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Long-Term Driving Behaviour Modelling for Driver Identification

Letizia Marchegiani∗ and Ingmar Posner∗

Abstract— Driver identification constitutes an important en-
abling technology in intelligent transportation systems, allowing
the development and the use of in-car personalised function-
alities and thwarting unauthorised usage. In this work, we
leverage the literature in authentication tasks (e.g. speaker
recognition) and present a framework for driver identification
which employs Support Vector Machine (SVM) and Universal
Background Model schemes. Our framework operates on ac-
celerator and break pedal signals, and thus augments other
technologies, such as microphones or cameras, if present.
Moreover, our framework is compatible with vehicles which
are limited to traditional sensing modalities. We evaluate the
framework on 15 hours of driving data for a total of 416
Km travelled, comprising of messages from the CAN bus of
an electric vehicle and GPS traces from four different drivers
travelling on the same route, obtaining an accuracy of over
95% in the identification rate. Furthermore, our evaluation
shows that UBM schemes outperform classification approaches
traditionally adopted in driver identification literature by a
significant margin.

I. INTRODUCTION

Driver identification represents an important aspect in the
development of intelligent transportation system technolo-
gies, which aim to provide personalised in-car functionalities
and respond to the threat of unauthorised users. Knowing the
identity of the person driving ensures the vehicle’s safety
and allows for customisation according to the driver’s pref-
erences, improving comfort and efficiency in the use of the
vehicle. In the case of electric cars, this efficiency can also be
exploited in terms of more reliable estimates of the attainable
range and predictions of the energy consumption (cf. [1],
[2]). To guarantee a high level of portability and adaptability
to different contexts and new drivers, the authentication
process needs to take place in real time, transparently to the
user and without necessarily involving traditional biometric
measures, which would require the presence of specific
sensors. Our goal is to augment other technologies, such as
face or voice recognition, if present, with driving behaviour
information, while providing vehicles, not equipped with
additional sensing modalities, with a robust driver identi-
fication system. Building on previous studies which proved
the effectiveness of pedal operation patterns as discriminant
features for driver classification (e.g. [3], [4], and [5]), we
develop a probabilistic framework for driver identification,
which makes use of a spectral representation of accelerator
and brake pedal signals (i.e. cepstral analysis), evaluating
their discriminating power as sole features and when used in
combination. More specifically, our system employs Support
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Fig. 1. Representation of the pipeline operating in the framework. Brake
pedal and accelerator information is extracted from the CAN bus of the ve-
hicle and cesptral analysis is performed to obtain the feature representation
of the signals (purple area). Features are then fed to our driver behaviour
model, which makes use of a Universal Background Model scheme, to
authenticate the driver (blue area).

Vector Machines (SVMs) and a Universal Background Model
(UBM) [6] paradigm. UBM has been extensively used in a
variety of authentication tasks, such as speaker verification
and recognition [7], [8], [9], online signature recognition
[10], and periocular recognition [11], yielding remarkable
performance. An illustration of our framework is provided
in Figure 1.

Traditionally, UBMs rely on a large amount of data from
different subjects, in order to represent subject-independent
characteristics with respect to a model of subject-specific
characteristics in authentication tasks [6]. In this work, we
generate the UBM using data from several drivers to encap-
sulate the behaviour of the average driver against the target
one. For this purpose, we collected 15 hours of driving data
for a total of 416 Km travelled, comprising of messages from
the CAN bus of an electric vehicle and GPS traces from four
different drivers travelling on the same route1. By collecting
data on the same route and at similar times of the day (i.e.
in similar traffic conditions), we aim to reduce as much
as possible the effect of any environmental factor, while
emphasising exclusively differences in the driving style.
This dataset suits particularly well the scenario we want to

1The authors are planning to release the dataset.



address, where identification is performed among a small
group of drivers (i.e. a family sharing the same vehicle),
with one of them being the main user of the car. In this
scenario, indeed, the users of the car might be often driving
along the same path. Furthermore, as the dataset covers a
substantial time frame, our analysis can capture long-term
characteristics in the driving style. With respect to previous
works (e.g. [3], [4]) where identification systems were built
and tested relying on data collected either in simulation
or over few minutes long driving sessions, the nature of
our dataset also allows us to evaluate our framework when
operating over extensive periods of time. The results show
that our system, despite the relative simplicity of the model
adopted, is able to robustly authenticate the current user
of the car. Lastly, we compare our framework against two
classification methods with different complexity, traditionally
utilised in driver identification literature, showing that the
proposed UBM-based approach outperforms such methods
by an appreciable margin, which increases with the number
of drivers considered in the classification. To summarise, the
main contributions of this paper are:

• the use of a UBM-based approach to perform driver
identification, in contrast to previous literature which
relies on classic classification frameworks;

• the use of a particularly challenging, and extensive,
dataset, where driving data are collected along the same
route and in similar traffic and driving conditions, which
allows long-term analysis of the driver’s behaviour in
real-world scenarios.

The remainder of this article is structured as follows. Sec-
tion II briefly describes related works. Section III illustrates
the technical approach employed. Section IV presents the
experimental evaluation of the framework. We conclude in
Section V.

II. RELATED WORKS

Driver behaviour has been investigated in the literature
from several perspectives and for different purposes. [12]
performed the classification of certain driver characteristics,
such as being cautious, average, expert, and reckless, for
the development of an intelligent driver assistance system. A
similar investigation has been carried out by [13] for human-
in-the-loop automotive control architectures. This study also
accounted for the driver mental state, the context or situation
that the vehicle is in, and the surrounding environment.
Anomalous behaviour detection and analysis have been ex-
plored in [14], [15]. Driver behaviour modelling has also
played an important role in driver identification frameworks.
Several features and their significance and impact in driver
classification have been investigated in the literature. Most of
these works make use of biometric information, equipping
the car with cameras, microphones and other specific on-
board sensors [16]. We envision our authentication system
to augment these kinds of technologies with information
pertaining the driving style, while also ensuring robust
identification, in case of vehicles lacking such technologies.
Previous studies in this direction mainly focused on pedal

operation patterns, and on the use of Gaussian Mixture
Models (GMM) and Neural Network (NN) frameworks to
represent the driver’s behaviour while performing specific
tasks (e.g. [3], [4], and [5]). Other works [17] investigated
the use of yaw rate sensors, steering angle information, and
velocity measurements. Pedal operation patterns have been
also used in [18] to build a model able to imitate the driver’s
operations and generate the desired throttle depression and
braking pressure. The majority of these studies focus on
predicting driver behaviour in specific circumstances for the
development of intelligent driver advisory systems. Erdogan
et al. [19] tested the combination of different classifiers,
showing that signals like accelerator and brake pedal pressure
actually carry biometric information able to provide the high-
est identification accuracy among a combination of different
features, including steering angle, engine and vehicle speed.
Building on the conclusions of [19], we propose a different
approach to driving signal modelling, based on relatively
simple SVM classifiers and UBM schemes, in order to
authenticate the user of the vehicle. The obtained perfor-
mance, indeed, suggests that, thanks to the use of the UBM
paradigm, there is no real need of overloading the system
with more complex machine learning frameworks, requir-
ing additional computational resources. Furthermore, while
previous studies have focused on the short-term behaviour
of the driver, modelling either small fragments of driving
data of about few minutes or driving responses collected
in simulation, we perform an extensive data collection and
build our models on several hours of driving data, which
allows us to extend our analysis to long-term patterns and
compartments in real-world scenarios. Lastly, as our dataset
has been gathered along the same route and under similar
weather and traffic conditions, external factors which might
have a direct impact on the driving style without actually
characterising it, are mitigated. This is especially useful in
our scenario, as members of the same family (i.e. the target
group of user we aim to identify) might be usually travelling
the same path and the accuracy and the robustness of the
systems might be affected by those environmental factors.

III. METHODS

The identification system presented in this work relies on
the use of binary Support Vector Machines (SVM) [20] oper-
ating on acceleration and brake pedal information collected
over several driving sessions for a total of 416 Km travelled.
We define a driving session as an entire lap of the route. For
each of the driving sessions, the CAN messages containing
information about the use of brake and accelerator signals
are parsed and grouped into frames. More information about
the feature representation of those signals is provided in
Section III-B. For each driver, two different models, one for
the brake pedal and one for the accelerator are built and used
for identification. Specifically, we make use of the concept
of Universal Background Model (UBM). UBMs are used to
represent the expected alternative driving behaviour to be
encountered during testing. More details about the UBM
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Fig. 2. Representation of the modelling strategy adopted. Two SVM
models are built to discriminate between the target driver and the UBMs,
relying on accelerator and brake information, respectively (purple boxes).
Both SVMs operate on a per-frame basis, where a frame consists of
512 measurements, corresponding to about 5s of driving, in case of the
accelerator and 15s for the brake information. (green area). For each of the
feature, decisions made by the SVMs on each frame are merged following
a majority voting strategy. A final decision referring to the entire driving
session, i.e. an entire lap along the route (blue area), is then, obtained as a
linear combination of the estimates provided by the accelerator and brake
pedal majority voting methods. More details are provided in Section IV-D.

scheme are given in Section III-A. A summary of the all
framework is given in Figure 2.

A. The Universal Background Model

The Universal Background Model has been successfully
employed in several authentication tasks. Its use is based on
the idea of building an alternative model to the one of the
target subject to identify. The goal is to obtain a framework
where the model of the target driver is compared against a
model representing any potential alternative driver, where the
latter is generated using a large amount of data from several
different drivers, aiming to cover a great range of possible
alternative patterns in feature space. This technique is close
in spirit to one versus all (OVA) classifiers, where a multi-
class problem is reduced to several binary problems. More
specifically, when applying a OVA scheme, a binary classifier
is built for each class, considering as positive samples the
ones from that class and as negative the ones belonging to
all the other classes. Despite its simplicity, previous works
(e.g. [21]) have proved that OVA paradigms are particularly
accurate when used in combination with properly tuned
classifiers, such as SVMs. UBM is generally utilised together
with Gaussian Mixture Models (GMMs), but literature also
reports successful attempts (e.g. [22]) of using it with other
classifiers, both in combination with GMMs and indepen-
dently. Building on those premises, we propose the use of an
SVM-UBM paradigm able to combine the representational
power of the UBM with the discriminating power of SVMs,
when operating in binary settings. Traditionally, it is possible
to either rely on several UBMs tailored to specific subsets of
drivers or a single UBM encapsulating the characteristics of
all the potential population, which might be encountered at

testing time. In this work, we chose to operate with a single
UBM model, as our driver set is relatively small and we are
not aiming to classify our drivers in subsets, according to
specific driving traits. Concretely, to authenticate a target
driver Di, i ∈ {1, 2, 3, 4}, we propose to train a UBM
consisting of a combination of data from the remaining
drivers Dj , j 6= i in our dataset.

B. Feature Representation

As suggested by previous work [19], we employ as feature
representation for our system CAN messages containing
information on the accelerator position and the brake pedal
pressure. In line with [3] and [5], we rely on a frequency
representation of the pedal signals, based on cepstral co-
efficients and their first and second derivatives. Cepstral
coefficients are especially useful to represent the envelope
of the Fourier transform of a signal. More specifically, the
complex cepstrum x(t) of a sequence s(t) is calculated by
first computing the complex natural logarithm of the Fourier
transform of s(t), and then the inverse Fourier transform of
the resulting sequence:

x(t) = F−1 [ln (F [s(t)])] (1)

The delta coefficients ∆(t), which refer to the first derivatives
of the cepstrum coefficients are obtained by

∆(t) =

∑N
n=1 n(x(t+ n)− x(t− n))

2
∑N

n=1 n
2

, with N = 2 (2)

The delta-delta coefficients ∆∆(t), which refer to the second
derivatives of the cepstrum coefficients are then obtained
in a similar fashion from the delta coefficients. In total we
use 39 coefficients between cepstrum, delta and delta-delta
coefficients.

IV. EXPERIMENTS

We carried out five experiments to evaluate our system.
Through these experiments, we aim to investigate the per-
formance of our UBM-based framework, as well as the dis-
criminating power of both features (i.e. accelerator position
and brake pedal pressure) when operating as sole features and
when employed in combination. By varying the composition
of the data used to train and test the models, we are interested
in further analysing the robustness of the framework to
different scenarios. In addition, we compare the behaviour of
our framework against traditional classification approaches,
typically employed in driver recognition tasks. A summary
of the experimental evaluation is provided in Table I.

A. The Data Set

Our data set consists of 15 hours of driving data (for a total
of 416 Km travelled), comprising of messages from the CAN
bus of an electric vehicle and GPS traces from four different
drivers, travelling along the same route, shown in Figure 3.
All driving sessions were carried out around the same time
of the day in similar traffic conditions. These constraints,
together with the choice of travelling on the same route, had
the goal of reducing the impact of external and casual factors



Experimental Evaluation

Experiment ID Type Training/Testing Configuration Features Frame/Session

1 UBM-based Identification Same Drivers in Training and Testing A ⊕ B Frame-based
2 UBM-based Identification Different Drivers in Training and Testing A ⊕ B Frame-based
3 UBM-based Identification Random Drivers in Training and Testing A ∧ B Session-based
4 Classification (Benchmark) Binary SVM A ∧ B Session-based
5 Classification (Benchmark) Gaussian Mixture Models (GMM) A ∧ B Frame-based

TABLE I. Summary of the experimental evaluation performed. A and B indicate the accelerator position and the brake pedal pressure respectively. A
session here refers to an entire lap along the route, while a frame indicates 512 measurements, corresponding to 5s of driving, in case of the accelerator
and 15s for what concerns the brake related information.

Fig. 3. Route travelled for the data collection. The route consists of
different kinds of road types, such as highways, primary and secondary
roads, as well as local roads. Such variety allows us to generalise our
analysis of the driving style to different scenarios.

on the characterisation of the driving styles of the subjects.
Yet, the route consists of different kinds of road types, such
as highways, primary and secondary roads, as well as local
roads. Such variety allows us to model the driving style
in different environments. With respect to previous work,
the specific composition of the dataset results to be more
challenging for a driver identification system, hence enabling
the evaluation of our framework in fully realistic scenarios,
and over longer time frames. While driving, messages from
the CAN bus of the vehicle have been recorded. The CAN
messages carry information on the battery status, such as the
instantaneous power consumption and remaining capacity,
information on driving and car usage, such as steering angle
and vehicle speed, and motor operation signals. In this work,
we are interested in the accelerator position and the brake
pedal pressure. Both signals are sampled at 90 Hz at a
resolution of 10 bits. A complete description of the dataset
and route characteristics are shown in Table II.

Dataset

Number of Drivers 4
Sessions per Driver 8

Route Length 13 Km
Total Distance Driven 416 Km

Total Driving Time 15 hours
Total Number of Samples (A) ∼ 4.106

Total Number of Samples (B) ∼ 1.5.106

Sampling Frequency 90 Hz
Sample Resolution 10 bits

TABLE II. Dataset and Route characteristics. Total Number of Samples
(A) refers to the total number of accelerator position samples. Total Number
of Samples (B) refers to the total number of brake pressure samples. Samples
where the car is not moving are omitted from the analysis. The brake
pressure samples are fewer than the accelerator position ones, as drivers
tend to use the brake pedal less frequently than the accelerator.

B. Experiment 1: UBM with same drivers in training and
testing

The goal of this experiment is to explore the accuracy
of the framework in successfully authenticating the user
of the vehicle over short time frames, when only one of
the two features (i.e. accelerator position and brake pedal
pressure) is utilised (i.e. green area in Figure 2). Each frame
consists of 512 measurements, corresponding to about 5s
of driving, in case of the accelerator and 15s for the brake
pedal information. The experiments are carried out in a leave-
one-out cross validation framework. For each target driver
Di, i ∈ {1, 2, 3, 4}, whose identity we aim to separately
authenticate, we build two different SVM models: one for
the acceleration and one for the brake information. Validation
is carried out using seven of the eight driving sessions for
training and the remaining one for testing. For the UBM,
we use a random combination of sessions from the same
randomly selected drivers Dj , i 6= j both for training and
testing. Figure 4 shows the Precision Recall curve for this
experiment. Results suggest that, even when using only one
of the two features and considering short time frames of
few seconds of driving data, the system is able to accurately
determine the identity of the driver.
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Fig. 4. Precision recall curve showing driver identification performance,
in case of UBM with same drivers in training and testing. The blue line
refers to the model based on the accelerator position information, while the
red one refers to the model based on the brake pedal pressure information.
AUC = 74.5% and AUC = 73.2% for the acceleration and brake model,
respectively.

C. Experiment 2: UBM with different drivers in training and
testing

The goal of this experiment is to investigate the robustness
of the system to unseen driving patterns. With this purpose,
unlike Experiment 1, the data chosen to build the UBM
training set and the data used at testing time come from
different drivers. Similarly to Experiment 1, the evaluation
is carried out in a leave-one-out cross validation framework,
on a per-frame basis, where each frame consists of 512
measurements. For each target driver Di, with i ∈ {1, 2, 3, 4}
whose identity we aim to separately authenticate, we build
two SVM models: one for the acceleration and one for the
brake information. In contrast to Experiment 1, for the UBM,
we now use a random combination of sessions per driver
Dj , i 6= j for training and one (randomly picked from the
remaining sessions of the remaining drivers Dj , i 6= j)
for testing. Identification is carried out using seven of the
eight driving sessions for training and the remaining for
testing. Figure 5 shows the Precision Recall curve for this
experiment. Results demonstrate that the performance of the
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Fig. 5. Precision recall curve showing driver identification performance,
in case of UBM with different drivers in training and testing. The blue line
refers to the model based on the accelerator position information, while the
red one refers to the model based on the brake pedal pressure information.
AUC = 72.3% and AUC = 76.1% for the acceleration and brake model,
respectively.

framework is not affected by the different composition of
the UBM and identification is robust, even when having in
the testing phase data from drivers not employed to train the

model, and even when using only one of the two features. We
believe that this is due to use of the UBM paradigm which, as
capable to fully exploit the nature of the dataset (i.e. collected
over extensive driving sessions for a considerable amount
of time), it is inherently able to capture the behaviour of
the drivers in several circumstances as well the long-term
patterns characterising it.

D. Experiment 3: Combining Acceleration and Brake Infor-
mation

As it is not possible to combine brake and acceleration
measurements belonging to the same frame to obtain a per-
frame prediction on the driver’s identity (drivers accelerate
and brake within the same frame only in rare cases), in
this experiment, we evaluate the performance of the system
on a per-session basis, relying on both features to make
predictions. Following the framework structure illustrated
in Figure 2 (blue area), estimates from the two models
(acceleration and brake) are linearly combined to obtain
a joint label for each session. More specifically, for each
accelerator related frame i in a specific session, we define
the probability of the current driver yi being the target one D,
according to the accelerator-based SVM, as p(y∗i = D|x∗

A),
where x∗

A refers to the cepstral feature representation of the
accelerator pedal position sequence for that frame. Similarly,
for each brake related frame j we define the probability of
the current driver y∗j being the target one D, according to
the brake-based SVM, as p(y∗j = D|x∗

B), where x∗
B refers to

the cepstral feature representation of the brake pedal pressure
sequence for that frame. The probability of the current driver
y∗ being the target one D for the entire sessions is then,
obtained as:

(3)
p(y∗ =D|x∗

A,x
∗
B) = α

H(
∑NA

i=1 p(y
∗
i = D|x∗

A))

NA

+ (1− α)
H(

∑NB

j=1 p(y
∗
j = D|x∗

B))

NB

where NA and NB indicate the total number of acceleration
and brake frames in the session, H is the Heaviside Function,
and α : 0 ≤ α ≤ 1 is the parameter used to weight the
contribution of the predictions of the two classifiers. The
main idea is to first apply majority voting to the per-frame
estimates provided by the accelerator and brake pedal SVMs
and, finally, linearly combine these estimates to obtain a
final decision referring to the entire driving session. The
UBM is obtained using data from randomly selected drivers
in training and testing. Figure 6 shows the precision recall
curves obtained, averaged across the several sessions, in a
leave-one-out cross validation framework, at varying of α.
We observe that the performance of the system improves
with greater values of α (i.e. contribution of the accelerator
information to the prediction is higher), reaching a maximum
for α = 0.8. In addition, the results also show that the
general performance of the system greatly improves when
both features and all the frames in the session are used to
make a decision.
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Fig. 6. Precision recall curve showing driver identification performance
on a per-session basis, at varying of the parameter α (used to balance the
contribution of the accelerator and brake models to the final decision.).

E. Experiment 4: SVM Classification - Benchmark

In the last two experiments, we compare the behaviour
of the UBM-based approach proposed in this work against
more traditional classification methods, generally employed
in driving identification literature (e.g. [4] among others).
In particular, the goal of Experiment 4 is to compare the
behaviour of the identification system when using the UBM
scheme and when, instead, relying on standard SVM binary
classification (i.e. one against one). Also in this case, the
experiments are carried out in leave-one-out cross validation
framework. For each pair of target drivers we obtain an SVM
classifier using seven of the eight driving sessions for training
and the remaining one for testing. No UBM is employed in
this evaluation. Two different models are again built: one to
represent the accelerator position and the other to represent
the brake pedal pressure. Predictions are then combined in a
similar fashion as in Experiments 3 (cf. Section IV-D). Figure
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Fig. 7. Precision recall curves showing driver classification performance
on a per-session basis, obtained with α = 0.8, as providing the best
performance according to the evaluation carried out for Experiments 3. In
this experiment, no UBM is employed, but standard binary classification
on pairs of drivers (one against one). For direct comparison, the figure
also reports the precision recall curve when the UBM scheme is used, for
α = 0.8 (cf. Figure 6)

7 reports the precision recall curves for this experiment.
The curve is computed with α = 0.8, as providing the
best performance according to the evaluation carried out
for Experiments 3. For direct comparison, the figure also
reports the precision recall curve when the UBM scheme
is used, for α = 0.8 (cf. Figure 6). We observe that the

UBM paradigm evaluated in Experiment 3 outperforms the
traditional classification system utilised in this experiment.

F. Experiment 5: GMM Classification - Benchmark

Lastly, we compare our framework against a classification
system relying on the use of Gaussian Mixture Models.
Following previous works (e.g. [4], [3]), for each driver Di

with i ∈ {1, 2, 3, 4} a model Θi
A and a model Θi

B are built
to represent the accelerator and the brake signal patterns.
Classification is performed on a per-frame basis, where the
whole dataset is partitioned into training and testing sets,
and no notion of session is present. In this case, 85% of
the data is used for training and 15% for testing. At testing
phase, the current driver is identified as the one yielding the
maximum weighted GMM log likelihood over the sequence
of cepstral feature vectors for the accelerator and brake
pedals. Figure 8 shows the results of the classification, when
using 16 Gaussian models in the mixture. We report the
results for a mixture with 16 Gaussian models, as it is the
configuration providing the best performance. In particular,
the figure reports the average identification rate and one
standard deviation on error bars, at varying of the parameter
α (used to balance the contribution of the accelerator and
brake models to the final decision, similarly to Experiments
3 and 4). Standard deviation reported on the error bars is
computed over 1000 random partitions of the dataset into
training and testing sets.
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Fig. 8. Figure reports average recognition rate and one standard deviation
on error bars, at varying of the parameter α (used to balance the contribution
of the accelerator and brake models to the final decision.), when using a
Gaussian Mixture Model with 16 Gaussian models in the mixtures.

We observe that the performance of the system increases
with higher values of α reaching the greatest accuracy
(average identification rate 83%) when α = 0.7. The UBM-
based system outperforms the GMM by a significant margin
for all values of α, and this difference is considerably higher
for smaller values of α, when the impact of the brake pedal
information is prominent. This is due to the fact that less
data related to the brake pedal signals is available, as drivers
tend to use the brake pedal much less frequently than the
accelerator. These results are in line with previous works,
and highlight the role played by the UBM scheme, which
allows to better capture the behaviour of a specific driver,
even when less information is available, thanks to the way
the impostor model is built.



In summary, we conclude that, for this task, the UBM-
based approach proposed outperforms more traditional clas-
sification approaches by an appreciable margin and that this
margin increases with the number of drivers considered in
the classification.

V. CONCLUSION

We presented a framework for driver identification, which
makes use of Support Vector Machines and a Universal
Background Model paradigm. We evaluate the framework
on 416 Km of driving data, comprising of messages from
the CAN bus of an electric vehicle and GPS traces from four
different drivers travelling on the same route, obtaining great
accuracy in the authentication. Evaluation also suggested that
for this task the UBM schemes are more robust and accurate
compared to standard classification approaches, traditionally
used in driving identification literature. This difference in the
performance is especially apparent when less data is available
and when multi-class methods are applied. Future work could
investigate the effect of different kinds of road (i.e. highways,
local streets, etc.), as well as the driver’s status, on driving
behaviour signals and driver identification. Lastly, the effect
of missing data [23] on identification performance could be
explored.
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