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1. Introduction

Crop yield must urgently be sustainably increased to accommo-
date a rising global population and anticipated climate change in
the coming decades, in the face of plant stresses and limited
resources [1]. Conventional crop breeding is limited by phenotypic
selection and breeding efficiency. Crop phenotyping is defined as
the application of protocols and methodologies to obtain a specific
trait phenotype, ranging from whole plant or canopy level to cellu-
lar level, associated with plant biochemistry, function, or structure
[2,3]. Genomics-assisted breeding advances food security, but the
crop breeding community needs more effective ways to study
the relationship between phenotype and genotype. Although
high-throughput genotyping is available at low cost, crop pheno-
typing and related data management and analysis remain rela-
tively expensive. High-throughput crop phenotyping methods
have received increasing attention for their potential for using
genomic resources for the genetic improvement of crop yield. They
provide powerful tools for measuring physiological and agronomic
trait phenotypes, quantifying and monitoring large genetically
defined populations in field experiments and breeding nurseries
on multiple temporal and spatial scales [4–8]. To do this, they
apply advanced robotics, high-tech sensors, data processing sys-
tems, and images. Several new bioinformatic platforms include
multi-dimensional, large-scale trait phenotype datasets and geno-
typic and omics information. Gene functions and environmental
responses can now be dissected with unprecedented temporal
and spatial resolution using combined genotyping, phenotyping,
and multi-omics data. This ability will help to overcome the limi-
tation of incremental improvements in crop yield. The aim of this
special issue is to investigate the latest innovative research in
remote sensing technologies, sensor development, technological
platforms, and applications for estimating crop trait phenotype
based on multisource data streams and imagery. The special issue
titled ‘‘Crop phenotyping studies with application to crop monitor-
ing” is launched. Here we summarize these papers according to the
classification of topics and add our perspectives.
2. Overview of contributions of this special issue

Contributions included in this special issue describe the estima-
tion of crop phenotypes by sensors installed on various phenotyp-
ing platforms. They highlight the use of spectral analysis, image
segmentation, and machine learning algorithms.

2.1. Sensors and platforms

High-throughput crop phenotyping technologies described in
this special issue employ remote sensing phenotyping platforms
including ground-based [9–20], aerial [21–23], indoor [24–27],
and satellite-based [28–34] platforms. Twelve papers report
results from near-ground platforms and three from aerial, four
from indoor, and seven from satellite phenotyping platforms. For
ground-based platforms, handheld-based field measuring system
[9, 11–18, 20] and fixed scanning systems [10,19] were used to
estimate traits for several crop types. For aerial phenotyping plat-
forms, the recent development of unmanned aerial vehicles (UAVs)
has made data acquisition more efficient with unprecedented tem-
poral, spectral and spatial detail [2]. Indoor phenotyping platforms
have been used to acquire organ-scale traits associated with rice
panicles [24], seed germination [25], pod length [26], and vascular
bundles [27], because illumination can be well controlled. Because
satellite phenotyping platforms have the advantage of regional
scale, they have been successfully used for crop classification
[12,28,30,32,34], yield estimation [29,31], and crop coefficient esti-
mation [33].

In addition to phenotyping platforms, optical sensors play an
important role in advanced phenotyping methods. Light, cheap
sensors can be installed in these platforms to increase their data
acquisition efficiency and quality. Light detection and ranging
(LiDAR) sensors [10,19], hyperspectral sensors
[9,11,12,14,15,17,20], thermal sensors [22], and RGB and multi-
spectral imagery cameras [13,16,18,22–34] have been used for
studying crop phenotyping. RGB images for segmentation, detec-
tion, or classification and multispectral and thermal images and
hyperspectral data for physical and biochemical crop traits are
fully explored using optical radiative transfer models. LiDAR sen-
sors loaded on UAV or ground platforms may be used to acquire
three-dimensional crop structure information in future breeding
programs.
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2.2. Crop phenotyping traits

In this special issue, crop traits are divided into two types: bio-
chemical traits and morphological/structural traits. Biochemical
traits include canopy nitrogen and carbon content [9,20], leaf pig-
mentation [11], stripe rust disease [14], chlorophyll [15], wheat
powdery mildew [17], yield [19,29,31], aboveground dry biomass
[20,22,23], phenological stages [21], seed germination [25], and
crop coefficient [33]. These traits are estimated by multi/hyper-
spectral images or sensors, thermal images, or RGB images from
ground, satellite, and UAV platforms. Li et al. [19] used multispec-
tral data and LiDAR to identify the best machine learning model
and growth stage for estimating yield in wheat. Li et al. [22] eval-
uated the performance of different data (acquired by RGB, multi-
spectral, and thermal cameras) from a UAV for estimating
biomass in sorghum. Morphological and structural traits included
plant height [13], rice panicles [24], seed germination [25], pod
length [26] and vascular bundle [27]. These morphological and
structural traits were measured from three-dimensional point
clouds from LiDAR sensors or RGB images. Wu et al. [24] integrated
supervoxel clustering and a deep convolutional neural network to
model 3D rice panicles. Du et al. [27] developed a deep learning-
integrated phenotyping pipeline to detect vascular bundles with
computed tomography images. The special issue also presents
studies on rice and wheat spike detection [16,18] and crop classi-
fication [30,32,34] under various ecological environmental
conditions.
2.3. Data processing and analysis approaches

In recent years, in the era of big data, data processing and anal-
ysis approaches are critical for increasing the efficiency and quality
of information extracted from crop phenotyping systems. Such
approaches have been used to estimate crop phenotypes. They
are classified into two types, corresponding to the abovementioned
two kinds of crop traits. Approaches used for estimating biochem-
ical traits include partial least-squares regression [9,25], lookup
table [11], difference-in-differences algorithm [14], random forest
[15,17,19,23], extreme learning machine [17], artificial neural net-
work [17,19], support vector machine [17,19,22,23], hierarchical
linear model [20], asymmetric Gaussian function [21], quadratic
and cubic polynomials [29], data assimilation [31], and linear dis-
criminant analysis models [25]. These approaches are shown to be
efficient for estimating various targeted crop traits. Optical radia-
tive transfer models combined with an optimizing algorithm was
applied by Sun et al. [11], who used radiative transfer models to
invert leaf chlorophyll and carotenoid content. In contrast to bio-
chemical traits, morphological and structural traits including plant
height [13], rice panicles [24], pod length [26] and vascular bundle
[27] are usually estimated using image detection and segmenta-
tion approaches. Qiu et al. [13] used RGB-D camera to capture
depth information and color images for measuring maize plant
height using a segmentation algorithm. Li et al. [26] used a feature
pyramid network, principal component analysis and instance seg-
mentation to measure pod length and width in soybean. These
detection and segmentation approaches are used to reduce the
influence of background information, and then are applied for
accurate estimation of crop morphological and structural traits.
3. Summary and perspectives

Conventional crop phenotyping costs much time, effort, and
resources. High-throughput crop phenotyping methods are com-
plementary to such field work and allow high-throughput crop
phenotyping using UAVs and advanced sensors (thermal infrared,
1222
multi/hyperspectral, LiDAR, and others). The integration of UAV
with advanced sensors to acquire abundant spatial, temporal,
and spectral information has been applied to crop phenotyping
by many scientists [2]. The unique advantages of UAV remote sens-
ing not only increase the efficiency of data acquisition, but facili-
tate data standardization, reducing human subjective evaluation
[35]. Machine learning algorithms and image processing and anal-
ysis methods are rapidly advancing, including data preprocessing,
deep learning algorithms, and platform or system development
and testing. All these features contribute to estimating targeted
crop traits using multi-source data [5,8].

These 26 papers presented in this special issue highlight the
topic of estimation of crop traits using remote sensing technolo-
gies, sensors, technological platforms and machine learning algo-
rithms. First, the special issue describes the importance of novel
high-throughput crop phenotyping methods for improving crop
breeding. Second, it investigates the application of sensors and
platforms for high-throughput phenotyping of diverse crops in
diverse growth environments. Finally, it provides guidelines to
effectively combining data processing and analysis methods for
improving crop phenotyping.

The special issue does not discuss the rapid development of
ground phenotyping platforms (phenopoles, phenomobiles, and
stationary platforms) and their applications for crop phenotyping
traits under biotic and abiotic stresses in the field experiments.
Phenotypic studies of crop roots and micro-scale crop phenotypes
are not featured. This issue does not focus on genome-wide associ-
ation study approaches or quantitative trait locus identification
based on crop genomic and phenotype datasets. Scientists should
pay more attention to these study directions in the future.

High-throughput crop phenotyping methods need to be further
improved to yield more accurate estimates of crop traits. The com-
bination of aerial and ground platforms and advanced sensors,
such as thermal, hyperspectral and multispectral cameras, have
resulted in a pressing need for advanced image processing algo-
rithms. Deep-learning algorithms have shown advantages for crop
phenotype detection and segmentation [6,7]. The estimation accu-
racy of crop phenotyping traits is reduced because of crop growth
environmental conditions that degrade the stability of optical sen-
sors. Field crop phenotyping will benefit from refined and more
stable optical sensors. Crop phenotyping platforms and sensors
are expensive in most crop breeding studies, but the rapid develop-
ment of mobile and miniaturized technologies will offer powerful
and affordable micro-sensors for monitoring crop phenotypes via
multi-temporal high-resolution images. Smaller and lighter sen-
sors have been combined with phenotyping platforms to conduct
the study of crop phenotyping [4,5,8]. Various optical sensors have
been used to estimate crop traits under multiple stress conditions.
Integrating the data and image outputs of sensors to increase the
accuracy of crop phenotype estimation remains a challenge for
crop phenotyping research [2,3]. Satellites acquiring relatively
high- resolution temporal-spatial images offer the opportunity to
estimate crop traits on a large regional scale according to interna-
tional image processing standard protocols. Because images from
ground- and aerial-based crop phenotyping systems cannot con-
tain internationally uniform data analysis standards, the sharing
of image datasets will be prohibited [2].

Multidisciplinary collaboration teams will build a more efficient
crop phenotype data management and analysis system. This sys-
tem will include a user-friendly data management and analysis
interface that is combined with data or image preprocessing and
analysis algorithms. Field weather and soil information should be
input into the system to maintain the estimation stability and
accuracy of phenotyping. In future, high-throughput crop pheno-
typing will increase the efficiency of crop trait identification and
further find new crop traits in crop breeding studies with more
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advanced sensors, image processing algorithms, and platforms.
Despite great progress in the field of crop phenotyping, there are
still several opportunities for follow-up investigations about the
field of crop phenotyping. In particular, we suggest more studies
on the application and development of ground platforms and the
creation of algorithms for multi-source data fusion. Deep learning
algorithms linking functional structure models and optical radia-
tive transfer models will better leverage the value of big data in
the field of crop phenotyping. With fast development of image pro-
cessing algorithms and sensor technology, we believe that crop
phenotyping will receive more attention by the image processing,
remote sensing, and crop breeding communities. Finally, high-
throughput crop phenotyping methods will accelerate follow-up
studies of precision agriculture.
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