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Abstract

A direct approach is described to determine the elastic modulus distribution in

a nominally heterogeneous material subject to tensile/compression loading

and primarily experiencing deformations in the axial direction. The formula-

tion is developed for uniaxial applications using basic theoretical constructs,

resulting in a computational framework that has a matrix form [A] {E} = {R},

where the [A] matrix components are known functions of measured axial

strains and axial positions, {R} components are known functions of axial body

forces, applied loads and reactions and {E} components are the unknown elas-

tic moduli at discrete locations along the length of the specimen. For a series

of one-dimensional (1D) material property identification procedure with

known axial strains at discrete locations and various levels of random noise,

results are presented to demonstrate the accuracy and noise sensitivity of the

methodology. Finally, experimental measurements for a heterogeneous bone

specimen are compared to our 1D model predictions, demonstrating that the

predictions are in very good agreement with independent estimates at each

load level of interest along the length of the bone specimen.

KEYWORD S

1D material property identification, direct material property determination, experimental
application, finite element model, heterogeneous materials, one-dimensional formulation

1 | INTRODUCTION

Developments in the previous millennium that resulted in the broad distribution of robust, accurate digital image corre-
lation methods to obtain full-field deformation measurements[1–6] have led to increasing interest in novel ways to utilise
the data that were not accessible previously. In particular, the methodology has been investigated for material property
identification, especially in heterogeneous and anisotropic material systems that are more difficult to characterise.

Prior to the development of DIC methods, a common approach was to bond strain gages to specimens and use the
discrete strain measurements with global stress estimates to estimate material properties. Since strain gages are not
appropriate for soft materials, a few years before the ascent of DIC methods for full-field measurements, researchers in
the medical imaging field began studying approaches to determine material properties in soft tissues using ultrasound
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images. In 1994, Raghaven and Yagle[7] used ultrasound images to determine through-thickness strains at various loca-
tions in a tissue sample when subjected to mechanical loads. By rearranging a set of finite difference equations for equi-
librium in an elastic material, the authors indicated that they were able to obtain the elastic properties. In 1996, Kallel
published one of the first ‘correlation-based’ articles[8] for material property determination, describing how to estimate
the elastic properties of biological tissues. In his study, the author combined (a) property updating in an elastic finite
element model for nominally ‘known’ loads with (b) ultrasound-based image correlation motion measurements on the
tissue. During the analysis process, the authors noted that forces should be ‘measured’ at the boundary nodes; issues
with boundary conditions were also noted in Raghaven and Yagle.[7] Since the use of micro-scale load cells was imprac-
tical for the soft tissue specimens, the authors suggested using a known material between the specimen and the loading
surface. By applying load to the known material, while simultaneously obtaining full-field strains on the material dur-
ing loading, the strain data could be used to determine the surface stresses (and hence forces) on the specimen. Once
all required conditions were known, the authors minimised the difference between the measured and predicted dis-
placements by iteratively updating the material properties to obtain optimal property estimates. Finally, noting con-
cerns regarding ill-conditioning of the matrices, the authors used Tikhonov regularisation as a compromise between
fidelity to the observed data and a priori information regarding the range of elastic properties in the tissue, with conver-
gence in the regularised solution occurring within a few iterations for an echo-cardiogram image set.

For micro-scale measurements required to characterise materials in MEMS devices, in 2009, Kamat[9] reviewed the
state of the art, remarking that extraction of micro-scale tensile specimens with average stress and average strain data
as the basis for material characterisation were oftentimes used, with the interferometric strain/displacement gage
method of Sharpe[10] providing a way to obtain average strain data in specific regions, even when applying a broad
range of temperatures. Near the turn of the millennium, Chasiotis and Knauss[11] demonstrated the use of atomic force
microscopy (AFM) with 2D-DIC for regions of the order of 100 μm in size to obtain full-field deformation measure-
ments that could be used to obtain highly localised material property estimates. When using full-field measurements
with computational models, as noted by Kallel,[8] ill-posed matrices may complicate the inversion process necessary to
determine an optimal set of material properties. One approach that was described for fracture problems by Réthoré
et al.[12] is to require least noise sensitivity for the parameter of interest during the optimisation process.

In the mid-2000s, two review articles focusing on the use of full-field methods for material property identification
were published.[13,14] In particular, Hild and Roux[13] stated that DIC methods were needed to obtain elastic properties
in heterogeneous materials where single measurements are not sufficient to fully characterise the material property dis-
tribution. In their review, the authors noted that minimisation of the difference between measurements and theoretical
predictions using the material parameters provides an iterative methodology for optimal property identification. In a
more detailed follow-on review,[14] Avril et al. noted that a direct finite element approach would result in a computa-
tional form K(θ) U = F where K is the stiffness matrix that is a function of the material parameters, θ, U is the nodal
displacement vector and F is the force vector. A variety of methods were discussed that could be used to determine
material properties, including finite element method updating, virtual fields method, equilibrium gap and related
approaches that minimise a specific function to determine an optimal set of material parameters. In addition to these
methodologies, the authors also observed that K(θ) oftentimes can be written in a form

P
Ki θi when the matrix is a lin-

ear function of the material parameter set.
A global DIC-based method, commonly known as integrated DIC (IDIC), has been developed and extensively

applied for parameter identification procedure in recent years. For example, Neggers et al.[15] showed that time-resolved
IDIC can be applied for material property identification by combining finite element method and DIC measurements at
all time increments. Bertin et al.[16] applied the IDIC method for material property identification of an elasto-plastic
material using biaxial experimental data. In another study, Bertin et al.[17] applied the IDIC method using 3D surface
displacement data, load history and confocal microscopy to measure the height profile at the micro-scale to estimate
crystal plasticity parameters.[17] These approaches are based on finite element model updating (FEMU) method for
material property identification.[18,19] For example, Hartmann and Gilbert[20] applied FEMU along with full-field strain
measurement using DIC for material property identification of rubber-like material. In another study, Chelleni et al.[21]

applied FEMU for damage detection in a steel concrete composite frame. For a material system with large number of
unknown properties, the direct method (K(θ)U = F[14]) has been shown to be computationally less expensive than the
iterative method (FEMU).

In the enclosed work, the authors use concepts described in literature[14] to develop a direct solution method for the
distribution of Young's modulus in a heterogeneous, nominally one-dimensional (1D) component, subjected to either
tension or compression loading. The method does not require iterative updating, thereby reducing computational
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overhead, especially when there are large numbers of parameters to be determined. Compared to the IDIC method, the
direct approach shown in this work has no restriction on the type of measurement method used to obtain the strain
data while also allowing some flexibility in the element size based on the strain resolution and noise in the measured
data. Though the method is readily applied to dynamic situations where specimen accelerations are measured, the focus
in this study is on development and validation of the quasi-static formulation. To obtain the basic equations, a direct
approach based on a Galerkin finite element formulation is employed. When given either measured displacements or
strains, along with a measured force at either end, the resulting linear set of equations is then solved to determine the
unknown material property distribution along the entire length of the specimen. In Section 2, the basic theory used in
the method is described, and the 1D material property identification equations are presented. Section 3 described the
numerical method used to obtain the axial distribution of Young's modulus and presents 1D material property identifi-
cation procedure results using synthetic displacement and strain data with Gaussian random noise. Section 4 presents
results when applying the methodology to a nominally 1D bone specimen that is subjected to uniaxial compression
loading. Section 5 provides a discussion of results.

2 | THEORETICAL FORMULATION

A schematic of the 1D problem considered in this work, the coordinate system, the applied axial loading and specimen
dimensions are shown in Figure 1.

The equation of equilibrium for a 1D bar can be written as

dσ
dx

þ f xð Þ¼ 0 ð1Þ

where f(x) is the body force per unit volume, σ is the axial stress and x is distance along the bar axis.
The force boundary condition can be written in terms of the axial stress as

σ x¼Lð Þ¼ P
A x¼Lð Þ ð2Þ

where A(x) is the cross-sectional area and P is the equilibrated axial static load.
Assuming a linear elastic constitutive relationship, Equations (1) and (2) can be written in terms of Young's

modulus, E, and axial strain, ε, as follows.

d E xð Þε xð Þð Þ
dx

þ f xð Þ¼ 0 :E x¼Lð Þ¼ P
ε x¼Lð ÞA x¼Lð Þ ð3Þ

where, ε xð Þ¼ du
dx, u is the axial displacement and P/A(x)= σ(x). A solution for Equation (3), with E(x) as the unknown

variable, is sought using the finite element method.
The weak form for Equation (3) can be written as

Z L

0

d E xð Þε xð Þð Þ
dx

þ f xð Þ
� �

w xð ÞA xð Þdx¼ 0 ð4Þ

FIGURE 1 One-dimensional bar undergoing loading due to point load (P) and body force (f(x))
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where w(x) is a weighting function. Using integration by parts, this can be written as

w xð ÞE xð Þε xð ÞA xð Þjx¼L
x¼0 �

Z L

0

dw xð Þ
dx

E xð Þε xð ÞA xð Þdxþ
Z L

0
f xð Þw xð ÞA xð Þdx¼ 0 ð5Þ

Comparison of Equation (4) to the virtual field's method shows similar forms, with the weighting function related to
kinematically admissible virtual field displacements. In the enclosed study, the weighting functions are assumed to be
piecewise continuous functions across all elements.

Reordering the terms, Equation (5) can be written as

Z L

0

dw xð Þ
dx

E xð Þε xð ÞA xð Þdx¼w xð ÞE xð Þε xð ÞA xð Þjx¼L
x¼0 þ

Z L

0
f xð Þw xð ÞA xð Þdx ð6Þ

2.1 | Finite element formulation

Figure 2a shows the discretisation of the domain into n elements.
The element-level equations for the ith element are shown in terms of natural coordinates and local node numbers

as follows. Assuming a linear shape function for the approximate solution in each element, Young's modulus distribu-
tion in each element can be expressed as

E ξeið Þ¼Ei 1� ξeið ÞþEiþ1ξei ð7Þ

where ei represents element number, ξei is the local natural coordinate of the element as shown in Figure 2b (ξei ¼ 0 at
Node 1 and ξei ¼ 1 at Node 2 in element i) and Ei and Eiþ1 are the nodal values of Young's modulus at nodes i and iþ1,
respectively. The shape functions are also shown in Figure 2b, with N1 ¼ 1� ξeið Þ and N2 ¼ ξei .

The global to natural coordinate system transformation is written as

x¼ xi 1� ξeið Þþxiþ1 ξei ð8Þ

where xi and xi + 1 are coordinates of nodes 1 and 2 in element i in the global coordinate system.
Applying the Galerkin method, there are two weighting function for a two-noded element.

w1 ¼Nei
1 ¼ 1� ξeið Þ

w2 ¼Nei
2 ¼ 1� ξeið Þ ð9Þ

Element-level equations are obtained by substituting the shape functions into the weak form of the equilibrium equations
(Equation 6) and using the transformation equation given in Equation (8).*

Z 1

0
Jei�1dN

ei
1

dξei
EiN

ei
1 þEiþ1N

ei
2ð Þ

� �
ε ξeið ÞA ξeið ÞJeidξei ¼ Nei

1E ξeið Þε ξeið ÞA ξeið Þð Þjξei¼1
ξei¼0þ

Z 1

0
f ξeið ÞNei

1A ξeið ÞJeidξei ð10Þ

Z 1

0
Jei�1dN

ei
2

dξei
EiN

ei
1 þEiþ1N

ei
2ð Þ

� �
ε ξeið ÞA ξeið ÞJeidξei ¼ Nei

2E ξeið Þε ξeið ÞA ξeið Þð Þjξei¼1
ξei¼0þ

Z 1

0
f ξeið ÞNei

2A ξeið ÞJeidξei ð11Þ

*Repeated indices are not summed unless otherwise specified.
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where the global derivatives are converted to derivatives with respect to the natural coordinates using the Jacobian, Jei ;
for the ith element.

d
dx

¼ Jei�1 d
dξei

ð12Þ

The term E ξeið Þε ξeið Þ on the right-hand side of Equations (10) and (11) can be written as

E ξeið Þε ξeið Þ¼ σ ξeið Þ ð13Þ

where σ is the Cauchy stress in the axial direction so that

Z 1

0
Jei�1dN

ei
1

dξei
EiN

ei
1 þEiþ1N

ei
2ð Þ

� �
ε ξeið ÞA ξeið ÞJeidξei ¼ Nei

1 σ ξeið ÞA ξeið Þð Þjξei¼1
ξei¼0þ

Z 1

0
f ξeið ÞNei

1A ξeið ÞJeidξei ð14Þ

Z 1

0
Jei�1dN

ei
2

dξei
EiN

ei
1 þEiþ1N

ei
2ð Þ

� �
ε ξeið ÞA ξeið ÞJeidξei ¼ Nei

2 σ ξeið ÞA ξeið Þð Þjξei¼1
ξei¼0þ

Z 1

0
f ξeið ÞNei

2A ξeið ÞJeidξei ð15Þ

The shape functions at local Nodes 1 and 2 are given by

Nei
1 jξei¼1 : N

ei
2 jξei¼0 ¼ 0 ð16Þ

Nei
1 jξei¼0 : N

ei
2 jξei¼1 ¼ 1 ð17Þ

with the shape function derivatives as

dNei
1

dξei
¼�1 :

dNei
2

dξei
¼ 1 ð18Þ

Substituting Equations (16)–(18) into Equations (14) and (15) gives

Ei

Z 1

0
Nei

1 ε ξeið ÞA ξeið Þdξei þEiþ1

Z 1

0
Nei

2 ε ξeið ÞA ξeið Þdξei ¼Fei
1 �

Z 1

0
f ξeið ÞNei

1A ξeið ÞJeidξei ð19Þ

Ei

Z 1

0
Nei

1 ε ξeið ÞA ξeið Þdξei þEiþ1

Z 1

0
Nei

2 ε ξeið ÞA ξeið Þdxei ¼Fei
2 þ

Z 1

0
f ξeið ÞNei

2 J
eiA ξeið Þdξei ð20Þ

FIGURE 2 (a) Finite element discretisation of the one-dimensional bar loaded in tension, (b) linear shape functions for ith element
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where Fei
1 and Fei

2 are the internal forces at local Nodes 1 and 2 in element i, respectively,
Fei
1 ¼ σ ξei ¼ 0ð ÞA ξei ¼ 0ð Þ andFei

2 ¼ σ ξei ¼ 1ð ÞA ξei ¼ 1ð Þð Þ.
Equations (19) and (20) give the conditions for stress equilibrium as

Fei
1 �

Z 1

0
f ξeið ÞNei

1A ξeið ÞJeidξei ¼Fei
2 þ

Z 1

0
f ξeið ÞNei

2A ξeið ÞJeidξei ð21Þ

Since Nei
1 þNei

2 ¼ 1, Equation (21) can be written as

Fei
1 ¼Fei

2 þ
Z 1

0
f ξeið Þ JeiA ξeið Þdξei ð22Þ

In global coordinates, Equation (22) can be written as

Fi ¼Fiþ1þ
Z xiþ1

xi

f xð ÞA xð Þdx : i¼ 1, 2…nþ1 ð23Þ

where xi and xiþ1 are global coordinates of nodes i and iþ1, respectively.
For the boundary element (where traction is specified), Fnþ1 ¼P. Thus, if the distributed body force and boundary

traction can be measured accurately, stresses at all nodes can be determined using Equation (23).
To obtain direct equations for the unknown Young's moduli in each element, the element level equations can be

assembled to give

A11 � � � 0

..

. . .
. ..

.

0 � � � Ann

2
664

3
775

E1

..

.

En

2
664

3
775¼

Fe1
1 �

Z 1

0
f ξe1ð ÞNe1

1 J
e1A ξe1ð Þdξe1

..

.

:

Fen
1 �

Z 1

0
f ξenð ÞNen

1 J
enA ξenð Þdξen

2
66666666664

3
77777777775

ð24Þ

where Aij ¼
R 1
0Nj ε ξeið ÞA ξeið Þdξei .

Nj ¼
1� ξeið Þ for j¼ i

ξei for j¼ iþ1

0 for all j≠ i or j≠ iþ1

8><
>: ð25Þ

In addition, the boundary condition at the right end gives

Enþ1 ¼P= A x¼ Lð Þεnþ1½ � ð26Þ

2.2 | Determination of Aij

As shown in Equation (24), components of Aij involve integration of terms involving the shape function and the mea-
sured strain values within each element. Full-field strain measurement techniques such as digital image correlation
(DIC) provide strain values at a relatively dense set of discrete locations.[22] Assuming that ε ξeið Þ are available at discrete
points within an element, the integration in Equation (24) can be performed numerically (e.g. a trapezoidal rule). If the
measured strain values do not coincide with nodal locations, the strains at these locations are determined by an

6 of 26 RAJAN-KATTIL ET AL.

 14751305, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/str.12427, W

iley O
nline L

ibrary on [13/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



interpolation method. In this study, linear interpolation of the neighbouring strain values, as shown schematically in
Figure 3, is implemented.

The trapezoidal numerical integration scheme used in this study is shown in Equation (27).†

Z 1

0
gj ξ

eið Þε ξeið Þdξei ¼
Xmi�2

p¼1

g
ξeip þξeipþ1

� �
2

0
@

1
A:

εeip þ εeipþ1

2

2
4

3
5þg

ξei1
2

� �
εei0 þ εei1

2
þg

ξeimi�1þξeimi

2

� �
εeimi�1þ εeimi

2
ð27Þ

where gj ξ
eið Þ¼Nj ξeið ÞA ξeið Þ.

3 | 1D MATERIAL PROPERTY IDENTIFICATION WITH GAUSSIAN NOISE

The Young's moduli obtained in this section are based on synthetically generated strain data with randomly distributed
noise. The strain data are generated using a known spatial distribution of Young's modulus. Computational predictions
for the Young's modulus distribution using strain data with and without noise are obtained for three different Young's
modulus spatial distributions including (a) linear, (b) sinusoidal and (c) step change (Heaviside step function).

For each case, the authors included varying levels of random noise in the generated strain data to understand the
effect of noise on modulus predictions. Other variables considered in the parametric study are (a) the number of ele-
ments and (b) the number of strain measurements within each element. Since cross-sectional area change has the same
effect as a varying modulus for a 1D bar, the examples considered in this section assume a constant cross-sectional area.
Additional results for quadratic variations in modulus with a constant, known body force, f(x) = fo, are presented in
Appendix A.

3.1 | Convergence criteria

To assess convergence, the authors considered element discretisation, number of strain data points and strain measure-
ment variability as the relevant parameters. The basic parameters are defined as follows:

a. discretisation element length, Le = L/Ne, where Ne is the number of elements and L is the length of the specimen,
b. number of strain data points per element, Nd = M/Ne, where M is the total number of strain data points along the

length, L, and
c. variability in each strain measurement, βε (standard deviation of noise in the strain data).

Since there are three parameters involved in the assessment of convergence, with βε oftentimes known a priori for the
measurements, the goal is to determine a functional form for the lower bound on (Nd, Le) that meets the convergence
criterion for each βε.

FIGURE 3 Schematic showing measured strain data locations with respect to the node positions

†There are a range of methods that could be used to perform the integration shown in Equation (27). The authors have not evaluated other
integration methods in this work.
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3.1.1 | Convergence criterion for known solution, E(x)

For a given parameter set, (Nd, Le) and fixed βε, when values from the numerical modulus solution, EFE(x), satisfy the
following inequality at N points along the length, L:

EFE xið Þ-E xið Þj j=E xið Þ≤Δ for all i¼ 1, 2, :::, N
ð28Þ

where Δ is the user-defined convergence limit and E (xi) is the true modulus at coordinate location xi.
‡ Equation (28) is

used for all 1D material property identification studies where the functional form of E(x) is known. As shown in
Equation (28), the criterion ensures that the material property deviation at all node points is less than Δ at all node
points the region of interest.

To determine the lower bound on (Nd, Le) required for convergence with each βε, 1D material property identifica-
tion is performed for each discretisation, Le, by varying Nd to determine the minimum number of strain measurements
per element required to ensure convergence. By repeating 1D material property identification for various βε, the effect
of strain measurement noise on convergence is quantified. The set of lower bounds on (Nd, Le; βε) for linear, sinusoidal
and step-change distributions of Young's modulus are shown in Section 3.5.

Using the convergence criterion in Equation (28), parametric studies were performed to determine the regions
within the parametric space (Ne, Nd, βε) where the deviation, Δ < 0.04. For the 1D case, closed-form solutions for strain
are used to generate strain data for a known elastic modulus distribution.

When the true modulus distribution, E(x), is known, then the level of discretisation required to meet the conver-
gence criterion can be determined. Specifically, when Le is reduced and all other parameters are held constant, the level
of discretisation is defined for a specified Nd, with changes in Nd employed to determine the minimum required data
density for convergence for each Le. With regard to data density per element, Section 3.5.3 discusses the related issues
of subset size, subset spacing, strain window size and speckle size.

3.1.2 | Convergence criterion for unknown modulus distribution, E(x)

When the numerical solution, E(x), for a given parameter set, (Nd, Le; βε), and the numerical solution, E*(x), for a given
parameter set, (Nd + δNd, Le + δLe; βε), satisfy the following inequality at N points along the length, L:

2 Ei NdþδNd;LeþδLe, βεð Þ-E�
i Nd;Le, βεð Þj j= Ei NdþδNd;LeþδLe, βεð ÞþE�

i Nd;Le, βεð Þj j≤ γ for all i¼ 1, 2, :, :, N ð29Þ

where γ is the user-defined convergence limit; then the solution is converged for the specified βε. As shown in
Equation (29), the normalised difference between the previous estimate and the current estimate for the material
property must be less than a specified tolerance, γ.

3.2 | Linear distribution of Young's modulus

The linear distribution of Young's modulus considered in this work is given as

E¼E0 1þ x
L

� �
ð30Þ

where L is the length of the bar and E0 is Young's modulus at x= 0. Defining normalised strain as εN= ε/εo where
εo= P/(A Eo). Figure 4 presents both Equation (30) and the predicted distribution of Young's modulus when solving

‡Here, xi includes the points interior to the elements. In this work, N = 4Ne+1, so 3 points in interior to the elements are selected in addition to the
nodal locations.
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Equation (24) using Le=L/4 (four elements) and Nd= 10 (10 strain data points per element) with (a) βε= 0 (no noise),
(b) βε= 0.010 (Gaussian noise in the normalised strain with standard deviation of 0.010) and (c) βε= 0.020.

From Figure 4a, it can be observed that the predicted modulus distribution coincides with the true modulus when
there is no noise in the strain data, the expected result since each element shape function is linear. As shown in
Figures 4b,c, as noise in the strain data increases, the predicted modulus begins to oscillate about the exact solution,
even though 10 strain data points are used in each element. A discussion of the required parameters to obtain a conver-
gent solution for a linearly varying E(x) defined in Equation (30) is given in Section 3.5.1. For βε = 0.020, Figure 5
shows the effect of increased data density, Nd, on the predicted modulus. Inspection of Figure 5 shows excellent agree-
ment with the theoretical E(x) distribution with Nd = 80 when Le = L/4.

3.3 | Sinusoidal distribution of Young's modulus

To represent the more difficult case where Young's modulus is varying cyclically, the authors performed the 1D material
property identification procedure using the sinusoidal distribution in Young's modulus represented by Equation (31).

E¼E0 2þ sin 2πk
x
L

� �� �
ð31Þ

where k is the wavenumber and 2π=k is the wavelength of the sinusoidal variation in E(x) and x is length along the axis
in Figure 1. Three different values of k are considered in this work; k= 0.5, k= 2.5 and k= 5.0. For each value of k,
strain data are generated along the length of the specimen for use in assessing the accuracy of the Young's modulus pre-
dictions using Equation (24).

For E(x) varying sinusoidally with k = 0.5, exact strain data and Nd = 10, Figure 6a–c compares the exact
E(x) distribution to the predicted distribution for Le = L/2, L/10 and L/20, respectively. Similarly, when k = 2.5 and
Nd = 10, Figure 7a–c compares the exact E(x) distribution to the predicted distribution for Le = L/10, L/20 and L/40,
respectively. Finally, when k = 5.0 and Nd = 10, Figure 8a–c compares the exact E(x) distribution to the predicted dis-
tribution for Le = L/20, L/40 and L/80, respectively.

As shown in Figures 6–8, as the sinusoidal frequency of E(x) increases, the element size must decrease while
maintaining the same number of strain data points per element to predict E(x) more accurately. It should also be noted
that the results in Figure 6a show the minimum number of elements required to predict the modulus with reasonable
accuracy given by

Ne > 2k ð32Þ

Equation (32) is another form of the Nyquist frequency limit used to define the required sample frequency to mini-
mally reconstruct varying signals with wavenumber k. Further inspection of Figures 6c and 7c show that they are some-
what oversampled relative the Nyquist limit and hence are better approximated.

FIGURE 4 Theoretical and predicted E(x) for Nd = 10, Le = L/4 with (a) βε = 0, (b) βε = 0.010 and (c) βε = 0.020

RAJAN-KATTIL ET AL. 9 of 26
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For the highest wavenumber case, k = 5.0, Nd = 10 and Le = L/80, Figure 9a–c shows the effect of noise on the
predicted modulus for (a) βε = 0.005, (b) βε = 0.010 and (c) βε = 0.020, respectively. Similar to the cases for the linear
modulus distributions, increasing noise levels result in increasing variability in E(x), though the general form is consis-
tent with the exact modulus distribution.

For k = 5.0, Le = L/80 and βε = 0.020, the effect of increased data density, Nd, on the predicted E(x) distribution is
shown in Figure 10. Section 3.5 provides a discussion of the required parameters to obtain a convergent solution.

3.4 | Step change in Young's modulus (Heaviside distribution)

The most challenging situation involves step changes in Young's modulus distribution, as given by Equation (33).

E xð Þ¼E0

2:00 : 0:00≤
x
L
<0:25

1:75 : 0:25≤
x
L
<0:50

1:50 : 0:50≤
x
L
<0:75

1:25 : 0:75≤
x
L
≤ 1:00

8>>>>>>>>><
>>>>>>>>>:

ð33Þ

FIGURE 5 Theoretical and predicted E(x) for Le = L/4, βε = 0.020 and (a) Nd = 20, (b) Nd = 40 and (c) Nd = 80

FIGURE 6 Predicted E(x) using Equation (24) and exact E(x) using Equation (31), along with exact strain data for each case with

k = 0.5, βε = 0, Nd = 10 and (a) Le = L/2, (b) Le = L/10 and (c) Le = L/20
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Situations such as given in Equation (33) are known to introduce spurious oscillations in the solution due to the presence
of step changes that are inconsistent with the requirement for continuous derivatives in the domain (see Equation 3).
Even so, the authors performed 1D material property identification procedure to determine how sensitive the current for-
mulation is to the discontinuous E(x) representation.

FIGURE 7 Predicted E(x) using Equation (24) and exact E(x) using Equation (31), along with exact strain data for each case with

k = 2.5, βε = 0, Nd = 10 and (a) Le = L/10, (b) Le = L/20 and (c) Le = L/40

FIGURE 8 Predicted E(x) using Equation (24) and exact E(x) using Equation (31), along with exact strain data for each case with

k = 5.0, βε = 0, Nd = 10 and (a) Le = L/20, (b) Le = L/40 and (c) Le = L/80

FIGURE 9 Predicted E(x) using Equation (24) and exact E(x) using Equation (31), along with strain data for each case with k = 5.0,

Le = L/80, Nd = 10 and (a) βε = 0.005, (b) βε = 0.01 and (c) and βε = 0.02, respectively

RAJAN-KATTIL ET AL. 11 of 26
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For exact εN data in the continuous regions, Figure 11 compares the predicted Young's modulus using Equation (24)
to the exact distribution for Nd = 10 and (a) Le = L/25, (b) Le = L/50 and (c) Le = L/100, respectively. As shown in
Figure 11, the discontinuities created oscillations that propagated throughout the domain, increasing in frequency with
the number of elements used to represent the modulus distribution.§

To show the effect of strain noise on predictions, for Le = L/50, Nd = 10, Figure 12 compares the predicted and the-
oretical E(x) distributions for (a) βε = 0.005, (b) βε = 0.010 and (c) and βε = 0.020, respectively. Inspection of the results
in Figure 12 confirms that the addition of noise does not eliminate the oscillations. Interestingly, for the highest levels
of noise in the strain data, the data in Figure 12c show that the elevated noise level tends to obscure the strain disconti-
nuity at the step changes, somewhat muting the oscillatory nature of the model predictions and marginally improving
the comparison to the exact E(x) distribution.

Finally, the theoretical εN strain data with additive noise was modified using a Butterworth filter to smooth the dis-
continuities.[23]¶ Using the filtered strain data with Nd = 10 and Le = L/50, Figure 13a–c compares the predictions to
the exact E(x) distribution for filtering with cut-off frequency# of (a) 20, (b) 10 and (c) 5, respectively. Inspection of
Figure 13 shows that, for small levels of smoothing, most of the oscillations have been removed and the general shape
of the predictions matches the theoretical distribution. As the amount of smoothing increases, the predictions do not
match the exact E(x) distribution.

3.5 | Parametric study

Visual inspection of Figures 5–13 is oftentimes used to provide a general impression of the quality of agreement
between computational and exact modulus values. For example, the computational predictions in Figure 10c clearly
have differences at some points, but the overall trends are well represented for this data density and discretisation,
which may be sufficient for some applications. In cases where quantitative comparisons are desirable, the convergence
criteria in Section 3.1 are employed to define a set of parameters that ensure the computational predictions meet spe-
cific requirements over the domain.

For known E(x), Equation (28) is used to define lower bound combinations of data density (Nd) and discretisation
(Le) for a given variability in the strain data (βε) that ensure the difference in the modulus distribution on the domain
meets a specified tolerance, Δ. In the remainder of this section, the lower bound results obtained from extensive 1D
material property identification procedures are presented for linear and sinusoidal variations in E(x) with a range of βε
variability in the strain data.

§An approach that the authors used effectively is to remove the step change and incorporate a relatively steep continuous change in modulus at each
discontinuity. Though not shown here, provided there are strain data points within the short continuous region to reconstruct the modulus in this
region, the modification minimises oscillations.
¶The order of the filter is chosen as 2.
#The cut-off frequency is the normalised special frequency given by 2π=λ where λ is the wavelength/L.

FIGURE 10 Predicted E(x) using Equation (24) and exact E(x) using Equation (31), along with strain data for each case with k = 5.0,

Le = L/80, βε = 0.02 and (a) Nd = 40, (b) Nd = 80 and (c) Nd = 160, respectively
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3.5.1 | Convergence parameters for linearly varying E(x)

The effect of parameters such as the number of elements in the FE model (Ne), number of strain data points per ele-
ment (Nd) and noise in the generated data (standard deviation of βε) for a linearly varying modulus is presented in

FIGURE 11 Predicted E(x) using Equation (24) and exact E(x) using Equation (33), along with strain data for each case with βε = 0,

Nd = 10 and (a) Le = L/25, (b) Le = L/50 and (c) Le = L/100, respectively

FIGURE 12 Predicted E(x) using Equation (24) and exact E(x) using Equation (33), along with strain data for each case with Nd = 10,

Le = L/40 and (a) βε = 0.005 (b) βε = 0.010 and (c) βε = 0.020, respectively

FIGURE 13 Predicted E(x) using Equation (24) and exact E(x) using Equation (33), along with strain data for each case with Nd = 10,

Le = L/50, βε = 0 and Butterworth smoothing with normalised cut-off frequency (2π=λ where λ is the wavelength/L) of (a) 20, (b) 10 and

(c) 5, respectively

RAJAN-KATTIL ET AL. 13 of 26
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Figure 14. The standard error limit for these convergence studies is Δ = 0.04 or 4% to determine the minimum number
of elements.** The plot shown in Figure 14 can also be interpreted as the boundary in the parameter space (Ne and Nd)
where the choice of a set of parameters above the curve results in a standard error of the predicted modulus to be lower
than 4% of the true modulus.

The strain data used in the 1D material property identification procedure were generated using Equation (30) with
varying levels of random noise added to the strain data, including the zero-noise condition. From Figure 14, it can be
observed that Nd increases linearly with Ne for βε > 0. The minimum value of Nd is observed to increase quadratically
with increase in βε. Hence, as βε increases, a larger number of strain data per element is required for convergence.††

3.5.2 | Convergence parameters for sinusoidally varying E(x)

For sinusoidally varying E(x), two different wavenumbers (spatial frequencies k = 2π/λ, λ = wavelength/L) are selected
(k = 2.5 and 5). The effect of Ne, Nd and βε for k = 2.5 and 5 are shown in Figures 15 and 16, respectively. The value of
Ne separating Regions I and II is found to increase with wavenumber, k. In Region II, the dependence of Nd on Ne and
βε is like results shown in Figures 14 for linearly varying E(x). In Region I, the minimum value of Nd appears to
increase exponentially with decreasing Ne. When Ne < 20 for k = 2.5 and Ne < 55 for k = 5.0, for Δ = 0.04, the solu-
tions do not converge, regardless of the element data density, Nd. Though not shown, increasing Δ will decrease Region
1, with a secondary lower limit on Ne corresponding to the Nyquist limit shown in Equation (32).

3.5.3 | Discussion and practical implications

To obtain the necessary data density, Nd, for accurate reconstruction of the modulus distribution, the relationship
between an appropriate DIC subset size, DIC strain window size, FE element size and data density should be discussed.
Figure 17 shows the concept graphically for a specific example where five strain data points are used per finite element.
As shown in Figure 17, for a discrete element size, Le, when five strain data points are input for each element with a
50% overlap of strain windows, then the strain window size is Le/2, with a spacing between window centres of Le/4.
Assuming that each strain window uses a 5 � 5 set of displacement data to determine the strains at the five points (•)
shown in Figure 18, when a 50% overlap of subsets also is used to obtain the displacement data in the strain window,
then each subset size would be Le/2 with a spacing between subset centres of Le/4.

The parametric studies performed earlier in this section employed generated strain with Equation (28) to assess con-
vergence when the true distribution of the elastic modulus is known a priori. In real-world applications, such as the

FIGURE 14 Plot of Nd versus Ne for selected values of βε and linear variation in Young's modulus

**Additional results for different values of the standard error in predicted E(x) is shown in Appendix A.
††For βε = 0, the minimum value of Nd is two for all values of Ne since the shape function is linear and the underlying E(x) distribution is also linear.
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one to be presented in Section 4, the underlying distribution of the material properties is unknown. In such cases, the
results in Figures 14–16 can serve to identify potential combinations of Nd and Ne for a known βε that would be appro-
priate as a starting point for convergence studies.

As an example, suppose that a specimen of length, L, with an approximately linear distribution in modulus is
imaged and strain data are acquired at 1000 points along the length with strains ranging from 500 to 3000 με and base-
line strain variability of 25 με. In this case, the average βε ≈ 0.03. Using the results in Figure 14, only a few elements
can be used to obtain results with reasonable accuracy. For example, suppose discretisation into Ne = 20 elements is
desirable. In this case, Nd

max = 1000/20 = 50. However, according to Figure 14, Nd ≥ 130 is required to meet the con-
vergence criterion, which is not achievable. Based on Figure 14, the maximum number of elements that can be used for
convergence is Ne ≈ 12, which requires Nd ≈ 80, a value that is slightly less than the maximum achievable with 1000
data points (M/Ne ≈ 83).

Following the previous discussion and considering the geometry in Figure 17, the length L is discretised into 12 ele-
ments with Le = L/12 and a distance of L/960 between each of the 80 strain data points. Considering a 5 � 5 strain win-
dow with 50% overlap of subsets, each subset has dimension L/1920 so that five subsets span each strain window. If
each subset is imaged onto a 20 � 20 pixel area, the transverse magnification factor, MT = 38, 400/L in units of pixels/
unit length. Finally, if the specimen length is 20 mm, then MT = 1920 pixels/mm and each fully resolved speckle
(a speckle spanning a 3 � 3 pixel area) is 1.5 μm in physical size, requiring microscope imaging with a digital camera
that has a 38,400 � 38,400 array.

FIGURE 15 Plot of Nd versus Ne for selected values of βε and sinusoidal variation in Young's modulus with k = 2.5

FIGURE 16 Plot of Nd versus Ne for selected values of βε and sinusoidal variation in Young's modulus with k = 5

RAJAN-KATTIL ET AL. 15 of 26
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As an additional example consider the sinusoidal variation case with k = 2.5. As shown in Figure 15, when
βε = 0.03, the results are not even on the graph since Nd > 1000 is predicted to be required for the optimal number of
elements. Assuming that strain errors can be reduced so that βε = 0.02, Figure 15 suggests that when Ne = 50, then
Nd = 550 is required to achieve convergence with Δ = 0.04. This combination corresponds to having 27,500 strain data
points along the length of the specimen, a data density that is nearly 30� larger than discussed for the linear modulus
variation example. Even if a 50-MP camera sensor were available to image the entire length, L, this would only result
in ≈7000 data points along the specimen length, woefully short of the required number, without considering the issues
associated with subset and speckle size noted previously. One option would be to obtain high-resolution images of
sequential lengths φL, where φ < 1, that span the entire length from 0 to L and can individually meet the required con-
vergence criterion. In this case, loading and deformations in each length segment must remain stable when the images
are acquired.

FIGURE 17 Schematic of uniaxial specimen discretisation with FE element size Le and overlapping DIC strain windows to obtain five

strain data points per elements. Each strain data point is determined using subset-based values from a 5 � 5 group that have 50% overlaps.

Triangles denote locations for subset strain measurements. Dot denotes strain window strain value using all subset data in the window and

centre-weighted Gaussian average of subset measurements

FIGURE 18 (a) Micro-CT scan image of the bone sample, (b) 2D-DIC measurements of axial strain field for σ = 4 MPa, (c) average

compression stress versus axial strain data for specimen
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4 | MODULUS PREDICTIONS WITH EXPERIMENTAL DATA

To assess the methodology using full-field DIC experimental data, recent measurements by two of the authors[24] are
employed. In their work, Weerasooriya and Alexander performed axial compression experiments on the small bone sam-
ple shown in Figure 18a. As shown in Figure 18, the specimen has a length of 9.18 mm, width of 7.3 mm and a cross-
sectional area of 70.95 mm2; details of the experimental setup and DIC hardware used are given in literature.[24] As noted
in literature,[24] inspection of the micro-CT scan shown in Figure 18a indicates the specimen has a well-defined variation
in bone structure along the vertical length that is nominally similar for vertical x–y and y–z cross sections. Based on these
observations, the authors[24] assumed the specimen structure (i.e. bone volume fraction, Vf) is only a function of the posi-
tion along the vertical direction (i.e. the x-direction in Figure 18a) and is independent of both transverse directions. The
authors[24] then performed 2D-DIC measurements on a visible x–y surface to obtain surface strain fields during mechani-
cal compression loading. The full-field axial strain measurements for an axial stress, σ = 4 MPa, are shown in Figure 18b,
and the quasi-static average stress versus average strain results are shown in Figure 18c.[24]

In this study, the images obtained previously[24] are analysed using VIC-2D[25] with the analysis parameters given in
Table 1 to obtain 1018 strain data points horizontally and 1415 strain data points vertically.‡‡ Due to the relatively
coarse nature of the speckle pattern in the specimen, a relatively large subset size is used, which has the effect of
smoothing spatial gradients in the measured data (see literature[6] for speckle size and subset size requirements). As
shown in Figure 18a, variations in bone density within the specimen required the authors to use two different sets of
DIC parameters within zones (A, B, C); the subset size in each zone is shown in Table 1, with each subset sufficiently
large to span six intensity transitions in each direction.[6]§§

Inspection of Figure 18b confirms that the axial compressive strain field is heterogeneous, which is consistent with
the CT scan image in Figure 18a that clearly shows the bone volume fraction is higher in Zones A and C. Detailed anal-
ysis of the CT images using a representative volume element (RVE) demonstrated that bone density is nominally uni-
form in the Y and Z directions, varying from top to bottom (X-direction).[24] Based on these measurements, it is
reasonable to assume the specimen deformation in the X direction could be predicted using a 1D model of an axially
heterogeneous material, with the axial strain at each vertical position obtained by averaging the measured axial strains
across the width of the specimen.[24,27]

The recalculated average strain values across the width of specimen in the central region using 2D-DIC and the
parameters in Table 1 for different load levels are shown in Figure 19. Though not shown in Figure 19, analysis of the
strain data obtained along the entire length of the specimen demonstrated that the measured strains near the top and
bottom boundaries of the sample were nearly zero for all load levels, primarily due to frictional interaction of the load-
ing platen surfaces, resulting in a complex localised stress state and constrained local deformations. Thus, only the
strain data from the central 80% of the specimen are shown in Figure 19 and used in the 1D material property identifi-
cation procedure, with data from the upper 10% and lower 10% of the length excluded from the analysis.

TABLE 1 DIC parameters selected for three zones in the area of interest shown in Figure 18

DIC parameters Zones A and C Zone B

DIC software VIC-3D, Version 8 VIC-3D, Version 8

Image filtering Gaussian filter with a 3 � 3 pixel kernel Gaussian filter with a 3 � 3 pixel kernel

Subset size 75 pixels/487 μm 151 pixels/980 μm

Step size 1 pixel/6.5 μm 1 pixel/6.5 μm

Subset shape function Affine Affine

Matching criterion Zero-normalised sum of square differences (ZNSSD) ZNSSD

Interpolant Bi-cubic spline Bi-cubic spline

Strain window 5 data points 5 data points

Virtual strain gauge sizea 79 pixels/513 μm 155 pixels/1006 μm

Strain formulation Green–Lagrange Green–Lagrange

Strain noise floorb 40 με 30 με

aThe virtual gauge length is computed from equation 7.2 in the DIC Good Practices Guide.[26]
bBaseline analysis is performed by taking speckle images of the sample before loading and performing DIC for calculating variability in the measurements.
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4.1 | Predictions of Young's modulus for elastic range

Prior to predicting the 1D distribution of Young's modulus, observations regarding the measured strain data are
described. Firstly, baseline analysis of specimen images using the parameters specified in Table 1 indicated that vari-
ability range for the strain measurements is +/�40 με. Secondly, since measured axial strains during the early stages of
loading are of the order of 400 με or less, the signal-to-noise ratio is less than 10, and βε is near 0.10. In such cases, to
obtain accurate predictions for E(x), the required Nd for a given Ne will be quite high, even for a small number of ele-
ments. Since the maximum number of strain data is fixed by the vertical pixel dimensions of the camera (i.e. M < 1415
pixels), for σavg < 0.50 MPa where for average strain is less than 400 με, variability in the predicted moduli is expected
to be higher than is seen at elevated stresse values.

To predict Young's modulus within the nominally elastic strain range, 1D material property identification procedure
are performed for the range 1000 με ≤ δ/L = εengr ≤ 2000 με, which corresponds to the range 4 MPa ≤ σavg ≤ 6 MPa.
Comparison of the measured strain distributions in Figure 19 to our previous analysis predictions shows the strains
fields in the early stages are qualitatively similar to a quadratic function. Based on the convergence study and results
shown in Figure A5, preliminary values for Nd and Le can be estimated for the data density available, which is a maxi-
mum of ≈1100 data points along the central portion of the specimen. Thus, if βε = 0.01, then Ne = 40 corresponds to
Nd ≈ 25.

Since higher discretisation is preferred to reconstruct any variations in modulus, the authors initiated the opti-
misation process with Ne = 10, Nd ≈ 110 and performed 1D material property identification procedure by increas-
ing Ne and continually selecting the maximum Nd available. Progress towards convergence in the predicted moduli
for the elastic range is shown in Figure 20. Using Equation (29) with γ = 0.04 to check convergence of the results
shown in Figure 20,¶¶ results indicate that the minimum Ne satisfying the convergence criterion is Ne = 50. The predicted
elastic moduli for three different load levels within the elastic range using 50 elements are shown in Figure 21, along with
the independently estimated modulus distribution from ref. [24].

As shown in Figure 21, the elastic modulus predicted using the three load levels are nearly the same, indicating the
presence of elastic behaviour within the load levels considered. In addition, the predictions in this study are in good
agreement with previous estimates obtained by Alexander et al.[24]

4.2 | Prediction of secant modulus distributions

For loading beyond the linear elastic region, Equation (24) is used incrementally to determine the local secant modulus
and its evolution with increasing stress. Following the same procedures as described previously, the authors performed

FIGURE 19 Average measured axial strain data along length of specimen, εxx (x), versus average axial stress, σavg

¶¶Higher number of elements is required for obtaining a converged solution due to high-frequency components in the modulus variation in the
sample. The explanation for the lower Nd is due to smoothing in the data as a result of averaging as explained in Section 4.
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additional 1D material property identification procedure for higher loads to determine the evolution of the local secant
modulus. Figure 22 presents the modulus distributions obtained using Equation (24) for the linear elastic case where
σ = 5.69 MPa and the local secant modulus, ES, through incremental analysis for stresse values beyond the linear elas-
tic range.

Inspection of the results in Figure 22 highlights the reduction in Es with increasing stress that is indicative of soften-
ing behaviour in the bone material.

4.3 | Reconstruction of local stress–strain response

The distributions E(x) and ES(x) can be used to estimate local slopes of the stress–strain data and then used to recon-
struct the σavg versus εavg response of the bone material. Figure 23 shows the reconstructed σavg versus εavg response of
the bone material for four locations along the length of the specimen.

The stress–strain relationship shows the difference in the elastic modulus, yield point and the hardening parameters
at different locations of the sample. Thus, the capability of the model in calculating the constitutive relationship is illus-
trated in Figure 23.

5 | DISCUSSION OF RESULTS

First, the current finite element model uses small strain assumptions during the derivation (i.e. εaxial ≈ du/dx). Thus,
the approach is nominally limited to maximum strains of the order of 0.10, which is almost always the case when con-
sidering the elastic response of a material. If this is a concern, the model could be modified to include the effects of
larger strains considered in the developments. Another option would be to perform the analyses incrementally, with
each increment of strain meeting the current model's strain requirements. To utilise the latter approach, the experiment
should be performed in a way that provides sufficient strain data for each increment to ensure convergence in the 1D
material property identification procedure.

FIGURE 20 Distribution for predicted E(x) using Equation (24) with (a) Ne = 7, Nd = 162, (b) Ne = 10, Nd = 114, (c) Ne = 20, Nd = 57,

(d) Ne = 50, Nd = 23 (e) Ne = 200, Nd = 6, and (f) Ne = 400, Nd = 3. Specimen length, L = 9.18 mm
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Inspection of the results for the experimental data shown in Figure 20 indicates that, as the element size and data den-
sity continue to decrease beyond the first combination satisfying the convergence criteria, solutions using Equation (24)
continue to meet the convergence criteria, at least for the range studied in this application. Even when the data density
decreases to three measurements per element, the solution continues to be convergent. The effect of various parameters,
including further reductions in data density, increases in measurement error, βε, and changes in the level of discretisation,
has not been quantified in this study.

As noted in Section 3.5.3, results in Section 3.5 were used to provide initial estimates for (Nd, Ne) based on the use
of Equation (28) to assess convergence. Though conceptually helpful, the fact that the least squares criterion used to
assess convergence for known E(x) is quite different from the incremental approach in Equation (29) used to determine
convergence for an unknown E(x) distribution makes it less clear how close to the underlying E(x) the results are upon
convergence. In this case, the initial estimates (Ne = 40, Nd = 25) for a known quadratic distribution with βε = 0.01 are
reasonably close to the parameter set that resulted in convergence (Ne = 50, Nd = 22) using Equation (29).

The convergence study shows that mesh density (Ne) of the FE analysis for material property determination
depends strongly on measurement parameters (Nd) and noise in the data (βε). As discussed in Section 3.5.3 and shown
in Figure 17, there is a direct relationship between parameters Nd, Ne and subset size, step size and speckle size for
DIC-based measurements, with βε dependent upon intensity pattern noise and subset size. Though data obtained with
smaller subsets are more capable of capturing strain gradients, there will be increased variability in the strain data due
to inherent variability in the pixel intensity data.

Using an incremental approach to extend the range of applicability of Equation (24) is reasonable for simple appli-
cations such as uniaxial compression or tension where the total strain versus average stress are the quantities of inter-
est. For applications where (a) the stress state and boundary conditions are more complex (e.g. plane stress or plane
strain) and (b) multiple material parameters are to be determined, the methodology will require extension, which is
part of ongoing studies. When the small strain assumptions are valid, the method outlined in this work is readily

FIGURE 21 Elastic modulus predicted using inverse method for three different load levels within the elastic limit (50 elements were

used in the inverse analysis)

FIGURE 22 Predicted distributions using Equation (24) for E(x) in linear elastic case with σ = 5.69 MPa and incremental analysis to

obtain secant modulus, ES(x), for applied stresses beyond the linear elastic range
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extended for non-linear stress strain relationship using the incremental approach, provided that loading is divided into
multiple small increments where the strain increments beyond the elastic limit are selected to capture gradients in the
stress–strain curve (e.g. at the linear–non-linear transition). For the case of large strain condition, additional steps need
to be performed to account for the change in geometry of the sample (area of cross section and node position). These
approaches are directly related to the methods implemented in incremental plasticity and updated Lagrangian
solutions.

6 | CONCLUSIONS

A direct approach based on finite element principles is demonstrated to obtain the spatial distribution of Young's modu-
lus, E(x), for 1D problems. Results using the 1D material property identification procedure with known spatial distribu-
tions of E(x) and axial strain measurements with additive Gaussian noise, βε, confirm that the methodology converges
to the correct E(x) solution for various combinations of experimental data density (Nd) and levels of discretisation (Ne).
Application of the method to determine E(x) for a heterogeneous bone sample by using a dense set of experimentally
obtained axial strain data using 2D-DIC measurements indicates the predicted distribution is in very good agreement
with independently estimated measurements, providing additional confidence in the approach. Finally, using an incre-
mental approach is demonstrated to successfully extend the approach into the non-linear regime and determine the
secant modulus distribution, ES(x), at multiple load levels. The measured Es(x) is used to determine the local stress–
strain response of the heterogeneous bone material at four distinct locations.
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FIGURE 23 Reconstructed σavg(x) versus εavg (x) response of the bone material at (a) x = 1.84 mm, (b) x = 3.68 mm, (c) x = 5.52 mm

and (d) x = 7.36 mm along vertical x-axis. L = 9.18 mm
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SYMBOLS
L length of specimen (L)
Ne total number of finite elements for length, L
Le L/Ne, the length of each element (L)
A(x) cross-sectional area of specimen at position x (L2)
M total number of strain data points along the length, L
Nd M/Ne, number of strain data points per element
w(x) weighting function in Galerkin finite element formulation
x spatial position along length of specimen (L)
ξ local element coordinates (L)
f(x) body force in bar (FL�1)
σ(x) axial stress in specimen at position x (FL�2)
ε(x) axial strain in specimen at position x (L)
δ applied axial displacement of sample at x = L (L)
P applied axial load at x = L (F)
σavg P/A, average axial stress in the statically loaded specimen (FL�2)
E(x) modulus of elasticity at position x (FL�2)
Eo modulus of elasticity at x = 0 (FL�2)
εN(x) ε(x)/ [P/(A Eo)] normalised strain at position x
N(x) basis shape functions for each element
J Jacobian of the transformation between global and local coordinates
Ei nodal values of E(x) that are defined by the basis shape function, N(x)
Ri right-hand-side vector components
Aij components of matrix transforming nodal values of E(x), [A]ij {E}j = {R}i
βε standard deviation of Gaussian strain noise that is added to the exact strain
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APPENDIX A

As noted in Section 3.1, the primary parameters affecting convergence are (a) data density per element, Nd, (b) element
size, Le, and (c) strain error, βε. Within the matrix [A] defined in Equation (24), the main non-dimensional parameters
are L

le
Neð Þ, Δε¼ ε0βε and the number of data points in the element (Nd). Based on this observation, the set of non-

dimensional parameters used in this work are:

• Ne, number of elements in the discretisation (Ne = L/le)
• Nd, number of data points within each element (Nd = M/Ne, where M is the number of strain data points over the

length, L)
• βε, variability in the strain measurements multiplied by a reference strain, εo

To determine how Nd affects variability in the predicted modulus for a give number of elements (Ne), additional 1D
material property identification procedure were performed for different set of values of Nd and Ne with βε = 0.01 The
results are shown in Figure A1. As shown in Figure A1, when Nd is increased for a given Ne, the predicted modulus
converges to the exact modulus. Though not shown here, increasing Ne beyond 80 points does not appreciably improve
prediction accuracy.

FIGURE A1 ΔE/Eo versus Ne predictions for Nd = 10, 20 and 40 with strain error parameter βε = 0.01 and linearly varying modulus,

E(x), defined in Equation (30)
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From Figure A1, it can be observed that refinement of the mesh to resolve sharp gradients in the modulus is largely
constrained by the spatial resolution of the strain data. For example, if the maximum standard error in the predicted
modulus is limited to 5%, an increase in the number of elements from 20 to 40 requires a fourfold increase in data den-
sity, which may or may not be achievable with available imaging systems (see additional discussion in Section 3.5.3).

A.1 | Quadratic distribution of Young's modulus with body force component

A problem involving a known body force with a quadratic Young's modulus distribution given by

E¼E0 1þ x
L

� �2
� �

ðA1Þ

is analysed here. The body force is taken to be constant along the length and magnitude of the body force is taken to be
P/AL. Since the body force term is assumed to be known exactly, the component of the force vector (the right-hand side
of Equation (24) can be readily calculated. Hence, the addition of a body force component has no effect on the predicted
modulus.

The exact εN strain data obtained using the Young's modulus distribution in Equation (A1) and an applied stress
P/A, body force f(x) = P/AL are used to solve Equation (24). For Nd = 10, Figure A2a–c presents both Equation (A1)
and the predicted distribution of Young's modulus when solving Equation (24) with Le = L/4 (four elements), Le = L/8
and Le = 12, respectively. Inspection of Figure A2a–c confirms that increasing the number of elements with linear
shape functions improves the accuracy of the predictions when noise is absent.

FIGURE A2 Theoretical and predicted E(x) for Ne = 10, βε = 0 and (a) Le = L/4 (b) Le = L/8 and (c) Le = L/12

FIGURE A3 Distribution of εN and the predicted E(x) for a quadratic modulus distribution with Ne = 12, Nd = 10 and (a) βε = 0.005,

(b) βε = 0.010 and (c) βε = 0.020
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To visualise the effect of strain noise on modulus predictions, Figure A3 compares the predicted modulus to the
exact modulus distribution when Le = L/12, Nd = 10 and (a) βε = 0.005, (b) βε = 0.010 and (c) βε = 0.020. As shown in
Figure A3, for a fixed number of strain data per element, as the strain error increases, oscillations in the predicted mod-
ulus about the exact solution also increase.

To quantify the effect of Nd on E(x) predictions, for Ne = 12 and βε = 0.020, Figure A4a–c presents comparisons of
the exact quadratic distribution to the predicted E(x) using Equation (24) using Nd = 20, 80 and 200, respectively.
Inspection of Figure A4 shows that increasing data density within each element increased the accuracy of the predicted
modulus distribution.

Appendix A.2 provides a discussion of the required parameters to obtain a convergent solution for the quadratic dis-
tribution in Equation (A1).

A.2 | Convergence parameters for quadratically varying E(x)

The effect of parameters Ne, Nd and βε for a quadratically varying modulus is presented in Figure A5. The dependence
of minimum Nd with respect to Ne and βε are nominally similar to results for linearly varying E(x) shown in Figure 15.
However, the minimum data density, Nd, required to obtain convergence for a quadratic variation in E(x) and a fixed
combination of Ne and βε decreases by up to 30% when compared to the results shown in Figure 15. This somewhat

FIGURE A4 Distribution of εN and the predicted E(x) for a quadratic modulus distribution with Ne = 12, βε = 0.02 and (a) Nd = 20,

(b) Nd = 80 and (c) Nd = 200

FIGURE A5 Plot of Nd versus Ne for selected values of βε and quadratic variation in Young's modulus
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counter-intuitive result indicates the minimum value of Nd required for convergence depends on the functional form of
the modulus variation for a heterogeneous material.

Further inspection of the data in Figure A5 indicates there is a lower bound on the minimum Ne for the quadrati-
cally varying modulus, with Ne ≥ 10 for convergence with Δ = 0.04. For Nd < 10, the solution did not converge, inde-
pendent of Nd. This requirement is directly related to the functional form of E(x).## Hence, the left-side boundary in
the parameter space is defined by the minimum value of Ne. In Region I, the effect of the shape of E(x) contributes to
defining a lower bound on discretisation that is required for convergence. In Region II, convergence can be obtained
with increasing βε requiring increases in Nd.

***

##For the case of the linear shape function used in the current work, it is verified that the FE solutions approaches the true distribution with
increasing Ne.
***For the linearly varying E(x) shown in Figure 15, the effect of Zone I is insignificant, and hence is not shown in Figure 15.
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