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ABSTRACT: Reaction of the dimers [(Cp*MCl)2(μ-Cl)2] (Cp* = η5-
C5Me5) with Ph2PCH2CH2NC(NH(p-Tolyl))2 (H2L) in the presence of
NaSbF6 affords the chlorido complexes [Cp*MCl(κ2N,P-H2L)][SbF6] (M
= Rh, 1; Ir, 2). Upon treatment with aqueous NaOH, solutions of 1 and 2
yield the corresponding complexes [Cp*M(κ3N,N′,P-HL)][SbF6] (M =
Rh, 3; Ir, 4) in which the ligand HL presents a fac κ3N,N′,P coordination
mode. Treatment of THF solutions of complexes 3 and 4 with hydrogen
gas, at room temperature, results in the formation of the metal hydrido-
complexes [Cp*MH(κ2N,P-H2L)][SbF6] (M = Rh, 5; Ir, 6) in which the
N(p-Tolyl) group has been protonated. Complexes 3 and 4 react with
deuterated water in a reversible fashion resulting in the gradual deuteration of the Cp* group. Heating at 383 K THF/H2O solutions
of the complexes 3 and 4 affords the orthometalated complexes [Cp*M(κ3C,N,P-H2L‑H)][SbF6] [M = Rh, 7; Ir, 8, H2L‑H =
Ph2PCH2CH2NC(NH(p-Tolyl))(NH(4-C6H3Me))], respectively. At 333 K, complexes 3 and 4 react in THF with methanol,
primary alcohols, or 2-propanol giving the metal-hydrido complexes 5 and 6, respectively. The reaction involves the acceptorless
dehydrogenation of the alcohols at a relatively low temperature, without the assistance of an external base. The new complexes have
been characterized by the usual analytical and spectroscopic methods including the X-ray diffraction determination of the crystal
structures of complexes 1−5, 7, and 8. Notably, the chlorido complexes 1 and 2 crystallize both as enantiopure conglomerates and as
racemates. Reaction mechanisms are proposed based on stoichiometric reactions, nuclear magnetic resonance studies, and X-ray
crystallography as well as density functional theory calculations.

■ INTRODUCTION
In 2006, Stephan’s group reported that the phosphano-borane
compound (C6H2Me3)2P(C6F4)B(C6F5)2 reacted reversibly
with molecular hydrogen to give the phosphonium-borate
species (C6H2Me3)2PH(C6F4)BH(C6F5)2. This reaction dem-
onstrates that compounds of representative elements are
capable of activating the dihydrogen molecule breaking the
paradigm that hydrogen activation is an exclusive ability of
transition-metal compounds.1 This novel reactivity is based on
the cooperative behavior of an acidic (electron acceptor,
boron) and a basic (electron donor, phosphorus) component
that cannot form dative bonds due to geometry constrains. To
highlight this feature, the term “frustrated Lewis pair” (FLP)
was coined.2

Shortly afterward, the assortment of acidic and basic
components was significantly expanded, and it was demon-
strated that the resulting FLPs were capable of activating a
variety of substrates including imines, olefins, alkynes, organic
carbonyl compounds, carbon dioxide, azides, or nitric oxide.
Subsequently, the FLP chemistry advanced by incorporating
unusual stoichiometric reactions as well as catalytic processes

such as hydrogenation (including enantioselective hydro-
genation), hydrosilylation, hydroboration, or hydroamination.3

In addition, the potential of FLP systems increased
considerably with the proposal of Wass’s group to incorporate
components based on transition metals in their design,
resulting in the so-called transition-metal frustrated Lewis
pairs (TMFLPs).4 The incorporation of transition-metal
fragments into FLP systems increases their structural and
electronic diversity in such a way that it should allow them to
efficiently promote the whole set of elementary reactions
characteristic of catalytic processes. In this regard, Wass5 and
Erker’s6 groups developed extensively the FLP chemistry of
Zr/P systems and demonstrated their potential in the
activation of small molecules as well as in catalysis. The area

Received: June 1, 2022
Published: August 10, 2022

Articlepubs.acs.org/IC

© 2022 The Authors. Published by
American Chemical Society

13149
https://doi.org/10.1021/acs.inorgchem.2c01902

Inorg. Chem. 2022, 61, 13149−13164

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 D

E
 Z

A
R

A
G

O
Z

A
 o

n 
O

ct
ob

er
 1

3,
 2

02
2 

at
 0

7:
15

:3
5 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mari%CC%81a+Carmona"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roberto+Pe%CC%81rez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joaquina+Ferrer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ricardo+Rodri%CC%81guez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vincenzo+Passarelli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fernando+J.+Lahoz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fernando+J.+Lahoz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pilar+Garci%CC%81a-Ordun%CC%83a"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Carmona"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.inorgchem.2c01902&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01902?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01902?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01902?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01902?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01902?fig=abs1&ref=pdf
https://pubs.acs.org/toc/inocaj/61/33?ref=pdf
https://pubs.acs.org/toc/inocaj/61/33?ref=pdf
https://pubs.acs.org/toc/inocaj/61/33?ref=pdf
https://pubs.acs.org/toc/inocaj/61/33?ref=pdf
pubs.acs.org/IC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.inorgchem.2c01902?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/IC?ref=pdf
https://pubs.acs.org/IC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


was quickly extended to new TMFLPs with various transition
metals including bimetallic FLPs.7 In this context, it should be
noted that the reactivity of TMFLP species can be framed in
the broader field of metal−ligand cooperation.8
A further qualitative leap in the area of FLP systems

occurred when it was discovered that some combinations of
Lewis acids and Lewis bases exhibited FLP reactivity despite
the fact that the formation of the corresponding classical Lewis
adduct (CLA) was observed.9 In this regard, it was established
that in order for the system to exhibit FLP behavior it is
enough that an equilibrium exists between the CLA form and
the dissociated form, that is, that the dissociated form is
thermally accessible.10 To describe this type of system, the
concept of “thermally induced frustration” was introduced11

and the terms “masked”12 and “dormant”13 have been used to
refer to the involved FLPs.
The activation of the O−H bond of water is one of the steps

in the search for efficient catalysts for water splitting on the
route to renewable energy generation.14 Among the strategies
employed to this end, metal−ligand cooperative chemis-
try14g,15 and FPLs, based on both representative elements16

and transition-metal components,7d,7 have been successfully
applied. On the other hand, the Cp* ligand forms robust
complexes with a large variety of elements of the periodic table
and, usually, it is a nonreactive ligand. However, rare examples
of cooperative metal−ligand reactivity involving this ligand
have been reported. Indeed, hydrogen abstraction from Cp*
methyls has been accomplished either by treatment with an
external strong base17 or through an intramolecular pathway by
means of a basic ligand.18 The C−H bond cleavage usually
leads to tetramethylfulvene complexes in which the fulvene
moiety may display distinct coordination modes.17b−d When
this activation was coupled with the activation of the O−D
bond of deuterated water, in some instances, a very unusual H/
D exchange of the Cp* methyl protons was observed.17e,18
The field of metal−ligand cooperation also includes some of

the acceptorless alcohol dehydrogenation (AAD) processes
catalyzed by metallic compounds. AAD is a dehydrogenative
oxidation process with important applications in energy, green
chemistry, and organic synthetic methods. Successful cases of
AAD include the use of a variety of transition-metal complexes
containing chelates, pincers, and related multidentate ligands
as catalysts.19 Some of the ligands possess a basic site able to
abstract a proton from the alcohol, and the resulting alkoxide
transfers a hydride from the α-CH position to the metal
directly or via β-elimination.19g,20
With these concerns in mind, in the present article, we

report: (i) the preparation and characterization of the masked
TMFLP compounds [Cp*M(κ3N,N′,P-HL)][SbF6] (Cp* =
η 5 - C 5M e 5 ; H 2 L = N ,N ′ - b i s ( p - T o l y l ) -N ″ - ( 2 -
diphenylphosphanoethyl)guanidine; M = Rh, 3; Ir, 4; Chart
1); (ii) the reactivity of these complexes with H2 and H2O;

(iii) the hydrogen abstraction from Cp* methyls in complexes
3 and 4 that results in an H/D gradual exchange when
deuterated reagents were employed; (iv) the orthometalation
reaction of one p-Tolyl ring of the phosphano-guanidine
ligand, and (v) the acceptorless dehydrogenation of alcohols
promoted by 3 and 4.
Part of this work has been previously communicated.21

Herein, we extend our study to the iridium homologue
complex 4. Moreover, the reaction of complexes 3 and 4 with
alcohols as well as orthometalation reactions, involving new
C(sp3)−H, O−H and C(sp2)−H activations, is also included.

■ RESULTS AND DISCUSSION
Preparation of the Complexes [Cp*MCl(κ2N,P-H2L)]-

[SbF6] (M = Rh, 1; Ir, 2). Reaction of the dimers
[(Cp*MCl)2(μ-Cl)2]22 with the phosphano-guanidine com-
pound H2L21 in the presence of NaSbF6 affords the chlorido
complexes [Cp*MCl(κ2N,P-H2L)][SbF6] (M = Rh, 1; Ir, 2; eq
1).

Compounds 1 and 2 were characterized by analytical and
spectroscopic methods (see the Supporting Information) and
by the X-ray determination of their crystal structures. The
κ2N,P coordination of the H2L ligand renders the metal atom a
stereogenic center. Consequently, the methylene protons of
the phosphano-guanidine ligand are diastereotopic, and in the
proton nuclear magnetic resonance (1H NMR) spectrum, they
give four distinct resonances. Broad bands in the 3000−3400
cm−1 region of the IR spectra together with 1H NMR singlets
at 9.24 and 7.34 ppm (1) and 8.93 and 7.16 ppm (2) are
indicative of the presence of two nonequivalent NH groups in
the molecule. The 31P{1H} NMR spectrum consists of a
doublet centered at 51.37 ppm for the rhodium complex
[J(RhP) = 142.4 Hz] and a singlet at 26.52 ppm for the
iridium compound, proving the coordination of the phospho-
rus to the metal (δP free ligand: −21.14 ppm).
Slow evaporation of saturated solutions of 1 and 2 in

CH2Cl2/Et2O/n-pentane mixtures gave rise to the simulta-
neous formation of single crystals of pure enantiomers
(conglomerates23) and racemates, for both compounds.
Enantiopure samples of 1 and 2 slowly racemize in solution.
Thus, for example, starting from a dichloromethane solution of
pure SRh-1, SRh-1/RRh-1 molar ratios of about 92/8 and 74/26
were measured, by circular dichroism (CD) spectroscopy, after
2 and 18 h at room temperature, respectively.
A view of the cation of both enantiomers of the rhodium

complex 1 is depicted in Figure 1. Views of the rac-1 cations as
well as of the cation of the iridium enantiomers RIr-2, SIr-2 and
racemate rac-2 are included in the Supporting Information.
Figure 2 shows the enantiomorphic relationship of the CD
spectra of the two enantiomers of the rhodium complex 1.24

Table S1 (Supporting Information) collects the most
relevant structural parameters for the cations of RRh-1, rac-1,

Chart 1. The Ligand H2L and the Complexes
[Cp*M(κ3N,N′,P-HL)][SbF6]

Inorganic Chemistry pubs.acs.org/IC Article

https://doi.org/10.1021/acs.inorgchem.2c01902
Inorg. Chem. 2022, 61, 13149−13164

13150

https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01902?fig=eq1&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.2c01902/suppl_file/ic2c01902_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.2c01902/suppl_file/ic2c01902_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.2c01902/suppl_file/ic2c01902_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01902?fig=eq1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01902?fig=cht1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01902?fig=cht1&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.2c01902?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


RIr-2, SIr-2, and rac-2, comparable structural parameters being
observed regardless of the configuration and the nature of the
metal center. Hence, only the structural parameters found in
the SRh-1 isomer will be discussed. Selected bond lengths and
angles of the cation of SRh-1 are summarized in Table 1. The

cation of this complex exhibits “three-legged piano-stool”
geometry. An η5-C5Me5 group occupies three fac positions, and
the κ2N,P chelating phosphano-guanidine ligand and a chlorine
atom complete the coordination sphere of the metal. The
absolute configuration of the metal center is S, according to the
atom priority sequence η5-C5Me5 > Cl > P > N.25 The
structural parameters of the CN3 guanidine moiety deserve
some comments. The C−NH(p-Tolyl) bond distances, N(2)−
C(25) 1.344(8), N(3)−C(25) 1.369(7) Å, indicate a slight
partial double bond character for these bonds,26 while the
N(1)−C(25) bond distance, involving the nitrogen coordi-
nated to the metal atom, is found to be comparatively shorter,
1.310(7) Å, but also longer than typical N�C bond lengths

(1.279(8) Å).26 The sum of the bond angles at the coordinated
nitrogen is 359.6(7)° indicating that the C(12)N(1)Rh(1)-
C(25) fragment is essentially planar. Hydrogen bonds between
the N(2)−H(2) proton and the chlorido ligand [N−H =
0.82(7) Å, H···Cl = 2.45(7) Å, N···Cl = 3.203(5) Å, N−H···Cl
= 153(7)°] and between the N(3)−H(3) proton and one of
the fluorine atoms of the SbF6 anion [N−H = 0.82(8) Å, H···F
= 2.13(8) Å, N···F = 2.939(7) Å, N−H···F = 169(7)°] were
observed (Figure 3).

Preparation of the Complexes [Cp*M(κ3N,N′,P-HL)]-
[SbF6] (M = Rh, 3; Ir, 4). Solutions of 1 and 2 in 1:1 (v/v)
THF/toluene were treated with aqueous NaOH for 1.5 h
affording the corresponding complexes [Cp*M(κ3N,N′,P-
HL)][SbF6] (M = Rh, 3; Ir, 4) through base-induced
elimination of HCl and subsequent coordination of the
deprotonated nitrogen (eq 2).

The compounds were characterized by analytical and
spectroscopic methods (see the Supporting Information) and
by the X-ray diffraction determination of their crystal
structures. A weak IR band at 3377 and 3362 cm−1 for 3
and 4, respectively, and a broad singlet in the proton NMR
spectrum at 7.89 (3) and 8.00 ppm (4) are attributed to the
NH functionality. As a consequence of the stereogenicity at the

Figure 1. View of the cations of the RRh (A) and SRh (B) enantiomers of the rhodium complex [Cp*RhCl(κ2N,P-H2L)][SbF6] (1). For clarity,
hydrogen atoms (except those bonded to nitrogen atoms) have been omitted.

Figure 2. CD spectra of SRh-1 (blue) and RRh-1 (red) in CH2Cl2.

Table 1. Selected Bonds Lengths (Å) and Angles (°) for
Complex SRh-1

Rh−Cl 2.4199(14) Cl-Rh−Cta 121.8(1)
Rh−P 2.2916(15) P−Rh−N(1) 83.31(13)
Rh−N(1) 2.123(5) P−Rh−Cta 130.4(2)
Rh−Cta 1.8218(1) N(1)−Rh−Cta 131.2(2)
N(1)−C(25) 1.310(7) Rh−N(1)−C(12) 118.3(3)
N(2)−C(25) 1.344(8) Rh−N(1)−C(25) 122.8(4)
N(3)−C(25) 1.369(7) C(12)−N(1)−C(25) 118.5(5)
Cl−Rh−P 90.54(5) Σ°N(1)b 359.6(7)
Cl−Rh−N(1) 85.15(14)

aCt represents the centroid of the η5-C5Me5 ligand. bΣ°N(1) is the
sum of bond angles around N(1) atom.

Figure 3. H-bond interactions in complex SRh-1. For clarity, only
hydrogen atoms of N−H fragments have been depicted.
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metal, the PCH2CH2N methylene protons are asynchronous
and give rise to four resonances at the expected chemical shifts
and with the awaited multiplicities (see the Supporting
Information). A doublet centered at 48.27 ppm [J(RhP) =
159.0 Hz] and a singlet at 27.75 ppm in the 31P{1H} NMR
spectrum are assigned to the phosphorus nucleus of the PPh2
group of the phosphano-guanidine ligand.
The molecular structure of 3 and 4 has been determined by

X-ray diffraction means. There is no significant chemical
difference to be remarked when comparing the structural
parameters of the cations of the two complexes. For more
detailed data about the molecular structure of the rhodium
complex 3, see ref 21. Figure 4 shows a view of the two
crystallographically independent, but chemically equivalent,
cations (A and B) found in the asymmetric unit of iridium
complex 4. Table 2 collects selected bond lengths and angles of
both cations. The molecular structure reveals that the ligand
HL presents a fac κ3N,N′,P coordination mode. This type of

coordination renders the metal and the central nitrogen atom
of the ligand stereogenic. The configuration at metal induces
the configuration at nitrogen in such a way that only the RM,SN
diastereomer and its SM,RN enantiomer form, both of them
being present in the centrosymmetric unit cell of 4·C4H8O. In
Figure 4, a view of the two independent cations of the RM,SN
diastereomer is depicted.
Focusing the discussion on cation A, the fac κ3N,N′,P

coordination mode of the HL ligand forces the central N(1)
atom to adopt a pyramidal geometry [Σ°N(1) = 328.8(6)°].
This geometry together with the N(1)−C(25) bond length
[1.357(6) Å] contrasts with the structural features of the
corresponding nitrogen atom in the precursor complex 2
where the H2L ligand coordinates in a chelate κ2N,P manner
(for the corresponding parameters of compound 2, see Table
S1, Supporting Information). Remarkably, the bond angles
N(1)−Ir(1)−N(2) and N(1)−C(25)−N(2), 62.33(14) and
109.2(4)°, respectively, are far from the hybridization ideal

Figure 4. View of the two independent molecules of the cation of complex RM,SN-4. For clarity, only the ipso carbon of the phenyl rings of the PPh2
group is shown, and hydrogen atoms (except the NH proton) have been omitted.

Table 2. Selected Bond Lengths (Å) and Angles (°) for the Two Independent Cations of Complex RM,SN-4

cation A cation B

Ir(1)−P(1) 2.2984(12) Ir(51)−P(51) 2.2843(12)
Ir(1)−N(1) 2.110(4) Ir(51)−N(51) 2.124(4)
Ir(1)−N(2) 2.121(4) Ir(51)−N(52) 2.130(4)
Ir(1)−Cta 1.8276(1) Ir(51)−Cta 1.8338(1)
N(1)−C(25) 1.357(6) N(51)−C(75) 1.362(6)
N(2)−C(25) 1.329(5) N(52)−C(75) 1.324(5)
N(3)−C(25) 1.364(6) N(53)−C(75) 1.361(6)
P(1)−Ir(1)−N(1) 80.02(11) P(51)−Ir(51)−N(51) 80.31(11)
P(1)−Ir(1)−N(2) 90.53(11) P(51)−Ir(51)−N(52) 91.49(11)
P(1)−Ir(1)−Cta 134.64(1) P(51)−Ir(51)−Cta 133.98(1)
N(1)−Ir(1)−N(2) 62.33(14) N(51)−Ir(51)−N(52) 62.03(14)
N(1)−Ir(1)−Cta 131.10(1) N(51)−Ir(51)−Cta 133.21(1)
N(2)−Ir(1)−Cta 130.92(1) N(52)−Ir(51)−Cta 129.55(1)
Ir(1)−N(1)−C(24) 118.3(3) Ir(51)−N(51)−C(74) 118.5(3)
Ir(1)−N(1)−C(25) 93.9(3) Ir(51)−N(51)−C(75) 93.8(3)
C(25)−N(1)−C(24) 116.6(4) C(75)−N(51)−C(74) 114.9(4)
Σ°N(1)b 328.8(6) Σ°N(51)b 327.2(6)
Ir(1)−N(2)−C(25) 94.3(3) Ir(51)−N(52)−C(75) 94.7(3)
N(1)−C(25)−N(2) 109.2(4) N(51)−C(75)−N(52) 109.4(4)

aCt represents the centroid of the η5-C5Me5 ligand. bΣ°N(1) and Σ°N(51) stand for the sum of bond angles around N(1) and N(51) atoms,
respectively.
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values. All these features will most likely lead to a strong strain
within the Ir−N−C−N four-membered metalacycle.
Reaction of Complexes 3 and 4 with Molecular

Hydrogen. The structural parameters found in compounds 3
and 4, and in particular the envisaged strain within the four-
membered metalacycle M−N−C−N led us to hypothesize that
these compounds could behave like masked FLPs: the
heterolytic cleavage of one of its M−N bonds could generate
a TMFLP in which the metal and the nitrogen would play the
role of the acid and basic center, respectively. As reported for
compound 3,21 these assumptions prompted us to try the
reaction of complex 4 with molecular hydrogen.
Indeed, treatment of THF solutions of complexes 3 and 4

with hydrogen gas (4 bar), at room temperature, resulted in
the formation of the metal hydrido-complexes [Cp*MH-
(κ2N,P-H2L)][SbF6] (M = Rh, 5; Ir, 6) in which the N(p-
Tolyl) group has been protonated (eq 3). Formally, the
heterolytic breakage of the molecule of hydrogen gives rise to
hydridic M−H and protic N−H bonds. Complete conversion
to complex 5 was obtained after 4 h of reaction under the
above mentioned conditions. Conversion to the iridium
complex 6 was complete after 24 h at 373 K. The reaction is
reversible but to achieve appreciable dehydrogenation rates it
is necessary to heat THF solutions above 373 K. Indeed,
heating at 393 K a solution of the hydride 5 for 30 min, a
conversion of 30% to the rhodium compound 3 was observed.
After heating at the same temperature a solution of the iridium
complex 6 for 2.5 h, a conversion of 50% to the
dehydrogenated compound 4 was measured.

A doublet of doublets centered at −10.79 ppm [J(PH) =
38.8 Hz, J(RhH) 22.6 Hz] for complex 5 and a doublet
centered at −10.16 ppm [J(PH) = 32.3 Hz] for complex 6 are
attributed to the M−H functionality in the cations. The
presence of two peaks attributed to NH protons (see the
Supporting Information) is indicative of the protonation of the
N(p-Tolyl) group. The 31P{1H} NMR spectrum consists of a
doublet centered at 61.77 ppm [J(RhP) = 143.9 Hz] for the
rhodium complex and a singlet at 27.88 ppm for the iridium
one.
The molecular structure of complex 5 corroborates all these

features.21 The compound crystallizes as a racemate in the
P21/n space group of the monoclinic system with one solvent
molecule in the asymmetric unit (5·CD4O). The RRh
enantiomer is depicted in Figure 5. Selected bond lengths
and angles are shown in Table 3. The phosphano-guanidine
ligand displays a κ2N,P coordination mode. A Cp* ligand,
formally occupying three coordination sites, and a hydrido
ligand [Rh−H = 1.56(5) Å] complete the coordination sphere

of the metal. The observed RhH···HN (2) separation, 2.20(7)
Å, is shorter than twice the hydrogen Van der Waals radius, 2.4
Å, indicating a significant H···H interaction between the protic
NH and hydridic RhH functionalities. The structural
parameters of the CN3 guanidino fragment are comparable
to those found for the chlorido compound 1, that is, a greater
double bond character for the CN bond involving the nitrogen
atom coordinated to the metal [N(1)−C(25) 1.309(6) Å]
when compared with the remaining CN bonds [N(2)−C(25)
1.359(6) Å, N(3)−C(25) 1.369(6) Å] and a planar geometry
at the N(1) atom [Σ°N(1) = 358.9(6)°].
Probably, the structural relaxation within the four-membered

Ir−N−C−N metalacycle facilitates the reaction from 3 to 5 as
well as from 4 to 6, which, in turn, results in the change in the
coordination mode of the phosphano-guanidine ligand from
κ3N,N′,P to κ2N,P with the concomitant change of the
geometry at the N(1) atom from pyramidal to planar.
Water Activation by Complexes 3 and 4. As previously

reported,21 the rhodium complex 3 reacts with deuterated
water in a reversible fashion resulting in the gradual
deuteration of the Cp* group. At 293 K, 1H NMR
measurements and mass spectrometry analysis show that
deuteration of this group is complete after 15 h in [D8]THF/
D2O (78%/22%, v/v) solution. Also, deuteration was
evidenced by the determination of the crystal structure of 3-
d15 by low-temperature single crystal neutron-diffraction
experiments.21 During the deuteration process, only isotopo-
logues of compound 3 at different degrees of deuteration are
detected by NMR spectroscopy.
Kinetic measurements indicate that the deuteration process

obeys a pseudo-first-order rate law with kobs values from 3.31 ×
10−6 to 4.99 × 10−4 s−1, in the 298−333 K temperature range.

Figure 5. Molecular structure of the cation of complex 5·CD4O. For
clarity, hydrogen atoms (except the Rh−H and N−H protons) have
been omitted.

Table 3. Selected Bond Lengths (Å) and Angles (°) for the
Cation of Complex 5·CD4O

Rh−P 2.2419(12) P−Rh−H 82(2)
Rh−N(1) 2.110(4) N(1)−Rh−Cta 129.39(1)
Rh−Cta 1.8697(1) N(1)−Rh−H 88(2)
Rh−H 1.56(5) Cta−Rh−H 124
N(1)−C(25) 1.309(6) Rh−N(1)−C(12) 115.9(3)
N(2)−C(25) 1.359(6) Rh−N(1)−C(25) 124.7(3)
N(3)−C(25) 1.369(6) C(12)−N(1)−C(25) 118.3(4)
P−Rh−N(1) 82.85(11) Σ°N(1)b 358.9(6)
P−Rh−Cta 134.74(1)

aCt represents the centroid of the η5-C5Me5 ligand. bΣ°N(1) stands
for the sum of bond angles around N(1) atom.
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The formation of 3-d15 from 3 is reversible, and at 313 K, a
[D8]THF/H2O (78%/22%, v/v) solution of 3-d15 evolves to 3
with an observed pseudo-first-order rate constant of 3.89 ×
10−5 s−1. The measured ratio kH/kD (2.44) indicates that the
rate-determining step for the exchange process is the C−H(D)
bond cleavage.21

Based on density functional theory (DFT) calculations, we
previously reported21 that the H/D exchange relies on the
activation of the water O−H bond at IRh rendering the key
hydroxo intermediate IIRh (Scheme 1). IIRh ultimately

promotes the reversible hydrogen abstraction from Cp*
(TS_IIRh-IIIRh) and affords the rhodium(I)-fulvene complex
IIIRh, which should undergo a reversible H2O/D2O exchange,

yielding the progressive hydrogen exchange/deuteration of the
Cp* ligand (Scheme 1).
The Cp* ligand of the iridium complex 4 undergoes an H/D

exchange process similar to that described for the rhodium
analogue 3 but at a much slower rate. Indeed, at 293 K the 1H
NMR spectrum of [D8]THF/D2O (78%/22%, v/v) solutions
of the iridium complex 4 does not change over time. It is
necessary to heat the reaction mixture at 343 K to observe the
H/D exchange at an appreciable rate. After 4 days at this
temperature, the Cp* ligand is deuterated at about 50%, on
average. Apart from the isotopologues of 4 derived from the
H/D exchange process, the formation of a new iridium
complex, labeled as 8 (vide infra), was detected by NMR
spectroscopy. The overlapping of the 1H NMR signals prevents
the detailed study of the evolution of both the H/D exchange
process and the reaction of formation of complex 8. The
complete characterization of 8 will be discussed in the next
subsection.
For the sake of comparison, the Gibbs free energy profiles of

the hydrogen exchange for both 3 and 4 were calculated at the
level wB97XD/def2tzvp//wB97XD/def2svp, using the SMD
model for the solvent, at 298 K. Figure 6 shows the calculated
intermediates and transition states along with the relative
Gibbs free energies.
DFT calculations indicate that for both 3 and 4 the hydroxo

intermediates IIRh and IIIr, respectively, are obtained stepwise
by reaction of water with 3 or 4. Actually, the dissociation of
the terminal M−N bond of 3 or 4 renders the true FLP
complex, namely IRh and IIr, which interacts with one water
molecule affording IRh·H2O or IIr·H2O. Neither IRh·H2O nor
IIr·H2O contains a metal-oxygen bond, rather the incoming
water molecule forms an N···H−O bond (Figure 7).27

Scheme 1. Reaction Sequence for the Hydrogen Exchange at
3

Figure 6. Gibbs free energy profile (kcal·mol−1) for the hydrogen exchange at 3 (black) and 4 (gray) in the presence of water [wB97XD/
def2tzvp//wB97XD/def2svp, in THF (SMD model), 298 K, 1 atm].
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Subsequent coordination of oxygen to the metal center and the
concomitant H−OH bond rupture yield IIRh or IIIr in which a
hydrogen bond still exists between the newly formed MOH
and NH moieties (Figure 7). Once IIRh and IIIr form,
hydrogen abstraction from its Cp* ligand gives the η4-
tetramethylfulvene ligand in IIIRh and IIIIr and one weakly
bonded water molecule (Figure 7). The hydrogen abstraction
(IIRh → IIIRh; IIIr → IIIIr) entails the formal reduction of the
metal center from the oxidation state +3 to +1. Accordingly,
the metal centers of IIIRh and IIIIr feature a distorted square
planar geometry in which two coordination sites are occupied
by fulvene, whereas the phosphorus and nitrogen atoms from
the phosphano-guanidine ligand complete the coordination
sphere of the metal center (Figure 7). Notably, the metal-
oxygen distance (IIIRh, 3.562; IIIIr, 3.616 Å) rules out the
existence of a metal-oxygen bond. In addition, the water
molecule is weakly bonded to the metal complex by means of
the N2−H2···O hydrogen bond and an additional C2···H1−O
short contact (Figure 7). Finally, the exchange of this weakly

bonded water molecule with water (or D2O) solvent molecules
should cause the progressive hydrogen exchange (deuteration)
of the Cp* ligand. In view of the Gibbs free energy profiles
given in Figure 6, it should be noted that intermediates 3·H2O
(or 4·H2O) and IIRh (or IIIr), even if thermally accessible, are
less stable than the starting complex 3 (or 4), which nicely
agrees with the fact that 3 (or 4) are the only detected species
in the course of the H/D exchange, and none of the
intermediates has been observed by NMR spectroscopy.
As for the Gibbs free energy variation along the reaction

sequence 3/4 + H2O ⇆ IIIRh/IIIIr, hydrogen exchange at 4
exhibits a significantly higher activation barrier (ΔGact = +29.9
kcal mol−1) when compared with 3 (ΔGact = +22.8 kcal
mol−1), which perfectly fits in with the experimental conditions
required for the H/D exchange of 3 and 4, and with the
observed degree of deuteration (vide supra).
Finally, as far as the CN3 core is concerned, despite the fact

that some degree of delocalization is expected to occur within
the three carbon-nitrogen bonds, in the course of the hydrogen
exchange a considerable electronic rearrangement takes place
and it is reasonably beneficial to the accomplishment of the
hydrogen exchange itself. Indeed, the analysis of the calculated
carbon-nitrogen bond lengths for complexes 3, 4, IM·H2O, IIM,
TS_IIM-IIIM, and IIIM (M = Rh, Ir, Scheme 2) points out that

in the course of the hydrogen exchange the C1−N3 bond
essentially holds its single bond character, whereas the C1−N1
and C1−N2 bonds switch from single to double and vice versa
in the course of the sequence IM·H2O ⇆ IIM ⇆ IIIM, the
formal protonation of N2 triggering the switch from one
electronic distribution to the other.
Orthometalation Reactions. Heating THF/H2O (4/1,

v/v) solutions of 3 or 4 at 383 K affords the orthometalated
complexes 7 and 8, respectively (eq 4).

Figure 7. Calculated structures of IRh·H2O, IIRh, IIIRh, and TS_IIRh-
IIIRh with the numbering scheme adopted. The calculated structures
of IIr·H2O, IIIr, IIIIr, and TS_IIIr-IIIIr are similar and are not reported
for the sake of brevity, the same numbering scheme being adopted.
For clarity, most hydrogens are omitted, and only ipso carbon atoms
of Tolyl and Phenyl groups are shown. Selected bond lengths/
interatomic distances (Å) and angles (°) are: IRh·H2O, N2−H2 1.836,
O−H2 0.988, N2−O 2.820, N2−H2−O 173.4, Rh−O 3.651; IIr·
H2O, N2−H2 1.842, O−H2 0.986, N2−O 2.826, N2−H2−O 176.0,
Ir−O 3.685; IIRh, Rh−O 2.078, O−H2 1.642, N2−H2 1.055, N2−O
2.655, N2−H2−O 159.4; IIIr, Ir−O 2.095, O−H2 1.647, N2−H2
1.051, N2−O 2.649, N2−H2−O 157.5; TS_IIRh-IIIRh, Rh−O 2.219,
O−H2 1.787, N2−H2 1.031, N2−O 2.787, N2−H2-O 162.2; C2−
H1 1.429, O−H1 1.207, O−H1−C2 158.2; TS_IIIr-IIIIr, Ir−O 2.255,
O−H2 1.807, N2−H2 1.209, N2−O 2.798, N2−H2−O 160.4; C2−
H1 1.485, O−H1 1.169, O−H1−C2 159.1; IIIRh, Rh−O 3.562, O−
H2 1.847, N2−H2 1.029, N2−O 2.866, N2−H2−O 170.1; C2−H1
2.267, O−H1 0.972, O−H1−C2 167.8; IIIIr, Ir−O 3.616, O−H2
1.849, N2−H2 1.031, N2−O 2.865, N2−H2−O 167.7; C2−H1
2.196, O−H1 0.974, O−H1−C2 170.2.

Scheme 2. Calculated Carbon-Nitrogen Bond Lengths (Å)
in 3, 4, IM·H2O, IIM, and IIIM (M = Rh, Ir)
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Single crystals of 7 and 8 were grown from THF/Et2O (7),
CH3OH/Acetone/Et2O/n-pentane (8a, from here on) and
CH2Cl2 (8b, from here on) solutions, 8a and 8b featuring
different crystal structures. Figure 8 shows the ORTEP plot of
the cations [Cp*Ir(κ3C,N,P-H2L‑H)]+ in 8a and 8b [H2L‑H =
Ph2PCH2CH2NC(NH(p-Tolyl))(NH(4-C6H3Me))], and
Table 4 contains selected bond lengths and angles. The
rhodium compound 7 exhibits a crystal structure virtually
superimposable to 8a, so only 8a will be discussed in detail and
selected data of 7 are included in the Supporting Information.
Both 8a and 8b exhibit a three-legged-piano stool geometry

with an η5 coordinated Cp* ligand. The metalated phosphano-
guanidine ligand occupies three mutually cis positions at the
metal center [8a, P−Ir−N(1) 77.05(9), P−Ir−C(27)
92.47(11), N(1)−Ir−C(27) 84.25(14)°; 8b, P−Ir−N(1)
81.44(9), P−Ir−C(27) 93.21(11), N(1)−Ir−C(27)
82.48(13)°] rendering two fused metalacycles, namely, the
five-membered ring Ir−P−C(11)−C(12)−N(1) and the six-
membered ring Ir−C(27)−C(26)−N(2)−C(25)−N(1).
Interestingly, the metal center in both 8a and 8b is

stereogenic. Nonetheless, as a consequence of the centrosym-

metric space group P21/c of 8a and 8b, both enantiomers,
namely, SIr-8a/b (shown in Figure 8) and RIr-8a/b, are present
in the crystal.28 When dealing with the differences between 8a
and 8b, the arrangement of the exocyclic N(3)H(p-Tolyl)
moiety with respect to the IrCp*(P)(N1)(C27) core is worth
a mention. As a matter of fact, the dihedral angle N(1)−
C(25)−N(3)−C(33) is 153.8(4)° in 8a and−43.0(6)° in 8b
indicating that the N(3)−C(25) bond adopts a conformation
close to s-trans in 8a and close to s-cis in 8b (Figure 8). As a
final remark, when comparing 8a/8b with 4, reasonably as a
consequence of the formation of the less strained six
membered ring Ir−C(27)−C(26)−N(2)−C(25)−N(1) in-
stead of the four membered ring Ir−N(1)−C(25)−N(2), the
nitrogen atom N(1) exhibits a planar geometry both in 8a
[Σ°N(1) = 359.7(5)°] and 8b [Σ°N(1) = 358.9(5)°]. On this
ground, N(1) should adopt a sp2 hybridization in 8a and 8b.
Accordingly, the N(1)−C(25) bond length is shorter [8a,
1.312(5); 8b, 1.304(5) Å] than the N(2)−C(25) [8a,
1.355(5); 8b, 1.356(5) Å] and N(3)−C(25) bond lengths
[8a, 1.363(5); 8b, 1.374(5) Å], suggesting that, despite some
degree of delocalization over the CN3 core, the N(1)−C(25)
bond should exhibit a higher double bond character when
compared with N(2)−C(25) and N(3)−C(25).
No significant differences between the solution NMR

spectra of both iridium rotamers 8a and 8b have been found
in the 293−233 K temperature range indicating that, under
these conditions, rotation around the N(3)−C(25) bond is
free. Most probably, crystal packing accounts for the two
dispositions encountered in the solid state.

Figure 8. ORTEP plot of the cations of complexes 8a and 8b. Thermal ellipsoids are at 50% probability, and most hydrogen atoms have been
omitted for clarity.

Table 4. Selected Bond Lengths (Å) and Angles (°) of 8a and 8b

8a 8b 8a 8b

Ir−P 2.2621(10) 2.2598(10) P−Ir−Cta 133.81(3) 135.48(3)
Ir−N(1) 2.081(3) 2.095(3) N(1)−Ir−C(27) 84.25(14) 82.48(13)
Ir−C(27) 2.065(4) 2.069(4) N(1)−Ir−Cta 126.22(9) 128.99(9)
Ir−Cta 1.8559(2) 1.8809(2) C(27)−Ir−Cta 125.66(10) 119.32(10)
N(1)−C(25) 1.312(5) 1.304(5) Ir−N(1)−C(12) 118.0(2) 118.6(2)
N(2)−C(25) 1.355(5) 1.356(5) Ir−N(1)−C(25) 122.2(3) 119.9(3)
N(3)−C(25) 1.363(5) 1.374(5) C(12)−N(1)−C(25) 119.5(3) 120.4(3)
P−Ir−N(1) 77.05(9) 81.44(9) Σ°N(1)b 359.7(5) 358.9(5)
P−Ir−C(27) 92.47(11) 93.21(11) N(1)−C(25)−N(3)−C(33) 153.8(4) −43.0(6)

aCt represents the centroid of the η5-C5Me5 ligand. bΣ°N(1) stands for the sum of bond angles around the N(1) atom.
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The presence of two 1H peaks attributed to NH protons, at
8.41 and 8.36 ppm for 7, and at 8.43 and 8.34 ppm for 8, is
indicative of the protonation of the N(p-Tolyl) group. The
orthometalated carbon nucleus gives a doublet of doublets at
141.15 ppm [J(RhC) = 31.7 Hz, J(PC) = 13.8 Hz] for complex
7 and a doublet at 123.61 ppm (J(PC) = 9.1 Hz) for complex
8. The 31P{1H} NMR spectrum consists of a doublet centered
at 46.45 ppm [J(RhP) = 153.3 Hz] and one singlet at 19.01
ppm for 8.
The energy profile E vs dihedral angle NCNC (α) for the

rotation around the exocyclic C−N bond (Figure 9) was

calculated for the rhodium complexes 7a/7b showing that the
barrier for the rotation is about 10 kcal mol−1. In addition, the
Gibbs free energy differences between isomers 7a and 7b as
well as between isomers 8a and 8b are small (G7a-G7b = +1.4
kcal mol−1, G8a-G8b = +0.1 kcal mol−1). On these grounds,
both isomers for each metal should be present in solution at
room temperature and the interconversions 7a ⇆ 7b and 8a
⇆ 8b should be fast at that temperature, which fits in with the
observation of averaged NMR spectra for 7a and 7b as well as
for 8a and 8b, and with the isolation of crystals of each isomer
using different crystallization mixtures of solvents.
Reaction of 3 or 4 with Alcohols. At 333 K, complexes 3

and 4 react in THF with methanol, primary alcohols, and 2-
propanol cleanly giving the metal-hydrido complexes 5 and 6,
respectively (eq 5). The reaction involves the dehydrogenation
of the alcohols at a relatively low19,20 temperature and without
the assistance of an external base. 1H NMR signals assigned to
methyl formate19h [δH 8.07, brq; 3.76, brd], acetaldehyde [δH
9.67, q; 2.07, d (J = 2.8 Hz)], propionaldehyde [δH 9.56 t (J =
1.3 Hz)], benzaldehyde (δH 10.02, s), and acetone (δH 2.04, s)
were detected after the reaction with methanol, ethanol, n-
propanol, benzyl alcohol, and 2-propanol, respectively.

As the reactions with the iridium complex 4 were much
slower than those with the rhodium compound 3, kinetic
studies were carried out only with 3. Table 5 collects the values

of the kinetic constants measured at 333 K (see the Supporting
Information). The dehydrogenation rate is greater for
methanol and primary alcohols (entries 1−4) than for the
secondary alcohol 2-propanol (entry 5).19h To obtain
information about the mechanism, in independent experiments
the reaction was carried out with CH3OD (entry 6) or
CD3OH (entry 7). In the reaction with CD3OH, the metal-
hydrido region of the 1H NMR spectrum of the resulting
product was silent, but when CH3OD was used as a reagent, a
Rh−H 1H resonance was observed in the product. Notably,
values of 5.21 and 8.29 were obtained for the kobs(CH3OH)/
kobs(CH3OD) and kobs(CH3OH)/kobs(CD3OH) ratios, respec-
tively. A detailed kinetic study was not carried out with
CD3OD because the reaction rate in this solvent is very low.
Indeed, a conversion of only about 4% was measured after 60 h
of reaction at 333 K.
As it was observed in the reaction of 3 or 4 with deuterated

water, mass and 1H NMR spectra of solutions of compound 3
in alcohols with deuterated hydroxo groups indicate that the
progressive deuteration of the methyl groups of the Cp* ring
occurs. Kinetic measurements establish that the deuteration
process obeys a pseudo-first order rate law. Table 6 collects the
values of the kinetic constants measured at 313 K, and for

Figure 9. Energy profile (E vs α, wB97XD/def2svp, 298 K) for the
rotation around the exocyclic C−N bond.

Table 5. Kinetic Constant for the Reaction of Complex 3
with Alcohols at 333 Ka

entry alcohol 106 kobs/s−1

1 MeOH 8.12 ± 0.07
2 EtOH 11.6 ± 0.1
3 nPrOH 4.0 ± 0.2
4 BnOH 24.9 ± 0.5
5 iPrOH 1.12 ± 0.04
6 CH3OD 1.56 ± 0.03
7 CD3OH 1.0 ± 0.1

aSee the SI for experimental details.

Table 6. Kinetic Constants for the H/D Exchange at 313 Ka

entry R−OD 105 kobs/s−1

1 D−OD 9.5 ± 0.2
2 CH3−OD 28.2 ± 0.6
3 CD3−OD 16.9 ± 0.2
4 Et−OD 7.73 ± 0.08
5 iPr−OD 1.92 ± 0.04

aSee the SI for experimental details.
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comparative purposes, kobs obtained for D2O
21 was also

included. In general, the kobs for the H/D exchange process is
greater than that measured for the alcohol dehydrogenation.
For example, for CH3OD, the kobs for the Cp* deuteration is
6.39 ± 0.08 × 10−4 s−1 at 323 K (see the Supporting
Information), and that for the dehydrogenation process is 1.56
± 0.03 × 10−6 s−1, at 333 K (entry 6, Table 5), that is, the
latter is about 400 times lower than the former despite being
measured at a temperature 10 K higher. Based on the Eyring
plot [ln(kobs/T) vs 1/T] ΔG≠

293 of around 24 kcal·mol−1 was
calculated in all cases (see the Supporting Information).
The mechanism of the reactions of 3 and 4 with methanol

was explored by DFT calculations in order to shed light on the
deuteration of 3 and 4 in the presence of CH3OD as well as on
the formation of 5 and 6, respectively, as a result of the
dehydrogenation of methanol. For both reactions, the energy
profiles for 3 and 4 were elucidated by means of DFT
computational methods at the level wB97XD/def2tzvp//
wB97XD/def2svp using the SMD model for the solvent
(THF).
As for the H/D exchange, the calculated reaction sequence is

reminiscent of that previously discussed for the reaction of 3 or
4 with water (Figure 10). As a matter of fact, methanol reacts
with 3 or 4 yielding IRh·MeOH or IIr·MeOH, respectively, in
which a N···HO hydrogen bond brings together the dissociated
form of 3 or 4, namely, IRh and IIr, with a methanol molecule,
no metal-oxygen bond being observed (vide infra). In the
following, the rupture of the O−H bond affords the methoxo
derivatives IVRh and IVIr featuring an intramolecular NH···O
hydrogen bond between the newly formed NH group and the
methoxo ligand. Similar to IIRh and IIIr (Figure 6), the Cp*
ligand in IVRh and IVIr undergoes a hydrogen abstraction
yielding the tetramethylfulvene metal(I) complexes VRh and

VIr, respectively, in which the resulting methanol molecule is
still involved in an NH···O hydrogen bond with the NH group.
Also, a short OH···CH2fulvene contact is observed between the
fulvene ligand and the methanol molecule. Like for IIIRh and
IIIIr, no metal-oxygen bond exists in VRh and VIr, and the
exchange of the weakly bonded methanol molecule with
methanol/methanol-d1 solvent molecules triggers the hydrogen
exchange/deuteration of the Cp* ligand. Similar to the
reaction of 3 or 4 with water, the activation barrier for 3 +
MeOH ⇆ VRh (+21.5 kcal·mol−1) is significantly lower than
that for 4 + MeOH ⇆ VIr (+29.0 kcal mol−1), which nicely fits
in with the experimental conditions and the outcome of the
deuteration reaction with 3 or 4.
As for the dehydrogenation of methanol rendering 5 or 6,

DFT calculations suggest that IRh·MeOH and IIr·MeOH are
again key intermediates (Figure 11). As a matter of fact, they
convert into 5·CH2O or 6·CH2O, respectively, via the
concerted transition state TS_IRh·MeOH-5·CH2O or TS_IIr·
MeOH-6·CH2O. Notably, the elimination of CH2O results
from the simultaneous migration of one CH hydrogen atom to
the metal center and of the OH hydrogen atom to a nitrogen
atom of the guanidine moiety (cf. TS_IRh·MeOH-5·CH2O,
Figure 11). Accordingly, the carbon−oxygen bond shortens
from 1.396 Å (av.) to 1.206 Å (av.) on going from IRh·MeOH
and IIr·MeOH to 5·CH2O and 6·CH2O, respectively (Figure
11).
In this connection, previously reported studies already

indicated that mono-29 and dinuclear30 iridium complexes as
well as ruthenium derivatives31 are able to perform the
acceptorless dehydrogenation of methanol via a concerted
transition state taking advantage of the bifunctional character
of the metal−ligand platform.

Figure 10. Gibbs free energy profile (kcal·mol−1) for the hydrogen exchange at 3 (black) and 4 (gray) in the presence of methanol [wB97XD/
def2tzvp//wB97XD/def2svp, in THF (SMD model), 298 K, 1 atm].
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The calculated barriers for the rhodium complex 3 (+22.7
kcal·mol−1 at 298 K, +24.3 kcal·mol−1 at 333 K) and for the
iridium complex 4 (+24.5 kcal·mol−1 at 298 K, +26.1 kcal·
mol−1 at 333 K) underpin the experimental conditions. It is
worth mentioning that according to the Gibbs free energy
profile given in Figure 11 the above mentioned overall
reactions are slightly endergonic (+2.9 kcal mol−1, M = Rh;
+0.6 kcal mol−1, M = Ir). Nonetheless, in this regard, as
mentioned before, methyl formate was detected as a product in
the reaction of 3 or 4 with methanol, and its formation from
formaldehyde was calculated to be exergonic (CH2O → 1/2
HCOOCH3, ΔGr = −9.7 kcal mol−1) which compensate the
above mentioned positive ΔGr. On the other hand, when
ethanol, 2-propanol, and benzyl alcohol were used, the overall
dehydrogenation reaction CHR2OH + 3 (or 4) → CR2O + 5
(or 6) was calculated to be exergonic (ΔGr = from −10.8 to
−4.5 kcal·mol−1) in agreement with the observation of

acetaldehyde, acetone, and benzaldehyde, respectively, in the
reaction mixture.

■ CONCLUSIONS
Compounds 3 and 4 behave like masked TMFLPs. The fac
κ3N,N′,P coordination of the phosphano-guanidine ligand
forces the central nitrogen atom to adopt an sp3 hybridization
thus generating a strong strain within the M−N−C−N four-
membered metalacycle. This structural stress makes the
“unmasked” TMFLP thermally accessible (eq 6). The metal
(acidic center) and the iminic nitrogen (basic center)
synergistically cooperate in the reversible activation of
molecular hydrogen as well as in the activation of the O−H
bond of water and alcohols. The resulting nucleophilic M−OH
and M−OR fragments are able to reversibly dehydrogenate the
Cp* methyl groups giving rise to sequential and complete H/
D exchange of the Cp* protons when deuterated D−OD or
R−OD solvents were employed. On the other hand, the

Figure 11. Gibbs free energy profile for the reaction 3 (or 4) + MeOH → 5 (or 6) + CH2O [wB97XD/def2tzvp//wB97XD/def2svp, in THF
(SMD model), 298 K]. View of the IRh·MeOH, 5·CH2O, and TS_IRh·MeOH-5·CH2O with the numbering scheme adopted. The calculated
structures of IIr·MeOH, 6·CH2O, and TS_IIr·MeOH-6·CH2O are similar and are not reported for the sake of brevity, the same numbering scheme
being adopted. Selected bond lengths/interatomic distances (Å) and angles (°) are IRh·MeOH, N2−H2 1.817, O−H2 0.988, N2−O 2.800, N2−
H2−O 173.0, Rh−O 3.660, C2−O 1.397; IIr·MeOH, N2−H2 1.821, O−H2 0.986, N2−O 2.802, N2−H2−O 172.8, Rh−O 3.673, C2−O 1.396;
TS_IRh·MeOH-5·CH2O, Rh−H1 1.832, H1−C1 1.198, C2−O 1.322, O−H2 1.279, N2−H2 1.206; TS_IIr·MeOH-6·CH2O, Ir−H1 1.863, H1−
C1 1.211, C2−O 1.319, O−H2 1.268, N2−H2 1.216; 5·CH2O, H3−O 2.447, H1−C2 2.433, C2−O 1.206; 6·CH2O, H3−O 2.436, H1−C2 2.413,
C2−O 1.205.
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“unmasked” TMFLP is also able to dehydrogenate alcohols
affording metal hydrido derivatives via a concerted transition
state involving simultaneously the acidic and the basic sites.

In this respect, the greater reactivity of the aldehyde or
ketone products of the alcohol dehydrogenation versus the
starting alcohol together with the reversibility of the hydro-
genation reaction of complexes 3 and 4 paves the way to the
potential application of these complexes to catalyzed reactions
of alcohols using borrowing hydrogen methodology. On the
other hand, judicious design of tridentate ligands capable of a
fac κ3N,N′,P coordination as well as incorporation of d6 ions of
precious and nonprecious metals would dramatically expand
the applicability of the derived TMFLP species both in small-
molecule activation chemistry and in the development of new
catalytic processes.
Further work in this area is in progress and will be reported

in due course.
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