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Metabolic alterations in dairy cattle with lameness revealed by 
untargeted metabolomics of dried milk spots using direct 
infusion-tandem mass spectrometry and the triangulation of 
multiple machine learning models
Wenshi He,a Ana S. Cardoso,b Robert M. Hyde,b Martin J. Green,b David J. Scurr,a Rian L. Griffiths,a 
Laura V. Randall,*b and Dong-Hyun Kim*a

Lameness is a major challenge in the dairy cattle industry in terms of animal welfare and economic implications. Better 
understanding of metabolic alteration associated with lameness could lead to early diagnosis and effective treatment, there-
fore reducing its prevalence. To determine whether metabolic signatures associated with lameness could be discovered with 
untargeted metabolomics, we developed a novel workflow using direct infusion-tandem mass spectrometry to rapidly 
analyse (2 min/sample) dried milk spots (DMS) that were stored on commercially available Whatman® FTA® DMPK cards for 
a prolonged period (8 and 16 days). An orthogonal partial least squares-discriminant analysis (OPLS-DA) method validated 
by triangulation of multiple machine learning (ML) models and stability selection was employed to reliably identify important 
discriminative metabolites. With this approach, we were able to differentiate between lame and healthy cows based on a 
set of lipid molecules and several small metabolites. Among the discriminative molecules, we identified phosphatidylglycerol 
(PG 35:4) as the strongest and most sensitive lameness indicator based on stability selection. Overall, this untargeted 
metabolomics workflow is found to be a fast, robust, and discriminating method for determining lameness in DMS samples. 
The DMS cards can be potentially used as a convenient and cost-effective sample matrix for larger scale research and future 
routine screening for lameness.   

Introduction
Lameness is a major health issue of dairy cows. It impairs 
sustainability due to animal health and welfare impacts, and 
therefore has economic and ethical implications.1 Despite the 
recent efforts by the dairy industry to reduce lameness levels, a 
recent study showed that the average prevalence in the UK is as 
high as 30.1%.2,3 Early detection and timely treatment are 
essential to mitigate the impacts of lameness.4 The current 
mainstream method of diagnosis is mobility scoring based on 
visual assessment of gait by trained observers.5 However, pain 
experienced by lame cows is often masked by their instinctive 
stoicism, which makes it difficult to diagnose the disease before 
the appearance of clinical signs.6 Another major limitation of 
this method is intra- and inter-observer variability.7 Other 
authors have reported that pro-inflammatory cytokines and 
acute-phase proteins (APPs) can be used as biomarkers.8,9 
However, because of the high cost of ELISA tests required for 
detecting these immune-related molecules, alternative rapid 

and robust approaches are urgently required for routine 
screening. 

Metabolomics has become an increasingly popular “omics” 
approach to biomarker discovery.10 State-of-the-art 
metabolomics techniques allow the detection of hundreds to 
thousands of metabolites with a minimal amount of sample.11 
It is believed that metabolomics can deliver remarkable 
achievement in livestock research due to its capability of fast, 
effective and quantitative metabolic phenotyping.12 However, 
few studies have been reported regarding metabolic alteration 
associated with lameness. Zheng et al. utilised nuclear-
magnetic-resonance (NMR)-based metabolomics to investigate 
metabolic difference between healthy and cows with footrot 
from blood samples.13 Dervishi et al. used gas chromatography-
mass spectrometry (GC-MS) to investigate the metabolic 
signatures from serum samples of lame cows during different 
stages of lameness development.14 Eckel et al. showed that 
metabolic alterations during disease development could be 
identified from cow’s urine using liquid chromatography (LC)-
MS.15 However, metabolic alterations in lame cows have not yet 
been investigated using milk, which is a desired source as it is 
easily accessible and can be collected in a non-invasive manner.
In real-world settings, farmers may face logistical challenges 
sending samples from farms to laboratories for lameness 
diagnosis using metabolomics techniques. This arises from the 
need for temperature regulations (usually at -80 ˚C) during 
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storage and transportation of conventional liquid biological 
samples. Hence, dried matrix (i.e., blood, urine, milk) spots on 
paper is a more attractive sample type because of low sample 
volume required, ease of collection, room-temperature 
storage, and low-cost postal shipping. Although dried blood 
spots (DBSs) have been used in a wide range of research 
including metabolomics studies,16 few studies explored the use 
of different dried milk spots systems,17–19 and none for 
veterinary or agricultural applications. These established dried 
milk spot (DMS) systems studied human breast milk and often 
require pre-treatment of papers using different protocols which 
can introduce extra inconsistencies between studies. Here, we 
propose that the commercially available Whatman® FTA® 
DMPK cards, which is originally designed for DBSs, can be 
potentially used as a simpler way of collecting, preserving, and 
storing bovine milk samples for metabolomics research.

In metabolomics research, popular statistical approaches of 
identifying metabolic differences between classes are 
multivariate analysis techniques such as orthogonal partial least 
squares (OPLS) and univariate analysis (e.g. Student’s t-test20–

23). However, these “conventional” methods have innate 
limitations, especially when handling complex metabolomic 
data. Firstly, OPLS tends to construct prediction models that 
remove systematic variation that does not agree with the 
assigned group classification, therefore, force scores-space 
separation.24 Without rigorous validation, the “significant” 
results and “important” variables could be generated by the 
model solely by chance. Secondly, for Student’s t-test, the idea 
of hypothesising “there is a difference” based on the concept of 
statistical significance and p values has been increasingly 
criticised, as it provides fairly limited information about the 
data, and can be easily misinterpreted.25 The triangulation of 
multiple machine learning methods can yield valuable insights 
on the reliability of the results generated from the statistical 
workflow described above. It can also mitigate the issue of 
results being method-dependent and improve the likelihood of 
identifying truly important variables.26 Furthermore, since 
covariate selection using conventional regression approaches 
often have high variability and relatively low reproducibility, 
stability selection could be incorporated into prediction 
models.27–30 This strategy can help identify the most stable 
predicators under resampling that are likely to be the strongest 
candidates as disease indicators among significant metabolites. 

Here, we investigated the metabolic alterations in lame 
cows compared with non-lame cows and assess the suitability 
of Whatman® cards as a DMS media by using a direct infusion 
method with TriVersa NanoMate sampling system coupled to 
high-resolution MS. This direct infusion method allows high-
speed analysis (2 min/sample) in ambient environment.31 This 
feature allows rapid screening for potential biomarkers which 
may also make it possible to conduct large-scale research and 
routine lameness testing for dairy cows in the future. 
Furthermore, with the strategy of using triangulation of 
multiple statistical models, we were able to identify potential 
disease predictors.

Experimental 
DMS Sample Preparation

Milk drops were collected directly onto Whatman® FTA® DMPK 
cards (Fig. 1) from 10 lame cows and 11 healthy cows from one 
dairy farm based at the Centre for Dairy Science Innovation 
(CDSI), University of Nottingham. It was a research dairy herd 
containing 300 cows that produce milk commercially. Cows 
were housed continuously with sand bedded cubicles and 
slatted flooring.  Lame and healthy control cows were identified 
based on visual assessment using the Agriculture and 
Horticulture Development Board (AHDB) scoring system (0 to 3) 
where lame was defined as score ≥ 2 and healthy (non-lame) 
defined as score < 2.32 Each spot on the FTA® DMPK cards 
contained one drop of milk (⁓ 20 µL). The DMS cards were air-
dried, then stored in plastic seal bags at room temperature. 
After 8 days, part of each spot was removed from the cards into 
1.5 mL Eppendorf tubes (Eppendorf AG, Hamburg, Germany) 
using a 6 mm hole puncher. Extraction of metabolites from each 
sample was conducted with a 500 µL mixture of 70% v/v 
methanol (VWR, West Sussex, UK) and 30% v/v water to which 
MS-grade formic acid (Optima LC−MS grade; Fisher Scientific, 
Loughborough, UK) was added (final concentration, 0.1% v/v). 
Deionised water was prepared using a Milli-Q water purification 
system (Millipore, MA, USA). After mixing and incubating in the 
extraction solvent for 20 min, the samples were centrifuged 
(MiniSpin®, Eppendorf AG, Hamburg, Germany) for 10 min at 
6708 × g. Then, 200 µL supernatants were transferred to clean 
Eppendorf tubes. To dilute the extracted metabolites, a further 
800 µL extraction solvent was added to each sample. The 
procedure was adopted from a metabolite extraction method 
using dried blood spots by Trifonova et al.33 To assess the 
sample stability during a prolonged storage time at room 
temperature, the same metabolite extraction procedure was 
repeated on day 16 using adjacent milk spots.

Fig. 1 Example of dried milk spots on a Whatman® FTA® DMPK 
card.

Mass Spectrometry Analysis

The solvents containing extracted metabolites were transferred 
into a 96-well plate, then 10 µL were directly infused into a high-
resolution Q-Exactive plus Orbitrap spectrometer (Thermo 
Fisher Scientific, Hemel Hempstead, UK) via chip-based 
nanoelectrospray ionisation (Advion Biosciences, Ithaca, NY) at 
1.5 kV and 0.6 psi gas pressure. Data was acquired for 1 min for 
each polarity using a scan range of m/z 70−1050. In full MS 
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mode, the resolution was set to 140,000 at m/z 200, and the 
AGC target was set to 3 × 106 with a maximum ion injection time 
of 200 ms. The top 10 most intense ions were isolated within a 
0.5 m/z window for data-dependent acquisition (DDA) at a 
resolution of 17,500, AGC target of 1 × 106 and a maximum ion 
injection time of 50 ms. For data-independent acquisition (DIA), 
the pre-selected ions were isolated within a 0.4 m/z window at 
a resolution of 35,000 and AGC target of 2 × 105. Stepped 
normalized collision energy (NCE) of 20, 30 and 40 was applied 
in both DDA and DIA. The pooled QC samples were analysed 
intermittently for the duration of the MS analysis.

Peak Picking and Alignment

The .RAW data files from Xcalibur were converted to .mzXML 
format using ProteoWizard.34 Peaks with intensities above 
100,000 were picked and aligned within a 5 ppm m/z window 
using an in-house MATLAB (R2020a, The MathWorks, Inc., 
Natick, MA) script.11 Features with more than 20% missing 
values across all samples were removed. The remaining missing 
values were imputed using k-nearest neighbour (knn) 
imputation (k = 10).35 Individual ion intensity matrices from 
both polarities were concatenated using a low-level data fusion 
strategy.36

Multivariate and Univariate Analysis

Following the feature extraction workflow, the data were 
normalised to total ion count, log-transformed and Pareto 
scaled.37 Principal component analysis (PCA) and orthogonal 
partial least squares discriminant analysis (OPLS-DA) models 
were constructed using SIMCA 16 software (Umetrics, Sweden). 
Selection of discriminative variables was based on a variable’s 
importance in projection (VIP) score > 1 in OPLS-DA models. The 
models were validated using the built-in function of leave-one-
out cross validation (LOOCV) procedure and permutation test. 
Student’s t-test with controlled false discovery rate (FDR) (q < 
0.05) was performed in MetaboAnalyst 5.0.38,39 A p-value < 0.05 
was considered significant.

Machine Learning and Stability Selection

Following the feature extraction workflow, the data were 
normalised to total ion count and standardised. Four common 
supervised machine learning (ML) techniques were performed 
in R,40 including random forest (RF),41 elastic net,42 partial least 
squares (PLS),43 and support vector machine (SVM).44 Prediction 
accuracy of each model was assessed using LOOCV: for each ML 
algorithm, 1 cow was chosen as test set and the remaining cows 
were used as training set. This procedure was repeated 20 times 
for each model. Recursive feature elimination (RFE) was used 
for all algorithms to identify the smallest set of metabolites that 
provided maximum predictive accuracy; this was conducted 
external to the LOOCV procedure to ensure no selection bias 
occurred.45

Stability selection was performed using the stabiliser 
package.46 Three penalised models: elastic net,42 minimax 
convex penalty (MCP)47 and least absolute shrinkage and 

selection operator regression (Lasso)48 were constructed. 
Selection stability was evaluated for each model as the 
percentage of times that each variable was selected across 500 
bootstrap samples.49 To estimate the stability threshold, the 
outcome was permuted 20 times to generate 20 new datasets 
in which the relationship between the outcome and 
observations were severed. The threshold was determined by 
the highest stability score achieved in the permutated datasets 
over 50 bootstrap samples across each of the 20 permuted 
datasets.50 A bootstrap p-value was defined as the proportion 
of coefficient estimates on the minority side of zero. For 
example, if a variable was selected on 100 occasions and the 
coefficients on 95 occasions were greater than 0, then the 
bootstrap p-value would be (100–95)/100 = 0.05.

Metabolite Identification

The ion masses of important variables were searched against 
the Bovine Metabolome Database51 with 5 ppm mass tolerance 
and Lipid Maps52 with +/- 0.001 m/z tolerance using [M+H]+, 
[M+Na]+, [M+K]+, and [M+H-H2O]+ as adducts for positive mode, 
also [M-H]- and [M-H-H2O]- for negative mode. For lipid search, 
multiply charged adducts were also included. For structure-
based identification, MS/MS spectra were matched with the 
experimental reference spectra from the same normalised 
collision energy using mzCloud by comparing the fragmentation 
patterns and the accurate mass of the fragments. For 
compounds that were not recorded in mzCloud database, 
accurately predict ESI-MS/MS spectra generated by CFM-ID 
program were used for improving confidence for 
identification.53

Results and Discussion
Rapid Metabolic Profiling Workflow for the Investigation of Dairy 
Cow Lameness

Commercially available Whatman FTA® DMPK cards were used 
to collect milk drops directly from dairy cows (Fig. 2A, B). To 
evaluate analytes stability during prolonged storage periods, 
the dried milk spot (DMS) cards were stored in plastic seal bags 
at room temperature for 8 and 16 days, respectively, until 
metabolite extraction (Fig. 2C). The extracted samples were 
directly infused into a high-resolution mass spectrometer for 
rapid metabolomic analyses (2 min per sample) using a robotic 
sampling system (Fig. 2D). The idea behind this workflow was to 
explore the use of DMS sample matrix for easy sample 
collection and low-cost postal delivery from farms to analytical 
laboratories for rapid lameness diagnosis. This could potentially 
be an attractive option as it omits the needs for temperature 
regulations during storage and transportation for conventional 
liquid samples. It also eliminates the inter- and intra-person 
variability in comparison to the current diagnostic approach. For 
laboratories, the simple sample preparation procedure and 
rapid analysis with direct infusion system could allow high 
throughput for large-scale veterinary clinical research. For data 
analysis, we added machine learning and stability test to the 
conventional workflow of OPLS-DA and t- test to mitigate the
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Fig. 2 Rapid analysis of dried milk spot cards with direct infusion mass spectrometry. (A) Milk drops were collected directly from 
cows onto commercially available Whatman FTA® DMPK Cards. (B) Milk spots were air-dried, then stored in plastic seal bags at 
room temperature for 8 and 16 days. (C) Spot cards were punched for metabolite extraction. (D) The extraction solvent containing 
milk metabolites was transferred into a 96-well plate, then delivered to mass spectrometer using the automated sampling system, 
TriVersa NanoMate LESA®. (E) Multivariate and univariate analysis were first carried out for class predication and identification of 
lameness-related metabolites. The results were further validated using machine learning and stability approach.

issue of results being method-dependent and identify the most 
stable predictors (Fig. 2E)

Metabolic Profiles of DMS Differentiate Lame and Control Cows

The milk metabolic profiles acquired by direct infusion MS were 
used to discriminate the four sample groups (day 8 extracts - 
control/lame, day 16 extracts - control/lame). Features in 
positive and negative ion modes were combined and used to 
construct a PCA model (number of components A = 6, number 
of observations N = 48) (Fig. 3A),54 in which all DMS extracted 
on day 8 and day 16 since sample collection are clearly 
distinguished in the first principal component (PC 1) (x-axis). In 
the PCA plot, the pooled QC samples located in the middle of all 
analysed samples from the same extraction day, which 
indicated good reproducibility during the analytical run. The PC 
1 loadings plot revealed an overall reduction in signals from day 
16 samples compared to day 8 (Fig. 3B).

An OPLS-DA model was built (A = 1 predictive component + 
1 orthogonal component, N = 21) to compare the healthy group 
and lame group from day 8 extracted metabolites (Fig. 3C). The 
model was validated using LOOCV method. Clear grouping of 
the two classes was observed (Q2: 0.601). In general, Q2 
(goodness-of-prediction) > 0.5 is considered as good 
predictability,55 and 0.4 may also be considered acceptable for 
biological models.11,23 To mitigate the issues with potential 
overfitting and over estimation of Q2, we further conducted a 
permutation test which confirmed the validity of the 
constructed model (Fig. S1). The associated S-plot enabled the 

determination of the most important ions for distinguishing the 
control and lame cows (Fig. 3D).56 The discriminative ions 
(highlighted in orange colour) were determined by a VIP score 
> 1 in OPLS-DA and a p value < 0.05 in multiple t-test (FDR 
corrected, q < 0.05). Ten out of 12 discriminative ions were 
assigned putative molecular formulae (Table 1). To further 
confirm the identities of these discriminative ions, both 
experimental and computed MS/MS spectra were used for 
structure-based identification (Fig. S3-S8).

Triangulation of Machine Learning Models for Results Validation

Four machine learning models: RF, elastic net, PLS, and SVM 
were tested by recursive feature elimination and LOOCV (Fig. 
4). In RF, a maximum predictive accuracy of 100% was achieved 
with 15 selected variables.  Elastic net, PLS and SVM reached 
the highest accuracies of 95.2 % with 10 selected variables 
(Table S1). Comparing the top 10 most important variables 
(Table S2) selected by each ML model with the discriminative 
ions from the conventional workflow based on OPLS and t-test 
(Table 1), we observed high similarities between variable 
selections. Interestingly, results from PLS and OPLS methods 
were in full agreement, which is probably because the models 
are constructed based on similar concepts.55 From the 12 
discriminative metabolites discovered in the conventional 
workflow, m/z 202.0685 (glucosamine) and m/z 343.1228 
(alpha-lactose) were selected only when (O)PLS was applied 
(i.e., model-dependent). Therefore, it is likely that they may not 
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Fig. 3 Multivariate analysis results. (A) PCA of dried milk spots extracted on day 8 and day 16 after sample collection. Pooled QC 
samples showed stable analytical performance. (B) Loadings of PCA principal component 1 and 2. (C) OPLS-DA scores plot reveals 
clustering of cows based on health conditions (control vs lame) (R2X 0.321 R2Y 0.899 Q2 0.601) from milk metabolites extracted on 
day 8. (D) S plot shows ions that have strong correlation with the cow health conditions (orange).

Table 1 Annotation for discriminative ions (VIP > 1, p-value < 0.05, FDR corrected) of healthy and lame cow groups (day 8). VIP: 
Variable Importance in the Projection. FDR: false discovery rate. 

m/z Adduct Assignment Mass error/ppm
Monoisotopic 

mass (Da)
Identification 

method
343.995 unknown unknown unknown unknown unknown

315.0416 unknown unknown unknown unknown unknown

267.1968 [M-H2O-H]- Hexadecanedioic 
acid

3.0 286.2144 m/z

401.2358 [M+2Na]2+ PG 35:4 1.2 400.2283
m/z, 

computed 
MS/MS

317.1149 [M+K]+ alpha-Carboxyethyl 
hydrochroman

0.3 278.1518 m/z

115.0757 [M+H-H2O]+ 6-Hydroxyhexanoic 
acid

-1.7 132.0786 m/z, MS/MS

251.1408 [M+K]+ trans-11-methyl-2-
dodecenoic acid

0.0 212.1776 m/z, MS/MS

166.0258 [M+K]+ 1-Piperideine-2-
carboxylic acid

-4.2 127.0633
m/z, 

computed 
MS/MS

73.0649 [M+H]+ Isobutylaldehyde 1.4 72.0575 m/z, MS/MS

400.2321 [M+H]+ Carnitine 13:3;O3 2.2 399.2257 m/z

202.0685 [M+Na]+ Glucosamine -0.5 179.0793 m/z

343.1228 [M+H]+ alpha-Lactose -2.0 342.1162 m/z, MS/MS
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  Fig.4 Evaluation of the prediction accuracies of four ML models 
(A) random forest (RF), (B) elastic net, (C) support vector 
machine (SVM), (D) partial least squares (PLS) using leave-one-
out cross validation procedure.

truly associate with the disease state. The remaining 10 
metabolites were selected as predictor variables in multiple 
distinct models (Fig. 5). 
Lipids are important metabolic fuel, and they have various 
functions in cell activation, immune response and 
inflammation.14 In this study, a few fatty acids in milk were 
discovered to play an important role in discriminating the lame 
and healthy cows. From lame cows, a relative decrease was 
observed in a saturated long-chain fatty acid (hexadecanedioic 
acid) and an unsaturated fatty acid (trans-11-methyl-2-
dodecenoic acid) compared with healthy cows. In contrast, the 
lame cows had a relatively elevated abundance in an omega-
hydroxy fatty acid called 6-hydroxyhexanoic acid. Other 
significantly altered lipids were phosphatidylglycerol PG 35:4, 
and fatty acyl carnitine CAR 13:3;O3, which both had a decrease 
in the lame group compared to the healthy group. In previously 
reported studies using plasma and urine samples, distinct 
metabolite profiles between lame cows and controls were 
displayed by a number of acylcarnitines and 
glycerophospholipids.15,57 The alteration in these lipid species 
were linked to inflammation and immune response. For 
acylcarnitines, they also play an important role in the lipid β-
oxidation process.57

Interestingly, while most reported lipid markers in serum or 
plasma displayed elevated concentration in lame cows, we 
discovered many lipid predictors with decreased abundance in 
milk in this study. Further investigation is required to determine 
the underlying reasons for these alterations in milk. In addition, 
we observed an increase in 1-piperideine-2-carboxylic acid, 
which is a metabolite in the pipecolic acid pathway of lysine 
degradation.58 In dairy cows, lysine is important for milk protein 
synthesis, carnitine synthesis, weight gain in growing cattle, and

Fig. 5 Box plots show the relative abundance of discriminative 
metabolites from day 8 between healthy and lame cows 
determined by OPLS-DA and Student’s t-test (VIP score > 1, p < 
0.05). Validating the results by triangulation of multiple 
machine learning models, we identified two model-dependent 
predictors, alpha-lactose and glucosamine, which were chosen 
as “important” predictor only in PLS-based methods, therefore, 
not likely to be “true” predictors.

incorporation into mammalian tissues for structural integrity 59. 
The increased 1-piperideine-2-carboxylic acid in milk may 
indicate abnormal lysine metabolism in lame cows. Another 
significantly increased small molecule in lame cows is 
isobutylaldehyde. Its role in bovine metabolism is not yet fully 
elucidated.

Selection of the Most Stable Predictors

High variability of results and low reproducibility is a common 
issue with conventional regression methods (i.e., a single, non-
bootstrapped regression model) for covariate selection from 
high dimensional data in comparison to stability selection.27–30 
In our study, a majority of discriminative metabolites 
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discovered in single machine learning models were not 
repeatedly selected during bootstrap resampling followed by 
one-off regression analyses indicated by their low stability 
scores (Table S3). Bootstrap resampling is a statistical test that 
uses random sampling with replacement to mimic real-world 
sampling process. For instance, isobutylaldehyde was only 
selected as a “discriminative” metabolite in 9.6% to 36.6% 
resamples depending on the model types, which means it is 
highly likely that this metabolite will not be identified as a 
potential marker in another study where a single one-off 
regression model is employed. This can make biomarker 
screening challenging because the selected predictors may be 
incomparable between studies or analyses and fail to represent 
the target population. A solution to this issue is stability 
selection. The concept is that the variables truly associated with 
the outcome of interest are likely to be selected most 
frequently during multiple bootstrap resampling.60 Here, three 
penalised models elastic net, MCP and Lasso were implemented 
for selecting the most stable predictor metabolites.61 Selection 

Fig. 6 Variable selection and importance were visualised by 
plotting selection stability in elastic net, Lasso and minimax 
convex penalty (MCP) models. Variables that were never 
selected in any bootstrap or with a stability score below 5% 
were not shown in the figure. The line on the graph represents 
the calculated threshold to determine a cut-off for ‘important’ 
covariates. 

stability was estimated for all models using a bootstrap 
methodology (500 bootstraps, 20 permutations, 50 
permutation bootstraps).30 In each model, variables with a 
stability score above the estimated threshold and a low 
bootstrap p-value were selected (Fig. 6). The stability selected 
variables were m/z 401.2358 (PG 35:4), m/z 315.0416 and m/z 
115.0757 (6-hydroxyhexanoic acid, C6H12O3) using the default 
elastic net model, which have also been selected using the 
triangulation method of OPLS-DA and ML as discussed in the 
previous section. It is noteworthy that m/z 401.2358 (PG 35:4) 
not only showed the highest stability scores in three stability 
models, but also had the highest importance rankings (top 2) in 
all ML models. Therefore, it appears to be the strongest 
candidate as an indicator of disease state. A Receiver Operator 
Characteristic (ROC) curve analysis was employed to further 

assess both the sensitivity and specificity performance of the 
predictor metabolites (Fig. S9). Metabolite m/z 401.2358 (PG 
35:4) showed a superior prediction performance with a 
sensitivity and specificity of 100%.

Conclusions
A novel analytical workflow for untargeted metabolomics of 
dried milk spots (DMS) using direct infusion mass spectrometry 
was developed and it is shown to be a robust and discriminating 
approach for diagnosing lameness in dairy cows. Some 
important predictor metabolites have been discovered for the 
first time using the triangulation method of multiple statistical 
models including OPLS-DA, ML models and stability selection. 
This statistical workflow allowed identification of the most 
promising candidates for indicating lameness and eliminating 
model-dependent “predictors”, which vastly increased the 
reliability of the outcome.  Phosphatidylglycerol and fatty acid 
species were found to be strong and sensitive candidates as 
indicators of lameness. Furthermore, we showed that 
Whatman® FTA® DMPK paper cards, a new sample media for 
milk collection, can be used for cost-effective and fast 
veterinary screening because it omits the need for temperature 
regulation often required by conventional liquid samples 
transportation and storage. DMS samples from healthy and 
lame cows can be clearly distinguished by their metabolite 
profiles after storing at room temperature for up to 8 days. This 
opens new opportunities to perform large-scale routine 
diagnosis for lameness, using milk as a sample that farmers can 
easily collect at low cost. 

This experiment is a proof-of-concept study exploring the 
use of DMS as sample matrix for studying lameness by using 
untargeted metabolomics method. We acknowledge that the 
number of lame cows included in this study was low, and all 
cows were from the same farm. Future work should include 
larger cohorts of animals from multiple farms to further validate 
the current findings and determine the underlying reasons for 
observed metabolic alterations. Furthermore, future work 
should include the study of DMS samples from pre-lame cows, 
to determine whether this workflow can be used to predict 
lameness, and diagnose earlier than the current method which 
relies on the physical signs of lameness being apparent. This 
could then pave the way for early interventions in the future.

This developed analytical workflow and statistical strategy 
can also be applied to explore a wide range of diseases using 
dried liquid samples such as milk, blood and urine as a fast and 
robust untargeted method to determine the presence of 
potential biomarkers in the sample of choice. 
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