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Disentangled Capsule Routing for Fast Part-Object
Relational Saliency

Yi Liu∗, Dingwen Zhang∗, Nian Liu, Shoukun Xu†, and Jungong Han†

Abstract—Recently, the Part-Object Relational (POR) saliency
underpinned by the Capsule Network (CapsNet) has been demon-
strated to be an effective modeling mechanism to improve the
saliency detection accuracy. However, it is widely known that the
current capsule routing operations have huge computational com-
plexity, which seriously limited the usability of the POR saliency
models in real-time applications. To this end, this paper takes an
early step towards a fast POR saliency inference by proposing
a novel disentangled part-object relational network. Concretely,
we disentangle horizontal routing and vertical routing from the
original omnidirectional capsule routing, thus generating Dis-
entangled Capsule Routing (DCR). This mechanism enjoys two
advantages. On one hand, DCR that disentangles orthogonal 1D
(i.e., vertical and horizontal) routing greatly reduces parameters
and routing complexity, resulting in much faster inference than
omnidirectional 2D routing adopted by existing CapsNets. On
the other hand, thanks to the light POR cues explored by DCR,
we could conveniently integrate the part-object routing process
to different feature layers in CNN, rather than just applying it to
the small-scaled one as in previous works. This helps to increase
saliency inference accuracy. Compared to previous POR saliency
detectors, DPORTNet infers visual saliency (5 ∼ 9)× faster, and
is more accurate. DPORTNet is available under the open-source
license at https://github.com/liuyi1989/DCR.

Index Terms—Salient object detection, part-object relationship,
capsule network, disentangled capsule routing, multi-level infor-
mation integration

I. INTRODUCTION

THE task of salient object detection is committed to
imitating the human innate ability to identify the most

attractive regions or objects from an image scene. Due to its
potential to localize the visually meaningful regions in a scene,
it can serve as a preprocessing step to improve the computa-
tional efficiency for a wide range of vision tasks, including
segmentation [1], [2], image fusion [3], image retrieval [4],
object recognition [5], etc.

The research of salient object detection stems from Liu’s
work [6], where visual saliency detection was considered a
binary segmentation problem. Since then, a wide range of
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Fig. 1: Performance and speed for different POR saliency
methods on four benchmarks. The input image of TSPOANet
[9], TSPORTNet [10], and proposed “DPORTNet” is cropped
into 352 × 352. “DPORTNetv1” is a modified version of
DPORTNet by cropping the input image into 176× 176.

works [7] have been proposed to solve this problem based on
hand-crafted features, e.g., color, texture, etc. These methods,
however, encountered a performance bottleneck due to the
limited representation ability of hand-crafted features. Thanks
to the emergence of deep learning, especially Convolutional
Neural Networks (CNNs), the performance of salient object
detection approaches has been improved substantially [8] in
the past few years. Concretely, CNN-based approaches attempt
to learn rich distinguishable features to highlight those high-
contrast regions in an image, which are assembled to make
up the entire saliency map. However, the CNN-based methods
may often end up with incomplete segmentation of the salient
object because of an underlying mechanism that the saliency
of each image region is computed separately. To solve this
problem, [9] and [10] proposed the idea of Part-Object Rela-
tional (POR) visual saliency by imposing the POR property to
the task of salient object detection, which was implemented
by the Capsule Network (CapsNet) [11].

Nonetheless, the preliminary attempts of POR saliency [9],
[10] build POR cues exploration upon omnidirectional 2D
routing, i.e., each capsule must be routed into all other capsules
across the image scale, which has two limitations. First, this
omnidirectional routing comes at the cost of having a large
number of network parameters and heavy routing complexity,
both slowing down the saliency inference dramatically. As
shown in Fig. 1, TSPOANet [9] and TSPORTNet [10] appear
to have a speed of 3fps, which is inapplicable to real-time
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Fig. 2: Visual illustration for different POR saliency detectors.
Our method can detect the accurate salient object, compared
with TSPOANet [9] and TSPORTNet [10].

Fig. 3: Illustration for DCR. The disentanglement produces
orthogonal 1D (vertical and horizontal) capsule routing from
the omnidirectional 2D capsule routing. On top of that, two
1D capsule routing results are entangled to the 2D capsules.

scenarios1. Secondly, the complex omnidirectional routing
limits the POR cues exploration to the small-scaled feature
layer, thus leading to inaccurate saliency prediction in complex
scenes. As seen in Fig. 1, TSPOANet [9] and TSPORTNet
[10] do not achieve satisfactory Fβ values due to the om-
nidirectional 2D routing. Apparently, these two limitations
arise from omnidirectional 2D routing that has to compromise
speed, accuracy, and simplicity. Visually in Fig. 2, the previous

1Usually the real-time requirement is 24 fps.

POR saliency methods, i.e., TSPOANet [9] and TSPORTNet
[10], sometimes add noise to the saliency maps in complex
scenes. Particularly, the second row of Fig. 2 shows that the
complicated scene fools TSPOANet [9] and TSPORTNet [10].

In this paper, we streamline the omnidirectional capsule
routing for state-of-the-art CapNet-based saliency detectors
and propose a Disentangled Part-Object Relational Network
(DPORTNet) for fast POR saliency inference. Our main
innovation lies in the proposed Disentangled Capsule Routing
(DCR) towards fast POR cues exploration. Specifically, we
disentangle vertical and horizontal primary capsules from the
original full-resolution capsule maps for capsule routing. This
way allows a vertical 1D routing and a horizontal 1D routing to
replace the original omnidirectional 2D routing to explore the
part-object relationships of the capsule nodes. On top of that,
the obtained orthogonal (vertical and horizontal) capsules are
entangled by matrix multiplication to restore the full-resolution
capsule matrix. This mechanism brings two advantages. First,
as shown in Fig. 3, DCR enables orthogonal routing, instead of
omnidirectional routing adopted in existing CapsNets, which
greatly reduces parameters and routing complexity. In doing
so, we can significantly speed up saliency inference. It can
be seen in Fig. 1, our model, i.e., DPORTNet/DPORTNetv1
achieves much faster fps compared with TSPOANet [9] and
TSPORTNet [10]. Secondly, because of the lightweight POR
cues explored by DCR, we can conveniently apply the part-
object routing process to multiple feature layers in CNN,
rather than just small-scaled feature layers as in previous
works [9], [10], which leads to better saliency prediction.
This can be verified in Fig. 1, where our model, i.e., DPORT-
Net/DPORTNetv1 surpasses TSPOANet [9] and TSPORTNet
in terms of Fβ . Besides, it can be seen from Fig. 2 that our
method can detect the accurate salient object, compared with
TSPOANet [9] and TSPORTNet [10]. Also, experiments on
four benchmarks show that the proposed POR saliency method
is superior to the state-of-the-art methods.

To sum up, the contributions of this paper are as follows:
(1) We design a fast capsule routing algorithm, i.e., DCR, by

involving disentangled representation for CapsNet towards fast
POR cues exploration. To the best of our knowledge, this is the
first attempt to adopt disentangled representation to CapsNet.

(2) On top of DCR, we design a POR saliency network, i.e.,
DPORTNet, which utilizes DCR in multiple layers to learn
multi-level POR cues for saliency prediction. In other words,
the proposed simple DCR routing algorithm enables multi-
level POR cues exploration, which is absent in the existing
CapsNet-based POR saliency detection methods because of
their heavy routing algorithms.

This paper is organized as follows. Sec. II reviews the
related references to our work. Sec. III describes the details of
the proposed DCR algorithm. Sec. IV designs a fast part-object
relational saliency network using DCR. Sec. V carries out
abundant experiments and analyses to understand our method.
Sec. VI concludes the paper.

II. RELATED WORK

In this section, we will review references related to our
work, including salient object detection, CapsNet, and disen-
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tangled representation.

A. CNNs for Salient Object Detection

To date, a large number of works have been proposed for the
task of salient object detection. Hand-crafted features dominate
early salient object detectors, for which a comprehensive
review can be found in [7]. The emergence of deep learning,
especially CNNs, has improved the performance substantially
[12]–[15]. Here, we focus on the CNN-based salient object
detectors that are most related to our method.

The preliminary study simply adopts CNNs for salient
object detection. For example, Li et al. [12] learned multi-
scale features via CNNs for salient object detection. Gupta et
al. [16] extracted adjacent-layer features at one resolution for
saliency prediction. Wang et al. [17] designed a salient object
detection architecture via local estimation and global search.
These works were mostly implemented using the fully con-
nected networks and thereby demanded many resources. Later,
this problem was settled by adopting the fully convolutional
network [18] for salient object detection. For example, Liu et
al. [19] involved global prediction and hierarchical refinement
to detect the salient object. In view of different semantics cap-
tured by different stages of CNN features, many researchers at-
tempted to integrate multi-level features for saliency prediction
[20], [21]. For instance, multi-level features were integrated
into multiple scales for salient object detection [20]. Ma et al.
[22] aggregated adjacent features layer by layer to fuse impor-
tant details and semantics and discard interference information.
Besides, context plays a vital role in deep understanding of
saliency detection [23], [24]. For example, Liu et al. [23]
proposed a contextual information guidance strategy for multi-
level information integration towards salient object detection.
Gupta et al. [25] proposed a gate-based context extraction
module to emphasize invariance features for different scales of
visual patterns. Siris et al. [26] exploited the semantic scene
contexts to learn the salient objects from the scene. Zhao et
al. [27] designed three complementary branches for saliency
detection, including semantic path, spatial path, and boundary
path. Li et al. [28] utilized a purificatory mechanism to find
the salient objects using a structural similarity loss to model
the region-level relationships for saliency calibration. Yang et
al. [29] proposed a progressive self-guided loss function to
train the salient object detection network. More salient object
techniques can be found in [30]. Xu et al. [31] simulated the
human biological mechanism of globally located and locally
segmenting salient objects. Tang et al. [32] solved the problem
of high-quality salient object detection by designing a low-
resolution saliency classification network and a high-resolution
refinement network.

B. CapsNets for Part-Object Relational Salient Object Detec-
tion

The concept of capsule was developed in [33]. A capsule
contains a group of neurons to represent the instantiation
parameters of the entity, e.g., pose, deformation, texture,
etc. Sabour et al. [34] implemented a vector CapsNet via
representing a capsule as a vector and designing a dynamic

routing algorithm. Hinton et al. [11] improved the idea via
a matrix CapsNet, which was achieved by encapsulating a
capsule as a pose matrix and an activation value, and designing
a robust Expectation-Maximization (EM) routing algorithm.
The pavement of CapsNet continued with the development
of a stacked capsule autoencoder in an unsupervised manner
[35]. Besides, many variants have been proposed to enhance
CapsNet [36]–[39].

In view of the advances of CapsNet, it has been applied to
many computer vision tasks, e.g., video object segmentation
[40], multi-label classification [41], object segmentation [42],
etc. CapsNet has also been well studied for salient object
detection [9], [10], [43]. Liu et al. [9] introduced the POR
property implemented by CapsNet for salient object detection.
Concretely, a two-stream strategy was developed in [9] to
implement CapsNet, which could reduce the computational
cost and parameters, and also noisy capsule assignments to
some extent. In their extended version [10], a correlation-
aware routing algorithm was proposed to speed up the training
procedure and increasing the accuracy of part-object relation-
ships, which resulted in a further performance enhancement.

The difference between our work and CapsNet can be
explained as follows. Due to the disentangled representation,
our DCR implements orthogonal 1D routing, instead of omni-
directional 2D routing adopted by the existing CapsNets. This
implementation greatly reduces the network parameters and
routing complexity, resulting in faster POR cues exploration
for efficient saliency inference, as can be verified in Fig. 1.

Besides, the difference between our method and the existing
POR saliency methods [9], [10] lies in two folds. First, our
orthogonal 1D routing greatly speeds up the POR cues explo-
ration, compared to omnidirectional 2D routing in [9], [10],
resulting in faster saliency inference. Secondly, the existing
POR saliency methods [9], [10] explore single-scale (i.e.,
44× 44) POR cues for saliency prediction, while our method
explores multi-scale (i.e., 88×88, 44×44, and 22×22) POR
cues, which help capture richer POR cues for better saliency
prediction.

C. Disentangled Representation
The goal of disentangled representation is to extract ex-

planatory factors from diverse data variation for generating
a meaningful representation, which has been studied for var-
ious tasks. For example, Chio et al. [44] disentangled 1D-
discriminative and 1D-excluded factors from visible-thermal
images. The former was used for cross-modality matching.
Yin et al. [45] disentangled semantics to fulfill the high-
level semantic consistency and low-level semantic diversity
requirements for text-to-image generation. For pose exstima-
tion, Li et al. [46] disentangled the pose to predict rotation
and translation separately. Liu et al. [47] disentangled shape
features from 2D images during 3D face shapes reconstruction
for face recognition. Gilbert et al. [48] disentangled image
structure and style during patch search and selection for style-
aware image completion. Guen and Thome [49] disentangled
physical dynamics to achieve unsupervised video prediction.

In this paper, we extend disentangled representation to solve
the problem of POR saliency. Specifically, we disentangle
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Fig. 4: Primary capsule disentanglement. The pose and activation are disentangled into horizontal pose and activation ((a))
and vertical pose and activation ((b)), respectively, which are further fed into the EM routing algorithm for capsules routing.
W , H , and C represent the width, height, and capsule type number, respectively. WDis−h and WDis−v are learned weight
matrices. ⊗ is the operation of matrix multiplication. P ∈ RW×H×C×DP and A ∈ RW×H×C×DA represent the pose matrix
and the activation of the capsule maps. DP = 16 and DA = 1. The superscript l is the layer index.

orthogonal 1D routing from omnidirectional 2D routing for
the sake of exploring better POR cues for saliency inference.

III. THE DISENTANGLED CAPSULE ROUTING

In this section, we illustrate the proposed Disentangled
Capsule Routing (DCR), which is designed for fast part-object
relational cues exploration. It consists of two phases, i.e.,
primary capsule disentanglement and capsule matrix entan-
glement.

A. Primary Capsule Disentanglement

Primary capsule disentanglement is designed to disentangle
vertical and horizontal capsules from the 2D full-resolution
primary capsule maps. Fig. 4 shows the details of the disen-
tanglement process, which is composed of two streams along
the vertical and horizontal directions, respectively.

Suppose P ∈ RW×H×C×DP and A ∈ RW×H×C×DA are
the pose matrix and the activation of the capsule maps, respec-
tively, where W , H , and C represent the width, height, and
capsule type number, respectively. D= {DP = 16, DA = 1}
is the dimension of the pose matrix and the activation. Fig. 4
details the disentanglement process, which will be illustrated
as follows. The disentanglement pipeline consists of two main
procedures, including horizontal/vertical disentanglement for
capsules and horizontal/vertical votes computation.

Step 1: Horizontal/vertical disentanglement for capsules.
As shown in Fig. 4, the straight pipeline of the horizontal
disentanglement can be given as

Pl/Al ∈ <W×H×C×D T→<D×C×W×H ~→<D×C×W×1
T→<W×1×C×D R→PlDis−h/A

l
Dis−h ∈ <(W×1)×C×D,

(1)
where Pl and Al represents the pose matrix and the activation
values of capsules in layer l, respectively, and / means “or”.
T and R represent the operations of transpose and reshape,
respectively. ~ means a convolution operation with the kernel
size of 1 × 1. The superscript l is the layer index. D can be
taken as DP = 16 and DA = 1 to disentangle the pose matrix
PlDis−h and the activation values Al

Dis−h of the capsules in
layer l, respectively. It is noted that the sigmoid function is
used for Al

Dis−h.
Similarly, as shown in Fig. 4, the straight pipeline of the

vertical disentanglement can be given as

Pl/Al ∈ <W×H×C×D T→<D×C×H×W ~→<D×C×H×1
T→<1×H×C×D R→PlDis−v/A

l
Dis−v ∈ <(1×H)×C×D,

(2)
Also, the Sigmoid function is adopted to activate Al

Dis−v .
Step 2: Horizontal/vertical votes computation. The vote

matrix can be computed by multiplying the pose matrix and
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a learned weight matrix, i.e.,

Vl
Dis−h ∈ <

(W×1)×C×
√

DP ×
√

DP
= P̃lDis−h ×Wl

Dis−h ,
(3)

Vl
Dis−v ∈ <

(1×H)×C×
√

DP ×
√

DP
= P̃lDis−v ×Wl

Dis−v ,
(4)

where, P̃lDis−h ∈ <
(W×1)×C×

√
DP ×

√
DP and P̃lDis−v ∈

<(1×W )×C×
√

DP ×
√

DP are obtained by reshaping PlDis−h

and PlDis−v , respectively. WDis−h<
(W×1)×C×

√
DP ×

√
DP and

WDis−v<
(1×W )×C×

√
DP ×

√
DP are learned weight matrices.

(VDis−h,ADis−h) and (VDis−v,ADis−v) are fed into the
Expectation Maximization (EM) routing algorithm [11] for
horizontal routing and vertical routing to explore horizontal
and vertical POR cues, respectively, i.e., (Pl+1

Dis−h,A
l+1
Dis−h)

and (Pl+1
Dis−v,A

l+1
Dis−v).

B. Capsule Matrix Entanglement

Capsule matrix entanglement is designed to recover the full-
resolution pose matrix from horizontal and vertical pose ma-
trices (Pl+1

Dis−h and Pl+1
Dis−v), and recover the full-resolution

activation from horizontal and vertical activations (Al+1
Dis−h

and Al+1
Dis−v). Fig. 5 details the process of the capsule matrix

entanglement, which consists of two streams in terms of pose
matrix and activation.

As shown in Fig. 5(a) and (b), the entanglement is achieved
by multiplying vertical and horizontal semantics. Before the
matrix multiplication, dimension matching is necessary. As
shown in Fig. 4(a) and (b), the straight pipeline of dimension
matching for Pl+1

Dis−h and Al+1
Dis−h can be illustrated as

Pl+1
Dis−h/A

l+1
Dis−h ∈ <(W×1)×C×D R→<W×1×C×D

T→ P̂l+1
Dis−h/Â

l+1
Dis−h ∈ <C×D×W×1,

(5)
where D can be taken as DP = 16 and DA = 1 for the pose
matrix and the activation, respectively.

Similarly, as shown in Fig. 4(a) and (b), the straight pipeline
of dimension matching for Pl+1

Dis−v and Al+1
Dis−v can be

illustrated as

Pl+1
Dis−v/A

l+1
Dis−v ∈ <(1×H)×C×D R→<1×H×C×D

T→ P̂l+1
Dis−v/Â

l+1
Dis−v ∈ <C×D×1×H .

(6)
On top of that, the entangled pose matrix can be computed

by matrix multiplication as

P̂l+1 ∈ C×DP×W×H = P̂l+1
Dis−h ⊗ P̂l+1

Dis−v. (7)

The full-resolution pose matrix Pl+1 ∈ W×H×C×DP can be
achieved by reshaping P̂l+1.

Similarly, the entangled activation can be computed by
matrix multiplication as

Âl+1 ∈ C×DA×W×H = Sigmoid
(
Âl+1
Dis−h ⊗ Âl+1

Dis−v

)
,

(8)
where Sigmoid (·) means the sigmoid function. The full-
resolution activation Al+1 ∈ W×H×C×DA can be achieved
by reshaping Âl+1.

To this end, the capsule maps of layer (l + 1), i.e., Pl+1

and Al+1, can be obtained. Algorithm 1 illustrate the DCR
based CapsNet.

Algorithm 1 DCR based CapsNet. X is the feature maps
of the input image. P ∗∗ and A∗∗ are the pose matrices and
activation values, respectively. R is the reshape operation.

Procedure Disentangled capsule routing (X)
1. Primary capsules generation∣∣ P l, Al = PrimaryCaps(X)
2. Primary capsules disentanglement:∣∣ Horizontal disentanglement:∣∣ PlDis−h/A

l
Dis−h = Eq. 1(P l, Al)∣∣ Vertical disentanglement:∣∣ PlDis−v/A
l
Dis−v = Eq. 2(P l, Al)

3. Vote matrix computation:∣∣ Horizontal vote:∣∣ Vl
Dis−h = Eq. 3(PlDis−h)∣∣ Vertical vote:∣∣ Vl
Dis−v = Eq. 4(PlDis−v)

4. EM routing:∣∣ Horizontal routing:∣∣ Pl+1
Dis−h,A

l+1
Dis−h = EM(Vl

Dis−h,A
l
Dis−h)∣∣ Vertical routing:∣∣ Pl+1

Dis−v,A
l+1
Dis−v = EM(Vl

Dis−v,A
l
Dis−v)

5. Capsule matrix entanglement:∣∣ P̂l+1
Dis−h, Â

l+1
Dis−h = Eq. 5(Pl+1

Dis−h,A
l+1
Dis−h)∣∣ P̂l+1

Dis−v, Â
l+1
Dis−v = Eq. 6(Pl+1

Dis−v,A
l+1
Dis−v)∣∣ Pl+1 = R(Eq. 7(P̂l+1

Dis−h, P̂
l+1
Dis−v))∣∣ Al+1 = R(Eq. 8(Âl+1

Dis−h, Â
l+1
Dis−v))

IV. NETWORK ARCHITECTURE FOR SALIENT OBJECT
DETECTION

In this section, we will detail the proposed deep salient ob-
ject detection method. Fig. 6 shows the proposed DPORTNet
architecture for salient object detection, consisting of two main
compositions: backbone feature maps generation and DCR.
Concretely, at each stage, backbone feature maps are generated
by the backbone network and AtrouS Pyramid Pooling (ASPP)
[50]. In addition, backbone feature maps are fed into DCR for
POR cues exploration at the three deepest stages that contain
high-level semantics. Furthermore, a residual learning module
is designed to integrate the contrast cues of the backbone
feature maps and the POR cues by DCR to attend to the
salient regions. Finally, multi-level semantics are integrated in
a deep-to-shallow manner to infer the salient object. Details
of the proposed salient object detector will be illustrated in
the following.

A. Backbone Feature Maps Generation

As shown in Fig. 6, the input image first goes through
five stacked convolutional layers, which are implemented by
Conv1 2, Conv2 2, Conv3 3, Conv4 3, and Conv5 3 of
the pre-trained VGG16 [51] model. Besides, to capture richer
context of the input image, ASPP [50] with multiple dilation
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Fig. 5: Capsule matrix entanglement. The horizontal and vertical poses are entangled into the 2D capsule pose ((a)). Likewise,
the horizontal and vertical activations are entangled into the 2D capsule activation ((b)). The interpretations of the mathematical
symbols can be found in the caption of Fig. 4.

Fig. 6: Proposed salient object detection network architecture, i.e., DPORTNet. The top is the framework of our DPORTNet.
The bottom is the framework of our DCR. W and H represent the width and height of the capsule maps. At the three deeper
stages, the backbone network and ASPP [50] are employed to learn rich backbone feature maps, which are fed into DCR for
POR cues exploration. On top of that, a residual learning integrates the contrast cues from the backbone feature maps and the
POR cues from DCR. Finally, multi-level feature maps are integrated in a deep-to-shallow manner to compute the saliency
map.



IEEE TRANSACTIONS ON IMAGE PROCESSING 7

rates (1, 3, 5, 7) is adopted at each stage to generate multi-scale
backbone feature maps, which contain rich context information
under various receptive fields without increasing the kernel
scales.

B. DCR for part-object relational cues exploration

In view of the lightweight of DCR, we adopt it to explore
multi-scale POR cues for saliency prediction. Specifically
in Fig. 6, we integrate DCR at three deeper stages that
contain high-level semantics for sake of multi-scale POR cues
exploration. On top of that, a residual learning combines
contrast cues captured by backbone feature maps and POR
cues explored by DCR, i.e.,

qiout = qiin + fDCR
(
qiin
)
(i = 3, 4, 5), (9)

where qiin and qiout are the input features and output features
of DCR at layer i. fDCR represents the DCR operation.

For the shallow two layers with large scales, the backbone
feature maps obtained by ASPP are directly integrated with the
deep part-object relational cues in a deep-to-shallow manner
via concatenation for saliency inference, i.e.,

qiout = fconv(fcat(q
i+1
out , q

i
ASPP ),Wconv)(i = 1, 2), (10)

where fconv , fcat, and Wconv represent the operations of
convolution, concatenation, and the parameters of convolution,
respectively.

C. Loss Function

We use the cross-entropy loss function (lce) and the Inter-
section over Union (IoU) loss function (liou) to jointly train
our salient object detection network, i.e., lce + liou. Suppose
B and G are the predicted saliency map and corresponding
ground truth. lce is formulated as

lce (B,G) = −
∑
i

[Gi log (Bi) + (1−Gi) log (1−Bi)],

(11)
where i is the pixel index.
liou is defined as

liou (B,G) = 1−

∑
i

B (i)G (i)∑
i

[B (i) +G (i)−B (i)G (i)]
. (12)

D. Insight into DCR induced saliency

1) Visualization for the DCR saliency detector: Fig. 7 visu-
alizes examples for the POR 1D activation maps2 at the third
level. As can be seen from Fig. 7, 1D vertical and horizontal
maps can activate the salient rows and columns, respectively.
They are further entangled by matrix multiplication to produce
a 2D capsule activation map to attend to the salient object. This
also supports the rationality of our DCR, in which 2D routing
can be disentangled into horizontal and vertical directions and
they can be further entangled by matrix multiplication.

2In this paper, the saliency map is derived from the activation map.

Fig. 7: Visualizations of 1D activation maps at the third
level. 1D maps of 8 types of capsules are stacked together
for visualizations. The first two columns are images and the
ground truth, respectively.

2) Difference between our work and CCNet [52]: CCNet
[52] describes a criss-cross attention to extract rich context
for the task of semantic segmentation. Specifically, CCNet
[52] computes an affinity map as the attention map, which
is implemented by multiplying each-position feature vector
of query and the row or column feature vectors of key,
resulting in a criss-cross attention map. Such a mechanism
reduces the parameters and complexity from N2 to N

√
N ,

where N = H ×W is the spatial dimension. In contrast, we
do not simply separate the row/column information. Instead,
we disentangle the input into row vector and column vec-
tor. Specifically, the row/column dimension is treated as the
channel dimension, which is transformed into one dimension
via a convolution. Such a disentanglement mechanism can
achieve column/row feature maps of the input, which are fed
into the capsule routing for column/row capsules assignment
to compute the column/row capsule maps, respectively. By
doing so, the 2D capsule routing can be transformed into two
1D capsule routing, of which each routing associates rows
or columns together. Usually H = W , and our mechanism
reduces the parameters and complexity from N2 to N

2 . As a
result of the lower complexity (N2 < N

√
N ), our method is

more efficient in terms of computation.
Besides, our disentanglement is essentially different from

the row/column separation with the evidence that our vertical
and horizontal capsule features are not simply the row and
column information. During the disentanglement of vertical
capsule features, it can be found in Fig. 4 that the horizontal
dimension of the 2D capsule features is transposed into
the channel dimension, which is followed by a convolution
to achieve our vertical capsule features. Such a mechanism
disentangles the vertical capsule features instead of simple
row separation. Similarly, our disentanglement of horizontal
capsule features from the 2D capsule features is achieved
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by a convolution on the vertical dimension instead of simple
column separation. The disentangled vertical and horizontal
1D inputs are further fed into the capsule routing algorithm
for capsule assignments, producing 1D capsule routing proce-
dures.

V. EXPERIMENT AND ANALYSIS

In this section, we will carry out abundant experiments
and analysis to provide a comprehensive understanding of the
proposed method.

A. Dataset

We evaluate the proposed salient object detection network
on four public benchmarks.

ECSSD [53] contains 1000 images with complicated struc-
tures, which are collected from the Internet.

HKU-IS [12] consists of 3000 training images and 1447
test images, which are with multiple disconnected objects.

DUTS [54] contains 10533 training images and 5019 test
images, which are with different scenes and various sizes.

DUT-OMRON [55] has 5168 images with different sizes
and complex structures.

In terms of HKU-IS [12] and DUTS [54], only the test
images are used for evaluations in our experiments.

B. Evaluation Metric

We evaluate the performance of our model as well as
other state-of-the-art methods from both visual and quantita-
tive perspectives. The quantitative metrics include weighted
F-measure (Fβ) [56], Mean Absolute Error (MAE) [56],
S-measure (Sm) [57], and E-measure (Em) [58]. Given a
continuous saliency map, a binary mask B̂ is achieved by
thresholding the saliency map B. Precision is defined as
Precision =

∣∣∣B̂ ∩G∣∣∣/∣∣∣B̂∣∣∣, and recall is defined as Recall =∣∣∣B̂ ∩G∣∣∣/|G|. Then, the PR curve is plotted under different
thresholds.

F-measure is an overall performance indicator, which is
computed by

Fβ =

(
1 + β2

)
Precision×Recall

β2Precision+Recall
. (13)

As suggested in [56], β2 = 0.3.
MAE is defined as

MAE =
1

Ŵ × Ĥ

∑
i

|B (i)−G (i)|, (14)

where Ŵ and Ĥ are the width and height of the image,
respectively.

S-measure (Sm) [57] is computed by

Sm = αSo + (1− α)Sr, (15)

where So and Sr represent the object-aware and region-aware
structure similarities between the prediction and the ground
truth, respectively. α is set to 0.5 [57].

E-measure (Em) [58] combines local pixel values with
the image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

Fig. 8: Ablation visualization for DCR. (a) Images; (b) GT; (c)
-DCR; (d) DPORTNet. DCR enables grabbing/capturing the
object wholeness (top two rows) and suppressing the confused
backgrounds around salient objects (bottom two rows).

C. Implementation Detail

The proposed model is implemented in Tensorflow [59].
To avoid over-fitting caused by training from scratch, the
backbone network is initialized by the five stages of the
pretrained VGG16 model [51], respectively. The other weights
are initialized randomly with a truncated normal (σ = 0.01)
distribution, and the biases are initialized to 0. The Adam
optimizer [60] is used to train our model with an initial
learning rate of 10−5, β1 = 0.9, and β2 = 0.999. The
training dataset of DUTS [54] is used to train our network
with horizontal flipping as the data augmentation technique.

D. Ablation Analysis

1) DCR: To verify the effectiveness of the proposed DCR,
we compare the entire model with a baseline, which removes
DCR from the model in Fig. 6. Table I lists the quantitative
values of different metrics for comparison. As shown in
Table I, the involvement of DCR can effectively improve the
performance. Besides, Fig. 8 shows the visual illustration of
the proposed capsule routing. Specifically, as shown in Fig.
8, DCR enables grabbing/capturing the object wholeness (as
shown in the top two rows of Fig. 8) and suppressing the
confused backgrounds around salient objects (as shown in the
bottom two rows of Fig. 8). These improvements benefit from
the orthogonal POR cues captured by DCR, which help to
detect relevant object parts and learn the object wholeness for
better saliency prediction.

2) Different POR Cues Explorations for Saliency: To take
a thorough study on different POR cues explorations for
POR saliency, we replace the two-stream capsule routing in
TSPOANet [9]3 with our DCR, called TSPOANet-DCR, to
compare with TSPOANet [9]. As shown in Table I, our DCR
can improve the performance of POR saliency, compared

3The existing POR saliency detectors [9], [10] explore POR cues by using
the same capsule routing during the testing stage, i.e., two-stream routing.
Therefore, we select TSPOANet [9] for comparison.
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TABLE I: Fβ , MAE, Sm, and Em values for different ablation studies.
ECSSD [53] HKU-IS [12] DUTS [54] DUT-OMRON [55]

Fβ ↑ MAE ↓ Sm ↑ Em ↑ Fβ ↑ MAE ↓ Sm ↑ Em ↑ Fβ ↑ MAE ↓ Sm ↑ Em ↑ Fβ ↑ MAE ↓ Sm ↑ Em ↑
DPORTNet 0.9186 0.0381 0.9143 0.9202 0.9051 0.0320 0.9080 0.9476 0.8236 0.0414 0.8702 0.8945 0.7458 0.0553 0.8205 0.8539

-DCR 0.8999 0.0441 0.9131 0.9166 0.8879 0.0377 0.9072 0.9390 0.7636 0.0518 0.8585 0.8588 0.7164 0.0644 0.8185 0.8395
TSPOANet-DCR 0.8929 0.0457 0.9082 0.9132 0.8845 0.0372 0.9037 0.9429 0.7824 0.0476 0.8590 0.8827 0.7249 0.0597 0.8165 0.8505
TSPOANet [9] 0.8873 0.0515 0.8684 0.9020 0.8795 0.0391 0.8656 0.9263 0.7971 0.0482 0.8202 0.8748 0.7030 0.0628 0.7692 0.8232

DPORTNet 0.9186 0.0381 0.9143 0.9202 0.9051 0.0320 0.9080 0.9476 0.8236 0.0414 0.8702 0.8945 0.7458 0.0553 0.8205 0.8539
TSPOANet-DCR 0.8929 0.0457 0.9082 0.9132 0.8845 0.0372 0.9037 0.9429 0.7824 0.0476 0.8590 0.8827 0.7249 0.0597 0.8165 0.8505

DPORTNet 0.9186 0.0381 0.9143 0.9202 0.9051 0.0320 0.9080 0.9476 0.8236 0.0414 0.8702 0.8945 0.7458 0.0553 0.8205 0.8539
DPORTNet-OS 0.9057 0.0432 0.9058 0.9220 0.8981 0.0343 0.9034 0.9440 0.8069 0.0432 0.8666 0.8908 0.7419 0.0564 0.8167 0.8610
DPORTNet-TS 0.9148 0.0414 0.9120 0.9235 0.8996 0.0341 0.9060 0.9452 0.8084 0.0447 0.8657 0.8878 0.7372 0.0577 0.8185 0.8576

DPORTNet 0.9186 0.0381 0.9143 0.9202 0.9051 0.0320 0.9080 0.9476 0.8236 0.0414 0.8702 0.8945 0.7458 0.0553 0.8205 0.8539
DPORTNet-V 0.9156 0.0405 0.9126 0.9209 0.9037 0.0334 0.9053 0.9488 0.8130 0.0442 0.8648 0.8899 0.7472 0.0556 0.8192 0.8569

Fig. 9: Ablation visualization of different POR cues explo-
rations for POR saliency. (a) Image; (b) GT; (c) TSPOANet
[9]; (d) TSPOANet-DCR, which is implemented by replacing
the two-stream capsule routing in TSPOANet [9] with our
DCR.

to TSPOANet [9]. Besides, as shown in Fig. 9, compared
to TSPOANet [9], our DCR improves the wholeness of the
salient objects (as shown in the top two rows of Fig. 9) and
background suppression (as shown in the bottom two rows
of Fig. 9). To our best knowledge, capsules are much more
complex than the neurons in conventional CNNs in terms of
the number of parameters. Thus, the current training data may
be sufficient for training CNN-based salient object detection
models but becomes insufficient for training networks based
on CapsNet. Under this circumstance, by reducing the routing
complexity between capsules, our DCR can ease the opti-
mization process of capsule routing, thus making the whole
learning process much easier when training on the current data.

3) Multi-Scale POR Cues: Unlike the existing POR salien-
cy methods that explore single-scale POR cues for saliency
prediction, we explore multi-scale POR cues for saliency
inference, which enables learning rich POR cues with different
receptive fields of the input image. To understand the supe-
riority of the proposed multi-scale POR cues, we compare
our method with TSPOANet-DCR. As shown in Table I, our
method improves the performance over TSPOANet-DCR that
explores single-scale POR cues like TSPOANet [9]. Besides,
as shown in Fig. 10, compared to the single-scale POR
saliency method, i.e., TSPOANet-DCR, our multi-scale POR

cues achieve better background suppression (as shown in the
top row of Fig. 10) and better object wholeness (as shown
in the second row of Fig. 10). Furthermore, multi-scale POR
cues help to detect salient objects of different sizes (as shown
in the bottom two rows of Fig. 10).

Fig. 10: Ablation visualization for mutli-scale POR cues. (a)
Image; (b) GT; (c) TSPOANet-DCR; (d) DPORTNet. Com-
pared to TSPOANet-DCR, our DPORTNet achieves better
background suppression (top row) and better object wholeness
(the second row). Furthermore, our DPORTNet helps to detect
salient objects of different sizes (bottom two rows).

To have a deeper understanding of our multi-scale POR
cues, we compare one-scale (i.e., DPORTNet-OS), two-scale
(i.e., DPORTNet-TS), and three-scale (i.e., DPORTNet) POR
cues for saliency detection. As shown in the fourth block of
Table I, our DPORTNet that extracts three-scale POR cues
achieves superior performance compared to DPORTNet-OS
and DPORTNet-TS. Moreover, as can be seen in Fig. 11,
our three-scale DPORTNet, compared to DPORTNet-OS and
DPORTNet-TS, can detect the whole salient objects while
suppressing the background (as shown in the first three rows
of Fig. 11), and identify multiple salient objects (as shown in
the last row of Fig. 11), which thanks to the rich POR cues
explored by using DCR at three scales.

4) DCR vs. Vanilla CapsNet: To better understand the
ability of DCR for POR cues exploration, we compare two
models, including our DPORTNet and DPORTNet-V, which
is a modified version by replacing our DCR with the vanilla
capsule routing at the last stage of ASPP. As shown in Table



IEEE TRANSACTIONS ON IMAGE PROCESSING 10

Fig. 11: Ablation visualization of different-scale DPORTNet.
(a) Image; (b) GT; (c) DPORTNet-OS; (d) DPORTNet-TS;
(e) DPORTNet. Compared to DPORTNet-OS and DPORTNet-
TS, our DPORTNet can detect the whole salient objects while
suppressing the background (first three rows), and identify
multiple salient objects (last row), which thanks to the rich
POR cues explored by using DCR at three scales.

I, by comparing DPORTNet and DPORTNet-V, it can be
found that our DPORTNet beats DPORTNet-V on most of
the evaluation metrics. It indicates that the sparse connection
in our DCR is capable of capturing details, compared with
the dense connection of the vanilla capsule routing. Fig. 12
visualizes the detection results. As shown in the first three
rows of Fig. 12, the dense connection of vanilla capsule routing
causes some details lost because of the noise of dense-position
routing. In contrast, our DCR can make up for these lost details
and detect the whole salient objects. As shown in the last row
of Fig. 12, the dense connection of vanilla capsule routing
misses one salient object, which can be identified by our DCR.

Fig. 12: Ablation visualization of DCR vs. vanilla capsule
routing. (a) Image; (b) GT; (c) DPORTNet-V; (d) DPORTNet.
DPORTNet-V causes some details lost and even salient object
missed. In contrast, our DPOETNet can tackle these issues.

TABLE II: Inference time of different POR saliency methods.
The input image of CapsNet, TSPOANet [9], TSPORTNet
[10], TSPOANet-DCR, and DPORTNet is cropped to 352 ×
352. DPORTNetv1 is a modified version of DPORTNet by
cropping the input image to 176× 176.

Method CapsNet TSPOANet
[9]

TSPORTNet
[10] TSPOANet-DCR DPORTNet DPORTNetv1

Time (s) 0.53 0.32 0.35 0.07 0.06 0.04

5) Inference Speed of Different POR Saliency: To highlight
the inference speed improvement of our proposed method, we
list the inference time of different POR saliency methods in
Table II. First, we replace the two-stream capsule routing in
TSPOANet [9] with the original capsule routing [11] (called
CapsNet) and the proposed DCR (called TSPOANet-DCR) for
comparisons. As shown in Table II, our DCR achieves 5×
faster inference speed, compared to CapsNet and TSPOANet
[9]. Secondly, compared with the existing POR saliency meth-
ods, i.e., TSPOANet [9] and TSPORTNet [10], our method
(i.e., DPORTNet and DPORTNetv1) achieves (5 ∼ 9)× faster
inference speed. The speed improvement benefits from the
proposed DCR that disentangles orthogonal 1D routing for
fast POR cues exploration.

6) FLOPs of different methods: As shown in Fig. 13(a)
and (b), when comparing solely POR saliency detection ap-
proaches, we reduce the number of parameters by 3.25M,
0.33M, and 2.51M, compared to CapsNet, TSPOANet [9], and
TSPORTNet [10], respectively. Likewise, DPORTNet reduces
FLOPs by 78.68G, 37G, and 106.74G when comparing with
CapsNet, TSPOANet [9], and TSPORTNet [10], respectively.
Overall, such reductions are quite substantial. We believe this
is a significant improvement towards realizing a fast POR
saliency modeling.

E. Comparison with the State-of-the-Art Methods

In this section, we compare our method with 18 state-of-the-
art methods, including 2 POR saliency methods (TSPORTNet
[10] and TSPOANet [9]) and 16 state-of-the-art saliency meth-
ods (PurNet [28], SCA [26], CIG [23], ITSD [64], SAMNet
[63], ToHR [65], AFNet [66], BANet [67], JointCRF [68],
NLDF [61], PiCANet [69], BMP [21], Amulet [20], UCF [70],
DLS [71], and ELE [72]).

1) Quantitative Comparison: Table III lists the values of
Fβ , MAE, Sm, and Em of different methods. Altogether, the
proposed approach achieves 10 top-1, 12 top-2, and 14 top-3
places in terms of 16 metrics on four benchmarks. Specifically,
our method outperforms the best general saliency method, i.e.,
TSPORTNet [10], which is also the best POR saliency method
and obtains 2 top-1, 7 top-2, and 12 top-3 places. Based on the
above illustrations, we outperform the current state-of-the-art
methods consistently across multiple test sets. Besides, Fig.
14 plots the PR curves on different datasets. Similar to Table
III, as shown in Fig. 14, our method also achieves competitive
performance compared with the other approaches.

2) Visual Comparison: Fig. 15 shows the visual compar-
isons of different methods on various scenes, including large
object, small object, multiple objects, low contrast between
foreground and background, center bias, and complex scenes.
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TABLE III: Fβ , MAE, Sm, and Em values of different methods. Top three methods are marked by red, blue, and green,
respectively. “-” means that the corresponding authors do not provide the detection results of the dataset. In view of the fact
that the compared methods use either Vgg16 [51] (e.g., NLDF [61]) or ResNet50 [62] (e.g., PurNet [28]) as the backbone
networks, we list our performance using the ResNet50 [62] and Vgg16 [51] as the backbone networks for fair comparisons,
i.e., DPORTNet-ResNet50 and DPORTNet-Vgg16, respectively.

Benchmark Metric
DPORTNet
-ResNet50
(OURS)

DPORTNet
-Vgg16
(OURS)

TSPORTNet
[10]

SAMNet
[63]

SCA
[26]

PurNet
[28]

CIG
[23]

ITSD
[64]

ToHR
[65]

AFNet
[66]

BANet
[67]

TSPOANet
[9]

JointCRF
[68]

NLDF
[61]

PiCANet
[69]

BMP
[21]

Amulet
[20]

UCF
[70]

DLS
[71]

ELE
[72]

ECSSD
[53]

Fβ ↑ 0.9244 0.9186 0.9135 0.8913 0.8595 0.9210 0.9028 0.8746 0.9023 0.9076 0.9098 0.8873 0.8956 0.8783 0.8847 0.8682 0.8683 0.8439 0.8219 0.7545
MAE ↓ 0.0334 0.0381 0.0410 0.0501 0.0700 0.0347 0.0494 0.0401 0.0544 0.0418 0.0409 0.0515 0.0493 0.0626 0.0464 0.0447 0.0589 0.0690 0.0860 0.1201
Sm ↑ 0.9114 0.9143 0.9129 0.9071 0.8416 0.9245 0.8935 0.9142 0.8829 0.9134 0.9127 0.8684 0.9068 0.8747 0.9138 0.9108 0.8941 0.8834 0.8064 0.7426
Em ↑ 0.9286 0.9202 0.9229 0.9114 0.8800 0.9252 0.9220 0.9168 0.9171 0.9180 0.9241 0.9020 0.9152 0.9095 0.9103 0.9137 0.9011 0.8923 0.8655 0.8201

HKU-IS
[12]

Fβ ↑ 0.9117 0.9051 0.9010 0.8770 0.8539 0.8998 0.8732 0.8910 0.8923 0.8891 0.8871 0.8795 0.8817 0.8721 0.8698 0.8705 0.8426 0.8233 0.8081 0.7053
MAE ↓ 0.0281 0.0320 0.0324 0.0445 0.0597 0.0302 0.0466 0.0346 0.0420 0.0355 0.0362 0.0391 0.0394 0.0480 0.0415 0.0389 0.0501 0.0612 0.0696 0.1118
Sm ↑ 0.9071 0.9080 0.9091 0.8981 0.8417 0.9158 0.8663 0.9068 0.8827 0.9058 0.9030 0.8656 0.9032 0.8782 0.9054 0.9065 0.8860 0.8742 0.7986 0.7127
Em ↑ 0.9536 0.9476 0.9502 0.9341 0.8959 0.9493 0.9267 0.9465 0.9357 0.9424 0.9433 0.9263 0.9384 0.9287 0.9329 0.9373 0.9122 0.9027 0.8788 0.8097

DUTS
[54]

Fβ ↑ 0.8418 0.8236 0.8092 0.7448 0.7977 0.8173 0.7381 0.7977 0.7932 0.7924 0.7890 0.7971 0.7444 0.7389 0.7491 0.7453 0.6775 0.6307 - 0.5765
MAE ↓ 0.0361 0.0414 0.0433 0.0578 0.0657 0.0391 0.0709 0.0423 0.0512 0.0458 0.0460 0.0482 0.0588 0.0651 0.0541 0.0490 0.0846 0.1122 - 0.1272
Sm ↑ 0.8662 0.8702 0.8707 0.8487 0.8236 0.8810 0.7957 0.8771 0.8291 0.8670 0.8609 0.8202 0.8358 0.8163 0.8607 0.8616 0.8039 0.7823 - 0.6704
Em ↑ 0.9041 0.8945 0.8877 0.8493 0.8676 0.8950 0.8480 0.8918 0.8835 0.8787 0.8773 0.8748 0.8477 0.8543 0.8518 0.8599 0.7939 0.7625 - 0.7479

DUT-OMRON
[55]

Fβ ↑ 0.7448 0.7458 0.7436 0.7110 0.7816 0.7561 0.7026 0.7446 0.7079 0.7385 0.7310 0.7030 0.7379 0.6836 0.7100 0.6917 0.6472 0.6206 0.6453 0.5752
MAE ↓ 0.0541 0.0553 0.0579 0.0652 0.0634 0.0513 0.0746 0.0632 0.0660 0.0574 0.0614 0.0628 0.0574 0.0796 0.0679 0.0636 0.0976 0.1204 0.0895 0.1215
Sm ↑ 0.8062 0.8205 0.8230 0.8299 0.8175 0.8414 0.7822 0.8288 0.7718 0.8263 0.8229 0.7692 0.8207 0.7704 0.8264 0.8093 0.7805 0.7599 0.7249 0.6763
Em ↑ 0.8483 0.8539 0.8557 0.8399 0.8754 0.8683 0.8260 0.8552 0.8411 0.8533 0.8508 0.8232 0.8571 0.8162 0.8344 0.8375 0.7787 0.7647 0.8016 0.7502

TABLE IV: Parameters, FLOPs, and speed of some good methods.

Metric DPORTNetv1
(OURS)

DPORTNet
(OURS)

TSPORTNet
[10]

ITSD
[64]

AFNet
[66]

BANet
[67]

TSPOANet
[9]

NLDF
[61]

PiCANet
[69]

BMP
[21]

Amulet
[20]

UCF
[70]

Parameter (M)↓ 18.84 18.84 21.35 17.08 37.11 55.90 19.17 35.49 32.85 23.98 33.15 23.98
FLOPs (G) ↓ 40.49 60.78 267.50 57.47 38.40 121.60 197.78 263.90 37.1 239.46 45.30 61.4
Speed (fps) ↑ 25 16 3 48 21.6 12.5 3 18.5 15.6 22 9.7 12.0

(a) ECSSD [53] (b) HKU-IS-TE [12] (c) DUTS [54] (d) DUT-OMRON [55]

Fig. 14: PR curves of some good methods. Our method can achieve competitive performance compared with the other
approaches.

Fig. 15: Detection results of some good methods. We choose several scenes, including large object, small object, multiple
objects, low contrast between foreground and background, center bias, and complex scenes, to visualize the detection results
of different methods. Compared with the other methods, our model can detect the salient objects under various circumstances
with good wholeness and uniformity.
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Fig. 13: Parameters (top) and FLOPs (bottom) of different
POR saliency methods.

For large objects, our method can detect better object whole-
ness than the other methods. For small objects, we can locate
the small objects and suppress the surrounding backgrounds,
compared to the other methods. For multiple objects, our mod-
el can detect all the salient objects with good object wholeness
and uniformity, while the other methods miss some object parts
and introduce some background noise. For those objects with
low contrast between themselves and backgrounds, we can
identify the salient object from the misleading surroundings,
while the other methods are easily confused by the similar
backgrounds. For those objects with center biases, we can
locate them accurately with good background suppression,
while the other methods mostly introduce background noise at
the center of the image into the saliency map. For those objects
in complex scenes, the compared methods mostly fail to
identify the salient object from the complicated backgrounds,
which can be solved by our model well. In view of the above
illustrations, our method can detect the salient object well in
various scenes.

3) Parameters, FLOPs, and Speed: Table IV illustrates
the parameters, FLOPs, and speed of some good methods.
In Table IV, compared with the POR saliency detectors,
including TSPORTNet [10] and TSPOANet [9], our methods
have fewer parameters, significantly smaller FLOPs, and (5-
9) faster inference speed. Besides, compared with the CNNs
saliency methods, our methods also perform well with respect
to parameters, FLOPs, and speed.

F. Plugging-in DCR for performance improvement

Our DCR can be easily plugged into any existing salient
object detectors for further performance improvements by
exploring the part-object relational semantics. To demonstrate
it, we incorporate our DCR into NLDF [61], resulting in
NLDF-DCR. Table V illustrates the performance of NLDF
[61] and NLDF-DCR. Table V clearly shows that adding in
DCR results in significant improvements on various datasets in
terms of various evaluation metrics. Fig. 16 shows the visual
improvements of plugging-in DCR. Compared with NLDF
[61], our DCR helps to segment the whole salient objects (as
shown in the first three rows of Fig. 16) while suppressing the
confusing background (as shown in the last row of Fig. 16).

Fig. 16: Visual illustration for the performance improvements
of plugging-in DCR. (a) Image; (b) GT; (c) NLDF [61]; (d)
NLDF-DCR.

G. Failure Cases

Fig. 17 displays some failure cases of our saliency detector
on extremely complex scenes. For example, in the images in
the left two columns of Fig. 17, the salient objects are labeled
as parts of whole objects, but our saliency detector based on
the part-object relationships detects the whole object instead.
For those images in the right two columns of Fig. 17, the
salient objects have poor objectness, which is a challenge for
our method. In the future, we will study the relationships
between the part-object relational property and saliency to
improve the robustness to the above complicated cases.

VI. CONCLUSIONS

In this paper, we have proposed DPORTNet for fast POR
saliency by involving the disentangled representation. Con-
cretely, DCR was proposed to disentangle vertical 1D routing
and horizontal 1D routing from the original omnidirectional
2D routing for fast POR cues exploration with network param-
eters and routing complexity reduction. Due to the lightweight
capsule routing, DCR was carried out at multiple stages to
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TABLE V: Performance improvements for plugging-in DCR.
ECSSD [53] HKU-IS [12] DUTS [54] DUT-OMRON [55]

Fβ ↑ MAE ↓ Sm ↑ Em ↑ Fβ ↑ MAE ↓ Sm ↑ Em ↑ Fβ ↑ MAE ↓ Sm ↑ Em ↑ Fβ ↑ MAE ↓ Sm ↑ Em ↑
NLDF-DCR 0.8989 0.0475 0.8985 0.9160 0.8961 0.0359 0.9025 0.9454 0.7947 0.0478 0.8542 0.8834 0.7272 0.0615 0.8008 0.8495
NLDF [61] 0.8783 0.0626 0.8747 0.9095 0.8721 0.0480 0.8782 0.9287 0.7389 0.0651 0.8163 0.8543 0.6836 0.0796 0.7704 0.8162

Fig. 17: Failure cases. From top to bottom: Images, GT, and
results of our method.

explore multi-scale POR cues. Furthermore, a residual learning
method is proposed to integrate contrast cues and POR cues
for saliency prediction. Experiments have demonstrated the
effectiveness and efficiency of the proposed method. In the
future, we will take a further study on more primitive dis-
entangled representation for capsule routing to explore more
discriminative POR cues.
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