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Abstract

Motivation: Agent-based modeling is an indispensable tool for studying complex biological systems. However,
existing simulation platforms do not always take full advantage of modern hardware and often have a field-specific
software design.

Results: We present a novel simulation platform called BioDynaMo that alleviates both of these problems.
BioDynaMo features a modular and high-performance simulation engine. We demonstrate that BioDynaMo can be
used to simulate use cases in: neuroscience, oncology and epidemiology. For each use case, we validate our find-
ings with experimental data or an analytical solution. Our performance results show that BioDynaMo performs up to
three orders of magnitude faster than the state-of-the-art baselines. This improvement makes it feasible to simulate
each use case with one billion agents on a single server, showcasing the potential BioDynaMo has for computational
biology research.

Availability and implementation: BioDynaMo is an open-source project under the Apache 2.0 license and is avail-
able at www.biodynamo.org. Instructions to reproduce the results are available in the supplementary information.

Contact: lukas.breitwieser@inf.ethz.ch or a.s.hesam@tudelft.nl or omutlu@ethz.ch or r.bauer@surrey.ac.uk

Supplementary information: Available at https://doi.org/10.5281/zenodo.5121618.

1 Introduction

Agent-based simulation (ABS) is a powerful tool assisting life scien-
tists in better understanding complex biological systems. In silico
simulation is an inexpensive and efficient way to rapidly test
hypotheses about the (patho)physiology of cellular populations, tis-
sues, organs or entire organisms (Ji et al., 2017; Yankeelov et al.,
2016).

However, the effectiveness of such computer simulations for sci-
entific research is often limited, in part because of two reasons.

First, after the slowing down of Moore’s law (Moore, 1965) and
Dennard scaling (Dennard et al., 1974), hardware has become in-
creasingly parallel and heterogeneous. Most ABS platforms do not
take full advantage of these hardware enhancements. The resulting
limited computational power forces life scientists to compromise ei-
ther on the resolution of the model or on simulation size (Thorne
et al., 2007). Second, existing ABS platforms have often been devel-
oped with a specific use case in mind. This makes it challenging to
implement the desired model, even if it deviates only slightly from
its original purpose.
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To help researchers tackle these two major challenges, we pro-
pose a novel open-source platform for biology dynamics modeling,
BioDynaMo. We alleviate both of these problems by emphasizing
performance and modularity. BioDynaMo features a high-
performance simulation engine that is fully parallelized to utilize
multi-core CPUs and able to offload computation to hardware accel-
erators (e.g. a GPU). The software comprises a set of fundamental
biological functions, and a flexible design that adapts to specific
user requirements. Currently, BioDynaMo implements the neurite
model and mechanical forces presented in Zubler and Douglas
(2009), but these components can easily be extended, modified or
replaced. Hence, BioDynaMo is well-suited for simulating a wide
range of biological processes in tissue modeling and beyond.

BioDynaMo provides by design five system properties:

• Agent-based. The BioDynaMo project is established to support

an agent-based modeling approach which allows one to simulate

a wide range of developmental biological processes. A character-

istic property of agent-based simulations is the absence of a cen-

tral organizational unit that orchestrates the behavior of all

agents. Quite to the contrary, each agent is an autonomous entity

that individually determines its actions based on its current state,

behavior and the surrounding environment.
• General purpose. BioDynaMo is developed to become a general-

purpose tool for agent-based simulation. To simulate models

from various fields, BioDynaMo’s software design is extensible

and modular.
• Large scale. Biological systems contain a large number of agents.

The cerebral cortex, for example, comprises approximately 16

billion neurons (Azevedo et al., 2009). Biologists should not be

limited by the number of agents within a simulation.

Consequently, BioDynaMo is designed to take full advantage of

modern hardware and use memory efficiently to scale-up

simulations.
• Easily programmable. The success of an ABS platform depends,

among other things, on how quickly a scientist, not necessarily

an expert in computer science or high-performance program-

ming, can translate an idea into a simulation. This characteristic

can be broken down into four key requirements that

BioDynaMo is designed to fullfil: first, BioDynaMo provides a

wide range of common functionalities such as visualization, plot-

ting, parameter parsing, backups, etc. Second, BioDynaMo pro-

vides simulation primitives that minimize the programming

effort necessary to build a use case. Third, as outlined in item

‘General purpose’, BioDynaMo has a modular and extensible de-

sign. Fourth, BioDynaMo provides a coherent API and hides im-

plementation details that are irrelevant for a computational

model (e.g. details such as parallelization strategy, synchroniza-

tion, load balancing or hardware optimizations).
• Quality assured. BioDynaMo establishes a rigorous, test-driven

development process to foster correctness, maintainability of the

codebase and reproducibility of results.

The main contribution of this article is an open-source, high-per-
formance and modular simulation platform for agent-based simula-
tions. We provide the following evidence to support this claim: (i)
we detail the user-facing features of BioDynaMo that enable users to
build a simulation based on predefined building blocks and to define
a model tailored to their needs. (ii) We present three basic use cases
in the field of neuroscience, oncology and epidemiology to demon-
strate BioDynaMo’s capabilities and modularity. (iii) We show that
BioDynaMo can produce biologically meaningful simulation results
by validating these use cases against experimental data, or an analyt-
ical solution. (iv) We present performance data on different systems

and scale each use case to one billion agents to demonstrate
BioDynaMo’s performance.

1.1 Prior work
The history of agent-based modeling and simulation significantly
precedes the 1990s; however, it was not widely adopted for biologic-
al systems until the 2000s. Several ABS platforms have been pub-
lished demonstrating the importance of agent-based models in
computational biology research (Collier and North, 2011; Cytowski
and Szymanska, 2014; Emonet et al., 2005; Ghaffarizadeh et al.,
2018; Kang et al., 2014; Koene et al., 2009; Lardon et al., 2011;
Matyjaszkiewicz et al., 2017; Mirams et al., 2013; Richmond et al.,
2010; Rudge et al., 2012; Torben-Nielsen and De Schutter, 2014;
Wilensky, 1999; Zubler and Douglas, 2009). In this section, we
compare BioDynaMo’s most crucial system properties with prior
work.

Large-scale model support. The authors of BioCellion (Kang et al.,
2014), PhysiCell (Ghaffarizadeh et al., 2018), Timothy (Cytowski
and Szymanska, 2014) and Repast HPC (Collier and North, 2011)
recognize the necessity for efficient implementations to enable large-
scale models. Although these tools can simulate a large number of
agents, they do not support neural development. The NeuroMaC
neuroscientific simulation platform (Torben-Nielsen and De
Schutter, 2014) claims to be scalable, but the authors do not present
performance data and present simulations with only 100 neurons.
Therefore, BioDynaMo’s ability to simulate large-scale neural devel-
opment, which we demonstrate in the results section, is, to our
knowledge, unrivaled.

General-purpose platform. Many ABS platforms focus on a specific
application area: bacterial colonies (Emonet et al., 2005; Lardon
et al., 2011; Matyjaszkiewicz et al., 2017; Rudge et al., 2012), cell
colonies (Cytowski and Szymanska, 2014; Kang et al., 2014;
Mirams et al., 2013) and neural development (Koene et al., 2009;
Torben-Nielsen and De Schutter, 2014; Zubler and Douglas, 2009).
Pronounced specialization of an ABS platform may prevent its cap-
acity to adapt to different use cases or simulation scenarios. In con-
trast, BioDynaMo can be adapted to many different fields due to its
modularity and extensibility.

Quality assurance. Automated software testing is the foundation of
a modern development workflow. Unfortunately, several simulation
tools (Cytowski and Szymanska, 2014; Koene et al., 2009; Lardon
et al., 2011; Rudge et al., 2012; Torben-Nielsen and De Schutter,
2014; Zubler and Douglas, 2009) omit these tests. Mirams et al.
(2013) recognize this shortcoming and describe a rigorous develop-
ment workflow in their article. BioDynaMo has over 400 automated
tests which are continuously executed on all supported operating
systems to ensure high code quality. BioDynaMo’s open-source code
base, tutorials and documentation not only help users get started,
but also enable validation by external examiners.

2 Materials and methods

In this section, we present the main simulation concepts of
BioDynaMo and describe our approach to achieve modularity, ex-
tensibility and high performance.

2.1 Simulation concepts
BioDynaMo is implemented in the Cþþ programming language and
supports simulations that follow an agent-based approach. Figure 1
gives an overview of BioDynaMo’s main concepts, Figure 2 presents
the abstraction layers, while Figure 3 illustrates its object-oriented
design.

An agent (Figure 1A) has a 3D geometry, behavior and environ-
ment. There is a broad spectrum of entities that can be modeled as
an agent. In the results section, we show examples where an agent
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represents a subcellular structure (neuroscience use case), a cell (on-
cology use case) or a person (epidemiology use case). Figure 1B
shows example agent behaviors such as growth factor secretion,
chemotaxis or cell division. Behaviors can be activated or inhibited.
BioDynaMo achieves this by attaching them to or removing them
from the corresponding agent.

The Environment is the vicinity that the agent can interact with
(Figure 1C). It comprises agents and other resources like chemical
substances in the extracellular matrix. Surrounding agents are, for
example, needed to calculate mechanical interactions among agent
pairs.

Currently, the user defines a simulation programmatically in
Cþþ (see Figure 1D and Supplementary File SF1 Section 1.4). Cþþ
is a great choice in terms of execution speed, efficiency, and inter-
operability with high-performance computing libraries, but is harder
to program in due to its lower level of abstraction (versus higher
level languages like Java or Python). There are two main steps

involved: initialization and execution. During initialization, the user
places agents in space, sets their attributes, and defines their behav-
ior. In the execution step, the simulation engine evaluates the
defined model in the simulated physical environment by executing a
series of operations. We distinguish between agent operations and
standalone operations (Figure 1D). At a high level, an agent oper-
ation is a function that: (i) alters the state of an agent and potentially
also its environment, (ii) creates a new agent or (iii) removes an
agent from the simulation. Examples for agent operations are: exe-
cute all behaviors and calculate mechanical forces. The simulation
engine executes agent operations for each agent for each time step.
Alternatively, standalone operations perform a specific task during
one time step and are therefore only invoked once. Examples include
the update of substance diffusion and the export of visualization
data.

2.2 BioDynaMo features
BioDynaMo is a simulation platform that can be used to develop
agent-based simulations in various computational biology fields
(e.g. neuroscience, oncology, epidemiology, etc.). Although agent-
based models in these different fields may intrinsically vary, there is
a set of functionalities and definitions that they have in common.

These commonalities can be divided into low- and high-level
agent-based features and are an integral part of BioDynaMo.
BioDynaMo also provides model building blocks to accelerate the
development of agent-based models. The described layered architec-
ture is shown in Figure 2.

2.2.1 Low-level features

The low-level features (Figure 2) form the foundation of
BioDynaMo and provide crucial functionality responsible for high-
performance execution and ease-of use. These features are mostly
hidden from the user and require control only in exceptional
situations.

In this section we will provide more details about parallelization
and thread safety and refer the reader to Supplementary File SF1
Section 1.1 for more details of the remaining low-level features.

Parallelism and thread safety. BioDynaMo exploits the inherent par-
allelism of agent-based models in which agents update themselves
based on their current state, behavior and local environment.
BioDynaMo’s implementation uses OpenMP (https://www.openmp.
org/) compiler directives to parallelize the loop over all agents
(Figure 1D). In addition to parallelizing the execution of agent oper-
ations for each agent, standalone operations like updating the diffu-
sion grid and visualization are parallelized separately (Figure 1D).

Synchronization between threads is only needed if agents modify
their environment. In this case, two agents (handled by two different
threads) might attempt to update the same resource in the local en-
vironment. This scenario occurs in the neuroscience use case in
which neurite elements modify neighboring segments. Therefore,
BioDynaMo provides built-in synchronization mechanisms to en-
sure that even if two threads try to modify the same agent or re-
source, data is not corrupted. There are two thread safety
mechanisms to protect agents from data corruption: automatic and
user-defined. Automatic thread safety uses the environment to pre-
vent two threads from processing agents with overlapping local
environments. This mechanism can be enabled with a single param-
eter, but might be too restrictive for some use cases. User-defined
thread safety on the other hand offers more fine-grained control
over which agents must not be processed at the same time, but likely
requires additional input from the user.

Other resources that are modified by agents (e.g. the
DiffusionGrid to simulate extracellular diffusion) need their own
protection mechanism. This feature is used in the soma clustering
benchmark where cells secrete a substance into the extracellular
matrix.

For typical BioDynaMo simulations users do not need to control
parallel execution and thread synchronization. This holds particu-
larly true for all use cases and benchmarks presented in this article.

A B

C D

Fig. 1. Simulation concepts. Agents (A) have their own geometry, behavior (B) and

environment (C). (B) Agent behavior is defined in separate classes, which are

inserted into agents. The update of an agent is based on its current state and its sur-

rounding environment. (C) The environment is determined by radius r and contains

other agents or extracellular substances. The simulation algorithm (D) can be div-

ided into two main parts: the definition of the initial model and the execution of the

simulation

Fig. 2. BioDynaMo’s layered architecture. BioDynaMo is predominantly executed

on multi-core CPUs, is able to offload computations to the GPU, and supports

Linux and MacOS operating systems. BioDynaMo provides a rich set of low- and

high-level features commonly required in agent-based models. On top of these gen-

eric features, BioDynaMo offers model building blocks to simplify the development

of a simulation. Even if BioDynaMo does not provide the required building blocks,

users still benefit from all generic agent-based features (illustrated by the vertical ex-

tension of the ‘Simulation’ layer)
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Only for more advanced uses, like adding a new environment algo-
rithm or adding a shared resource that is not an agent, users have to
consider parallel execution.

2.2.2 High-level features

The high-level layer (Figure 2) provides general functionality which

is commonly required in agent-based models across many fields.

Generation of agent populations. The first step in an agent-based
model is to specify the starting condition of the simulation. Therefore,
BioDynaMo provides functionality to create agent populations with spe-

cific properties. Class ModelInitializer provides several functions to create
agents in 3D space and to initialize extracellular substances (Figure 3 and

Supplementary File SF1 Section 1.4). Furthermore, to initialize the attrib-
utes of an agent population, researchers can use one of the many prede-
fined random number generators that draw samples from a specific

distribution (uniform, exponential, gaussian, binomial, etc.) or define their
own one. These features are demonstrated in Supplementary Tutorial

ST01, ST02 and ST08.

Agent reproduction and mortality. The addition and removal of
agents during the execution of a simulation is an integral part of

agent-based simulations. Therefore, BioDynaMo provides a frame-
work to create new agents during a simulation and initialize their
attributes. By default, agents that are created in iteration i will be

visible to other agents in iteration iþ1. The removal of agents is
handled identically. The handling of when new or removed agents

become visible to the simulation is encapsulated in the execution
context. Therefore, a user could provide another implementation
where agents are visible immediately.

Besides adding and removing agents, a second major part is to
provide a generic way to initialize the attributes of an agent. To this

end, BioDynaMo simplifies the regulation of behaviors if new agents
are created. The user can control whether a behavior will be copied
to a new agent or removed from the existing agent, based on the

underlying process (e.g. cell division). Similarly, agents have a func-
tion Initialize which can be overridden by user-defined agents to ini-

tialize additional attributes. These concepts are demonstrated in
Supplementary Tutorial ST03–ST05.

Environment search. To determine the agents in the local environ-
ment (neighbors), BioDynaMo uses an environment search algo-
rithm (Supplementary Tutorial ST06). BioDynaMo’s default
environment algorithm is based on a uniform grid implementation.
The implementation divides the total simulation space into uniform
boxes of the same size and assigns agents to boxes based on the cen-
ter of mass of the agent. Hence, the agents in the environment can
be obtained by iterating over the assigned box and all its surround-
ing boxes (27 boxes in total). The box size is chosen by the user or
determined automatically based on the largest agent in the simula-
tion to ensure all mechanical interactions are taken into account.
Alternatively, BioDynaMo provides an octree and kd-tree environ-
ment implementation. The interface is kept generic enough to sup-
port non-Euclidean space environment definitions.

Multi-scale simulations. A biological simulation has to account for dy-
namic mechanisms that range from milliseconds to weeks (e.g. physical
forces, reaction-diffusion processes, gene regulatory dynamics, etc.).
BioDynaMo supports processes at different time scales by providing a
parameter to specify the time interval between two time steps and an exe-
cution frequency for each operation (Supplementary Tutorial ST07). An
execution frequency of one means that the corresponding operation is
executed every time step. In contrast, a frequency of three would mean
that the operation is executed every three time steps. This mechanism
allows BioDynaMo to simulate e.g. substance diffusion and neurite
growth in the same model.

Statistical analysis. Statistical analysis plays a fundamental role in
generating new insights from simulation data. BioDynaMo builds
upon the rich features of CERN’s primary data analysis framework
ROOT (Brun and Rademakers, 1997), which provides an extensive
mathematical, histogram, graphing, and fitting library. BioDynaMo
complements this functionality by providing an easy mechanism to
collect simulation data over time and a simplified API targeted to
the agent-based use case. These capabilities are demonstrated in
Supplementary Tutorial ST08–ST11.

Hierarchical model support. Railsback et al. (2006) describe an
agent-based model in which large agents have to be executed before
smaller agents. BioDynaMo supports these hierarchical models with
several functions in the ResourceManager, Scheduler, and

Fig. 3. Software design and modularity. Overview of selected classes and functions that are important from the users’ perspective. Classes in white (BioDynaMo core) and

green (BioDynaMo’s neuroscience module) are part of the current BioDynaMo installation. The remaining classes illustrate how we extended BioDynaMo to implement the

use cases and benchmarks presented in this article (purple: neuroscience use case, red: oncology use case, orange: epidemiology use case, blue: soma clustering benchmark, yel-

low: cell proliferation benchmark). A complete list of BioDynaMo classes can be found at https://biodynamo.org/api
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Operation class. The described order can be implemented in
BioDynaMo by adding three lines of code as demonstrated in
Supplementary Tutorial ST12. Additionally, it is possible to execute
a different set of operations for large and small agents.

Hybrid modeling support. Some models benefit from the combin-
ation of multiple simulation methodologies—e.g. the combination
of an agent-based and continuum-based model. BioDynaMo’s flex-
ible build system supports hybrid modeling capabilities and was
demonstrated by de Montigny et al. (2021) to investigate cancer
development.

The remaining high-level features are detailed in Supplementary
File SF1 Section 1.2.

2.2.3 Model building blocks

Currently, BioDynaMo’s building blocks (Figure 2) belong to the
(neural) tissue modeling domain. Similar to the biological model
presented in (Zubler and Douglas, 2009), BioDynaMo supports
spherical and cylindrical agent geometries, mechanical interactions
between agents and diffusion of extracellular substances.

With these features, researchers can simulate cell body dynamics,
neural growth and gene regulatory networks. We provide more
details about the individual model building blocks in Supplementary
File SF1 Section 1.3.

Simulations to study the development of (neural) tissue are only
one example of how BioDynaMo could be used in the future. By
designing BioDynaMo in a modular and extensible way, we laid the
foundation to create new building blocks easily (Figure 3 and
Section 3.3).

2.3 Use cases
We demonstrate BioDynaMo’s capacity to simulate disparate prob-
lems in systems biology with simple yet representative use cases in
neuroscience, oncology and epidemiology. Since BioDynaMo does
not contain any epidemiological building blocks, this use case indi-
cates how easy it is to implement a model-based solely on features
from the high- and low-level layer (Figure 2).

For each use case we present the implemented model, validate
the simulation results against verified experimental or analytical
data, and report performance data for different problem sizes on
multiple hardware configurations. Furthermore, we provide pseudo-
code for all agent behaviors, a table with model parameters and
more detailed performance results in Supplementary File SF1
Section 2.

2.4 Performance analysis
We compare BioDynaMo’s performance with two established serial
ABS platforms [Cortex3D (Zubler and Douglas, 2009) and NetLogo
(Wilensky, 1999)], analyze BioDynaMo’s scalability, and quantify
the impact of GPU acceleration. Display updates are turned off on
all platforms for these evaluations. Cortex3D has the highest simi-
larity in terms of the underlying biological model out of all the
related works presented in Section 1.1. More specifically,
BioDynaMo and Cortex3D use the same method to determine
mechanical forces between agents and the same model to grow neur-
al morphologies. This makes Cortex3D the best candidate with
which to compare BioDynaMo and ensure a fair comparison.

We quantify the performance of BioDynaMo with four simula-
tions: cell growth and division, soma clustering, pyramidal cell
growth and the epidemiology use case. We compare the runtime of
the first three simulations with Cortex3D and the epidemiology use
case with NetLogo 3D. These simulations have different properties
and are, therefore, well suited to evaluate BioDynaMo’s simulation
engine under a broad set of conditions. Supplementary File SF1
Section 2.2 contains more details about these benchmarks.

Statistical method. We perform five measurements for each pre-
sented data point in Figure 7 and Table 1. We summarize runtimes

using the arithmetic mean and rates such as speedup using the har-
monic mean.

2.5 Reproducibility
We use the latest BioDynaMo version v1.01-55-gd05111e3 for all
use cases and benchmarks in the result section. To help other
researchers replicate our findings we provide the following
Supplementary Information for utmost transparency. First, we pub-
lish all source code and data in Supplementary File SF3. The archive
contains six shell scripts that execute all simulations, and generate
all plots, visualizations and videos shown in this article. Second, we
provide a ready-to-use self-contained Docker image to simplify the
process of executing our simulations and benchmarks and to guar-
antee long-term reproducibility (Supplementary File SF4). Third, we
add a step-by-step instruction in Supplementary File SF2.

3 Results

3.1 Neuroscience use case
This example illustrates the use of BioDynaMo to model neurite
growth of pyramidal cells using chemical cues. Initially, a pyramidal
cell, composed of a 10 lm cell body, three 0.5 lm long basal den-
drites and one 0.5 lm long apical dendrite (all of them considered
here as agents), is created in 3D space [L37–L51 (Line numbers in
Section 3.1 correspond to the code example in Supplementary File
SF1 Listing 4.)]. Furthermore, two artificial growth factors were ini-
tialized, following a Gaussian distribution along the z-axis (L54–
L65). The distribution of these growth factors guided dendrite
growth and remained unchanged during the simulation.

Dendritic development was dictated by a behavior defining
growth direction, speed and branching behavior for apical and basal
dendrites (L12–L35). At each step of the simulation, the dendritic
growth direction depended on the local chemical growth factor gra-
dient, the dendrite’s previous direction and a randomly chosen direc-
tion. In addition, the dendrite’s diameter tapered as it grew
(shrinkage), until it reached a specified diameter, preventing it from
growing any further. The weight of each element on the direction
varied between apical and basal dendrites.

These simple rules gave rise to a straight long apical dendrite
with a simple branching pattern and more dispersed basal den-
drites, as shown in Figure 4A, similar to what can be observed in
real pyramidal cell morphologies as shown in Figure 4B or
Spruston (2008) (Figure 1A CA1). Using our growth model, we
were able to generate a large number of various realistic pyram-
idal cell morphologies. We used a publicly available database of
real pyramidal cells coming from Mellström et al. (2016) for
comparison and parameter tuning. Two measures were used to
compare our simulated neurons and the 69 neurons composing
the real morphologies database: the average number of branching
points, and the average length of dendritic trees. No significant
differences were observed between our simulated neurons and
the real ones (P<0.001 using a T-test for two independent sam-
ples). These results are shown in Figure 4D. The model specifica-
tion of the pyramidal cell growth simulation consists of 127 lines
of Cþþ code (Supplementary File SF1 Listing 4).

Figure 4C shows a large-scale simulation incorporating 5000
neurons similar to the one described above and demonstrates the po-
tential of BioDynaMo for developmental, anatomical and connectiv-
ity studies in the brain. This simulation contained nine million
agents.

3.2 Oncology use case
In this section, we present a tumor spheroid simulation to replicate
in vitro experiments from Gong et al. (2015). Tumor spheroid
experiments are typically employed to investigate the pathophysi-
ology of cancer, and are also being used for pre-clinical drug screen-
ing (Nunes et al., 2019). Here we considered three in vitro test cases
using a breast adenocarcinoma MCF-7 cell line (Gong et al., 2015)
with different initial cell populations (2000, 4000 and 8000 MCF-7
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cells). Our goal was to simulate the growth of this mono cell culture
embedded in a collagenous (extracellular) matrix.

The fundamental cellular mechanisms modeled here include cell
growth, cell duplication, cell migration and cell apoptosis. All these
processes are implemented in the class TumorCellBehavior. The cell
growth rate was derived from the published data (Sutherland et al.,
1983), while cell migration (cell movement speed), cell survival and
apoptosis were fine-tuned after trial and error testing. Since the
in vitro study considered the same agarose gel matrix composition
among the experiments, the BioDynaMo model assumes identical
parameters for the cell–matrix interactions in the simulations.
Considering the homogeneous ECM properties, tumor cell migra-
tion was modeled as Brownian motion.

The in vitro experiments from Gong et al. (2015) and the simula-
tions using BioDynaMo are depicted in Figure 5. Each line plot in
Figure 5A compares the mean diameter between the experiments
and the simulations over time, which demonstrates the validity and
accuracy of BioDynaMo. The diameter of the spheroids in the simu-
lations were deducted from the volume of the convex hull that
enclosed all cancer cells. The in vitro experiments used microscopy
imaging to measure the spheroid’s diameters (Gong et al., 2015).

Figure 5B compares snapshots of the simulated tumor spheroids
(bottom row) against microscopy images of in vitro spheroids (top
row) at different time points. The spheroid’s morphologies between

the in vitro experiments and the BioDynaMo simulations are in ex-
cellent agreement.

Model specification required 154 lines of Cþþ code.

3.3 Epidemiology use case
This section presents an agent-based model that describes the

spreading of infectious diseases between humans. The model divides
the population into three groups: susceptible, infected and recovered

(SIR) agents. We compare our simulation results with the solution
of the original SIR model from Kermack et al. (1927), which used
the following three differential equations to describe the model dy-

namics: dS=dt ¼ �bSI=N, dI=dt ¼ bSI=N � cI and dR=dt ¼ cI. S, I
and R are the number of susceptible, infected and recovered individ-

uals, N is the total number of individuals, b is the mean transmission
rate and c is the recovery rate.

For our agent-based implementation (Figure 6C) we created a
new agent (representing a person) that encompasses three new
behaviors (see Figure 3). First, a susceptible agent became infected

with the infection probability if an infected agent was within the in-
fection radius. Second, an infected agent recovered with the recovery
probability at every time step. Third, all agents moved randomly in

Table 1. Performance data

Simulation Agents Diffusion volumes Iterations System Physical CPUs Runtime Memory

Neuroscience use case

Single (Figure 4A) 1494 250 500 A 1 0.16 s 382 MB

Large-scale (Figure 4C) 9 054 740 65 536 500 A 72 36 s 6.02 GB

Very-large-scale 1 018 644 154 5 606 442 500 B 72 1 h 26 min 436 GB

Oncology use case (Figure 5)

2000 initial cells 4177 0 312 A 1 1.05 s 382 MB

Large-scale 10 003 925 0 288 A 72 1 min 42 s 7.42 GB

Very-large-scale 986 054 868 0 288 B 72 6 h 21 min 604 GB

Epidemiology use case (Figure 6C)

Measles 2010 0 1000 A 1 0.53 s 381 MB

Seasonal Influenza 20 200 0 2500 A 1 16.41 s 383 MB

Large-scale (measles) 10 050 000 0 1000 A 72 59.19 s 5.87 GB

Very-large-scale (measles) 1 005 000 000 0 1000 B 72 2 h 0 min 495 GB

Note: The values in column ‘Agents’ and ‘Diffusion volumes’ are taken from the end of the simulation. Runtime measures the wall-clock time to simulate the

number of iterations. It excludes the time for simulation setup and visualization. The entries in column ‘System’ correspond to Supplementary File SF1 Table 5.

Supplementary File SF1 Table 6 contains more detailed performance data.

A B C

D

Fig. 4. Pyramidal cell simulation. (A) Example pyramidal cell simulated with

BioDynaMo. (B) Real neuron (R67nr67b-CEL1.CNG) taken from Mellström et al.

(2016) and visualized with https://neuroinformatics.nl/HBP/morphology-viewer/.

(C) Large-scale simulation. The model started with 5000 initial pyramidal cell

bodies and contained 9 million agents after simulating 500 iterations. The simula-

tion execution time was 35 s on a server with 72 CPU cores. (D) Morphology com-

parison between simulated neurons and experimental data from Mellström et al.

(2016). Error bars represent the standard deviation. (A, C) A video is available in

the Supplementary Materials

BA

Fig. 5. Comparison between in vitro MCF-7 tumor spheroid experiments and our in

silico simulations using BioDynaMo. (A) Human breast adenocarcinoma tumor

spheroid (MCF-7 cell line) development during a 15 day period, where different ini-

tial cell populations were considered [see Fig. 3 in Gong et al. (2015)]. Error bars de-

note standard deviation to the experimental data. The mean of the in silico results is

shown as a solid black line with a gray band depicting minimum and maximum

observed value. (B) A qualitative comparison between the microscopy images and

simulation snapshots. Scale bars correspond to 100 lm. A video is available in the

Supplementary Materials
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space with toroidal boundary condition. The absolute distance an
agent could travel in every time step was limited.

We selected two infectious diseases with different characteristics
to verify our model: measles and seasonal influenza. We obtained
values for the basic reproduction number R0 and recovery duration
TR from the literature (Measles: R0 ¼ 12:9, TR ¼ 8 days (Guerra
et al., 2017; World Health Organization, 2020), Influenza: R0 ¼
1:3; TR ¼ 4:1 days (Chowell et al., 2008)) and determined the
parameters b and c for the analytical model, based on R0 ¼ b=c and
c ¼ 1=TR. For the agent-based model we set the recovery probability
to c, and determined the remaining parameters (infection radius, in-
fection probability and maximum movement in one time step) using
particle swarm optimization (Kennedy and Eberhart, 1995).
Figure 6 shows that the agent-based model is in excellent agreement
with the equation-based approach from (Kermack et al., 1927) for
measles and influenza.

Model specification required 181 lines of Cþþ code.

3.4 Performance
First, to demonstrate the performance improvements against estab-
lished ABS platforms, we compared BioDynaMo with Cortex3D
and NetLogo. Figure 7A shows the speedup of BioDynaMo for four
simulations. We define speedup as the runtime of the compared ABS
platform over the runtime of BioDynaMo. We observed a significant

speedup between 19 and 74� for Cortex3D and 25� for NetLogo.
The speedup was larger, when the simulation was more dynamic or
more complex. Note that we set the number of threads available to
BioDynaMo to one since Cortex3D and NetLogo are not parallel-
ized. In the ‘epidemiology (medium-scale)’ benchmark we increased
the number of available physical CPU cores to 72 and observe a
three order of magnitude speedup of 945�. This result clearly shows
the impact of parallelization on the overall performance. Although
NetLogo is not parallelized, it benefits from parallel garbage collec-
tion. We could not perform a medium-scale analysis with
Cortex3D, because it only supports simulations with a small number
of agents.

Second, to evaluate the scalability of BioDynaMo, we measured
the simulation time with an increasing number of threads. We
increased the number of agents used in the comparison with
Cortex3D and reduced the number of simulation timesteps to 10.
Figure 7B shows the strong scaling analysis. We define the term
‘strong scaling’ as the property of a simulation platform to reduce
the runtime of a simulation with a fixed size x with an increasing
number of CPU cores c: speedupðc;xÞ ¼ timeð1;xÞ

timeðc;xÞ (Hill, 1990).
All simulation parameters were kept constant, and the number

of threads was increased from one to the number of logical cores
provided by the benchmark server. The maximum speedup ranged
between 62� and 77�, which corresponds to a parallel efficiency of
0.86 and 1.07. Performance improved even after all physical cores
were utilized and hyper-threads were used. Hyper-threads are high-
lighted in gray in Figure 7B. We want to emphasize that even the
pyramidal cell growth benchmark scaled well, despite the challenges
of synchronization and load imbalance.

Third, we evaluated the impact of calculating the mechanical
forces on the GPU using the cell growth and division, and soma clus-
tering simulations. We excluded the pyramidal cell growth simula-
tion because the current GPU kernel does not yet support cylinder
geometry. The benchmarks were executed on System C (see
Supplementary File SF1 Table 4), comparing an NVidia Tesla V100
GPU with 32 CPU cores (64 threads). We observed a speedup of
1.01� for cell growth and division, and 4.16� for soma clustering.
The speedup correlated with the number of collisions in the simula-
tion. The computational intensity is directly linked with the number
of collisions between agents.

In summary, in the scalability test, we observed a minimum
speedup of 62�. Furthermore, we measured a minimum speedup of
19� comparing BioDynaMo with Cortex3D both using a single
thread. Based on these two observations, we conclude that on
System A (see Supplementary File SF1 Table 4) BioDynaMo is more
than three orders of magnitude faster than Cortex3D. In the com-
parison with NetLogo we observed a 945� speedup directly.

Based on these speedups, we executed the neuroscience, oncol-
ogy and epidemiology use cases with one billion agents. Using all 72
physical CPUs on System B (see Supplementary File SF1 Table 4),
we measured a runtime of 1 h 26 min, 6 h 22 min and 2 h, respective-
ly. One billion agents, however, are not the limit. The maximum
depends on the available memory and accepted execution duration.
To be consistent across all use cases and keep our pipeline’s total
execution time better manageable, we decided to run these bench-
marks with one billion agents. Table 1 shows that available memory
would permit an epidemiological and neuroscience simulation with
two billion agents. With enough memory, BioDynaMo is capable of
supporting hundreds of billions of agents.

4 Discussion

This article presented BioDynaMo, a novel open-source platform
for agent-based simulations. Its modular software architecture
allows researchers to implement models of distinctly different fields,
of which neuroscience, oncology and epidemiology were demon-
strated in this article. Although the implemented models follow a
simplistic set of rules, the results that emerge from the simulations
are prominent and highlight BioDynaMo’s capabilities. We do not
claim that these models are novel, but we rather want to emphasize
that BioDynaMo enables scientists to (i) develop models in various
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Fig. 6. Measles and seasonal influenza SIR model results. (A, B) Comparison be-

tween agent-based (solid lines) and analytical (dashed lines) model for measles (A)

and seasonal influenza (B). The agent-based simulation was repeated ten times. The

individual simulation results are shown as thin solid lines. The bold solid line repre-

sents the mean from all simulations. The legend is shared between the two plots. (C)

Visualization of the measles and influenza model for different time steps in 3D

space. Susceptible persons are shown in white, infected persons in red, and recov-

ered persons in blue

Fig. 7. BioDynaMo performance analysis. (A) Speedup of BioDynaMo compared to

the serial simulation platforms Cortex3D and NetLogo. Simulations use one CPU

core except for the ‘epidemiology (medium-scale)’ benchmark, for which all 72

physical cores were available. The comparison with NetLogo uses the same simula-

tion with different numbers of agents. Cortex3D supports only small-scale simula-

tions. (B) Strong scaling behavior of BioDynaMo on a server with 72 physical cores,

two threads per core and four NUMA domains. The gray area highlights hyper-

threads
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computational biology fields in a modular fashion, (ii) obtain results
rapidly with the parallelized execution engine, (iii) scale up the
model to billions of agents on a single server and (iv) produce results
that are in agreement with validated experimental data. Although
BioDynaMo is modular, we currently offer a limited number of
ready-to-use simulation primitives. We are currently expanding our
library of agents and behaviors to facilitate model development be-
yond the current capacity.

Ongoing work uses BioDynaMo to gain insights into retinal de-
velopment, cryopreservation, multiscale (organ-to-cell) cancer mod-
eling, radiation-induced tissue damage and more. Further efforts
focus on accelerating drug development by replacing in vitro experi-
ments with in silico simulations using BioDynaMo.

Our performance analysis showed improvements of up to three
orders of magnitude over state-of-the-art baseline simulation soft-
ware, allowing us to scale up simulations to an unprecedented num-
ber of agents. To the best of our knowledge, BioDynaMo is the first
scalable ABS platform for neural development that scales to more
than one billion agents. The same principles used to model axons
and dendrites in the neuroscience use case could also be applied to
simulate blood and lymphatic vessels.

We envision BioDynaMo to become a valuable tool in computa-
tional biology, fostering faster and easier simulation of complex and
large-scale systems, interdisciplinary collaboration and scientific
reproducibility.
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