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Cooperative Double-Layer Genetic Programming
Hyper-Heuristic for Online Container Terminal

Truck Dispatching
Xinan Chen, Ruibin Bai*, Rong Qu, and Haibo Dong

Abstract—In a marine container terminal, truck dispatching
is a crucial problem that impacts on the operation efficiency
of the whole port. Traditionally, this problem is formulated as
an offline optimisation problem, whose solutions are, however,
impractical for most real-world scenarios primarily because of
the uncertainties of dynamic events in both yard operations
and seaside loading–unloading operations. These solutions are
either unattractive or infeasible to execute. Herein, for more
intelligent handling of these uncertainties and dynamics, a novel
cooperative double-layer genetic programming hyper-heuristic
(CD-GPHH) is proposed to tackle this challenging online optimi-
sation problem. In this new CD-GPHH, a novel scenario genetic
programming (GP) approach is added on top of a traditional
GP method that chooses among different GP heuristics for
different scenarios to facilitate optimised truck dispatching. In
contrast to traditional arithmetic GP (AGP) and GP with logic
operators (LGP) which only evolve on one population, our CD-
GPHH method separates the scenario and the calculation into
two populations, which improved the quality of solutions in multi-
scenario problems while reducing the search space. Experimental
results show that our CD-GPHH dominates AGP and LGP in
solving a multi-scenario function fitting problem as well as a
truck dispatching problem in container terminal.

Index Terms—hyper-heuristic, genetic programming, coopera-
tive algorithm, online truck dispatching, container port

I. INTRODUCTION

INTERNATIONAL maritime transportation has seen a sig-
nificant growth and will continue growing [1]. Such con-

tinual growth has stretched (and in some cases, overwhelmed)
the capacity of seaport container terminals. However, because
of geographical or resource limitations, many terminals cannot
quickly expand in size or upgrade their equipment to satisfy
the increasing demand. Consequently, container terminals are
under pressure to become more efficient, and intelligent al-
gorithms that optimise the use of container terminal resources
are promising solutions. In improving the operations efficiency
at terminals, many port companies have chosen to start by
tackling the crucial truck dispatching problem which connects
the seaside operations closely with activities at the yard areas.

Although many studies have successfully developed of-
fline optimisation approaches to solve the truck dispatching
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problem, these offline optimisation strategies adopt simplified
models and are inapplicable to the actual port environment.
In particular, most of these models overlooked many uncer-
tain factors that are at play in marine container terminals:
crane operators and truck drivers have distinctive operating
habits and operating times, ships may not dock on time,
and equipment may break down. In our field and simulated
tests, although the offline optimisation strategies like integer
programming, genetic algorithm and A* search algorithm
can achieve good results for the first few tasks, the static
model processes subsequent tasks in a fairly arbitrary manner
when the operation is disrupted by unknown events halfway
through the process. Therefore, considering the practical needs
of port companies, this paper proposed a novel evolutionary
optimisation method that can fully handle the uncertainties in
a real-world setting.

In one of our previous studies [2], experts were first con-
sulted, and their experience was subsequently used to manually
crafted heuristics to guide online dispatching, helping the port
in our study to significantly reduce the intensive work of
truck dispatchers. Despite these desirable results of our man-
ually designed heuristics, considerable expertise is required to
construct these heuristics, which only account for some but
not all problem scenarios. Every time the container terminal
changes its equipment, route scheduling, or task scheduling
strategy, these heuristics must be refined by experts, demand-
ing extensive extra time and cost. In addition, due to humans
cognitive limitations, experts can only explore heuristics over
a very small fraction of the overall search space, which is
far from realising the full potential of heuristic algorithms. A
data-driven genetic programming (GP)-based heuristic method
was investigated to generate heuristics [3] from previous
operation data. Despite the superiority of this GP heuristic
algorithm compared with manually designed heuristics (see
the test result in Section V), we found that arithmetic genetic
programming (AGP) without logic operators, such as ‘>’, ‘<’,
and ‘IF-ELSE’, cannot fully express stochastic multi-scenario
problems with a discontinuous solution space. Unfortunately,
many problems, such as truck dispatching in terminals, typify
these stochastic multi-scenario problems which are featured
with many scenarios across different periods of time.

In the truck dispatching problem, various problem parame-
ters/features have different degrees of influence in different
scenarios. For example, the average quay crane load time
and average quay crane unload time have more influence
in scenarios dominated by loading and unloading operations,
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respectively. An AGP method would struggle to deal with such
cases. This can be illustrated, as an example, by a piecewise-
linear function in (1), where the value of x decides the
scenarios and the corresponding results. To handle such prob-
lems, researchers usually choose the GP with logic operators
(LGP). However, directly adding more operators considerably
increases the size of the search space [4], making the search
time impractically long, and resulting unsatisfactory solutions
due to poor convergence quality. As shown in Fig. 10 and
Fig. 11, both AGP and LGP converge to poor local optima
instead of the true global optimum after 300 generations.
Although LGP performs better than AGP thanks to the logic
operators, unfortunately they introduce a significantly bigger
search space and poor convergence in some scenarios even
with the ability to fully express the function.

y =



x (x < 1)

x2 (1 ≤ x < 3)

x3 (3 ≤ x < 5)

x4 (5 ≤ x < 7)

x5 (7 ≤ x)

(1)

In this research, we investigate a hierarchical GP encoding
structure that can take utmost advantage of logic operators in
GP, while at the same time avoid the exponential growth in
search space. The proposed algorithm can efficiently handle
the complexities and dynamics of real-life seaport terminal
truck scheduling. Inspired by research on cooperative coevo-
lution GP [5], [6] and novel GP representations [7], [8], [9],
we introduce a cooperative double-layer GP Hyper-heuristic
(CD-GPHH) to divide scenario grouping and dispatch ordering
into two different subpopulations, in an attempt to improve
readability and enhance solution quality for complex dynamic
vehicle scheduling problems. In this proposed method, GP
individuals are separated into two cooperative layers: a high-
scenario layer and a normal-calculation layer, each of which
with independent mutation and crossover strategies. Individ-
uals in the high-scenario layer will decide which normal-
calculation individual to employ for generating solutions in
a specific scenario.

The goal of this study is to develop an effective GP approach
to automatically evolve high quality dynamic truck dispatching
heuristics to support port companies make decisions in real
time (a trained GP expression can generate a dispatch decision
almost instantaneously), thus to cope with challenges of multi-
scenarios of uncertainties. We tested and compared the AGP,
LGP, and our proposed CD-GPHH for both a simple function
fitting problem, expressed in (1), as well as a real-world
marine container terminal truck dispatching problem. Our
work makes two major contributions. First, we demonstrate
the effectiveness of using GPHH in solving a real-world
online combinatorial optimisation problem faced in many large
container ports. Second, we propose a novel bi-level solution
framework that can explicitly exploit the structures of scenario
switches in many real-world problems and hence improve
upon the previously proposed GPHH.

The rest of the paper is organised as follows. Section II
provides some background of the research and a review of

the relevant literature. Section III details on the model and
mathematical formulation of the dynamic truck dispatching
problem for marine container terminals. Section IV describes
the details of the proposed algorithm. Section V presents the
experimental design, results and analysis. Finally, Section VI
concludes the paper and suggests future research directions.

II. BACKGROUND AND LITERATURE REVIEW

A. Marine Container Terminal Optimisation

As illustrated in Fig. 1, a marine container terminal can be
divided into three major parts: the berth area, yard area, and
entry–exit area (the example terminal contains five berths). A
fixed number of quay cranes (QCs) deployed along berths for
loading (and unloading) containers onto (and from) vessels. A
single rail is built along the berth line to enable QCs moving
between different berths, but they cannot cross each other. The
yard is a temporary container storage area and is often divided
into similar-sized yard blocks. Each yard block is identified
by a unique ID (e.g. 55, 5H at the center of the yard area)
and has 1-2 yard cranes (YCs) or similar type of equipment to
complete loading and unloading tasks. Both QCs and YCs can
only operate unit sized containers each time hence queues are
possible at each operation point. Typically, berths are built in
deep sea water areas and connected to yards by a small road
network consisting of bridges across the shallow water regions,
road segments and intersections. Trucks (or more specifically
inner trucks) are used to transport containers between QCs
and YCs via this road network and strict traffic regulations are
enforced to ensure safety and relieve congestion. The entry–
exit area are gates that control the external truck visits.

In most cases, a container terminal primarily aims to im-
prove the efficiency of the sea-side (i.e. QCs) operations so that
vessel service times can be minimized and the overall turnover
can be maximized. However, because of the interrelations
between sea-side and land-side operations, often both QCs,
YCs and trucks are considered as schedulable equipment
for optimization. The resulting problem becomes extremely
challenging due to the following factors: First, the problem
is often in large scale caused by the number of containers
to be handled as well as the number of QCs, YCs and
trucks involved; Second, The problem is highly non-linear
because all of the schedulable equipment (QCs, YCs, trucks)
can handle unit sized containers only each time and queues
and waiting becomes unavoidable; Last but least, uncertainties
at different stages of operations (processing times by QCs,
YCs, and trucks) are common and predefined plans based on
deterministic models would mostly fail.

Considerable recent research has focused on the efficiency
of QCs, YCs, and trucks to help port companies cope
with soaring demand. Paul et al. [10], Kim and Park [11],
Kaveshgar et al. [12], and other researchers [13], [14], [15]
have developed different optimisation methods to reduce the
makespan of QCs. According to their results, QC makespan
can be reduced by adjusting the number, position, or operation
sequence of QCs. However, improvements in these studies
are extremely dependent on sufficient truck supplies. If truck
supply is insufficient for the QCs, the QCs must stop and wait
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Fig. 1. A Bird-view of a Marine Container Terminal (Ningbo Meishan Port)

for available trucks, which greatly decreases QC efficiency.
Furthermore, after Lai et al. [16] provided an overview of
several YC schedule modules, Zhang et al. [17], Chen et al.
[18], and other researchers [19], [20], [21] discovered that
the moving distance and travel time of YCs can be decreased
through shuffling the task sequence and changing the container
storage location. These studies on QCs and YCs have been
useful but limited to the yard or berth area, and most of these
studies have assumed an infinite supplies of trucks, which is
unrealistic and unhelpful for ports in reducing ship dock time.
Subsequently, researchers have found that to further improve
the port’s turnover efficiency, QCs and YCs must be jointly
optimised, with trucks as the links that connect all terminal
equipment.

In contrast to the optimisation of QCs and YCs, the
optimisation of truck dispatching is required for not only
increasing local equipment efficiency in the berth or yard
area but also improving the efficiency of the entire port.
This is because almost all other equipment in the container
terminal must interact with trucks. Many methods have been
investigated to tackle the problem, including classical integer
programming [22], min–max nonlinear integer programming
[23], greedy algorithms [24], novel heuristic algorithms [22]
and genetic algorithms [25], [26], [27]. Most studies reported
good performance measured by reduction in ship dock time,
empty-truck travel distance or the overall truck travel distance.

In real-world marine container terminals, QCs or YCs have
different operating times when operating different containers,
task sequences may be switched, and trucks do not travel

at a constant speed. Because of the influence of such real-
world stochasticity, offline methods, such as integer program-
ming, require additional time to recalculate dispatching plans
whenever the environment changes; otherwise, the results
could become inapplicable. Some of the successful offline
solutions such as genetic algorithms [28], metaheuristics [29],
simulation-based optimisation [30], can tolerate uncertainty to
a limited degree. When the uncertainties become higher, it is
very difficult to adapt these algorithms easily [31].

Consequently, a previous study [2] attempted to resolve
these issues and proposed an online heuristic-based truck
dispatching method which uses heuristics to dispatch a task to
each idle truck dynamically according to the real-time values
of uncertain variables as well as the states of other key features
of the port. Like many greedy algorithms, this heuristic method
provides relatively good solutions but has no guarantee in
terms of optimality [32]. Another drawback of this manual
heuristic from domain experts is its lack of adaptivity in multi-
scenario problems, leading to considerable research efforts in
developing hyper-heuristics that perform well across different
scenarios and problem domains.

B. Hyper-heuristic

Hyper-heuristic was initially proposed as a general purpose,
fast-prototype search methodology. It uses heuristics to
select or generate heuristics to, in turn, resolve
a wide range of problems with acceptable solution quality [33],
[34]. Hyper-heuristics differ from metaheuristics in that the
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Fig. 2. Hyper-heuristic Framework

search in hyper-heuristics is applied to the space of heuristics,
instead of the space of solutions. The underlying assumption
of hyper-heuristics is that the heuristic space is less problem
dependent than the solution space is. Thus, a more general
search method can be developed by searching the solution
space indirectly through the heuristic space. Although the
No Free Lunch theorem [35] states that it is impossible to
develop a truly general-purpose, universal optimisation method
for all problems and instances, an adaptive method suitable
for problems that share distinct characteristics and structures
can be developed. This underpins hyper-heuristics, which use
different learning mechanisms (both online and offline) to
improve the generality of an algorithm to different problems
and scenarios.

As illustrated in Fig. 2, a hyper-heuristic adopts a two-
level structure, comprising a high-level heuristic and a set of
low-level heuristics that operate on solutions. The high-level
heuristic does not interact with problems directly; instead, it
either adaptively selects from a set of predefined heuristics to
solve the problems at hand or learn to generate new heuristics
for the problem. The high-level heuristic typically utilises ex-
perience data collected during the problem solving to assist in
selecting or generating appropriate low-level heuristics. Stud-
ies have reported that hyper-heuristics perform better than their
counterparts when solving multiple complex problems, such
as educational timetabling [36], [37], two-dimensional strip
packing [38], [39], multiobjective release planning [40], [41],
vehicle routing [42], [43]. Very few studies have used hyper-
heuristics in solving truck dispatching problem in marine
container terminals. Furthermore, most of the existing studies
have mainly focused on selective hyper-heuristics. Generative
hyper-heuristics that support multi-scenario dynamics are less
reported in the literature.

C. GP

First proposed by Fogel et al. [44], GP is an evolutionary
computation method that evolves a population of programs
(often encoded as GP trees) through an evolutionary process
(selection, crossover, mutation, and replacement). GP has been
used in solving many engineering and optimisation problems.
Su et al. [45] indicated that, compared with other methods like
decision tree, logistic regression, support vector machine, and

artificial neural networks, GP has three major advantages when
solving optimisation problems. Firstly, GP has flexible rep-
resentations; secondly, GP has powerful search mechanisms;
lastly, GP generated heuristics are partially interpretable and
very efficient in execution which enhances their applicability
in practice. Because of these advantages, in this study, GP
is considered as a strong candidate solution method for real-
world problems.

However, for more complex multi-scenario real-world prob-
lems, simple GP generated heuristics cannot meet the require-
ments. These heuristics only adapt to part of the situations,
but achieve unsatisfactory results in general. Therefore, some
researches introduced logic operators in GP and proposed to
use genetic programming hyper heuristic (GPHH) to select and
generate heuristics simultaneously. Like project scheduling
[46], [47], combinatorial bi-level optimization [48], [49], and
resource allocation [50], [51], GPHH has demonstrated its
outstanding ability in tackling intricate multi-scenario real-
world problems which encouraged us to apply it in this online
container terminal truck dispatching problem.

Traditionally, a GP tree uses a function operator in every
tree node and an operand in every internal terminal node.
This tree structure makes it fairly easy to encode, evolve, and
evaluate mathematical expressions. Meanwhile, GP algorithms
with non-tree structures have also been successfully developed,
such as linear GP [52], gene expression programming [53],
stack-based GP [54]. These aforementioned variety of GP
representations are typically efficient in executing genetic
operators and have performed well in various problems.
However, tree-based GP provides better visualisation, which
can enhance comprehensibility because the tree structure can
readily represent the logic of decision-making in complex
scenarios and can be translated into the form of a logic tree
to interact effectively with real-life decision-maker (by, for
example, port operators). Our proposed CD-GPHH method
adopts a similar tree-based solution structure but, additionally,
we explicitly separated decision-making into two levels: those
that broadly characterize the scenario patterns and those that
provide utility guidance. Section IV details our double-layer
GPHH structure.

III. PROBLEM DESCRIPTION AND FORMULATION

Formally, the problem in this paper is defined as follows. An
abstract container terminal is represented as a directed graph:
G = (A,C), where C = Q ∪ Y is the set of operation nodes
(or points of work operations for all tasks), Q and Y being
the sets of all QCs and YCs, respectively. A is the set of
direct driving connections between different nodes. Let d be
the truck depot where all trucks depart from at the beginning
of the operation and return to once all tasks are completed.
The set V = {v1, v2, v3, . . . , vm} represents the set of m
trucks available for assignment. A function τ(x, y) maps two
different operation points x, y ∈ C(x 6= y) to the travel time
from x to y, while respecting the traffic rules of the actual
terminal road network.

The following constraints must be satisfied. First, the con-
tainers are consolidated into unit-sized tasks, each of which
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can be handled by QC, YCs and trucks in one operation. In
practice, a task consists of two small containers (i.e. twenty-
foot equivalent unit, TEU), or one large container (forty-foot
equivalent unit). Each task has exactly three operations in
sequence. For import containers, the three operations are un-
loading from vessel to a truck by QC, transport from sea-side
to yard by the truck and then stacking to the designated yard
block by a YC. At any time, an equipment (QC, YC or Truck)
can only handle one task. When the required equipment is
busy, the operation must wait. For export containers, the three
operations include YC loading a container from yard to truck,
truck transporting the container from yard to berth and finally
QC loading it onto the vessel. Second, each QC will execute
one type of operations only (i.e. load or unload but not both)
for any given vessel. Third, the tasks are given in the form of a
set of work instruction lists W = {IL1, IL2, IL3, . . . , IL|Q|},
where ILq is the tasks associated with quay crane q ∈ Q. For
loading-only QCs, the completion of the tasks must follow the
same order specified in their corresponding instruction lists,
while for unloading QCs, the execution order of the tasks can
have a maximum sn deviation from their original position in
the order. In this paper, we set sn = 3 as suggested by our
collaborator.

Denote W = {w1, w2, w3, . . . , wn} be the set of all tasks
that must be completed, where n is the total number of tasks.
The container count of task wi is denoted as sizei (i.e. for a
merged task with two small containers, sizei = 2. otherwise
sizei = 1). The source and destination nodes for each wi are
denoted by ai and bi, respectively, and ai, bi ∈ C. Denote
si be the start time of task wi at its source node and ei be
its completion time at the destination node. Denote soti and
eoti be the operation time of wi at source and destination
nodes, respectively, and their sum as oti. The operation times
at both QCs and YCs are assumed stochastic and are drawn
from estimated probability distributions based on the historical
data.

To model the problem formally, the assignments of tasks to
trucks are defined by the following binary variable in (2):

α(vi, wj) =

{
1 wj is assigned to vi
0 otherwise

(2)

The following auxiliary variable is defined to indicate
whether wk is serviced immediately after task wj by truck
vi.

β(vi, wj , wk) =

{
1 wk is visited right after wj by vi
0 otherwise

(3)

The order of tasks belonging to a same crane ci ∈ C is
described by (4).

γ(ci, wj , wk) =

{
1 wk is followed by wj in ci
0 otherwise.

(4)

The main goal in a truck dispatching problem for container
terminals is to increase the profit of the port company by
improving turnover and reducing the waiting time of ships.

A variety of metrics can be used to measure the extent to
which this goal is achieved. We adopt the objective to be
units per hour, which calculates the total number of containers
processed per hour by all QCs in the terminal. This is because
most port companies use this as the primary indicator to
compare their operation efficiency against their competitors.
Note that units-per-hour metric is equivalent to the makespan
used in many scheduling problems when the set of tasks are
fixed. Given these definitions, our truck dispatching problem
can be modelled as follows:

max(

∑n
i=1 sizei

maxE −minS
) (5)

m∑
i=1

α(vi, wj) = 1 ∀wj ∈W (6)

m∑
i=1

n∑
k=1

β(vi, wj , wk) ≤ 1 ∀wj ∈W (7)

max(x,y)∑
i=min(x,y)

max(x,y)∑
j=min(x,y)

γ(ax, wi, wj) ≤ sn

{x, y|γ(ax, wx, wy) = 1,∀x 6= y, ax = ay ∈ Q}

(8)


|C|∑
i=1

max(x,y)∑
j=min(x,y)

max(x,y)∑
k=min(x,y)

γ(ci, wj , wk) = 1

y > x

{x, y|
|C|∑
i=1

γ(ci, wx, wy) = 1, ax = ay 6∈ Q or ax 6= ay}

(9)

si = max



n∑
j=1

m∑
k=1

β(vk, wj , wi) · (t(bj , ai) + ej)

t(d, ai) · (1−
n∑

j=1

m∑
k=1

β(vk, wj , wi))

(10)

ei = max


max(si,

n∑
j=1

γ(ai, wj , wi) · ej) + τ(ai, bi) + oti

n∑
j=1

γ(bi, wj , wi) · ej + eoti

(11)
The objective defined in (5) is the average production speed

per unit time (hour), where maxE and minS are the end
time of the last completed task and the start time of the
first initialised task, respectively. The constraint expressed in
(6) ensures that each task is assigned exactly to one truck,
and the constraint expressed in (7) ensures that each task is
followed by a maximum one other task or by nothing if it is
the last task for the truck. For each crane, due to the rules
governing container terminal transportation, the constraints in
(8) and (9) ensure that tasks of the same crane cannot start
until its preceding task is completed, with the exception of
the unload tasks in QCs, for which the operational sequence
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can be swapped between the sn = 3 neighbouring tasks. The
constraints in (10) and (11) compute the tasks’ start times and
end times and ensure that tasks will initialise crane operation
after the crane operations of the previous tasks are completed.

Studies have reported that the truck dispatching problem
for marine container terminals is NP-hard because it can be
reduced to the vehicle routing problem [55]; in other words,
the computational time required to search for the optimal
solution increases exponentially with the size of the problem.
Although previous studies have used various metaheuristics to
tackle this problem, these metaheuristics have rested on the
assumption of perfectly predictable crane operation times oti
for all tasks in W prior to the problem solving, which, as
discussed earlier, are highly stochastic and impossible to fully
predict in advance.

Consequently, we defined this problem as an online optimi-
sation problem and used GP-based generative hyper-heuristics
to solve it. We discuss this in the next section.

IV. METHODOLOGIES

We open this section by briefly introducing a dynamic truck
dispatching system in a real-world marine container terminal,
describing how it interacts with optimisation algorithms. Sub-
sequently, we describe four distinct heuristic methods which
are designed to solve this problem. Our overall research
addresses this challenging problem, and we have implemented
manually crafted heuristics and the AGP, which were detailed
in our previous study [3], as well as the LGP and CD-GPHH,
which is the focus of the present study.

To effectively cope with the dynamically changing business
environment and various uncertainties, most existing truck
dispatching systems in practice adopt dynamic dispatching
methods that must respond requests within a few seconds. Dy-
namic dispatching contains two essential parts: a dynamic dis-
patching system and a dispatch algorithm. By communicating
with the terminal operating system, the dynamic dispatching
system can obtain the real-time status of the port, and, through
cooperating with the dispatch algorithm, assigns each truck to
the most appropriate task according to the real-time status of
the port. The dispatching algorithm plays a crucial role in the
operation of the whole system. The choice of the algorithm
greatly affects the performance of the dynamic dispatching
system. In our previous study, we demonstrated the superiority
of the GP algorithm over manual heuristics [3]. However, in
practical tests with a port company, we found that the basic
GP algorithm fails to meet practical demands, especially when
dealing with constant changes of problem scenarios (inbound
dominated, outbound dominated, inbound/outbound balanced,
etc.). The proposed double-layer encoding scheme within a
GP based hyper-heuristic framework explicitly separates the
scenario grouping from the truck dispatching to enhance the
performance of the data-driven GP with the incorporation of
logic operators, meanwhile avoid dramatic increase in the size
of the search space. The individuals in the scenario grouping
layer and the truck dispatching layer share the same fitness
but evolve independently with separate crossover and mutation
operators.
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Fig. 3. Dynamic dispatching system flow chart

A. Terminal Dynamic Truck Dispatching System

The terminal dynamic truck dispatching system that inter-
acts with the dynamic dispatch algorithm and the terminal
operating system (TOS). Unlike static dispatching, dynamic
dispatching does not generate schedules for all tasks in ad-
vance. Rather, the system constantly interacts with the port
environment by sending out task assignments to idle trucks
in real time and conducts real-time monitoring of the changes
in key environmental parameters, such as vehicle distribution,
crane operation conditions, and vehicle queuing status. Per
the dispatching workflow illustrated in Fig. 3, this system has
a circular process flow where environmental information is
updated, truck are dispatched, and environmental information
is updated again. In doing so, the system can feed real-
time information to heuristic algorithms (such as traditional
heuristic shown in Table V and the proposed GP heuristics) to
select proper tasks and support dispatch decision-making. In
each loop, this system dispatches the single most appropriate
task to an idle truck based on the recommendation of the
dispatch algorithm module, if there remains unfinished tasks.
If all tasks have been completed, the system sends out no
instruction and waits for further tasks.

B. Manually crafted heuristics

At present, many container terminals still recruit coordi-
nators to manually optimise dispatching schemes and adjust
the number of trucks assigned to each work queue. Relying
on the experience of coordinators, most terminals can still
maintain a relatively high operating efficiency to fulfil market
demands. This indicates that skilled operators have, over the
years, developed operational experience and rules that can help
the port achieve effective truck dispatching. Therefore, through
communication, surveys, and questionnaires, we summarised
the experience of these skilled operators into a manually
crafted heuristic and applied it to real-world truck dispatching
in marine container terminals, detailed in Algorithm 1 as a
baseline for evaluating the performance of our current CD-
GPHH.

This manually crafted heuristic algorithm use several user
parameters that are set based on coordinators’ experience:
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Algorithm 1 Manually Crafted Heuristic Algorithm
Require: Parameters parameter, Travel Time t

function heuristic(QC, truck)
if crane truck num < desired trucks then

score← travel time ∗ (truck num− prority)
else

score← travel time ∗ desired trucks
end if
if truck num ≥ truck limit then

score← score+ 200000
end if
return score

end function

desired trucks (the most suitable truck number for the QC),
priority (the priority of the QC), truck limit (the maximum
number of trucks for a QC), along with other observed
variables in real-time: truck num (the number of trucks
working for the QC), and travel time (the travel time from
the current truck to the first (few) task’s source node of each
QC). These features are then used to calculate a score for
each available QC to reflect the preferences of each QC. The
algorithm dispatches the idled trucks to the most preferred
QCs in a decision tree-like fashion (see Algorithm 1).

C. AGP

Manually crafted heuristics usually focus on the most com-
mon scenarios and tend to dispatch trucks evenly among QCs,
while neglect other key parameters such as the number of
remaining tasks, the QCs’ and YCs’ operation time, and the
queues of trucks. The previous data-driven genetic program-
ming heuristic method in [3] was proposed to address of these
issues. The main idea was to use GP to evolve a heuristic that
shares a similar structure with the manual heuristic but its
parameters are trained automatically based on a large real-
world data set.

Algorithm 2 AGP, LGP, and CD-GPHH Evolution Algorithm
Require: Initial Parameters initial
p← NewPopulation
p.initial individuals(initial.population size)
generation← 0
while generation < initial.max generation do

p.calculate fitness()
p.penalize long individuals()
next generation← NewPopulation
while next generation.size() < p.size() do

Insert an individual to next generation by
Crossover, Mutation, or Reproduction in p

end while
p← next generation
generation← generation+ 1

end while

Algorithm 2 presents the main steps and components for
AGP, LGP and CD-GPHH. An initial population is first created
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Fig. 4. Crossover operation in AGP & LGP
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Fig. 5. Mutation operation in AGP & LGP

in according to the preset population size. In the evolution pro-
cess, the fitness of each individual is calculated according to
the objective in (5), plus a penalty term for oversized GP trees.
Subsequently, a new generation of population is generated, and
a random genetic operator between crossover, mutation, and
reproduction will be chosen to generate offsprings of the new
population. In this study, we adopted a non-elitist tournament
selection method to increase the diversity. The evolutionary
process is repeated until the maximum number of generations
is reached. The following subsections present the technical
details of these components.

1) Crossover: The crossover operation takes two parental
individuals selected through tournament selection
and produces two offsprings using a single point
crossover operation. An example is illustrated in Fig. 4,
where a subtree of parent 2 is combined with parent 1 to
generate offspring 1, whereas offspring 2 is resulted from a
merge of subtree 1 into parent 2.

2) Mutation: The mutation operation takes one individual
as input and generates a new offspring by a slight modification.
A mutation point is randomly selected to grow a new randomly
generated subtree that keeps the whole tree within the depth
limitation, as illustrated in Fig. 5.

3) Depth Restriction: To avoid the bloating problem, re-
searchers usually set a depth limit to the GP trees and discard
or prune any result that exceeds the limits. We used two
approaches in this study. The first method introduces a penalty
term into the fitness function to penalise individuals that are
too deep or have too many nodes. The second method sets
a maximum depth of subtrees for crossover and mutation
operations to generate resulting offsprings within the required
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depth limit.

D. LGP

Although AGP can address the shortcomings of manually
crafted heuristics by evolving parameterised heuristics from
historical data, the resulting solution can be extremely complex
and ineffective when handling problems involving multiple
scenarios (i.e. when the distribution of random variables
changes over time). For such problems, the use of some
discrete utility functions is more elegant and efficient. LGP
combining logic expressions with algorithmic trees presented
in the previous section, different subtrees can be generated for
different scenarios, which improves the performance of the
algorithm and produces results that are adaptive to complex
multiscenario problems. This ability to adapt to different
scenarios using a combination of the logic tree with arith-
metic trees follows the general framework underlying hyper-
heuristics [56], and the approach is thus also named as a
GPHH.

LGP trees with a positive probability of generating sev-
eral logic trees that sit at the top to select a number of
arithmetic trees at the bottom (Fig. 6). LGP shares similar
crossover and mutation operations with AGP but has additional
operators designed for the logic tree, as shown in Table I.
Moreover, a loosely-typed GP is used in LGP, which allows
arithmetic and logical operations being combined freely. When
performing logical calculations, numbers greater than 0 are
treated as logically true, and vice versa as logically false. In
this way, after the introduction of the ”IF-ELSE” operator,
different subtrees can be selected for calculation through the
logical values of the previous decision tree. Therefore, some
multiscenario problems difficult to be encoded by a single
depth-constrained arithmetic tree can now be more effectively
addressed in LGP. For example, with the assist of ”IF-ELSE”
operator and comparison operators, we can evolve a simple
LGP tree to represent the discontinuous function in (1) fairly
easily.

TABLE I
GP OPERATORS

Name Label Description Algorithm
add + Add operation AGP, LGP, CD-GPHH
sub - Minus operation AGP, LGP, CD-GPHH

multiply * Multiplication
operation

AGP, LGP, CD-GPHH

divide / Division
operation
(protected)

AGP, LGP, CD-GPHH

greater or equal >= Greater than or
equal to

LGP, CD-GPHH

less or equal <= Less than or
equal to

LGP, CD-GPHH

IF ELSE if else Conditional oper-
ator (if-else)

LGP

and & Logic AND LGP, CD-GPHH (only
in real-world problem)

or | Logic OR LGP, CD-GPHH (only
in real-world problem)

max max Return the maxi-
mum value

LGP, CD-GPHH (only
in real-world problem)

min min Return the mini-
mum value

LGP, CD-GPHH (only
in real-world problem)
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Fig. 7. CD-GPHH individual structure

E. CD-GPHH

Although LGP has shown promising performance in han-
dling complex discontinuous functions and adapting to multi-
scenario problems, these abilities tend to be unreliable and
only a few individuals in LGP population possess correct
structure with multiscenario abilities. This is because that
introducing logic operators greatly increases the search space
where it is extremely difficult for LGP to converge to a
good solution within a reasonable computational time. In our
previous experiments, LGP can produce some effective results
most of time, but lacks required reliability and consistency de-
manded in industrial operations. Furthermore, even the depth
of the GP tree is limited, the interpretability of the resulting
solutions is unsatisfactory because the logic expressions are
mixed with the arithmetic terms in a LGP tree without a
clear structure. When we tested the LGP solutions in a real-
world container terminal in the Ningbo Port, they were not
generally accepted by port operators, who believed the results
too difficult to understand and thus unsuitable for practical
use.
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In practical problems, performance metrics are typically
separable. Take the truck dispatching problem for ports as an
example, where operators usually consider different scheduling
strategies based on, for example, task categories, yard condi-
tions, and number of trucks available for dispatch, etc. In fact,
these factors are high-level scenarios that are generally not
directly involved in the formulation of task ranking rules; they
instead play a role in the selection of different policies. Some
researchers exploit these decision variables by grammar-based
LGP to generate individuals with scenario distinguish ability
[7], [57], [58], [59]. However, because the grammar-based
GP only adds grammar filtering to the normal LGP, and not
explicitly separate the scenario selection from the calculation
layer. As a result, these factors do not always appear in
scenario layer to play its decisive role in scenario selection
without presetting. Instead, they are often embedded in the
calculation layer which can cause unreliable performance.

Consequently, to reduce the size of the search space and
to improve performance, it is necessary to separate scenario
information from dispatch rules, leading to our proposed
CD-GPHH method which reduces the search space size by
separating arithmetic trees and scenario trees in two different
layers. The concept underlying CD-GPHH is to evolve the
scenario grouping trees and truck dispatch trees concurrently
but at two different layers. More specifically, each individual in
CD-GPHH has a scenario layer and a calculation layer (Fig. 7).
The scenario layer contains logic trees for scenario clustering
purposes, and the calculation layer includes arithmetic trees
that share similar structures as those in the AGP method. Each
logic tree in the scenario layer is bound to an arithmetic tree
from the calculation layer and grouped as a rule. In the truck
dispatching problem for ports, when a tree in the scenario layer
evaluates to true (greater than zero), then the corresponding
tree in the calculation layer is invoked to compute utility scores
for different truck–task assignments. Notably, thanks to this
layered structure, our CD-GPHH is also more comprehensible,
while enhances the quality of the resulting solutions.

Note that, in CD-GPHH, trees in both the scenario layer and
calculation layer are bound into rules for easier computation
during implementation. The algorithm first operates on a
specific rule before processing the two trees inside each rule.
Moreover, since the number of scenarios (number of rules)
was introduced as a hyper-parameter in CD-GPHH, we extend
the traditional mutation operation in GP to enable it to learn
and adjust automatically. These three operations are detailed
as follows:

1) Crossover: The crossover operation takes two individ-
uals (parents) as inputs. As illustrated in Fig. 8, one random
rule of each parent are then selected and single point crossover
operations are applied to both layers independently, resulting
in two logic trees and two arithmetic trees that can form
four different rules. When the four rules are inserted back
to the two parents to replace the previously selected rules,
eight new offspring are created. However, to maintain the
diversity of the population and prevent the same pair of parents
from producing too many offspring, two randomly selected
offspring are retained in the next generation.
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2) Mutation: The standard mutation in CD-GPHH is ap-
plied to one parent selected by tournament. A rule in the parent
is randomly selected for mutation. For example, in Fig. 9 is
rule 2 selected for mutation. Either the scenario layer tree or
the calculation layer tree or both are modified to form a new
rule (same as AGP). This new rule is then inserted into a
random location of the parent to generate a new individual
(hence this new individual has one more new rule than the
parent). Meanwhile, to maintain diversity and dynamically
adjust the number of rules, between zero to two randomly
chosen rules in this new individual are subject to removal.
Finally, if the total number of rules in this new individual
exceeds the rule count limit, another randomly selected rule
will be removed.

3) Solution Decoding in CD-GPHH: In CD-GPHH, de-
coding a solution involves testing all logic sub-trees (except
the last) in the scenario layer in sequence, until a sub-tree
evaluates to true. The corresponding calculation tree will
be chosen to estimate the performance of different truck–
task assignments. If no logic tree evaluates to true, without
evaluating the last logic tree, the last (default) calculation tree
will be used.
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Notably, the increase in the search space of AGP was not
large. This is because AGP has no logic operators and not
many complex combinations of logic and arithmetic operators
in AGP trees. CD-GPHH achieved tolerable performance by
separating each rule into a scenario layer and calculation
layer. This example illustrates the effectiveness of the proposed
solution structure in our CD-GPHH algorithm with respect
to reducing the search space while retaining the scenario
matching capability of LGP.

V. EXPERIMENTS AND RESULTS

We evaluated the performance of our proposed CD-GPHH
against a conventional AGP as well as a LGP for solving mul-
tiscenario problems. We first compared their performance for
the simple multi-scenario function fitting problem described in
Section I. Subsequently, we conducted extensive experiments
for the real-life truck dispatching problem for marine container
terminals. For the truck dispatching problem, we also com-
pared our CD-GPHH against the traditional heuristic method
used in real-world and a manually crafted heuristic reported in
[2]. Since parameter tuning is not the key focus of this paper,
we just follow the common settings and all three GP-based
algorithms were run with the same settings, as listed in Table
II. The number of rules in CD-GPHH was set to 1-10 in the
experiments.

TABLE II
GP INITIALISATION PARAMETERS

Population Size 1024
Max Generation 300
Crossover Rate 0.6
Mutation Rate 0.3
Reproduction Rate 0.1
Tree Initialization Method Ramped half-and-half
Selection Method Tournament Size 7
Tree Depth Restriction 10
Long Individual Penalize Scale 0.0001
Rule Amount Restriction (CD-GPHH only) 1-10

TABLE III
AGP, LGP, AND CD-GPHH TEST RESULTS ON PROBLEM (1)

AGP LGP CD-GPHH

Standard
Deviation

Min 288.46 4.68 2.02× 10−12

Mean 447.21 248.24 0.042
Max 680.65 940.08 0.22

A. Simple Multi-scenario Function Fitting Problem

In this experiment, the task is to fit the function in (1).
The function has one input variable x, and one constant,
corresponding to two terminals in our GP-based methods.
The variable terminals were set to an actual value during the
calculation process, whereas a constant integer between 0 and
10 was set as the terminal. During each test, 100 randomly pre-
generated instances of different values of x were used as the

test set. Fitness was defined as the standard variance between
the fitted function and the original function. In other words, a
fitness closer to zero indicates a good solution.

Table III presents the statistical results from all three GP-
based methods in 30 tests. Our CD-GPHH performed sig-
nificantly better than AGP and LGP on this simple function
fitting problem. As shown in Fig. 10, when comparing the best
results produced by the three GP individuals with the original
function, it can be clearly seen that AGP performs the worst,
fitting only the case where x is greater than 7, while LGP fits
the range from 3 to 10. Since when x is less than 3, the fitting
errors lead to relatively small variance in y (equivalent to small
variance in individuals’ fitnesses), LGP does not fit well in 0
to 3 region, while our CD-GPHH does much better. As it can
be seen in Fig. 10, CD-GPHH has replicated almost 100%
of the original function, indicating the potential benefits of a
predefined hierarchical structure for multiscenario problems.
The simplified best-performing individuals of each method in
the experiments are as follows:

• AGP:
(3920805 ∗ x10 − 90391140 ∗ x9 + 613811750 ∗ x8 +
zoo ∗ x8 + 563298482 ∗ x7 − 22692826327 ∗ x6 +
78451667966∗x5−16277641800∗x4+−218951495280∗
x3 + 62156445120 ∗ x2 + 14180443200 ∗ x)/(3991680 ∗
x5−103783680∗x4)+1010892960∗x3−4372885440∗
x2 + 7090221600 ∗ x

• LGP:
if else(−(5 >= 2∗x+(x <= 7))/5+(7 <= x)/5, x∗
(x4 − 1) + x, x ∗ ((x − if else(if else(if else((x −
3)/(2 ∗ x), (5 − x <= −(5 >= 2 ∗ x + (x <=
7))/5 + (7 >= x)/5), 1 − if else((x2 ∗ (x <= 8) +
(x <= 0)), 0, 1)) + 1, if else((3 <= 2 ∗ x), x −
11/10, 1), 0), 1, 7) + 5) ∗ (40 ∗ x2 − x3 + 40 ∗ (9 >=
x)− 440) + 320)/40)

• CD-GPHH:
Rule Scenario Calculation

1 7 <= x x5

2 −16∗x2∗(x−10)2+51∗x−6)/(4∗
x ∗ (x− 10)) >= (x+3/x >= 4)

x2

3 x2 + x <= 4 x

4 x− 10/x <= 3 x3

5 x > 3/4 x4

Obviously, the results by AGP and LGP are hard to read
and differs greatly from the true function in (1). Although
LGP’s results contain the ”IF-ELSE” operator and relational
operator that were in the original expression, the results are
still confusing and does not fit the original function well. By
contrast, with the help of its bi-level structure, CD-GPHH
obtained a concise and easy-to-understand function that is
almost identical to the original one. Comparing the best
evolution results of the three methods in Fig. 11, it can be
found that CD-GPHH has escaped the local optimum trap and
converged to the global optimum at the 150th generation, while
both AGP and LGP ended up with a poor result. In general,
under the evolutionary framework designed in this research,
CD-GPHH takes advantage of two cooperative populations and
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Fig. 11. The best performance of AGP, LGP and CD-GPHH on problem (1).

obtains well-performed, concise and understandable results,
confirming the superiority of CD-GPHH on solving simple
multi-scenario function fitting problem.

B. Results for Real-life Truck Dispatching

We used three different GP methods to address the problem
described in Section III. The proposed CD-GPHH has a total
of 14 GP features (see Table IV for details). The other settings
are given in Table II. To better tackle this complex real-world
problem, 4 new operators were added as shown in the Table
I. The performance of the proposed method is compared with
other methods (Table V) in this subsection.

To update the environment state values of these features
and evaluate the fitness of each individual in our GP, we
built an event-based simulator according to the mathematical
model described in Section III. The simulator interacts with the
dynamic truck dispatching system (Fig. 3) to provide functions
for evaluating the fitness of each individual and generating new
environment data after each truck dispatch. It can simulate
all events occurring in real-world truck dispatching in marine

TABLE IV
FEATURES OF AGP, LGP, AND CD-GPHH IN REAL-WORLD TRUCK

DISPATCHING PROBLEM

Name Acronym Description
travel time tt Travel time form truck to

task start crane
operate type ot The ship load/unload task

type (0 for load and 1 for
unload)

dispatch type dt The task dispatch type (0 for
normal tasks and 1 for tasks
need to be merged)

yard crane type yct The yard crane type (0 for
normal crane and 1 for
remote-controlled crane)

total truck num ttn Total trucks number can be
dispatched

num to min truck ntmt The difference between the
quay crane trucks number
and the minimum trucks
number

start node truck num sntn Total trucks number of the
task start crane

end node truck num entn Total trucks number of the
task end crane

start node wait truck num snwtn Waiting trucks number of
the task start crane

end node wait truck num enwtn Waiting trucks number of
the task end crane

remain task num rtn Remaining tasks number of
the task related quay crane

average load time alt Average load time of the
crane

average unload time aut Average unload time of the
crane

Constant Number - Random constant number

container terminals, such as vehicle movement, container
loading and unloading, and the real-time data exchange with
the dynamic dispatching system.

The data sets used in this experiment were extracted from
actual historical operational data from the Ningbo Meishan
Port. The data sets simulate a typical situation where one
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TABLE V
TRADITIONAL HEURISTIC METHODS FOR TRUCK DISPATCHING

PROBLEMS

Name Acronym Description
fixed - Dispatchings are according to

the binding QCs
manual - Select the task though manual

crafted heuristic (Currently used
in Meishan Port, Ningbo)

first-in-first-out FIFO Dispatchings are sequenced
first-in-first-out

shortest traveling time STT Select the task with the shortest
traveling time

longest traveling time LTT Select the task with the longest
traveling time

random - random dispatch
most task remaining MTR Select the task with most task

remaining
smallest task remaining STR Select the task with smallest

task remaining

container ship berths at the port to load and unload containers,
and the port needs to complete the work of the ship as soon as
possible to let the ship leave the port earlier. Several instances
were generated base on this situation, and each instance has
1 ship berth with 6 QCs. The number of trucks is set to be
the actual number of truck working during the data extraction
time period, between 24 and 48, and the traffic map is shown
in Fig. 1.

As aforementioned in Section III, due to strict traffic regu-
lations (mainly single-direction road segments), there are very
few route options between QCs and YCs. Therefore, the truck
travel time is pre-computed through the shortest path algorithm
on the port road network assuming an average truck speed of
8km/h. Meanwhile, the operating (load/unload) time of the
crane for the container on the truck is uncertain.

We extracted 10 sets of historical task data of different time
periods (ports have different operating scenarios at different
times) with 5 sets for training (sets 1-5) and 5 sets for testing
(sets 5-10). Each set (both training and testing) contains 10
instances in same time period with 200 tasks with a mixture
of both loading and unloading operations. For each training
instance, 30 independent runs with different random seeds
were conducted, leading to a total of 10 * 30 = 300 runs on
each training set, and finally the average results over these 300
runs for each set is given in Table VI. Recall that the objective
is to maximise the number of tasks handled per unit time
(hour). Therefore, larger values indicate better performance.
Then, we chose the best-performing individuals from the three
GP algorithms and test them for test sets 6-10. Each instance
in the test sets run only once (because the evolved GP trees are
deterministic). However, since each set contains 10 instances,
there are total of 10*5 test instances which are not seen during
GP training. Therefore, they represent significant robustness
test for all the methods. Table VII provides the average results
of all the methods across 10 test instances in each set as well
as the averages across all 5 sets.

Below we include the best-performing individuals of AGP,
LGP and CD-GPHH. Note that these trees have been simpli-
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Fig. 12. The performance of AGP, LGP and CD-GPHH in Training Set 4.

fied for ease of reading.
• AGP:

(((entn + sntn) − rtn) + snwtn) + (ttn/((((((ttn +
ot)/(((tt/yct) ∗ rtn))) + ((rtn ∗ alt)/(ntmt + alt))) −
(((rtn + ntmt)/(entn + snwtn)) + ((yct + ttn) ∗
(enwtn − sntn))))/((((entn + entn) ∗ (snwtn ∗
2))/((aut/ttn)/(dt∗sntn)))/(((ntmt+dt)−(tt∗rtn))+
((snwtn ∗ aut)− (tt− sntn))))) + rtn))

• LGP:
((((max(((ot|7|((entn/10) + ot))|min(max(2, rtn)
,−ntmt)), snwtn) <= ot)/10) ∗ (entn ∗ dt)) <= if
else(rtn, tt, sntn)) ∗ ((ttn/(((1 + if else(yct, 6,
rtn)) ∗ ((((sntn/max(dt, ntmt)) ∗ (rtn&snwtn))
/snwtn)&(sntn ∗ dt))) + (((ttn/rtn)/((entn/if
else(tt, sntn, enwtn))&enwtn)) >= ((10− tt) <= (4
∗ entn)))))/(enwtn >= ntmt))

• CD-GPHH:
Rule Scenario Calculation

1 ((((ntmt >= sntn)−
ntmt+ entn)) + (ot
+yct+min(ttn,
tt)))|((min(tt, enwtn
) +max(dt, ot))/tt)

(dt >= enwtn) +
max(entn, ttn) +
rtn

2 ttn >= 6 ∗ 5 snwtn/3+alt∗aut
3 (min(tt, yct)/(ot&

snwtn) <= (ot+ tt))
/((dt >= entn) <=
(ot <= sntn))

min(((enwtn <=
entn) + yct), ((ttn
+entn) ∗ ntmt))

4 max((entn >= 5),
ntmt)

ttn ∗ alt

Among the experiment results proved by t-test (α =
0.001, p = 0.00), the performance of all the three GP algo-
rithms is better than the traditional heuristic algorithms, and
CD-GPHH achieved the best. Using manual and fixed heuris-
tic algorithms as benchmarks, the improvement percentages
(Imp. Pct.) of AGP, LGP and CD-GPHH are about 7%/15%,
11%/19% and 14%/25% , respectively. By further comparing

pszrq
Cross-out
release

pszrq
Cross-out
from

pszrq
Cross-out
one

pszrq
Cross-out
six

pszrq
Cross-out
each with

pszrq
Highlight
s

pszrq
Cross-out
five

pszrq
Cross-out
five

pszrq
Highlight
the

pszrq
Highlight
,

pszrq
Cross-out
consist of

pszrq
Cross-out

pszrq
Cross-out
are presented 

pszrq
Note
Could start a new paragraph

pszrq
Cross-out

pszrq
Cross-out
are evaluated on 

pszrq
Highlight
was

pszrq
Cross-out
The

pszrq
Cross-out

pszrq
Highlight
new

pszrq
Cross-out
demand

pszrq
Cross-out

pszrq
Cross-out

pszrq
Highlight
are shown as follows

pszrq
Cross-out
interpretation

pszrq
Cross-out
A t-test on

pszrq
Cross-out

pszrq
Cross-out
demonstrate the superior

pszrq
Cross-out

pszrq
Cross-out
where

pszrq
Cross-out



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 13

TABLE VI
AGP, LGP, AND CD-GPHH TRAINING RESULTS (UNITS/H)

Fixed Manual Random FIFO STT LTT MTR STR AGP LGP CD-GPHH
Set1 106.05 106.87 100.01 94.58 71.39 91.88 108.75 54.89 124.03 126.09 132.88
Set2 113.63 118.91 108.66 96.99 69.23 71.35 115.66 58.67 127.22 132.32 138.45
Set3 110.10 114.27 106.39 100.55 75.50 76.86 120.58 56.33 129.38 128.86 138.73
Set4 115.33 121.48 112.75 97.60 69.22 87.17 121.91 59.07 135.53 138.37 143.99
Set5 96.76 116.88 102.95 95.13 66.40 65.76 114.46 55.97 121.34 125.07 132.44

Mean 108.37 115.68 106.15 96.97 70.35 78.60 116.27 56.99 127.50 130.14 137.30

Imp. 0.00% 6.74% -2.05% -10.52% -35.09% -27.47% 7.29% -47.42% 17.65% 20.09% 26.69%
-6.74% 0.00% -8.98% -19.30% -64.44% -47.17% 0.51% -102.99% 9.27% 11.11% 15.75%

TABLE VII
AGP, LGP, AND CD-GPHH TEST RESULTS (UNITS/H)

Fixed Manual Random FIFO STT LTT MTR STR AGP LGP CD-GPHH
Set6 102.50 105.35 107.16 88.14 66.96 75.89 106.74 55.27 117.86 123.96 129.67
Set7 116.00 126.85 107.46 100.80 74.72 87.88 119.28 60.57 130.43 136.60 141.01
Set8 93.69 99.88 97.04 87.53 69.89 75.03 102.28 51.74 106.92 111.42 118.34
Set9 98.45 106.01 96.96 96.57 68.81 85.55 108.81 53.89 112.58 121.31 125.31
Set10 112.12 121.37 106.84 101.59 76.23 85.39 121.85 57.07 121.95 125.76 133.78
Mean 104.55 111.89 103.09 94.93 71.32 81.95 111.79 55.71 117.95 123.81 129.62

Imp. 0.00% 7.02% -1.39% -9.20% -31.78% -21.62% 6.92% -46.72% 12.82% 18.42% 23.98%
-7.02% 0.00% -8.53% -17.87% -56.89% -36.54% -0.09% -100.85% 5.14% 9.63% 13.68%

the listed individuals of three GP algorithms, we can find that
CD-GPHH not only produced more efficient heuristics but also
had much more readable solutions thanks to its double-layer
structure. In contrast, AGP, and particularly, LGP produced
heuristics difficult to understand. Because these heuristics must
often be further modified by the operator in practice, the
heuristics produced by CD-GPHH have better usability.

In order to observe the evolution process of the three
GP algorithms, one result of training set 4 were plotted in
Fig. 12. It can be seen that for the real-world multi-scenario
problem, the performance of AGP without scenario grouping
is quite limited, while LGP and CD-GPHH can achieve better
results. Especially, CD-GPHH did not suffer from the obvious
limitations of AGP and performed best in the end.

C. Truck Dispatching Under Special Scenarios

Although problem instances based on real-life data are
important to evaluate the practicality of the proposed method,
they are less useful to discover the insights of the problem
because of the real-life complexities and the combinatory
effect of several uncontrolled factors. In this subsection, we
evaluate the performance of different methods under three
different scenarios created artificially. In a container terminal,
the multiple scenarios are caused mainly by the following
dynamically changing factors.
• Distribution of the load and unload QC tasks along the

berth line. It is practically accepted that the operation
times of the load and unload tasks follow different
distributions. The unloading tasks are often less likely
disrupted by truck delays because of less strict prece-
dence requirements. On the other hand, loading tasks

must follow the predefined sequences exactly and hence
delays can propagate exponentially, causing significant
QC waiting. Therefore, different dispatch policies are
required for scenarios with tasks dominated by either load
or unload tasks.

• Distribution of operation nodes at yard cranes (YCs) for
the tasks are also crucial. When the operation nodes are
clustered at a few YCs, it is more likely to see conflicts
arising at these YCs because they support multiple QCs
at the time. Specific policies are required to resolve these
conflicts.

• The available number of trucks for dispatch is also im-
portant. When plenty of trucks are available, the priority
should focus on the reduction of empty truck travel
distances. However, when the number of trucks is relative
small, the priority would be about avoiding costly QC
waiting.

Following these considerations, we use operation type,
yard crane type, and total truck num to distinguish these
scenarios respectively. This is also based on the observation of
best-performing CD-GPHH individuals that over 75% of them
use all three features in the scenario selection layer. Therefore,
we created 3 new data sets (sets 11-13), each contains 20
instances with 2 special scenarios base on these 3 scenario fea-
tures respectively. First, individuals were trained (30 runs per
instance) with corresponding scenario features, then without.
According to statistics in Table VIII, CD-GPHH’s superiority
in performance become more obviously in special scenarios
data sets. The performance of AGP is almost unaffected by
the removal of the scenario features but LGP would have a
2.9% performance drop when scenario features are excluded,
compared with 8.1% from CD-GPHH, which proves the
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effectiveness and importance of the scenarios identification
used in our CD-GPHH in multi-scenario problems.

TABLE VIII
AGP, LGP, AND CD-GPHH RESULT IN SPECIAL SCENARIOS TRUCK

DISPATCHING PROBLEM (UNITS/H)

Set Feature Manual AGP LGP CD-GPHH

Set11
With 107.46 113.85 122.64 131.69

Without 107.46 114.44 118.32 119.68

Set12
With 105.02 107.67 115.51 125.72

Without 105.02 105.17 113.33 113.71

Set13
With 99.38 104.96 110.69 123.34

Without 99.38 106.00 106.28 112.74

Mean With 103.95 108.83 116.28 126.92
Without 103.95 108.54 112.64 115.38

Imp. With 0.00 % 4.48 % 10.60 % 18.09 %
Without 0.00 % 4.23 % 7.72 % 9.90 %

Finally, in this real-world container terminal truck dispatch-
ing simulating experiment, It was confirmed that CD-GPHH
can indeed produce better results than AGP and LGP in real-
life multi-scenario problems, and the generated results can
be understood and then modified by operators. According
to our statistics, the average test time and training time
of each generation of AGP, LGP and CD-GPHH individual
for 100 tasks is: 0.02s / 0.7s, 0.02s / 0.73s and 0.021s /
0.78s, respectively. Which means that CD-GPHH does not
greatly increase the computational consumption on the basis of
AGP and LGP while improving performance. Although CD-
GPHH is yet adopted in a real-life port, our manually crafted
heuristic algorithm has been practiced in the Ningbo Port for
years. According to statistical analyses conducted by the port,
work efficiency is increased by 8.1% and ship docking time
decreased by 2.2%. This well-performed algorithm saved time,
allowed for the operation of more ships, and in turn, increased
the profit of the port company significantly. It is our next plan
to work with the collaborators to fully evaluate and deploy the
proposed algorithm in real world.

VI. CONCLUSION

We proposed a novel cooperative double-layer genetic
programming hyper-heuristic (CD-GPHH) algorithm that can
evolve more efficient, user-friendly, and intuitive heuristics
and evaluated its practicality and superiority via a real-world
complex truck dispatching problem at marine container termi-
nals. We showed that the proposed cooperative double-layer
structure in our CD-GPHH can better handle the dynamics
of scenario transitions that commonly exist in real-life uncer-
tainties. The separated scenario and calculation layers coop-
erated to utilise logic and arithmetic operators simultaneously
while preventing its search space from growing exponentially.
Under limited training time budget, the proposed CD-GPHH
performance gains around 8-10% improvement compared with
existing GP methods (i.e. AGP and LGP). Our CD-GPHH
greatly enhances the solution usability with separate logic and
arithmetic layers and the resulting heuristics have a cleaner
structure and better readability.

Our CD-GPHH can be further enhanced in future stud-
ies by addressing a few weaknesses, such as generalisation
issues, relative inefficiency in rules evolution and existence
of redundant subtrees. In particular, evolution may be better
guided by involving human operators in the evolution process.
Meanwhile, targeted redundancy removal algorithms can be
developed specifically for CD-GPHH.
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