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Abstract

The accurate prediction of failure events is of central interest to the field of predictive maintenance, where the role of forecasting
is of paramount importance. In this paper, we present and compare some advanced statistical and machine learning methods for
multi-step multivariate time series forecasting. Regarding statistical methods, we considered VAR, VMA, VARMA and Theta. The
machine learning approaches we selected are variants of the Recurrent Neural Network model, namely ERNN, LSTM and GRU.
All the considered methods have been evaluated in terms of accuracy, using 5 public datasets. As an extra contribution, we have
implemented the multivariate version of the Theta method.
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1. Introduction

The accurate prediction of failure events is of central interest to the field of predictive maintenance [1], where the
role of time series forecasting is of paramount importance. In particular, it is crucial to compute the remaining useful
time (RUL), which is the useful life left on an asset at a particular time of operation [2, 3].

Montero Jimenez et al. [4] classify forecasting techniques in three groups: physics-based models, knowledge-based
models, and data-driven models. Physics-based models require high skills on the underlying physics of the application.
Knowledge-based models are based on cases or facts collected over the years of operation and maintenance. They are
useful for diagnostics and provide explanatory results, but their performance on prognostics is more limited. In this

∗ Michele Amoretti. Tel.: +39-521-906390.
E-mail address: michele.amoretti@unipr.it

1877-0509© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Industry 4.0 and Smart Manufacturing.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2022) 000–000
www.elsevier.com/locate/procedia

3rd International Conference on Industry 4.0 and Smart Manufacturing

Advanced statistical and machine learning methods for multi-step
multivariate time series forecasting in predictive maintenance

Valentina Tessonia,b, Michele Amorettib
aSidel, Via La Spezia 241a, Parma 43126, Italy

bUniversity of Parma, Parco Area delle Scienze 181a, Parma 43124, Italy

Abstract

The accurate prediction of failure events is of central interest to the field of predictive maintenance, where the role of forecasting
is of paramount importance. In this paper, we present and compare some advanced statistical and machine learning methods for
multi-step multivariate time series forecasting. Regarding statistical methods, we considered VAR, VMA, VARMA and Theta. The
machine learning approaches we selected are variants of the Recurrent Neural Network model, namely ERNN, LSTM and GRU.
All the considered methods have been evaluated in terms of accuracy, using 5 public datasets. As an extra contribution, we have
implemented the multivariate version of the Theta method.

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Industry 4.0 and Smart Manu-
facturing.

Keywords: predictive maintenance; multi-step multivariate time series forecasting; statistical methods; machine learning

1. Introduction

The accurate prediction of failure events is of central interest to the field of predictive maintenance [1], where the
role of time series forecasting is of paramount importance. In particular, it is crucial to compute the remaining useful
time (RUL), which is the useful life left on an asset at a particular time of operation [2, 3].

Montero Jimenez et al. [4] classify forecasting techniques in three groups: physics-based models, knowledge-based
models, and data-driven models. Physics-based models require high skills on the underlying physics of the application.
Knowledge-based models are based on cases or facts collected over the years of operation and maintenance. They are
useful for diagnostics and provide explanatory results, but their performance on prognostics is more limited. In this

∗ Michele Amoretti. Tel.: +39-521-906390.
E-mail address: michele.amoretti@unipr.it

1877-0509© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Industry 4.0 and Smart Manufacturing.

2 Valentina Tessoni, Michele Amoretti / Procedia Computer Science 00 (2022) 000–000

sense, data-driven models are gaining popularity because of the improved availability of computational power and the
production of Big Data.

In this paper, we present and compare some advanced statistical and machine learning methods for multi-step
multivariate time series forecasting. Our work has been inspired by the M competitions,1 whose ultimate purpose is to
advance the theory of forecasting and improve its utilization by businesses and non-profit organizations. Their other
goal is to compare the accuracy/uncertainty of machine learning and deep learning methods with standard statistical
ones, and assess possible improvements versus the extra complexity and higher costs of using the various methods.
Similarly, Yin et al. [5] conducted a systematic evaluation of forecasting methods to evaluate how their forecasting
error depend on the features of the dataset and on the forecasting horizon.

Regarding statistical methods, we considered VAR, VMA, VARMA and Theta. The machine learning approaches
we selected are variants of the Recurrent Neural Network model, namely ERNN, LSTM and GRU. All the considered
methods have been evaluated in terms of accuracy, using 5 public datasets. As an extra contribution, we have imple-
mented the multivariate version of the Theta method [6], starting from the bivariate one (which was the only available
implementation, to the best of our knowledge).

The paper has the following structure. In Section 2, the concept of time series forecasting is presented in a more
detailed fashion, with particular attention to accuracy measures. In Section 3, the considered statistical and machine
learning methods are presented concisely. In Section 4, the experimental setup is illustrated. In Section 5, the experi-
mental results are presented and discussed. Finally, in Section 6, some conclusions are drawn.

2. Time Series Forecasting

Time series forecasting uses the information in a time series to predict future values of that series. A univariate
time series, as the name suggests, is a series with a single time-dependent variable. A multivariate time series, instead,
has multiple time-dependent variables, each one depending not only on its past values but also on other variables. This
dependency between variables is used for forecasting future values.

A time series forecasting problem that requires a prediction of multiple time steps into the future can be referred to
as multi-step time series forecasting. Shorter time horizons are often easier to predict with higher confidence.

Many time series are characterized by trends and seasonal variations, which are relatively straightforward to iden-
tify. Serial correlation (also referred to as autocorrelation) measures the relationship between the current value of a
variable and the values of the same variable from previous time periods. The study of serial correlations is commonly
used in creating forecasting models.

2.1. Accuracy Measures

Before reviewing the most advanced forecasting methods, we present the accuracy measures that have been adopted
in the M4 Competition [7]. The following notation is used. The actual value of the time series at point t is denoted as
yt. The estimated forecast is denoted as ŷt . The number of fitted points is n. The forecasting horizon is h. The seasonal
period is m (e.g., 12 for monthly time series, 4 for quarterly, 24 for hourly). For non-seasonal time series (yearly,
weekly and daily data) m = 1 s[7].

The symmetric mean absolute percentage error (sMAPE) is defined as

sMAPE =
2
h

n+h∑
t=n+1

|yt − ŷt |
|yt | + |ŷt |

∗ 100% (1)

1 https://mofc.unic.ac.cy/history-of-competitions/
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and the mean absolute scaled error (MASE) is defined as

MAS E =
1
h

n+h∑
t=n+1

|yt − ŷt |

1
n − m

n∑
t=m+1

|yt − yt−m|
(2)

where | · | is the L1 norm. The overall weighted average (OWA) is the average of the Relative sMAPE and Relative
MASE [7] using Naı̈ve method as reference.

3. Forecasting Methods

A forecasting method is a predetermined sequence of steps that produces forecasts at future time periods [8]. Many
forecasting methods have corresponding stochastic models that produce the same point forecasts and can also be used
to generate prediction distributions and prediction intervals. A stochastic model makes assumptions about the process
and the associated probability distributions.

The selection of a forecasting method depends on many factors: the context of the forecast, the relevance and
availability of historical data, the degree of accuracy desirable, the time period to be forecast, the cost/ benefit (or
value) of the forecast, and the time available for making the analysis [9].

3.1. Statistical Methods

In the following, we recap the major statistical methods for multivariate time series forecasting. We start from
Naı̈ve method, then we describe VAR, VMA e VARMA methods [10], and finally we illustrate the Theta method.

3.1.1. Naı̈ve Method
Naı̈ve forecasting is an estimating technique in which the current period’s values are used as next period’s forecast,

without adjusting them or attempting to establish causal factors. This method is used only for comparison with the
forecasts generated by more sophisticated techniques.

3.1.2. VAR, VMA and VARMA Methods
A vector auto regression process of order p, denoted as VAR(p) is a multivariate stochastic process xt that fulfills

the following equation:

xt = A1x(t−1) + .. + Apx(t−p) + et (3)

where et is k-dimensional white noise and A1,..,p are k × k matrices.
Equation 3 is usually restated as

A(L)xt = et (4)

in terms of the lag polynomial

A(L) = (I − A1L1 − .. − ApLp) (5)
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where the ith lag operator Li is such that Liyt = y(t−i).
A VAR process is stationary if it is stable, i.e., detA(z) � 0 for |z| < 1.
Similarly, a vector moving average process of order q, denoted as VMA(q) is a multivariate stochastic process yt

that fulfills the following equation:

yt = M0 zt + .. + Mq z(t−q) (6)

where zt is a k-dimensional zero-mean white noise process. Equivalently,

yt = M(L)zt. (7)

VAR and VMA processes can be combined to a so-called VARMA process, satisfying the following equation

yt = A1y(t−1) + .. + Apy(t−p) + M0 zt + .. + Mq z(t−q). (8)

Equivalently,

A(L)yt = M(L)zt. (9)

The VARMA process is stationary if detA(z) � 0 for |z| < 1.
Forecasting a multivariate time series with VAR, VMA or VARMA requires, as a first step, to fit the selected

method to the data. Once the parameters have been estimated, the method is applied to the time series whose future
values must be forecast. In doing this, it is necessary to be aware that the resulting values are affected by the forecast
error induced by the model and the forecast error induced by the estimation error.

3.1.3. Theta Method
The Theta method [11] is a univariate forecasting method based on the concept of modifying the second differences

of a time series through the θ coefficient. When θ < 1 the second differences are reduced, whereas when θ > 1 the
second differences are increased. This procedure produces new time series denoted as Theta-lines (or θ-lines), which
are then extrapolated and combined to produce the forecast of the time series.

The Theta method was extended to the case of multivariate time series, in order to perform vector forecasting, by
Thomakos and Nikolopoulos [6]. Consider a multivariate time series x̃t of dimension k such that

x̃t = µ + x̃(t−1) + ut = x̃0 + µt + St (10)

where µ � 0 is the drift vector, the innovations ut are assumed to follow a zero mean, stationary time series with finite
second moments, and St =

∑t
j=1 u j is the stochastic trend of the cumulated innovations. Introducing xt = x̃t − x̃0, we

obtain

xt = µt + St. (11)
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We define the multivariate θ-line to depend on a parameter matrix Θ rather than a single parameter θ. We now have

Qt(Θ) = Θxt + (I −Θ)µt (12)

where I is the k-dimensional identity matrix. Finally, we have the following forecast function:

F(t+1)(Θ) = µ + Qt(Θ) = µ(t + 1) +Θ(xt − µt) (13)

with forecast error given by

x(t+1) − F(t+1)(Θ) = S(t+1) −ΘSt. (14)

The drift terms are estimated by the sample means of the first differenced series, i.e., µ̂ = n−1∑n
t=2 ∆xt. Therefore,

Ŝ
t
= xt − µ̂t and ût = ∆xt − µ̂. The Θ matrix is estimated either via reduced rank regression or via multivariate least

squares.

3.2. Machine Learning Approaches

Recurrent Neural Networks (RNNs) are the most commonly used machine learning models for sequence prediction
problems. Unlike standard feedforward neural networks, RNNs have feedback connections — which is biologically
more realistic.

Instead of neurons, RNNs have memory blocks, also denoted as cells, that may be connected into multiple layers.
A block has components that make it smarter than a classical neuron and a memory for recent sequences. The idea
(illustrated in Figure 1) is that, in each layer, the same RNN block repeats for every time step (t = 1, ..,T ), sharing the
same weights and biases between each of them. The feedback loop of the block helps the network to propagate the
hidden state to the future time steps. The input to the block at time step t is a vector xt ∈ Rm, being m the number of
features. The output of a block is a vector yt ∈ Rn. It is worth nothing that n is a an externally tuned hyperparameter
that may take on any appropriate value. To use RNNs for time series forecasting [12], it is necessary to project the
output of the block to the expected forecasting horizon k by means of a dense layer that must be connected on top of
the last recurrent block.

Fig. 1. Single-layer RNN: folded (a) and unfolded (b). The input, output and hidden state at time step t are denoted as xt , yt and ht , respectively.

The most popular RNN blocks are the Elman RNN (ERNN) block [13], Long Short-Term Memory (LSTM) block
[14] and the Gated Recurrent Unit (GRU) [15].
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3.2.1. ERNN
At each time step t, an ERNN block is characterized by an hidden state ht ∈ Rn that results from the application

of an activation function (the sigmod, mostly) to the input vector xt ∈ Rm and to the hidden state of the previous time
step h(t−1). Moreover, the ERNN block produces an output vector yt ∈ Rn that results from the application of another
activation function (the hyperbolic tangent, usually) to the hidden state ht. More precisely:

ht = σ(Wih(t−1) + Vixt + bi) (15)
yt = tanh(Woht + bo) (16)

where Wi ∈ Rn×n, Wo ∈ Rn×n, Vi ∈ Rm×m are weight matrices, and bi, bo are bias vectors.
The structure of the basic ERNN block is as shown in Figure 2.

Fig. 2. Scheme of the Elman RNN block.

ERNNs have very complex dynamics and they are difficult to train. Going back with the gradients, the values may
get either smaller exponentially (vanishing gradient problem) or larger exponentially (exploding gradient problem).

3.2.2. LSTM
An LSTM block features an input activation function, three gates (input, forget, output), an internal recurrence

loop (the Constant Error Carousel), an output activation function and peephole connections (Fig. 3). The LSTM block
has an input x (with size m) and produces an output y (with size n). The output of the LSTM block is recurrently
connected back to the block input.

The LSTM block is characterized by the following weights:

• Input weights: Wz, Wi, W f , Wo ∈ Rn×m

• Recurrent weights: Rz, Ri, R f , Ro ∈ Rn×n

• Peephole weights: pi, pf , po ∈ Rn

• Bias weights: bz, bi, b f , bo ∈ Rn

Let xt be the input vector at time t. Then the vector formulas for the LSTM block forward pass can be written as:

zt = g(Wzxt + Rzyt−1 + bz) input activation function (17)
it = σ(Wixt + Riyt−1 + pi � ct−1 + bi) input gate (18)
f t = σ(W f xt + R f yt−1 + pf � ct−1 + b f ) forget gate (19)

ct = zt � it + ct−1 � f t internal recurrence loop (20)
ot = σ(Woxt + Royt−1 + po � ct + bo) output gate (21)
yt = h(ct) � ot output activation function (22)

where � denotes the point-wise multiplication of two vectors, σ(x) = 1
1+e−x is the logistic sigmoid, g(x) and h(x) are

usually the hyperbolic tangent tanh(x).
The way the LSTM block reduces the vanishing gradient problem is by creating an internal memory state which is

simply added to the processed input. In this way, the multiplicative effect of small gradients is greatly reduced. The
forget gate determines which states are remembered or forgotten.
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We define the multivariate θ-line to depend on a parameter matrix Θ rather than a single parameter θ. We now have

Qt(Θ) = Θxt + (I −Θ)µt (12)

where I is the k-dimensional identity matrix. Finally, we have the following forecast function:

F(t+1)(Θ) = µ + Qt(Θ) = µ(t + 1) +Θ(xt − µt) (13)

with forecast error given by

x(t+1) − F(t+1)(Θ) = S(t+1) −ΘSt. (14)

The drift terms are estimated by the sample means of the first differenced series, i.e., µ̂ = n−1∑n
t=2 ∆xt. Therefore,

Ŝ
t
= xt − µ̂t and ût = ∆xt − µ̂. The Θ matrix is estimated either via reduced rank regression or via multivariate least

squares.

3.2. Machine Learning Approaches

Recurrent Neural Networks (RNNs) are the most commonly used machine learning models for sequence prediction
problems. Unlike standard feedforward neural networks, RNNs have feedback connections — which is biologically
more realistic.

Instead of neurons, RNNs have memory blocks, also denoted as cells, that may be connected into multiple layers.
A block has components that make it smarter than a classical neuron and a memory for recent sequences. The idea
(illustrated in Figure 1) is that, in each layer, the same RNN block repeats for every time step (t = 1, ..,T ), sharing the
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hidden state to the future time steps. The input to the block at time step t is a vector xt ∈ Rm, being m the number of
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that may take on any appropriate value. To use RNNs for time series forecasting [12], it is necessary to project the
output of the block to the expected forecasting horizon k by means of a dense layer that must be connected on top of
the last recurrent block.

Fig. 1. Single-layer RNN: folded (a) and unfolded (b). The input, output and hidden state at time step t are denoted as xt , yt and ht , respectively.

The most popular RNN blocks are the Elman RNN (ERNN) block [13], Long Short-Term Memory (LSTM) block
[14] and the Gated Recurrent Unit (GRU) [15].
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yt = h(ct) � ot output activation function (22)

where � denotes the point-wise multiplication of two vectors, σ(x) = 1
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usually the hyperbolic tangent tanh(x).
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Several variants of the LSTM architecture for RNNs have been proposed since its inception in 1995. A thorough
survey and performance evaluation of LSTM variants was presented by Greff et al. [16], considering three represen-
tative tasks: speech recognition, handwriting recognition, and polyphonic music modeling.

Fig. 3. The most general scheme of an LSTM block. Continuous arrows refer to vectors at time t, dashed arrows refer to vectors at time t − 1.

In a recent work by Makridis et al. [17], an LSTM models is built to perform one step ahead prediction, using
multiple data streams as inputs, for predictive maintenance in the context of maritime industry.

3.2.3. GRU
The GRU block, proposed by Cho et al. [15], is a simplified variant of the LSTM block. Neither peephole connec-

tions nor output activation functions are used. The input and the forget gate are coupled into an update gate. Finally,
the output gate (called reset gate) only gates the recurrent connections to the block input (Wz).

In a recent work by Ardeshiri and Ma [18], a GRU-based deep learning approach is used to predict the remaining
useful life (RUL) of lithium-ion batteries (LIBs), accurately.

4. Experimental Evaluation

To evaluate the forecasting methods described in Section 3, we have used common Python modules like StatsMod-
els, Tensorflow, Keras and Pandas. Regarding the Theta method, we have implemented (using R) the multivariate
version, starting from the bivariate one that is provided with the book by Assimakopoulos and Nikolopoulos [11]. Our
code and data are available on a public GitHub repository.2

The LSTM model has a first layer with n = 100 units and activation function relu. Before providing the output to
the second layer, its fixed-length is repeated once for each required time step. The second layer has the same structure
of the first one. Finally, a Time distributed layer of Dense type is added. The selected optimizer is Adam, the learning
rate has been set to 0.001, the number of epochs is 100 for the FRED dataset, 70 for Air Quality, Appliances Energy
Prediction and Gas Turbine, and 20 for Beijing PM2.5 Data. Using different epochs for each dataset is necessary
to overcome convergence issues. The GRU and ERNN models have the same structure and hyper-parameters of the
LSTM one.

We have adopted two different execution environments. The first one is the Google Cloud Platform environment
owned by Sidel. The other one is the High Performance Computing facility of the University of Parma. With these
platforms, the largest machine learning model we had to train (LSTM with 100 units, for the Appliances Energy
Prediction dataset described below) required about 15 minutes.

2 https://github.com/hpc-unipr/forecasting
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the output gate (called reset gate) only gates the recurrent connections to the block input (Wz).

In a recent work by Ardeshiri and Ma [18], a GRU-based deep learning approach is used to predict the remaining
useful life (RUL) of lithium-ion batteries (LIBs), accurately.

4. Experimental Evaluation

To evaluate the forecasting methods described in Section 3, we have used common Python modules like StatsMod-
els, Tensorflow, Keras and Pandas. Regarding the Theta method, we have implemented (using R) the multivariate
version, starting from the bivariate one that is provided with the book by Assimakopoulos and Nikolopoulos [11]. Our
code and data are available on a public GitHub repository.2

The LSTM model has a first layer with n = 100 units and activation function relu. Before providing the output to
the second layer, its fixed-length is repeated once for each required time step. The second layer has the same structure
of the first one. Finally, a Time distributed layer of Dense type is added. The selected optimizer is Adam, the learning
rate has been set to 0.001, the number of epochs is 100 for the FRED dataset, 70 for Air Quality, Appliances Energy
Prediction and Gas Turbine, and 20 for Beijing PM2.5 Data. Using different epochs for each dataset is necessary
to overcome convergence issues. The GRU and ERNN models have the same structure and hyper-parameters of the
LSTM one.

We have adopted two different execution environments. The first one is the Google Cloud Platform environment
owned by Sidel. The other one is the High Performance Computing facility of the University of Parma. With these
platforms, the largest machine learning model we had to train (LSTM with 100 units, for the Appliances Energy
Prediction dataset described below) required about 15 minutes.
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Table 1. Dataset features
Dataset Variables Variables considered Observations Observations considered
FRED 2 2 753 753
Air Quality 13 12 9358 7410
Appliances Energy Prediction 28 27 19735 19735
Beijing PM2.5 Data 8 5 43824 41971
Gas Turbine CO and NOx Emission 11 11 7384 7384

4.1. Datasets

In Table 1 we show the main characteristics of the selected datasets. For all of them, we performed some prepro-
cessing in order to remove categorical variables, as well as variables with a huge amount of missing data (more than
half of observations). Furthermore, we removed consecutive time steps characterized by missing values of the same
variables. For non-consecutive missing data we performed interpolation to reconstruct the observation values, using
the na.interp R-function of the forecast library.

For all datasets, before applying the forecasting algorithms, we performed feature selection, that is, given an initial
set of m features, we found the subset within n < m features that is “maximally informative” about the original data.

The Federal Reserve Economic Data (FRED) dataset [19] collects data aggregated on weekly basis from 21 January
1999 to 21 June 2013 of DEXUSEU versus DEXUSUK foreign exchange rates.

The Air Quality dataset [20] contains instances of hourly averaged responses from an array of 5 metal oxide
chemical sensors embedded in an Air Quality Chemical Multisensor Device. The device was located on the field in
a significantly polluted area, at road level, within an Italian city. Data were recorded from March 2004 to February
2005 (one year), representing the longest freely available recordings of on field deployed air quality chemical sensor
devices responses.

The Appliances Energy Prediction dataset [21] collects temperature and humidity measurements in a house, at
10 min for about 4.5 months, merged together with weather information from the nearest airport weather station
(Chievres Airport, Belgium). For consistency with the other datasets, we aggregated data on a hourly basis.

The Beijing PM2.5 dataset [22] contains the PM2.5 hourly data of the US Embassy in Beijing, collected between
January 1st, 2010 and December 31st, 2014.

Finally, the Gas Turbine CO and NOx Emission dataset [23] collects instances of 11 sensor measures aggregated
over one hour (by means of average or sum) from a gas turbine located in Turkey’s north western region for the
purpose of studying flue gas emissions, namely CO and NOx (NO + NO2).

In our experiments, the forecast horizon has been set based on data frequency: 13 for weekly series and 48 for
hourly ones.

4.2. Experimental Results

In Table 2 we report the accuracy measures (sMAPE, MASE and OWA) of the statistical methods and the machine
learning models applied to the datasets described in Table 1.

For the FRED series the ERNN model is the one that performs best for all the metrics, while the GRU performs
worst. The VARMA method gives the highest accuracy results for Air Quality series in both cases (complete and
reduced number of variables); for the complete dataset (12 variables), GRU presents the worst performance for all
of the accuracy measures, while for the reduced dataset (11 variables) ERNN and LSTM perform worst in terms of
sMAPE and MASE, respectively. VARMA method achieves the best results even as for Appliances Energy Prediction
for complete and reduced dataset considering sMAPE and OWA metrics, while in terms of MASE the lowest values
belong to LSTM for the complete dataset and to GRU for the reduced one. For the Beijing PM2.5 series VARMA
gives the best performance in terms of sMAPE, but considering MASE the best result is achieved by ERNN model
and in terms of overall metric (OWA) by the Theta method. For Gas Turbine Emission series the Naı̈ve method is the
best performing for all the metrics on complete and reduced datasets, while the worst results are reached by VARMA
in terms of MASE on the complete dataset and by ERNN considering sMAPE on the reduced dataset.
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Table 2. Performance of the statistical methods and machine learning models for accuracy measures (sMAPE, MASE and OWA) on the simulated
time series.

FRED

Accuracy Naı̈ve VARMA Theta LSTM GRU ERNN
sMAPE 1.193649 1.185661 1.277451 1.017414 2.541121 1.003728
MASE 1.380297 1.371132 1.475193 1.178984 2.911474 1.162238
OWA 1 0.993334 1.069478 0.8532542 2.119089 0.8414553

Air Quality (12 variables)

Accuracy Naı̈ve VARMA Theta LSTM GRU ERNN
sMAPE 25.920726 21.268016 31.04238 108.438836 111.103119 86.857429
MASE 1.066287 0.945339 1.240972 1.482605 1.690928 1.019372
OWA 1 0.8535366 1.180707 2.786958 2.936038 2.153444

Air Quality (11 variables)

Accuracy Naı̈ve VARMA Theta LSTM GRU ERNN
sMAPE 26.441247 21.418943 32.80628 79.379805 88.20006 102.380801
MASE 1.08536 0.805769 1.303255 1.165231 1.283546 1.610113
OWA 1 0.7762279 1.220741 2.037855 2.25915 2.677747

Appliances Energy Prediction (27 variables)

Accuracy Naı̈ve VARMA Theta LSTM GRU ERNN
sMAPE 12.459746 11.009363 13.27577 66.989181 62.444374 64.885003
MASE 1.459115 1.246086 1.56609 1.206099 1.119784 1.2623
OWA 1 0.8687979 1.069404 3.101522 2.889565 3.036342

Appliances Energy Prediction (25 variables)

Accuracy Naı̈ve VARMA Theta LSTM GRU ERNN
sMAPE 12.482669 10.523774 13.11852 82.92169 61.644413 73.088591
MASE 1.454296 1.166184 1.539047 1.472314 1.068622 1.264733
OWA 1 0.8224799 1.054608 3.827668 2.836602 3.362429

Beijin PM2.5 Data

Accuracy Naı̈ve VARMA Theta LSTM GRU ERNN
sMAPE 19.939999 16.872395 19.7011 91.777397 82.140564 74.744674
MASE 2.150922 1.812714 2.123974 1.907544 1.884399 1.515209
OWA 1 0.8444598 0.9877453 2.744764 2.497738 2.226463

Gas Turbine CO and NOx Emission (11 variables)

Accuracy Naı̈ve VARMA Theta LSTM GRU ERNN
sMAPE 2.284616 3.145704 2.733125 83.956744 94.877858 97.109777
MASE 1.339281 1.832027 1.601448 1.5264774 1.826159 1.609431
OWA 1 1.372413 1.196035 18.94425 21.44628 21.85383

Gas Turbine CO and NOx Emission (9 variables)

Accuracy Naı̈ve VARMA Theta LSTM GRU ERNN
sMAPE 1.843312 2.383139 2.300286 92.796812 72.158405 102.637407
MASE 1.298374 1.321114 1.619854 1.6535555 1.510719 1.705797
OWA 1 1.155186 1.247749 25.808 20.1548 28.49738
Notes: We note with ’bold’ the best performance.

5. Conclusion

In this study we have provided a comparison between some advanced statistical and machine learning methods for
multi-step multivariate time series forecasting. We have evaluated the forecasting accuracy of the methods on series
with different lengths, dimensions and data frequency.

An aspect we want to highlight is the outperforming of VARMA with respect to the other methods in the majority of
the time series considered; anyway, it is necessary to extend the analysis to a wider range of datasets before stating its
major accuracy with respect to RNN models. Among the statistical methods, the Theta method has been he worst one,
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with respect to the considered dataset. However, it has always outperformed the machine learning models. Finally, our
results do not allow to decide the best RNN mode among ERNN, LSTM and GRU.

We believe that this work can be a starting point for further investigation on the forecasting power of statistical
and machine learning methods, with respect to multivariate multi-step time series forecasting, considering the high
relevance they have in the field of predictive maintenance.
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MASE 1.339281 1.832027 1.601448 1.5264774 1.826159 1.609431
OWA 1 1.372413 1.196035 18.94425 21.44628 21.85383

Gas Turbine CO and NOx Emission (9 variables)

Accuracy Naı̈ve VARMA Theta LSTM GRU ERNN
sMAPE 1.843312 2.383139 2.300286 92.796812 72.158405 102.637407
MASE 1.298374 1.321114 1.619854 1.6535555 1.510719 1.705797
OWA 1 1.155186 1.247749 25.808 20.1548 28.49738
Notes: We note with ’bold’ the best performance.

5. Conclusion

In this study we have provided a comparison between some advanced statistical and machine learning methods for
multi-step multivariate time series forecasting. We have evaluated the forecasting accuracy of the methods on series
with different lengths, dimensions and data frequency.

An aspect we want to highlight is the outperforming of VARMA with respect to the other methods in the majority of
the time series considered; anyway, it is necessary to extend the analysis to a wider range of datasets before stating its
major accuracy with respect to RNN models. Among the statistical methods, the Theta method has been he worst one,
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with respect to the considered dataset. However, it has always outperformed the machine learning models. Finally, our
results do not allow to decide the best RNN mode among ERNN, LSTM and GRU.

We believe that this work can be a starting point for further investigation on the forecasting power of statistical
and machine learning methods, with respect to multivariate multi-step time series forecasting, considering the high
relevance they have in the field of predictive maintenance.
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[4] Juan José Montero Jimenez, Sébastien Schwartz, Rob Vingerhoeds, Bernard Grabot, and Michel Salaün. Towards multi-model approaches to
predictive maintenance: A systematic literature survey on diagnostics and prognostics. Journal of Manufacturing Systems, 56:539–557, 2020.

[5] Jiaming Yin, Weixiong Rao, Kai Zhao, Mingxuan Yuan, Jia Zeng, Chenxi Zhang, JiangFeng Li, and Qinpei Zhao. Experimental study of
multivariate time series forecasting models. In 28th ACM International Conference on Information and Knowledge Management, 2019.

[6] Dimitrios D. Thomakos and Konstantinos Nikolopoulos. Forecasting Multivariate Time Series with the Theta Method: Multivariate Theta
Method. Journal of Forecasting, 34(3):220–229, April 2015.

[7] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M4 Competition: 100,000 time series and 61 forecasting methods.
International Journal of Forecasting, 36:54–74, March 2020.

[8] Fotios Petropoulos et al. Forecasting: theory and practice. arXiv:2012.03854, 2020.
[9] John C. Chambers, Satinder K. Mullik, and Donald D. Smith. How to Choose the Right Forecasting Technique. Harvard Business Review,

July 1971.
[10] Helmut Lütkepohl. New Introduction to Multiple Time Series Analysis. Springer, 2005.
[11] V. Assimakopoulos and K. Nikolopoulos. The Theta model: a decomposition approach to forecasting. International Journal of Forecasting,

16(4):521–530, 2000.
[12] Bryan Lim and Stefan Zohren. Time Series Forecasting With Deep Learning: A Survey. Philosophical Transactions of the Royal Society A,

379: 20200209, February 2021.
[13] Jeffrey Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.
[14] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Comput., 9(8):1735–1780, November 1997.
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