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A B S T R A C T   

Abradable coatings enable small tip clearances within gas turbine engines to be achieved. These coatings allow 
blades to cut their ideal paths during engine running-in and act as a sacrificial layer during unforeseen blade- 
casing interactions, minimising any damage to the blades. Abradables are often plasma sprayed and as a 
result, a given abradable can have a wide range of properties which are defined by its composition and the spray 
process parameters. These properties are also known to evolve during blade-casing interactions as a result of 
heating and compaction. In industry, abradables are often characterised by a superficial Rockwell hardness 
value; however, it is not clear how the Rockwell hardness relates to the mechanical properties of the abradable or 
whether this relationship is unique. An inverse methodology is presented for obtaining these properties via 
simulated Rockwell hardness testing. Firstly, a neural network (NN) is trained using the simulated Rockwell tests, 
which is then used in conjunction with a particle swarm optimisation (PSO) to estimate abradable properties for 
a given hardness value. These properties, determined from the optimisation process, are then used to conduct a 
series of blade-casing interaction simulations, demonstrating how the contact forces and dominant frequencies 
differ during rub events. This work provides a methodology to rapidly estimate abradable properties over their 
full range of acceptable hardnesses, which can in turn be used to optimise specific blade geometries and 
abradable hardnesses to produce optimal compressor performance and blade life.   

1. Introduction 

In order to improve aeroengine efficiency, the clearances between 
blade tips and the surrounding casing are minimised to create an in-
crease the overall pressure ratio (OPR), gas temperatures, and gas 
pressure, which in turn increase thermal efficiency [1,2]. Inevitably, the 
reduced blade tip clearance leads to more frequent blade-casing in-
teractions, referred to as rub events from here on, and therefore it is now 
common practice to plasma spray the internal surface of the casing with 
an abradable material. These abradable coatings are intended to reduce 
the severity of rub events and to wear preferentially to the blade. For the 
Low Pressure Compressor (LPC) and Intermediate Pressure Compressor 
(IPC), at temperatures of up to 345 ◦C, an Aluminium Silicon Polyester 
(AlSi-PES) abradable is commonly used in conjunction with Ti-6Al-4V 
blades ; however, there is a degree of uncertainty surrounding abrad-
able material properties and how they influence the outcomes of, and 
develop during rub events. 

In order to understand the influence of abradable composition on the 

wear and damage mechanisms during blade-casing interactions, a wide 
range of experimental studies have been carried out. However, typically 
only the hardness is used to characterise a newly sprayed abradable, 
leaving open questions about the constitutive behaviour of individual 
phases and the bulk homogenised properties, and the link between these 
properties and the behaviour during rub events. Regarding the consti-
tutive properties of AlSi-PES abradables, several investigations have 
been conducted over a range of strain rates and temperatures through 
quasi-static compression and Split-Hopkinson Pressure Bar (SHPB) 
testing [4–6]. Chevrier et al. [7] then used these results along with 
complimentary work to fit both a standard and modified Johnson-Cook 
damage model capable of predicting failure of specimens over a range of 
temperatures in both quasi-static and dynamic regimes. While these 
tests give valuable information for modelling, they do not capture the 
variability in abradable properties introduced at the system level or 
between spray batches. Regarding testing of blade-casing interactions, a 
large emphasis has been placed on the characterisation of the interaction 
itself. Fois et al. [8] investigated the effects of the hardness of an AlSi 
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hexagonal boron nitride (AlSi-hBN) on rub events with a Ti-6Al-4V 
blade. It was concluded that abradable hardness dictates the wear and 
damage mechanisms at low incursion rates. Watson and Marshall [9] 
studied the wear mechanisms for different abradable batches and 
hardnesses and concluded that harder abradables lead to lower abrad-
ability and more blade abrasive wear. Yi et al. [10] suggested that 
increased abradable hardness leads to a decrease in abradability, and 
that abradables of similar hardnesses but with different compositions 
produce significantly different results. Therefore, it was said that 
abradability cannot be judged by a single hardness alone. 

It is known that like abradables of various hardnesses interact 
differently with blades during contact, and studies have given 
phenomenological explanations for this. From an experimental stand-
point there is limited work on the determination of the mechanical 
properties of an abradable, or on how damage accumulates over the full 
range of acceptable hardnesses. Understanding the constitutive behav-
iour of the abradable is important in being able to link the manufacture 
and design of the system to the behaviour of rub events, which will then 
allow the system to be optimised. Hardness alone is not a useful bulk 
measurement when modelling the behaviour of a system but is a very 
cheap test to conduct. This work aims to provide a method capable of 
predicting homogenised abradable properties over a range of hardnesses 
to begin to bridge this gap. 

From a modelling perspective, there has been an effort to determine 
the homogenised material properties from abradable micrographs, to 
couple what happens on the macroscale with the microscale. Faraoun 
et al. [11] used object oriented finite element analysis (OOF) to obtain a 
2D geometry suitable for analysis from an AlSi-hBN micrograph image. 
It was also shown via a bending test how the Young’s Modulus of AlSi 
decreases by up to 76 % when plasma sprayed in comparison to the same 
material when cast. The obtained material values were then assigned to 
the 2D geometry, and a tensile test conducted to find the homogenised 
Young’s Modulus and Poisson’s ratio. Similarly, Duramou et al. [12] 
used a finite element (FE) model to determine a relationship between the 
microstructure of atmospheric plasma sprayed AlSi-PES and its me-
chanical properties. Nano-Hardness Tests (NHT) were conducted to 
determine the Young’s Modulus for both the AlSi and PES phases. These 
properties were then applied to several 2D geometries created from 
different micrographs, simulated uniaxial tensile tests conducted, and 
then the average Young’s Modulus and Poisson’s ratio were taken to be 
the homogenised elastic properties. Bolot et al. [13] created 2D geom-
etries for simulation directly from AlSi-PES micrographs without 
simplification using a one cell per pixel approach, where each cell cor-
responds to either the AlSi matrix or PES filler phases. This enabled the 
effects of particle orientation to be considered in thermal and 

mechanical testing. It was found that particle orientation had a signifi-
cant effect on thermal characteristics but not so for the Young’s 
Modulus. Cheng et al. [14] used a 3D finite element model created 
through x-ray computed tomography to capture the complex behaviour 
of an AlSi-PES abradable such as damage in the AlSi and PES phases in 
addition to debonding of the phases. The model was calibrated against 
experimental tensile and compressive tests and the output stress strain 
curves from the experiments and models were in good agreement. 
However, these methods derive their FE geometries directly from mi-
crographs and with the exception of Cheng et al. [14] only account for 
elastic properties, which limits their use in compressor blade tip rub 
simulations. By directly using micrographs, abradables of each hardness 
are needed to analyse and determine the elastic properties. Furthermore, 
the constituent properties will vary depending on the hardness of the 
abradable meaning that fixed properties cannot be used. 

Neural Networks (NNs) have gained a lot of interest in many fields 
for their flexibility, speed, and relative ease of implementation. A NN 
provides a means to find patterns in data through a learning processes 
that adjusts weights and biases so that the error between its outputs and 
ground truth training data is minimised. There are several types of NN 
such as the fully connected feedforward multilayer perceptrons (MLPs), 
convolutional neural networks (CNNs) often used for image analysis and 
classification, recurrent neural networks (RNNs) which use temporal or 
sequential data, and more recently generative adversarial networks 
(GANs) which are able to create new data that resembles that of the 
training set. The flexibility of NNs in a materials science context have 
been demonstrated in recent works with applications ranging from 
modelling the influence of chemical compositions, hardnesses and 
temperatures on a materials response [15,16], predicting chemical 
compositions of steel from its mechanical properties [17], and to pre-
dicting the local stress fields in materials with microstructural features 
[18]. 

This study presents a methodology to determine the material prop-
erties of plasma sprayed abradables over their full range of acceptable 
hardnesses via an inverse optimisation process. These optimised prop-
erties are then used to simulate blade-casing interactions between a Ti- 
6Al-4V blade and an AlSi-PES abradable. In doing this, the gap between 
bulk hardness measurements and useful constituent properties is closed. 
Finally, the ability to simulate blade-casing interactions over a wide 
range of abradable hardnesses will allow specific blade geometries to be 
paired with an optimum abradable specification. 

2. Methodology 

Abradables are typically plasma sprayed onto the target substrate, 

Fig. 1. Workflow of property optimisation process.  
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which can lead to wide variations of abradable properties between 
batches [9,19]. A superficial Rockwell hardness test (HR15Y) is often 
used to quickly determine if a given abradable is within some generally 
broad required bounds. However, abradable properties can vary greatly 
over the full spectrum of allowable hardnesses [9,20] which in turn 
leads to non-optimal blade and abradable pairings, that is, an abradable 
which minimises contact forces and the excitation of undesirable modes 
has not been chosen for a specific blade geometry. A method for esti-
mating the homogenised abradable properties from a single HR15Y 
value has been developed to allow specific blade geometries and 
abradable hardnesses to be effectively tuned. This enables the allowable 
HR15Y ranges for specific blade geometries to be refined and optimal 
performance achieved. 

The workflow for this method is summarised in Fig. 1, where the key 
stages of the homogenised property optimisation are outlined. Firstly, a 
set of ground truth data was gathered using an axisymmetric model in 
Abaqus to simulate HR15Y tests. To do this, batches of abradable 
properties were generated within predefined bounds using Latin Hy-
percube Sampling (LHS), ensuring near random selections with good 
variability. These generated properties were then used in the simulated 
HR15Y tests from which the hardness was calculated and saved along 
with the corresponding abradable properties. 

Secondly, the batches of ground truth data were used to train a 
neural network which has significant speed advantages over Finite 
Element Analysis (FEA). As the training data sample size is small a k-fold 
cross validation method was used which ensures the model is well 
generalised. The process of gathering ground truth data and training the 
NN continued until there was no significant difference between the last 
and current training dataset size. This ensures no more ground truth 
data than necessary is gathered and that the NN generalises the 
parameter space rather than learning the training data. 

Finally, a set of homogenised material properties were determined 
using Particle Swarm Optimisation (PSO) in conjunction with the NN. 
PSO has been chosen for its ability to effectively find the best global 
solution. This optimisation process minimises the difference between a 
user defined target hardness and predicted hardness for a given set of 
input parameters. Once each of the particles converged on a single so-
lution, the optimisation ended and the predicted homogenised proper-
ties were saved. 

Upon completion of the property optimisation, a series of blade- 
casing interaction simulations were run to test the significance of 
abradable properties on these interactions. For the blade, a NACA 9406 
geometry was used. From these models, the differences in contact forces 
and dominant blade modes due to different abradable hardnesses were 
identified. 

2.1. Ground truth data collection 

To generate the ground truth data an axisymmetric FEA model of a 
HR15Y test was created and is schematically shown in Fig. 2. Eight node 
reduced integration axisymmetric elements were used for the abradable 
and in the contact region had a size of 0.1 × 0.1 mm while the indenter 
was an analytical rigid body. The indenter was constrained so that it 
could only move vertically, while the left edge and bottom edge of the 
abradable were constrained so that there was no horizontal or vertical 
movement respectively. The model comprised a rigid 6.35 mm (half 
inch) ball indenter and 70 mm diameter abradable section with a height 
of 25 mm, the large abradable size was chosen to ensure boundary 
conditions did not heavily influence the results. The load was applied to 
the reference point on the indenter in 3 stages, initial pre-load (29 N), 
max test load (147 N), and final test load (29 N) in accordance with ISO 
6508-1 [21.22]. A friction coefficient between the indenter and abrad-
able of 0.47 was chosen [3]. 

LHS has been used to generate near random homogenised abradable 
properties in batches of 150 with good variability. The lower and upper 
bounds of the variables used are shown in Table 1. These property 
bounds reflect the properties of the abradable constituent phases, with 
the lower and upper bounds representing an abradable made only of PES 
or plasma sprayed AlSi respectively, doing this keeps the area of interest 
as large as possible. This method could be extended to other abradables 
that are often subjected to Rockwell hardness testing by changing these 
boundaries to reflect the new constituent phases, or if the phase volume 
fractions are known the Voigt Reuss bounds could also be used. Often, 
abradable properties are given without mentioning the hardness of the 
abradable to which they belong or were derived from, so it is important 
to describe how the homogenised properties vary with hardness. For 
each sample in a batch, an HR15Y test was simulated, and the hardness 
calculated as shown in Eq. (1), where h is the difference in indentation 
depth between the max test load and final test load. Following this, the 
hardness along with the corresponding abradable properties were saved. 

Superficial Rockwell Hardness = 100 −
h

0.001
(1)  

2.2. Neural network training 

To train the NN, the training dataset size was increased incremen-
tally by 150 sample points until the current and previous iterations’ 
sample means and variability were statistically the same as determined 
with a t-test and f-test. This has two main benefits, firstly the training set 
size is kept as small as possible while not losing NN accuracy. Secondly, 
the training set is not too large ensuring that the NN is well generalised 
and not learning the training set (overfitting). A k-fold cross validation 
method was used to train the NN with 10 data set splits, which is 
particularly important for small data sets as it allows all observations to 
appear in the training set and provides a truer representation of the 
network’s accuracy. 

Fig. 2. Schematic of the axisymmetric HR15Y indentation model.  

Table 1 
Homogenised material property bounds.  

AlSi-PES property bounds  

Lower Bound Upper Bound 

E[MPa] 2000 [23] 18,000 [11] 
σy[MPa] 5 [4,23,24] 50 
K[MPa] 100 1000 
ν 0.05 0.2 
n 0.3 0.7  
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The training was limited to 2000 epochs with a batch size of 32 and 
patience of 150. The validation loss Mean Squared Error (MSE) was 
minimised, and the minimum change monitored was 1× 10− 6, that is, if 
no change greater than this is seen in the next 150 epochs the training 
stops and the NN is saved. The model architecture simply comprised 5 
input nodes, 1 hidden layer with 6 nodes each using a Rectified Linear 
Unit (ReLU) activation function, and 1 output layer with 1 node using a 
sigmoid activation function. 

2.3. Homogenised property optimisation 

The procedure used to determine the homogenised properties of an 

abradable with a given Rockwell Hardness is presented in Fig. 3. To 
begin a target Rockwell Hardness was set, and a swarm of particles 
initialised using Latin Hypercube Sampling (LHS). The initial particle 
values of Young’s Modulus, E, Poisson’s ratio, ν, strength coefficient, K, 
strain hardening exponent, η, and yield stress, σy, were placed inside the 
property bounds previously shown. To capture post yield behaviour a 
power law hardening rule has been used. The homogenised material 
property bounds used for the NN were the same as those used to gather 
the training data. 

Following the initial particle placement, the Rockwell Hardness for 
each particle was determined. From this the current objective function, 
defined as the absolute difference between the target hardness, X, and 
estimated hardness, X, as shown in Eq. (2) was calculated for all 
particles. 

Objective Function = |X − X| (2) 

Each individual particles’ best position and the global best position 
were saved, and then used to update the position and velocity of each 
particle, as shown in Eq. (3) and Eq. (4) respectively. 

xi
t+1 = xi

t + Vi
t (3)  

Vi
t+1 = ωVi

t + r1tC1
(
Pi

t − xi
t

)
+ r2tC2

(
Gi

t − xi
t

)
(4) 

Here i corresponds to the ith particle, and t is the tth iteration of the 
optimisation. The position of a particle i at increment t is xi

t and similarly 
its velocity is Vi

t. As shown in Eq. (3), the position of particle i in the next 
increment is simply the sum of its current position and velocity. To 
calculate the updated velocity Vi

t+1 three distinct terms were summed 
together which control the inertial, cognitive, and social behaviour of 
each particle, as shown in Eq. (4). The inertial term comprises an inertial 
weight ω and is multiplied by the ith particles current velocity, thus 
influencing the effect Vi

t has on Vi
t+1. Next is the cognitive term, where C1 

is the cognitive weighting, Pi
t is the best position found by the ith particle 

up to the current iteration, and r1t is a uniformly distributed random 
number in [0, 1]. The purpose of r1t is to prevent particles moving 
directly towards personal and global best solutions, which subsequently 
diversifies the particles and creates more effective searches [25]. Lastly 

Fig. 3. Flowchart of the homogenised property optimisation process.  

Fig. 4. Generic NACA 9406 blade.  
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is the social term, where C2 is the social weighting, Gi
t the global best 

position found up to the current iteration by any particle, and r2t is a 
different uniformly distributed random number in [0,1]. Following 
limited testing, ω, C1, and C2 were set as 0.5, 1, and 0.75 respectively. 
This created a cognitive swarm where each particle was influenced more 
so by its own history rather than that of the swarm. In general, a 
cognitive swarm will take longer to converge on a solution, but the 
parameter fields will have been better explored, increasing the 

likelihood of obtaining a globally optimised solution. This process was 
then repeated until either the maximum number of iterations was met, 
or until the global best solution did not improve by more than 1×

10− 6 over the next 250 iterations. 

2.4. Blade rub simulations 

To examine the severity of blade-casing interactions over the range 
of possible abradable hardnesses a series of blade-casing rub models 
were run. For the Ti-6Al-4V blade, a NACA 9406 geometry was chosen, 
the basic dimensions of which are shown in Fig. 4, the blade tip is 
twisted by 25◦ with respect to the blade base about the mid-chord 
position. 

The abradable section comprised an abradable liner with a Ti-6Al-4V 
backing, the internal radius of the abradable ring was 295 mm while the 
blade tip radius was 260 mm as shown in Fig. 5. This ensured a gradual 
contact, with the maximum incursion depth being set at 5 μm. An AlSi- 
PES abradable typically has an acceptable HR15Y value between 50 and 
80 [3,9], therefore blade-casing rubs were modelled with abradable 
properties corresponding to each of these extremes and a mid-value of 
65. AlSi-PES is found in the early compressor stages where blade tip 
speeds are in the order of 400m.s− 1, which is the speed that was used and 
equates to approximately 14,700 rpm [9]. 

Fig. 5. Schematic representation of the blade rub model.  

Fig. 6. Schematic representation of strain measurement positions. Left: Flap-
wise; Right: Torsional. 

Fig. 7. A) Validation set MSEs for increasing training set sizes; B) P-values of MSEs with training set size; C) F-values of MSEs with training set size.  
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The blade was considered as elastic with a stiffness of 110 GPa and 
Poisson’s ratio of 0.3 [26]. The abradable was considered to follow 
Ludwik’s power law hardening rule as described by Eq. (5), where σ is 
the post yield stress at a given strain, K is the strength coefficient, σy 
yield stress, εplastic is strain after yield, and n the strain hardening 
exponent. 

σ = σy + K
(
εplastic

)n (5) 

Upon completion of the blade rub models, strains aligned with 
(flapwise) and perpendicular (torsional) to the blade height at the 
leading edge (LE), mid-chord (MC), and trailing edge (TE) were ob-
tained, shown in Fig. 6. This strain data was then processed using a 
Wavelet Synchrosqueezed Transform (WSST), which has the benefit of 
having good time resolution at high frequencies enabling the detection 
of highly transient signal components. These WSSTs were then plotted 
and compared to each other and to the blade’s natural frequencies at the 
test speed, showing how the dominant frequencies evolve over time for 
each of the hardnesses at the three previously mentioned locations. The 
resultant contact forces at the blade tip were also extracted from the 
model, and the peak loads found. 

3. Results and discussion 

A NN was trained using ground truth data gathered from simulated 
HR15Y tests with the number of training points being determined by a 
convergence study. The NN was then used to estimate homogenised 
AlSi-PES abradable properties through the range of its acceptable 
hardness values. These estimated homogenised properties are compared 
to those in the literature and used to model blade-casing interactions. 

Fig. 8. Lower corner: Pairs plot with NN inputs and output absolute errors; Diagonal: Kernel density estimations; Upper corner: Pearson correlations between pairs.  

Fig. 9. Ground truth predictions vs. NN predictions.  
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Fig. 10. Violin plots showing the particle distributions for each of the optimisation inputs in addition to the cost distribution. Top HR15Y 50; Middle HR15Y 65; 
Bottom HR15Y 80. 
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3.1. Neural network behaviour 

From the NN training convergence study, the NN validation losses 
begin to plateau at 900 training points as shown in Fig. 7a. The results of 
the t-test and f-test, used to determine if any statistically significant 
differences existed between the maximum and second largest datasets 
sample means and variability respectively, are shown in Fig. 7b and c. 
For the t-test, the alpha value was set at 5 % and the first point with a p- 
value greater than this had a training set size of 1800. Similarly, the f- 
value was also less than the critical value with this training set size. 
Therefore, a training set size of 1800 was used as statistically significant 
improvements with respect to the previous set size were not seen. 

A set of 140 blind data points were also fed through the newly 
trained network so the absolute error in hardness predictions for pre-
viously unseen data could be calculated. Each of the inputs and the 
absolute error of each prediction could then be plotted in a pairs plot, 
shown in Fig. 8. The absolute errors were then compared to the vali-
dation Mean Absolute Error (MEA) of the NN which was 1.7 %, the 
predictions with errors smaller than or equal to the network are shown 
in blue and those errors larger than the network are shown in orange. It 
can clearly be seen that the network is well generalised and that the 
network has can perform well over the entire range of possible input 
properties, and that the vast majority of errors were less than 5 %. 
Additionally, the largest of these errors occur at the lowest stiffnesses 
and measured hardnesses, this is not seen as an issue as these low 
hardnesses are outside of acceptable limits. The accuracy of the hardness 
predictions alone is perhaps easier to see in Fig. 9, here the NN pre-
dictions are plotted against the FEA ground truth hardness. The strong 
agreement is clear, with almost all of the points falling within the 95 % 
confidence interval over the full range of hardnesses. 

The upper right-hand corner of Fig. 8 shows the Pearson correlations 
of the pairs with better than or equal to NN MAE. Here the stiffness is 
seen to be the most dominant input variable and has a strong positive 
correlation with the measured hardness. This can also be seen in the 
similar correlations for the stiffness and hardness versus the error. 
Furthermore, the Poisson’s ratio appears to have no correlation with 
increasing hardness, indicating that in future studies this value can be 
fixed and omitted from the optimisation. 

Additionally, the network was significantly quicker. Using FEA, the 
time to compute the hardnesses of 50 different abradables was in the 
order of 1 hour, whereas the network took approximately 1.5 seconds, a 
speed increase of 2400 times. This significant speed advantage enabled 
much larger particle swarms to be ran for longer, increasing the likeli-
hood of all the particles finding and converging on the global best 
solution. 

3.2. Particle swarm optimisation 

Using the NN to estimate the Rockwell Hardness at each of the 
particle coordinates during the PSO proved effective. As shown by the 
violin plots in Fig 10, each of the particles generally converged for all of 
the properties for each hardness, this implies that a global best solution 
has been found. Some apparent exceptions to this are the Young’s 
Modulus and strength coefficient for HR15Y 50 and the yield stress and 
strength coefficient for HR15Y 65, with a large disparity between the 
minimum and maximum values. However, it can be seen that the ma-
jority of particles are distributed around the mean indicating that they 
are in close proximity to the global best solution. Interestingly the PSO 
appeared to quickly find the global best solution, but the cognitive na-
ture of the swarm meant that run times were in the order of 500 – 1000 
iterations, rather than a few tens of iterations when the global best 
seemed to be found. 

The global best solutions for each of the hardnesses investigated are 
presented in Table 2. These stiffnesses are consistent with those reported 
in the literature. Duramou et al. [12] reported E to be 7.9 GPa via FE 
simulations and confirmed this by means of a bending test which gave a 
value of 7 GPa. Using a one cell per pixel approach to directly recreate 
an AlSi-PES abradables microstructure from its micrograph for FE sim-
ulations without geometric simplification, Bolot et al. [13] reported Ex 
and Ey to be 7.6 GPa and 6.1 GPa respectively. The stress-strain curves 
for each of the considered hardness are shown in Fig. 11. For the HR15Y 
50 and 65 curves there is little difference in the strain hardening rate and 
yield stress, with the most pronounced change being in the stiffness, as 
expected given that this is the most dominant input variable. For HR15Y 
80 there again is a significant change in the stiffness in addition to the 
strain hardening exponent, and not significant change in the yield 
strength. In fact, one might have expected the yield strength to increase 
as the physical material would contain less of the dislocator phase and 
porosities. This is likely an artefact of there being no damage in the 
indentation model, and with the high stiffness a lower yield stress was 
needed to ensure yielding did occur and that a HR15Y value of 100 was 
not returned. 

3.3. Blade-casing interactions 

To begin the natural frequencies of the blade at the test speed of 
14,700 rpm were found and are shown in Table 3, 3rd torsion is the 
highest mode considered as subsequent modes approach the output 
frequency of the model data meaning that the Nyquist rule cannot be 
followed when sampling the data. 

The raw flapwise and torsional strain data for each of the hardnesses 
and positions was processed using WSSTs as shown in the Appendix, 
while the flapwise LE and torsional MC WSSTs that showed the greatest 
variation across the hardnesses are shown in Fig. 12. It can be seen that 
the excited frequencies seen in the flapwise direction are similar, with 
the biggest difference being in the high energy modes. That is, for 

Table 2 
Homogenised material properties from Rockwell Hardness NN.  

Rockwell 
Hardness 

Ehomogenised 

[MPa] 
σy,homogenised 

[MPa] 
Khomogenised 

[MPa] 
nhomogenised vhomogenised 

50 4687 42 115  0.39  0.087 
65 7163 44 149  0.41  0.095 
80 15240 38 390  0.54  0.14  

Fig. 11. Corresponding stress-strain curves for each hardness.  

Table 3 
Natural frequencies for the generic NACA 9406 blade.  

Mode 1st 
Flap 

1st 
Torsion 

2nd 
Flap 

2nd 
Torsion 

Edgewise 3rd 
Torsion 

Frequency 
[Hz] 

811 2069 3125 4358 5855 6561  
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Fig. 12. WSST plots for all hardnesses. Left: Flapwise LE; Right: Torsional MC.  

Fig. 13. Contact forces for all tested abradables with the peak contact forces highlighted.  
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HR15Y 80 the frequencies corresponding to the edgewise mode are more 
pronounced particularly between 50 and 80 ms than in the softer 
abradables. A potential cause for this is that more energy was being put 
into the blade with harder abradables due to the increased contact 
forces, seen in Fig. 13. Additionally, for the softest abradable there ap-
pears to be a much greater variation in the dominant modes at the 
highest frequencies suggesting that some mode mixing was perhaps 
occurring between the edgewise and 3rd torsional modes. With respect 
to the strains measured in the torsional direction, the differences are 
clear across the hardnesses, namely the changes around 2nd flap and 3rd 
torsion. For the HR15Y 50 abradable the frequencies corresponding to 
the 2nd flapwise and torsional modes were poorly resolved between 10 
and 80 ms inferring both of these modes are present. Interestingly, there 
is also a distinctive band at 3rd torsion which is barely visible and not at 
all visible for HR15Y 65 and 80 respectively. The more pronounced 
frequency bands around the 2nd and 3rd torsional modes for the softest 
abradable implies that more torsional loading was being put into the 
blade by contacts that were initiated either at the LE or TE, rather than 
equally across the blade tip chord length. This is expected for the softer 
abradables, as they yield easily producing an uneven contact abradable 
surface for the following rubs. The majority of the flapwise modes are 
seen at the LE as the MC is the thickest point of the blade so minimal 
bending in the flapwise direction is seen here, while the MC is where the 
blade naturally twists around so torsional strains are well defined here. 

As previously mentioned, another important difference is the contact 
forces seen during rub events, as they provide insight to the energy put 
into the blade. In the case of this elastic blade, higher contact forces 
simply produced vibrations with greater amplitudes. The resultant 
contact forces during these blade-casing interaction models are shown in 
Fig. 13. For the two softest abradables, there was a downward trend in 
the resultant contact forces as the abradable yields with little strain 
hardening, so rubs are shallower resulting in smaller radial forces 
pushing the blade tip down. Conversely, the hardest abradable did not 
yield as easily and when it did, there was significant strain hardening, 
hence the reduction in contact forces as a result of shallower rubs are 
partially negated by the high strain hardening rate. 

From this we can begin to conclude that for the NACA 9406 blade at 
14,700 rpm the abradable with a hardness of HR15Y 65 is best as it has 
the same low resultant contact forces as the softest abradable but 
without exciting additional torsional modes. It is worth noting that this 
work aimed to begin bridging the gap between the bulk hardness mea-
surements commonly used to categorise abradables and how these are 
linked to the constitutive properties of the abradables. A single set of 
properties are often used to describe an abradable and this work has 
shown the importance using representative properties across all hard-
nesses so that blade and abradable systems can be optimised. In future 
work particular attention needs to be paid to the particular damage 
mechanisms in the abradable. Also, when running blade-casing inter-
action simulations attention to abradable removal and evolving prop-
erties from, for example, compaction or frictional heating needs to be 
considered. 

4. Conclusions 

This present study provides a method for estimating the homoge-
nised properties of an abradable for a given HR15Y hardness via an 
inverse optimisation procedure using PSO and a NN. These optimised 
properties were then used to simulate blade-casing interactions between 
a Ti-6Al-4V blade and an AlSi-PES abradable. This has provided a link 

between a commonly used bulk hardness measurement and useful 
constituent properties. The ability to simulate blade-casing interactions 
over a wide range of abradable hardnesses will allow specific blade 
geometries to be paired with an optimum abradable specification. This 
study has shown that a well generalised NN is capable of estimating the 
homogenised properties of an abradable with a given HR15Y hardness, 
and when combined with PSO it is able to quickly find the global best set 
of homogenised properties. The set of blade-casing interaction studies 
have shown that subtle differences in the dominant frequencies can be 
seen, which can be described by how softer abradables yield more easily 
leading to non-uniform contacts across the blade tip chord length. 
Furthermore, substantial differences in the resultant contact forces for 
different hardness abradables have been seen. Overall, an efficient 
optimisation process has been developed that is able to capture the 
constitutive behaviour of abradables with differing hardnesses. 

In future work, the damage evolution within the abradable needs to 
be considered to capture the debonding of particles. Also, future blade- 
casing interaction models will need to capture abradable removal and 
the evolution of abradable properties due to, for example, compaction 
and excessive frictional heating. Experimentally, there is a need to 
characterise abradables of known hardness to provide further validation 
and to further bridge this gap between constitutive properties that are 
essential for modelling and the hardness tests that are often used in in-
dustry to quickly decide if an abradable is within acceptable bounds. 
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