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ABSTRACT
Background  Neoadjuvant chemoimmunotherapy for non-
small cell lung cancer (NSCLC) has improved pathological 
responses and survival rates compared with chemotherapy 
alone, leading to Food and Drug Administration (FDA) 
approval of nivolumab plus chemotherapy for resectable 
stage IB-IIIA NSCLC (AJCC 7th edition) without ALK or 
EGFR alterations. Unfortunately, a considerable percentage 
of tumors do not completely respond to therapy, which 
has been associated with early disease progression. So 
far, it is impossible to predict these events due to lack 
of knowledge. In this study, we characterized the gene 
expression profile of tumor samples to identify new 
biomarkers and mechanisms behind tumor responses 
to neoadjuvant chemoimmunotherapy and disease 
recurrence after surgery.
Methods  Tumor bulk RNA sequencing was performed in 
16 pretreatment and 36 post-treatment tissue samples 
from 41 patients with resectable stage IIIA NSCLC treated 
with neoadjuvant chemoimmunotherapy from NADIM trial. 
A panel targeting 395 genes related to immunological 
processes was used. Tumors were classified as complete 
pathological response (CPR) and non-CPR, based on the 
total absence of viable tumor cells in tumor bed and lymph 
nodes tested at surgery. Differential-expressed genes 
between groups and pathway enrichment analysis were 
assessed using DESeq2 and gene set enrichment analysis. 
CIBERSORTx was used to estimate the proportions of 
immune cell subtypes.
Results  CPR tumors had a stronger pre-established 
immune infiltrate at baseline than non-CPR, characterized 
by higher levels of IFNG, GZMB, NKG7, and M1 

macrophages, all with a significant area under the 
receiver operating characteristic curve (ROC) >0.9 for CPR 
prediction. A greater effect of neoadjuvant therapy was 
also seen in CPR tumors with a reduction of tumor markers 

KEY MESSAGES
	⇒ Neoadjuvant chemoimmunotherapy for non-small 
cell lung cancer (NSCLC) has improved clinical out-
comes. However, in the context of the recent FDA 
approval of nivolumab plus chemotherapy combina-
tion in this setting, there is a lack of knowledge and 
biomarkers to identify patients who achieve com-
plete pathologic responses, or to determine patients 
who are at higher risk of disease recurrence after 
surgery.

	⇒ Our study supports that tumors achieving CPR con-
stitute a distinct biological entity, with a different 
baseline profile and undergoing greater therapy-
induced changes than non-CPRs. Our results identi-
fy possible key players and mechanisms to achieve 
complete responses, and reinforce the use of CPR 
as an endpoint in neoadjuvant clinical trials.

	⇒ In addition, these differences in gene expression 
profile could be used as a source for CPR predic-
tive biomarkers, with greater ability to describe the 
immune landscape and better performance than 
PD-L1 and TMB, as well as for the identification of 
patients without CPR at high risk of disease recur-
rence, which would allow personalization of follow-
up and adjuvant treatment in these patients.
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and IFNγ signaling after treatment. Additionally, the higher expression of 
several genes, including AKT1, BST2, OAS3, or CD8B; or higher dendritic 
cells and neutrophils proportions in post-treatment non-CPR samples, 
were associated with relapse after surgery. Also, high pretreatment PD-
L1 and tumor mutational burden levels influenced the post-treatment 
immune landscape with the downregulation of proliferation markers and 
type I interferon signaling molecules in surgery samples.
Conclusions  Our results reinforce the differences between CPR and 
non-CPR responses, describing possible response and relapse immune 
mechanisms, opening the possibility of therapy personalization of 
immunotherapy-based regimens in the neoadjuvant setting of NSCLC.

BACKGROUND
Neoadjuvant chemoimmunotherapy introduction in 
resectable stages of lung cancer has led to improved 
patient outcomes in terms of pathological responses and 
showed promising survival rates,1–3 which has led to the 
recent FDA approval of nivolumab in combination with 
chemotherapy for resectable stage IB-IIIA non-small cell 
lung cancer (NSCLC) (American Joint Committee on 
Cancer, AJCC 7th edition) without ALK or EGFR alter-
ations.4 However, a considerable percentage of tumors do 
not completely respond to chemoimmunotherapy, which 
has been associated with early disease progression. Thus, 
the identification of responder patients, as well as those 
non-responders at higher risk of disease recurrence, is 
crucial.

In this sense, several biomarkers related to the tumor 
immunity cycle have been proposed, ranging from the 
presence of neoantigens (measured indirectly through 
tumor mutational burden (TMB)),5 the expression levels 
of PD-L1 (measured by immunohistochemistry in tumor 
sections),6 7 to the direct characterization and quantifi-
cation of immune cells in tissue or blood through: flow 
cytometry,8 multiple immunofluorescence panels,1 or 
T cell repertoire analysis (by sequencing of the TCR 
receptor).9 Additionally, ctDNA levels, as a reflection of 
the patient’s tumor burden, have been shown to be useful 
in this context.3 10 11 There are considerable data for meta-
static NSCLC and immune monotherapy,12 being data in 
locally advanced stages more limited, showing contradic-
tory results for the main biomarkers PD-L1 and TMB.11 
In this sense, gene expression profiles, considering 
hundreds of genes, can give a more comprehensive view 
of the antitumor immune response, overcoming some 
limitations of established biomarkers.13

In this study, we characterize the gene expression 
profile of tumor samples from locally advanced resect-
able NSCLC patients before and after neoadjuvant treat-
ment by bulk RNA-seq, for the discovery of biomarkers 
associated with complete pathological responses and the 
identification of patients with non-complete pathological 
response at high risk of disease progression.

METHODS
Study design and patient samples
All patients with available primary tumor tissue sample 
for molecular determinations from NADIM clinical 
trial (NCT03081689) were included in this study. In the 
NADIM trial, patients with resectable stage IIIA NSCLC 
were treated with three cycles of nivolumab (360 mg) plus 
chemotherapy, consisting of paclitaxel (200 mg/m2) and 
carboplatin (area under the curve (AUC) 6; 6 mg/mL per 
min), before surgical resection. Patients received adju-
vant treatment with 240 mg of nivolumab every 2 weeks 
for 4 months, followed by 480 mg of nivolumab every 4 
weeks during the next 8 months. The objective patholog-
ical response was assessed by blinded pathology central 
review which determined the percentage of residual 
viable tumor in resected primary tumors. Tumors were 
subsequently classified into two categories according 
to their pathological response: complete pathological 
response (CPR) and non-CPR tumors. CPR tumors were 
those with no viable tumor cells in the resected tumor 
bed and lymph nodes analyzed, and non-CPR tumors, 
those who have any percentage of viable tumor cells in 
the resection specimens.

Fifty-three tumor tissue samples of patients enrolled 
in NADIM clinical trial were collected and subjected to 
RNA extraction and sequencing. Fifty-two of 53 samples 
had a good sequencing quality and were analyzed: 16 
of them were obtained at diagnosis and 36 after tumor 
resection (online supplemental table 1). Eleven of them 
were paired samples (pretreatment and post-treatment) 
in which RNA sequencing was done at both timepoints.

The median follow-up time of the entire cohort at data 
cut-off was 38.0 months (95% CI 36.7 to 40.7), with a 94% 
maturity at 36 months. The disease progression status of 
the patients was determined at 34.2 months, that is, the 
follow-up time of the patient without disease progres-
sion with the shortest follow-up available. Regarding this, 
patients with tumors with non-complete pathological 
response (post-treatment non-CPR tumors, n=14) were 
categorized as patients with disease progression (n=5) or 
patients with non-disease progression (n=9). Two patients 
(32 and 35) were excluded from survival analyses and 
analyses based on progression status since they died from 
COVID-19 (and both presented no evidence of disease 
status at the time of death), compromising the identi-
fication of disease progression biomarkers. However, 
they were included in all the other analyses involving 
the pathological response status, the effect of therapy, 
and the relevance of PD-L1 and TMB. Details of clinico-
pathological characteristics of all patients, pathological 
responses, survival outcomes, sequencing quality param-
eters, samples and techniques used are summarized in 
online supplemental table S1.

PD-L1 tumor proportion score and TMB assessment
As previously reported, formalin-fixed paraffin-embedded 
(FFPE) tumor diagnostic samples were used to assess the 
tumor mutational burden (TMB) with the Oncomine 
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Tumor Mutation Load Assay (Thermo Fisher Scientific) 
using an Ion S5 Sequencer (Thermo Fisher Scientific, 
Palo Alto, California, USA) according to the manufac-
turer’s instructions. The commercially available PD-L1 
immunohistochemistry assay PD-L1 IHC 22C3 pharmDx 
(Dako, Glostrup, Denmark) was used to assess PD-L1 
tumor proportion score (TPS) in FFPE tumor diagnostic 
samples.1

A cut-off of ≥25% for PD-L1 TPS was used to classify 
pretreatment tumors into PD-L1-high and PD-L1-low 
expression, as it showed the best performance to iden-
tify complete pathological responses. The median TMB 
of the entire cohort (5.89 Mut/Mb) was used to classify 
tumors with TMB-high and TMB-low.1

RNA extraction
Bulk RNA derived from biopsy FFPE samples at diagnosis 
and surgery specimens were extracted with truXTRAC 
FFPE DNA kit (Covaris) as per manufacturer’s instruc-
tions. RNA quantification was done using the Qubit RNA 
BR Assay Kit (Thermo Fisher Scientific Cat. No. Q10210) 
on a Qubit apparatus.

Library construction and sequencing
Only tissue samples derived from primary tumors were 
sequenced, not considering lymph node-derived samples. 
Briefly, 10 ng of input RNA was reverse transcribed into 
cDNA using the SuperScript IV VILO Master Mix (Cat. 
No. 11756050), and libraries were prepared using the 
Ion AmpliSeq Library Kit 2.0 (Life Technologies Cat. 
No. 4475345) and the Oncomine Immune Response 
Research Assay (Cat. No. A31930) panel that targets 395 
genes related to immunological processes (online supple-
mental table S2). Equal volumes from eight samples at 50 
pM were pooled together for sequencing on an Ion 530 
Chip. Template preparation was performed using an Ion 
Chef System (Thermo Fisher Scientific) and Ion 520 and 
Ion 530 Kit (Thermo Fisher Scientific). Sequencing was 
performed on an Ion S5 XL Sequencer (Thermo Fisher 
Scientific). The ImmuneResponse RNA plugin was used 
to align the sequences to the reference genome (Immu-
neResponse_v3.1) and to count the sequencing reads 
with the Torrent Suite software.

RNA sequencing data analysis
Differential-expressed genes (DEGs) between groups were 
assessed using the DESeq2 package in R.14 Raw counts 
data were used as an input for DESeq2 analysis. The cut-
off criteria for assessing the DEGs was |log2FC|>1.5 and 
adjusted p<0.05.

Pathway enrichment analysis was done using gene 
set enrichment analysis (GSEA).15 16 The input data for 
GSEA was the output normalized counts from DESeq2. 
The gene sets used for GSEA analysis were the 35 Onco-
mine Immune Response gene function annotation sets, 
described in online supplemental table S2. The differ-
ence between this analysis and the one of differential 
gene expression performed with DESeq2 is that it does 

not consider genes individually but as a group. Thus, 
small differences in the expression of a group of genes 
can give rise to a significant differential expression of the 
signaling pathway of which they are part, even if they did 
not differ in their expression individually.

To estimate the proportions of the immune cell subsets 
present in samples using RNA-seq data, the analytical tool 
CIBERSORTx was used.17 This tool can accurately deter-
mine the immune infiltration of each sample by using 
a deconvolution algorithm and a signature reference of 
immune cells (LM22), which can define 22 subtypes of 
immune cells based on a gene signature matrix of 547 
genes. The signature matrix used was the LM22 with 
100 permutations with B mode batch correction and 
with quantile normalization disabled. The input data for 
CIBERSORTx analysis was the TPM normalization of the 
RNA-seq data, done by normalizing each gene length 
with the total read counts. Samples with a CIBERSORTx 
p value <0.05 were used for the analysis.

Statistical analysis
Heatmaps and PCA plots were done with ggplot2 R 
package using as an input the variance stabilizing trans-
formation (vsd) normalization extracted with DESeq2 
analysis. Volcano plots were depicted with the web app 
VolcaNoseR18 using as an input the results of the differ-
ential expressed genes extracted from DESeq2 analysis. 
In the differential expression analysis, a multiple testing 
correction was performed using the Benjamini-Hochberg 
procedure to reduce the number of false positives. 
Regarding the GSEA analysis, a false discovery rate (FDR) 
<5% was considered to identify the significantly upregu-
lated pathways within each group. Non-parametric Mann-
Whitney U test was used to analyze differences between 
CPR and non-CPR tumors and between patients with or 
without disease progression. Wilcoxon rank-sum test was 
used for pairwise analysis between pretreatment and post-
treatment timepoints. The AUC ROC analysis was used 
to determine the capability of DEGs and immune cell 
subsets as predictive biomarkers. Values with the highest 
likelihood ratio from the ROC curve analysis were used as 
thresholds to categorize DEGs or immune cell subsets for 
each sample into high or low groups in the identification 
of patients at high risk of relapse after surgery. Analysis 
of progression-free survival (PFS) and overall survival 
(OS) was done with the Kaplan-Meier curve analysis, 
comparing groups with the log-rank test. An adjusted p 
value of <0.05 was considered statistically significant. IBM 
SPSS software (V.25.0) and GraphPad Prism (V.8.4) were 
used in the statistical analysis.

RESULTS
Differential immune landscape in pretreatment samples 
allows prediction of complete pathological responses at 
surgery
Gene expression levels, using a panel of 395 immune-
related genes, were compared between pretreatment 
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samples of patients with CPR (n=9) and non-CPR (n=5) 
tumors. The unsupervised heatmap based on all genes 
does not perfectly classify patients with CPR and non-CPR 
tumors into two distinct groups. However, six out of nine 
patients with CPR tumors are clustered together, as also 
seen in the PCA plot (online supplemental figure 1A,B).

Specifically, 25 DEGs were identified between CPR 
and non-CPR tumors (online supplemental table S3). Of 
them, 17 were upregulated and 8 were downregulated in 
CPR compared with non-CPR tumors (figure 1A). Among 
the upregulated genes in CPR tumors, some were involved 
in type II interferon signaling (FASLG, CXCL13, CXCL10, 
CXCL9 and IFNG); other genes were related to NK cells 
(NCR1, KIR2DL3 and GNLY); lymphocyte enrichment 
and activation (NKG7, GZMB, IL2RB, CD38, IDO1 and 
TNFRSF9 aka 4-1BB); and tumor antigens (MAGEA10, 
MAGEA1 and GAGE1). Altogether, all these genes depict 
a proinflammatory phenotype in pretreatment tumor 
samples of patients with CPR tumors. However, the eight 
genes upregulated in non-CPR tumors were of diverse 
functions: the myeloid marker ARG1, the TNF receptor 
TNFSF18, the housekeeping gene TFRC, the tumor 
antigen MAGEA12, the proliferation markers MAPK1 and 
CDK1, and IL1B and MIF involved in type II interferon 
signaling and innate immune response, respectively 
(figure 1A).

Analyzing the individual ability of DEGs at baseline to 
identify those patients with tumors that achieve CPR at 
surgery (figure  1B), IFNG stands out, showing an AUC 
of 1.000 (95% CI 1.000 to 1.000) (p=0.002). An IFNG 
TPM value higher than 27.08 seems to classify with 100% 
sensitivity and 100% specificity tumors that will achieve 
CPR (figure 1C). In addition, GZMB and NKG7, related 
to cytotoxic activity of T and NK cells, showed an AUC 
ROC of 0.933 (95% CI 0.793 to 1.000) (p=0.009) and 
0.977 (95% CI 0.910 to 1.000) (p=0.004), respectively, 
when classifying CPR and non-CPR tumors (figure 1C). 
The complete list of AUC ROC for the remaining genes, 
including CD38, CXCL9 and IL2RB, which are also impli-
cated in T cell-mediated immune responses, are shown 
in online supplemental table S4. Among the upregulated 
genes in non-CPR tumors, CDK1, ARG1 and TNFSF18 
showed an AUC of 0.911, 0.888 and 0.866, respectively, 
when classifying CPR and non-CPR responses (online 
supplemental table S4).

Functional enrichment analysis with GSEA software 
was also performed to characterize the upregulated path-
ways within each pathologic response group, revealing an 
upregulation of pathways related to TCR coexpression, 
lymphocyte infiltrate, type II interferon signaling and 
antigen processing in CPR tumors. In the case of non-
CPR tumors, there was an upregulation of tumor markers, 
housekeeping genes, proliferation and PD-1 signaling 
pathways (figure 1D).

Finally, the CIBERSORTx algorithm was also used 
to estimate the relative proportion of immune cell 
subsets in these tissue samples (online supplemental 
figure 2A). CPR tumors showed a higher score of total 

immune cells (p=0.012), as well as a higher proportion 
of follicular helper CD4+ T cells (p=0.038), activated NK 
cells (0.053), M1 macrophages (p=0.002) and resting 
dendritic cells (0.011) than non-CPR patients. However, 
only the proportion of M1 macrophages was statisti-
cally significant after multiple comparisons correction 
(figure 1E). The AUC ROC for predicting the response 
in these tumors based on the proportion of M1 macro-
phages in pretreatment samples was 0.9778 (95% CI 
0.910 to 1.045) (p=0.004). A proportion of M1 macro-
phages higher than 0.04471 showed 100% sensitivity and 
88.9% specificity in identifying tumors that will achieve 
a complete pathological response after immunochemo-
therapy (figure 1F).

Differential immune landscape between CPR and non-CPR 
tumors in post-treatment samples
Regarding surgical samples, the unsupervised heatmap 
considering all genes was unable to classify patients with 
CPR and non-CPR tumors into two separate groups 
(online supplemental figure 3A). Similar limitation was 
found in the PCA (online supplemental figure 3B).

Nevertheless, DEGs between CPR and non-CPR tumors 
were identified (online supplemental table S5). Twen-
ty-two genes were found to be upregulated in non-CPR 
tumors, most of them related to proliferation (CDKN3, 
CCNB2, KIAA0101, MKI67, BUB1, CDK1, TOP2A, FOXM1, 
MELK, MAD2L1, G6PD and DGAT2) or tumor markers 
(CDKN2A, KRT5, BRCA1 and TWIST1), among others 
(MAGEA3, CEACAM1, CXCL8, TNFRSF18, HMBS and 
ISG15) (figure 2A).

Among the DEGs, we performed a comparison of 
their TPM values between CPR and non-CPR tumors 
and represented those whose p values were significant 
after multiple testing correction (p<0.002): the cyclin 
B2 CCNB2 gene and CDKN3 both involved in the cell 
cycle, and ISG15 involved in type I interferon signaling 
(p=0.001, figure 2B). The AUC ROC for distinguishing 
CPR and non-CPR tumors based on the TPM value of 
these three genes were 0.821, 0.818 and 0.814, respec-
tively (figure 2C).

Further GSEA analysis in surgical samples from patients 
with CPR tumors showed an upregulation of pathways 
related to antigen processing, TCR coexpression and 
lymphocyte infiltrate, suggesting the presence of a higher 
immune infiltrate in these tumors. In contrast, non-CPR 
tumors showed an upregulation of proliferation, tumor 
marker, interferon signaling, housekeeping and tumor 
antigen pathways that may be explained by the pres-
ence of viable tumor cells in these surgical specimens 
(figure 2D).

When looking for differences between CPR and non-
CPR tumors in the estimated immune cell infiltrate 
(online supplemental figure 2B), a higher proportion 
of follicular helper CD4+ T cells in non-CPR tumors was 
found, though this was not statistically significant after 
correcting for multiple testing (p=0.025, figure 2E).

 on O
ctober 27, 2022 by guest. P

rotected by copyright.
http://jitc.bm

j.com
/

J Im
m

unother C
ancer: first published as 10.1136/jitc-2022-005320 on 28 S

eptem
ber 2022. D

ow
nloaded from

 

https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
https://dx.doi.org/10.1136/jitc-2022-005320
http://jitc.bmj.com/


5Casarrubios M, et al. J Immunother Cancer 2022;10:e005320. doi:10.1136/jitc-2022-005320

Open access

Identification of patients at high risk of relapse after surgery
Patients whose tumors do not achieve complete responses 
are likely at higher risk of relapse. To identify gene 
expression patterns that may affect long-term outcomes 

in patients with non-CPR tumors, we have analyzed non-
CPR surgery specimens and identified DEGs between 
tumors of patients with or without disease progression 
(online supplemental table S6). Ten genes were identified 

Figure 1  Differential immune landscape in pretreatment samples. (A) Volcano plot showing DEGs between CPR and non-CPR 
tumors. Red dots indicate upregulated genes in CPR tumors, while blue dots indicate upregulated genes in non-CPR tumors. 
(B) Expression levels in TPM of IFNG, GZMB and NKG7. (C) ROC curve for the prediction of complete pathological response 
using median TPM expression levels of IFNG, GZMB and NKG7, as cut-off. (D) Gene set enrichment analysis for pathological 
responses. Differentially upregulated pathways in non-CPR (left) and CPR tumors (right). (E) Absolute immune cell score and 
frequency of each immune cell subtype in CPR and non-CPR tumors determined by CIBERSORTx. P<0.002 was considered 
statistically significant after Bonferroni’s correction for multiple tests. (F) ROC curve for the prediction of complete pathological 
response using median proportion of M1 macrophages as cut-off. Each patient is represented by a black symbol. Comparisons 
were done between CPR (n=9) and non-CPR (n=5) groups. CPR, complete pathological response; DEGs, differential-expressed 
genes.
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as differentially upregulated in tumors from patients with 
disease progression: IFI6 and OAS3, both involved in inter-
feron signaling; AKT and KRT7 as tumor markers; BST2, 
ISG15 and IFI27 involved in type I interferon signaling as 
well as CD8B, HMBS and OAS1 (figure 3A). Importantly, 
of these genes associated with disease progression, AKT1, 
BST2, OAS3, CD8B, IF27 and KRT7, were not associated 
with the percentage of viable tumor cells in the surgical 
specimen (online supplemental table S7). Additionally, 
the expression of these genes, categorized as high and 
low expression, was further correlated with survival. We 
have found that higher levels of IFI6 (p=0.010), BST2 
(p=0.010), CD8B (p=0.019), OAS3 (p=0.010) and IFI27 
(p=0.010) in post-treatment samples of non-CPR tumors 
were associated with lower progression-free survival 

(PFS). In addition, higher levels of HMBS (p=0.018) 
were associated with lower overall survival (OS) (online 
supplemental figure 4). Of special interest is AKT, in 
which higher levels in post-treatment samples were asso-
ciated with both lower PFS and OS (p=0.033 and p=0.003, 
respectively). The PFS and OS of patients whose tumors 
expressed low levels of AKT were 80% (95% CI 40.87 to 
94.58) and 100% (95% CI not estimable) at 36.0 months, 
respectively, compared with 25% (95% CI 0.90 to 66.53) 
in patients with high AKT tumors for both PFS and OS 
(figure 3B). There were no differentially regulated path-
ways between patients with or without disease progression.

Regarding the estimated cell proportions, no differ-
ences were observed between tumors of patients with or 
without disease progression (online supplemental figure 

Figure 2  Differential immune landscape in post-treatment samples. (A) Volcano plot showing the DEGs between CPR and 
non-CPR tumors in post-treatment samples. Red dots indicate upregulated genes in CPR tumors, while blue dots indicate 
upregulated genes in non-CPR tumors. (B) Expression levels in TPM of CCNB2, CDKN3 and ISG15. (C) ROC curve for the 
assessment of complete pathological response using the median TPM expression levels of CCNB2, CDKN3 and ISG15 as 
cut-off. (D) Gene set enrichment analysis for pathological responses. Differentially upregulated pathways in non-CPR and CPR 
post-treatment tumors. (E) Frequency of follicular helper T cells in tumors determined by CIBERSORTx analysis. P<0.002 was 
considered statistically significant after Bonferroni’s correction for multiple tests. Each patient is represented by a black symbol. 
Comparisons were done between CPR (n=22) and non-CPR (n=14) groups. CPR, complete pathological response; DEGs, 
differential-expressed genes.  on O
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2B). However, a higher proportion of activated dendritic 
cells or neutrophils in non-CPR tumors were associated 
with lower PFS and OS (figure 3C and D). The PFS and 
OS at 36.0 months of patients whose tumors had a higher 
proportion of activated dendritic cells were 25% (95% CI 
0.90 to 66.53) and 50% (95% CI 5.79 to 84.48), respec-
tively, compared with 80% (95% CI 40.87 to 94.58) and 
85.7% (95% CI 33.40 to 97.84) in those who presented 
lower levels (p=0.019 for PFS, and p=0.052 for OS). 
Similarly, PFS and OS at 36.0 months for patients with 
a higher proportion of estimated neutrophils was 25% 
(95% CI 0.90 to 66.53) for both parameters; meanwhile, 
it was 80% (95% CI 40.87 to 94.58) and 100% (95% CI 
not estimable) for patients with a lower proportion of 
neutrophils (p=0.033 for PFS and p=0.003 for OS).

Neoadjuvant chemoimmunotherapy induces a stronger 
immune infiltrate in CPR compared with non-CPR tumors
The unsupervised clustering of all samples (diagnostic 
samples and resection specimens) seems to clearly group 

them in two different clusters (online supplemental 
figure 5A). This can also be seen in the PCA, where two 
large clusters corresponding to pretreatment and post-
treatment samples are easily identified. Interestingly, all 
the surgery samples that appear in the PCA pretreatment 
cluster were from non-CPR tumors (online supplemental 
figure 5B).

Patients with CPR tumors showed differential expres-
sion of up to 74 genes between their paired pretreatment 
and post-treatment tissue samples (online supplemental 
table S8). Up to 47 genes were found to be downregu-
lated after neoadjuvant chemoimmunotherapy in post-
treatment tumor samples of CPR patients: 17 of them 
were related to proliferation (MAD2L1, CDK1, MKI67, 
KIAA0101, CDKN3, BUB1, MELK, TOP2A, FOXM1 and 
CCNB2) and tumor markers (BRCA2, PGF, BRCA1, 
CDKN2A, TRIM29, KRT5 and TWIST1), while 12 were 
attributed to the interferon signaling (IFI6, MX1, OAS3, 
IFIT3, ISG15, TAP1, OAS1, STAT1, CXCL9, IFNG, CXCL10 

Figure 3  Immune expression signature associated with disease progression in patients with non-CPR tumors. (A) Volcano 
plot showing the DEGs between post-treatment tumors from patients with disease progression (n=5) versus no disease 
progression (n=9). Red dots indicate upregulated genes in tumors from patients with disease progression, while blue dots 
indicate upregulated genes in tumors from patients with non-disease progression. (B) Kaplan-Meier plots of progression-free 
survival and overall survival for patients with high (n=4) and low (n=10) expression of AKT (p=0.033 and p=0.003, respectively). 
(C) Kaplan-Meier plots of progression-free survival and overall survival for patients with high (n=4) and low (n=19) proportion 
of activated dendritic cells (p=0.019 and p=0.052). (D) Kaplan-Meier plots of progression-free survival and overall survival for 
patients with high (n=4) and low (n=10) proportion of neutrophils (p=0.033 and p=0.003). CPR, complete pathological response; 
DEGs, differential-expressed genes.
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and CXCL11). Also, IFNG and GZMB were upregulated 
in pretreatment tumor samples of patients with CPR with 
respect to their post-treatment counterparts. In addition, 
the highest reductions belonged to the proinflammatory 
IL17A (FC=10.58) and IL4 (FC=9.10) genes (figure 4A). 
Concerning upregulated genes after treatment in CPR 
tumors, 27 genes were increased with respect to their 
pretreatment paired samples: some of them reflecting 
a lymphocyte infiltrate (CCL21, CXCR4, GZMK, CD52, 
IL7R, LAMP3 and PTPRC), neutrophils (CA4) or macro-
phages (MRC1, ALOX15B) among others. Of note is the 
upregulation of genes related to B cells, such as the B 
cell markers JCHAIN, FCRLA and CD22, and the B cell 

antigen receptor complex-associated CD79A and CD79B 
genes (figure 4A).

Further analysis with GSEA software confirmed the 
downregulation of type I and II interferon signaling, 
tumor antigen, and proliferation pathways in post-
treatment samples of these patients. Moreover, post-
treatment samples revealed an upregulation of pathways 
related to lymphocyte infiltrate, antigen processing and 
TCR coexpression (figure 4B).

In addition, the CIBERSORTx analysis showed a 
higher proportion of CD8+ T cells (p=0.018), memory 
resting CD4+ T cells (p=0.018) and resting dendritic cells 
(p=0.028); and lower proportions of follicular helper 

Figure 4  Changes in the immune landscape during treatment. (A) Volcano plot showing the DEGs between paired post-
treatment and pretreatment CPR tumor samples (n=7). Red dots indicate upregulated genes, while blue dots indicate 
downregulated genes in post-treatment samples. (B) Differentially upregulated (upper panel) and downregulated pathways 
(lower panel) in post-treatment CPR tumor samples. (C) Frequency of immune cell subtypes obtained with CIBERSORTx 
analysis in pretreatment and post-treatment timepoints from CPR tumors. (D) Volcano plot showing the DEGs between 
paired post- and pretreatment non-CPR tumor samples (n=4). Red dots indicate upregulated genes, while blue dots indicate 
downregulated genes in post-treatment samples. (E) Differentially upregulated pathways in post-treatment non-CPR tumor 
samples. (F) Frequency of immune cell subtypes in non-CPR tumors and comparison between pretreatment and post-treatment 
timepoints. CPR, complete pathological response; DEGs, differential-expressed genes.
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CD4+T cells (p=0.028) and M1 macrophages (p=0.018) 
in post-treatment samples of CPR patients, showing 
no differences in the absolute score of immune cells 
(figure 4C).

Regarding non-CPR tumors, only eight genes were 
differentially expressed between pretreatment and 
post-treatment samples (online supplemental table 
S9). TRIM29, ILI1A, KRT5, MMP9, S100A9 and CD44 
were downregulated in post-treatment samples, whereas 
JCHAIN and DMBT1 were upregulated (figure 4D). GSEA 
analysis of pathways revealed an upregulation of lympho-
cyte infiltrate and TCR coexpression pathways in post-
treatment samples of non-CPR patients (figure  4E). In 
contrast with CPR tumors, no differences were seen in the 
proportions of immune cells subtypes analyzed between 
pretreatment and post-treatment samples for non-CPR 
tumors (figure 4F).

Pretreatment PD-L1 and TMB status is not associated 
with distinct basal immune landscape but impacts it after 
neoadjuvant treatment
The immune landscape between high and low PD-L1 
TPS tumors and between TMB high and low tumors was 
characterized. Concerning PD-L1 expression, only two 
differentially expressed genes were found upregulated in 
PD-L1 high tumors: the tumor antigen GAGE1, and the 
gene that encodes the PD-L1 protein, CD274 (figure 5A). 
GSEA analysis showed an upregulation of the TCR coex-
pression and drug target pathways in high PD-L1 tumors 
(figure  5B), whereas no differences were seen in the 
proportions of immune cell subtypes (online supple-
mental figure 2A). The comparison between TMB high 
and low tumors revealed an upregulation of the tumor 
antigens MAGEA1 and MAGEA10 in TMB high tumors 
(figure 5C), with an upregulation of the lymphocyte infil-
trate pathway (figure  5B). The frequency of regulatory 
T cells seemed to be higher in patients with high TMB, 
though it was not significant after multiple testing correc-
tion (p=0.038, figure 5D).

We also evaluated how the PD-L1 and TMB status in 
pretreatment tumor samples influenced the immune 
landscape during treatment, affecting the gene expres-
sion in post-treatment samples. Pretreatment PD-L1 TPS 
status was associated with the differential expression 
of 18 genes in post-treatment samples (online supple-
mental table S10). High pretreatment PD-L1 TPS was 
associated with downregulation of 17 genes: the prolifer-
ation markers CDK1, FOXM1, MKI67, KIAA0101, BUB1, 
TOP2A, CDKN3, CCNB2 and MELK; the housekeeping 
genes HMBS and G6PD; the tumor markers CDKN2A, 
KRT5 and BRCA1; the type I interferon signaling mole-
cules ISG15 and IFI27 and the TNF receptor superfamily 
member TNFRSF18 (figure 5E). Additionally, GSEA iden-
tified the upregulation of the antigen processing pathway 
and downregulation of proliferation pathways in post-
treatment tumor samples with higher PD-L1 status than 
their pretreatment counterparts (figure 5G). Regarding 
the estimated cell proportions, post-treatment samples 

of high PD-L1 expression at pretreatment seem to have 
lower proportions of follicular helper T cells (p=0.004) 
and M2 macrophages (p=0.040), though it was not signif-
icant after multiple testing correction (figure 5I).

When looking at the influence of baseline TMB status 
in post-treatment samples, we found that 14 genes were 
downregulated after chemoimmunotherapy in post-
treatment samples whose pretreatment samples had a 
higher TMB: the proliferation markers FOXM1, TOP2A, 
BUB1, MKI67 and KIAA0101; the housekeeping genes 
G6PD and HMBS; the neutrophil marker KREMEN1; the 
interferon signaling genes OAS3, ISG15 and IFI27; the 
negative regulator of T cell mediated immune response 
VTCN1 and the genes involved in the innate immune 
response LCN2 and S100A8 (figure 5F). Additionally, type 
I interferon signaling and proliferation pathways were 
shown to be downregulated in post-treatment samples 
of high TMB status pretreatment (figure 5H). Finally, no 
differences were seen in the proportions of immune cell 
subtypes analyzed (online supplemental figure 2A).

DISCUSSION
Neoadjuvant chemoimmunotherapy has demonstrated 
safety, antitumor activity, and superiority, in terms of 
pathological responses and survival, compared with 
chemotherapy in different phase II and phase III 
studies.1–3 11 19 These results have defined a new standard 
of care, leading to a new FDA approval of nivolumab plus 
chemotherapy for resectable stage IB-IIIA (AJCC 7th 
edition) without ALK or EGFR alterations. In the new 
scenario to come, many questions remain to be answered, 
including: the value of the established biomarkers PD-L1 
and TMB, the role of new putative biomarkers, the main 
mechanisms behind tumor responses, or the personal-
ization of adjuvant therapy based on individual risk of 
relapse. Specifically, CPRs will be a relevant clinical entity 
in terms of their number (near 25%–63% with chemo-
immunotherapy1 2 19 vs 0%–9.5% with chemotherapy 
alone20–24) and impact on patient survival.25 However, a 
considerable percentage of patients (40%–75%) still do 
not achieve CPR with chemoimmunotherapy, presenting 
a higher risk of relapse.1–3 Thus, the search for predictive 
biomarkers of CPR, as well as informed treatment deci-
sion for adjuvant therapy are relevant and novel fields in 
resectable stages of NSCLC.

We herein described that a proinflammatory gene 
expression profile measured in the pretreatment tissue by 
RNA sequencing is associated with CPR after neoadjuvant 
chemoimmunotherapy. Specifically, high levels of IFNG, 
GZMB, and NKG7 as well as the high estimated frequency 
of M1 macrophages could potentially outperform PD-L1 
or TMB regarding CPR prediction.1 9 Reinforcing these 
results, we have previously shown that CPR patients 
exhibited a stronger pre-established immune response 
before treatment in both tissue and blood. Indeed, a 
higher TCR repertoire clonality in pretreatment tumor 
tissue, reflecting higher tumor immunogenicity, was 
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associated with CPR.9 Additionally, this was also mirrored 
in blood, being CPR patients characterized by a higher 
baseline cytotoxic profile, with lower levels of inhibitory 
cytokines and cells.8 The role of IFNγ in antitumoral 
response has been exhaustively reviewed previously. 
This cytokine is produced by dendritic cells, helper and 
cytotoxic T cells and NK cells. Its signaling increases the 
expression of MHC class molecules, enhancing antigen 

presentation; activates NK, T, and dendritic cells; and 
switches tumor-associated macrophages to M1 macro-
phages, promoting tumor elimination.26 27 A higher IFNγ 
signature has been shown to be associated with improved 
best overall response and PFS after immunotherapy in 
advanced stages of melanoma, head and neck carcinoma 
and gastric cancer patients,28 29 but it has not been fully 
demonstrated in NSCLC.30 31 Our results suggest that 

Figure 5  Immune landscape regarding PD-L1 and TMB status in pretreatment samples. (A) Volcano plot of DEGs in 
pretreatment samples between PD-L1 high (≥25%, n=9) and PD-L1 low (<25%, n=6) tumors. Red dots indicate upregulated 
genes, while blue dots indicate downregulated genes in PD-L1 high samples. (B) Differentially upregulated pathways in 
pretreatment samples of TMB high and PD-L1 high tumors. (C) Volcano plot of DEGs in pretreatment samples between 
TMB high (≥5.89, n=7) and TMB low (<5.89, n=7) tumors. Red dots indicate upregulated genes, while blue dots indicate 
downregulated genes in TMB high samples. (D) Frequency of regulatory T cells measured with CIBERSORTx in TMB high 
compared with TMB low tumors. (E) Volcano plot of DEGs in post-treatment samples whose pretreatment tissue showed PD-
L1 high (≥25%, n=11) or PD-L1 low (<25%, n=11) expression. Red dots indicate upregulated genes, while blue dots indicate 
downregulated genes in PD-L1 high samples. (F) Volcano plot of DEGs in post-treatment samples whose pretreatment 
tissue had TMB high (≥5.89, n=12) or TMB low (<5.89, n=10). Red dots indicate upregulated genes, while blue dots indicate 
downregulated genes in TMB high samples. (G) Differentially upregulated pathways in post-treatment samples of pretreatment 
PD-L1 high tumors. (H) Differentially upregulated pathways in post-treatment samples of pretreatment TMB low tumors. 
(I) Frequency of follicular helper T cells and M2 macrophages in post-treatment samples of high or low PD-L1 expression at 
pretreatment. Each patient is represented by a black dot. DEGs, differentially expressed genes; TMB, tumor mutational burden.
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an IFNγ signature in pretreatment tissue, character-
ized by higher differential expression of the interferon-
responsive genes IFNG, GZMB, NKG7, IDO1, CXCL9, and 
CXCL10, could distinguish patients whose tumors will 
achieve CPR after neoadjuvant chemoimmunotherapy. 
We hypothesize that an immune response was previously 
orchestrated in pretreatment samples, where high levels 
of CXCL9 and CXCL10 regulate immune cell infiltration 
and activation and NKG7 and GZMB induce degranu-
lation and target cell apoptosis in CTL and NK cells.32 
Unfortunately, the lower number of events in our cohort 
of patients limited the survival analysis with the IFNG 
expression signature.

This established pretreatment immune response, which 
seems to be associated with pathological responses to 
neoadjuvant chemoimmunotherapy, was poorly reflected 
by PD-L1 or TMB levels. In this sense, only CD274 (PD-
L1), GAGE1, and MAGEA1 genes were differentially 
expressed between tumors with high or low PD-L1 or 
TMB, reinforcing the limitation of these markers in 
predicting responses. Moreover, CD274 was not differ-
entially expressed between CPR and non-CPR tumors. 
However, it appears that the pretreatment levels of PD-L1 
and TMB influence more the composition of the immune 
landscape after treatment than before treatment. In this 
regard, high pretreatment PD-L1 TPS or TMB led to a 
higher expression of antigen processing genes or type I 
interferon signaling but lower expression of proliferation 
markers in post-treatment samples. Pathways probably 
associated with a better neoadjuvant response, as we have 
already seen in the CPR versus non-CPR comparison.

Regarding post-treatment tissue samples, we found 
that non-CPR tumors had upregulation of genes related 
to proliferation and tumor marker genes in comparison 
with CPR tumors, which is consistent with the presence of 
viable tumor cells in these surgical specimens. Conversely, 
CPR tumors showed upregulation of antigen processing, 
TCR coexpression and lymphocyte infiltration pathways, 
supporting that platinum-based chemotherapy allows 
a proficient antitumoral immune response in combina-
tion with anti-PD1 immunotherapy. Similar results were 
recently published using a smaller subset of 21 cases from 
NADIM trial through a more comprehensive gene panel, 
in which tumors achieving major pathological response 
after chemoimmunotherapy had higher numbers of 
CD8+ T cells and genes related to innate immune 
response, as well as an upregulation of genes related to 
DNA replication and cell cycle in incomplete patholog-
ical response tumors.13 Moreover, increased abundance 
of B and plasma cells, as well as, CD4+ and CD8+ T cells 
were found in post-treatment chemoimmunotherapy 
tumors compared with treatment-naïve or neoadjuvant 
chemotherapy-treated tumors.13 However, opposite 
results have been described in bladder cancer, with nega-
tive chemoimmunotherapy phase III trials, supported by 
studies in animals models showing that platinum-based 

chemotherapy diminishes CD8+ T cell tumor infiltration 
and constrains their antitumoral activity.33

It is important to identify the patients that will benefit 
the most from chemoimmunotherapy achieving complete 
pathological responses and patients with non-CPR tumors 
that present a higher risk of relapse after surgery. In this 
regard, we found for the first time a relationship between 
higher levels of AKT1 in post-treatment tumor samples 
and a higher risk of progression and death. Remark-
ably, AKT1 levels were not associated with percentage of 
residual viable tumor cells, reinforcing its role beyond 
tumor marker gene with implications in resistance to 
chemoimmunotherapy. This gene functions as a regu-
lator of cell proliferation and survival, and it could be 
promoting tumor growth regardless of the antitumoral 
immune response. An alteration in the PI3K-AKT-mTOR 
pathway was also found in NSCLC patients with disease 
progression on EGFR-TKI therapy.34 Also, high numbers 
of neutrophils in post-treatment tumor samples seem 
to be associated with lower progression-free and overall 
survival in our cohort of patients. This could be explained 
by the presence of neutrophil extracellular traps known 
to be involved in tumor metastasis,35 36 and present in 
tumor tissue of lung cancer patients.37 38

Importantly, by characterizing the expression levels of 
the primary tumor, we were able to predict relapses at the 
systemic level. This supports that the possible ongoing 
micrometastases, which are frequent at this tumor stage, 
respond similarly enough to what occurs in the primary 
tumor, reinforcing the value of the surgical specimens as 
a valid source for the personalization of adjuvant therapy.

The greatest changes in the immune expression profile 
during neoadjuvant treatment were observed in CPR 
tumors reflecting a stronger immune response. Tumor 
and proliferation markers, as well as genes involved 
in the IFNγ signaling pathway, appear to be downregu-
lated at post-treatment as compared with their pretreat-
ment counterparts, reflecting tumor resolution in CPR 
patients. The downregulation of proliferation and tumor 
markers and IFNγ signaling in post-treatment samples 
of CPR tumors is contrasted with the upregulation of 
lymphocyte infiltration, antigen processing, and B cell 
markers, possibly reflecting a reduction of tumor cells 
with an evolution to a more mature immune response 
in which the B cells may acquire a greater role, with a 
drop in the proportion of M1 macrophages and follicular 
T cells. This seems to be consistent with previous studies 
from our group, in which we found lymphoid aggregates, 
compatible with tertiary lymphoid structures (TLSs), 
present in post-treatment samples of CPR tumors, though 
we had no markers to characterize them.1 Additionally, 
the presence of TLS and B cell infiltration has been 
associated with immune checkpoint blockade response 
in different solid tumors.39–41 Moreover, the presence of 
these TLSs seems to generate a protective immunity in 
NSCLC patients,42–44 and it is characteristic of the regres-
sion tumor bed in resected NSCLC patients treated with 
neoadjuvant immunotherapy.41 Nonetheless, we did not 
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see a higher estimated relative proportion of B cells in 
post-treatment samples of CPR patients, but a higher 
estimated proportion of CD8+ T cells and CD4+ memory 
resting T cells, suggesting a protective immunity against 
the tumor. This also matches with the hypothetical role of 
TLS in sustaining an immune-responsive microenviron-
ment, proposed by other authors, because of their asso-
ciation with CD8+ T cells infiltration.40 Concerning our 
samples, it would be of interest to study these lymphoid 
aggregates to determine if they are actually TLS and the 
role exerted in the response to chemoimmunotherapy. 
However, there were few differences between paired 
tumor samples of non-CPR patients that denotes ineffec-
tive immune stimulation after treatment. Similarly, no 
estimated cell changes were observed between pretreat-
ment and post-treatment samples, indicating a calmer 
scenario in non-CPR tumors.

CONCLUSIONS
In this study, we performed RNA sequencing in pretreat-
ment and post-treatment tissue samples of patients with 
resectable stage IIIA NSCLC treated with neoadjuvant 
chemoimmunotherapy from the NADIM trial using a 
panel of 395 genes related to immunological processes.

Limitations of the study include: the reduced number 
of cases that impedes the analysis of specific mutations; 
the reduced number of events to study the prognostic 
value of pretreatment IFNγ signature, and the lack of 
immunotherapy or chemotherapy cohorts to deter-
mine the prognostic or predictive value of described 
biomarkers. However, to date, this is the largest RNAseq 
effort in chemoimmunotherapy samples from neoadju-
vant NSCLC patients.

We conducted various in-depth analyses, using well-
established software packages, revealing key differences in 
the biology of complete pathological responses, including 
a pre-established immune infiltrate at baseline (which 
could be used as a source for response biomarkers) and 
a reduction of tumor markers and IFNγ signaling after 
neoadjuvant treatment (showing a greater impact of 
treatment on gene expression compared with non-CPR). 
We also identify genes and estimated cell populations 
associated with increased risk of progression in non-
complete pathological responders. Finally, we describe 
that the pretreatment PD-L1 and TMB levels are poorly 
associated with distinct basal immune landscape but 
impact it considerably more after chemoimmunotherapy. 
Our results confirm mechanistic differences between 
CPR and non-CPR responses and open the possibility of 
personalization of immunotherapy-based regimens in the 
neoadjuvant setting.
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