2n = f2n + o(1),

h[2n+1] = f2n+1 + R2n+1 − b2n+1 = R2n+1 + o(1).
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Also, inserting the asymptotic conditions for bn , one obtain

R2n = ca2n + d + o(1), f2n+1 = c′a2n + d ′ + o(1),

and

h[2n] = b2n − a22n
f2n+1 − z−1 + o(1) = ca2n + d − a2n/c′

1 + (d ′ − z−1)/c′a2n + o(a−1
2n )

+ o(1)

= ca2n + d − a2n
c′

(
1 − d ′ − z−1

c′a2n
+ o(a−1

2n )

)
+ o(1)

=
(
c − 1

c′

)
a2n + d + d ′ − z−1

(c′)2
+ o(1),

h[2n+1] = b2n+1 − a22n
R2n − z−1 + o(1) = c′a2n + d ′ − a2n/c

1 + (d − z−1)/ca2n + o(a−1
2n )

+ o(1)

= c′a2n + d ′ − a2n
c

(
1 − d − z−1

ca2n
+ o(a−1

2n )

)
+ o(1)

=
(
c′ − 1

c

)
a2n + d ′ + d − z−1

c2
+ o(1).

The above results imply that h[n] diverges whenever cc′ �= 1, which proves (i). On
the other hand, if cc′ = 1, then

h[2n] → d + c2(d ′ − z−1), h[2n+1] → d ′ + d − z−1

c2
.

Bearing in mind Proposition 4.1, this yields (ii) because, according to (9), the
measure ν of the Nevanlinna function β − αz−1, β ∈ R, α > 0, is given by the
relation

∫
R

dν(x)

1 − zx
= 1

1 + α − βz
= 1

1 + α

1

1 − β
1+α

z
,

hence

dν(x) = 1

1 + α
δ(x − β

1+α
).

�

It is worth remarking that, in contrast to the bounded case covered by Teorem 8.1,

the convergent measures p2ndμ provided by the above theorem have a vague limit
which is not a probability measure but a strictly subprobability one. According to
(32), this implies that such vague limits are not weak limits. A natural question arises:
is this a general feature of the asymptotic behaviour of p2ndμ in the unbounded case?
The following results not only answer this in the affirmative, but give even more
information about this situation.
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Theorem 8.7 Let an, bn be the coefficients of the recurrence relation (24) for the
orthonormal polynomials pn with respect to a probability measure μ on R. If a subse-
quence an j diverges and the contiguous subsequences p

2
n j
dμ and p2n j+1dμ converge

vaguely to the measures ν and ρ respectively, then ν(R) + ρ(R) ≤ 1. Therefore,
ν(R), ρ(R) < 1 when ν and ρ are non-null, while ν(R) ≤ 1/2 if ν = ρ.

Proof Assume p2n j
dμ

v−→ ν and p2n j+1dμ
v−→ ρ. From (33) we know that

μ(R), ρ(R) ≤ 1. Therefore, the result holds if ν = 0 or ρ = 0.
Assume therefore ν, ρ �= 0. If Rn are the inverse iterates ofμ, Proposition 8.4 guar-

antees that R2
n j

/a2n j
∼ κ for some κ > 0. Hence, the sequence Rn j /an j of Nevanlinna

functions is locally uniformly bounded, and its possible limit points—which must be
Nevanlinna functions again—are ±√

κ . By restricting to a new subsequence if neces-
sary, we may suppose that Rn j /an j has a limit c ∈ {√κ,−√

κ}. Then, Proposition 8.4
shows that fn j /an j converges to 1/c. Hence,

fn j+1 = c−1an j + ζ j , Rn j = can j + ξ j , ζ j , ξ j = o(an j ),

ζ j and ξ j being Nevanlinna functions. Using (66) we can write

h[n j ] = Rn j + fn j − bn j = Rn j − a2n j

fn j+1 − z−1 = can j + ξ j − a2n j

c−1an j + ζ j − z−1

= can j + ξ j − can j

1 + c
ζ j−z−1

an j

.

Applying the equality 1/(1 + x) = 1 − x/(1 + x) in the following way

can j

1 + c
ζ j−z−1

an j

= can j − c2
ζ j − z−1

1 + c
ζ j−z−1

an j

,

and bearing in mind that

ζ j − z−1

1 + c
ζ j−z−1

an j

−
⎛
⎝ ζ j

1 + c
ζ j
an j

− z−1

⎞
⎠ = cz−1

1 + c
ζ j−z−1

an j

⎛
⎝

ζ j
an j

1 + c
ζ j
an j

+ ζ j − z−1

an j

⎞
⎠ → 0,

we conclude that

h[n j ] = ξ j + c2 ζ j

1 + c
ζ j
an j

− c2z−1 + o(1) = ξ j + c2

1
ζ j

+ c
an j

− c2z−1 + o(1).
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The vague convergence of p2n j
dμ means that h[n j ] converges. In light of the above

equality, this reads as the convergence of the sequence of Nevanlinna functions

ξ j + c2

1
ζ j

+ c
an j

.

Let us denote by η the limit of this sequence, which must be a Nevanlinna function
too. According to (10), for z ∈ iR around the origin, η = −εz−1+o(z−1)with ε ≥ 0,
so that

h[n j ] → h = η − c2z−1 = −(c2 + ε)z−1 + o(z−1).

Since h is the Nevanlinna function for the vague limit ν of p2n j
dμ, applying (10) to

h we find that

1 − 1

ν(R)
= lim

z→0
z∈iR

zh(z) = −(c2 + ε) ≤ −c2,

which gives the inequality

ν(R) ≤ 1

1 + c2
.

Proceeding analogously with h[n j+1] we find that

h[n j+1] = fn j+1 + Rn j+1 − bn j+1 = fn j+1 − a2n j

Rn j − z−1

= c−1an j + ζ j − a2n j

can j + ξ j − z−1

= c−1an j + ζ j − c−1an j

1 + c−1 ζ j−z−1

an j

= ζ j + c−2 ξ j − z−1

1 + c−1 ζ j−z−1

an j

= ζ j + c−2 ξ j

1 + c−1 ξ j
an j

− c−2z−1 + o(1).

Similar arguments to those used in the case of h[n j ] yield now

1 − 1

ρ(R)
≤ −c−2,

leading to the inequality

ρ(R) ≤ 1

1 + c−2 = c2

1 + c2
.
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Combining both results gives

ν(R) + ρ(R) ≤ 1

1 + c2
+ c2

1 + c2
= 1,

which proves the theorem. �

The combination of Theorem 8.3 with the above one leads to an important result.

Theorem 8.8 Let pn be the orthonormal polynomials with respect to a probability
measure μ supported on an unbounded subset of R. If the sequence p2ndμ converges
to a vague limit ν, then ν(R) ≤ 1/2.

Proof Assuming that p2ndμ has a vague limit ν, the statement is obviously true when
ν = 0. Suppose ν �= 0. If an, bn are the coefficients of the recurrence relation (24)
for the orthonormal polynomials pn , Theorem 8.3 ensures the presence of a divergent
subsequence an j . Then, Theorem 8.7 implies that ν(R) ≤ 1/2. �


In light of the relation (32) between weak and vague convergence, these last two
theorems have a couple of immediate consequences.

Corollary 8.9 Let an, bn be the coefficients of the recurrence relation (24) for the
orthonormal polynomials pn with respect to a probability measure μ on R. If a subse-
quence an j diverges, then the contiguous subsequences p2n j

dμ and p2n j+1dμ cannot
be simultaneosuly weakly convergent.

Corollary 8.10 If pn are the orthonormal polynomials with respect to a probability
measure μ supported on an unbounded subset of R, the sequence p2ndμ cannot be
weakly convergent.

The above corollary means that the only probability measures μ on the real line
giving weakly convergent sequences p2ndμ are those obtained by B. Simon in [15],
and summarized in Theorem 8.1. Nevertheless, we have proved that this is not the end
of the story because the unbounded case brings us instances of vaguely convergent
sequences p2ndμ which are not weakly convergent. The complete classification of the
measuresμ supported on unbounded subsets of the real line such that p2ndμ is vaguely
convergent remains as a challenge for a future work.

9 Graph Theory Approach

In this section we present a different approach to Khrushchev’s formula inspired by
the classical theory of recurrence in random walks founded by George Pólya. This
new approach uncovers a graph theoretic interpretation of the Nevanlinna function of
a measure on the real line, and provides a simplified proof of Khrushchev’s formula
in the bounded case. This simpler diagrammatic approach is therefore more limited
in scope than the one previously presented, based on the development of the Wall
polynomials on the real line. Nevertheless, this new approach, being less dependent
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on the particularities of OPRL theory, opens a way to exporting Khrushchev’s formula
to other contexts (see [1, 5]).

To build this new approach we need to look at a Jacobi matrix J = (Ji j )
∞
i, j=0,

such as (26), as the weight matrix of the following directed graph with set of nodes
Z+ = {0, 1, 2, . . . },

0 1 2 i−1 i i+1

b0 b1 b2 bi−1 bi bi+1

a0

a0

a1

a1

ai−1

ai−1

ai

ai

(67)

The edges of this graph are the ordered pairs (i, j) ∈ Z
2+ satisfying |i − j | ≤ 1, the

corresponding weight being ω(i, j) = Ji j , i.e.

ω(i, i) = bi , ω(i, i + 1) = ω(i + 1, i) = ai .

This corresponds essentially to the random walk model used in [15,p 207] to prove
Theorem 8.1. The fact that the original proof of such a result already used random
walk techniques similar to those developed in this section, highlights even more the
importance of the graph theory approach to OPRL problems.

A path of length � in this graph is an ordered set (i0, i1, . . . , i�) of contiguous
nodes ik ∈ Z+, i.e. such that |ik − ik+1| ≤ 1. To each path we associate the weight

ω(i0, i1, . . . , i�) = ω(i0, i1) ω(i1, i2) · · · ω(i�−1, i�) = Ji0i1Ji1i2 · · ·Ji�−1i� .

A path may be split as a product of paths, an operation defined by

(i0, . . . , ik, . . . , i�) = (i0, . . . , ik)(ik, . . . , i�),

so that the length is additive and the weight is multiplicative for such a product.
Given two nodes m, n ∈ Z+, the quantity

��(m, n) = (J �)mn =
∑

i1,...,i�−1∈Z+
Jmi1Ji1i2 · · ·Ji�−1n

may be viewed as a sum of weights over the paths connecting the nodes m and n,

��(m, n) =
∑

i1,...,i�−1∈Z+
ω(m, i1, . . . , i�−1, n).

We will give the name n-loops to the paths with the same initial and final node n,
while ��(n) := ��(n, n) will be called the weight of the n-loops of length �. If pn
are the orthonormal polynomials corresponding to J –given by (24)—and μ is an
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orthogonality measure for them, (24) yields the integral representation

��(n) = (J �)nn =
∫
R

x� pn(x)
2dμ(x),

thus the weight of the n-loops of length � becomes the �-th moment of the measure
p2ndμ. When μ has a bounded support—which will be assumed in what follows—J
defines a bounded self-adjoint operator on the space of square-summable sequences,
thus one finds that |��(n)| ≤ ‖J ‖�. Then, denoting by I the semi-infinite identity
matrix, the above result leads to

λn(z) =
∫
R

pn(x)2dμ(x)

1 − xz
=

(
(I − zJ )−1

)
nn

=
∑
�≥0

��(n) z�, �0(n) := 1, |z| < ‖J ‖, (68)

so that λn is an analytic function around the origin whose Taylor coefficients are the
weights of the n-loops. We will refer to λn as the generating function of the n-loops.

A n-loop (n, i1, . . . , i�−1, n) will be called simple if the intermediate nodes are all
different from n, i.e. ik �= n for 0 < k < �. Every n-loop is a product of simple ones
obtained by splitting the original loop at the indices k such that ik = n. The weight of
the simple n-loops of length � is defined by

�̂�(n) =
∑

i1,...,i�−1∈Z+\{n}
ω(n, i1, . . . , i�−1, n),

the corresponding generating function being

σn(z) =
∑
�≥1

�̂�(n) z�, (69)

which will be called the generating function of the simple n-loops. That this power
series defines an analytic function around the origin follows from the relation

�̂�(n) =
∑

ik∈Z+\{n}
Jni1Ji1i2 · · ·Ji�−1n = (J (QnJ )�−1)nn,

whereQn is the semi-infinite matrix given byQn = (δi, j − δi,nδ j,n)
∞
i, j=0. This leads

to the operator representation

σn(z) = z
(
J (I − zQnJ )−1

)
nn

,

where J , Qn and the semi-infinite identity matrix I are identified with the bounded
operators that they define in the corresponding Hilbert space of square-summable
sequences. The fact that QnJ is bounded guarantees the analyticity of σn around the
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origin. Actually, since ‖Qn‖ = 1, we find that (69) converges for |z| < ‖J ‖, similarly
to (68).

The expressions of λn and σn as power series with coefficients given by sums
over n-loops make sense for any weighted graph, as long as the weight matrix is
bounded. This ensures the existence of λn and σn as analytic functions around the
origin, following similar arguments to those given previously for a bounded Jacobi
matrix. In such a general setting, these generating functions are connected by a very
simple relation which is the graph translation of the so called renewal equation for
Markov chains.

Proposition 9.1 For any graph with a bounded weight matrix and any node n of the
graph, the generating functions λn and σn of the n-loops and the simple n-loops are
related by

λn(z) = 1

1 − σn(z)
.

Proof Let us split every n-loop as (n, i1, . . . , i�−1, n) = (n, i1, . . . , ik−1, n)(n, ik+1,

. . . , i�−1, n), according to the smallest index k such that ik = n. While the second
factor (n, ik+1, . . . , i�−1, n) is again a n-loop, the first factor (n, i1, . . . , ik−1, n) is a
simple n-loop. Hence, one may write

��(n) =
�∑

k=1

∑
i1,...,ik−1 �=n
ik+1,...,i�−1

ω(n, i1, . . . , ik−1, n) ω(n, ik+1, . . . , i�−1, n)

=
�∑

k=1

�̂k(n)��−k(n).

Inserting this relation into λn gives

λn(z) = 1 +
∑
�≥1

�∑
k=1

�̂k(n)��−k(n) z� = 1 + σn(z)λn(z),

which proves the result. �

Combining the above result with (68) and Definition 3.1, we find a loop interpre-

tation for the Nevanlinna function of a measure on the real line.

Corollary 9.2 Let pn be the orthonormal polynomials with respect to a measure μ

supported on a bounded subset of the real line. If h[n] is the Nevanlinna function of the
measure p2ndμ, then σn(z) = zh[n](z) is the generating function of the simple n-loops
for the graph 67 associated to the corresponding Jacobi matrix. In particular, the
generating function of the simple 0-loops is σ0(z) = z f (z), where f is the Nevanlinna
function of the measure μ.

123



Constructive Approximation

The above interpretation of Nevanlinna functions is key for the following diagram-
matic proof of Khrushchev’s formula.

Proof (Diagrammatic proof of Theorem 7.3, bounded case)
Consider the node n of the following graph associated to the Jacobi matrix (26),

0 1 n−1 n n+1 n+2

b0 b1 bn−1 bn bn+1 bn+2

a0

a0

an−1

an−1

an

an

an+1

an+1

(70)

Any simple n-loop (n, i1, . . . , i�−1, n) falls into one of three disjoint classes: since
i1, . . . , i�−1 �= n and |ik − ik+1| ≤ 1 for all k, either � = 1 and there is no intermediate
node, or � > 1 and all the intermediate nodes satisfy i1, . . . , i�−1 < n or i1, . . . , i�−1 >

n. In other words, any simple n-loop is a self-loop or, before returning to n, it moves
only to the left of n, or only to the right of n. According to this picture, the generating
function of the simple n-loops decomposes as

σn(z) =
∑
�>1

�̂L
� (n) z� + bnz +

∑
�>1

�̂R
� (n) z�

�̂L
� (n) =

∑
i1,...,i�−1<n

ω(n, i1, . . . , i�−1, n), �̂R
� (n) =

∑
i1,...,i�−1>n

ω(n, i1, . . . , i�−1, n).

The different parts of this decomposition may be identified resorting to the splitting
of the previous graph into the following ones,

0 1 n−1 n n n+1 n+2

b0 b1 bn−1 bn bn+1 bn+2

a0

a0

an−1

an−1

an

an

an+1

an+1

(71)
The generating functions of simple n-loops for the left and right graph are σ L

n (z) =∑
�>1 �̂L

� (n) z� and σ R
n (z) = bnz+∑

�>1 �̂R
� (n) z�, respectively. Hence, σn = σ L

n +
σ R
n .
On the other hand, from Corollary 9.2 we know that σ0(z) = z f (z), with f

the Nevanlinna function of a measure related to the Jacobi matrix associated to the
graph 70, which has Schur parameters (b0, a0, b1, a1, . . . ). As for the right graph of
71, analogously, σ R

n (z) = z f R(z), where f R is a Nevanlinna function with Schur
parameters (bn, an, bn+1, an+1, . . . ). Regarding the left graph of 71, looking at it
from the right to the left shows that σ L

n (z) = z f L(z), with f L a Nevanlinna func-
tion having Schur parameters (0, an−1, bn−1, . . . , a0, b0, 0). Since in the bounded
case the Schur parameters characterize the Nevanlinna functions, we conclude that
f R is the iterate fn of f , while Proposition 3.8 shows that f L is the Nevanlinna
function gn(z) = an−1 pn−1(z−1)/pn(z−1). If h[n] is the Nevanlinna function of
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p2ndμ, we already know from Corollary 9.2 that σn(z) = zh[n](z). Then, the equality
σn = σ L

n + σ R
n proves the identity h[n] = gn + fn . �
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