Anticanonical geometry of the blow-up of \mathbb{P}^{4} in 8 points and its Fano model

Zhixin Xie ${ }^{1}$

Received: 16 December 2021 / Accepted: 4 August 2022
© The Author(s) 2022

Abstract

Building on the work of Casagrande-Codogni-Fanelli, we develop our study on the birational geometry of the Fano fourfold $Y=M_{S,-K_{S}}$ which is the moduli space of semi-stable ranktwo torsion-free sheaves with $c_{1}=-K_{S}$ and $c_{2}=2$ on a polarised degree-one del Pezzo surface $\left(S,-K_{S}\right)$. Based on the relation between Y and the blow-up of \mathbb{P}^{4} in 8 points, we describe completely the base scheme of the anticanonical system $\left|-K_{Y}\right|$. We also prove that the Bertini involution ι_{Y} of Y, induced by the Bertini involution ι_{S} of S, preserves every member in $\left|-K_{Y}\right|$. In particular, we establish the relation between ι_{Y} and the anticanonical map of Y, and we describe the action of ι_{Y} by analogy with the action of ι_{S} on S.

Mathematics Subject Classification 14J35 - 14J45 - 14E30

1 Introduction

Fano manifolds are classified up to dimension three. There are 10 deformation families of 2dimensional Fano manifolds, and 105 deformation families of 3-dimensional Fano manifolds (classified by Mori-Mukai and Iskovskih, see [21, 22, 26, 30]).

In dimension 4, toric Fano manifolds have been classified by Batyrev [1] and Sato [28]. The full classification of smooth Fano fourfolds is still to be achieved: only those of index at least two have been completely classified (see [12, 13, 15, 16, 31, 33]). The index one case is not yet complete: Küchle constructed a number of examples with Picard number one, and explained some known results with lists of related problems (see [24]). To find and classify Fano fourfolds of index one, Coates, Corti and others have embarked on a program using mirror symmetry ([6], and see a list of examples in [7]), where heavy computer calculations are involved. A complete classification might not be desirable, but it is interesting to exhibit some Fano fourfolds with special geometric properties, for example, those with Picard number ρ close to the conjectural boundary $\rho \leq 18$, or those whose anticanonical system has nonempty base locus. In order to study Fano manifolds with large Picard number (see [3]),

[^0]Casagrande introduced the invariant called Lefschetz defect, and developed fruitful results in this direction $[4,9]$.

Let $Y:=M_{S,-K_{S}}$ be the moduli spaces of semi-stable rank-two torsion-free sheaves with $c_{1}=-K_{S}, c_{2}=2$ on a polarised degree-one del Pezzo surface ($S,-K_{S}$). The moduli spaces $Y=M_{S,-K_{S}}$ form a remarkable family of smooth Fano fourfolds with Picard number 9. As moduli spaces, the birational geometry of Y can be entirely described by the variation of stabitity conditions: the wall-and-chamber structure of the effective cone $\operatorname{Eff}\left(M_{S, L}\right)$, given by the Mori chamber decomposition, matches up with the wall-and-chamber structure of a convex rational polyhedral cone in $H^{2}(S, \mathbb{R})$, determined by the stability conditions (see [27, Sect. 2] and [5, Sect. 5]).

The study of this family is motivated by two issues. Firstly, for Fano fourfolds with large Picard number (e.g. at least 7), only few examples which are not products of del Pezzo surfaces are known. As pointed out in [5, Sect. 1,B], the family of Fano fourfolds Y is the only known example of Fano fourfolds with Picard number at least 9 , which is not a product of surfaces. Secondly, it is delicate to find examples of Fano fourfolds whose anticanonical system has non-empty base locus, since most Fano fourfolds classified so far are toric, which implies that any ample line bundle on them is globally generated. Some examples are constructed in [20, Chapter 6.3] as complete intersections of two hypersurfaces in weighted projective spaces; two families are identified in [29] as Fano fourfolds with Picard number 3 and having some contraction onto a smooth Fano threefold. In [5, Thm. 1.10], it is shown that the base locus of the anticanonical system $\left|-K_{Y}\right|$ has positive dimension. Therefore, the geometry of Y is worth detailed understanding.
A. The anticanonical system of the Fano model Y. The birational geometry of $Y=M_{S,-K_{S}}$ is related to the birational geometry of the blow-up X of \mathbb{P}^{4} at 8 points. In [5, Lem. 5.18], an explicit relation between X and Y is given: the Fano fourfold Y is obtained from X by flipping the strict transforms of the lines through all pairs of blown up points and of the quartic curves through 7 blown up points in \mathbb{P}^{4}. Thanks to this relation between X and Y, it is shown in [5, Lem. 7.5, Cor. 7.6] that the base locus of $\left|-K_{Y}\right|$ contains the strict transform R_{Y} of a smooth rational quintic curve passing through the 8 blown up points in \mathbb{P}^{4}, and that $\left|-2 K_{Y}\right|$ is base-point-free. We complete the study of the anticanonical system and show more precisely that:

Theorem 1.1 For the Fano fourfold $Y:=M_{S,-K_{S}}$, the base scheme of $\left|-K_{Y}\right|$ is the reduced smooth curve R_{Y}.

As a direct application, we obtain the smoothness of a general member in the anticanonical system.

Corollary 1.2 Let $D \in\left|-K_{Y}\right|$ be a general divisor. Then D is smooth.
B. The Bertini involution of the Fano model Y. Now we turn our attention to the automorphism group of Y. In [5, Sect. 4], a group morphism ρ between the Picard groups of the degree-one del Pezzo surface S and of the moduli spaces $Y=M_{S,-K_{S}}$ is defined. This morphism ρ induces an isomorphism between the automorphism groups of S and of Y (see [5, 6.15]). In particular, there is an involution t_{Y} of Y which is induced by the Bertini involution ι_{S} of S.

We mention here that another motivation behind the study of the Bertini involution ι_{Y} is the understanding of the corresponding birational involutions ι_{X} of X and $\iota_{\mathbb{P}^{4}}$ of \mathbb{P}^{4}. These birational maps ι_{X} and $\iota_{\mathbb{P}^{4}}$ are classically known, as they can be defined via the Cremona action of the Weyl group $W\left(E_{8}\right)$ on sets of 8 points in \mathbb{P}^{4} (see $\left.[10,32]\right)$. Nevertheless, the
classical definitions of ι_{X} and $\iota_{\mathbb{P}^{4}}$ do not give a geometric description of these maps. In [5, Prop. 8.9, Cor. 8.10], a factorisation of these maps is given as smooth blow-ups and blowdowns using the interpretation of X as a moduli space of vector bundles on S. In view of the relation among Y, X and \mathbb{P}^{4}, understanding one of the involutions helps describe the behaviour of the others.

By the analogy of Y and S, one expects that the action of t_{Y} on Y has similar properties as the action of ι_{S} on S, where the latter is well understood (see for example [11, 8.8.2]). To emphasize their analogy, we recall that the Bertini involution ι_{S} on S can be described as follows. The bianticanonical system $\left|-2 K_{S}\right|$ is base-point-free and defines a 2:1-cover with image a quadric cone in \mathbb{P}^{3}. The Bertini involution ι_{s} is then defined to be the associated covering involution. By construction, the Bertini involution ι_{S} on S preserves every element of $\left|-2 K_{S}\right|$. Since a divisor $D \in\left|-K_{S}\right|$ defines an element $2 D \in\left|-2 K_{S}\right|$, we see that ι_{S} preserves every divisor in $\left|-K_{S}\right|$. In view of the abstract construction of ι_{Y} on the Fano fourfold Y, the same method cannot be applied to decide whether t_{Y} preserves every divisor in $\left|-K_{Y}\right|$. However, by analysing the anticanonical map of Y, we show that the same property holds for Y.

Theorem 1.3 The Bertini involution ι_{Y} of the Fano fourfold $Y:=M_{S,-K_{S}}$ preserves every divisor in $\left|-K_{Y}\right|$, so we have a factorisation of the anticanonical map $\varphi_{\left|-K_{Y}\right|}$:

We will see in Theorem 1.5 that the anticanonical map $\varphi_{\left|-K_{Y}\right|}$ has generically degree 4 onto its image, and thus by the above theorem this map factors rationally into two double covers.

To understand the Bertini involution ι_{Y} on the Fano fourfold, our approach is analysing its behaviour on a special surface W_{Y} which is invariant by ι_{Y}. This surface W_{Y} is the strict transform of the cubic scroll swept out by the pencil of elliptic normal quintics in \mathbb{P}^{4} through the 8 blown up points; in particular, it contains the curve R_{Y}. Inspired by the similarity with degree-one del Pezzo surfaces, we study the morphism defined by the restricted bianticanonical system of Y on W_{Y}, and we give the following description of t_{Y} restricted to W_{Y}.

Proposition 1.4 The Bertini involution ι_{Y} of the Fano fourfold $Y:=M_{S,-K_{S}}$ preserves the surface W_{Y}, and its restriction $\left.\iota_{Y}\right|_{W_{Y}}$ on W_{Y} is the biregular involution defined by the double covering

$$
\phi_{\left|-2 K_{Y}\right| W_{Y}}: W_{Y} \rightarrow V_{2,4} \subset \mathbb{P}^{7},
$$

where $V_{2,4} \simeq \mathbb{F}_{2}$ is a rational normal scroll of bidegree $(2,4)$. In particular, the Bertini involution ι_{Y} acts as the identity on the curve R_{Y} and ι_{Y} induces an involution on each elliptic fibre F_{Y} of $W_{Y} \rightarrow \mathbb{P}^{1}$.

Furthermore, there exists a smooth curve $R^{\prime} \sim 3\left(R_{Y}+F_{Y}\right)$ of genus 4 on the surface W_{Y}, such that R^{\prime} is disjoint from R_{Y} and contained in the fixed locus of ι_{Y}.

Since R_{Y} is contained in the fixed locus of the Bertini involution ι_{Y}, the involution can be lifted to the blow-up \tilde{Y} of Y along the curve R_{Y}. We establish the relation between the resolved anticanonical map and the lifted involution on \tilde{Y} as follows.
Theorem 1.5 Let $\mu: \tilde{Y} \rightarrow Y$ be the blow-up of $Y:=M_{S,-K_{S}}$ along the base curve R_{Y} of $\left|-K_{Y}\right|$, and E be the exceptional divisor. Let $f: \tilde{Y} \rightarrow \mathbb{P}\left(H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)^{\vee}\right) \simeq \mathbb{P}^{5}$ be
the morphism defined by the base-point-free linear system $\left|\mu^{*}\left(-K_{Y}\right)-E\right|$. Then f has generically degree 4 with image Q a smooth quadric hypersurface in \mathbb{P}^{5}, and f contracts the strict transform of the surface W_{Y} to a conic in \mathbb{P}^{5}. Moreover, $\left.f\right|_{E}: E \rightarrow f(E)$ is a finite birational morphism such that the image $f(E)$ has degree 4 in \mathbb{P}^{5}.

Furthermore, the Bertini involution ι_{Y} of Y can be lifted to \tilde{Y}, and the lifted involution $\iota_{\tilde{Y}}$ acts as the identity on E. Moreover, f factors through the quotient $\tilde{Y} / \iota_{\tilde{Y}}$:

As open questions, one may like to understand the quotient $\tilde{Y} / \iota_{\tilde{Y}}$, the geometric interpretation of $\tilde{Y} / \iota_{\tilde{Y}} \rightarrow Q$, and to describe completely the fixed locus of $\iota_{\tilde{Y}}$ (see Lemma 4.16).

Plan. We briefly explain the organisation of the paper. In Sect. 2, we summarise some results in [5], including the geometry of the Fano model $Y:=M_{S,-K_{S}}$, the connection between the blow-up X of \mathbb{P}^{4} at 8 points and the degree-one del Pezzo surface S, and the relation between X and Y. We finish by recalling some basic properties of the Bertini involution of a degree-one del Pezzo surface.

In Sect. 3, we investigate the anticanonical system $\left|-K_{Y}\right|$ and the bianticanonical system $\left|-2 K_{Y}\right|$. We prove Proposition 1.1 by an additional analysis on the simplicial facets of the cone of effective divisors on Y. We also give some auxiliary results on $\left|-K_{Y}\right|$ and $\left|-2 K_{Y}\right|$, which serve as key ingredients in the study of the Bertini involution of Y.

In Sect. 4, we study the action of the Bertini involution of Y. Section 4.1 is devoted to the proof of Proposition 1.4. We study the morphism defined by the bianticanonical system $\left|-2 K_{Y}\right|$ restricted to the surface W_{Y}. Computations by Macaulay2 show that the image of W_{Y} is a surface of degree 6 in \mathbb{P}^{7}, which helps us to describe completely the morphism; in particular, the morphism is finite of degree 2 and gives an involution on the surface W_{Y}. By examining the action of this covering involution, we show that it coincides with the Bertini involution t_{Y} restricted to the surface W_{Y}.

In Sect. 4.2, we study the geometry of the anticanonical map of Y. Computations by Macaulay2 show that the image of Y by the antincanonical map is a smooth quadric hypersurface Q in \mathbb{P}^{5}. We are then ready to prove Theorem 1.3. The strategy is to prove by contradiction: we suppose that ι_{Y} does not preserve every divisor in $\left|-K_{Y}\right|$. We show that in this case, ι_{Y} induces a non-trivial involution ι_{Q} on Q. We then obtain a contradiction by analysing the fixed locus of the induced involution ι_{Q} and by studying the geometry of a special sub-linear systems of $\left|-K_{Y}\right|$ consisting of divisors containing the surface W_{Y}. Theorem 1.5 is obtained as a consequence of the study to prove Theorem 1.3.

In Appendix A, we include the code for several computations in Sects. 3 and 4 using the software system Macaulay2.

2 Preliminaries

In this paper we work over the field \mathbb{C}.
We fix S a general del Pezzo surface of degree one. We will see in 2.2.1 that we can associate to a degree-one del Pezzo surface S a blow-up X of \mathbb{P}^{4} at 8 points in general linear position; for general S, the associated X is a blow-up of \mathbb{P}^{4} at 8 general points. Note that we will need this general condition on the 8 blow-up points in \mathbb{P}^{4} to apply Lemma 3.1.

Let $M_{S, L}$ be the moduli space of semi-stable (with respect to $L \in \operatorname{Pic}(S)$ ample) rank-two torsion free sheaves \mathcal{F} on S with $c_{1}(\mathcal{F})=-K_{S}$ and $c_{2}(\mathcal{F})=2$. Then it follows from the classical properties of the determinant line bundle that for the polarisation $L=-K_{S}$, the moduli space $Y:=M_{S,-K_{S}}$ is Fano.

For the degree-one del Pezzo surface S, we introduce the following notions (see [5, Sect. 2.1]). A conic on S is a smooth rational curve such that $-K_{S} \cdot C=2$ and $C^{2}=0$. Every such conic yields a conic bundle $S \rightarrow \mathbb{P}^{1}$ having C as fibre. There are 2160 conics (as classes of a curve) in $H^{2}(S, \mathbb{Z})$. A big divisor h on S which realises S as the blow-up $\sigma: S \rightarrow \mathbb{P}^{2}$ at 8 distinct points is called a cubic. We have $h=\sigma^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)$. There are 17280 cubics (as classes of a curve) in $H^{2}(S, \mathbb{Z})$.

Notation 2.1 Given a cubic h, we use the following notation:

- $\sigma_{h}: S \rightarrow \mathbb{P}^{2}$ is the birational map defined by h
- $q_{1}, \ldots, q_{8} \in \mathbb{P}^{2}$ are the points blown up by σ_{h}
- $e_{i} \subset S$ is the exceptional curve over q_{i}, for $i=1 \ldots, 8$
- $C_{i} \subset S$ is the transform of a general line through q_{i}, so that $C_{i} \sim h-e_{i}$, for $i=1, \ldots, 8$
- $\ell_{i j} \subset S$ is the transform of the line $\overline{q_{i} q_{j}} \subset \mathbb{P}^{2}$, so that $\ell_{i j} \sim h-e_{i}-e_{j}$ and $\ell_{i j}$ is a (-1)-curve, for $1 \leq i<j \leq 8$.

2.1 The Fano model Y

By [5, Prop. 1.6], the moduli space $Y:=M_{S,-K_{S}}$ is a smooth, rational Fano fourfold with index one and Picard number 9. For such a moduli space Y, the determinant map $\rho: H^{2}(S, \mathbb{R}) \rightarrow$ $H^{2}(Y, \mathbb{R})$ is an isomorphism (see [5, Thm. 1.3]) and yields a completely explicit description of the relevant cones of divisors $\operatorname{Eff}(Y), \operatorname{Mov}(Y)$ and $\operatorname{Nef}(Y)$, as well as the cone of effective curves $\mathrm{NE}(Y)$. We cite the following statements for the cone of effective divisors $\operatorname{Eff}(Y)$ and the cone of effective curves $\mathrm{NE}(Y)$, and refer the readers to [5, Sect. 6] for the description of the other relevant cones.

Proposition 2.2 [5, Sect. 2.3, Cor. 6.2] The determinant map $\rho: H^{2}(S, \mathbb{R}) \rightarrow H^{2}(Y, \mathbb{R})$ yields an isomorphism between \mathcal{E} and $\operatorname{Eff}(Y)$, where \mathcal{E} is the subcone of $\operatorname{Nef}(S)$ generated by the conics:

$$
\mathcal{E}:=\langle C| C \text { a conic }\rangle \subset H^{2}(S, \mathbb{R}) .
$$

Hence, the cone Eff(Y) has 2160 extremal rays, each generated by a fixed divisor E_{C}, where $C \subset S$ is a conic.

Moreover, given a cubic $h,\left(2 h+K_{S}\right)^{\perp} \cap \mathcal{E}$ is a simplicial facet (i.e. a face of codimension one) of \mathcal{E}, generated by the conics C_{i} for $i=1, \ldots, 8$ (notations as in Notation 2.1). Hence, the fixed divisors $E_{C_{i}}$ for $i=1, \ldots, 8$ generate a simplicial facet of $\operatorname{Eff}(Y)$.

Proposition 2.3 [5, Prop. 1.7] The cone of effective curves $N E(Y)$ has 240 extremal rays, and is isomorphic to $N E(S)$. If ℓ is a (-1)-curve on S, the corresponding extremal ray of
$N E(Y)$ is generated by the class of a line Γ_{ℓ} in $P_{\ell} \cong \mathbb{P}^{2} \subset Y$. The corresponding elementary contraction is a small contraction, sending P_{ℓ} to a point.

The determinant map ρ also relates the two automorphism groups $\operatorname{Aut}(Y)$ and $\operatorname{Aut}(S)$. By [5, Thm. 1.9], the map $\psi: \operatorname{Aut}(S) \rightarrow \operatorname{Aut}(Y)$ given by $\psi(\phi)[\mathcal{F}]=\left[\left(\phi^{-1}\right)^{*} \mathcal{F}\right]$, for $\phi \in \operatorname{Aut}(S)$ and $[\mathcal{F}] \in Y$, is a group isomorphism. In particular, $\operatorname{Aut}(Y)$ is finite; if S is general, then

$$
\operatorname{Aut}(Y)=\left\{\operatorname{Id}_{Y}, \iota_{Y}\right\},
$$

where $\iota_{Y}: Y \rightarrow Y$ is induced by the Bertini involution of S. We still call the involution $\iota_{Y}:=\psi\left(\iota_{S}\right)$ of Y the Bertini involution. Explicitly, $\iota_{Y}: Y \rightarrow Y$ is given (see [5, Def.6.19]) by $\iota_{Y}([\mathcal{F}])=\left[\iota_{S}^{*} \mathcal{F}\right]$. We have a commutative diagram:

Finally, motivated by the analogy with del Pezzo surface of degree one, the study of the base loci of the anticanonical and the bianticanonical linear systems of Y gives the following:

Theorem 2.4 [5, Thm. 1.10] The linear system $\left|-K_{Y}\right|$ has a base locus of positive dimension, while the linear system $\left|-2 K_{Y}\right|$ is base point free.

2.2 The blow-up X of \mathbb{P}^{4} at 8 general points

2.2.1 Degree one del Pezzo surfaces and blow-ups of \mathbb{P}^{4} in 8 points

For $S=\mathrm{Bl}_{q_{1}, \ldots, q_{8}} \mathbb{P}^{2}$ and $X=\mathrm{Bl}_{p_{1}, \ldots, p_{8}} \mathbb{P}^{4}$ the blow-ups respectively of \mathbb{P}^{2} and \mathbb{P}^{4} at 8 general points, there is a classical association between these two varieties due to Gale duality. Here we give a brief outline on the definition and main properties of the association for readers' convenience; we refer to [10] for more details. The classical Gale transform is an involution that takes an ordered non-degenerate set $\Gamma \subset \mathbb{P}^{2}$ of 8 points to an ordered non-degenerate set $\Gamma^{\prime} \subset \mathbb{P}^{4}$ of 8 points, defined up to a linear transformation of \mathbb{P}^{4}. More precisely, if we choose homogeneous coordinates so that the points of $\Gamma \subset \mathbb{P}^{2}$ have as coordinates the rows of the matrix

$$
M=\binom{I_{3}}{A}
$$

where I_{3} is an 3×3 identity matrix and A is an 5×3 matrix, then the Gale transform of Γ is the set of points Γ^{\prime} whose homogeneous coordinates in \mathbb{P}^{4} are the rows of the matrix

$$
M^{\prime}=\binom{A^{T}}{I_{5}}
$$

where A^{T} is the transpose of A.
Recall that the 8 points of Γ (resp. of Γ^{\prime}) are in general linear position if every maximal minor of M (resp. of M^{\prime}) is non-zero, or equivalently, every subset of 3 points in Γ (resp. of 5 points in Γ^{\prime}) spans $\mathbb{P}^{2}\left(\right.$ resp. $\left.\mathbb{P}^{4}\right)$.

Consider the diagonal action of $\operatorname{Aut}\left(\mathbb{P}^{2}\right)$ on $\left(\mathbb{P}^{2}\right)^{8}$ and similarly the action of $\operatorname{Aut}\left(\mathbb{P}^{4}\right)$ on $\left(\mathbb{P}^{4}\right)^{8}$. In both cases, every semistable point set is also stable (see [10, page 25, Corollary]). We may thus consider the GIT quotients $P_{2}^{8}:=\left(\left(\mathbb{P}^{2}\right)^{8}\right)^{s} / \operatorname{Aut}\left(\mathbb{P}^{2}\right)$ and $P_{4}^{8}:=\left(\left(\mathbb{P}^{4}\right)^{8}\right)^{s} / \operatorname{Aut}\left(\mathbb{P}^{4}\right)$. The Gale transform is an algebraic construction which induces an isomorphism $a: P_{2}^{8} \simeq P_{4}^{8}$. In particular, to every stable ordered set of 8 points in \mathbb{P}^{2}, we associate a stable ordered set of 8 points in \mathbb{P}^{4}, unique up to projective equivalence, and vice versa.

The two paragraphs below are summarised from [5, 2.21]; for further details of the association, we refer to $[5,2.18]$. Let h be a cubic on S. We associate to (S, h) a blow-up X of \mathbb{P}^{4} in 8 points in general linear position as follows.

Let $q_{1}, \ldots, q_{8} \in \mathbb{P}^{2}$ be the points blown up under the birational morphism $S \rightarrow \mathbb{P}^{2}$ defined by h (the points q_{1}, \ldots, q_{8} are in general linear position by [5, Rem. 2.20]), and let $p_{1}, \ldots, p_{8} \in \mathbb{P}^{4}$ be the associated points to $q_{1}, \ldots, q_{8} \in \mathbb{P}^{2}$ (the points p_{1}, \ldots, p_{8} are in general linear position by [5, Lem. 2.19]). Then we set

$$
X=X_{h}=X_{(S, h)}:=\mathrm{Bl}_{p_{1}, \ldots, p_{8}} \mathbb{P}^{4}
$$

We always assume that $q_{1}, \ldots, q_{8} \in \mathbb{P}^{2}$ and $p_{1}, \ldots, p_{8} \in \mathbb{P}^{4}$ are associated as ordered sets of point. Note that since the points q_{1}, \ldots, q_{8} are in general linear position, they are stable by [10, Chapter II, Thm. 1]. This yields an open subset $U_{d P} \subset P_{2}^{8}$. If $\left(p_{1}, \ldots, p_{8}\right) \in a\left(U_{d P}\right)$, then $p_{1}, \ldots, p_{8} \in \mathbb{P}^{4}$ are in general linear position. For general S, the associated X is a blow-up of \mathbb{P}^{4} in 8 general points.

Conversely, let X be a blow-up of \mathbb{P}^{4} in 8 general points. Differently from the case of surfaces, the blow-up map $X \rightarrow \mathbb{P}^{4}$ is unique and thus X determines $p_{1}, \ldots, p_{8} \in \mathbb{P}^{4}$ up to projective equivalence. The 8 points $p_{1}, \ldots, p_{8} \in \mathbb{P}^{4}$ in turn determine $q_{1}, \ldots, q_{8} \in \mathbb{P}^{2}$ up to projective equivalence, and thus a pair (S, h) such that $X \cong X_{(S, h)}$. The pair (S, h) is unique up to isomorphism, therefore S is determined up to isomorphism, and h is determined up to the action of the automorphism group $\operatorname{Aut}(S)$ on cubics.

2.2.2 Notation for the blow-up X of \mathbb{P}^{4} at 8 points

Let $p_{1}, \ldots, p_{8} \in \mathbb{P}^{4}$ be 8 points in general linear position, and set $X:=\mathrm{Bl}_{p_{1}, \ldots, p_{8}} \mathbb{P}^{4}$. We use the following notation:

- $E_{i} \subset X$ is the exceptional divisor over $p_{i} \in \mathbb{P}^{4}$, for $i=1, \ldots, 8$
- $H \in \operatorname{Pic}(X)$ is the pull-back of $\mathcal{O}_{\mathbb{P}^{4}}(1)$
- $L_{i j} \subset X$ is the transform of the line $\overline{p_{i} p_{j}} \subset \mathbb{P}^{4}$, for $1 \leq i<j \leq 8$
- $e_{i} \subset E_{i}$ is a line, for $i=1, \ldots, 8$
- $\gamma_{i} \subset \mathbb{P}^{4}$ is the rational normal quartic through $p_{1}, \ldots, \check{p}_{i}, \ldots, p_{8}$, for $i=1, \ldots, 8$
- $\Gamma_{i} \subset X$ is the transform of $\gamma_{i} \subset \mathbb{P}^{4}$, for $i=1, \ldots, 8$.

2.3 From the blow-up X to the Fano model Y

We recall the explicit relation between X and Y :
Lemma 2.5 [5, Lem. 5.18] The birational map $\xi: X \rightarrow Y$ is the composition of $36(\mathrm{~K}-$ positive) flips: first the flips of $L_{i j}$ for $1 \leq i<j \leq 8$, and then the flips of Γ_{k} for $k=1, \ldots, 8$. There is a commutative diagram:

where $\widehat{X} \rightarrow X$ is the blow-up of the curves $L_{i j}$ and Γ_{k}, with every exceptional divisor isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{2}$ with normal bundle $\mathcal{O}(-1,-1)$, and $\widehat{X} \rightarrow Y$ is the blow-up of 36 pairwise disjoint smooth rational surfaces.

Notation 2.6 We use the following notation:

- $P_{\ell_{i j}} \subset Y$ is the fipped surface replacing $L_{i j} \subset X$, for $1 \leq i<j \leq 8$
- $P_{e_{k}} \subset Y$ is the flipped surface replacing $\Gamma_{k} \subset X$, for $k=1, \ldots, 8$.

We will sometimes write $\xi_{h}: X_{h} \rightarrow Y$ to stress that X_{h} and ξ_{h} depend on the chosen cubic h (while Y does not). Denote by η_{h} the composition map:

2.4 The Bertini involution of S

We recall some basic properties of the Bertini involution of a del Pezzo surface of degree one.

Proposition 2.7 [11, Thm. 8.3.2] Suppose that S is a del Pezzo surface of degree 1. Then
(i) $\left|-K_{S}\right|$ is a pencil of genus 1 curves with smooth general member and one base point;
(ii) $\left|-2 K_{S}\right|$ is base-point-free and defines a morphism $\phi_{\left|-2 K_{S}\right|}: S \rightarrow \mathbb{P}^{3}$ which is finite of degree 2 with image Q a quadric cone.

The Bertini involution $\iota_{S}: S \rightarrow S$ is the biregular involution defined by the double covering

$$
\phi_{\left|-2 K_{S}\right|}: S \rightarrow Q .
$$

For S general, ι_{S} is the unique non-trivial automorphism of S. The pull-back ι_{S}^{*} acts on $\operatorname{Pic}(S)$ (and on $H^{2}(S, \mathbb{R})$) by fixing K_{S} and acting as -1 on K_{S}^{\perp} (see [11, §8.8.2]). This yields:

$$
\begin{equation*}
\iota_{S}^{*} \gamma=2\left(\gamma \cdot K_{S}\right) K_{S}-\gamma \quad \text { for every } \gamma \in H^{2}(S, \mathbb{R}) . \tag{2}
\end{equation*}
$$

The fixed locus of ι_{S} is a smooth irreducible curve of genus 4 isomorphic to the branch curve of the double cover and the base point of $\left|-K_{S}\right|$. The fixed curve belongs to the linear system $\left|-3 K_{S}\right|$.

3 Anticanonical and bianticanonical linear systems of the Fano model Y

Let S be a general degree-one del Pezzo surface, and $Y:=M_{S,-K_{S}}$ be the associated Fano fourfold. To analyse the anticanonical linear system $\left|-K_{Y}\right|$, we introduce a special surface as follows.

Lemma 3.1 [5, Lem. 7.2] Let $p_{1}, \ldots, p_{8} \in \mathbb{P}^{4}$ be general points. Then there is a pencil of elliptic normal quintics in \mathbb{P}^{4} through p_{1}, \ldots, p_{8}, which sweeps out a cubic scroll $W \subset \mathbb{P}^{4}$.

Let moreover $q_{1}, \ldots, q_{8} \in \mathbb{P}^{2}$ be the associated points to $p_{1}, \ldots, p_{8} \in \mathbb{P}^{4}$. Then there is a birational map $\alpha: W \rightarrow \mathbb{P}^{2}$ such that $\alpha\left(p_{i}\right)=q_{i}$ for $i=1, \ldots, 8, \alpha$ sends the pencil of elliptic normal quintics to the pencil of plane cubics through q_{1}, \ldots, q_{8}, and α is the blow-up of the ninth base point $q_{0} \in \mathbb{P}^{2}$ of the pencil of plane cubics.

Remark 3.2 In order to make computations with Macaulay2, we first choose 8 points in \mathbb{P}^{4} and we verify that the 8 chosen points are in general linear position, i.e. every maximal minor of the matrix whose rows are the homogeneous coordinates of the 8 points is non-zero. Then we verify that there is a pencil of elliptic normal quintic curves through the 8 chosen points and they sweep out a cubic scroll in \mathbb{P}^{4} (see Listing 4)). In the rest of the paper, all computations with Macaulay 2 concerning the linear system \mathcal{M} of quintic hypersurfaces with multiplicity at least 3 at 8 general points use these 8 chosen points.

Let $W^{\prime} \subset X$ be the transform of the cubic scroll $W \subset \mathbb{P}^{4}$. By [5, (7.3)], we have the following diagram:

where $\eta: W^{\prime} \rightarrow W$ is the blow-up of p_{1}, \ldots, p_{8}, so the composition $\alpha^{\prime}:=\alpha \circ \eta: W^{\prime} \rightarrow \mathbb{P}^{2}$ is the blow-up of q_{0}, \ldots, q_{8}. Thus W^{\prime} is isomorphic to the blow-up of S in the base point of $\left|-K_{S}\right|$. Hence, there is an elliptic fibration $\pi: W^{\prime} \rightarrow \mathbb{P}^{1}$, where the smooth fibres are the transforms of the elliptic normal quintics through p_{1}, \ldots, p_{8} in \mathbb{P}^{4}, and every fibre is integral.

Lemma 3.3 [5, Lem. 7.4] The surface $W^{\prime} \subset X$ is disjoint from $L_{i j}$ for $1 \leq i<j \leq 8$ and from Γ_{k} for $k=1, \ldots, 8$, and W^{\prime} is contained in the open subset where $\xi: X \rightarrow Y$ is an isomorphism.
We denote by W_{Y} the strict transform of W^{\prime} in Y. Then $W_{Y} \simeq W^{\prime}$.
Lemma 3.4 [5, Lem. 7.5, Lem. 7.7, Rem. 7.10] We have $\left(-K_{X}\right)_{\mid W^{\prime}}=\mathcal{O}_{W^{\prime}}(R+2 F)$ and $R=B s\left|\left(-K_{X}\right)_{\mid W^{\prime}}\right|$, where $F \subset W^{\prime}$ is a fibre of the elliptic fibration, and $R \subset W^{\prime}$ is a (-1)-curve and a section of the elliptic fibration. The curves R and F satisfy $-K_{X} \cdot R=$ $-K_{X} \cdot F=1$ and $E_{i} \cdot R=E_{i} \cdot F=1$ for every $i=1, \ldots, 8$, so $R \equiv F$ in X and $\xi(R) \equiv \xi(F)$ in Y.

Moreover, let $R_{4} \subset \mathbb{P}^{4}$ be the images of R under $\eta: W^{\prime} \subset X \rightarrow W \subset \mathbb{P}^{4}$ (see diagram (3)). Then R_{4} is a smooth rational quintic curve through p_{1}, \ldots, p_{8}

Corollary 3.5 [5, Cor. 7.6] The base locus of $\left|-K_{X}\right|$ contains the smooth rational curve R, and the base locus of $\left|-K_{Y}\right|$ contains the smooth rational curve $\xi(R)$.

We denote by R_{Y} the smooth rational curve $\xi(R)$ contained in the base locus of $\left|-K_{Y}\right|$, and F_{Y} a fibre of the elliptic fibration $W_{Y} \rightarrow \mathbb{P}^{1}$.
Lemma 3.6 The normal bundle $\mathcal{N}_{R_{Y} / Y} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus 2}$.
Proof Since R_{4} is a rational quintic curve in \mathbb{P}^{4}, one has

$$
\mathcal{N}_{R_{4} / \mathbb{P}^{4}} \cong \mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b) \oplus \mathcal{O}_{\mathbb{P}^{1}}(c)
$$

with $a \leq b \leq c$ and $a+b+c=5 \times(4+1)-2=23$ (by [8, first paragraph, p.806]). Since $\left.\mathcal{T}_{\mathbb{P}^{4}}\right|_{R_{4}} \rightarrow \mathcal{N}_{R_{4} / \mathbb{P}^{4}} \rightarrow 0$, one has that $\mathcal{N}_{R_{4} / \mathbb{P}^{4}}$ is ample. Hence, we deduce that $a, b, c>0$.

In order to compute the normal bundle of R_{4} using Macaulay2, we first remark the following: since R_{4} is a smooth rational curve of degree 5 in \mathbb{P}^{4}, we expect that the normal bundle $\mathcal{N}_{R_{4} / \mathbb{P}^{4}}$ splits as equally as possible (see [8, Thm. 2.7]). Since we can measure the positivity of the normal bundle $\mathcal{N}_{R_{4} / \mathbb{P}^{4}}$ more precisely by the twist of its dual bundle, and since $\mathcal{O}_{\mathbb{P}^{4}}(1) \otimes \omega_{R_{4}}^{*} \simeq \mathcal{O}_{\mathbb{P}^{1}}(7)$, we compute $h^{0}\left(R_{4}, \mathcal{N}_{R_{4} / \mathbb{P}^{4}}^{*} \otimes \mathcal{O}_{\mathbb{P}^{4}}(1) \otimes \omega_{R_{4}}^{*}\right)$ using Macaulay 2 (see Listing 2) and we obtain:

$$
h^{0}\left(R_{4}, \mathcal{N}_{R_{4} / \mathbb{P}^{4}}^{*} \otimes \mathcal{O}_{\mathbb{P}^{4}}(1) \otimes \omega_{R_{4}}^{*}\right)=1
$$

i.e. $h^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-a+7) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-b+7) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-c+7)\right)=1$. Together with $0<a \leq b \leq c$, we deduce $a=7$ and $b, c>7$. Hence, $b=c=8$. Therefore, by [17, B.6.10], one has

$$
\mathcal{N}_{R / X} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus 2}
$$

As R is disjoint from the indeterminacy locus of the map ξ_{h}, we deduce

$$
\mathcal{N}_{R_{Y} / Y} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus 2}
$$

Lemma 3.7 The base locus $B s\left|-K_{Y}\right|$ is given by R_{Y}, possibly union some other components contained in $\xi\left(E_{k}\right), P_{e_{k}}$ and $P_{\ell_{i j}}$, for $k=1, \ldots, 8$ and $1 \leq i<j \leq 8$. Moreover, the scheme structure of $B s\left|-K_{Y}\right|$ is generically reduced along R_{Y}.

Proof $\operatorname{In} \mathbb{P}^{4}$, let \mathcal{M} be the linear system of quintic hypersurfaces with multiplicity at least 3 at 8 general points. Then by Macaulay2 (see Listing 1, also [5, Remark 7.8]), the base ideal $\mathfrak{b}(\mathcal{M})$ is the intersection of the ideals of 28 line $\overline{p_{i} p_{j}}$ for $1 \leq i<j \leq 8$, the ideals of 8 rational normal quartic curves γ_{k} for $k=1, \ldots, 8$ and the ideal of the rational quintic curve R_{4} through the 8 points p_{1}, \ldots, p_{8}. Therefore, in the open subset of Y where $\eta_{h}: Y \longrightarrow \mathbb{P}^{4}$ is an isomorphism, the base scheme of $\left|-K_{Y}\right|$ is the reduced curve R_{Y}. Recall that the restriction of $\eta_{Y}^{-1}: \mathbb{P}^{4} \rightarrow Y$ on the curve R_{4} is not an isomorphism exactly at the 8 blow-up points of \mathbb{P}^{4}. Hence the base scheme of $\left|-K_{Y}\right|$ has reduced scheme structure on the curve R_{Y} cut out by the 8 points of intersection with the 8 exceptional divisors $\xi\left(E_{1}\right), \ldots, \xi\left(E_{8}\right)$.

Note that we will see in the proof of Theorem 1.1 that the scheme structure of $\mathrm{Bs}\left|-K_{Y}\right|$ is reduced along the curve R_{Y}. This is achieved by choosing another cubic h^{\prime} on the degree-one del Pezzo surface S and by considering another map $\eta_{h^{\prime}}: Y \rightarrow \mathbb{P}^{4}$ with different exceptional divisors, so that we get 8 different points of intersection on the curve R_{Y}.

Lemma 3.8 The base locus of the anticanonical system $\left|-K_{Y}\right|$ is disjoint from the surfaces $P_{\ell_{i j}}$ and $P_{e_{k}}$, for $1 \leq i<j \leq 8$ and $k=1, \ldots, 8$.

Proof Consider the commutative diagram in Lemma 2.5:

where $p: \hat{X} \rightarrow X$ is the blow-up of X along the curves $L_{i j}$ and Γ_{k} with every exceptional divisor isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{2}$, and $q: \hat{X} \rightarrow Y$ is the blow-up of 36 pairwise disjoint smooth rational surfaces $P_{\ell_{i j}}$ and $P_{e_{k}}$, for $1 \leq i<j \leq 8$ and $k=1, \ldots, 8$.

Suppose by contradiction that there exists a base point y of $\left|-K_{Y}\right|$ contained in some flipped surface that we denote by P (which is one of the surfaces $P_{\ell_{i j}}$ or $P_{e_{k}}$). Denote by $C \subset X$ the corresponding flipping curve (which is one of the curves $L_{i j}$ or Γ_{k}).

Let E be the sum of exceptional divisors over $L_{i j}$ for $1 \leq i<j \leq 8$ and over Γ_{k} for $k=1, \ldots, 8$. Since

$$
p^{*}\left(-K_{X}\right)-2 E=-K_{\hat{X}}=q^{*}\left(-K_{Y}\right)-E,
$$

one has

$$
q^{*}\left(-K_{Y}\right)=p^{*}\left(-K_{X}\right)-E .
$$

Let $E_{y} \simeq \mathbb{P}^{1}$ be the exceptional fibre in \hat{X} above y. Then E_{y} is contained in $\mathrm{Bs}\left|q^{*}\left(-K_{Y}\right)\right|=$ $\mathrm{Bs}\left|p^{*}\left(-K_{X}\right)-E\right|$. Moreover, since E_{y} is the fibre of $\left.q\right|_{E_{P}}: E_{P} \rightarrow P$, where $E_{P} \simeq$ $\mathbb{P}^{1} \times \mathbb{P}^{2} \subset \hat{X}$ is the exceptional divisor over P with $p: E_{P} \rightarrow C$, we obtain that $E_{y} \subset E_{P}$ is mapped surjectively onto C by the map p.

Since the blow-up of the 8 points $X=\mathrm{Bl}_{p_{1}, \ldots, p_{8}} \rightarrow \mathbb{P}^{4}$ is an isomorphism near a general point of C, the base scheme of $\left|-K_{X}\right|$ is generically reduced along C by Lemma 3.7. Hence, the linear system $\left|p^{*}\left(-K_{X}\right)-E\right|$ is base-point-free above the generic point of C. This contradicts the fact that $\mathrm{Bs}\left|p^{*}\left(-K_{X}\right)-E\right|$ contains a curve which is mapped surjectively onto C.

Remark 3.9 More generally, the proof of Lemma 3.8 shows the following. Let X, Y be smooth projective fourfolds. Let $\xi: X \rightarrow Y$ be an anti-flip. In [23, Thm. 1.1], Kawamata showed that for smooth projective fourfolds, there exists only one type of flip and it is obtained by blowing up a \mathbb{P}^{2} with normal bundle $\mathcal{O}_{\mathbb{P}^{2}}(-1)^{\oplus 2}$ (the exceptional locus of the blowing up is $\mathbb{P}^{2} \times \mathbb{P}^{1}$) and blowing down this $\mathbb{P}^{2} \times \mathbb{P}^{1}$ to \mathbb{P}^{1}. Thus ξ (anti-)flips a smooth curve $C \subset X$ to a smooth surface $P \subset Y$. If $\mathrm{Bs}\left|-K_{X}\right|$ is reduced in the generic point of C, then $\left|-K_{Y}\right|$ is base-point-free on P.

Corollary 3.10 The curve R_{Y} is the unique base curve in $B s\left|-K_{Y}\right|$ of anticanonical degree 1. Therefore, R_{Y} is independent of the choice of cubic h.

Proof By Lemmas 3.7 and 3.8, it suffices to consider the curves contained in some exceptional divisor $\xi\left(E_{i}\right)$, for $i=1, \ldots, 8$, which are the possible base curve in $\mathrm{Bs}\left|-K_{Y}\right|$ other than R_{Y}.

Let $C \subset \mathrm{Bs}\left|-K_{Y}\right|$ be a base curve contained in some exceptional divisor $\xi\left(E_{i}\right)$, for $i=1, \ldots, 8$. Let \tilde{C} be its strict transform in X. By Lemma 3.8, the curve C is disjoint from the indeterminacy locus of ξ^{-1}. Hence, one has $-K_{Y} \cdot C=-K_{X} \cdot \tilde{C}$ and $\tilde{C} \subset E_{i}$.

Since $-K_{X}=5 H-3 \sum_{j=1}^{8} E_{j}, H \cdot \tilde{C}=0, E_{j} \cdot \tilde{C}=0$ for $j \neq i$, and $E_{i} \cdot \tilde{C} \leq-1$, one has

$$
-K_{Y} \cdot C=-K_{X} \cdot \tilde{C} \geq 3
$$

Therefore, the curve R_{Y} is the unique base curve satisfying $-K_{Y} \cdot R_{Y}=-K_{X} \cdot R=1$.
Corollary 3.11 Let $B \subset Y$ be an irreducible component of $B s\left|-K_{Y}\right|$ with reduced scheme structure, which is distinct from R_{Y}. Then for every simplicial facet $\left\langle E_{C_{1}}, \ldots, E_{C_{8}}\right\rangle$ of $\operatorname{Eff}(Y)$ (notation as in Notation 2.1 and Proposition 2.2), there exists a unique $E_{C_{i}}$ for $i=1, \ldots, 8$ such that $B \subset E_{i}$.

Proof Given a cubic h, consider the simplicial facet $\left\langle E_{C_{1}}, \ldots, E_{C_{8}}\right\rangle$ of $\operatorname{Eff}(Y)$, where $C_{i} \sim$ $h-e_{i}$ for $i=1, \ldots, 8$ (notation as in Notation 2.1). Then $E_{C_{i}}$ are the strict transforms of the exceptional divisors $E_{i} \simeq \mathbb{P}^{3} \subset X_{h}=X$ under $\xi_{h}=\xi: X \rightarrow Y$.

Since B is distinct from R_{Y}, we deduce that B is contained in some fixed divisor $E_{C_{i}}$ by Lemmas 3.7 and 3.8. By the construction of the composition of flips ξ (see Lemma 2.5), the intersection of two fixed divisors $E_{C_{j}}$ and $E_{C_{k}}$ (for $k \neq j$) is the union of the flipped surfaces $P_{\ell_{j k}}$ and $P_{e_{l}}$ for $l \neq j, k$. Hence, by Lemma 3.8, the fixed divisor E_{i} containing B is unique.

Proof of Theorem 1.1 We first show that R_{Y} is the unique irreducible component of the (settheoretic) base locus of $\left|-K_{Y}\right|$.

Let h be a cubic. Let C_{i} be a conic such that $C_{i} \sim h-e_{i}$ for $i=1, \ldots, 8$ (notation as in Notation 2.1). Let $E_{i}:=E_{C_{i}}$, where we use the notation of Proposition 2.2. By the same proposition, E_{1}, \ldots, E_{8} generate a simplicial facet of $\operatorname{Eff}(Y)$. Suppose by contradiction that there exists another component B distinct from R_{Y} of the base locus of $\left|-K_{Y}\right|$. Then by Corollary 3.11 , we may suppose that $B \subset E_{1}$ and $B \not \subset E_{2}, E_{3}, \ldots, E_{8}$.

Let i, j, k, l be distinct indices in $\{1, \ldots, 8\}$. Consider the conics C_{l}^{\prime} such that $C_{l}^{\prime} \sim$ $2 h-e_{i}-e_{j}-e_{k}-e_{l}$ and the corresponding fixed divisors $F_{i j k l}:=E_{2 h-e_{i}-e_{j}-e_{k}-e_{l}}$.

Claim. The fixed divisors E_{i}, E_{j}, E_{k} and $F_{i j k l}$ for $l \in\{1, \ldots, 8\}$ distinct from i, j, k generate a simplicial facet of $\operatorname{Eff}(Y)$.

Indeed, by Proposition 2.2, it is enough to find a cubic h^{\prime} such that $2 h^{\prime}+K_{S}$ is orthogonal to the 8 conics C_{i}, C_{j}, C_{k} and C_{l}^{\prime} for $l \in\{1, \ldots, 8\}$ distinct from i, j, k.

We take $h^{\prime} \sim 2 h-e_{i}-e_{j}-e_{k}$. Then we can check that

$$
\begin{aligned}
C_{i} & \sim h^{\prime}-\ell_{j k}, \\
C_{j} & \sim h^{\prime}-\ell_{i k}, \\
C_{k} & \sim h^{\prime}-\ell_{i j}, \\
C_{l}^{\prime} & \sim h^{\prime}-e_{l},
\end{aligned}
$$

and $2 h^{\prime}+K_{S}$ is orthogonal to the above 8 conics. Moreover, h^{\prime} is nef and big, and the corresponding birational map $\sigma_{h^{\prime}}: S \rightarrow \mathbb{P}^{2}$ contracts the 8 pairwise disjoint (-1)-curves $\ell_{j k}, \ell_{i k}, \ell_{i j}, e_{l}$ for $l \neq i, j, k$. Hence, h^{\prime} is a cubic. This proves the claim.

We will repeatedly use Corollary 3.11 in the following.

- Consider the simplicial facet generated by $E_{1}, E_{2}, E_{3}, F_{1234}, F_{1235}, F_{1236}, F_{1237}, F_{1238}$. Then $B \not \subset F_{1234}, F_{1235}, F_{1236}, F_{1237}, F_{1238}$.
- Consider the simplicial facet generated by $E_{2}, E_{3}, E_{4}, F_{1234}, F_{2345}, F_{2346}, F_{2347}, F_{2348}$. Then B is contained in one of the fixed divisors $F_{2345}, F_{2346}, F_{2347}, F_{2348}$. We may suppose that $B \subset F_{2345}$. Then $B \not \subset F_{2346}, F_{2347}, F_{2348}$.
- Consider the simplicial facet generated by $E_{2}, E_{3}, E_{5}, F_{1235}, F_{2345}, F_{2356}, F_{2357}, F_{2358}$. Then $B \not \subset F_{2356}, F_{2357}, F_{2358}$.
- Consider the simplicial facet generated by $E_{2}, E_{3}, E_{6}, F_{1236}, F_{2346}, F_{2356}, F_{2367}, F_{2368}$. Then by what precedes, we know that B is contained in one of the fixed divisors F_{2367}, F_{2368}. We may suppose that $B \subset F_{2367}$. Then $B \not \subset F_{2368}$.
- Consider the simplicial facet generated by $E_{2}, E_{3}, E_{7}, F_{1237}, F_{2347}, F_{2357}, F_{2367}, F_{2378}$. Then $B \not \subset F_{2378}$.
- Finally, consider the simplicial facet generated by $E_{2}, E_{3}, E_{8}, F_{1238}, F_{2348}, F_{2358}, F_{2368}$, F_{2378}. Then by what precedes, we know that B is contained in none of these 8 fixed divisors, which contradicts Corollary 3.11.

Therefore, the curve R_{Y} is the unique irreducible component of the base locus of $\left|-K_{Y}\right|$.
Now we show that the base scheme of $\left|-K_{Y}\right|$ is the reduced curve R_{Y}, i.e. there are no embedded points. Indeed, given a cubic h, consider the birational map $\eta_{h}: Y \rightarrow \mathbb{P}^{4}$. By Lemmas 3.7 and 3.8, the base scheme of $\left|-K_{Y}\right|$ is the reduced curve R_{Y} with possible embedded points which have support in the 8 points of intersection with the 8 exceptional divisors of η_{h}. By varying h, we may consider another map $\eta_{h^{\prime}}: Y \rightarrow \mathbb{P}^{4}$ with other 8 exceptional divisors, so that we get 8 different points of intersection on R_{Y}. Such a cubic h^{\prime} exists because otherwise, there is a base point y on R_{Y} such that for every simplicial facet $\left\langle E_{C_{1}}, \ldots, E_{C_{8}}\right\rangle$ of $\operatorname{Eff}(Y)$ the point y is contained in a unique $E_{C_{i}}$, and thus we obtain a contradiction by replacing B with y in the above paragraph. Hence, there is no embedded base point on R_{Y}.

Proof of Corollary 1.2 Since the base scheme $\mathrm{Bs}\left|-K_{Y}\right|$ is the smooth curve R_{Y} by Proposition 1.1, we can apply [25, Prop. 6.8] which implies that a general member in $\left|-K_{Y}\right|$ is smooth.

In the rest of this section, we collect some auxiliary results which will be used in Sect. 4.
Lemma 3.12 For a general point $x \in R_{4}$ (notation as in Lemma 3.4), there exists a unique divisor in \mathcal{M} which has multiplicity 3 at x : it is the secant variety of the elliptic normal quintic through the nine points p_{1}, \ldots, p_{8} and x.

By varying x on R_{4}, one obtains a one-dimensional family Sec of divisors in \mathcal{M} with scheme-theoretic intersection BsSec defined by the ideal $\mathfrak{b}(S e c)$. Then

$$
(\mathfrak{b}(S e c): \mathfrak{b}(\mathcal{M})): \mathfrak{I}_{W}=\mathfrak{I}_{W}
$$

where the scheme defined by the ideal \mathfrak{I}_{W} is the reduced surface W.
Proof We choose a random point x on R_{4} which is not one of the 8 blown up points. The choice of such a random point is achieved by using the random function in Macaulay 2 to generate a random hyperplane in \mathbb{P}^{4} and intersect the hyperplane with the curve R_{4} to obtain a point. Let $\mathcal{M}_{x, 3}$ be the linear subspace of divisors in \mathcal{M} having multiplicity at least 3 at the point x. Then $\operatorname{dim} \mathcal{M}_{x, 3}=0$ by Macaulay2 (see Listing 3) and thus the unique element in $\mathcal{M}_{x, 3}$ is the secant variety $\operatorname{Sec}\left(E_{x}\right)$, where E_{x} is the elliptic normal quintic in W passing through the point x and the 8 blown up points.

Let Sec be the family of secant varieties $\operatorname{Sec}\left(E_{x}\right)$ for x varying on R_{4} and $\mathfrak{b}(\operatorname{Sec})$ be the ideal associated to the scheme-theoretic intersection BsSec of the family Sec. Let $\mathfrak{b}_{3}(S e c)$ be the ideal associated to the scheme-theoretic intersection of three general secant varieties in Sec (obtained by choosing three distinct random points on R_{4} and intersecting the corresponding secant varieties).

By Macaulay2 (see Listing 4), the quotient $\mathfrak{I}_{S}:=\left(\mathfrak{b}_{3}(\operatorname{Sec}): \mathfrak{b}(\mathcal{M})\right)$ has degree 6 and dimension 2 . Let \mathfrak{I}_{W} be the ideal of singular locus of the variety defined by \mathfrak{I}_{S}. Then by Macaulay2 (see Listing 4), \mathfrak{I}_{W} has dimension 2 and degree 3; moreover, the variety defined by \mathfrak{I}_{W} is smooth and one has $\left(\mathfrak{I}_{S}: \mathfrak{I}_{W}\right)=\mathfrak{I}_{W}$. Since each of these secant varieties in Sec contains the cubic scroll W, we deduce that the variety defined by \mathfrak{I}_{W} is indeed the surface W.

Let \mathcal{M}_{W} be the sub-linear system of effective divisors in \mathcal{M} containing the surface W. By Macaulay2 (see Listing 5), the base ideal $\mathfrak{b}\left(\mathcal{M}_{W}\right)$ is equal to $\mathfrak{b}_{3}(S e c)$. Since $S e c$ is a family of divisors in \mathcal{M}_{W}, we deduce that $\mathfrak{b}_{3}(S e c)=\mathfrak{b}(S e c)=\mathfrak{b}\left(\mathcal{M}_{W}\right)$.

Lemma 3.13 The surface W_{Y} is unique, i.e. W_{Y} is independent of the choice of cubic h. Therefore, W_{Y} is disjoint from every one of the loci P_{ℓ} of the small extremal rays of Y.

Proof Let Sec_{Y} be the family of the strict transforms in Y of the secant varieties in Sec. Let $\mathcal{M}_{Y, 3}$ be the family of divisors in $\left|-K_{Y}\right|$ having multiplicity 3 at some point on R_{Y}. Then the two families $\mathcal{M}_{Y, 3}$ and $S e c_{Y}$ are equal, as $\operatorname{dim} \mathcal{M}_{x, 3}=0$ for a general point $x \in R_{4}$ by Lemma 3.12 and η_{h} is an isomorphism at the generic point of R_{4}.

Suppose by contradiction that W_{Y} depends on h. Then there exist two distinct surfaces $W_{Y, h}$ and $W_{Y, h^{\prime}}$. Let Bs $\mathcal{M}_{Y, 3}$ be the scheme-theoretic intersection of the family $\mathcal{M}_{Y, 3}$. Then by Lemma 3.12, one has the following set-theoretic inclusion:

$$
\operatorname{Bs} M_{Y, 3} \supset W_{Y, h} \cup W_{Y, h^{\prime}} .
$$

Since $W_{Y, h^{\prime}}$ contains the curve R_{Y} which is generically in the locus where $\xi_{h}^{-1}: Y \rightarrow X_{h}$ is an isomorphism, we deduce that $W_{Y, h^{\prime}}$ is not contracted by ξ_{h}^{-1}.

Since the surface $\xi_{h}^{-1}\left(W_{Y, h^{\prime}}\right)$ contains the curve R, this surface cannot be contained in any exceptional locus $E_{i}, i=1, \ldots, 8$ of $X_{h} \rightarrow \mathbb{P}^{4}$, and thus it cannot be contracted; we denote by $W_{h^{\prime}}$ its image in \mathbb{P}^{4}. Therefore, BsSec contains two distinct surfaces W and $W_{h^{\prime}}$, which contradicts Lemma 3.12.

Since by Lemma 3.3 the surface W_{Y} is disjoint from the indeterminacy locus of the map $\xi_{h}^{-1}: Y \longrightarrow X_{h}$, which is a union of some of the loci P_{ℓ} (depending on h), and W_{Y} is the same for all h, we deduce that W_{Y} is disjoint from every one of the loci P_{ℓ}.

Lemma 3.14 (i) We have $h^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-K_{Y}\right)\right)=3$. The restriction

$$
r_{1}: H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right) \rightarrow H^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-K_{Y}\right)\right)
$$

is surjective.
(ii) We have $h^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-2 K_{Y}\right)\right)=8$. The restriction

$$
r_{2}: H^{0}\left(Y, \mathcal{O}_{Y}\left(-2 K_{Y}\right)\right) \rightarrow H^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-2 K_{Y}\right)\right)
$$

is surjective.
Proof Since $-K_{W_{Y}} \sim F_{Y}$ and $-\left.K_{Y}\right|_{W_{Y}} \sim R_{Y}+2 F_{Y}$ by Lemma 3.4, by the Riemann-Roch formula one has $\chi\left(W_{Y},-\left.K_{Y}\right|_{W_{Y}}\right)=3$. Since $-\left.K_{Y}\right|_{W_{Y}}$ is ample on W_{Y} and $-K_{W_{Y}}$ is nef, by Kodaira vanishing theorem one has

$$
h^{j}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-K_{Y}\right)\right)=h^{j}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(K_{W_{Y}}-K_{W_{Y}}+\left(-K_{Y}\right)\right)\right)=0
$$

for $j=1,2$. Therefore, $h^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-K_{Y}\right)\right)=3$. The same argument can be applied to obtain $h^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-2 K_{Y}\right)\right)=8$.
(i) By Macaulay2 (see Listing 5),

$$
h^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(5) \otimes \mathcal{I}_{p_{1}, \ldots, p_{8}}^{3} \otimes \mathcal{I}_{W}\right)=3 .
$$

Since $H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right) \simeq H^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(5) \otimes \mathcal{I}_{p_{1}, \ldots, p_{8}}^{3}\right)$, and the surface W_{Y} is disjoint from the indeterminacy locus of η_{h} by Lemma 3.3 and W_{Y} is not contained in the exceptional locus of η_{h}, we deduce

$$
H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right) \otimes \mathcal{I}_{W_{Y}}\right) \simeq H^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(5) \otimes \mathcal{I}_{p_{1}, \ldots, p_{8}}^{3} \otimes \mathcal{I}_{W}\right)
$$

Hence,

$$
h^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right) \otimes \mathcal{I}_{W_{Y}}\right)=3 .
$$

As $h^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)=6$ and $h^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-K_{Y}\right)\right)=3$, we deduce that the restriction morphism

$$
H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right) \rightarrow H^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-K_{Y}\right)\right)
$$

is surjective.
(ii) By Macaulay2 (see Listing 7),

$$
h^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(10) \otimes \mathcal{I}_{p_{1}, \ldots, p_{8}}^{6} \otimes \mathcal{I}_{W}\right)=21
$$

Since $H^{0}\left(Y, \mathcal{O}_{Y}\left(-2 K_{Y}\right)\right) \simeq H^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(10) \otimes \mathcal{I}_{p_{1}, \ldots, p_{8}}^{6}\right)$ and by the same argument as above, we deduce

$$
H^{0}\left(Y, \mathcal{O}_{Y}\left(-2 K_{Y}\right) \otimes \mathcal{I}_{W_{Y}}\right) \simeq H^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(10) \otimes \mathcal{I}_{p_{1}, \ldots, p_{8}}^{6} \otimes \mathcal{I}_{W}\right)
$$

Hence,

$$
h^{0}\left(Y, \mathcal{O}_{Y}\left(-2 K_{Y}\right) \otimes \mathcal{I}_{W_{Y}}\right)=21 .
$$

As $h^{0}\left(Y, \mathcal{O}_{Y}\left(-2 K_{Y}\right)\right)=29$ and $h^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-2 K_{Y}\right)\right)=8$, we deduce that the restriction morphism

$$
H^{0}\left(Y, \mathcal{O}_{Y}\left(-2 K_{Y}\right)\right) \rightarrow H^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-2 K_{Y}\right)\right)
$$

is surjective.

4 The Bertini involution of the Fano model Y

Let S be a degree-one del Pezzo surface, and $Y:=M_{S,-K_{S}}$ be the associated Fano fourfold. In this section, we study the action of the Bertini involution ι_{Y} on the Fano fourfold Y, which is analogous to the action of the Bertini involution ι_{S} on the surface S. We first notice that by the diagram (1) and the behaviour of ι_{S} described in (2), the invariant part of $H^{2}(Y, \mathbb{R})$ by the action of ι_{Y} is $\mathbb{R} K_{Y}$.

4.1 Action of the Bertini involution on the surface W_{Y}

In this subsection, we further our study of the involution ι_{Y} by looking at its action on the surface W_{Y} (which is the strict transform of the cubic scroll swept out by the pencil of elliptic normal quintics in \mathbb{P}^{4}). The aim of this subsection is to prove Proposition 1.4.

We start by showing that the surface W_{Y} is invariant by the Bertini involution ι_{Y}.
Lemma 4.1 The Bertini involution ι_{Y} preserves the curve R_{Y} and the surface W_{Y}. Moreover, $\left(\left.\iota_{Y}\right|_{W_{Y}}\right)^{*}\left(e_{i}\right) \sim-\left.2 K_{Y}\right|_{W_{Y}}-e_{i}$ and $\left(\left.\iota_{Y}\right|_{W_{Y}}\right)^{*}\left(F_{Y}\right) \sim F_{Y}$, where e_{i} is the exceptional curve of $\left.\eta_{h}\right|_{W_{Y}}: W_{Y} \rightarrow W$ for $i=1, \ldots, 8$.

Proof Since ι_{Y} preserves the family of divisors in the anticanonical system $\left|-K_{Y}\right|$, the involution ι_{Y} preserves the base locus of $\left|-K_{Y}\right|$. Thus $\iota_{Y}\left(R_{Y}\right)=R_{Y}$ by Proposition 1.1.

Let x be a general point in R_{Y}. Then by Lemma 3.12, there exists a unique divisor in $\left|-K_{Y}\right|$ having multiplicity 3 at x : it is the strict transform in Y of the secant variety of the elliptic normal quintic through p_{1}, \ldots, p_{8} and $\eta_{h}(x)$ in \mathbb{P}^{4}. In particular, this divisor has multiplicity 3 along the elliptic fibre of W_{Y} through x. By varying x in R_{Y}, this gives a one-dimensional family $\mathcal{M}_{Y, 3}$ of divisors in $\left|-K_{Y}\right|$, which is preserved by ι_{Y}. On the other
hand, the intersection of these divisors is the surface W_{Y}, so W_{Y} is preserved by ι_{Y}. Let $D_{1} \in M_{Y, 3}$ and $D_{2}=\iota_{Y}\left(D_{1}\right) \in M_{Y, 3}$. Let F_{1} (resp. F_{2}) be the elliptic fibre of W_{Y} along which D_{1} (resp. D_{2}) has multiplicity 3 . Then $\iota_{Y}\left(F_{1}\right)=F_{2}$, and thus ι_{Y} preserves the family of elliptic fibres of W_{Y}, i.e. $\left(\left.\iota_{Y}\right|_{W_{Y}}\right)^{*}\left(F_{Y}\right) \sim F_{Y}$.

By [5, 7.12], one has $\iota_{Y}^{*}\left(\xi\left(E_{i}\right)\right) \sim-2 K_{Y}-\xi\left(E_{i}\right)$. Hence, $\left(\left.\iota_{Y}\right|_{W_{Y}}\right)^{*}\left(e_{i}\right) \sim-\left.2 K_{Y}\right|_{W_{Y}}-e_{i}$.

Now we investigate the morphism defined by the linear system $\left|-2 K_{Y}\right|_{W_{Y}} \mid$.
Proposition 4.2 The linear system $\left|-2 K_{Y}\right|_{W_{Y}} \mid$ defines a finite morphism $\phi: W_{Y} \rightarrow V \subset \mathbb{P}^{7}$ of degree 2, where $V=V_{2,4} \simeq \mathbb{F}_{2}$ is a rational normal scroll of bidegree $(2,4)$. There is a non-trivial involution i of W_{Y} such that $\phi=\phi \circ i$. Moreover, i is the identity on R_{Y} and i induces an involution on each elliptic fibre of W_{Y}.

Proof Since $h^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-2 K_{Y}\right)\right)=8$ (see Lemma 3.14), and $\left|-2 K_{Y}\right|$ is base-point-free by Theorem 2.4, the linear system $\left|-2 K_{Y}\right|_{W_{Y}} \mid$ defines a morphism $\phi: W_{Y} \rightarrow V \subset \mathbb{P}^{7}$, where V is the image of W_{Y}.
Claim. V is a surface of degree 6 in \mathbb{P}^{7}, the image of an elliptic fibre F_{Y} by ϕ is a line and the image of R_{Y} by ϕ is a conic.

Since the restriction morphism $H^{0}\left(Y, \mathcal{O}_{Y}\left(-2 K_{Y}\right)\right) \rightarrow H^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-2 K_{Y}\right)\right)$ is surjective by Lemma 3.14 (ii), the restriction of the morphism $\phi_{\left|-2 K_{Y}\right|}$ defined by $\left|-2 K_{Y}\right|$ to the surface W_{Y} coincides with the morphism ϕ, i.e. $\phi=\phi_{\left|-2 K_{Y}\right|} \mid W_{Y}$.

In \mathbb{P}^{4}, let $2 \mathcal{M}$ be the linear system of hypersurfaces of degree 10 with multiplicity at least 6 at the 8 general points p_{1}, \ldots, p_{8}. Consider the map $\phi_{2 \mathcal{M}}$ defined by the linear system $2 \mathcal{M}$. Then by Macaulay 2 (see Listing 8), the image of the surface W by $\phi_{2 \mathcal{M}}$ is a surface of degree 6 , the image of an elliptic normal quintic through the 8 points by $\phi_{2 \mathcal{M}}$ is a line and the image of the rational quintic R_{4} through the 8 points by $\phi_{2 \mathcal{M}}$ is a conic. This proves the claim.

Since $\left(-\left.2 K_{Y}\right|_{W_{Y}}\right)^{2}=4\left(R_{Y}+2 F_{Y}\right)^{2}=12$, and the image of W_{Y} by ϕ is of degree 6 , we deduce that ϕ is of degree 2 . As $-K_{Y}$ is ample, the morphism ϕ does not contract any curve and thus it is a finite morphism of degree 2.

Since the linear system $\left|-2 K_{Y}\right|_{W_{Y}} \mid$ has no fixed divisor, the image V is not contained in any hyperplane of \mathbb{P}^{7} (see for example [2, II.6]), i.e. V is non-degenerate. Hence, V is a non-degenerate irreducible surface of degree 6 (variety of minimal degree) in \mathbb{P}^{7}, and by [18, p. 525] we deduce that V is a rational normal scroll $V_{k, l}$ of bidegree (k, l), with $0 \leq k \leq l$ and $k+l=6$. In particular, V is isomorphic to one of the following: a cone over a rational normal curve of degree $6, \mathbb{P}^{1} \times \mathbb{P}^{1}$, or a Hirzebruch surface \mathbb{F}_{l-k}, where the minimal section is mapped to the rational normal curve of degree k, and the fibres are mapped to lines. Therefore, ϕ is a finite morphism between two normal surfaces and by [14, (2.3)], there is a non-trivial involution i of W_{Y} such that $\phi=\phi \circ i$ and $V \simeq W_{Y} / i$.

Since the restriction of ϕ to a general fibre F_{Y} induces a finite morphism from an elliptic curve to a line $l \subset V$, which cannot be an isomorphism, we deduce that $\phi^{-1}(l)=F_{Y}$ as ϕ is of degree 2. Hence, i induces an involution on F_{Y}.

Since $-\left.2 K_{Y}\right|_{W_{Y}}$ is i-invariant, one has $2\left(i^{*}\left(-\left.K_{Y}\right|_{W_{Y}}\right)-\left(-\left.K_{Y}\right|_{W_{Y}}\right)\right) \sim 0$. As $\operatorname{Pic}\left(W_{Y}\right)$ is torsion-free (this is because W_{Y} is isomorphic to \mathbb{P}^{2} blown up at 9 points), we deduce that $i^{*}\left(-\left.K_{Y}\right|_{W_{Y}}\right) \sim-\left.K_{Y}\right|_{W_{Y}}$. Since R_{Y} is the base locus of $\left|-K_{Y}\right|_{W_{Y}} \mid$, the curve R_{Y} is preserved by i. We claim that R_{Y} is contained in the ramification locus of ϕ. Indeed, suppose that R_{Y} is not contained in the ramification locus of ϕ. Then there exists a curve $C \subset V$ such that $R_{Y}=\phi^{*}(C)$. As R_{Y} is a (-1)-curve on W_{Y}, one has

$$
-1=R_{Y}^{2}=\left(\phi^{*}(C)\right)^{2}=\operatorname{deg} \phi \cdot C^{2},
$$

i.e. $C^{2}=-\frac{1}{2}$. Hence, C is not Cartier on V, i.e. V is singular. In view of the classification of minimal degree varieties, we see that V is a cone. But there is no curve with negative self-intersection number on a cone, which leads to a contradiction. Therefore, R_{Y} is in the ramification locus. As ϕ is a double cover, we deduce that i is the identity on R_{Y}.

Let $C=\phi\left(R_{Y}\right)$. Since R_{Y} is contained in the ramification locus of ϕ, and every point in R_{Y} has ramification index 2, one has

$$
R_{Y}^{2}=\left(\frac{1}{2} \phi^{*}(C)\right)^{2}=\frac{1}{2} C^{2} .
$$

Since R_{Y} is a (-1)-curve on W_{Y}, one has $C^{2}=-2$. Therefore, $V=V_{2,4} \simeq \mathbb{F}_{2}$, and $\phi\left(R_{Y}\right)$ is minimal section of \mathbb{F}_{2} which is a conic.

Remark 4.3 Since ϕ is a finite morphism of degree 2 between smooth surfaces, the ramification locus is a smooth divisor on W_{Y} (see [14, (2.5)]). Let e be the minimal section of $V \simeq \mathbb{F}_{2}$ and f be a fibre of V. Let D be the ramification divisor. Then

$$
K_{W_{Y}} \sim \phi^{*}\left(K_{S}\right)+D .
$$

As $K_{W_{Y}} \sim-F_{Y}=-\phi^{*}(f)$, and $K_{S} \sim-2 e-4 f$, one has

$$
D \sim \phi^{*}(2 e+3 f)
$$

Let $B \subset V$ be the branch locus. Then $D=\frac{1}{2} \phi^{*} B$ and thus $B \sim 4 e+6 f$. As e is contained in the branch locus, we can write $B=e+B_{1}$, where B_{1} is a smooth curve disjoint from e. Then $B_{1} \sim 3 e+6 f$. Notice that B_{1} is irreducible. Indeed, suppose that B_{1} has at least two disjoint irreducible components. Then we can decompose B_{1} as

$$
B_{1} \sim(e+b f)+(2 e+(6-b) f)
$$

with $0 \leq b \leq 6$ and $(e+b f) \cdot(2 e+(6-b) f)=0$. Hence $b=-2$, which leads to a contradiction.

Hence $D=R_{Y}+R^{\prime}$, where $R^{\prime} \sim \frac{1}{2} \phi^{*}(3 e+6 f)=3\left(R_{Y}+F_{Y}\right)$ is a smooth curve of genus 4 which is disjoint from R_{Y}.

Remark 4.4 By Macaulay2 (see Listing 13), the bianticanonical morphism $\phi_{\left|-2 K_{Y}\right|}$ has generically degree 1 , even though its restriction $\phi:=\left.\phi_{\left|-2 K_{Y}\right|}\right|_{W_{Y}}: W_{Y} \rightarrow V \subset \mathbb{P}^{7}$ to the surface W_{Y} has degree 2 .

Finally, we compare the action of the two automorphisms i and $\left.\iota_{Y}\right|_{W_{Y}}$ on W_{Y}.
Lemma 4.5 Let e_{i} be the exceptional curves of $\left.\eta_{h}\right|_{W_{Y}}: W_{Y} \rightarrow W$ for $i=1, \ldots, 8$. Then

$$
i^{*}\left(e_{i}\right) \sim-\left.2 K_{Y}\right|_{W_{Y}}-e_{i} .
$$

Proof For $i=1, \ldots, 8$, by Macaulay2 (see Listing 9), there exists a unique hypersurface of degree 10 with multiplicity at least 7 at the point p_{i} and multiplicity at least 6 at p_{j} for $j \neq i$. Moreover, this hypersurface does not contain the surface W. Therefore, the linear system $\left|-2 K_{Y}\right| W_{Y}-e_{i} \mid$ is non-empty.

Let $R_{i} \in\left|-2 K_{Y}\right|_{W_{Y}}-e_{i} \mid$. Since $-\left.K_{Y}\right|_{W_{Y}} \sim R_{Y}+2 F_{Y}$, and $R_{Y} \cdot e_{i}=F_{Y} \cdot e_{i}=1$, one has $R_{i}^{2}=-1$, and $R_{i} \cdot F_{Y}=R_{i} \cdot R_{Y}=1$. Hence, R_{i} is a (-1)-curve on W_{Y}.

Since $e_{i}+R_{i} \in\left|-2 K_{Y}\right|_{W_{Y}}\left|=\phi^{*}\right| \mathcal{O}_{V}(1) \mid$, one has $R_{i} \sim i^{*}\left(e_{i}\right)$.
Proposition 4.6 The involution i coincides with the restriction of the Bertini involution ι_{Y} on the surface W_{Y}, i.e. $\left.\iota_{Y}\right|_{W_{Y}}=i$.

Proof We first show that $\left(\left.\iota_{Y}\right|_{W_{Y}}\right)^{*}=i^{*}$. By Lemma 4.2, Lemma 4.5 and Lemma 4.1, it is enough to show that R_{Y}, F_{Y} and e_{i} for $i=1, \ldots, 8$ form a basis of $H^{2}\left(W_{Y}, \mathbb{R}\right)$.

Since W^{\prime} is disjoint from the indeterminacy locus of ξ_{h}, it is equivalent to show that R, F and e_{i} for $i=1, \ldots, 8$ form a basis of $H^{2}\left(W^{\prime}, \mathbb{R}\right)$. We have the following diagram (see (3)):

where α is the blow-up of \mathbb{P}^{2} at one point and η is the blow-up of W at p_{1}, \ldots, p_{8}. Moreover, let $e_{0} \subset W$ be the (-1)-curve and $f_{0} \subset W$ be a fibre of the \mathbb{P}^{1}-bundle on W, then by Lemma 3.1 and Lemma 3.4, one has $F \sim \eta^{*}\left(2 e_{0}+3 f_{0}\right)-\sum_{i=1}^{8} e_{i}$ and $R \sim \eta^{*}\left(e_{0}+4 f_{0}\right)-$ $\sum_{i=1}^{8} e_{i}$. Therefore, R, F and e_{i} for $i=1, \ldots, 8$ form a basis of $H^{2}\left(W^{\prime}, \mathbb{R}\right)$.

We have a group homomorphism $\rho_{1}: \operatorname{Aut}\left(W_{Y}\right) \rightarrow \operatorname{Aut}\left(H^{2}\left(W_{Y}, \mathbb{R}\right)\right)$ given by $g \mapsto$ $\left(g^{-1}\right)^{*}$. Let $\operatorname{Aut}\left(R_{Y}, W_{Y}\right)$ be the subgroup of automorphisms in $\operatorname{Aut}\left(W_{Y}\right)$ fixing the curve R_{Y}. We show that the restriction $\rho_{1}: \operatorname{Aut}\left(R_{Y}, W_{Y}\right) \rightarrow \operatorname{Aut}\left(H^{2}\left(W_{Y}, \mathbb{R}\right)\right)$ is injective, which implies $\left.\iota_{Y}\right|_{W_{Y}}=i$ since $\left(\left.\iota_{Y}\right|_{W_{Y}}\right)^{*}=i^{*}$.

Since R_{Y} is a (-1 -curve on W_{Y}, by blowing down R_{Y}, we obtain a rational surface S^{\prime} with $\left(-K_{S^{\prime}}\right)^{2}=1$, and the curve R_{Y} is contracted to a point $x_{0} \in S^{\prime}$. We denote by $\beta: W_{Y} \rightarrow S^{\prime}$ the blow-up of S^{\prime} at x_{0}. Since $-K_{W_{Y}}$ is nef, we obtain that $-K_{S^{\prime}}$ is nef by the projection formula (see for example [19, Appendix A, A4]). Moreover, since every fibre of $W_{Y} \rightarrow \mathbb{P}^{1}$ is integral, there is no $K_{S^{\prime}}$-trivial curve. Hence, S^{\prime} is a del Pezzo surface of degree one. By [11, Prop. 8.2.39], the homomorphism $\rho_{2}: \operatorname{Aut}\left(S^{\prime}\right) \rightarrow \operatorname{Aut} H^{2}\left(S^{\prime}, \mathbb{R}\right)$ is injective.

Let $\operatorname{Aut}\left(x_{0}, S^{\prime}\right)$ be the subgroup of automorphisms in $\operatorname{Aut}\left(S^{\prime}\right)$ fixing the point x_{0}. Then $\operatorname{Aut}\left(x_{0}, S^{\prime}\right) \simeq \operatorname{Aut}\left(R_{Y}, W_{Y}\right)$. Since $\operatorname{Pic}\left(W_{Y}\right) \simeq \beta^{*} \operatorname{Pic}\left(S^{\prime}\right) \oplus \mathbb{Z}\left[R_{Y}\right]$, the image $\rho_{1}\left(\operatorname{Aut}\left(R_{Y}, W_{Y}\right)\right)$ is contained in a subgroup G_{1} of $\operatorname{Aut}\left(H^{2}\left(W_{Y}, \mathbb{R}\right)\right)$ such that $G_{1} \simeq$ $\operatorname{Aut}\left(H^{2}\left(S^{\prime}, \mathbb{R}\right)\right)$. Hence, we have the following diagram:

Since ρ_{2} is injective, the restriction $\rho_{1}: \operatorname{Aut}\left(R_{Y}, W_{Y}\right) \rightarrow G_{1} \subset \operatorname{Aut}\left(H^{2}\left(W_{Y}, \mathbb{R}\right)\right)$ is injective.

Proof of Proposition 1.4 The first paragraph follows from Lemma 4.1, Proposition 4.2 and Proposition 4.6. The second paragraph follows from Remark 4.3.

4.2 Action of the Bertini involution on the anticanonical system

In this subsection, we study the action of the involution ι_{Y} on the anticanonical system $\left|-K_{Y}\right|$. This is closely related to the anticanonical map of $Y=M_{S,-K_{S}}$.

Lemma 4.7 Let $\mu: \tilde{Y} \rightarrow Y$ be the blow-up of Y along the curve R_{Y} which is the base scheme of $\left|-K_{Y}\right|$. Let E be the exceptional divisor and \tilde{D} be the strict transform of a general member $D \in\left|-K_{Y}\right|$. Then $|\tilde{D}|=\left|\mu^{*}\left(-K_{Y}\right)-E\right|$ is base-point-free and induces a morphism
$f: \tilde{Y} \rightarrow \mathbb{P}\left(H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)^{\vee}\right) \simeq \mathbb{P}^{5}$ with image Q a smooth quadric hypersurface, and f has generically degree 4 . We have the following commutative diagram:

The following statements hold:
(i) The Bertini involution ι_{Y} can be lifted to an involution $\iota_{\tilde{Y}}$ of \tilde{Y}, which preserves the exceptional divisor E and induces an involution on each \mathbb{P}^{2} above a point of R_{Y}.
(ii) The Bertini involution ι_{Y} induces a regular involution $\iota_{\mathbb{P}^{5}}$ of \mathbb{P}^{5}, which preserves the quadric hypersurface Q. Denote by ι_{Q} its restriction on Q. Then $\iota_{Q} \circ f=f \circ \iota_{\tilde{Y}}$.
Proof In \mathbb{P}^{4}, let \mathcal{M} be the linear system of quintic hypersurfaces with multiplicity at least 3 at 8 general points. Then by Macaulay2 (see Listing 10), the image of \mathbb{P}^{4} by the map defined by \mathcal{M} is a smooth quadric hypersurface Q in \mathbb{P}^{5}.

Let E be the exceptional divisor of f. Since

$$
\begin{gathered}
\mu^{*}\left(-K_{Y}\right)^{4}=\left(-K_{Y}\right)^{4}=13, \\
\mu^{*}\left(-K_{Y}\right) \cdot E^{3}=-K_{Y} \cdot R_{Y}=1, \\
\mu^{*}\left(-K_{Y}\right)^{3} \cdot E=\mu^{*}\left(-K_{Y}\right)^{2} \cdot E^{2}=0, \\
E^{4}=-K_{Y} \cdot R_{Y}+2 g\left(R_{Y}\right)-2=-1,
\end{gathered}
$$

one has $\widetilde{D}^{4}=8$. Hence $\phi_{\left|-K_{Y}\right|}$ (and also f) has generically degree 4 .
(i) Follows from the fact that R_{Y} is contained in the fixed locus of ι_{Y} (see Proposition 1.4).
(ii) The pull-back ι_{Y}^{*} induces an involution on $H^{0}\left(-K_{Y}, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)$, and thus an involution of $\mathbb{P}\left(H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)^{\vee}\right) \simeq \mathbb{P}^{5}$ preserving $\phi_{\left|-K_{Y}\right|}(Y)=Q$.
Let $s \in H^{0}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}(\tilde{D})\right)$ be a global section which is zero at the point $\iota_{\tilde{Y}}(x)$, where x is a point in \tilde{Y}. Then for $s^{\prime}:=l_{\tilde{Y}}^{*}(s) \in H^{0}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}\left(l_{\tilde{Y}}^{*} \tilde{D}\right)\right) \simeq H^{0}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}(\tilde{D})\right)$, one has

$$
s^{\prime}(x)=\left(\iota_{\tilde{Y}}^{*}(s)\right)(x)=s\left(\iota_{\tilde{Y}}(x)\right)=0 .
$$

Hence,

$$
\begin{array}{r}
\phi_{|\tilde{D}|}\left(l_{\tilde{Y}}(x)\right)=\left\{s \in H^{0}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}(\tilde{D})\right) \mid s\left(l_{\tilde{Y}}(x)\right)=0\right\}, \\
\phi_{\left|l_{\tilde{Y}}^{*} \tilde{D}\right|}(x)=\left\{s^{\prime} \in H^{0}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}\left(l_{\tilde{Y}}^{*} \tilde{D}\right)\right) \mid s^{\prime}(x)=0\right\} .
\end{array}
$$

Therefore, we obtain the following commutative diagram:

Thus, $\iota_{Q} \circ f=f \circ \iota_{\tilde{Y}}$.

Remark 4.8 The following statements are equivalent:
(a) The Bertini involution ι_{Y} preserves every divisor in $\left|-K_{Y}\right|$.
(b) The action $\iota_{Y}^{*}: H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right) \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)$ is Id or -Id .
(c) The involution $\iota_{\mathbb{P}^{5}}$ of \mathbb{P}^{5} (resp. ι_{Q} of Q) is the identity.

Recall that we have a special surface $W_{Y} \subset Y$ containing R_{Y}, which is an elliptic fibration $W_{Y} \rightarrow \mathbb{P}^{1}$ with fibre F_{Y}. With the same notation as in Lemma 4.7, we describe the image of W_{Y} in $Q \subset \mathbb{P}^{5}$.
Lemma 4.9 Every elliptic fibre F_{Y} (resp. its strict transform $\tilde{F}_{Y} \subset \tilde{Y}$) is contracted by $\phi_{\left|-K_{Y}\right|}$ (resp. by f). Moreover, the image of the surface W_{Y} (resp. its strict transform $\tilde{W}_{Y} \subset \tilde{Y}$) is a conic C in $Q \subset \mathbb{P}^{5}$.

Furthermore, the curve $\tilde{R}_{Y}:=\tilde{W}_{Y} \cap E$ is contained in the fixed locus of $\iota_{\tilde{Y}}$, and the conic C is contained in the fixed locus of ${ }^{\bullet} Q$.

Proof Since $-K_{Y} \cdot F_{Y}=1$, one has $\tilde{D} \cdot \tilde{F}_{Y}=0$, where \tilde{D} is the strict transform of a general member $D \in\left|-K_{Y}\right|$. Hence f contracts the elliptic fibres of \tilde{W}_{Y} and $f\left(\tilde{W}_{Y}\right)$ is a curve.

As $-\left.K_{Y}\right|_{W_{Y}}=R_{Y}+2 F_{Y}$, one has $\left.\tilde{D}\right|_{\tilde{W}_{Y}}=\left.\left(\mu^{*}\left(-K_{Y}\right)-E\right)\right|_{\tilde{W}_{Y}}=2 \tilde{F}_{Y}$. Moreover, since \tilde{D} is the pullback by f of a hyperplane in \mathbb{P}^{5} and \tilde{W}_{Y} is contracted by f to a curve in \mathbb{P}^{5}, we deduce that the curve $f\left(\tilde{W}_{Y}\right)$ has degree 2, i.e. the morphism f sends \tilde{W}_{Y} to a conic in \mathbb{P}^{5}.

By Lemma 4.7 (i), $\iota_{\tilde{Y}}$ induces an involution on each fibre \mathbb{P}^{2} of $\left.\mu\right|_{E}: E \rightarrow R_{Y}$. Since W_{Y} is preserved by ι_{Y} by Proposition 1.4, its transform $\tilde{W}_{Y} \subset \tilde{Y}$ is also preserved by $\iota_{\tilde{Y}}$. Therefore, the curve $\tilde{R}_{Y}:=\tilde{W}_{Y} \cap E$ (which is a section of $\left.\mu\right|_{E}$) is invariant. Since R_{Y} is in the fixed locus of ι_{Y} by Proposition 1.4, it follows that \tilde{R}_{Y} is contained in the fixed locus of $\iota_{\tilde{Y}}$. By Lemma 4.7 (ii), $f\left(\tilde{R}_{Y}\right)=f\left(\tilde{W}_{Y}\right)=C$ is contained in the fixed locus of ι_{Q}.

The rest of this subsection is devoted to the proofs of Theorems 1.3 and 1.5. To show that ι_{Y} preserves every divisor in $\left|-K_{Y}\right|$, our strategy is to exclude the other remaining case by analysing the anticanonical map.

Lemma 4.10 If the action ι_{Y}^{*} on $H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)$ is not \pm Id, then

$$
H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)=V_{1} \oplus V_{2},
$$

where V_{1} is the sub-vector space of global sections vanishing on the surface W_{Y}, and V_{2} is uniquely determined as eigenspace corresponding to the eigenvalue 1 or -1 of ι_{Y}^{*}, with $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}=3$. More precisely, ι_{Y}^{*} acts as Id or $-I d$ on V_{i} for $i=1,2$.

Proof In \mathbb{P}^{4}, let \mathcal{M} be the linear system of quintic hypersurfaces with multiplicity at least 3 at 8 general points. Let \mathcal{M}_{W} be the sub-linear system of effective divisors in \mathcal{M} containing the surface W. By Macaulay2 (see Listing 5), one has $\mathfrak{b}\left(\mathcal{M}_{W}\right)=\mathfrak{b}($ Sec $)$ (see Lemma 3.12 for notation) for the base ideals. Moreover, if v_{1}, v_{2} and v_{3} form a basis of $H^{0}\left(\mathbb{P}^{4}, \mathcal{I}_{W} \otimes\right.$ $\left.\mathcal{O}_{\mathbb{P}^{4}}(5) \otimes \mathcal{I}_{p_{1}, \ldots, p_{8}}^{3}\right) \simeq \mathbb{C}^{3}$, and if we pick three scalars λ_{1}, λ_{2} and λ_{3} generated by the random function in Macaulay2, then the effective divisor in \mathcal{M}_{W} defined by the global section $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{3} v_{3}$ is singular along two elliptic normal quintic curves E_{p}, E_{q} through the 8 blown up points (by Macaulay2, see Listing 6); note that the two elliptic curves may coincide, in which case the divisor has multiplicity at least 3 along this elliptic curve, and in fact the divisor is the secant variety of the elliptic curve. Moreover, there exists a unique divisor in \mathcal{M}_{W} which is singular along E_{p} and E_{q}, as $H^{0}\left(\mathbb{P}^{4}, \mathcal{I}_{W} \otimes \mathcal{O}_{\mathbb{P}^{4}}(5) \otimes \mathcal{I}_{p_{1}, \ldots, p_{8}}^{3}\right) \simeq$ $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right) \simeq \mathbb{C}^{3}$.

Let $V_{1} \subset H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)$ be the sub-vector space of global sections vanishing on the surface W_{Y}. Let $\left|V_{1}\right|$ be the corresponding sub-linear system (i.e. the linear system of effective divisors in $\left|-K_{Y}\right|$ containing the surface W_{Y}). Then ι_{Y} preserves the family of divisors in $\left|V_{1}\right|$, as ι_{Y} preserves the surface W_{Y} by Proposition 1.4. Since W_{Y} is disjoint from the indeterminacy locus of the map $\eta_{h}: Y \rightarrow \mathbb{P}^{4}$, and the intersection of W_{Y} with the exceptional locus of η_{h} is the union of 8 points, we deduce that a general member in $\left|V_{1}\right|$ is singular along two elliptic fibres $F_{Y, 1}, F_{Y, 2}$ of W_{Y}, and there exists a unique divisor in $\left|V_{1}\right|$ which is singular along $F_{Y, 1}$ and $F_{Y, 2}$. Since ι_{Y} preserves every elliptic fibre F_{Y} of W_{Y} (see Proposition 1.4), we deduce that ι_{Y} preserves every divisor in $\left|V_{1}\right|$, i.e. the action of ι_{Y}^{*} on V_{1} is Id or -Id .

By Lemma 3.14(i), we have the following short exact sequence:

$$
0 \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right) \otimes \mathcal{I}_{W_{Y}}\right) \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right) \xrightarrow{r_{1}} H^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-K_{Y}\right)\right) \rightarrow 0
$$

Hence, $H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)=V_{1} \oplus V_{2}$ with $V_{1} \simeq \operatorname{Kerr}_{1}$ and $V_{2} \simeq \operatorname{Im} r_{1}$.
By Proposition 1.4, every elliptic fibre F_{Y} is preserved by ι_{Y} and R_{Y} is fixed by ι_{Y}. Since $-\left.K_{Y}\right|_{W_{Y}}=2 F_{Y}+R_{Y}$, we deduce that ι_{Y} preserves every divisor in $\left|-K_{Y}\right|_{W_{Y}}$. Thus the action of $\left(\left.\iota_{Y}\right|_{W_{Y}}\right)^{*}$ on $H^{0}\left(W_{Y}, \mathcal{O}_{W_{Y}}\left(-K_{Y}\right)\right)$ is Id or -Id . As ι_{Y}^{*} is not $\pm \mathrm{Id}$ on $H^{0}\left(Y, \mathcal{O}_{Y}\left(-K_{Y}\right)\right)$, we deduce that V_{2} can be uniquely determined as the eigenspace corresponding to the eigenvalue 1 or -1 of ι_{Y}^{*}.

Let $\left\{s_{11}, s_{12}, s_{13}\right\}$ (resp. $\left\{s_{21}, s_{22}, s_{23}\right\}$) be a basis of V_{1} (resp. of V_{2}). Suppose that ι_{Q} is not the identity. Then for $y \in Y \backslash R_{Y}$, one has

$$
\begin{equation*}
\iota_{Q}\left(\phi_{\left|-K_{Y}\right|}(y)\right)=\left[s_{11}(y): s_{12}(y): s_{13}(y):-s_{21}(y):-s_{22}(y):-s_{23}(y)\right] \tag{5}
\end{equation*}
$$

by Lemma 4.10. Moreover, if y is a fixed point of ι_{Y}, then by Lemma 4.7 (ii), $\phi_{\left|-K_{Y}\right|}(y)$ is fixed by ι_{Q}. Thus by (5), one has $s_{11}(y)=s_{12}(y)=s_{13}(y)=0$ or $s_{21}(y)=s_{22}(y)=s_{23}(y)=0$, i.e. $y \in \mathrm{Bs}\left|V_{1}\right|$ or $y \in \mathrm{Bs}\left|V_{2}\right|$.

Now for $i=1,2$, let $\widetilde{V}_{i} \subset H^{0}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}\left(\mu^{*}\left(-K_{Y}\right)-E\right)\right)$ be the sub-vector space of global sections which are the linear spans of $\tilde{s}_{i j}$ with $j=1,2,3$, where $\tilde{s}_{i j}$ is the strict transform of the global section $s_{i j} \in V_{i}$. Hence, if a point $y \in \tilde{Y}$ is fixed by $\iota_{\tilde{Y}}$, then by repeating the argument in above paragraph, we obtain $y \in \operatorname{Bs}\left|\tilde{V}_{1}\right|$ or $y \in \operatorname{Bs}\left|\tilde{V}_{2}\right|$. To summarise, we have the following corollary.
Corollary 4.11 Suppose that ${ }^{\bullet} Q$ is not the identity. If a point $y \in \tilde{Y}$ is fixed by $\iota_{\tilde{Y}}$, then $y \in B s\left|\widetilde{V}_{1}\right|$ or $y \in B s\left|\widetilde{V}_{2}\right|$.

Recall that we have the normal bundle $\mathcal{N}_{R_{Y} / Y} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus 2}$ by Lemma 3.6. Hence $E=\mathbb{P}\left(\mathcal{N}_{R_{Y} / Y}^{*}\right) \simeq \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus 2}\right)$. Denote by ξ a tautological divisor associated to $\mathcal{O}_{\mathbb{P}\left(\mathcal{N}_{R_{Y} / Y}^{*}\right)}(1)$, and F_{E} a fibre of the projection $E=\mathbb{P}\left(\mathcal{N}_{R_{Y} / Y}^{*}\right) \rightarrow R_{Y} \simeq \mathbb{P}^{1}$. Let l be an exceptional curve of μ and γ be the curve which generates the other extremal ray Γ of $\mathrm{NE}(E)$ such that $-K_{E} \cdot \gamma$ is the length of Γ. Then

$$
\begin{array}{r}
F_{E} \cdot l=0, \quad F_{E} \cdot \gamma=1, \\
\xi \cdot l=1, \quad \xi \cdot \gamma=0 .
\end{array}
$$

Moreover, $\tilde{R}_{Y} \sim l+\gamma$.
With the same notation as in Lemma 4.7, we may describe the image $f(E)$ as follows.
Remark 4.12 The exceptional divisor E is isomorphic to the blow-up B of \mathbb{P}^{3} at a line (and B is embedded in $\mathbb{P}^{1} \times \mathbb{P}^{3}$ with bidegree $(1,1)$).

Let $\tilde{D} \subset \tilde{Y}$ be the strict transform of a general member $D \in\left|-K_{Y}\right|$. Then $\left(\left.\tilde{D}\right|_{E}\right)^{3}=4$, hence $\left.\tilde{D}\right|_{E} \sim \xi+F_{E}$ is very ample, with $h^{0}\left(E, \mathcal{O}_{E}(\tilde{D})\right)=7$. Thus the corresponding linear system embeds B in \mathbb{P}^{6} as a hyperplane section of the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{3}$ in \mathbb{P}^{7}, and B has degree 4. Hence, $\left.f\right|_{E}$ is given by the projection of B from a point x outside B in \mathbb{P}^{6} (in fact, it is given by a sub-linear system of $|\tilde{D}|$ of dimension 5 , which is still base-point-free).

If the point x is general, then the projection is birational and the image has degree 4 in \mathbb{P}^{5}. There could be special point x such that the projection has degree 2 , and the image is a 3-dimensional quadric in \mathbb{P}^{5}. In any case, the image of a fibre F_{E} is a plane in \mathbb{P}^{5}.

Lemma 4.13 Suppose that ι_{Q} is not the identity. Then $\left.\iota_{\tilde{Y}}\right|_{E}$ is not the identity, and the following statements hold:
(i) The fixed locus of $\left.\iota_{\tilde{Y}}\right|_{E}$ is the disjoint union $S_{E} \cup C_{2}$, where $S_{E}=B s\left|\tilde{V}_{1}\right| \cap E$ is the unique member in $\left|\xi-F_{E}\right|$ isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$, and $C_{2}=B s\left|\tilde{V}_{2}\right| \cap E$ is a curve satisfying $C_{2} \sim l+\gamma$ which is mapped surjectively to R_{Y}.
(ii) The fixed locus of $\iota_{\mathbb{P} 5}$ is two disjoint planes $\mathbb{P}_{1}^{2} \cup \mathbb{P}_{2}^{2}$ such that $f\left(S_{E}\right)=\mathbb{P}_{1}^{2}$ and that $f\left(C_{2}\right)$ is a conic contained in \mathbb{P}_{2}^{2}. Furthermore, $f(E)$ is a 3-dimensional quadric in \mathbb{P}^{5}.

Proof Suppose by contradiction that $\left.\tau_{\tilde{Y}}\right|_{E}$ is the identity. Then by Corollary 4.11, one has $E \subset \mathrm{Bs}\left|\widetilde{V}_{1}\right|$ or $E \subset \mathrm{Bs}\left|\widetilde{V}_{2}\right|$. Since $\left|\widetilde{V}_{i}\right| \subset\left|\mu^{*}\left(-K_{Y}\right)-E\right|$ for $i=1,2$, this contradicts the fact that there is no divisor in $\left|-K_{Y}\right|$ having multiplicity at least 2 along R_{Y} by Macaulay 2 (see Listing 11).
(i) Since $\left.\iota_{\tilde{Y}}\right|_{E}$ is not the identity and $\left.\iota_{Y}\right|_{R_{Y}}$ is the identity, we have that $\left.\iota_{\tilde{Y}}\right|_{F_{E}}$ is not the identity. Thus $\left.\iota_{\tilde{Y}}\right|_{F_{E}}$ is a non-trivial involution on $F_{E} \simeq \mathbb{P}^{2}$, and we obtain that the fixed locus of $\left.\iota_{\tilde{Y}}\right|_{F_{E}}$ is the disjoint union of a point and a line (which correspond respectively to the two non-empty eigenspaces of the involution $\left.\tilde{\sim}_{\tilde{Y}}\right|_{F_{E}} \in \mathrm{PGL}_{2}(\mathbb{C})$).

We first describe the base locus of $\left|\widetilde{V}_{1}\right|$. Since by Macaulay2 (see Listing 5), one has $\mathfrak{b}\left(\mathcal{M}_{W}\right)=\mathfrak{b}($ Sec $)$ (see Lemma 3.12 for notation) for the base ideals. Thus the base locus of $\left|V_{1}\right|$ contains the surface W_{Y} with multiplicity 2 by Lemma 3.12. Therefore, the base locus of $\left|\tilde{V}_{1}\right|$ contains the strict transform $\tilde{W}_{Y} \subset \tilde{Y}$. Moreover, since a general member in $\left|V_{1}\right|$ is singular along two elliptic fibres of W_{Y}, a local computation shows that every member in $\left|\widetilde{V}_{1}\right|$ contains two fibres F_{E} above the two points on R_{Y} where it is singular. As $\left.\tilde{D}\right|_{E} \sim \xi+F_{E}$, we deduce that the unique member $S_{E} \in\left|\xi-F_{E}\right|$ is contained in the base locus of $\left|\widetilde{V}_{1}\right|$. Therefore, $\mathrm{Bs}\left|\widetilde{V}_{1}\right| \cap E=S_{E} \simeq \mathbb{P}^{1} \times \mathbb{P}_{\tilde{V}}^{1}$, and $S_{E} \cap \tilde{W}_{Y}=E \cap \tilde{W}_{Y}=\tilde{R}_{Y}$.

Now we describe the base locus of $\left|\tilde{V}_{2}\right|$. Since $\left|\mu^{*}\left(-K_{Y}\right)-E\right|$ is base-point-free, $\mathrm{Bs}\left|\tilde{V}_{2}\right|$ is disjoint from the surface S_{E}. Let D_{2} be a general member in $\left|V_{2}\right|$. Since D_{2} does not contain the surface W_{Y}, and $\left.D_{2}\right|_{W_{Y}}=R_{Y}+2 F_{Y}$, we deduce that the intersection of the singular locus $\operatorname{Sing} D_{2}$ with the curve R_{Y} contains at most one point (which is a singularity of multiplicity two). Hence a general member in $\left|\widetilde{V}_{2}\right|$ contains at most one fibre F_{E} of $E \rightarrow R_{Y}$.
Claim. Bs $\left|\widetilde{V}_{2}\right| \cap E$ has dimension at most one.
Suppose that there is a surface $S_{2} \subset \mathrm{Bs}\left|\tilde{V}_{2}\right| \cap E$. Since $\left.\tilde{D}\right|_{E} \sim \xi+F_{E}$, one has $S_{2} \in|\xi|$ or $S_{2} \in\left|\xi+F_{E}\right|$. As $\xi \cdot \tilde{R}_{Y}=F_{E} \cdot \tilde{R}_{Y}=1$, one has $S_{2} \cdot \tilde{R}_{Y}>0$, which contradicts the fact that S_{2} is disjoint from S_{E}. This proves the claim.

Note that $\mathrm{Bs}\left|\widetilde{V}_{2}\right| \cap E$ has dimension one. This is because the fixed locus of $\iota_{\tilde{Y}} \mid F_{E}$ is the disjoint union of a point and a line, and Bs $\left|\widetilde{V}_{1}\right| \cap F_{E}$ is a line. Thus by Corollary 4.11, the fixed point disjoint from the fixed line is contained in $\mathrm{Bs}\left|\widetilde{V}_{2}\right| \cap F_{E}$. Therefore, $\mathrm{Bs}\left|\widetilde{V}_{2}\right| \cap E$ is a curve which is mapped surjectively to R_{Y}.

Denote by C_{2} the curve $\mathrm{Bs}\left|\widetilde{V}_{2}\right| \cap E$. Since C_{2} is disjoint from $S_{E} \in\left|\xi-F_{E}\right|$, one has $\left(\xi-F_{E}\right) \cdot C_{2}=0$ and thus $C_{2} \sim m(\gamma+l)$ with $m \geq 1$. As $\left(\left.\tilde{D}\right|_{E}\right)^{2} \sim(\xi+F)^{2} \sim \gamma+3 l$,
we deduce that $C_{2} \sim \gamma+l$. Hence C_{2} is an irreducible curve which is mapped surjectively to R_{Y}.
(ii) Since ι_{Q} is not the identity (i.e. $\iota_{\mathbb{P}^{5}}$ is not the identity), the fixed locus of $\iota_{\mathbb{P}^{5}}$ is the union of two disjoint sub-linear spaces $\mathbb{P}^{i} \cup \mathbb{P}^{j}$ with $i+j=4$, which correspond respectively to the two eigenspaces of the involution $\iota_{\mathbb{P}^{5}} \in \mathrm{PGL}_{5}(\mathbb{C})$. Therefore, the fixed locus of $\iota_{\mathbb{P}^{5}}$ is two disjoint planes \mathbb{P}_{1}^{2} and \mathbb{P}_{2}^{2} by the equation (5).

By Remark 4.12, $f\left(S_{E}\right)$ has dimension 2. Hence, $f\left(S_{E}\right) \subset Q$ is one of the two planes \mathbb{P}_{1}^{2} and \mathbb{P}_{2}^{2} contained in the fixed locus of $\iota_{\mathbb{P}^{5}}$. We may denote $f\left(S_{E}\right)=\mathbb{P}_{1}^{2}$. Following the discussion in Remark 4.12, we now describe the map $\left.f\right|_{S_{E}}$: the restricted linear system $\left.|\tilde{D}|_{E}\right|_{S_{E}}$ embeds the surface S_{E} in \mathbb{P}^{3} as the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{3}, and the image S_{E}^{\prime} has degree 2 . Hence, $\left.f\right|_{S_{E}}$ is given by the projection of S_{E}^{\prime} from a point outside S_{E}^{\prime} in \mathbb{P}^{3}. The projection has degree 2 and the image is the plane \mathbb{P}_{1}^{2}. Note that in Remark 4.12 , the projection of B from a point x outside B in \mathbb{P}^{6} cannot be birational, as the projection of $S_{E}^{\prime} \subset B$ from the point x in $\mathbb{P}^{3} \subset \mathbb{P}^{6}$ has degree 2 . Therefore, $f(E)$ is a 3-dimensional quadric in \mathbb{P}^{5}.

Since $\tilde{D} \cdot C_{2}=\left(\xi+F_{E}\right) \cdot(\gamma+l)=2$, the image $f\left(C_{2}\right)$ is a conic. As $f\left(C_{2}\right)$ is disjoint from $f\left(S_{E}\right)$, we deduce that $f\left(C_{2}\right)$ is contained in \mathbb{P}_{2}^{2}.

Corollary 4.14 The involution ι_{Q} is the identity, and thus the Bertini involution ι_{Y} preserves every divisor in $\left|-K_{Y}\right|$ and f factors through the quotient $\tilde{Y} / \iota_{\tilde{Y}}$ via the lifted involution $\iota_{\tilde{Y}}$.

Proof Suppose by contradiction that ι_{Q} is not the identity. We use the notation as in Lemma 4.13.

Since the restricted linear system $\left.|\tilde{D}|_{E}\right|_{S_{E}}$ embeds the surface S_{E} in \mathbb{P}^{3} as the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{3} with image S_{E}^{\prime} a quadric surface, the map $\left.f\right|_{S_{E}}$ is given by the projection of S_{E}^{\prime} from a point outside S_{E}^{\prime} in \mathbb{P}^{3}. The projection has degree 2 , and $f\left(S_{E}\right)=\mathbb{P}_{1}^{2}$ by Lemma 4.13. Therefore, $\left.f\right|_{S_{E}}: S_{E} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}_{1}^{2}$ is a double cover branched over a non-singular conic Δ in \mathbb{P}_{1}^{2}; moreover, the image of any line on S_{E} is a tangent line to Δ, and conversely the preimage of each tangent line on Δ is two lines on S_{E}, one from each ruling.

Let $D \in\left|{\underset{\sim}{D}}_{1}\right|$ be a general member and $\tilde{D} \in\left|\tilde{V}_{1}\right|$ be its strict transform. Then by Lemma 4.13, $\tilde{D} \cap E$ contains the surface S_{E} and two distinct \mathbb{P}^{2} (denoted by $F_{E_{1}}$ and $F_{E_{2}}$) above the two points on R_{Y} where D is singular. Thus $f(\tilde{D})$ contains $f\left(F_{E_{1}}\right)=: \Pi_{1}$ and $f\left(F_{E_{2}}\right)=: \Pi_{2}$ which are two planes in \mathbb{P}^{5} by Remark 4.12. Moreover, Π_{1} and Π_{2} are distinct. This is because $F_{E_{1}} \cap S_{E}$ and $F_{E_{2}} \cap S_{E}$ are two distinct lines of a same ruling of $S_{E} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$, and thus their images in $\mathbb{P}_{1}^{2}=f\left(S_{E}\right)$ are two distinct tangent lines to Δ by the above discussion. Therefore, $f(\tilde{D}) \cap f(E)$ contains three distinct planes $\mathbb{P}_{1}^{2}, \Pi_{1}, \Pi_{2}$. This contradicts the fact that $f(\tilde{D})$ is a hyperplane in \mathbb{P}^{5} and $f(E)$ is a 3-dimensional quadric in \mathbb{P}^{5} (so that their intersection is a surface of degree 2 in \mathbb{P}^{5}).

Therefore, ι_{Q} is the identity. By Lemma 4.7 (ii), one has $f=f \circ \iota_{\tilde{Y}}$. Thus f factors through the quotient $\tilde{Y} / \iota_{\tilde{Y}}$.

Corollary 4.15 The morphism $\left.f\right|_{E}: E \rightarrow f(E)$ is birational, and $f(E)$ has degree 4 in \mathbb{P}^{5}. Moreover, the restricted involution $\left.\iota_{\tilde{Y}}\right|_{E}$ is the identity.

Proof By Remark 4.12, either $\left.f\right|_{E}$ has degree 2 and the image is a 3-dimensional quadric in \mathbb{P}^{5}, or $\left.f\right|_{E}$ is finite birational and the image has degree 4 in \mathbb{P}^{5}. We will show that the first case cannot happen.

Suppose that $\left.f\right|_{E}$ has degree 2 and $f(E)$ is a 3-dimensional quadric in \mathbb{P}^{5}. We will follow the same argument as in the proof of Corollary 4.14. By Lemma 4.13 (with the same notation),
for a general member $D \in\left|V_{1}\right|$, its strict transform $\tilde{D} \in\left|\widetilde{V}_{1}\right|$ contains the surface $S_{E} \subset E$. Moreover, \tilde{D} contains the two distinct fibres (denoted by $F_{E_{1}}$ and $F_{E_{2}}$) of $\left.\mu\right|_{E}: E \rightarrow R_{Y}$ above the two points on R_{Y} where D is singular. Hence, $f(\tilde{D}) \cap f(E)$ contains the surface $f\left(S_{E}\right)$ and the two planes $f\left(F_{E_{1}}\right), f\left(F_{E_{2}}\right)$ (which may coincide).
(a) If $\left.f\right|_{S_{E}}$ has degree 2 , then the same argument as in the proof of Corollary 4.14 shows that $f\left(S_{E}\right), f\left(F_{E_{1}}\right), f\left(F_{E_{2}}\right)$ are 3 distinct planes.
(b) If $\left.f\right|_{S_{E}}$ has degree 1, then $f\left(S_{E}\right)$ is either a non-normal surface or isomorphic to $S_{E} \simeq$ $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Thus $f\left(S_{E}\right)$ has degree at least 2 in \mathbb{P}^{5}.
This contradicts the fact that $f(\tilde{D}) \cap f(E)$ is a surface of degree 2 in \mathbb{P}^{5}. Therefore, $\left.f\right|_{E}$ is finite birational and $f(E)$ has degree 4 in \mathbb{P}^{5}.

Now suppose that $\left.\iota_{\tilde{Y}}\right|_{E}$ is not the identity. Since $\left.f\right|_{E}=\left.\left.f\right|_{E} \circ \iota_{\tilde{Y}}\right|_{E}$ by Corollary 4.14, we deduce that $\left.f\right|_{E}$ has degree 2, which leads to a contradiction.

Proof of Theorem 1.3 Follows from Corollary 4.14.
Proof of Theorem 1.5 Follows from Lemmas 4.7, 4.9, and Corollaries 4.14, 4.15.
Lemma 4.16 With notation from Theorem 1.5, the fixed locus of $\iota_{\tilde{Y}}$ is $E \cup$ Res, where Res has dimension at most 2 and its intersection with every \tilde{P}_{ℓ} is non-empty and zero-dimensional, where $\tilde{P}_{\ell} \subset \tilde{Y}$ is the strict transform of P_{ℓ} (see notation in Proposition 2.3).

Proof Let $P_{\ell} \simeq \mathbb{P}^{2}$ be the exceptional locus of a small extremal contraction of Y. Then $\iota_{Y}\left(P_{\ell}\right)=P_{l_{S}^{*}(\ell)}$ is also the exceptional locus of some small extremal contraction of Y and P_{ℓ} intersects $\iota_{Y}\left(P_{\ell}\right)$ transversally at 3 points by [5, Rem. 2.15 (c), Lem. 6.4]. Therefore, the intersection of P_{ℓ} with the fixed locus of ι_{Y} is non-empty and zero-dimensional.

As $R_{Y} \subset W_{Y}$ is disjoint from any P_{ℓ} by Lemma 3.13, we deduce that E is disjoint from any \tilde{P}_{ℓ}. Therefore, $\operatorname{Res} \cap \tilde{P}_{\ell}$ is non-empty and zero-dimensional; hence so is $\mu(\operatorname{Res}) \cap P_{\ell}$ for any P_{ℓ}. Suppose that $\mu($ Res $)$ contains a divisorial component $D_{\text {Res }}$. By the cone theorem, $D_{\text {Res }}$ has positive intersection with some extremal ray of $\mathrm{NE}(Y)$; such an extremal ray is generated by a class of line $\Gamma_{\ell_{0}}$ in $P_{\ell_{0}} \simeq \mathbb{P}^{2} \subset Y$ by Proposition 2.3. Therefore, $D_{R e s} \cap P_{\ell_{0}}$ has dimension 1, which contradicts the fact that $D_{\text {Res }} \cap P_{\ell_{0}}$ is zero-dimensional. Hence, μ (Res) has dimension at most 2 and so does Res.

Remark 4.17 With notation from Theorem 1.5, the computations by Macaulay2 (see Listing 12) show the following.

- It is expected that $f^{-1}(f(E))=E$ (since the points in $f(E) \subset Q \subset \mathbb{P}^{5}$ are expected to correspond to those whose preimage by the map phi1, defined by the linear system of quintic hypersurfaces through the 8 blow-up points with multiplicity at least 3 , is undefined in \mathbb{P}^{4}). It follows that the ramification divisor of f is $E+E^{\prime}$, where $E^{\prime} \in$ $\left|3\left(\mu^{*}\left(-K_{Y}\right)-E\right)\right|$ has generically degree 2 to its image by f.
- The fixed locus Res (see notation in Lemma 4.16) by $l_{\tilde{Y}}$ is expected to have dimension 2 (as the points in $f($ Res $)$ are expected to correspond to those whose preimage by phil has exactly one point).

Acknowledgements This project was initiated during my stay in Turin. I heartily thank Cinzia Casagrande for her hospitality and fruitful conversations. I would like to express my sincere gratitude to my supervisor, Andreas Höring, for his patient guidance, his constant support and valuable suggestions. I also thank Daniele Faenzi for his help on computations, Susanna Zimmermann for interesting discussions, and Michael Hoff for his help on coding and his valuable comments. I am grateful to the referee for helpful suggestions. Many results in this paper are based on computations using Macaulay2. I would like to thank the developers for
making their software open-source. I thank the IDEX UCA JEDI project (ANR-15-IDEX-01) and the MathIT project for providing financial support.

Funding Open Access funding enabled and organized by Projekt DEAL.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Computations by Macaulay2

```
restart
i1 : k = ZZ/67
```

We set up the projective space \mathbb{P}^{4} :

```
i2 : R = k[x_0..x_4]
```

We choose 8 points in \mathbb{P}^{4} :

```
i3 : I_0 = ideal(x_1,x_2,x_3,x_4)
i4 : I_1 = ideal(x_0,x_2,x_3,x_4)
i5 : I_2 = ideal(x_1,x_0,x_3,x_4)
i6 : I_3 = ideal(x_1,x_2,x_0,x_4)
i7 : I_4 = ideal(x_1,x_2,x_3,x_0)
i8 : I_5 = ideal(x_1-x_2,x_2-x_3,x_3-x_4,x_0-x_4)
i9 : I_6 = ideal(x_0-3*x_1,x_1-7*x_2,x_2-11*x_3,x_3-13*x_4)
i10 : I_7 = ideal(x_0-17*x_1,x_1-23*x_2,x_2-29*x_3,x_3-31*x_4)
```

We compute the ideal II defined by the 6 quintic hypersurfaces through the 8 points with multiplicity at least 3 :

```
i11 : J = intersect(apply(8,i->I_i));
i12 : H = trim saturate J^3;
i13 : gensH = gens (H);
i14 : tally degrees H
o14 = Tally{{5} => 6 }
    {6} => 60
o14 : Tally
i15 : G1 = submatrix (gensH,{0..5});
i16 : II = ideal(G1);
```

We check that II is the intersection of the ideal LL of the 28 lines, the ideal RN of the 8 quartics and the ideal $I 5$ of a smooth rational quintic curve:

```
i17 : LL = apply(8, i->apply(8, j-> ideal (gens intersect
    (I_i,I_j))_{0,1,2}));
i18 : LL = intersect unique flatten (LL);
i19 : isSubset(II,LL)
o19 = true
```

```
i20 : RN = apply(8,i->minors(2,submatrix((res (J:I_i)).
    dd_4,{3..6},{0..1})));
i21 : RN = intersect unique flatten (RN);
i22 : isSubset(II,RN)
o22 = true
i23 : I5 = ((II:LL):RN);
i24 : degree I5, genus I5, ideal singularLocus variety I5
o24 = (5, 0, ideal 1)
o24 : Sequence
i25 : II == intersect(intersect(LL,RN),I5)
o25 = true
```

Listing 1 Base scheme
We compute the normal bundle of the smooth rational quintic curve:

```
i26 : RI5 = R/I5
i27 : N5 = (module I5)**RI5
i28 : PI5 = Proj RI5
i29 : SN5 = sheaf N5
i30 : HH^0(SN5)
030 = 0
o30 : k-module
i31 : HH^0(sheaf dual N5)
    26
o31 = k
o31 : k-module, free
i32 : KI5 = Ext^3(R^1/I5,R^{-5})**RI5
i33 : HH^0(SN5**OO_PI5(1)**(sheaf dual KI5))
    1
033 = k
o33 : k-module, free
```

Listing 2 Normal bundle
We choose three points on the smooth rational quintic curve:

```
i26 : P1 = ideal(x_3-14*x_4,x_2-x_4,x_1+x_4,x_0-12*x_4)
i27 : P2 = ideal(x_3+17*x_4,x_2-22*x_4,x_1+20*x_4,x_0+2*x_4)
i28 : P3 = ideal(x_3-26*x_4,x_2+27*x_4,x_1-30*x_4,x_0+21*x_4)
```

We compute the three quintic hypersurfaces with multiplicity 3 at the 8 points and the point P1 (resp. P2 and resp. P3):

```
i29 : J13 = intersect(J^3,P1^3);
i30 : H13 = trim saturate J13;
i31 : G13 = gens(H13);
i32 : tally degrees H13
o32 = Tally{{5} => 1 }
    {6} => 70
o32 : Tally
i33 : GP1 = submatrix(G13,{0});
i34 : Q1 = ideal(GP1);
-- this ideal defines the secant variety of the elliptic normal quintic
    through the 8 points I_0,...,I_7 and the point P1, as we know that such
```

```
    a secant variety has multiplicity three along the elliptic curve
i35 : J23 = intersect(J^3,P2^3);
i36 : H23 = trim saturate J23;
i37 : G23 = gens(H23);
i38 : tally degrees H23
038 = Tally{{5} => 1 }
    {6} => 70
o38 : Tally
i39 : GP2 = submatrix(G23,{0});
i40 : Q2 = ideal(GP2);
i41 : J33 = intersect(J^3,P3^3);
i42 : H33 = trim saturate J33;
i43 : G33 = gens(H33);
i44 : tally degrees H33
o44 = Tally{{5} => 1 }
    {6} => 70
o44 : Tally
i45 : GP3 = submatrix(G33,{0});
i46 : Q3 = ideal(GP3);
```

Listing 3 Three secant varieties
We compute the elliptic normal quintic curve along which the quintic hypersurface Q1 is singular:

```
i47 : SingQ1 = ideal singularLocus variety Q1;
i48 : dim SingQ1, degree SingQ1
048 = (2, 40)
048 : Sequence
-- we know that the secant variety of an elliptic normal
    quintic is singular along the elliptic curve, and it
    has multipicity 3 along the elliptic curve, so we need
    to factorise out the multiplicity in the following
i49 : SSingQ1 = ideal singularLocus variety SingQ1;
i50 : dim SSingQ1, degree SSingQ1
o50 = (2, 35)
050 : Sequence
i51 : E1 = (SingQ1:SSingQ1);
i52 : dim E1, degree E1, genus E1
o52 = (2, 5, 1)
o52 : Sequence
i53 : ideal singularLocus variety E1
053 = ideal 1
o53 : Ideal of R
```

We compute the intersection of the three quintic hypersurfaces and obtain the cubic scroll W :

```
i54 : SS3 = Q1 + Q2 + Q3;
i55 : SS = (SS3:II);
i56 : dim SS, degree SS
o56 = (3, 6)
056 : Sequence
i59 : W = ideal singularLocus variety SS;
i60 : dim W, degree W, genus W, ideal singularLocus variety W
```

```
o60 = (3, 3, 0, ideal 1)
060 : Sequence
i61 : W == (SS:W)
o61 = true
```

Listing 4 Scheme-theoretic intersection of secant varieties
We compute the quintic hypersurfaces through the 8 points with multiplicity at least 3 , and containing the surface W :

```
i62 : JW = intersect(J^3,W);
i63 : HW = trim saturate JW;
i64 : GW = gens(HW);
i65 : tally degrees HW
o65 = Tally{{5} => 3 }
    {6} => 53
065 : Tally
i66 : GW1 = submatrix(GW,{0..2});
i67 : IIW = ideal(GW1);
i68 : IIW == SS3
o68 = true
-- this shows that the 3 secant varieties Q1, Q2 and Q3
    generate the sub-linear system of quintic
        hypersurfaces
        through the 8 points with multiplicity at least 3 and
        containing the surface W
```

Listing 5 Quintics containg W
We look at the singular locus of a quintic hypersurface through the 8 points with multiplicity at least 3 and containing the surface w :

```
i69 : QW = ideal(11*GW1_(0,0)+7*GW1_(0,1)+19*GW1_(0,2));
i70 : SingQW = ideal singularLocus variety QW;
i71 : dim SingQW, degree SingQW, genus SingQW
071 = (2, 10, -57)
071 : Sequence
i72 : SingW1 = (SingQW:J); -- we factor out the residual
                                    singular points
i73 : SingW2 = (SingW1:J);
i74 : SingW3 = (SingW2:J);
i75 : LSingQW = decompose SingW3;
-- factorising out the residual points, the singular locus
        is now of pure dimension one
i76 : EE = ideal(LSingQW);
i77 : degree EE, genus EE, dim EE
o77 = (10, 9, 2)
077 : Sequence
i78 : SingEE = ideal singularLocus variety EE;
i79 : dim SingEE, degree SingEE
079 = (1, 8)
o79 : Sequence
```

```
-- this shows that EE defines two elliptic normal quintics
        through the }8\mathrm{ points
i80 : degree (E1 + EE)
o80 = 16
i81 : degree (I5 + EE)
o81 = 18
```

Listing 6 Singular locus of a quintic containg W
We see that the singular locus of the quintic hypersurface QW is the set defined by the ideal EE. We deduce by the computations that this set consists of two elliptic normal quintic curves lying on the surface W , and intersecting at the 8 points.

Now we compute the hypersurfaces of degree 10 through the 8 points with multiplicity at least 6 . To reduce the running time, we add the 8 points step by step and eliminate hypersurfaces of degree higher than 10 at the end of each step:

```
i82 : JI5 = intersect(I_5^6,intersect(I_6^6,I_7^6));
i83 : HI5 = trim saturate JI5;
i84 : GI5 = gens HI5;
i85 : tally degrees HI5
o85 = Tally{{6} => 7 }
    {7} => 23
    {8} => 30
    {9} => 28
    {10} => 18
    {11} => 9
    {12} => 3
085 : Tally
i86 : GI15 = submatrix(GI5,{0..105});
-- to reduce the running time, we eliminate the
    hypersurfaces of degree higher than 10
i87 : II5 = ideal(GI15);
i88 : JI4 = intersect(I_4^6,II5);
i89 : HI4 = trim saturate JI4;
i90 : GI4 = gens HI4;
i91 : tally degrees HI4
091 = Tally{{6} => 1 }
    {7} => 11
    {8} => 33
    {9} => 52
    {10} => 36
    {11} => 9
    {12} => 3
091 : Tally
i92 : GI14 = submatrix(GI4,{0..132});
i93 : II4 = ideal(GI14);
i94 : JI3 = intersect(I_3^6,II4);
i95 : HI3 = trim saturate JI3;
```

```
i96 : GI3 = gens HI3;
i97 : tally degrees HI3
097 = Tally{{8} => 15 }
    {9} => 80
        {10} => 60
        {11} => 12
        {12} => 4
097 : Tally
i98 : GI13 = submatrix(GI3,{0..154});
i99 : II3 = ideal(GI13);
i100 : JI2 = intersect(I_2^6,II3);
i101 : HI2 = trim saturate JI2;
i102 : GI2 = gens HI2;
i103 : tally degrees HI2
o103 = Tally{{9} => 34 }
    {10} => 90
    {11} => 15
    {12} => 5
o103 : Tally
i104 : GI12 = submatrix(GI2,{0..123});
i105 : II2 = ideal(GI12);
i106 : JI1 = intersect(I_1^6,II2);
i107 : HI1 = trim saturate JI1;
i108 : GI1 = gens HI1;
i109 : tally degrees HI1
o109 = Tally{{9} => 1 }
    {10} => 136
    {11} => 33
    {12} => 6
o109 : Tally
i110 : GI11=submatrix(GI1,{0..136});
i111 : II1 = ideal(GI11);
i112 : JI0 = intersect(I_0^6,II1);
i113 : HIO = trim saturate JIO;
i114 : GIO = gens HIO;
i115 : tally degrees HI0
o115 = Tally{{10} => 29 }
    {11} => 134
    {12} => 7
o115 : Tally
i116 : GG = submatrix(GI0,{0..28});
i117 : IGG = ideal(GG);
```

We compute the hypersurfaces of degree 10 through the 8 points with multiplicity at least 6 containing the surface W :

```
i118 : JW2 = intersect(W,IGG);
```

```
i119 : HW2 = trim saturate JW2;
i120 : GW2 = gens HW2;
i121 : tally degrees HW2
o121 = Tally{{10} => 21}
    {11} => 6
o121 : Tally
i122 : GGW = submatrix(GW2,{0..20});
i123 : IW2 = ideal(GGW);
```

Listing 7 Decics containing W
We compute the image of the elliptic normal quintic E1 via the map defined by the linear system of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6 :

```
i124 : loadPackage"MultiprojectiveVarieties"
i125 : phi2 = rationalMap(IGG);
o125 : RationalMap (rational map from PP^4 to PP^28)
i126 : ImE1 = image(phi2|E1);
i127 : dim ImE1, degree ImE1
o127 = (2, 1)
o127 : Sequence
```

We compute the image of the rational quintic curve 15 via the map defined by the linear system of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6 :

```
i128 : ImI5 = image(phi2|I5);
i129 : dim ImI5, degree ImI5
o129 = (2, 2)
o129 : Sequence
```

We compute the image of the surface W via the map defined by the linear system of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6 :

```
i130 : ImW = image(phi2|W);
i131 : dim ImW, degree ImW
o131 = (3, 6)
o131 : Sequence
```

Listing 8 Some images by the bianticanonical map
We compute the hypersurfaces of degree 10 with multiplicity at least 7 at the point $I_{-} 0$ and multiplicity at least 6 at the other 7 points:

```
i132 : JI00 = intersect(I_0^7,II1);
i133 : HIOO = trim saturate JIOO;
i134 : GIOO = gens HIOO;
i135 : tally degrees HIOO
o135 = Tally{{10} => 1 }
    {11} => 197
    {12} => 21
    {13} => 7
o135 : Tally
i136 : GG0 = submatrix(GIO0,{0});
i137 : IGGO = ideal(GGO);
```

And we obtain a unique such hypersurface of degree 10; now we check if this hypersurface contains the surface W :

```
i138 : isSubset(IGG0,W)
o138 = false
```

Listing 9 Special member in the bianticanonical system
We compute the image of \mathbb{P}^{4} via the map defined by the linear system of quintic hypersurfaces through the 8 points with multiplicity at least 3 .

This is achieved by an indirect method: we generate an ideal JJ which has the same behaviour as the ideal II defined by the 6 quintic hypersurfaces through the 8 points with multiplicity at least 3 . Then we compute the image of \mathbb{P}^{4} via the map defined by this ideal JJ.

```
i139 : JJ = minors(2,random( }\mp@subsup{R}{}{\wedge}{4:0},\mp@subsup{R}{^}{`}{-2,-3}))
i140 : degree JJ, genus JJ -- we check that JJ and II have same behaviour
    as ideals
o140 = (65, 212)
o140 : Sequence
i141 : betti res JJ == betti res II
o141 = true
i142 : phi = rationalMap(JJ);
o142 : RationalMap (rational map from PP^4 to PP^5)
i143 : ImP4 = image(phi);
i144 : dim ImP4, degree ImP4, singularLocus variety ImP4
```



```
o144 : Sequence
-- the image is a smooth quadric hypersurface
i145 : phi1 = rationalMap(J,5,3);
-- this is the map defined by the linear system of quintic hypersurfaces
    through the }8\mathrm{ points with multiplicity at least 3
o145 : RationalMap (rational map from PP^4 to PP^5)
i146 : Q = image(phi1,2);
-- since we know that the image is a quadric hypersurface, we can now compute
    the image by taking the degree-two component
i147 : singularLocus variety Q
o147 = Proj | | 0 m 5 | | | | | | |
o147 : ProjectiveVariety
-- the quadric Q is smooth
```

Listing 10 Image by the anticanonical map
We check that there is no quintic hypersurfaces through the 8 points with multipilicity at least 3 and having multiplicity at least 2 along the smooth rational quintic curve I5:

```
i148 : JRR = intersect(J^3,I5^2);
i149 : HRR = trim saturate JRR;
i150 : tally degrees HRR
o150 = Tally{{6} => 61}
o150 : Tally
```

Listing 11 Quintics having multiplicity 2 along the smooth rational quintic base curve

To understand the ramification locus of the map phi1 defined by the linear system of quintic hypersurfaces through the 8 points with multiplicity at least 3 in \mathbb{P}^{4}, we take many points randomly in the image Q and look at the degree of the fibre of each of them.

```
i151 : tally apply(50000, i->(
    fiber = phi1^* point Q;
    fiber = radical fiber;
            (dim fiber, degree fiber)))
o151 = Tally{(-1, 0) => 743 } -- loci of expected dimension 3
            (1, 1) => 195 -- loci of expected dimension at least 2
            (1, 2) => 1874 -- loci of expected dimension 3
            (1, 3) => 4752 -- loci of expected dimension 3
            (1, 4) => 42436 -- phil has generically degree 4
o151 : Tally
```

Listing 12 Branched locus of the anticanonical map
To compute the generic degree of the map phi2 defined by the linear system of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6 , we take many points randomly in \mathbb{P}^{4} and look at the degree of the fiber of each point's image in Q.

```
i152 : tally apply(1000, i->(
    fiber = phi2^* image(phi2|point R);
    fiber = radical fiber;
        (dim fiber, degree fiber)))
o152 = Tally{(-1, 0) => 12}
    (1, 1) => 987 -- phi2 has generically degree one
    (1, 2) => 1
o152 : Tally
```

Listing 13 Generic degree of the bianticanonical map

References

1. Batyrev, V.V.: On the classification of toric Fano 4-folds. Algebr. Geometry 94, 1021-1050 (1999)
2. Beauville, A.: Complex Algebraic Surfaces, Volume 34 of London Mathematical Society Student Texts, 2nd edn. Cambridge University Press, Cambridge (1996).. (Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid)
3. Casagrande, C.: On the Picard number of divisors in Fano manifolds. Ann. Sci. Éc. Norm. Supér. (4) 45(3), 363-403 (2012)
4. Casagrande, C.: Numerical invariants of Fano 4-folds. Math. Nachr. 286(11-12), 1107-1113 (2013)
5. Casagrande, C., Codogni, G., Fanelli, A.: The blow-up of \mathbb{P}^{4} at 8 points and its Fano model, via vector bundles on a del Pezzo surface. Rev. Mat. Complut. 32(2), 475-529 (2019)
6. Coates, T., Corti, A., Galkin, S., Golyshev, V., Kasprzyk, A.: Mirror symmetry and Fano manifolds. In: European Congress of Mathematics. Eur. Math. Soc., Zürich, pp. 285-300 (2013)
7. Coates, T., Galkin, S., Kasprzyk, A., Strangeway, A.: Quantum periods for certain four-dimensional Fano manifolds. Exp. Math. 29(2), 183-221 (2020)
8. Coskun, I., Riedl, E.: Normal bundles of rational curves in projective space. Math. Z. 288(3-4), 803-827 (2018)
9. Casagrande, C., Romano, E.A.: Classification of Fano 4-folds with Lefschetz defect 3 and Picard number 5. J. Pure Appl. Algebra 226(3), 106864, 13 (2022)
10. Dolgachev, I.: Point sets in projective spaces and theta functions. Astérisque 165, 2 (1988)
11. Dolgachev, I.V.: Classical Algebraic Geometry. A Modern View. Cambridge University Press, Cambridge (2012)
12. Fujita, T.: On the structure of polarized manifolds with total deficiency one. I. J. Math. Soc. Jpn. 32(4), 709-725 (1980)
13. Fujita, T.: On the structure of polarized manifolds with total deficiency one. II. J. Math. Soc. Jpn. 33(3), 415-434 (1981)
14. Fujita, T.: On hyperelliptic polarized varieties. Tohoku Math. J. (2) 35(1), 1-44 (1983)
15. Fujita, T.: On the structure of polarized manifolds with total deficiency one. III. J. Math. Soc. Jpn. 36(1), 75-89 (1984)
16. Fujita, T.: Classification Theories of Polarized Varieties. London Mathematical Society Lecture Note Series, vol. 155. Cambridge University Press, Cambridge (1990)
17. Fulton, W.: Intersection Theory, Volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition (1998)
18. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994).. (Reprint of the 1978 original)
19. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, 52nd edn. Springer, New York (1977)
20. Heuberger, L.: Deux points de vue sur les variétés de Fano : géométrie du diviseur anticanonique et classification des surfaces à singularités $1 / 3(1,1)$. PhD thesis. (2016) http://www.theses.fr/2016PA066129/ document
21. Iskovskih, V.A.: Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat. 41(3), 516-562, 717 (1977)
22. Iskovskih, V.A.: Fano threefolds. II. Izv. Akad. Nauk SSSR Ser. Mat. 42(3), 506-549 (1978)
23. Kawamata, Y.: Small contractions of four-dimensional algebraic manifolds. Math. Ann. 284(4), 595-600 (1989)
24. Küchle, O.: Some remarks and problems concerning the geography of Fano 4-folds of index and Picard number one. Quaestiones Math. 20(1), 45-60 (1997)
25. Mori, S., Mukai, S.: Classification of, pp. 496-545 Fano 3-folds with $B_{2} \geq 2$ I. In: Algebraic and Topological Theories (Kinosaki, 1984). Kinokuniya, Tokyo (1986)
26. Mori, S., Mukai, S.: Extremal rays and Fano 3-folds. In: The Fano Conference. Univ. Torino, Turin, pp. 37-50 (2004)
27. Mukai, S.: Finite Generation of the Nagata Invariant Rings in A-D-E cases. RIMS Preprint no. 1502, Kyoto (2005)
28. Sato, H.: Toward the classification of higher-dimensional toric Fano varieties. Tohoku Math. J. (2) 52(3), 383-413 (2000)
29. Secci, S.A.: Fano 4-folds having a prime divisor of Picard number 1. (2021) arXiv: 2103.16140 (arXiv preprint)
30. Takeuchi, K.: Some birational maps of Fano 3-folds. Compos. Math. 71(3), 265-283 (1989)
31. Wilson, P.M.H.: Fano fourfolds of index greater than one. J. Reine Angew. Math. 379, 172-181 (1987)
32. Val, D.: Patrick: crystallography and cremona transformations. In: The Geometric Vein, pp. 191-201. Springer, New York (1981)
33. Wiśniewski, J.: Fano 4-folds of index 2 with $b_{2} \geq 2$. A contribution to Mukai classification. Bull. Polish Acad. Sci. Math. 38(1-12), 173-184 (1990)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Zhixin Xie
 xie@math.uni-sb.de
 1 Fachrichtung Mathematik, Campus, Gebäude E2.4, Universität des Saarlandes, 66123 Saarbrücken, Germany

