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Abstract—This paper discusses ongoing work in demonstrating
research in mobile autonomy in challenging driving scenarios.
In our approach, we address fundamental technical issues to
overcome critical barriers to assurance and regulation for large-
scale deployments of autonomous systems. To this end, we present
how we build robots that (1) can robustly sense and interpret
their environment using traditional as well as unconventional
sensors; (2) can assess their own capabilities; and (3), vitally in the
purpose of assurance and trust, can provide causal explanations
of their interpretations and assessments. As it is essential that
robots are safe and trusted, we design, develop, and demonstrate
fundamental technologies in real-world applications to overcome
critical barriers which impede the current deployment of robots
in economically and socially important areas. Finally, we describe
ongoing work in the collection of an unusual, rare, and highly
valuable dataset.

Index Terms—Perception, Navigation, Introspection, Au-
tonomous Vehicles, Robotics, Assurance, Ensurance, Insurance,
Trust

I. INTRODUCTION

The perception and navigation capabilities of autonomous
vehicles have been tremendously improved over the past
decade. However, to increase the level of trust in autonomy in
driving scenarios and to assure safety during operation, a range
of open challenges need to be addressed. These challenges
include:

1) robust perception of real-world environments under
changing weather conditions,

2) introspection and assessment of perception and navi-
gation processes, and the

3) semantic interpretation and explanation of scenes as
well as the vehicle’s performance.

In this work, as illustrated in Figure 1, we address the
missing link between unconventional sensing modalities and
environmental performance assessment in real-world scenar-
ios, in conjunction with and coupled to explainability. Our
work is built around the following concrete objectives with
clear measurements of success through which we aim to
impact the way in which we trust and assure autonomy of
autonomous vehicles:
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Figure 1: An illustration of our Sense-Assess-eXplain (SAX)
interpretation of trust and assurance of autonomous vehicle
operations. Alternative Sensing is about the perception of the
environment using unconventional sensing methods. Perfor-
mance Assessment then develops methods necessary to assess
perception systems as well as navigation and control aspects.
Causal Explanation then anchors these representations in
situated driving scenarios and develops methods for generating
causal explanations. Navigation and Control is not the focus
of our research agenda in this project. However, as it is an
essential component of the overall integrated system we will
leverage existing resources in this area.

O1: To robustly and reliably sense and interpret the en-
vironment in severe and changing weather conditions,
overcoming the limitations of classic sensing modalities;

O2: To continuously assess and optimise the performance of
perception as well as navigation methods;

O3: To demonstrate a system capable of explaining in non-
engineering and human terms what a robot/vehicle has
seen and how it has influenced its decision making.

This paper is organised as follows. Section II discusses
related projects being undertaken in the community. Section III
describes a thought experiment which we use to suggest a
framing of the open issues in Section IV. Our particular



approach to these challenges is described in Section V. Sec-
tion VI describes our initial findings, a valuable dataset that
we are collecting, and the schedule for investigation going
forwards. Sections VII and VIII discuss our contribution and
future avenues for investigation.

II. CONTEXT FOR THIS STUDY

In order to manage the risk of autonomous vehicles, new
approaches for ensuring safety are required.

This project is firmly embedded within and aligned with the
outcomes of the Assuring Autonomy International Programme
(AAIP)1 – addressing global challenges in assuring the safety
of robotics and autonomous systems. Related AAIP work
which may be of interest to the reader includes [1]–[6].

In the broader community and as exhibited in focused ses-
sions [7], [8] we find that the works of [9]–[22] have a bearing
on this research agenda. In particular, works dealing with
validation and proving safety [15], [20], critical scenarios and
hazardous events [10], [21], human values and comfort [11],
[19], human-understandable descriptions [22], safety-oriented
architectures [17], [18], and mitigating hazardous events [14]
all related to our objectives. Furthermore, from a robotics
perspective, the role of perceptual components in safety sys-
tems [9] as well as demonstrators [12], simulators [13] and
datasets [16] for tackling these research challenges are all
approaches that inspire the work presented.

In this work, we draw on our experience in robust navi-
gation [23] and scene understanding [24] as demonstrated in
trials that we have executed in challenging scenarios [25]–[27].
Specifically, we continue to advocate the use of commercially
promising but unusual sensing technology which is inherently
robust to inclement weather and illumination [28]–[31].

III. MOTIVATION

To illustrate the assurance paradigm we advocate in Sec-
tion IV and the approach we describe in Section V to solve
the inherent issues this paradigm captures, let us consider the
following concrete example scenario:

While driving off-road, a vehicle enters a region it has not
traversed before. It leverages external services to retrieve
satellite images which provide a large-scale overview of
the region ahead. Based on these images, the vehicle
creates a map, performs a semantic segmentation of driving
surfaces, and plans a route through them according to their
traversability. While following the route, radar and audio
sensor measurements are used to refine and update the
surface segmentation in the map – in the long-range and
short-range respectively. The vehicle will also explain to a
human driver what route was taken, and why: “The vehicle
will take a route over an area of gravel. The route is slightly
longer than the direct route, as there is an non-traversable
body of water in the direction of the goal.”

Next, consider that as it starts to rain heavily, the ve-
hicle notices a drop in its localisation performance using
its cameras. Due to the change of weather conditions –

1https://www.york.ac.uk/assuring-autonomy/

which is also detected through audio (change of surface
properties) and confirmed by external weather services –
the vehicle seamlessly adapts its localisation system from
camera to radar and reduces its velocity. Although this
process happens in the background, the vehicle can explain
the cause of its decision to the human driver: “Due to the
heavy rain and slippery surface conditions, the vehicle has
reduced its speed.” An explanation to a developer and/or
system auditor will provide more technical details: “Due to
a 5% drop in localisation performance using the camera
the vehicle switched to a localisation method using radar.”

For full capability in these scenarios in a fashion that is
understandable and comfortable for a human occupant or
auditor, the autonomous vehicle must:

1) be able to robustly sense and understand its environment,
2) have a good understanding of how well its various

(perceptual or otherwise) subsystems are performing for
the task at hand in the current driving conditions, and

3) relay this information to a human occupant/auditor in a
rational and digestible format.

We capture these three aspects in Section IV which frames
our research agenda. Section V describes our proposed ap-
proach in order to answer these research questions. We ac-
knowledge alternative approaches, however, and hope that the
paradigm itself finds use in the broader community.

IV. THE SENSE-ASSESS-EXPLAIN (SAX) PARADIGM

The proposed approach to trust and assurance addresses
these challenges using a paradigm called Sense-Assess-
eXplain (SAX) which comprises three complementary strands
of research: To summarise, we explain at different levels of
abstraction what we have sensed and assessed. This means
that, while driving, the vehicle is able to explain what it
has perceived and how this has influenced its own decision
making. Moreover, the vehicle will be able to explain how
its performance depends on the current and predicted environ-
mental conditions.

A. Sense

We shall sense the world through a set of unconventional
but complementary sensors – including Frequency-Modulated
Continuous-Wave (FMCW) scanning radar and acoustic sen-
sors – that will allow us to perceive and interpret the en-
vironment in novel ways beyond the current state-of-the-art.
These alternative sensing methods will allow us to make robust
perceptions where traditional sensing modalities might fail
under severe weather conditions. We take the view that these
new additional modalities, so rarely used, offer both an axis
of assurance and validation viz-a-viz conventional established
techniques and an expansion of the operating envelope. In
particular, we focus on the perception of driving surfaces in
on-road and off-road scenarios under various weather (includ-
ing torrential rain and snow) and lighting conditions using
radar as well as the interpretation of complex, unstructured
environments using auditory sensing. Finally, to increase the
vehicle’s environmental awareness we sense the environment



Figure 2: Our primary vehicle, a Jaguar Land Rover, while
traversing an off-road scenario during one of the data-
collection trials.

through a set of available data services such as rain radar (from
weather services) and satellite imagery.

B. Assess
We assess both environmental conditions (a priori) and the

vehicle’s perceptual as well as navigational performance in
order to increase its environmental awareness and to adapt
its behaviour accordingly. To this end, we shall continuously
assess the performance and effectiveness of perception and
navigation methods and adapt them if necessary.

C. eXplain
This “explanatory” thread lies at the heart of our assurance

and trust research agenda. We feel it is sorely lacking in much
of the autonomous vehicle (AV) research endeavour where,
with good reason, black boxes abound; however, the narrative
is clearly changing. We have to be able to offer users pathways
to trust and assurance of what machines are doing and why.
They have to be able to explain, almost justify, what they are
doing, what they see, what it means, and what they plan to
do next and why. The inputs to this explanatory process are,
of course, the Sense and Assess threads, and their value is
exponentiated when they are used to give humans common-
sense everyday explanations of intended action and perception.
We posit that human users demand this as a precursor to trust,
and we know that commercial insurers will require it.

V. THE SENSE-ASSESS-EXPLAIN (SAX) METHODOLOGY

In this project we build on our perception, mapping, and
localisation capabilities – the ideal substrate to perceive chal-
lenging environments. In our approach for sensing, assessing,
and explaining the environment we harness the power of deep
learning, while we utilise structure, priors, and models to guide
the learning process. By combining deep learning with Artifi-
cial Intelligence (AI) reasoning methods and structure we can
overcome some of the critical barriers for assuring autonomy.
For example, a vehicle will be able to provide detailed causal
explanations of its decisions at different levels of abstractions
for different stakeholders. As discussed in Section VI, our
approach will be validated in complex, real-world driving
scenarios using the Jaguar Land Rover (JLR) platform shown
in Figures 2 and 4.

A. Alternative Sensing
In the last decades, many advances have been made in AV

navigation and localisation. Nevertheless, these are still open
problems, especially when AVs are deployed into the real
world, exposing challenges that are hardly predictable in the
laboratories, particularly in the perception of the environment.
Harsh weather and lighting conditions in particular pose non-
trivial challenges to AV development, above all with the usage
of traditional sensing systems, as cameras and Light Detection
and Ranging (LiDAR).

Since all autonomous tasks are built on top of environment
perception, the availability of robust sensing information, as
well as algorithms and techniques to interpret it, is crucial
for all robotic platforms. The objective of this line of work is
therefore to investigate the exploitation of uncommon sensing
modalities and configurations, such as scanning radars and
audio, and external weather and map services, for the vehicle’s
motion estimation and surface classification.

Furthermore, new techniques such as deep learning can be
extremely effective tools to model the data streams coming
from such sensors. For those models to be robust and accurate,
though, a thorough and consistent dataset, representing a
variety of experiences and conditions, is necessary.

Work in this area includes:
1) Radar-based motion estimation and localisation,
2) Auditory sensing,
3) Leveraging external services (such as satellite imagery),
4) Multi-modal terrain classification, and
5) Data collection.
Figure 3 shows exemplar records taken from some of the

sensors that our platform shown in Figure 2 is equipped with.

B. Performance Assessment
Predicting the likely performance of a robotic sub-system

based on past experience in the same workspace is applicable
to both navigation [23] and perception [32]. In this context we
will further equip AVs with accurate situational awareness for
safe autonomous operation in complex environments.

Here, we consider that some environments are less lenient
than others to even small lateral or rotational deviations from
a known trajectory, so that localisation can be lost if the taught
trajectory is not followed within some tolerance. Furthermore,
predictive uncertainty estimates from standard neural networks
are typically overconfident, often making them too unreliable
to be deployed in real world applications.

Work in this area includes:
1) Predicting localisation performance, and
2) Estimating model confidence.
We plan in this challenge to draw on works such as [33] to

intelligently and seamlessly select the sensing modality which
has the most support in the region of the world currently
experienced and its environmental condition.

C. Causal Explanation
It is of key importance that users, developers, and regulators

understand what a robot is doing, what it did, what it intends
to do, and why. Explanations are identified by AAIP as one
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Figure 3: Samples of sensor streams taken at the same time as in Figure 4. (a) shows a radar scan in its cartesian form; (b)
shows 3D LiDAR data; (c) and (d) show the camera data taken by the from stereo and mono cameras respectively; (e) shows
the manually-overlaid Global Positioning System (GPS) and ground-truth data – see Section VI; (f) is the audio stream from
the microphones in the wheel archs.

of the critical barriers to assurance and regulation. Regula-
tors are already requiring some form of interpretability and
explainability.

In this project we will build robots that semantically un-
derstand their environment and can provide causal explana-
tions for their own decisions. Transparent and interpretable
representations will enable developers to analyse the robot’s
behaviour and assure its safe autonomous operation. Users will
benefit from explanations by developing trust in autonomous
systems.

Work in this area includes:
1) Scenario-based requirement analysis,
2) Semantic scene representation, and
3) Learning and inference for causal explanation.
Here, we will investigate a range of driving scenarios to

understand what types of explanations are required by stake-
holders. In particular, we will focus on scenarios which involve
different types of surfaces and changing weather conditions.

Additionally, we will extend our graph-based scene repre-
sentation [34] to encode information of traffic participants and
other semantic aspects of the environment including the type
of surfaces as well as weather information in a well-defined
language (ontology).

D. Integration and Demonstration
Our AV demonstrator is used in transportation tasks in real-

world environments. The vehicle will perform these tasks in
on-road and off-road settings on a range of different terrains
and under different weather conditions.

The overall aim is to demonstrate that a vehicle can explain
its observations of environmental conditions (e.g. surface,
weather) as well as its own performance.

To this end, we will adopt the following principles:

• The vehicle uses a set of uncommon, multi-modal sensors
(incl. radar and acoustic sensors) to mitigate against
failure of traditional sensors such as cameras in severe
weather conditions, and

• The robot assesses its performance in perception and
navigation tasks and detects anomalies that are outside
of learnt confidence bounds.

We will address our aim by exploring and validating the
following practices:

• Use of real-world datasets to learn sensor models includ-
ing confidence bounds, for representative environments,
and

• Validation of learnt models through use in real driving
scenarios using our JLR RobotCar.

Work in this area includes:
1) Dataset release, and
2) Real-world demonstration.
Thus, the demonstrator will deliver a method for explaining

observations of the environment as well as its assessments of
perception and navigation routines, a dataset of unconventional
sensors, and a taxonomy of explanations. The taxonomy will
provide guidance for regulators and system developers for the
accreditation of AVs.

VI. PRELIMINARY AND UPCOMING OUTCOMES

Our early investigation has been focused on robust and
effective motion estimation [35], [36], localisation [31], [37],
and semantic scene understanding [38] using FMCW scanning
radar. We have also produced work showing effective local-
isation between satellite imagery and radar in [30], towards
leveraging external services. Finally, we have released the
largest radar-focused urban autonomy dataset collected to
date [39].



Figure 4: The Leica laser tracker used for ground-truth record-
ing during one of the off-road trials.

However, many urban datasets have been released in recent
years [40]–[42]. For this reason, we are in the process of
collecting a new dataset with the intention of encouraging
research into introspection and explainbility of Autonomous
Driving (AD) systems in totally under-investigated driving
scenarios. To this end, our focus for data capture revolves
around unusual sensing modalities, mixed driving surfaces,
and adverse weather conditions.

Specifically, we are completing driving in rural and off-
road England with our Jaguar Land Rover RobotCar. We
choose not to perform this investigation with smaller robotic
platforms such as [43] as despite the reach of these platforms
into interesting scenarios which are important to economic
sectors such as agriculture they are not also suitable urban
driving.

Indeed, we are capturing data in a wide set of atmo-
spheric and illumination conditions while traversing a variety
of surfaces including highways, country lanes, mud paths,
and cobblestone streets. Our sensor suite is comprised of
sensors traditionally exploited for AD including cameras,
LiDARS, and GPS/INS. However, we also include sensors
which are not traditionally exploited but show great promise
including FMCW radar and audio. Furthermore, we provide
synchronised streams from external services including satellite
imagery and publicly available weather information. Towards
building trust in AVs in challenging real-world driving scenar-
ios, we also plan to provide human-derived metadata tags on
the actions taken by the driver at interesting occasions during
each foray.

Commonly for autonomous vehicles operating outdoor, high
precision GPS is a viable way to record a ground-truth signal
for algorithms to be tested and verified [44]; nevertheless,
an Real-Time Kinematic (RTK) solution is dependant on the
availability of a Global Navigation Satellite System (GNSS)
base station in close proximity [45] and fairly affected by
occlusions – trees and buildings – and longitude. Leica Viva
TS162 is an accurate instrument used for surveying and
building construction. Since TS16 has robotic mode, it is able
to lock onto the specific target and track it regardless of the

2leica-geosystems.com/products/total-stations/robotic-total-stations/
leica-viva-ts16

amount of distractions in the field. We axploit this excellent
ability to provide a ground truth for accuracy evaluations.

VII. OPEN ISSUES

The work proposed in this research agenda is in a nascent
field, with many open issues. In this section we briefly list
import challenges in this area which is either pending or out of
scope of the work proposed here – as framed by the paradigm
discussed in Section IV.

a) Sense: Multi-modal hazard identification, safe envi-
ronment perception in open environments, and dealing with
the unknown.

b) Assess: Safety argumentation for machine learning
based systems, probabilistic guarantees, self-perception, self-
awareness, introspection, related approaches of other commu-
nities, and determination of environment perception perfor-
mance.

c) eXplain: Performance evaluation of explanations,
metrics and benchmarks for risk and safety, abstraction-levels
and hierarchies for explanations, human-machine interfaces,
and explanation in the context of regulation.

VIII. CONCLUSION

This paper presented an overview of the ongoing work
in demonstrating world-leading research in mobile autonomy,
focused on challenging on-road and off-road driving scenarios.
We discussed our approach for addressing the fundamental
technical issues to overcome critical barriers to assurance and
regulation for large-scale deployments of autonomous systems.
We foresee a future where robots can robustly sense their
environment, can assess their own capabilities, and, vitally
in the purpose of assurance and trust, can provide causal
explanations for their own decisions.
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