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Abstract
Building on thework of Casagrande–Codogni–Fanelli, we develop our study on the birational
geometry of the Fano fourfold Y = MS,−KS which is the moduli space of semi-stable rank-
two torsion-free sheaves with c1 = −KS and c2 = 2 on a polarised degree-one del Pezzo
surface (S,−KS). Based on the relation between Y and the blow-up of P4 in 8 points, we
describe completely the base scheme of the anticanonical system |−KY |. We also prove that
the Bertini involution ιY of Y , induced by the Bertini involution ιS of S, preserves every
member in |−KY |. In particular, we establish the relation between ιY and the anticanonical
map of Y , and we describe the action of ιY by analogy with the action of ιS on S.

Mathematics Subject Classification 14J35 · 14J45 · 14E30

1 Introduction

Fano manifolds are classified up to dimension three. There are 10 deformation families of 2-
dimensional Fanomanifolds, and 105 deformation families of 3-dimensional Fanomanifolds
(classified by Mori-Mukai and Iskovskih, see [21, 22, 26, 30]).

In dimension 4, toric Fano manifolds have been classified by Batyrev [1] and Sato [28].
The full classification of smooth Fano fourfolds is still to be achieved: only those of index at
least two have been completely classified (see [12, 13, 15, 16, 31, 33]). The index one case
is not yet complete: Küchle constructed a number of examples with Picard number one, and
explained some known results with lists of related problems (see [24]). To find and classify
Fano fourfolds of index one, Coates, Corti and others have embarked on a program using
mirror symmetry ([6], and see a list of examples in [7]), where heavy computer calculations
are involved. A complete classification might not be desirable, but it is interesting to exhibit
someFano fourfoldswith special geometric properties, for example, thosewithPicardnumber
ρ close to the conjectural boundary ρ ≤ 18, or those whose anticanonical system has non-
empty base locus. In order to study Fano manifolds with large Picard number (see [3]),
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Casagrande introduced the invariant called Lefschetz defect, and developed fruitful results in
this direction [4, 9].

Let Y :=MS,−KS be the moduli spaces of semi-stable rank-two torsion-free sheaves with
c1 = −KS , c2 = 2 on a polarised degree-one del Pezzo surface (S,−KS). Themoduli spaces
Y = MS,−KS form a remarkable family of smooth Fano fourfolds with Picard number 9.
As moduli spaces, the birational geometry of Y can be entirely described by the variation of
stabitity conditions: the wall-and-chamber structure of the effective cone Eff(MS,L), given
by the Mori chamber decomposition, matches up with the wall-and-chamber structure of a
convex rational polyhedral cone in H2(S,R), determined by the stability conditions (see [27,
Sect. 2] and [5, Sect. 5]).

The study of this family is motivated by two issues. Firstly, for Fano fourfolds with large
Picard number (e.g. at least 7), only fewexampleswhich are not products of del Pezzo surfaces
are known. As pointed out in [5, Sect. 1,B], the family of Fano fourfolds Y is the only known
example of Fano fourfolds with Picard number at least 9, which is not a product of surfaces.
Secondly, it is delicate to find examples of Fano fourfolds whose anticanonical system has
non-empty base locus, since most Fano fourfolds classified so far are toric, which implies
that any ample line bundle on them is globally generated. Some examples are constructed
in [20, Chapter 6.3] as complete intersections of two hypersurfaces in weighted projective
spaces; two families are identified in [29] as Fano fourfolds with Picard number 3 and having
some contraction onto a smooth Fano threefold. In [5, Thm. 1.10], it is shown that the base
locus of the anticanonical system |−KY | has positive dimension. Therefore, the geometry of
Y is worth detailed understanding.

A.The anticanonical systemof the FanomodelY . The birational geometry ofY = MS,−KS

is related to the birational geometry of the blow-up X of P4 at 8 points. In [5, Lem. 5.18],
an explicit relation between X and Y is given: the Fano fourfold Y is obtained from X by
flipping the strict transforms of the lines through all pairs of blown up points and of the
quartic curves through 7 blown up points in P

4. Thanks to this relation between X and Y , it
is shown in [5, Lem. 7.5, Cor. 7.6] that the base locus of |−KY | contains the strict transform
RY of a smooth rational quintic curve passing through the 8 blown up points in P4, and that
|−2KY | is base-point-free. We complete the study of the anticanonical system and show
more precisely that:

Theorem 1.1 For the Fano fourfold Y :=MS,−KS , the base scheme of |−KY | is the reduced
smooth curve RY .

As a direct application, we obtain the smoothness of a general member in the anticanonical
system.

Corollary 1.2 Let D ∈ |−KY | be a general divisor. Then D is smooth.

B. The Bertini involution of the Fano model Y . Now we turn our attention to the auto-
morphism group of Y . In [5, Sect. 4], a group morphism ρ between the Picard groups of the
degree-one del Pezzo surface S and of the moduli spaces Y = MS,−KS is defined. This mor-
phism ρ induces an isomorphism between the automorphism groups of S and of Y (see [5,
6.15]). In particular, there is an involution ιY of Y which is induced by the Bertini involution
ιS of S.

We mention here that another motivation behind the study of the Bertini involution ιY is
the understanding of the corresponding birational involutions ιX of X and ιP4 of P

4. These
birational maps ιX and ιP4 are classically known, as they can be defined via the Cremona
action of the Weyl group W (E8) on sets of 8 points in P

4 (see [10, 32]). Nevertheless, the
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classical definitions of ιX and ιP4 do not give a geometric description of these maps. In [5,
Prop. 8.9, Cor. 8.10], a factorisation of these maps is given as smooth blow-ups and blow-
downs using the interpretation of X as a moduli space of vector bundles on S. In view of
the relation among Y , X and P

4, understanding one of the involutions helps describe the
behaviour of the others.

By the analogy of Y and S, one expects that the action of ιY on Y has similar properties
as the action of ιS on S, where the latter is well understood (see for example [11, 8.8.2]).
To emphasize their analogy, we recall that the Bertini involution ιS on S can be described as
follows. The bianticanonical system |−2KS | is base-point-free and defines a 2:1-cover with
image a quadric cone in P

3. The Bertini involution ιS is then defined to be the associated
covering involution. By construction, the Bertini involution ιS on S preserves every element
of |−2KS |. Since a divisor D ∈ |−KS | defines an element 2D ∈ |−2KS |, we see that ιS
preserves every divisor in |−KS |. In view of the abstract construction of ιY on the Fano
fourfold Y , the same method cannot be applied to decide whether ιY preserves every divisor
in |−KY |. However, by analysing the anticanonical map of Y , we show that the same property
holds for Y .

Theorem 1.3 The Bertini involution ιY of the Fano fourfold Y :=MS,−KS preserves every
divisor in |−KY |, so we have a factorisation of the anticanonical map ϕ|−KY |:

Y P(H0(Y ,OY (−KY ))∨) � P
5.

Y/ιY

ϕ|−KY |

We will see in Theorem 1.5 that the anticanonical map ϕ|−KY | has generically degree 4 onto
its image, and thus by the above theorem this map factors rationally into two double covers.

To understand the Bertini involution ιY on the Fano fourfold, our approach is analysing
its behaviour on a special surface WY which is invariant by ιY . This surface WY is the
strict transform of the cubic scroll swept out by the pencil of elliptic normal quintics in
P
4 through the 8 blown up points; in particular, it contains the curve RY . Inspired by the

similaritywith degree-one del Pezzo surfaces,we study themorphismdefinedby the restricted
bianticanonical system of Y on WY , and we give the following description of ιY restricted to
WY .

Proposition 1.4 The Bertini involution ιY of the Fano fourfold Y :=MS,−KS preserves the
surface WY , and its restriction ιY |WY on WY is the biregular involution defined by the double
covering

φ|−2KY |WY
: WY → V2,4 ⊂ P

7,

where V2,4 � F2 is a rational normal scroll of bidegree (2, 4). In particular, the Bertini
involution ιY acts as the identity on the curve RY and ιY induces an involution on each
elliptic fibre FY of WY → P

1.
Furthermore, there exists a smooth curve R′ ∼ 3(RY + FY ) of genus 4 on the surface

WY , such that R′ is disjoint from RY and contained in the fixed locus of ιY .

Since RY is contained in the fixed locus of the Bertini involution ιY , the involution can
be lifted to the blow-up Ỹ of Y along the curve RY . We establish the relation between the
resolved anticanonical map and the lifted involution on Ỹ as follows.

Theorem 1.5 Let μ : Ỹ → Y be the blow-up of Y :=MS,−KS along the base curve RY of
|−KY |, and E be the exceptional divisor. Let f : Ỹ → P(H0(Y ,OY (−KY ))∨) � P

5 be
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the morphism defined by the base-point-free linear system |μ∗(−KY ) − E |. Then f has
generically degree 4 with image Q a smooth quadric hypersurface in P

5, and f contracts
the strict transform of the surface WY to a conic in P5. Moreover, f |E : E → f (E) is a finite
birational morphism such that the image f (E) has degree 4 in P

5.
Furthermore, the Bertini involution ιY of Y can be lifted to Ỹ , and the lifted involution ιỸ

acts as the identity on E. Moreover, f factors through the quotient Ỹ/ιỸ :

Ỹ

Y Ỹ/ιỸ

Q ⊂ P
5

μ

f

As open questions, one may like to understand the quotient Ỹ/ιỸ , the geometric interpre-
tation of Ỹ/ιỸ → Q, and to describe completely the fixed locus of ιỸ (see Lemma 4.16).

Plan.We briefly explain the organisation of the paper. In Sect. 2, we summarise some results
in [5], including the geometry of the Fano model Y :=MS,−KS , the connection between the
blow-up X of P4 at 8 points and the degree-one del Pezzo surface S, and the relation between
X andY .Wefinish by recalling some basic properties of theBertini involution of a degree-one
del Pezzo surface.

In Sect. 3, we investigate the anticanonical system |−KY | and the bianticanonical system
|−2KY |. We prove Proposition 1.1 by an additional analysis on the simplicial facets of the
cone of effective divisors on Y . We also give some auxiliary results on |−KY | and |−2KY |,
which serve as key ingredients in the study of the Bertini involution of Y .

In Sect. 4, we study the action of the Bertini involution of Y . Section 4.1 is devoted to
the proof of Proposition 1.4. We study the morphism defined by the bianticanonical system
|−2KY | restricted to the surface WY . Computations by Macaulay2 show that the image of
WY is a surface of degree 6 in P

7, which helps us to describe completely the morphism; in
particular, the morphism is finite of degree 2 and gives an involution on the surface WY . By
examining the action of this covering involution, we show that it coincides with the Bertini
involution ιY restricted to the surface WY .

In Sect. 4.2, we study the geometry of the anticanonical map of Y . Computations by
Macaulay2 show that the image of Y by the antincanonical map is a smooth quadric
hypersurface Q in P

5. We are then ready to prove Theorem 1.3. The strategy is to prove
by contradiction: we suppose that ιY does not preserve every divisor in |−KY |. We show
that in this case, ιY induces a non-trivial involution ιQ on Q. We then obtain a contradiction
by analysing the fixed locus of the induced involution ιQ and by studying the geometry
of a special sub-linear systems of |−KY | consisting of divisors containing the surface WY .
Theorem 1.5 is obtained as a consequence of the study to prove Theorem 1.3.

In Appendix A, we include the code for several computations in Sects. 3 and 4 using the
software system Macaulay2.

123



Anticanonical geometry of the blow-up…

2 Preliminaries

In this paper we work over the field C.
We fix S a general del Pezzo surface of degree one. We will see in 2.2.1 that we can

associate to a degree-one del Pezzo surface S a blow-up X of P4 at 8 points in general linear
position; for general S, the associated X is a blow-up of P4 at 8 general points. Note that we
will need this general condition on the 8 blow-up points in P4 to apply Lemma 3.1.

Let MS,L be the moduli space of semi-stable (with respect to L ∈ Pic(S) ample) rank-two
torsion free sheaves F on S with c1(F) = −KS and c2(F) = 2. Then it follows from the
classical properties of the determinant line bundle that for the polarisation L = −KS , the
moduli space Y :=MS,−KS is Fano.

For the degree-one del Pezzo surface S, we introduce the following notions (see [5,
Sect. 2.1]). A conic on S is a smooth rational curve such that −KS · C = 2 and C2 = 0.
Every such conic yields a conic bundle S → P

1 having C as fibre. There are 2160 conics
(as classes of a curve) in H2(S,Z). A big divisor h on S which realises S as the blow-up
σ : S → P

2 at 8 distinct points is called a cubic. We have h = σ ∗OP2(1). There are 17280
cubics (as classes of a curve) in H2(S,Z).

Notation 2.1 Given a cubic h, we use the following notation:

• σh : S → P
2 is the birational map defined by h

• q1, . . . , q8 ∈ P
2 are the points blown up by σh

• ei ⊂ S is the exceptional curve over qi , for i = 1 . . . , 8
• Ci ⊂ S is the transform of a general line through qi , so that Ci ∼ h−ei , for i = 1, . . . , 8
• �i j ⊂ S is the transform of the line qiq j ⊂ P

2, so that �i j ∼ h − ei − e j and �i j is a
(−1)-curve, for 1 ≤ i < j ≤ 8.

2.1 The Fanomodel Y

By [5, Prop. 1.6], themoduli spaceY :=MS,−KS is a smooth, rational Fano fourfoldwith index
one and Picard number 9. For such a moduli space Y , the determinant map ρ : H2(S,R) →
H2(Y ,R) is an isomorphism (see [5, Thm. 1.3]) and yields a completely explicit description
of the relevant cones of divisors Eff(Y ), Mov(Y ) and Nef(Y ), as well as the cone of effective
curves NE(Y ). We cite the following statements for the cone of effective divisors Eff(Y ) and
the cone of effective curves NE(Y ), and refer the readers to [5, Sect. 6] for the description
of the other relevant cones.

Proposition 2.2 [5, Sect. 2.3, Cor. 6.2] The determinant map ρ : H2(S,R) → H2(Y ,R)

yields an isomorphism between E and Eff(Y ), where E is the subcone of Nef(S) generated by
the conics:

E :=〈C |C a conic〉 ⊂ H2(S,R).

Hence, the cone Eff(Y ) has 2160 extremal rays, each generated by a fixed divisor EC , where
C ⊂ S is a conic.

Moreover, given a cubic h, (2h+KS)
⊥ ∩E is a simplicial facet (i.e. a face of codimension

one) of E , generated by the conics Ci for i = 1, . . . , 8 (notations as in Notation 2.1). Hence,
the fixed divisors ECi for i = 1, . . . , 8 generate a simplicial facet of Eff(Y ).

Proposition 2.3 [5, Prop. 1.7] The cone of effective curves NE(Y ) has 240 extremal rays,
and is isomorphic to NE(S). If � is a (−1)-curve on S, the corresponding extremal ray of
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NE(Y ) is generated by the class of a line �� in P�
∼= P

2 ⊂ Y . The corresponding elementary
contraction is a small contraction, sending P� to a point.

The determinant map ρ also relates the two automorphism groups Aut(Y ) and Aut(S).
By [5, Thm. 1.9], the map ψ : Aut(S) → Aut(Y ) given by ψ(φ)[F] = [(φ−1)∗F], for
φ ∈ Aut(S) and [F] ∈ Y , is a group isomorphism. In particular, Aut(Y ) is finite; if S is
general, then

Aut(Y ) = {IdY , ιY },
where ιY : Y → Y is induced by the Bertini involution of S. We still call the involution
ιY :=ψ(ιS) of Y the Bertini involution. Explicitly, ιY : Y → Y is given (see [5, Def.6.19]) by
ιY ([F]) = [ι∗SF]. We have a commutative diagram:

H2(S,R)
ι∗S

ρ

H2(S,R)

ρ

H2(Y ,R)
ι∗Y

H2(Y ,R).

(1)

Finally, motivated by the analogy with del Pezzo surface of degree one, the study of the
base loci of the anticanonical and the bianticanonical linear systems of Y gives the following:

Theorem 2.4 [5, Thm. 1.10]The linear system |−KY | has a base locus of positive dimension,
while the linear system |−2KY | is base point free.

2.2 The blow-up X of P4 at 8 general points

2.2.1 Degree one del Pezzo surfaces and blow-ups of P4 in 8 points

For S = Blq1,...,q8P
2 and X = Blp1,...,p8P

4 the blow-ups respectively ofP2 andP4 at 8 general
points, there is a classical association between these two varieties due to Gale duality. Here
we give a brief outline on the definition and main properties of the association for readers’
convenience; we refer to [10] for more details. The classical Gale transform is an involution
that takes an ordered non-degenerate set � ⊂ P

2 of 8 points to an ordered non-degenerate
set �′ ⊂ P

4 of 8 points, defined up to a linear transformation of P4. More precisely, if we
choose homogeneous coordinates so that the points of � ⊂ P

2 have as coordinates the rows
of the matrix

M =
(
I3
A

)
,

where I3 is an 3 × 3 identity matrix and A is an 5 × 3 matrix, then the Gale transform of �

is the set of points �′ whose homogeneous coordinates in P4 are the rows of the matrix

M ′ =
(
AT

I5

)
,

where AT is the transpose of A.
Recall that the 8 points of � (resp. of �′) are in general linear position if every maximal

minor of M (resp. of M ′) is non-zero, or equivalently, every subset of 3 points in � (resp. of
5 points in �′) spans P2 (resp. P4).

123



Anticanonical geometry of the blow-up…

Consider the diagonal action of Aut(P2) on (P2)8 and similarly the action of Aut(P4) on
(P4)8. In both cases, every semistable point set is also stable (see [10, page 25, Corollary]).We
may thus consider the GIT quotients P8

2 :=(
(P2)8

)s
/Aut(P2) and P8

4 :=(
(P4)8

)s
/Aut(P4).

The Gale transform is an algebraic construction which induces an isomorphism a : P8
2 � P8

4 .
In particular, to every stable ordered set of 8 points in P

2, we associate a stable ordered set
of 8 points in P4, unique up to projective equivalence, and vice versa.

The two paragraphs below are summarised from [5, 2.21]; for further details of the asso-
ciation, we refer to [5, 2.18]. Let h be a cubic on S. We associate to (S, h) a blow-up X of
P
4 in 8 points in general linear position as follows.
Let q1, . . . , q8 ∈ P

2 be the points blown up under the birational morphism S → P
2

defined by h (the points q1, . . . , q8 are in general linear position by [5, Rem. 2.20]), and let
p1, . . . , p8 ∈ P

4 be the associated points to q1, . . . , q8 ∈ P
2 (the points p1, . . . , p8 are in

general linear position by [5, Lem. 2.19]). Then we set

X = Xh = X(S,h) :=Blp1,...,p8P
4.

We always assume that q1, . . . , q8 ∈ P
2 and p1, . . . , p8 ∈ P

4 are associated as ordered sets
of point. Note that since the points q1, . . . , q8 are in general linear position, they are stable by
[10, Chapter II, Thm. 1]. This yields an open subset UdP ⊂ P8

2 . If (p1, . . . , p8) ∈ a(UdP ),
then p1, . . . , p8 ∈ P

4 are in general linear position. For general S, the associated X is a
blow-up of P4 in 8 general points.

Conversely, let X be a blow-up of P4 in 8 general points. Differently from the case of
surfaces, the blow-up map X → P

4 is unique and thus X determines p1, . . . , p8 ∈ P
4 up

to projective equivalence. The 8 points p1, . . . , p8 ∈ P
4 in turn determine q1, . . . , q8 ∈ P

2

up to projective equivalence, and thus a pair (S, h) such that X ∼= X(S,h). The pair (S, h) is
unique up to isomorphism, therefore S is determined up to isomorphism, and h is determined
up to the action of the automorphism group Aut(S) on cubics.

2.2.2 Notation for the blow-up X of P4 at 8 points

Let p1, . . . , p8 ∈ P
4 be 8 points in general linear position, and set X :=Blp1,...,p8P

4. We use
the following notation:

• Ei ⊂ X is the exceptional divisor over pi ∈ P
4, for i = 1, . . . , 8

• H ∈ Pic(X) is the pull-back of OP4(1)
• Li j ⊂ X is the transform of the line pi p j ⊂ P

4, for 1 ≤ i < j ≤ 8
• ei ⊂ Ei is a line, for i = 1, . . . , 8
• γi ⊂ P

4 is the rational normal quartic through p1, . . . , p̌i , . . . , p8, for i = 1, . . . , 8
• �i ⊂ X is the transform of γi ⊂ P

4, for i = 1, . . . , 8.

2.3 From the blow-up X to the Fanomodel Y

We recall the explicit relation between X and Y :
Lemma 2.5 [5, Lem. 5.18] The birational map ξ : X ��� Y is the composition of 36 (K -
positive) flips: first the flips of Li j for 1 ≤ i < j ≤ 8, and then the flips of�k for k = 1, . . . , 8.
There is a commutative diagram:

X̂

X
ξ

Y
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where X̂ → X is the blow-up of the curves Li j and �k , with every exceptional divisor
isomorphic to P

1 × P
2 with normal bundle O(−1,−1), and X̂ → Y is the blow-up of 36

pairwise disjoint smooth rational surfaces.

Notation 2.6 We use the following notation:

• P�i j ⊂ Y is the flipped surface replacing Li j ⊂ X, for 1 ≤ i < j ≤ 8
• Pek ⊂ Y is the flipped surface replacing �k ⊂ X, for k = 1, . . . , 8.

We will sometimes write ξh : Xh ��� Y to stress that Xh and ξh depend on the chosen
cubic h (while Y does not). Denote by ηh the composition map:

Y Xh P
4

ξ−1
h

ηh

2.4 The Bertini involution of S

We recall some basic properties of the Bertini involution of a del Pezzo surface of degree
one.

Proposition 2.7 [11, Thm. 8.3.2] Suppose that S is a del Pezzo surface of degree 1. Then

(i) |−KS | is a pencil of genus 1 curves with smooth general member and one base point;
(ii) |−2KS | is base-point-free and defines a morphism φ|−2KS | : S → P

3 which is finite of
degree 2 with image Q a quadric cone.

The Bertini involution ιS : S → S is the biregular involution defined by the double covering

φ|−2KS | : S → Q.

For S general, ιS is the unique non-trivial automorphism of S. The pull-back ι∗S acts on Pic(S)

(and on H2(S,R)) by fixing KS and acting as −1 on K⊥
S (see [11, §8.8.2]). This yields:

ι∗Sγ = 2(γ · KS)KS − γ for every γ ∈ H2(S,R). (2)

The fixed locus of ιS is a smooth irreducible curve of genus 4 isomorphic to the branch curve
of the double cover and the base point of |−KS |. The fixed curve belongs to the linear system
|−3KS |.

3 Anticanonical and bianticanonical linear systems of the Fanomodel Y

Let S be a general degree-one del Pezzo surface, and Y :=MS,−KS be the associated Fano
fourfold. To analyse the anticanonical linear system |−KY |, we introduce a special surface
as follows.

Lemma 3.1 [5, Lem. 7.2] Let p1, . . . , p8 ∈ P
4 be general points. Then there is a pencil of

elliptic normal quintics in P4 through p1, . . . , p8, which sweeps out a cubic scroll W ⊂ P
4.

Let moreover q1, . . . , q8 ∈ P
2 be the associated points to p1, . . . , p8 ∈ P

4. Then there is
a birational map α : W → P

2 such that α(pi ) = qi for i = 1, . . . , 8, α sends the pencil of
elliptic normal quintics to the pencil of plane cubics through q1, . . . , q8, and α is the blow-up
of the ninth base point q0 ∈ P

2 of the pencil of plane cubics.
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Remark 3.2 In order to make computations with Macaulay2, we first choose 8 points in
P
4 and we verify that the 8 chosen points are in general linear position, i.e. every maximal

minor of the matrix whose rows are the homogeneous coordinates of the 8 points is non-zero.
Then we verify that there is a pencil of elliptic normal quintic curves through the 8 chosen
points and they sweep out a cubic scroll in P

4 (see Listing 4)). In the rest of the paper, all
computations with Macaulay2 concerning the linear system M of quintic hypersurfaces
with multiplicity at least 3 at 8 general points use these 8 chosen points.

Let W ′ ⊂ X be the transform of the cubic scroll W ⊂ P
4. By [5, (7.3)], we have the

following diagram:

W ′ ⊂ X

η

α′W ⊂ P
4

α

S

σ

P
2

(3)

where η : W ′ → W is the blow-up of p1, . . . , p8, so the composition α′:=α ◦ η : W ′ → P
2

is the blow-up of q0, . . . , q8. Thus W ′ is isomorphic to the blow-up of S in the base point
of |−KS |. Hence, there is an elliptic fibration π : W ′ → P

1, where the smooth fibres are
the transforms of the elliptic normal quintics through p1, . . . , p8 in P

4, and every fibre is
integral.

Lemma 3.3 [5, Lem. 7.4] The surface W ′ ⊂ X is disjoint from Li j for 1 ≤ i < j ≤ 8 and
from �k for k = 1, . . . , 8, and W ′ is contained in the open subset where ξ : X ��� Y is an
isomorphism.

We denote by WY the strict transform of W ′ in Y . Then WY � W ′.

Lemma 3.4 [5, Lem. 7.5, Lem. 7.7, Rem. 7.10] We have (−KX )|W ′ = OW ′(R + 2F) and
R = Bs|(−KX )|W ′ |, where F ⊂ W ′ is a fibre of the elliptic fibration, and R ⊂ W ′ is a
(−1)-curve and a section of the elliptic fibration. The curves R and F satisfy −KX · R =
−KX · F = 1 and Ei · R = Ei · F = 1 for every i = 1, . . . , 8, so R ≡ F in X and
ξ(R) ≡ ξ(F) in Y .

Moreover, let R4 ⊂ P
4 be the images of R under η : W ′ ⊂ X → W ⊂ P

4 (see diagram
(3)). Then R4 is a smooth rational quintic curve through p1, . . . , p8

Corollary 3.5 [5, Cor. 7.6] The base locus of |−KX | contains the smooth rational curve R,
and the base locus of |−KY | contains the smooth rational curve ξ(R).

We denote by RY the smooth rational curve ξ(R) contained in the base locus of |−KY |, and
FY a fibre of the elliptic fibration WY → P

1.

Lemma 3.6 The normal bundle NRY /Y ∼= OP1(−1) ⊕ O⊕2
P1

.

Proof Since R4 is a rational quintic curve in P
4, one has

NR4/P4
∼= OP1(a) ⊕ OP1(b) ⊕ OP1(c)

with a ≤ b ≤ c and a + b+ c = 5× (4+ 1) − 2 = 23 (by [8, first paragraph, p.806]). Since
TP4 |R4 � NR4/P4

→ 0, one has that NR4/P4
is ample. Hence, we deduce that a, b, c > 0.

123



Z. Xie

In order to compute the normal bundle of R4 using Macaulay2, we first remark the
following: since R4 is a smooth rational curve of degree 5 in P

4, we expect that the normal
bundle NR4/P4

splits as equally as possible (see [8, Thm. 2.7]). Since we can measure the
positivity of the normal bundleNR4/P4

more precisely by the twist of its dual bundle, and since
OP4(1) ⊗ ω∗

R4
� OP1(7), we compute h0(R4,N ∗

R4/P4
⊗OP4(1) ⊗ ω∗

R4
) using Macaulay2

(see Listing 2) and we obtain:

h0(R4,N ∗
R4/P4

⊗ OP4(1) ⊗ ω∗
R4

) = 1,

i.e. h0(P1,OP1(−a+7)⊕OP1(−b+7)⊕OP1(−c+7)) = 1. Together with 0 < a ≤ b ≤ c,
we deduce a = 7 and b, c > 7. Hence, b = c = 8. Therefore, by [17, B.6.10], one has

NR/X ∼= OP1(−1) ⊕ O⊕2
P1

.

As R is disjoint from the indeterminacy locus of the map ξh , we deduce

NRY /Y ∼= OP1(−1) ⊕ O⊕2
P1

.

��
Lemma 3.7 The base locus Bs|−KY | is given by RY , possibly union some other components
contained in ξ(Ek), Pek and P�i j , for k = 1, . . . , 8 and 1 ≤ i < j ≤ 8. Moreover, the scheme
structure of Bs|−KY | is generically reduced along RY .

Proof In P
4, let M be the linear system of quintic hypersurfaces with multiplicity at least

3 at 8 general points. Then by Macaulay2 (see Listing 1, also [5, Remark 7.8]), the base
ideal b(M) is the intersection of the ideals of 28 line pi p j for 1 ≤ i < j ≤ 8, the ideals of 8
rational normal quartic curves γk for k = 1, . . . , 8 and the ideal of the rational quintic curve
R4 through the 8 points p1, . . . , p8. Therefore, in the open subset of Y where ηh : Y ��� P

4 is
an isomorphism, the base scheme of |−KY | is the reduced curve RY . Recall that the restriction
of η−1

Y : P4 ��� Y on the curve R4 is not an isomorphism exactly at the 8 blow-up points of
P
4. Hence the base scheme of |−KY | has reduced scheme structure on the curve RY cut out

by the 8 points of intersection with the 8 exceptional divisors ξ(E1), . . . , ξ(E8). ��
Note that we will see in the proof of Theorem 1.1 that the scheme structure of Bs|−KY | is

reduced along the curve RY . This is achieved by choosing another cubic h′ on the degree-one
del Pezzo surface S and by considering anothermap ηh′ : Y ��� P

4 with different exceptional
divisors, so that we get 8 different points of intersection on the curve RY .

Lemma 3.8 The base locus of the anticanonical system |−KY | is disjoint from the surfaces
P�i j and Pek , for 1 ≤ i < j ≤ 8 and k = 1, . . . , 8.

Proof Consider the commutative diagram in Lemma 2.5:

X̂

X Y

p q

ξ

where p : X̂ → X is the blow-up of X along the curves Li j and �k with every exceptional
divisor isomorphic to P1 ×P

2, and q : X̂ → Y is the blow-up of 36 pairwise disjoint smooth
rational surfaces P�i j and Pek , for 1 ≤ i < j ≤ 8 and k = 1, . . . , 8.
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Suppose by contradiction that there exists a base point y of |−KY | contained in some
flipped surface that we denote by P (which is one of the surfaces P�i j or Pek ). Denote by
C ⊂ X the corresponding flipping curve (which is one of the curves Li j or �k).

Let E be the sum of exceptional divisors over Li j for 1 ≤ i < j ≤ 8 and over �k for
k = 1, . . . , 8. Since

p∗(−KX ) − 2E = −KX̂ = q∗(−KY ) − E,

one has

q∗(−KY ) = p∗(−KX ) − E .

Let Ey � P
1 be the exceptional fibre in X̂ above y. Then Ey is contained in Bs|q∗(−KY )| =

Bs|p∗(−KX ) − E |. Moreover, since Ey is the fibre of q|EP : EP → P , where EP �
P
1 × P

2 ⊂ X̂ is the exceptional divisor over P with p : EP → C , we obtain that Ey ⊂ EP

is mapped surjectively onto C by the map p.
Since the blow-up of the 8 points X = Blp1,...,p8 → P

4 is an isomorphism near a general
point of C , the base scheme of |−KX | is generically reduced along C by Lemma 3.7. Hence,
the linear system |p∗(−KX ) − E | is base-point-free above the generic point of C . This
contradicts the fact that Bs|p∗(−KX ) − E | contains a curve which is mapped surjectively
onto C . ��

Remark 3.9 More generally, the proof of Lemma3.8 shows the following. Let X , Y be smooth
projective fourfolds. Let ξ : X ��� Y be an anti-flip. In [23, Thm. 1.1], Kawamata showed
that for smooth projective fourfolds, there exists only one type of flip and it is obtained by
blowing up a P2 with normal bundle OP2(−1)⊕2 (the exceptional locus of the blowing up is
P
2 × P

1) and blowing down this P2 × P
1 to P

1. Thus ξ (anti-)flips a smooth curve C ⊂ X
to a smooth surface P ⊂ Y . If Bs|−KX | is reduced in the generic point of C , then |−KY | is
base-point-free on P .

Corollary 3.10 The curve RY is the unique base curve in Bs|−KY | of anticanonical degree
1. Therefore, RY is independent of the choice of cubic h.

Proof ByLemmas 3.7 and 3.8, it suffices to consider the curves contained in some exceptional
divisor ξ(Ei ), for i = 1, . . . , 8, which are the possible base curve in Bs|−KY | other than
RY .

Let C ⊂ Bs|−KY | be a base curve contained in some exceptional divisor ξ(Ei ), for
i = 1, . . . , 8. Let C̃ be its strict transform in X . By Lemma 3.8, the curve C is disjoint from
the indeterminacy locus of ξ−1. Hence, one has −KY · C = −KX · C̃ and C̃ ⊂ Ei .

Since −KX = 5H − 3
∑8

j=1 E j , H · C̃ = 0, E j · C̃ = 0 for j �= i , and Ei · C̃ ≤ −1,
one has

−KY · C = −KX · C̃ ≥ 3.

Therefore, the curve RY is the unique base curve satisfying −KY · RY = −KX · R = 1. ��

Corollary 3.11 Let B ⊂ Y be an irreducible component of Bs|−KY | with reduced scheme
structure, which is distinct from RY . Then for every simplicial facet 〈EC1 , . . . , EC8〉 of Eff(Y )

(notation as in Notation 2.1 and Proposition 2.2), there exists a unique ECi for i = 1, . . . , 8
such that B ⊂ Ei .
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Proof Given a cubic h, consider the simplicial facet 〈EC1 , . . . , EC8〉 of Eff(Y ), where Ci ∼
h − ei for i = 1, . . . , 8 (notation as in Notation 2.1). Then ECi are the strict transforms of
the exceptional divisors Ei � P

3 ⊂ Xh = X under ξh = ξ : X ��� Y .
Since B is distinct from RY , we deduce that B is contained in some fixed divisor ECi by

Lemmas 3.7 and 3.8. By the construction of the composition of flips ξ (see Lemma 2.5), the
intersection of two fixed divisors EC j and ECk (for k �= j) is the union of the flipped surfaces
P� jk and Pel for l �= j, k. Hence, by Lemma 3.8, the fixed divisor Ei containing B is unique.

��

Proof of Theorem 1.1 We first show that RY is the unique irreducible component of the (set-
theoretic) base locus of |−KY |.

Let h be a cubic. Let Ci be a conic such that Ci ∼ h − ei for i = 1, . . . , 8 (notation as
in Notation 2.1). Let Ei :=ECi , where we use the notation of Proposition 2.2. By the same
proposition, E1, . . . , E8 generate a simplicial facet of Eff(Y ). Suppose by contradiction that
there exists another component B distinct from RY of the base locus of |−KY |. Then by
Corollary 3.11, we may suppose that B ⊂ E1 and B �⊂ E2, E3, . . . , E8.

Let i, j, k, l be distinct indices in {1, . . . , 8}. Consider the conics C ′
l such that C ′

l ∼
2h − ei − e j − ek − el and the corresponding fixed divisors Fi jkl :=E2h−ei−e j−ek−el .

Claim. The fixed divisors Ei , E j , Ek and Fi jkl for l ∈ {1, . . . , 8} distinct from i, j, k
generate a simplicial facet of Eff(Y ).

Indeed, by Proposition 2.2, it is enough to find a cubic h′ such that 2h′ +KS is orthogonal
to the 8 conics Ci ,C j ,Ck and C ′

l for l ∈ {1, . . . , 8} distinct from i, j, k.
We take h′ ∼ 2h − ei − e j − ek . Then we can check that

Ci ∼ h′ − � jk,

C j ∼ h′ − �ik,

Ck ∼ h′ − �i j ,

C ′
l ∼ h′ − el ,

and 2h′ + KS is orthogonal to the above 8 conics. Moreover, h′ is nef and big, and the
corresponding birational map σh′ : S → P

2 contracts the 8 pairwise disjoint (−1)-curves
� jk, �ik, �i j , el for l �= i, j, k. Hence, h′ is a cubic. This proves the claim.

We will repeatedly use Corollary 3.11 in the following.

• Consider the simplicial facet generated by E1, E2, E3, F1234, F1235, F1236, F1237, F1238.
Then B �⊂ F1234, F1235, F1236, F1237, F1238.

• Consider the simplicial facet generated by E2, E3, E4, F1234, F2345, F2346, F2347, F2348.
Then B is contained in one of the fixed divisors F2345, F2346, F2347, F2348. We may
suppose that B ⊂ F2345. Then B �⊂ F2346, F2347, F2348.

• Consider the simplicial facet generated by E2, E3, E5, F1235, F2345, F2356, F2357, F2358.
Then B �⊂ F2356, F2357, F2358.

• Consider the simplicial facet generated by E2, E3, E6, F1236, F2346, F2356, F2367, F2368.
Then by what precedes, we know that B is contained in one of the fixed divisors
F2367, F2368. We may suppose that B ⊂ F2367. Then B �⊂ F2368.

• Consider the simplicial facet generated by E2, E3, E7, F1237, F2347, F2357, F2367, F2378.
Then B �⊂ F2378.

• Finally, consider the simplicial facet generatedby E2, E3, E8, F1238, F2348, F2358, F2368,
F2378. Then by what precedes, we know that B is contained in none of these 8 fixed divi-
sors, which contradicts Corollary 3.11.
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Therefore, the curve RY is the unique irreducible component of the base locus of |−KY |.
Now we show that the base scheme of |−KY | is the reduced curve RY , i.e. there are

no embedded points. Indeed, given a cubic h, consider the birational map ηh : Y ��� P
4.

By Lemmas 3.7 and 3.8, the base scheme of |−KY | is the reduced curve RY with possible
embedded points which have support in the 8 points of intersection with the 8 exceptional
divisors of ηh . By varying h, we may consider another map ηh′ : Y ��� P

4 with other 8
exceptional divisors, so that we get 8 different points of intersection on RY . Such a cubic h′
exists because otherwise, there is a base point y on RY such that for every simplicial facet
〈EC1 , . . . , EC8〉 of Eff(Y ) the point y is contained in a unique ECi , and thus we obtain a
contradiction by replacing B with y in the above paragraph. Hence, there is no embedded
base point on RY . ��
Proof of Corollary 1.2 Since the base scheme Bs|−KY | is the smooth curve RY by Propo-
sition 1.1, we can apply [25, Prop. 6.8] which implies that a general member in |−KY | is
smooth. ��

In the rest of this section, we collect some auxiliary results which will be used in Sect. 4.

Lemma 3.12 For a general point x ∈ R4 (notation as in Lemma 3.4), there exists a unique
divisor in M which has multiplicity 3 at x: it is the secant variety of the elliptic normal
quintic through the nine points p1, . . . , p8 and x.

By varying x on R4, one obtains a one-dimensional family Sec of divisors in M with
scheme-theoretic intersection BsSec defined by the ideal b(Sec). Then

(b(Sec) : b(M)) : IW = IW ,

where the scheme defined by the ideal IW is the reduced surface W.

Proof We choose a random point x on R4 which is not one of the 8 blown up points. The
choice of such a random point is achieved by using the random function in Macaulay2 to
generate a random hyperplane in P4 and intersect the hyperplane with the curve R4 to obtain
a point. LetMx,3 be the linear subspace of divisors inM having multiplicity at least 3 at the
point x . Then dimMx,3 = 0 by Macaulay2 (see Listing 3) and thus the unique element
in Mx,3 is the secant variety Sec(Ex ), where Ex is the elliptic normal quintic in W passing
through the point x and the 8 blown up points.

Let Sec be the family of secant varieties Sec(Ex ) for x varying on R4 and b(Sec) be the
ideal associated to the scheme-theoretic intersection BsSec of the family Sec. Let b3(Sec) be
the ideal associated to the scheme-theoretic intersectionof three general secant varieties in Sec
(obtained by choosing three distinct random points on R4 and intersecting the corresponding
secant varieties).

By Macaulay2 (see Listing 4), the quotient IS :=(b3(Sec) : b(M)) has degree 6 and
dimension 2. Let IW be the ideal of singular locus of the variety defined by IS . Then by
Macaulay2 (see Listing 4), IW has dimension 2 and degree 3; moreover, the variety defined
by IW is smooth and one has (IS : IW ) = IW . Since each of these secant varieties in Sec
contains the cubic scroll W , we deduce that the variety defined by IW is indeed the surface
W .

Let MW be the sub-linear system of effective divisors in M containing the surface W .
By Macaulay2 (see Listing 5), the base ideal b(MW ) is equal to b3(Sec). Since Sec is a
family of divisors in MW , we deduce that b3(Sec) = b(Sec) = b(MW ). ��
Lemma 3.13 The surface WY is unique, i.e. WY is independent of the choice of cubic h.
Therefore, WY is disjoint from every one of the loci P� of the small extremal rays of Y .
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Proof Let SecY be the family of the strict transforms in Y of the secant varieties in Sec. Let
MY ,3 be the family of divisors in |−KY | having multiplicity 3 at some point on RY . Then
the two families MY ,3 and SecY are equal, as dimMx,3 = 0 for a general point x ∈ R4 by
Lemma 3.12 and ηh is an isomorphism at the generic point of R4.

Suppose by contradiction that WY depends on h. Then there exist two distinct surfaces
WY ,h andWY ,h′ . Let BsMY ,3 be the scheme-theoretic intersection of the familyMY ,3. Then
by Lemma 3.12, one has the following set-theoretic inclusion:

BsMY ,3 ⊃ WY ,h ∪ WY ,h′ .

Since WY ,h′ contains the curve RY which is generically in the locus where ξ−1
h : Y ��� Xh

is an isomorphism, we deduce that WY ,h′ is not contracted by ξ−1
h .

Since the surface ξ−1
h (WY ,h′) contains the curve R, this surface cannot be contained in

any exceptional locus Ei , i = 1, . . . , 8 of Xh → P
4, and thus it cannot be contracted; we

denote by Wh′ its image in P
4. Therefore, BsSec contains two distinct surfaces W and Wh′ ,

which contradicts Lemma 3.12.
Since by Lemma 3.3 the surface WY is disjoint from the indeterminacy locus of the map

ξ−1
h : Y ��� Xh , which is a union of some of the loci P� (depending on h), and WY is the
same for all h, we deduce that WY is disjoint from every one of the loci P�. ��

Lemma 3.14 (i) We have h0(WY ,OWY (−KY )) = 3. The restriction

r1 : H0(Y ,OY (−KY )) → H0(WY ,OWY (−KY ))

is surjective.
(ii) We have h0(WY ,OWY (−2KY )) = 8. The restriction

r2 : H0(Y ,OY (−2KY )) → H0(WY ,OWY (−2KY ))

is surjective.

Proof Since −KWY ∼ FY and −KY |WY ∼ RY + 2FY by Lemma 3.4, by the Riemann-Roch
formula one has χ(WY ,−KY |WY ) = 3. Since −KY |WY is ample on WY and −KWY is nef,
by Kodaira vanishing theorem one has

h j (WY ,OWY (−KY )) = h j (WY ,OWY (KWY − KWY + (−KY ))) = 0

for j = 1, 2. Therefore, h0(WY ,OWY (−KY )) = 3. The same argument can be applied to
obtain h0(WY ,OWY (−2KY )) = 8.

(i) By Macaulay2 (see Listing 5),

h0(P4,OP4(5) ⊗ I3
p1,...,p8 ⊗ IW ) = 3.

Since H0(Y ,OY (−KY )) � H0(P4,OP4(5)⊗I3
p1,...,p8), and the surfaceWY is disjoint from

the indeterminacy locus of ηh by Lemma 3.3 and WY is not contained in the exceptional
locus of ηh , we deduce

H0(Y ,OY (−KY ) ⊗ IWY ) � H0(P4,OP4(5) ⊗ I3
p1,...,p8 ⊗ IW ).

Hence,

h0(Y ,OY (−KY ) ⊗ IWY ) = 3.
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As h0(Y ,OY (−KY )) = 6 and h0(WY ,OWY (−KY )) = 3, we deduce that the restriction
morphism

H0(Y ,OY (−KY )) → H0(WY ,OWY (−KY ))

is surjective.
(ii) By Macaulay2 (see Listing 7),

h0(P4,OP4(10) ⊗ I6
p1,...,p8 ⊗ IW ) = 21.

Since H0(Y ,OY (−2KY )) � H0(P4,OP4(10) ⊗ I6
p1,...,p8) and by the same argument as

above, we deduce

H0(Y ,OY (−2KY ) ⊗ IWY ) � H0(P4,OP4(10) ⊗ I6
p1,...,p8 ⊗ IW ).

Hence,

h0(Y ,OY (−2KY ) ⊗ IWY ) = 21.

As h0(Y ,OY (−2KY )) = 29 and h0(WY ,OWY (−2KY )) = 8, we deduce that the restriction
morphism

H0(Y ,OY (−2KY )) → H0(WY ,OWY (−2KY ))

is surjective. ��

4 The Bertini involution of the Fanomodel Y

Let S be a degree-one del Pezzo surface, and Y :=MS,−KS be the associated Fano fourfold.
In this section, we study the action of the Bertini involution ιY on the Fano fourfold Y , which
is analogous to the action of the Bertini involution ιS on the surface S. We first notice that by
the diagram (1) and the behaviour of ιS described in (2), the invariant part of H2(Y ,R) by
the action of ιY is RKY .

4.1 Action of the Bertini involution on the surfaceWY

In this subsection, we further our study of the involution ιY by looking at its action on the
surfaceWY (which is the strict transform of the cubic scroll swept out by the pencil of elliptic
normal quintics in P4). The aim of this subsection is to prove Proposition 1.4.

We start by showing that the surface WY is invariant by the Bertini involution ιY .

Lemma 4.1 The Bertini involution ιY preserves the curve RY and the surface WY . Moreover,
(ιY |WY )∗(ei ) ∼ −2KY |WY − ei and (ιY |WY )∗(FY ) ∼ FY , where ei is the exceptional curve
of ηh |WY : WY → W for i = 1, . . . , 8.

Proof Since ιY preserves the family of divisors in the anticanonical system |−KY |, the invo-
lution ιY preserves the base locus of |−KY |. Thus ιY (RY ) = RY by Proposition 1.1.

Let x be a general point in RY . Then by Lemma 3.12, there exists a unique divisor in
|−KY | having multiplicity 3 at x : it is the strict transform in Y of the secant variety of the
elliptic normal quintic through p1, . . . , p8 and ηh(x) in P

4. In particular, this divisor has
multiplicity 3 along the elliptic fibre of WY through x . By varying x in RY , this gives a
one-dimensional family MY ,3 of divisors in |−KY |, which is preserved by ιY . On the other
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hand, the intersection of these divisors is the surface WY , so WY is preserved by ιY . Let
D1 ∈ MY ,3 and D2 = ιY (D1) ∈ MY ,3. Let F1 (resp. F2) be the elliptic fibre of WY along
which D1 (resp. D2) has multiplicity 3. Then ιY (F1) = F2, and thus ιY preserves the family
of elliptic fibres of WY , i.e. (ιY |WY )∗(FY ) ∼ FY .

By [5, 7.12], one has ι∗Y (ξ(Ei )) ∼ −2KY −ξ(Ei ). Hence, (ιY |WY )∗(ei ) ∼ −2KY |WY −ei .
��

Now we investigate the morphism defined by the linear system |−2KY |WY |.
Proposition 4.2 The linear system |−2KY |WY | defines a finite morphism φ : WY → V ⊂ P

7

of degree 2, where V = V2,4 � F2 is a rational normal scroll of bidegree (2, 4). There is a
non-trivial involution i of WY such that φ = φ ◦ i . Moreover, i is the identity on RY and i
induces an involution on each elliptic fibre of WY .

Proof Since h0(WY ,OWY (−2KY )) = 8 (see Lemma 3.14), and |−2KY | is base-point-free
by Theorem 2.4, the linear system |−2KY |WY | defines a morphism φ : WY → V ⊂ P

7,
where V is the image of WY .
Claim. V is a surface of degree 6 in P

7, the image of an elliptic fibre FY by φ is a line and
the image of RY by φ is a conic.

Since the restriction morphism H0(Y ,OY (−2KY )) → H0(WY ,OWY (−2KY )) is surjec-
tive by Lemma 3.14 (i i), the restriction of the morphism φ|−2KY | defined by |−2KY | to the
surface WY coincides with the morphism φ, i.e. φ = φ|−2KY ||WY .

In P4, let 2M be the linear system of hypersurfaces of degree 10 with multiplicity at least
6 at the 8 general points p1, . . . , p8. Consider the map φ2M defined by the linear system
2M. Then by Macaulay2 (see Listing 8), the image of the surface W by φ2M is a surface
of degree 6, the image of an elliptic normal quintic through the 8 points by φ2M is a line and
the image of the rational quintic R4 through the 8 points by φ2M is a conic. This proves the
claim.

Since (−2KY |WY )2 = 4(RY + 2FY )2 = 12, and the image of WY by φ is of degree 6, we
deduce that φ is of degree 2. As −KY is ample, the morphism φ does not contract any curve
and thus it is a finite morphism of degree 2.

Since the linear system |−2KY |WY | has no fixed divisor, the image V is not contained
in any hyperplane of P7 (see for example [2, II.6]), i.e. V is non-degenerate. Hence, V is a
non-degenerate irreducible surface of degree 6 (variety of minimal degree) in P7, and by [18,
p. 525] we deduce that V is a rational normal scroll Vk,l of bidegree (k, l), with 0 ≤ k ≤ l
and k + l = 6. In particular, V is isomorphic to one of the following: a cone over a rational
normal curve of degree 6,P1×P

1, or a Hirzebruch surfaceFl−k , where theminimal section is
mapped to the rational normal curve of degree k, and the fibres aremapped to lines. Therefore,
φ is a finite morphism between two normal surfaces and by [14, (2.3)], there is a non-trivial
involution i of WY such that φ = φ ◦ i and V � WY /i .

Since the restriction of φ to a general fibre FY induces a finite morphism from an elliptic
curve to a line l ⊂ V , which cannot be an isomorphism, we deduce that φ−1(l) = FY as φ

is of degree 2. Hence, i induces an involution on FY .
Since −2KY |WY is i-invariant, one has 2(i∗(−KY |WY ) − (−KY |WY )) ∼ 0. As Pic(WY )

is torsion-free (this is because WY is isomorphic to P2 blown up at 9 points), we deduce that
i∗(−KY |WY ) ∼ −KY |WY . Since RY is the base locus of |−KY |WY |, the curve RY is preserved
by i . We claim that RY is contained in the ramification locus of φ. Indeed, suppose that RY

is not contained in the ramification locus of φ. Then there exists a curve C ⊂ V such that
RY = φ∗(C). As RY is a (−1)-curve on WY , one has

−1 = R2
Y = (φ∗(C))2 = degφ · C2,
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i.e. C2 = − 1
2 . Hence, C is not Cartier on V , i.e. V is singular. In view of the classification

of minimal degree varieties, we see that V is a cone. But there is no curve with negative
self-intersection number on a cone, which leads to a contradiction. Therefore, RY is in the
ramification locus. As φ is a double cover, we deduce that i is the identity on RY .

Let C = φ(RY ). Since RY is contained in the ramification locus of φ, and every point in
RY has ramification index 2, one has

R2
Y =

(
1

2
φ∗(C)

)2

= 1

2
C2.

Since RY is a (−1)-curve on WY , one has C2 = −2. Therefore, V = V2,4 � F2, and φ(RY )

is minimal section of F2 which is a conic. ��
Remark 4.3 Since φ is a finite morphism of degree 2 between smooth surfaces, the ramifica-
tion locus is a smooth divisor onWY (see [14, (2.5)]). Let e be the minimal section of V � F2

and f be a fibre of V . Let D be the ramification divisor. Then

KWY ∼ φ∗(KS) + D.

As KWY ∼ −FY = −φ∗( f ), and KS ∼ −2e − 4 f , one has

D ∼ φ∗(2e + 3 f ).

Let B ⊂ V be the branch locus. Then D = 1
2φ

∗B and thus B ∼ 4e + 6 f . As e is contained
in the branch locus, we can write B = e + B1, where B1 is a smooth curve disjoint from e.
Then B1 ∼ 3e + 6 f . Notice that B1 is irreducible. Indeed, suppose that B1 has at least two
disjoint irreducible components. Then we can decompose B1 as

B1 ∼ (e + b f ) + (2e + (6 − b) f )

with 0 ≤ b ≤ 6 and (e + b f ) · (2e + (6 − b) f ) = 0. Hence b = −2, which leads to a
contradiction.

Hence D = RY + R′, where R′ ∼ 1
2φ

∗(3e + 6 f ) = 3(RY + FY ) is a smooth curve of
genus 4 which is disjoint from RY .

Remark 4.4 By Macaulay2 (see Listing 13), the bianticanonical morphism φ|−2KY | has
generically degree 1, even though its restriction φ:=φ|−2KY ||WY : WY → V ⊂ P

7 to the
surface WY has degree 2.

Finally, we compare the action of the two automorphisms i and ιY |WY on WY .

Lemma 4.5 Let ei be the exceptional curves of ηh |WY : WY → W for i = 1, . . . , 8. Then

i∗(ei ) ∼ −2KY |WY − ei .

Proof For i = 1, . . . , 8, by Macaulay2 (see Listing 9), there exists a unique hypersurface
of degree 10 with multiplicity at least 7 at the point pi and multiplicity at least 6 at p j for
j �= i . Moreover, this hypersurface does not contain the surface W . Therefore, the linear
system |−2KY |WY − ei | is non-empty.

Let Ri ∈ |−2KY |WY − ei |. Since −KY |WY ∼ RY + 2FY , and RY · ei = FY · ei = 1, one
has R2

i = −1, and Ri · FY = Ri · RY = 1. Hence, Ri is a (−1)-curve on WY .
Since ei + Ri ∈ |−2KY |WY | = φ∗|OV (1)|, one has Ri ∼ i∗(ei ). ��

Proposition 4.6 The involution i coincides with the restriction of the Bertini involution ιY on
the surface WY , i.e. ιY |WY = i .
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Proof We first show that (ιY |WY )∗ = i∗. By Lemma 4.2, Lemma 4.5 and Lemma 4.1, it is
enough to show that RY , FY and ei for i = 1, . . . , 8 form a basis of H2(WY ,R).

SinceW ′ is disjoint from the indeterminacy locus of ξh , it is equivalent to show that R, F
and ei for i = 1, . . . , 8 form a basis of H2(W ′,R). We have the following diagram (see (3)):

W ′ ⊂ X

W ⊂ P
4

P
2

η

α′

α

where α is the blow-up of P2 at one point and η is the blow-up ofW at p1, . . . , p8. Moreover,
let e0 ⊂ W be the (−1)-curve and f0 ⊂ W be a fibre of the P

1-bundle on W , then by
Lemma 3.1 and Lemma 3.4, one has F ∼ η∗(2e0 +3 f0)−∑8

i=1 ei and R ∼ η∗(e0 +4 f0)−∑8
i=1 ei . Therefore, R, F and ei for i = 1, . . . , 8 form a basis of H2(W ′,R).
We have a group homomorphism ρ1 : Aut(WY ) → Aut(H2(WY ,R)) given by g �→

(g−1)∗. Let Aut(RY ,WY ) be the subgroup of automorphisms in Aut(WY ) fixing the curve
RY . We show that the restriction ρ1 : Aut(RY ,WY ) → Aut(H2(WY ,R)) is injective, which
implies ιY |WY = i since (ιY |WY )∗ = i∗.

Since RY is a (−1)-curve on WY , by blowing down RY , we obtain a rational surface
S′ with (−KS′)2 = 1, and the curve RY is contracted to a point x0 ∈ S′. We denote by
β : WY → S′ the blow-up of S′ at x0. Since −KWY is nef, we obtain that −KS′ is nef by the
projection formula (see for example [19, Appendix A, A4]). Moreover, since every fibre of
WY → P

1 is integral, there is no KS′ -trivial curve. Hence, S′ is a del Pezzo surface of degree
one. By [11, Prop. 8.2.39], the homomorphism ρ2 : Aut(S′) → AutH2(S′,R) is injective.

Let Aut(x0, S′) be the subgroup of automorphisms in Aut(S′) fixing the point x0.
Then Aut(x0, S′) � Aut(RY ,WY ). Since Pic(WY ) � β∗Pic(S′) ⊕ Z[RY ], the image
ρ1(Aut(RY ,WY )) is contained in a subgroup G1 of Aut(H2(WY ,R)) such that G1 �
Aut(H2(S′,R)). Hence, we have the following diagram:

Aut(RY ,WY ) G1

Aut(x0, S′) Aut(H2(S′,R))

ρ1

� �
ρ2

Since ρ2 is injective, the restriction ρ1 : Aut(RY ,WY ) → G1 ⊂ Aut(H2(WY ,R)) is injec-
tive. ��
Proof of Proposition 1.4 The first paragraph follows from Lemma 4.1, Proposition 4.2 and
Proposition 4.6. The second paragraph follows from Remark 4.3. ��

4.2 Action of the Bertini involution on the anticanonical system

In this subsection, we study the action of the involution ιY on the anticanonical system |−KY |.
This is closely related to the anticanonical map of Y = MS,−KS .

Lemma 4.7 Let μ : Ỹ → Y be the blow-up of Y along the curve RY which is the base
scheme of |−KY |. Let E be the exceptional divisor and D̃ be the strict transform of a general
member D ∈ |−KY |. Then |D̃| = |μ∗(−KY )−E | is base-point-free and induces amorphism
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f : Ỹ → P(H0(Y ,OY (−KY ))∨) � P
5 with image Q a smooth quadric hypersurface, and

f has generically degree 4. We have the following commutative diagram:

Ỹ

μ f

Y
φ|−KY |

Q ⊂ P
5

(4)

The following statements hold:

(i) The Bertini involution ιY can be lifted to an involution ιỸ of Ỹ , which preserves the

exceptional divisor E and induces an involution on each P
2 above a point of RY .

(ii) The Bertini involution ιY induces a regular involution ι
P5 of P5, which preserves the

quadric hypersurface Q. Denote by ιQ its restriction on Q. Then ιQ ◦ f = f ◦ ιỸ .

Proof In P
4, let M be the linear system of quintic hypersurfaces with multiplicity at least

3 at 8 general points. Then by Macaulay2 (see Listing 10), the image of P4 by the map
defined by M is a smooth quadric hypersurface Q in P

5.
Let E be the exceptional divisor of f . Since

μ∗(−KY )4 = (−KY )4 = 13,

μ∗(−KY ) · E3 = −KY · RY = 1,

μ∗(−KY )3 · E = μ∗(−KY )2 · E2 = 0,

E4 = −KY · RY + 2g(RY ) − 2 = −1,

one has D̃4 = 8. Hence φ|−KY | (and also f ) has generically degree 4.

(i) Follows from the fact that RY is contained in the fixed locus of ιY (see Proposition 1.4).
(ii) The pull-back ι∗Y induces an involution on H0(−KY ,OY (−KY )), and thus an involution

of P(H0(Y ,OY (−KY ))∨) � P
5 preserving φ|−KY |(Y ) = Q.

Let s ∈ H0(Ỹ ,OỸ (D̃)) be a global section which is zero at the point ιỸ (x), where x is a
point in Ỹ . Then for s′:=ι∗

Ỹ
(s) ∈ H0(Ỹ ,OỸ (ι∗

Ỹ
D̃)) � H0(Ỹ ,OỸ (D̃)), one has

s′(x) = (ι∗
Ỹ
(s))(x) = s(ιỸ (x)) = 0.

Hence,

φ|D̃|(ιỸ (x)) = {s ∈ H0(Ỹ ,OỸ (D̃)) | s(ιỸ (x)) = 0},
φ|ι∗

Ỹ
D̃|(x) = {s′ ∈ H0(Ỹ ,OỸ (ι∗

Ỹ
D̃)) | s′(x) = 0}.

Therefore, we obtain the following commutative diagram:

Ỹ P(H0(Ỹ ,OỸ (ι∗
Ỹ
(D̃)))∨)

Ỹ P(H0(Ỹ ,OỸ (D̃))∨).

f

ιỸ ι
P5

f

Thus, ιQ ◦ f = f ◦ ιỸ . ��
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Remark 4.8 The following statements are equivalent:

(a) The Bertini involution ιY preserves every divisor in |−KY |.
(b) The action ι∗Y : H0(Y ,OY (−KY )) → H0(Y ,OY (−KY )) is Id or −Id.
(c) The involution ι

P5 of P
5 (resp. ιQ of Q) is the identity.

Recall that we have a special surfaceWY ⊂ Y containing RY , which is an elliptic fibration
WY → P

1 with fibre FY . With the same notation as in Lemma 4.7, we describe the image of
WY in Q ⊂ P

5.

Lemma 4.9 Every elliptic fibre FY (resp. its strict transform F̃Y ⊂ Ỹ ) is contracted by φ|−KY |
(resp. by f ). Moreover, the image of the surface WY (resp. its strict transform W̃Y ⊂ Ỹ ) is a
conic C in Q ⊂ P

5.
Furthermore, the curve R̃Y :=W̃Y ∩ E is contained in the fixed locus of ιỸ , and the conic

C is contained in the fixed locus of ιQ.

Proof Since −KY · FY = 1, one has D̃ · F̃Y = 0, where D̃ is the strict transform of a general
member D ∈ |−KY |. Hence f contracts the elliptic fibres of W̃Y and f (W̃Y ) is a curve.

As −KY |WY = RY + 2FY , one has D̃|W̃Y
= (μ∗(−KY ) − E)|W̃Y

= 2F̃Y . Moreover,

since D̃ is the pullback by f of a hyperplane in P
5 and W̃Y is contracted by f to a curve in

P
5, we deduce that the curve f (W̃Y ) has degree 2, i.e. the morphism f sends W̃Y to a conic

in P
5.
By Lemma 4.7 (i), ιỸ induces an involution on each fibre P

2 of μ|E : E → RY . Since
WY is preserved by ιY by Proposition 1.4, its transform W̃Y ⊂ Ỹ is also preserved by ιỸ .
Therefore, the curve R̃Y :=W̃Y ∩ E (which is a section of μ|E ) is invariant. Since RY is in
the fixed locus of ιY by Proposition 1.4, it follows that R̃Y is contained in the fixed locus of
ιỸ . By Lemma 4.7 (ii), f (R̃Y ) = f (W̃Y ) = C is contained in the fixed locus of ιQ . ��

The rest of this subsection is devoted to the proofs of Theorems 1.3 and 1.5. To show that
ιY preserves every divisor in |−KY |, our strategy is to exclude the other remaining case by
analysing the anticanonical map.

Lemma 4.10 If the action ι∗Y on H0(Y ,OY (−KY )) is not ±Id, then

H0(Y ,OY (−KY )) = V1 ⊕ V2,

where V1 is the sub-vector space of global sections vanishing on the surface WY , and V2
is uniquely determined as eigenspace corresponding to the eigenvalue 1 or −1 of ι∗Y , with
dim V1 = dim V2 = 3. More precisely, ι∗Y acts as Id or −Id on Vi for i = 1, 2.

Proof In P4, let M be the linear system of quintic hypersurfaces with multiplicity at least 3
at 8 general points. Let MW be the sub-linear system of effective divisors in M containing
the surfaceW . By Macaulay2 (see Listing 5), one has b(MW ) = b(Sec) (see Lemma 3.12
for notation) for the base ideals. Moreover, if v1, v2 and v3 form a basis of H0(P4, IW ⊗
OP4(5) ⊗ I3

p1,...,p8) � C
3, and if we pick three scalars λ1, λ2 and λ3 generated by the

random function in Macaulay2, then the effective divisor in MW defined by the global
sectionλ1v1+λ2v2+λ3v3 is singular along two elliptic normal quintic curves Ep, Eq through
the 8 blown up points (by Macaulay2, see Listing 6); note that the two elliptic curves may
coincide, in which case the divisor has multiplicity at least 3 along this elliptic curve, and
in fact the divisor is the secant variety of the elliptic curve. Moreover, there exists a unique
divisor in MW which is singular along Ep and Eq , as H0(P4, IW ⊗ OP4(5) ⊗ I3

p1,...,p8) �
H0(P1,OP1(2)) � C

3.
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Let V1 ⊂ H0(Y ,OY (−KY )) be the sub-vector space of global sections vanishing on
the surface WY . Let |V1| be the corresponding sub-linear system (i.e. the linear system of
effective divisors in |−KY | containing the surface WY ). Then ιY preserves the family of
divisors in |V1|, as ιY preserves the surface WY by Proposition 1.4. Since WY is disjoint
from the indeterminacy locus of the map ηh : Y ��� P

4, and the intersection of WY with the
exceptional locus of ηh is the union of 8 points, we deduce that a general member in |V1| is
singular along two elliptic fibres FY ,1, FY ,2 of WY , and there exists a unique divisor in |V1|
which is singular along FY ,1 and FY ,2. Since ιY preserves every elliptic fibre FY of WY (see
Proposition 1.4), we deduce that ιY preserves every divisor in |V1|, i.e. the action of ι∗Y on V1
is Id or −Id.

By Lemma 3.14(i), we have the following short exact sequence:

0 → H0(Y ,OY (−KY ) ⊗ IWY ) → H0(Y ,OY (−KY ))
r1→ H0(WY ,OWY (−KY )) → 0.

Hence, H0(Y ,OY (−KY )) = V1 ⊕ V2 with V1 � Kerr1 and V2 � Imr1.
By Proposition 1.4, every elliptic fibre FY is preserved by ιY and RY is fixed by ιY . Since

−KY |WY = 2FY +RY , we deduce that ιY preserves every divisor in |−KY |WY . Thus the action
of (ιY |WY )∗ on H0(WY ,OWY (−KY )) is Id or−Id. As ι∗Y is not±Id on H0(Y ,OY (−KY )), we
deduce that V2 can be uniquely determined as the eigenspace corresponding to the eigenvalue
1 or −1 of ι∗Y . ��

Let {s11, s12, s13} (resp. {s21, s22, s23}) be a basis of V1 (resp. of V2). Suppose that ιQ is
not the identity. Then for y ∈ Y\RY , one has

ιQ(φ|−KY |(y)) = [s11(y) : s12(y) : s13(y) : −s21(y) : −s22(y) : −s23(y)] (5)

byLemma4.10.Moreover, if y is a fixed point of ιY , then byLemma4.7 (ii),φ|−KY |(y) is fixed
by ιQ . Thus by (5), one has s11(y) = s12(y) = s13(y) = 0 or s21(y) = s22(y) = s23(y) = 0,
i.e. y ∈ Bs|V1| or y ∈ Bs|V2|.

Now for i = 1, 2, let Ṽi ⊂ H0(Ỹ ,OỸ (μ∗(−KY ) − E)) be the sub-vector space of global
sections which are the linear spans of s̃i j with j = 1, 2, 3, where s̃i j is the strict transform
of the global section si j ∈ Vi . Hence, if a point y ∈ Ỹ is fixed by ιỸ , then by repeating the

argument in above paragraph, we obtain y ∈ Bs|Ṽ1| or y ∈ Bs|Ṽ2|. To summarise, we have
the following corollary.

Corollary 4.11 Suppose that ιQ is not the identity. If a point y ∈ Ỹ is fixed by ιỸ , then
y ∈ Bs|Ṽ1| or y ∈ Bs|Ṽ2|.

Recall that we have the normal bundleNRY /Y ∼= OP1(−1) ⊕O⊕2
P1

by Lemma 3.6. Hence

E = P(N ∗
RY /Y ) � P(OP1(1) ⊕ O⊕2

P1
). Denote by ξ a tautological divisor associated to

OP(N ∗
RY /Y )(1), and FE a fibre of the projection E = P(N ∗

RY /Y ) → RY � P
1. Let l be an

exceptional curve ofμ and γ be the curve which generates the other extremal ray� of NE(E)

such that −KE · γ is the length of �. Then

FE · l = 0, FE · γ = 1,

ξ · l = 1, ξ · γ = 0.

Moreover, R̃Y ∼ l + γ .
With the same notation as in Lemma 4.7, we may describe the image f (E) as follows.

Remark 4.12 The exceptional divisor E is isomorphic to the blow-up B of P3 at a line (and
B is embedded in P

1 × P
3 with bidegree (1, 1)).
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Let D̃ ⊂ Ỹ be the strict transform of a general member D ∈ |−KY |. Then (D̃|E )3 = 4,
hence D̃|E ∼ ξ + FE is very ample, with h0(E,OE (D̃)) = 7. Thus the corresponding linear
system embeds B in P6 as a hyperplane section of the Segre embedding of P1×P

3 in P7, and
B has degree 4. Hence, f |E is given by the projection of B from a point x outside B in P6 (in
fact, it is given by a sub-linear system of |D̃| of dimension 5, which is still base-point-free).

If the point x is general, then the projection is birational and the image has degree 4 in
P
5. There could be special point x such that the projection has degree 2, and the image is a

3-dimensional quadric in P5. In any case, the image of a fibre FE is a plane in P5.

Lemma 4.13 Suppose that ιQ is not the identity. Then ιỸ |E is not the identity, and the following
statements hold:

(i) The fixed locus of ιỸ |E is the disjoint union SE ∪ C2, where SE = Bs|Ṽ1| ∩ E is the
unique member in |ξ − FE | isomorphic to P

1 × P
1, and C2 = Bs|Ṽ2| ∩ E is a curve

satisfying C2 ∼ l + γ which is mapped surjectively to RY .
(ii) The fixed locus of ι

P5 is two disjoint planes P2
1 ∪ P

2
2 such that f (SE ) = P

2
1 and that

f (C2) is a conic contained in P2
2. Furthermore, f (E) is a 3-dimensional quadric in P5.

Proof Suppose by contradiction that ιỸ |E is the identity. Then by Corollary 4.11, one has
E ⊂ Bs|Ṽ1| or E ⊂ Bs|Ṽ2|. Since |Ṽi | ⊂ |μ∗(−KY ) − E | for i = 1, 2, this contradicts the
fact that there is no divisor in |−KY | having multiplicity at least 2 along RY by Macaulay2
(see Listing 11).

(i) Since ιỸ |E is not the identity and ιY |RY is the identity, we have that ιỸ |FE is not the
identity. Thus ιỸ |FE is a non-trivial involution on FE � P

2, and we obtain that the fixed locus
of ιỸ |FE is the disjoint union of a point and a line (which correspond respectively to the two
non-empty eigenspaces of the involution ιỸ |FE ∈ PGL2(C)).

We first describe the base locus of |Ṽ1|. Since by Macaulay2 (see Listing 5), one has
b(MW ) = b(Sec) (see Lemma 3.12 for notation) for the base ideals. Thus the base locus of
|V1| contains the surface WY with multiplicity 2 by Lemma 3.12. Therefore, the base locus
of |Ṽ1| contains the strict transform W̃Y ⊂ Ỹ . Moreover, since a general member in |V1| is
singular along two elliptic fibres ofWY , a local computation shows that every member in |Ṽ1|
contains two fibres FE above the two points on RY where it is singular. As D̃|E ∼ ξ + FE ,
we deduce that the unique member SE ∈ |ξ − FE | is contained in the base locus of |Ṽ1|.
Therefore, Bs|Ṽ1| ∩ E = SE � P

1 × P
1, and SE ∩ W̃Y = E ∩ W̃Y = R̃Y .

Now we describe the base locus of |Ṽ2|. Since |μ∗(−KY ) − E | is base-point-free, Bs|Ṽ2|
is disjoint from the surface SE . Let D2 be a general member in |V2|. Since D2 does not
contain the surface WY , and D2|WY = RY + 2FY , we deduce that the intersection of the
singular locus SingD2 with the curve RY contains at most one point (which is a singularity of
multiplicity two). Hence a general member in |Ṽ2| contains at most one fibre FE of E → RY .

Claim. Bs|Ṽ2| ∩ E has dimension at most one.
Suppose that there is a surface S2 ⊂ Bs|Ṽ2| ∩ E . Since D̃|E ∼ ξ + FE , one has S2 ∈ |ξ | or
S2 ∈ |ξ + FE |. As ξ · R̃Y = FE · R̃Y = 1, one has S2 · R̃Y > 0, which contradicts the fact
that S2 is disjoint from SE . This proves the claim.

Note that Bs|Ṽ2| ∩ E has dimension one. This is because the fixed locus of ιỸ |FE is the
disjoint union of a point and a line, and Bs|Ṽ1| ∩ FE is a line. Thus by Corollary 4.11, the
fixed point disjoint from the fixed line is contained in Bs|Ṽ2| ∩ FE . Therefore, Bs|Ṽ2| ∩ E is
a curve which is mapped surjectively to RY .

Denote by C2 the curve Bs|Ṽ2| ∩ E . Since C2 is disjoint from SE ∈ |ξ − FE |, one has
(ξ − FE ) · C2 = 0 and thus C2 ∼ m(γ + l) with m ≥ 1. As (D̃|E )2 ∼ (ξ + F)2 ∼ γ + 3l,
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we deduce that C2 ∼ γ + l. Hence C2 is an irreducible curve which is mapped surjectively
to RY .

(ii) Since ιQ is not the identity (i.e. ι
P5 is not the identity), the fixed locus of ι

P5 is the
union of two disjoint sub-linear spaces Pi ∪P

j with i+ j = 4, which correspond respectively
to the two eigenspaces of the involution ι

P5 ∈ PGL5(C). Therefore, the fixed locus of ι
P5 is

two disjoint planes P2
1 and P

2
2 by the equation (5).

By Remark 4.12, f (SE ) has dimension 2. Hence, f (SE ) ⊂ Q is one of the two planes
P
2
1 and P

2
2 contained in the fixed locus of ι

P5 . We may denote f (SE ) = P
2
1. Following

the discussion in Remark 4.12, we now describe the map f |SE : the restricted linear system
|D̃|E |SE embeds the surface SE in P

3 as the Segre embedding of P1 × P
1 in P

3, and the
image S′

E has degree 2. Hence, f |SE is given by the projection of S′
E from a point outside S′

E
in P

3. The projection has degree 2 and the image is the plane P2
1. Note that in Remark 4.12,

the projection of B from a point x outside B in P
6 cannot be birational, as the projection

of S′
E ⊂ B from the point x in P

3 ⊂ P
6 has degree 2. Therefore, f (E) is a 3-dimensional

quadric in P
5.

Since D̃ ·C2 = (ξ + FE ) · (γ + l) = 2, the image f (C2) is a conic. As f (C2) is disjoint
from f (SE ), we deduce that f (C2) is contained in P2

2. ��
Corollary 4.14 The involution ιQ is the identity, and thus the Bertini involution ιY preserves
every divisor in |−KY | and f factors through the quotient Ỹ/ιỸ via the lifted involution ιỸ .

Proof Suppose by contradiction that ιQ is not the identity. We use the notation as in
Lemma 4.13.

Since the restricted linear system |D̃|E |SE embeds the surface SE in P
3 as the Segre

embedding of P1 × P
1 in P3 with image S′

E a quadric surface, the map f |SE is given by the
projection of S′

E from a point outside S′
E in P3. The projection has degree 2, and f (SE ) = P

2
1

by Lemma 4.13. Therefore, f |SE : SE � P
1 × P

1 → P
2
1 is a double cover branched over a

non-singular conic � in P2
1; moreover, the image of any line on SE is a tangent line to �, and

conversely the preimage of each tangent line on � is two lines on SE , one from each ruling.
Let D ∈ |V1| be a general member and D̃ ∈ |Ṽ1| be its strict transform. Then by

Lemma 4.13, D̃ ∩ E contains the surface SE and two distinct P2 (denoted by FE1 and
FE2 ) above the two points on RY where D is singular. Thus f (D̃) contains f (FE1)=:�1

and f (FE2)=:�2 which are two planes in P
5 by Remark 4.12. Moreover, �1 and �2 are

distinct. This is because FE1 ∩ SE and FE2 ∩ SE are two distinct lines of a same ruling of
SE � P

1×P
1, and thus their images in P2

1 = f (SE ) are two distinct tangent lines to� by the
above discussion. Therefore, f (D̃) ∩ f (E) contains three distinct planes P2

1,�1,�2. This
contradicts the fact that f (D̃) is a hyperplane in P5 and f (E) is a 3-dimensional quadric in
P
5 (so that their intersection is a surface of degree 2 in P5).
Therefore, ιQ is the identity. By Lemma 4.7 (ii), one has f = f ◦ ιỸ . Thus f factors

through the quotient Ỹ/ιỸ . ��

Corollary 4.15 The morphism f |E : E → f (E) is birational, and f (E) has degree 4 in P5.
Moreover, the restricted involution ιỸ |E is the identity.

Proof By Remark 4.12, either f |E has degree 2 and the image is a 3-dimensional quadric in
P
5, or f |E is finite birational and the image has degree 4 in P

5. We will show that the first
case cannot happen.

Suppose that f |E has degree 2 and f (E) is a 3-dimensional quadric in P5. We will follow
the same argument as in the proof of Corollary 4.14. ByLemma 4.13 (with the same notation),
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for a general member D ∈ |V1|, its strict transform D̃ ∈ |Ṽ1| contains the surface SE ⊂ E .
Moreover, D̃ contains the two distinct fibres (denoted by FE1 and FE2 ) of μ|E : E → RY

above the two points on RY where D is singular. Hence, f (D̃) ∩ f (E) contains the surface
f (SE ) and the two planes f (FE1), f (FE2) (which may coincide).

(a) If f |SE has degree 2, then the same argument as in the proof of Corollary 4.14 shows
that f (SE ), f (FE1), f (FE2) are 3 distinct planes.

(b) If f |SE has degree 1, then f (SE ) is either a non-normal surface or isomorphic to SE �
P
1 × P

1. Thus f (SE ) has degree at least 2 in P5.

This contradicts the fact that f (D̃) ∩ f (E) is a surface of degree 2 in P
5. Therefore, f |E is

finite birational and f (E) has degree 4 in P
5.

Now suppose that ιỸ |E is not the identity. Since f |E = f |E ◦ ιỸ |E by Corollary 4.14, we
deduce that f |E has degree 2, which leads to a contradiction. ��
Proof of Theorem 1.3 Follows from Corollary 4.14. ��
Proof of Theorem 1.5 Follows from Lemmas 4.7, 4.9, and Corollaries 4.14, 4.15. ��
Lemma 4.16 With notation from Theorem 1.5, the fixed locus of ιỸ is E∪Res, where Res has

dimension at most 2 and its intersection with every P̃� is non-empty and zero-dimensional,
where P̃� ⊂ Ỹ is the strict transform of P� (see notation in Proposition 2.3).

Proof Let P� � P
2 be the exceptional locus of a small extremal contraction of Y . Then

ιY (P�) = Pι∗S(�) is also the exceptional locus of some small extremal contraction of Y and
P� intersects ιY (P�) transversally at 3 points by [5, Rem. 2.15 (c), Lem. 6.4]. Therefore, the
intersection of P� with the fixed locus of ιY is non-empty and zero-dimensional.

As RY ⊂ WY is disjoint from any P� by Lemma 3.13, we deduce that E is disjoint from
any P̃�. Therefore, Res∩ P̃� is non-empty and zero-dimensional; hence so isμ(Res)∩ P� for
any P�. Suppose that μ(Res) contains a divisorial component DRes . By the cone theorem,
DRes has positive intersection with some extremal ray of NE(Y ); such an extremal ray is
generated by a class of line ��0 in P�0 � P

2 ⊂ Y by Proposition 2.3. Therefore, DRes ∩ P�0

has dimension 1, which contradicts the fact that DRes ∩ P�0 is zero-dimensional. Hence,
μ(Res) has dimension at most 2 and so does Res. ��
Remark 4.17 With notation from Theorem 1.5, the computations by Macaulay2 (see List-
ing 12) show the following.

• It is expected that f −1( f (E)) = E (since the points in f (E) ⊂ Q ⊂ P
5 are expected

to correspond to those whose preimage by the map phi1, defined by the linear system
of quintic hypersurfaces through the 8 blow-up points with multiplicity at least 3, is
undefined in P

4). It follows that the ramification divisor of f is E + E ′, where E ′ ∈
|3(μ∗(−KY ) − E)| has generically degree 2 to its image by f .

• The fixed locus Res (see notation in Lemma 4.16) by ιỸ is expected to have dimension 2
(as the points in f (Res) are expected to correspond to those whose preimage by phi1
has exactly one point).
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A Computations by Macaulay2

restart
i1 : k = ZZ/67

We set up the projective space P4:

i2 : R = k[x_0..x_4]

We choose 8 points in P4:

i3 : I_0 = ideal(x_1,x_2,x_3,x_4)
i4 : I_1 = ideal(x_0,x_2,x_3,x_4)
i5 : I_2 = ideal(x_1,x_0,x_3,x_4)
i6 : I_3 = ideal(x_1,x_2,x_0,x_4)
i7 : I_4 = ideal(x_1,x_2,x_3,x_0)
i8 : I_5 = ideal(x_1-x_2,x_2-x_3,x_3-x_4,x_0-x_4)
i9 : I_6 = ideal(x_0-3*x_1,x_1-7*x_2,x_2-11*x_3,x_3-13*x_4)
i10 : I_7 = ideal(x_0-17*x_1,x_1-23*x_2,x_2-29*x_3,x_3-31*x_4)

We compute the ideal II defined by the 6 quintic hypersurfaces through the 8 points with
multiplicity at least 3:

i11 : J = intersect(apply(8,i->I_i));
i12 : H = trim saturate J^3;
i13 : gensH = gens (H);
i14 : tally degrees H
o14 = Tally{{5} => 6 }

{6} => 60
o14 : Tally
i15 : G1 = submatrix (gensH,{0..5});
i16 : II = ideal(G1);

We check that II is the intersection of the ideal LL of the 28 lines, the ideal RN of the 8
quartics and the ideal I5 of a smooth rational quintic curve:

i17 : LL = apply(8, i->apply(8, j-> ideal (gens intersect
(I_i,I_j))_{0,1,2}));

i18 : LL = intersect unique flatten (LL);
i19 : isSubset(II,LL)
o19 = true
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i20 : RN = apply(8,i->minors(2,submatrix((res (J:I_i)).
dd_4,{3..6},{0..1})));

i21 : RN = intersect unique flatten (RN);
i22 : isSubset(II,RN)
o22 = true
i23 : I5 = ((II:LL):RN);
i24 : degree I5, genus I5, ideal singularLocus variety I5
o24 = (5, 0, ideal 1)
o24 : Sequence
i25 : II == intersect(intersect(LL,RN),I5)
o25 = true

Listing 1 Base scheme

We compute the normal bundle of the smooth rational quintic curve:

i26 : RI5 = R/I5
i27 : N5 = (module I5)**RI5
i28 : PI5 = Proj RI5
i29 : SN5 = sheaf N5
i30 : HH^0(SN5)
o30 = 0
o30 : k-module
i31 : HH^0(sheaf dual N5)

26
o31 = k
o31 : k-module, free
i32 : KI5 = Ext^3(R^1/I5,R^{-5})**RI5
i33 : HH^0(SN5**OO_PI5(1)**(sheaf dual KI5))

1
o33 = k
o33 : k-module, free

Listing 2 Normal bundle

We choose three points on the smooth rational quintic curve:

i26 : P1 = ideal(x_3-14*x_4,x_2-x_4,x_1+x_4,x_0-12*x_4)
i27 : P2 = ideal(x_3+17*x_4,x_2-22*x_4,x_1+20*x_4,x_0+2*x_4)
i28 : P3 = ideal(x_3-26*x_4,x_2+27*x_4,x_1-30*x_4,x_0+21*x_4)

We compute the three quintic hypersurfaces with multiplicity 3 at the 8 points and the point
P1 (resp. P2 and resp. P3):

i29 : J13 = intersect(J^3,P1^3);
i30 : H13 = trim saturate J13;
i31 : G13 = gens(H13);
i32 : tally degrees H13
o32 = Tally{{5} => 1 }

{6} => 70
o32 : Tally
i33 : GP1 = submatrix(G13,{0});
i34 : Q1 = ideal(GP1);
-- this ideal defines the secant variety of the elliptic normal quintic

through the 8 points I_0,...,I_7 and the point P1, as we know that such
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a secant variety has multiplicity three along the elliptic curve

i35 : J23 = intersect(J^3,P2^3);
i36 : H23 = trim saturate J23;
i37 : G23 = gens(H23);
i38 : tally degrees H23
o38 = Tally{{5} => 1 }

{6} => 70
o38 : Tally
i39 : GP2 = submatrix(G23,{0});
i40 : Q2 = ideal(GP2);

i41 : J33 = intersect(J^3,P3^3);
i42 : H33 = trim saturate J33;
i43 : G33 = gens(H33);
i44 : tally degrees H33
o44 = Tally{{5} => 1 }

{6} => 70
o44 : Tally
i45 : GP3 = submatrix(G33,{0});
i46 : Q3 = ideal(GP3);

Listing 3 Three secant varieties

We compute the elliptic normal quintic curve along which the quintic hypersurface Q1 is
singular:

i47 : SingQ1 = ideal singularLocus variety Q1;
i48 : dim SingQ1, degree SingQ1
o48 = (2, 40)
o48 : Sequence
-- we know that the secant variety of an elliptic normal

quintic is singular along the elliptic curve, and it
has multipicity 3 along the elliptic curve, so we need
to factorise out the multiplicity in the following

i49 : SSingQ1 = ideal singularLocus variety SingQ1;
i50 : dim SSingQ1, degree SSingQ1
o50 = (2, 35)
o50 : Sequence
i51 : E1 = (SingQ1:SSingQ1);
i52 : dim E1, degree E1, genus E1
o52 = (2, 5, 1)
o52 : Sequence
i53 : ideal singularLocus variety E1
o53 = ideal 1
o53 : Ideal of R

We compute the intersection of the three quintic hypersurfaces and obtain the cubic scroll W:

i54 : SS3 = Q1 + Q2 + Q3;
i55 : SS = (SS3:II);
i56 : dim SS, degree SS
o56 = (3, 6)
o56 : Sequence
i59 : W = ideal singularLocus variety SS;
i60 : dim W, degree W, genus W, ideal singularLocus variety W
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o60 = (3, 3, 0, ideal 1)
o60 : Sequence
i61 : W == (SS:W)
o61 = true

Listing 4 Scheme-theoretic intersection of secant varieties

We compute the quintic hypersurfaces through the 8 points with multiplicity at least 3, and
containing the surface W:

i62 : JW = intersect(J^3,W);
i63 : HW = trim saturate JW;
i64 : GW = gens(HW);
i65 : tally degrees HW
o65 = Tally{{5} => 3 }

{6} => 53
o65 : Tally
i66 : GW1 = submatrix(GW,{0..2});
i67 : IIW = ideal(GW1);
i68 : IIW == SS3
o68 = true
-- this shows that the 3 secant varieties Q1, Q2 and Q3

generate the sub-linear system of quintic
hypersurfaces

through the 8 points with multiplicity at least 3 and
containing the surface W

Listing 5 Quintics containg W

We look at the singular locus of a quintic hypersurface through the 8 points with multiplicity
at least 3 and containing the surface W:

i69 : QW = ideal(11*GW1_(0,0)+7*GW1_(0,1)+19*GW1_(0,2));
i70 : SingQW = ideal singularLocus variety QW;
i71 : dim SingQW, degree SingQW, genus SingQW
o71 = (2, 10, -57)
o71 : Sequence
i72 : SingW1 = (SingQW:J); -- we factor out the residual

singular points
i73 : SingW2 = (SingW1:J);
i74 : SingW3 = (SingW2:J);
i75 : LSingQW = decompose SingW3;
-- factorising out the residual points, the singular locus

is now of pure dimension one
i76 : EE = ideal(LSingQW);
i77 : degree EE, genus EE, dim EE
o77 = (10, 9, 2)
o77 : Sequence
i78 : SingEE = ideal singularLocus variety EE;
i79 : dim SingEE, degree SingEE
o79 = (1, 8)
o79 : Sequence
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-- this shows that EE defines two elliptic normal quintics
through the 8 points

i80 : degree (E1 + EE)
o80 = 16
i81 : degree (I5 + EE)
o81 = 18

Listing 6 Singular locus of a quintic containg W

We see that the singular locus of the quintic hypersurface QW is the set defined by the ideal
EE. We deduce by the computations that this set consists of two elliptic normal quintic curves
lying on the surface W, and intersecting at the 8 points.

Now we compute the hypersurfaces of degree 10 through the 8 points with multiplic-
ity at least 6. To reduce the running time, we add the 8 points step by step and eliminate
hypersurfaces of degree higher than 10 at the end of each step:

i82 : JI5 = intersect(I_5^6,intersect(I_6^6,I_7^6));
i83 : HI5 = trim saturate JI5;
i84 : GI5 = gens HI5;
i85 : tally degrees HI5
o85 = Tally{{6} => 7 }

{7} => 23
{8} => 30
{9} => 28
{10} => 18
{11} => 9
{12} => 3

o85 : Tally
i86 : GI15 = submatrix(GI5,{0..105});
-- to reduce the running time, we eliminate the

hypersurfaces of degree higher than 10
i87 : II5 = ideal(GI15);

i88 : JI4 = intersect(I_4^6,II5);
i89 : HI4 = trim saturate JI4;
i90 : GI4 = gens HI4;
i91 : tally degrees HI4
o91 = Tally{{6} => 1 }

{7} => 11
{8} => 33
{9} => 52
{10} => 36
{11} => 9
{12} => 3

o91 : Tally
i92 : GI14 = submatrix(GI4,{0..132});
i93 : II4 = ideal(GI14);

i94 : JI3 = intersect(I_3^6,II4);
i95 : HI3 = trim saturate JI3;
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i96 : GI3 = gens HI3;
i97 : tally degrees HI3
o97 = Tally{{8} => 15 }

{9} => 80
{10} => 60
{11} => 12
{12} => 4

o97 : Tally
i98 : GI13 = submatrix(GI3,{0..154});
i99 : II3 = ideal(GI13);

i100 : JI2 = intersect(I_2^6,II3);
i101 : HI2 = trim saturate JI2;
i102 : GI2 = gens HI2;
i103 : tally degrees HI2
o103 = Tally{{9} => 34 }

{10} => 90
{11} => 15
{12} => 5

o103 : Tally
i104 : GI12 = submatrix(GI2,{0..123});
i105 : II2 = ideal(GI12);

i106 : JI1 = intersect(I_1^6,II2);
i107 : HI1 = trim saturate JI1;
i108 : GI1 = gens HI1;
i109 : tally degrees HI1
o109 = Tally{{9} => 1 }

{10} => 136
{11} => 33
{12} => 6

o109 : Tally
i110 : GI11=submatrix(GI1,{0..136});
i111 : II1 = ideal(GI11);

i112 : JI0 = intersect(I_0^6,II1);
i113 : HI0 = trim saturate JI0;
i114 : GI0 = gens HI0;
i115 : tally degrees HI0
o115 = Tally{{10} => 29 }

{11} => 134
{12} => 7

o115 : Tally
i116 : GG = submatrix(GI0,{0..28});
i117 : IGG = ideal(GG);

We compute the hypersurfaces of degree 10 through the 8 points with multiplicity at least 6
containing the surface W:

i118 : JW2 = intersect(W,IGG);
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i119 : HW2 = trim saturate JW2;
i120 : GW2 = gens HW2;
i121 : tally degrees HW2
o121 = Tally{{10} => 21}

{11} => 6
o121 : Tally
i122 : GGW = submatrix(GW2,{0..20});
i123 : IW2 = ideal(GGW);

Listing 7 Decics containing W

We compute the image of the elliptic normal quintic E1 via the map defined by the linear
system of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6:

i124 : loadPackage"MultiprojectiveVarieties"
i125 : phi2 = rationalMap(IGG);
o125 : RationalMap (rational map from PP^4 to PP^28)
i126 : ImE1 = image(phi2|E1);
i127 : dim ImE1, degree ImE1
o127 = (2, 1)
o127 : Sequence

We compute the image of the rational quintic curve I5 via the map defined by the linear
system of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6:

i128 : ImI5 = image(phi2|I5);
i129 : dim ImI5, degree ImI5
o129 = (2, 2)
o129 : Sequence

We compute the image of the surface W via the map defined by the linear system of hyper-
surfaces of degree 10 through the 8 points with multiplicity at least 6:

i130 : ImW = image(phi2|W);
i131 : dim ImW, degree ImW
o131 = (3, 6)
o131 : Sequence

Listing 8 Some images by the bianticanonical map

We compute the hypersurfaces of degree 10 with multiplicity at least 7 at the point I_0 and
multiplicity at least 6 at the other 7 points:

i132 : JI00 = intersect(I_0^7,II1);
i133 : HI00 = trim saturate JI00;
i134 : GI00 = gens HI00;
i135 : tally degrees HI00
o135 = Tally{{10} => 1 }

{11} => 197
{12} => 21
{13} => 7

o135 : Tally
i136 : GG0 = submatrix(GI00,{0});
i137 : IGG0 = ideal(GG0);
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And we obtain a unique such hypersurface of degree 10; now we check if this hypersurface
contains the surface W:

i138 : isSubset(IGG0,W)
o138 = false

Listing 9 Special member in the bianticanonical system

We compute the image ofP4 via themap defined by the linear system of quintic hypersurfaces
through the 8 points with multiplicity at least 3.

This is achieved by an indirect method: we generate an ideal JJ which has the same
behaviour as the ideal II defined by the 6 quintic hypersurfaces through the 8 points with
multiplicity at least 3. Then we compute the image of P4 via the map defined by this ideal
JJ.

i139 : JJ = minors(2,random(R^{4:0},R^{-2,-3}));
i140 : degree JJ, genus JJ -- we check that JJ and II have same behaviour

as ideals
o140 = (65, 212)
o140 : Sequence
i141 : betti res JJ == betti res II
o141 = true
i142 : phi = rationalMap(JJ);
o142 : RationalMap (rational map from PP^4 to PP^5)
i143 : ImP4 = image(phi);
i144 : dim ImP4, degree ImP4, singularLocus variety ImP4

/k[y ..y ]\
| 0 5 |

o144 = (5, 2, Proj|---------|)
\ 1 /

o144 : Sequence
-- the image is a smooth quadric hypersurface
i145 : phi1 = rationalMap(J,5,3);
-- this is the map defined by the linear system of quintic hypersurfaces

through the 8 points with multiplicity at least 3
o145 : RationalMap (rational map from PP^4 to PP^5)
i146 : Q = image(phi1,2);
-- since we know that the image is a quadric hypersurface, we can now compute

the image by taking the degree-two component
i147 : singularLocus variety Q

/k[y ..y ]\
| 0 5 |

o147 = Proj|---------|
\ 1 /

o147 : ProjectiveVariety
-- the quadric Q is smooth

Listing 10 Image by the anticanonical map

We check that there is no quintic hypersurfaces through the 8 points with multipilicity at
least 3 and having multiplicity at least 2 along the smooth rational quintic curve I5:

i148 : JRR = intersect(J^3,I5^2);
i149 : HRR = trim saturate JRR;
i150 : tally degrees HRR
o150 = Tally{{6} => 61}
o150 : Tally

Listing 11 Quintics having multiplicity 2 along the smooth rational quintic base curve
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To understand the ramification locus of the map phi1 defined by the linear system of
quintic hypersurfaces through the 8 points with multiplicity at least 3 in P

4, we take many
points randomly in the image Q and look at the degree of the fibre of each of them.

i151 : tally apply(50000, i->(
fiber = phi1^* point Q;
fiber = radical fiber;

(dim fiber, degree fiber)))
o151 = Tally{(-1, 0) => 743 } -- loci of expected dimension 3

(1, 1) => 195 -- loci of expected dimension at least 2
(1, 2) => 1874 -- loci of expected dimension 3
(1, 3) => 4752 -- loci of expected dimension 3
(1, 4) => 42436 -- phi1 has generically degree 4

o151 : Tally

Listing 12 Branched locus of the anticanonical map

To compute the generic degree of the map phi2 defined by the linear system of hyper-
surfaces of degree 10 through the 8 points with multiplicity at least 6, we take many points
randomly in P

4 and look at the degree of the fiber of each point’s image in Q.

i152 : tally apply(1000, i->(
fiber = phi2^* image(phi2|point R);
fiber = radical fiber;

(dim fiber, degree fiber)))
o152 = Tally{(-1, 0) => 12}

(1, 1) => 987 -- phi2 has generically degree one
(1, 2) => 1

o152 : Tally

Listing 13 Generic degree of the bianticanonical map
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