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Abstract: The need to reduce greenhouse gas emissions is leading to an increase in the use of
renewable energy sources. Due to the aleatory nature of these sources, to prevent grid imbalances,
smart management of the entire system is required. Industrial refrigeration systems represent a
source of flexibility in this context: being large electricity consumers, they can allow large-load
shifting by varying separator levels or storing surplus energy in the products and thus balancing
renewable electricity production. The work aims to model and control an industrial refrigeration
system used for freezing food by applying the Model Predictive Control technique. The controller
was developed in Matlab® and implemented in a Model-in-the-Loop environment. Two control
objectives are proposed: the first aims to minimize total energy consumption, while the second also
focuses on utilizing the maximum amount of renewable energy. The results show that the innovative
controller allows energy savings and better exploitation of the available renewable electricity, with
a 4.5% increase in its use, compared to traditional control methods. Since the proposed software
solution is rapidly applicable without the need to modify the plant with additional hardware, its
uptake can contribute to grid stability and renewable energy exploitation.

Keywords: Model Predictive Control; Dynamic Programming; vapor compression refrigeration
system; renewable energy; freezing food

1. Introduction

Refrigeration systems, used for freezing food, air conditioning, or industrial processes,
play an important role in the field of energy. Indeed, the refrigeration sector is responsible
for approximately 20% of the overall electrical energy used worldwide, and it is estimated
to be responsible for 7.8% of global greenhouse gas (GHG) emissions. This sector will grow
further over the next few decades, both due to the increasing cooling needs in several fields
and global warming, and it is expected that the global electricity demand for refrigeration
could more than double by 2050 [1].

Regarding the food industry, in this sector, refrigeration processes are essential, as
they ensure the preservation of perishable foods. The annual report on frozen food con-
sumption, carried out by the Italian Institute for Frozen Food (IIAS), states that in 2020, the
consumption of frozen food by Italians grew by approximately 5.5% compared to its use in
2019 (with an average of 15.1 kg of frozen food per capita per year). This result shows how
the COVID-19 pandemic has changed people’s behavior, but also highlights the importance
of frozen foods as a means of sustenance, thanks to their long-term preservation [2]. Vapor
compression refrigeration cycles (VCCs) are by far the most used technology for freezing
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food, even though research is being carried out on other technologies because of the need
to find more sustainable solutions and improve the global efficiency of the systems [3].

In order to meet the objectives of the Paris Agreement and keep the global temperature
increase below 2 ◦C compared to pre-industrial levels, a transition in global energy is
needed, and this transition will be enabled by technological innovation, particularly in
the field of renewable energy [4]. Nonetheless, when a high share of the energy market
is covered by intermittent renewable energy sources, such as wind and solar, a flexible
capacity to balance the difference between supply and demand over time and space is
required. Flexibility services may be incorporated into the energy system through the
use of storage technologies, flexible generation, or demand-side response schemes [5]. In
this context, the study of new solutions and technologies that can offer these services and
constitute a source of flexibility for the power grid is of great interest.

As previously mentioned, the refrigeration sector is responsible for a large amount of
electricity consumption worldwide. Therefore, refrigeration systems draw great attention
from researchers who aim to find solutions to optimize their performance in terms of energy
and economic efficiency [6]. Their efficiency can be improved by optimizing the plant
design, operating conditions, or technology used. Many optimization techniques have
been developed and tested in this sector in order to achieve better system performance.
Such optimization problems are highly non-linear and complex, and to solve them, many
classical and non-classical approaches have been used in the literature [7].

Among the utilized strategies, predictive control has emerged in recent decades as one
of the most successful control strategies for industrial applications [8]. Model Predictive
Control (MPC) is a model-based optimization technique that uses a simplified model of
the controlled system in order to predict its behavior. The controller calculates a sequence
of control actions to apply to the system, which makes the future output of the system
track a reference or minimize a cost function, over a time horizon, known as prediction
horizon. Then, only the first control signal, corresponding to the first time-step, is effectively
applied to the system, and the horizon rolls forward by one time-step. Afterward, the
system states are measured or estimated, and they are given to the controller, which repeats
the calculation for the new prediction horizon. This control method allows the real-time
optimization of systems with multiple inputs and multiple outputs, as it uses current data
on the actual behavior of the system for every calculation. When optimization also relies
on the prediction of future disturbances, feed-forward MPC is obtained: The control action
also takes into consideration such disturbances and the controller is able to anticipate their
effects on the system. Due to the possibility of optimizing the system with respect to the
forecast of future disturbances, and updating optimization constantly, MPC appears to be a
suitable strategy to make refrigeration systems a source of flexibility for the grid and foster
the integration of renewable sources.

In this paper, a controller based on the MPC technique for a vapor compression
refrigeration system is developed and tested in a Model-in-the-Loop (MiL) platform. Two
case studies were considered: in the first one, the aim of optimization is to minimize
the total electrical energy consumed by the compressors, while the second case study
considers the integration of renewable energy production and the goal is to minimize
energy consumption while utilizing as much renewable electricity as possible and avoiding
renewable energy curtailments or grid imbalances.

2. Literature Review

Given the necessity to reduce global GHG emissions and the fact that renewable energy
sources still represent a low share of the market, the optimal operation of refrigeration
systems is a key problem to be addressed [9]. In the review published by Bejarano et al. [9],
many aspects of the modelling and global optimization of VCCs are investigated. The
authors identify the three main factors involved, namely modelling, optimization, and
control, and they analyze them in depth.
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Among the existing control structures, Proportional-Integral-Derivative (PID) con-
trollers are by far the most employed controllers in several industrial applications [10].
In 2018, Bejarano et al. [11] proposed a refrigeration benchmark (called Benchmark PID
2018) based on a general refrigeration cycle, with the aim to optimize the compressor speed
and expansion valve opening in order to control the outlet temperature of the evaporator
secondary fluid and the degree of superheating at the evaporator outlet. The benchmark
also provided performance indices, which could be used for the comparison of different
control strategies. The Benchmark PID 2018 was used in many studies, for instance, in [10],
where the authors tested Han’s non-linear PID controller, or in [12], in which a tuning
methodology to set the parameters of a multi-variable PID controller was proposed. In [13],
the authors developed an Internal Model Control based on a PID controller and evalu-
ated it with the Benchmark PID 2018, verifying its better performance compared to the
benchmark system. In [14], a robust control applied to a refrigeration cycle problem was
solved, using the active disturbance rejection approach through the design of General
Integral Proportional observers and robust PID controllers, and the results were compared
to the benchmark. Rodríguez et al. [15] proposed a different approach to the PID control
design, which consisted of two decentralized PIDs, with one controlling the temperature of
the evaporator secondary fluid and the other controlling the degree of superheating, by
optimizing the compressor speed and the opening of the expansion valve. They applied
two decentralized PID controllers to the system proposed by Benchmark PID 2018 and
presented three different controller tunings. Other PID applications in refrigeration systems
can be found in [16], where the authors compared the results of a linear and a non-linear
formulation of the system, and in [17], in which an adaptive PID controller was applied to
a system composed of solar photovoltaic air-conditioners, aiming to reduce the power gap
between the air-conditioner load and the photovoltaic generation.

Conventional controllers, however, such as PID controllers, are closed-loop controllers
that do not include a system model, and their performance is not ideal [18]. Instead, in-
telligent controllers or model-based control methods can achieve better performance [19].
Rasel et al. [7] formulated a detailed description of the key issues concerning the modelling
and optimization of VCCs. They provided an exhaustive evaluation of the state-of-the-art
approaches used for the modelling and optimization of refrigeration systems, which use
computational intelligence techniques for their optimization. They highlighted the proper-
ties of the algorithms used, their computational efficiency, robustness, and applications. In
addition, the authors discussed different surrogate modelling methods and their applica-
tions in the refrigeration sector. One of the most widely used computational intelligence
techniques in the refrigeration sector is genetic algorithms, and they are well-known for
global convergence [7]. Richardson et al. [20] presented a simulation tool with the potential
for the design and optimization of steady-state vapor compression. They used genetic
algorithms that allowed them to perform constrained optimization of a very large set
of independent variables, including models of individual components. Zhao et al. [21]
introduced a model-based optimization strategy for a vapor compression refrigeration
cycle for the minimization of the total operating cost of energy consumed. They used a
modified genetic algorithm together with a solution strategy for non-linear equations to
obtain the optimal solution under different operating conditions. Zendehboudi et al. [22]
investigated the behavior of R450A in refrigeration systems, and optimized the operation
of the system, analyzing two different scenarios. A multi-objective optimization genetic
algorithm is used, with the goal of reaching the maximum performance of the system.
In [23], three scenarios were considered: thermodynamic optimization, economic opti-
mization, and a multi-objective optimization problem, which considered both objectives
simultaneously. The Pareto frontier was found by using a genetic algorithm. The results
showed that the multi-objective design satisfies the thermodynamic and economic criteria
better than two single-objective designs. Moreover, in [24], the authors tackled a multi-
objective optimization problem using three different refrigerants, and a genetic algorithm
was employed for the optimization. Finally, in [25], the optimization problem to achieve
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minimum total energy consumption was solved by using both particle swarm optimization
and a genetic algorithm.

Other optimization methods based on artificial intelligence were applied to many
studies to optimize these kinds of systems. For instance, artificial neural networks were
employed to control multiple variables in a refrigeration system together with fuzzy control
in [26], for performance and design process improvement in [27], and to predict the energy
performance of the system and compare different refrigerants in [28].

Among the model-based approaches to optimization, Model Predictive Control is
considered the largest recent achievement in the control literature, and it has been widely
accepted as the next generation of practical control technology [19].

In their work, Dangui et al. [29] presented a practical method for tuning the parameters
of an MPC algorithm, in order to optimize the suction and discharge pressures of the
refrigerant compressor. Their study is proposed in a general way, giving the possibility to
use it as a guideline for tuning an MPC controller for a refrigeration system. Yin et al. [30]
developed a novel control strategy based on the MPC method to control the temperature of
the evaporator of a vapor compression refrigeration system. Luchini et al. [31] designed a
global linear MPC with the aim to achieve the desired cooling capacity for a long prediction
horizon, and a mixed-integer MPC that provides the actual cooling capacity utilizing a short
prediction horizon. A hierarchical MPC is obtained, and it enables the global linear MPC
to utilize a long prediction horizon at low computational costs, while the mixed-integer
MPC provides multi-objective optimization of the required cooling capacity. Yin et al. [32]
proposed a novel optimization method based on self-optimizing control, for the selection
of the optimal individual controlled variables for a VCC. MPC method-based controllers
and PID controllers are then designed for the different set of control variables in order
to optimize system operation. Hovgaard et al. [33] developed a non-linear MPC for the
economic optimization of a supermarket refrigeration system, using the thermal storage
capabilities of the system. The authors employed the refrigeration system’s flexibility to
offer an ancillary demand response to the power grid and perform regulating services.
They also took into consideration the uncertainties in both models and forecasts in their
formulation. Non-linear predictive control was also proposed in [34,35], where the authors
demonstrated the applicability and effectiveness of the method applied to a refrigeration
system. Yin et al. proposed a cascade control [36]: depending on the cooling requirements
of the user, in the outer loop, a PI controller provided the optimal setting values to be used
in the inner loop, where an MPC controller was implemented with the aim to maximize
system energy efficiency. Yang et al. [37] showed the results of the application of MPC
to a VCC in the presence of known transient heat disturbances. The results showed an
increase in the robustness of the system with respect to transient disturbances since the
system could effectively prepare for them.

With reference to the status of scientific research, several studies were found that
aimed at the optimization and control of refrigeration systems. Nevertheless, a lack of
studies was found that investigate the possibility of using industrial refrigeration systems
as a source of flexibility for the power grid, by shifting the electrical load and storing
surplus renewable electricity in the frozen product. The novelties of this paper consist of:

• A novel predictive controller based on a Dynamic Programming algorithm, which de-
cides the best control action at every time-step, in order to minimize the implemented
cost function.

• The development of an optimization strategy with the goal to investigate the possi-
bility to save energy by varying the level of refrigerant in the separators of a vapor
compression refrigeration system.

• The analysis of the possibility to store surplus renewable energy in the frozen product
in the form of thermal energy and make the refrigeration systems a way of adding
flexibility to the power grid.
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3. Digital Twin

The digital twin of the system, namely the mathematical model that reproduces the real
system dynamics and its interaction with the environment, is necessary for MiL applications
to test the control strategy if a real system is not available. In this section, the refrigeration
system considered in this work is presented, and a brief description of the approach used
for modelling the different components is given.

3.1. System Description

The system considered consists of an industrial refrigeration system, and it is repre-
sented in Figure 1. Ammonia is the working fluid, and three pressure levels are employed:
Evaporation, intermediate, and condensation pressures. It is worth noting that the com-
pression and expansion phases are divided into two steps, thanks to the adoption of the
separators, and this provides the possibility to reduce the compression power, better oper-
ate the compressor, which works only with vapor, and exploit all latent heat of vaporization
in the evaporation section [38].

Figure 1. Schematic representation of the refrigeration system analyzed.

As schematized in Figure 1, the cycle operated by the working fluid is as follows:
Starting from thermodynamic state 1, where it is at the vapor phase at evaporation pressure
pev, the fluid is sucked by compressor Cb from low-pressure separator S, compressed until
intermediate pressure pint, and discharged in intermediate separator Si (state 2). From
this separator, a mass flow rate of gas is sucked by high-pressure compressor Ca (state 3)
where the gas experiences compression until it reaches condensation pressure pco (state 4).
The compressors are driven by electric motors M. After that, the compressed gas enters
condenser K where it releases heat into the external environment through the phenomenon
of condensation. The working fluid exits the condenser and reaches liquid receiver R,
which balances the variations in the level of the separators. Subsequently, the fluid in the
liquid phase (state 5) passes through expansion valve V1 and reduces its pressure from
condensation pressure to intermediate pressure, entering separator Si (state 6). Here, the
liquid ammonia (state 7) can evaporate (state 11) to produce, for example, cold water for
food processing or can proceed through expansion valve V2, where it reduces its pressure
until evaporation pressure (state 8) and enters separator S. Finally, the fluid enters the
evaporation section (state 9) where it experiences a heat exchange with the air through
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evaporation (state 10), and returns to the separator, in the vapor phase, through the risers.
The air is then employed for the food-freezing process. Therefore, by increasing the air flow
rate in the refrigeration tunnel by controlling the fan rotational speed, the heat exchanged
in the evaporator rapidly increases, as well as the ammonia mass flow rate. Then, a higher
air flow rate means a higher heat exchange with the food. This leads to two possible effects:
either the food reaches lower temperatures (when the refrigeration time is kept constant),
or the amount of frozen food production increases (when the refrigeration time is reduced).
On the other hand, a reduction in the heat exchanged in the evaporator cannot be achieved
at the expense of an increase in food temperature, but through a reduction in the production
rate. In Figure 2, all the thermodynamic states reached by the working fluid during the
cycle are shown on the pressure-enthalpy diagram.

Figure 2. Thermodynamic states of the working fluid in the refrigeration cycle. For the interpretation
of the numbers please refer to Figure 1.

The main system components, as represented in Figure 1, are the screw-compressors,
separators, the receiver, expansion valves, and the condenser. In the following sections, all
the components of the plant are presented, and their operating principle is described, as
well as how they were modelled.

3.2. Twin-Screw Compressor Model

A thermodynamic model of the twin-screw compressor was developed in Matlab®

9.7 R2019b. It is based on a set of non-linear algebraic equations that describes all the
phenomena that occur during the compression process, including the leakages and heat
transfers between the working fluid and compressor body. This model is a semi-empirical
model and, as such, it requires the availability of the compressor performance map in order
to identify some thermodynamic and geometrical parameters. The implementation of the
model with its equations and the identification procedure was explained in detail in [39].
The key parameters of the twin-screw compressor model are suction mass flow rate

.
mtot

and compression power P. They are calculated as follows:

.
mtot =

Vsw n
60 v3

(1)
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P = Pin + Ploss,il + Ploss,vf (2)

where n is the compressor rotational speed, Vsw is the swept volume (a geometrical pa-
rameter of the model), v3 is the gas-specific volume at thermodynamic point 3, Pin is the
input compression power without losses, and Ploss,il and Ploss,vf are the power losses due to
internal load and viscous friction, respectively.

3.3. Separator and Receiver Models

The separators were modelled as drum boilers because of their operation [40]. They
are dynamic components and were modelled through a set of differential equations for the
conservation of mass and energy in the whole system and in the risers. It is a three-order
model with three state variables: pressure p, liquid volume Vl, and average vapor quality
at the riser outlet xr. The governing equations are:

e11
dp
dt

+ e12
dVl
dt

+ e13
dxr

dt
=

.
Q +

.
ml hl −

.
mv hv (3)

e21
dp
dt

+ e22
dVl
dt

+ e23
dxr

dt
=

.
ml −

.
mv (4)

e31
dp
dt

+ e33
dxr

dt
=

.
Q − .

mdc xr hco (5)

where coefficients eij derive from the rearrangement of the balance equations and contain
the geometrical properties of the separator and the thermodynamic properties of the
fluid [40] and are reported in Appendix A.

The outputs of the model are the operating pressure and separator liquid level L. The
latter can be calculated through the following equation:

L =
Vl + am Vr

AS
(6)

where Vr is the riser volume, AS is the area of the separator, and am is a function of xr that
represents the average vapor-liquid volume ratio in the risers [40].

Receiver R was modelled as was performed for the separators, but the equations
presented above were rewritten because of the absence of risers and downcomers.

3.4. Expansion Valve Model

The expansion valve was modelled with an algebraic model described by a single
equation for the mass flow rate [41]:

.
m = A0 Cv Y

√
2 ρin pin X (7)

where A0 is the orifice area and X is the pressure ratio:

X =
pin − pout

pin
(8)

Coefficient Cv is the valve flow coefficient, and it was calculated through the following
equation [42]:

Cv = c0 πc1
1 πc2

2 πc3
3 πc4

4 (9)

where πi considers the pressure ratio, the valve opening ratio, and the presence of a biphasic
fluid during the expansion, while coefficients ci are determined empirically.

Moreover, coefficient Y represents the expansion factor calculated through the follow-
ing expression [43]:

Y = 1 − X
3FγXt

(10)
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where Fγ is the ratio between the specific heat ratio of a gas and the specific heat ratio of
air, while Xt represents the critical pressure ratio, which is a function of liquid pressure
recovery factor FL, a feature of a specific valve that varies with the valve opening ratio.

3.5. Condenser Model

The condensation section is composed of a water-refrigerant fluid heat exchanger and
a wet cooling tower to refresh the water. Therefore, it was modelled considering firstly the
evaporative cooling of the water and then the heat exchanged to condensate the working
fluid of the plant. Figure 3 shows the heat exchange diagram between the refrigerant fluid
and water. Starting from the air dry-bulb temperature, relative humidity, and pressure, it is
possible to calculate the air wet-bulb temperature Twb,air. The water inlet temperature in
the condenser is calculated as follows:

Tw,in = Twb,air + ∆Tct (11)

where ∆Tct is a temperature difference characteristic of the cooling tower (i.e., the cooling
tower approach). In the condenser, water receives thermal power

.
Qco from the refrigerant

and increases its temperature as follows:

Tw,out = Tw,in +

.
Qco

.
mw cw

(12)

where
.

mw is the water mass flow rate and cw is the water specific heat. In real conditions,
the condenser works with a pinch-point temperature difference ∆Tpp,co, so the condensation
temperature can be calculated as:

Tco = Tw,out + ∆Tpp,co (13)

Finally, the condensation pressure is the saturation pressure of the refrigerant at the
condensation temperature.

pco = psat(Tco) (14)

Figure 3. Water-refrigerant heat exchange diagram.

It is significant to note that the condensation pressure varies during the simulation
with the external air conditions (i.e., pressure, temperature, and humidity). In fact, conden-
sation pressure pco depends on the external conditions through condensation temperature
Tco. Therefore, the external temperature affects the power needed for the compressors to
ensure the refrigerant reaches the condensation pressure. For example, when the external
temperature is higher, the condensation pressure is higher and the compressors must use
more energy, while when the external temperature is lower, they consume less electricity.
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4. Control Strategy

In this work, a smart controller based on MPC was developed and tested in a Model-
in-the-Loop configuration. In Figure 4, the schematic representation of the controller
application in the MiL is presented. As previously mentioned in Section 1 and represented
in Figure 4, the developed predictive controller is composed of (i) a controller, (ii) a sim-
plified dynamic model of the system to optimize, and (iii) an optimization algorithm that
solves the optimization problem at each time-step and returns the optimal control actions.

Figure 4. Schematic representation of the optimization process based on Model Predictive Control.

4.1. The Optimization Algorithm

The Model Predictive Controller developed in this work relies on a Dynamic Pro-
gramming algorithm, which is solved to find the optimal output and state, with the aim
of minimizing a certain cost function. The optimization algorithm is based on the one
developed in [44], in the case of a small-scale district heating system. Despite this spe-
cific application, however, the algorithm is highly versatile and can be extended to any
energy-related case once the MPC simplified model is provided (see Section 4.2). Dynamic
Programming is a numerical method based on Bellman’s principle of optimality [45], which
states that the tail of an optimal trajectory for the problem variables calculated for the entire
problem is still optimal when considering the tail subproblem. According to this theory, the
time scale and the entire state-space of the optimization problem are discretized, and the
optimization problem is divided into smaller subproblems, which are solved recursively
going backward along the time scale. During this calculation, for each subproblem, the
state function and the relative value of the cost function are evaluated for each admissible
combination of the state and input grids. At each time-step, the inputs that minimize the
cumulative cost for each eligible state are selected and memorized from the current step
to the end of the forecast horizon. The procedure is repeated for the entire time horizon
and allows the dynamics of the system to be included in the optimization. Therefore, this
iterative computation returns an optimal control map for inputs and states, which is then
used to identify the optimal control sequence through forward computation starting from
the initial condition.

In this work, two control strategies were proposed and applied to the system. The
cost function, as well as the inputs and disturbances of the controller, depends on the case
study considered.

4.2. MPC Model

The predictive controller uses a simplified thermodynamic model of the system to
simulate its behavior and calculate the optimal control sequence. It considers steady-state
mass and energy balance for each component except for separator S, which is described by
a single differential equation, which calculates the state, namely, separator level L:

dL
dt

=
1

AS ρl
·
( .
mV2 −

.
mev

)
(15)

with As being the area of the separator, ρl is the liquid density, and
.

mV2 and
.

mev are the
mass flow rates of ammonia entering and exiting the separator, respectively.
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Since the Dynamic Programming algorithm needs the discretization of the state and
input grids, the model implemented in the MPC is obtained with the discretization of
Equation (15). The discretized state equation at the k-th time-step, with a length of ∆t, is
the following equation:

Lk+1 − Lk
∆t

=
1

AS ρl
·
( .
mV2 −

.
mev

)
(16)

In the algorithm, the input and state grids are created according to their boundary
values, while the steps of the grids are imposed according to the simulation algorithm
parameters. The external disturbances given to the MPC are the forecasts of the environ-
mental temperature and the power available from a photovoltaic plant integrated into
the system.

At each time-step, the MPC calculates the control sequence to apply to the system,
which minimizes the implemented cost function. Then, only the first element of the
sequence is applied to the system. In particular, in the control strategies applied in this
work, the two control actions considered are:

• The optimization of level L of the low-pressure separator, which is given as a setpoint
to the PI controller that regulates the opening ratio of valve V2.

• The optimization of the heat exchanged in the evaporator with the frozen product,
which is given directly as an input to the evaporator.

In real applications, the output signals of the controller are implemented with an
inherent delay of a few seconds, due to the controller calculation time to perform the
optimization. This delay in a MiL platform is usually neglected: the simulation time
stops for the time interval needed by the controller to solve the optimization problem and
starts again when the calculation is performed. To take this delay into consideration, it
was set that the controller takes the state value corresponding to a time 30 s in advance,
instead of taking the state value at the current time. The output, conversely, is implemented
at the time-step. In this way, the signal delay due to the controller calculation time is
simulated, and the simulation results obtained are closer to those corresponding to a
real implementation.

5. Application

A MiL platform was used to test the innovative controller and compare it to a tradi-
tional control strategy: a system digital twin was built in order to emulate the real system,
allowing the new control strategy to be tested as the real system was not available. The
system was first modelled with a traditional control strategy, and then with the predictive
controller described in Section 4, using the same external conditions. In this way, the two
methods were compared, and the advantages of using a smart control technique were
quantified. In this section, the implementation of the controller in the system model is
presented, the case studies simulated are described, and some key performance indicators
are identified, to evaluate the effectiveness of the control strategies applied.

5.1. System Digital Twin

As previously mentioned, the simulations are performed on a MiL platform. The
controller was implemented in Matlab® and applied to the system digital twin, which
was built by assembling the models of the single components presented in Section 3 in
a coherent way in the Simulink® 10.0 environment. The set of equations is solved by a
variable-step solver of the second order while thermodynamic properties of the fluids
are evaluated through Coolprop [46]. The main parameters of the model are reported in
Table 1.

As shown in Figure 1, several control chains are implemented in the system. They
involve the control of the level in the two separators, by regulating the valve V1 and V2
opening ratio, and the control of the pressure in the separators, by regulating the rotational
speed of compressors Ca and Cb. The implemented setpoints are constant for the entire
simulation time span, except for the level setpoint of separator S, which is regulated by the
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MPC in the simulations in which it is applied to the system, as explained in Section 4.2.
The setpoints used are reported in Table 2.

Table 1. Main parameters of the digital twin model. The compressors Cb and Ca as well as the two
separators S and Si have the same size.

Parameter Symbol Value

Area of the separator AS 4 m2

Area of the receiver AR 5 m2

Compressor swept volume Vsw 2.33 × 10−4 m3

Compressor nominal mass flow rate
.

mnom 0.4956 kg/s
Condenser pinch-point temperature difference ∆Tpp,co 8 ◦C

Cooling tower temperature difference ∆Tct 10 ◦C

Table 2. Setpoint values implemented in the system.

Parameter Value

Evaporation pressure setpoint 0.6 bar
Intermediate pressure setpoint 2.7 bar

Level Si setpoint 1.5 m
Level S setpoint (without MPC) 1 m

5.2. Description of the Case Studies

The considered system, represented in Figure 1, is an industrial refrigeration plant for
freezing food. The predictive controller developed in this work was applied to the system,
and two control actions were tested. In both case studies, the prediction horizon of the
MPC, as well as the simulation time, is five days long.

Two disturbances are given to the predictive controller: the forecasts of the external
temperature and the PV power production. These forecasts are different from the distur-
bances applied to the MiL; indeed, to simulate a real application, the real disturbances are
obtained by applying small deviations to the ideal disturbances given to the controller. In
this way, it is possible to evaluate how the predictive controller reacts with slightly different
disturbances from those predicted, which is what usually happens in real applications.

In Figure 5, the trend of the forecast of the external temperature is shown: five summer
days were simulated, during which the temperature ranged from 20 ◦C to 40 ◦C. The
temperature presents a similar trend over the five days, with it being higher during the
daytime and lower during nighttime.

Figure 5. Forecast of the external temperature over the five days simulated.
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The forecast of the second disturbance, namely the photovoltaic power, is displayed
in Figure 6; over the five days, the system produces power during the day, with peaks of
approximately 500 kW, while during the night, the production is nil.

Figure 6. Forecast of the power provided by PV over the five days simulated.

As previously mentioned, two case studies were considered: they differ in terms
of disturbances, the objective of the optimization, and controlled variables, and they are
explained in the following sections.

5.2.1. Single-Objective Case Study: Minimization of Total Energy Consumption

In this case study, the electricity is considered entirely bought from the grid. The
objective function J of the control strategy is the minimization of the electricity consumed
by the compressors, and it is mathematically expressed as follows:

J = ∑
i

PC,i∆t (17)

with PC,i being the power used by the i-th compressor and ∆t the time-step length, i.e.,
15 min. The MPC takes as input the actual mass flow rate at the V2 valve and, by using the
separator level as a state and the external temperature as a disturbance, calculates the future
control actions on the mass flow rate through the valve, and the future state. The state,
namely separator level L, is calculated using Equation (16). In this scenario, the evaporation
heat exchanged with the air used to freeze the food product is taken as a constant and equal
to

.
Qev = 400 kW.

5.2.2. Multi-Objective Case Study: Minimization of Total Energy Consumption and
Exploitation of Renewable Energy Production

This case study considers the integration of photovoltaic energy generation in the
system. The aim of the MPC is to optimize separator level L, by controlling mass flow rate
.

mV2 at the valve, and thermal power
.

Qev exchanged in the evaporator. Unlike the previous
case study,

.
Qev, and therefore the final temperature of the food product, is an optimization

parameter here, and it is controlled by the MPC. The aim of the control is both to minimize
the total energy consumption of the compressors and to minimize the difference between
the energy produced by PV and the energy consumed by the compressor, when the latter is
lower than the renewable energy production, with the goal to maximize the usage of the
PV energy. The objective is the minimization of Equation (18)

J = ωES ∑
i

PC,i∆t + ωREmax

{
0;

(
PPV − ∑

i
PC,i

)
∆t

}
(18)
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where ωES and ωRE are the weights associated with the two parts of the objective function,
PC,i is the power employed by the i-th compressor, PPV is the photovoltaic power produced,
and ∆t is the time-step, which is 15 min, as in the previous case study.

To evaluate the benefits of the predictive controller compared to a traditional control
strategy, different scenarios were simulated in this case study. The simulated scenarios are
exposed in Table 3, and are the following:

• TC360, TC400, and TC440: in these three scenarios, a traditional control action is
applied. In all scenarios, the low-pressure separator level setpoint is fixed at L = 1 m
and they only differ in the value of the evaporation heat

.
Qev setpoint applied. These

control strategies are useful to evaluate the results of the scenarios in which the MPC
is implemented.

• MPC400: in this scenario, the MPC is applied; nevertheless, the evaporation heat
is considered constant and equal to 400 kW, while the controller can only optimize
low-pressure separator level L. The weights of the cost function are adequate to meet
both objectives and they have been set after sensitivity analysis.

• MPC-ES: in this scenario, the MPC is applied, but only the first part of the cost
function is considered, as ωES = 1 and ωRE = 0. Therefore, only the minimization of
the total energy consumption is performed, and both level L and evaporation heat

.
Qev

are optimized.
• MPC-ESRE: this scenario is the most complete. It considers both terms of the cost

function, as in MPC400, with adequate weights, and both the evaporation heat and the
low-pressure separator level are optimized, as in MPC-ES. Nevertheless, to estimate
the benefits of this optimization, a comparison with the other considered scenarios
is useful.

Table 3. Characteristics of the simulated scenarios within the multi-objective case study. (n/a = not
applicable).

Type of Control Action Name
.

Qev (kW) ωES ωRE

Traditional control TC360 360 n/a n/a
Traditional control TC400 400 n/a n/a
Traditional control TC440 440 n/a n/a

MPC MPC400 400 0.4 0.6
MPC MPC-ES 360–440 1 0
MPC MPC-ESRE 360–440 0.4 0.6

5.3. Key Performance Indicators

To evaluate and compare the results of the simulations considering a traditional control
strategy and the innovative MPC method, three KPIs were selected:

• Total energy consumption (kWh): this is the amount of energy utilized by the system,
which consists of the electrical energy used by the compressors.

• CO2 emissions (kg): this is the amount of carbon dioxide emitted, which is entirely
related to electrical energy consumption. Indeed, the emissions associated with re-
newable energy generation are considered nil, while for electricity purchased from the
grid, an emission factor equal to 0.4455 kgCO2/kWh is assumed [47].

• Renewable energy utilization (%): this is the percentage of renewable energy utilized
by the compressors on the total energy produced by the photovoltaic system, only
applicable to the multi-objective case study.

6. Results and Discussion

The system was simulated after modelling the overall refrigeration plant and the
predictive controller in the Matlab®/Simulink® environment. The simulated scenarios
were described in detail in Section 5.2, while the results of the simulations will be shown
and explained in the following sections. The solutions obtained with the MPC strategies
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were compared to the results obtained with traditional control techniques, in order to
highlight the benefits of the innovative controller.

The simulation time is five days in both cases. However, when dealing with the MPC,
it optimizes the system only on the second, third, and fourth days. This was performed in
order to compare the results of the two control strategies with the same initial and final
state. Hence, the differences between the two simulations were collected over the three
central days.

6.1. Results of the Single-Objective Case Study

The aim of the control here is to minimize the total energy consumption. The dis-
turbance of the model is the external environmental temperature, the forecast of which
is displayed in Figure 5, while the electricity is considered completely bought from the
grid. The level setpoint calculated by the controller and implemented in the system is
shown in Figure 7, where it is compared to the level setpoint implemented in the tradi-
tional control logic. It is possible to see how the innovative controller acts: while with the
traditional control strategy the low-pressure separator level remains constant over the five
days of simulation with a value of 1.00 m, in the new solution, the controller varies the
low-pressure separator level between its lower bound (i.e., 0.50 m) and upper bound (i.e.,
1.50 m). Therefore, the control logic decides to store liquid ammonia when the external
environmental temperature presents low values and empty the separator when the external
temperature is higher, and the compression of the ammonia is disadvantageous from an
energy point of view. This type of control makes it possible to save energy and exploit it
in a smarter way, as shown in Figure 8, where the power requested by the compressors
in both solutions is compared. Important differences in the management of compressors
can be noted. With the traditional controller, the energy used by the compressors is strictly
related to the external temperature, and when it increases, the compressor power request
also increases. Instead, with smart management, it is possible to consume more energy and
store it in the separator level when it is advantageous from an energy point of view, and to
reduce energy consumption when it is more expensive, i.e., when the external temperature
is higher.

In Table 4, the values of the KPIs for these simulations are shown. They refer to the
three central days of the simulations, namely the days on which the innovative control
strategy is applied to the system. The energy saving results in 156 kWh for the three days,
which is 0.69% of the total consumption. This means 52 kWh/day on average and, therefore,
approximately 17 MWh/year of energy savings, considering that the plant operates for
330 days per year. In addition, 69 kg of carbon dioxide emissions is avoided over the three
days, which implies 23 kg/day on average, i.e., 7590 kg/year.

Figure 7. Low-pressure separator level of the single-objective case study with the MPC and the
traditional control strategies.
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Figure 8. Compression power of the single-objective case study with the MPC and the traditional
control strategies.

Table 4. KPI values for the single-objective case study. (n/a = not applicable).

Control Strategy
(Three Central Days)

Total Energy
Consumption (kWh) CO2 Emissions (kg) Renewable Energy

Utilization (%)

Traditional control 22,719 10,121 n/a
MPC 22,563 10,052 n/a

These savings may seem of little significance if compared to the total consumption and
emissions of the system, but it is relevant to highlight that it could be possible to achieve
these results, when controlling a real refrigeration system, even without installing new
hardware, but only by changing the setpoints of the existing controllers following the logic
of the MPC.

6.2. Results of the Multi-Objective Case Study

In this scenario, the possibility of exploiting renewable energy was considered. In
particular, the energy produced by a PV system was used to move the compressors and to
store energy in frozen food. From a model point of view, the forecast of the power supplied
by PV, displayed in Figure 6, was evaluated as a second disturbance in the MPC algorithm,
in addition to the forecast of the external temperature, shown in Figure 5.

As in the previous case study, the control strategies are applied only on the three
central days, while on the first and the fifth days, the level setpoint is fixed to 1 m and the
evaporation heat is equal to 400 kW, also in the traditional control strategy scenarios.

Figure 9 shows the actual PV power production and the power used by the com-
pressors with the different control strategies. As previously mentioned, the PV power
production considered in the MiL presents small deviations from that used in the predictive
controller (see Figure 6). These deviations were added to simulate a real environment, in
which the forecast of a disturbance is different from the actual disturbance. In Figure 10,
the low-pressure separator level management is shown, while in Figure 11, the evaporation
heat management in the different scenarios is displayed.

Looking at the results of the simulations, it can be noticed that, on the three central
days, the power consumption trend and the level management of the MPC-ES scenario
are very similar to those obtained with the MPC control strategy in the single-objective
case study: the objective in both cases is indeed the minimization of the total energy
consumption. However, in the MPC-ES scenario, the possibility to vary the evaporation
heat is added. During the three days, the control strategy acts by keeping the evaporation
heat at its lower bound, i.e., 360 kW, in order to minimize consumption. Therefore, when
looking at the power consumption, the MPC-ES trend follows the traditional control
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strategy TC360, and acts toward it as the MPC strategy acted toward the traditional control
in the single-objective case study.

Figure 9. Compression and PV power of the multi-objective case study with the traditional control
strategies and the different MPC scenarios.

Figure 10. Low-pressure separator level of the multi-objective case study with the traditional control
strategies and the different MPC scenarios.

Figure 11. Evaporation heat of the multi-objective case study with the different MPC scenarios.

When analyzing the MPC400 scenario, which considers both terms in the cost function,
it aims at the maximization of the renewable energy consumption during the day, while the
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energy saving strategy is postponed to the night. In fact, MPC400 presents lower power
consumption during the night, when the renewable energy generation is nil, while it has
higher consumption during the day, if compared to the traditional control strategy with the
same evaporation heat value, namely TC400 (see Figure 11). The level setpoint is therefore
increased in the evening, when there is still a little energy produced by the PV and the
external temperature is low, in order to reduce the consumption at night, while in MPC-ES,
the level decreases at the end of the day to save energy, since it is the period in which it is
more expensive to operate the compressors.

Finally, the MPC-ESRE acts as MPC400, with the advantage of having the possibility to
change the evaporation heat: when the PV power is higher than the compression power, in
MPC-ESRE, the predictive controller manages the plant by increasing the heat exchanged
in the evaporation section, in order to minimize the cost function and increase the share of
renewable energy usage. In this scenario, the control decides to increase

.
Qev when surplus

renewable electricity exists, decreasing the frozen food temperature, storing energy in the
product, and allowing the system to act as a storage solution. In fact, when

.
Qev increases,

the air speed in the refrigeration tunnel fans also increases, as well as the ammonia mass
flow rate, which means that the food reaches a lower temperature for the same refrigeration
time, with considerable advantages in its transport and storage. This scenario proves
to be the most interesting from the point of view of the applied control strategy, as it
includes both terms of the cost function, and it also optimizes the power exchanged in
the evaporator.

In the current energy framework, which is moving toward renewable sources, this
particular feature of refrigeration systems, representing an energy storage solution, is
relevant. As it is well known, these sources, such as wind or solar, have an unpredictive
nature, which can cause grid unbalances due to the difference between supply and demand.
With smart control, as shown in this work, VCCs can be helpful in this context, as they can
both store energy when needed in their separators and in the product, e.g., frozen food. As
far as the authors are aware, this source of flexibility has not yet been adequately studied
and it is therefore important to study its future potential. Furthermore, considering the
integration of these systems into the power grid, ancillary services using this intelligent
control could be offered. Indeed, when there is a surplus of energy in the electricity grid,
refrigeration systems could provide balancing services.

It is interesting to compare the numerical results obtained with the traditional control
strategy TC400 with those of the most complete scenario using the MPC control strategy,
i.e., MPC-ESRE. As shown in Table 5, the management of the plant with the innovative
controller applied in the MPC-ESRE scenario allows 4.5% more renewable energy to be
exploited over the three central days than with the traditional control TC400. That means
758 kWh (with a minimum increase in energy requested by the compressors, equal to 104
kWh), i.e., 253 kWh/day and 83.4 MWh/year, considering that the plant operates 330
days per year. Furthermore, even though the total energy consumption of the MPC-ESRE
control strategy is higher than the consumption of TC400, it performs better in terms of
carbon dioxide emissions, since the plant utilizes a larger share of renewable energy, which
is associated with nil emissions. The results show that with the MPC-ESRE there is a
reduction in CO2 emissions of 291 kg over the three days compared to the TC400, which
means 97 kg/day and 32 ton/year of avoided emissions.

Table 5. KPI values for the multi-objective study.

Control Strategy
(Three Central Days)

Total Energy
Consumption (kWh) CO2 Emissions (kg) Renewable Energy

Utilization (%)

TC400 22,734 4566 74.4%
MPC400 22,754 4514 75.2%
MPC-ES 20,970 4143 69.5%

MPC-ESRE 22,838 4275 78.9%
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7. Conclusions

Energy savings must be reached in many sectors in order to reduce greenhouse
gas emissions and fight climate change, meeting the requirements imposed by the Paris
Agreement. Refrigeration systems are responsible for a large amount of the total global
energy consumption, and improvements in their optimal management need to be made.

Numerous studies have been performed in order to increase the efficiency of these
systems and optimize their operation. Nevertheless, there is limited research into the
possibility of using such systems as flexibility providers. Indeed, with the increasing share
of renewable energy sources on the energy market, by using these systems as storage,
sources of flexibility can be added to the power grid, which could be helpful to avoid grid
imbalances or renewable energy curtailments.

In this work, a predictive controller based on a Dynamic Programming algorithm was
developed and tested in a Model-in-the-Loop environment to optimize the operation of a
vapor compression refrigeration system that serves a food freezing plant. The controller
was developed in the Matlab® environment, while the digital twin of the real system was
developed in Simulink®, by coherently assembling the models of the single components.

Two case studies were simulated: in the first, the aim of the control is the minimization
of the total energy consumption of the system, while in the second, the integration of the
system with renewable energy production is considered, and several control strategies are
applied, with the aim of both minimizing total energy consumption and achieving better
exploitation of the renewable energy.

The efficiency of the control action was demonstrated, and the energy consumption
of the system was minimized, by using the separators as storage, and by running the
compressors as much as possible when it was advantageous, i.e., when the external tem-
perature was lower. Furthermore, when the integration of renewable energy sources was
contemplated, greater exploitation was achieved (by approximately 4.5%), and the product,
i.e., frozen food, was used as storage for the surplus renewable energy by freezing it at a
lower temperature. In this way, energy savings can be achieved during the transport and
storage of food products.

Considering the growing share of renewable energy sources in the power grid, sources
of flexibility are important. With this innovative control, the possibility of using refrigera-
tion systems as a source of flexibility was shown. It was demonstrated that energy storage
in separators and in the product, in this case frozen food, is feasible. It is worth mentioning
that these results can be achieved without significant investments such as the installation of
new hardware, but rather only by changing, according to the innovative logic, the setpoints
of the existing controllers. Future studies could include the integration of the refrigeration
systems into the power grid, and the possibility to offer ancillary services such as grid
balancing services could be considered.
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Nomenclature

A0 orifice expansion valve area (m2)
am average vapor-liquid volume ratio (-)
AR receiver area (m2)
AS separator area (m2)
c specific heat capacity (kJ kg−1 ◦C−1)
Ca high pressure compressor
Cb low pressure compressor
ci empirical valve coefficients (-)
Ct heat capacity of the tubes (kJ ◦C−1)
Cv valve flow coefficient (-)
eii separator coefficients (different units)
FL pressure recovery factor (-)
Fy specific heat ratio (-)
h specific enthalpy (kJ kg−1)
J cost function (Wh)
K condenser
L separator level (m)
M electrical motor
ṁ mass flow rate (kg s−1)
n compressor rotational speed (rad s−1)
p pressure (bar)
P electrical power (W)
.

Q thermal power (W)
R receiver
S low pressure separator
Si intermediate pressure separator
t time (s)
T temperature (K)
v specific volume (m3/kg)
V volume (m3)
V1, V2 expansion valves
x vapor quality (-)
X pressure ratio (-)
Xt critical pressure ratio (-)
Y expansion factor (-)
ρ density (kg m−3)
πi valve coefficients (-)
∆t time step (s)
ω weight (-)
Subscripts
air air
C,i i-th compressor
co condensation
ct cooling tower
db dry bulb
dc downcomer
ES Energy Saving
ev evaporator
il internal load
in input
int intermediate
l liquid
out output
pp pinch-point
PV photovoltaic
r riser
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RE Renewable Energy
sat saturation
sw swept
v vapor
vf viscous friction
w water
wb wet bulb
Acronyms
GHG Greenhouse gas
IIAS Istituto Italiano Alimenti Surgelati (Italian Institute for Frozen Food)
KPI Key Performance Indicator
MiL Model-in-the-Loop
MPC Model Predictive Control
PI Proportional-Integral
PID Proportional-Integral-Derivative
SP Setpoint
VCC Vapor Compression Refrigeration Cycle

Appendix A

This appendix reports the coefficients derived in [40] from the rearrangement of the
balance equations and employed in Equations (3)–(5). The numerical derivatives are
calculated by means of central difference.

e11 =

(
∆ρv

∆p
hv + ρv

∆hv

∆p

)
Vv +

(
∆ρl
∆p

hl + ρl
∆hl
∆p

)
Vl + Ct

∆Tv

∆p
(A1)

e12 = ρlhl − ρvhv (A2)

e13 = (ρvhv − ρlhl)Vr
∂am

∂xr
(A3)

e21 =

(
∆ρv

∆p

)
Vv +

(
∆ρl
∆p

)
Vl (A4)

e22 = ρl − ρv (A5)

e23 = (ρv − ρl)Vr
∂am

∂xr
(A6)

e31 =

[
ρl

∆hl
∆p

− xr(hv − hl)
∆ρl
∆p

]
(1 − am)Vr +

[
(1 − xr)(hv − hl)

∆ρv

∆p
+ ρv

∆hv

∆p

]
amVr (A7)

e33 = [(1 − xr)ρv + xrρl](hv − hl)Vr
∂am

∂xr
(A8)

with

am =
ρl

ρl − ρv

[
1 − ρl

(ρl − ρv)xr
ln
(

1 +
ρl − ρv

ρv
xr

)]
(A9)
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