
Edited by

Physics of Impurities 
in Quantum Gases

Simeon Mistakidis and Artem Volosniev

Printed Edition of the Special Issue Published in Atoms

www.mdpi.com/journal/atoms



Physics of Impurities in Quantum
Gases





Physics of Impurities in Quantum
Gases

Editors

Simeon Mistakidis

Artem Volosniev

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Simeon Mistakidis

Harvard & Smithsonian

USA

Artem Volosniev

IST Austria

Austria

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Atoms

(ISSN 2218-2004) (available at: https://www.mdpi.com/journal/atoms/special issues/Physics

Impurities QuantumGases).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-4873-9 (Hbk)

ISBN 978-3-0365-4874-6 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Physics of Impurities in Quantum Gases” . . . . . . . . . . . . . . . . . . . . . . . . ix

Magnus G. Skou, Thomas G. Skov, Nils B. Jørgensen and Jan J. Arlt

Initial Dynamics of Quantum Impurities in a Bose–Einstein Condensate
Reprinted from: Atoms 2021, 9, 22, doi:10.3390/atoms9020022 . . . . . . . . . . . . . . . . . . . . 1

Francesco Scazza, Matteo Zaccanti, Pietro Massignan, Meera M. Parish and Jesper Levinsen

Repulsive Fermi and Bose Polarons in Quantum Gases
Reprinted from: Atoms 2022, 10, 55, doi:10.3390/atoms10020055 . . . . . . . . . . . . . . . . . . . 11

Hiroyuki Tajima, Junichi Takahashi, Simeon I. Mistakidis, Eiji Nakano, and Kei Iida

Polaron Problems in Ultracold Atoms: Role of a Fermi Sea across Different Spatial Dimensions
and Quantum Fluctuations of a Bose Medium
Reprinted from: Atoms 2021, 9, 18, doi:10.3390/atoms9010018 . . . . . . . . . . . . . . . . . . . . 41

Luis A. Peña Ardila

Ultra-Dilute Gas of Polarons in a Bose–Einstein Condensate
Reprinted from: Atoms 2022, 10, 29, doi:10.3390/atoms10010029 . . . . . . . . . . . . . . . . . . . 67

Galyna Panochko, Volodymyr Pastukhov

Static Impurities in a Weakly Interacting Bose Gas
Reprinted from: Atoms 2022, 10, 19, doi:10.3390/atoms10010019 . . . . . . . . . . . . . . . . . . . 77

Georgios M. Koutentakis, Simeon I. Mistakidis and Peter Schmelcher

Pattern Formation in One-Dimensional Polaron Systems and Temporal Orthogonality
Catastrophe
Reprinted from: Atoms 2022, 10, 3, doi:10.3390/atoms10010003 . . . . . . . . . . . . . . . . . . . 89

Miguel Angel Bastarrachea-Magnani, Jannie Thomsen, Arturo Camacho-Guardian and

Georg Morten Bruun

Polaritons in an Electron Gas—Quasiparticles and Landau Effective Interactions
Reprinted from: Atoms 2021, 9, 81, doi:10.3390/atoms9040081 . . . . . . . . . . . . . . . . . . . . 119

Morris Brooks, Mikhail Lemeshko, Douglas Lundholm and Enderalp Yakaboylu

Emergence of Anyons on the Two-Sphere in Molecular Impurities
Reprinted from: Atoms 2021, 9, 106, doi:10.3390/atoms9040106 . . . . . . . . . . . . . . . . . . . 135

Chiara D’Errico, and Marco G. Tarallo

One-Dimensional Disordered Bosonic Systems
Reprinted from: Atoms 2021, 9, 112, doi:10.3390/atoms9040112 . . . . . . . . . . . . . . . . . . . 147

Ofir E. Alon

Fragmentation of Identical and Distinguishable Bosons’ Pairs and Natural Geminals of 
a Trapped Bosonic Mixture
Reprinted from: Atoms 2021, 9, 92, doi:10.3390/atoms9040092 . . . . . . . . . . . . . . . . . . . . 161

Panagiotis Giannakeas and Chris H. Greene

Asymmetric Lineshapes of Efimov Resonances in Mass-Imbalanced Ultracold Gases
Reprinted from: Atoms 2021, 9, 110, doi:10.3390/atoms9040110 . . . . . . . . . . . . . . . . . . . 187

v



Koushik Mukherjee, Soumik Bandyopadhyay, Dilip Angom, Andy M. Martin 
and Sonjoy Majumder

Dynamics of the Creation of a Rotating Bose–Einstein Condensation by Two Photon Raman 
Transition Using a Laguerre–Gaussian Laser Pulse
Reprinted from: Atoms 2021, 9, 14, doi:10.3390/atoms9010014 . . . . . . . . . . . . . . . . . . . . 203

vi



About the Editors

Simeon Mistakidis

Simeon Mistakidis is an ITAMP postdoctoral fellow at Harvard University working on

engineering entanglement-based processes and magnetic phenomena appearing in many-body

multicomponent systems ranging from quasiparticles and droplets to long-range settings. He

obtained his master’s degree in theoretical physics in the sector of Nuclear and Particle Physics at

the National and Kapodistrian University of Athens, Greece. He then moved to the University of

Hamburg as an exchange student to complete his master’s and PhD studies in Atomic Molecular

and Optical Physics, where he received a scholarship to serve as a graduate exchange visiting

student assistant and, afterwards, the PhD Scholarship Hamburgisches Gesetz zur Förderung des

wissenschaftlichen und künstlerischen Nachwuchses. His research was devoted to studying the

correlated nonequilibrium quantum dynamics of many-body atomic systems with a particular

emphasis on excitation processes in optical lattices, pattern formation and the physics of polarons.

Following his PhD (with summa cum laude), he received the Lenz-Ising Award presented to

outstanding junior scientists. He has co-authored more than 60 scientific publications and serves as a

reviewer for more than 20 international journals and a topic editor for 2 of these journals.

Artem Volosniev

Artem Volosniev is a postdoctoral researcher at the Institute of Science and Technology Austria

primarily interested in strongly correlated quantum systems as well as in the theory of quantum

simulations and engineering. In 2010, he graduated from V. N. Karazin Kharkiv National University

(Ukraine). In 2013, he was awarded his PhD degree in theoretical physics from Aarhus University

(Denmark). After a brief postdoc in Aarhus, he held a temporary research position at TU Darmstadt

(Germany). His research there was supported by the Humboldt Foundation and by the DFG (German

Research Foundation). In 2018, he was awarded a Marie Curie (ISTplus) fellowship to continue his

research in Austria.

vii





Preface to ”Physics of Impurities in Quantum Gases”

Systems with impurities have served as motivation for establishing some of the most important

concepts in quantum physics, chemistry and materials science in the last century. Nowadays, the

fundamentals of these concepts are being tested using cold-atom setups.

In this Special Issue, we present a few recent studies that examine the properties of impurities

in quantum gases, fundamental properties and universal aspects of quasiparticles and other related

many-body phenomena. Particular focus is placed on the Fermi and Bose polarons.

We would like to cordially thank the contributing authors for their original research and review

articles. We are grateful to Ms. Lauren Liu for providing assistance in the preparation of the Special

Issue. We hope that this book will help to shape our understanding of systems with impurities and

pave the way for future endeavors.

Simeon Mistakidis and Artem Volosniev
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Abstract: An impurity immersed in a medium constitutes a canonical scenario applicable in a wide
range of fields in physics. Though our understanding has advanced significantly in the past decades,
quantum impurities in a bosonic environment are still of considerable theoretical and experimental
interest. Here, we discuss the initial dynamics of such impurities, which was recently observed
in interferometric experiments. Experimental observations from weak to unitary interactions are
presented and compared to a theoretical description. In particular, the transition between two initial
dynamical regimes dominated by two-body interactions is analyzed, yielding transition times in clear
agreement with the theoretical prediction. Additionally, the distinct time dependence of the coherence
amplitude in these regimes is obtained by extracting its power-law exponents. This benchmarks our
understanding and suggests new ways of probing dynamical properties of quantum impurities.

Keywords: Bose–Einstein condensates; impurity dynamics; ramsey interferometry; polarons

1. Introduction

The behavior of interacting quantum impurities is a problem of significant scientific
and technological importance. Initial theoretical studies by Landau and Pekar [1] showed
that a crystal lattice dresses electrons to form quasiparticles coined polarons. This intuitive
model is highly successful and now serves as a basis for understanding complex condensed
matter systems [2]. The concept of polarons is thus central for important technologies such
as organic semiconductors [3] and high-temperature superconductors [4].

The initial dynamics of an impurity is especially intriguing. It sheds light on the
intrinsic link between two-body and many-body correlations, and is key to understanding
the eventual formation of a polaron. Due to the fast evolution times in most materials,
this evolution has eluded observation until recently. With the advent of quantum gases,
this is no longer the case since their low densities allow for long interrogation times in
pure and controllable environments. Based on these systems, the spectral response and
dynamical evolution of an impurity in a Fermi gas have been explored in great theoretical
and experimental detail [5–13]. The mobile Bose polaron, which resembles the solid-state
problem closely, has been studied spectroscopically [14–17] and its behavior has been
investigated in a one-dimensional Bose gas [18,19]. However, the formation dynamics of
the Bose polaron in a three-dimensional gas has remained unclear.

Here we present recent experiments, which succeed in investigating the dynamics
of impurities in a Bose–Einstein condensate (BEC). This evolution of the impurities can
be resolved using an interferometric sequence. The first pulse in this sequence creates
an imbalanced superposition state, which evolves under the influence of interactions
in the system. The second pulse then allows a measurement of the coherence between
the initial state and the evolved impurity state [20]. The dynamics of the impurity can
be separated into three regimes, as illustrated in Figure 1, depending on the interaction
strength and the evolution time. The initial dynamics at all interaction strengths is governed

Atoms 2021, 9, 22. https://doi.org/10.3390/atoms9020022 https://www.mdpi.com/journal/atoms1
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by two-body scattering between the impurity and the condensate. For short times, the
two-body scattering is unitarity-limited causing the coherence to evolve universally [21].
For weak interactions, this is followed by a regime of two-body weak coupling dynamics
which depends on the scattering length between the impurity state and medium state.
For longer times, the dynamical behavior transitions into a regime where many-body
correlations govern the evolution. For strong interactions, this regime is entered directly
from universal dynamics.

Figure 1. Regimes of impurity dynamics. Characteristic regimes of impurity dynamics as a function
of the inverse interaction strength 1/kna (see text) and the evolution time t/tn (see text). Solid lines
indicate predicted transitions between the dynamical regimes. Red data points are experimentally
extracted transition times and errors correspond to fit uncertainties. A similar figure was presented
in Ref. [20].

This dynamical evolution was initially investigated in Ref. [20] where all three regimes
were observed. Furthermore, the transition times between the regimes were obtained
showing clear agreement with theoretical predictions. In this paper, we extend the analysis
of the experimental observations to provide a deeper understanding of the two regimes of
universal and weak coupling dynamics illustrated in Figure 1. Specifically, we discuss the
transition time between them and consider the functional behavior of the coherence in the
two regimes.

The paper is structured as follows. In Section 2, the experiment is briefly presented
including the interferometric sequence. This is followed by the discussion of a theoretical
model in Section 3. In Section 4, this model is compared with experimental observations of
the coherence amplitude and phase evolution for weak and unitary interactions. The transi-
tion between the two regimes is discussed in Section 5. Finally, in Section 6 the dependence
of the dynamical evolution on interaction strength is presented.

2. Experimental Details

The experiment was performed using a quantum gas of 39K. The production of
39K BECs has been presented in detail in Refs. [14,22] and only the relevant steps for
investigating impurity dynamics are outlined here.

The experiments are based on a 39K BEC in the hyperfine state |F = 1, mF = −1〉 held
in an optical dipole potential with an average condensate density of nB = 0.9 × 1014 cm−3.
This determines the system energy scale En = h̄2k2

n/2m through the wave number kn =
(6π2nB)

1/3 and importantly sets the relevant timescale tn = h̄/En = 4 μs. We employ a
second hyperfine state |F = 1, mF = 0〉 as the impurity state. The interaction strength
between the two states is characterized by the dimensionless parameter 1/kna, where a
is the interstate scattering length. This scattering length can be tuned by the magnetic
field via a Feshbach resonance located at 113.8 G [23,24]. The medium scattering length
is aB ≈ 9a0, where a0 is the Bohr radius, and is approximately constant for the applied
magnetic fields

An interferometric sequence consisting of two radio-frequency (rf) pulses is employed,
which allows us to populate an impurity state and probe the subsequent dynamics. Similar
interferometric investigations have previously explored impurity dynamics in a Fermi
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gas [8,9] and motional coherence of fixed impurities in a BEC [25,26]. The rf pulses are
resonant with the atomic transition and their short duration of 0.5 μs allows the dynamics
to be well resolved. The first rf pulse quenches the system into a superposition of the
impurity state and the medium state corresponding to a ∼5% population in the former,
which ensures vanishing interaction between the impurites [20]. The system then evolves
for a variable time t, in which the phase of the coherence advances and the coherence
amplitude decays due to interactions between the two states. Finally, a second rf pulse
probes the system with a variable phase ϕ. Subsequently, the atoms are held in the dipole
trap for an additional 2 ms where three-body losses remove two medium atoms for each
impurity. Thus, only medium atoms remain whose number is inversely proportional to the
number of impurity atoms after the second rf pulse. After free expansion the remaining
number of the medium state atoms is measured through absorption imaging.

This resulting atom number depends sinusoidally on the probe phase and for each
evolution time t we perform a fit N(ϕ) = N0 −A cos(ϕ − ϕC). Here, the amplitude A
corresponds to the extent to which the coherence is preserved and ϕC corresponds to
the phase acquired during the evolution time t. Thus, we obtain the amplitude |C(t)| =
|A(t)/A(0)| and the phase ϕC of the coherence for each chosen interaction strength and
evolution time. Example measurements of the coherence amplitude and phase are shown
in Figure 2 for weak and unitary interactions (Slight differences in the data with respect to
Ref. [20] arise due to an improved calibration of the imaging system.). These measurements
clearly display how the coherence of the system evolves as time progresses between the
two rf pulses.

Figure 2. Two-body dynamics at weak and unitary interaction strengths. The coherence amplitude (top row) and phase
evolution (bottom row) at 1/kna = −1.8 (a,b) and 1/kna = 0.01 (c,d). The corresponding data were previously presented in
Ref. [20]. Equation (1) is shown as a solid red line and the two limits in Equation (2) are shown as a dashed blue line and a
dash-dotted green line for the universal and the weak coupling dynamics, respectively. Note that the universal description
coincides with the general two-body model in panel (d). The errors correspond to fit uncertainties.

3. Two-Body Regimes of Dynamical Evolution

In the following section we briefly outline the theoretical description of the dynam-
ical regimes which we compare with our experimental results. A short-time theoretical
prediction can be obtained from the spectral function of the impurity. This describes the
impurity in the frequency-domain and generally contains a polaron ground state and a
continuum of excited states. Though the exact spectral function at arbitrary interaction
strength has no general solution, the tail of excited states at high frequencies has previously
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been investigated in detail [27]. Due to the intrinsic link between frequency-domain and
time-domain behavior, the Fourier transform of this high-frequency solution yields the
coherence for the initial two-body dynamics. For low medium-medium scattering length,
it can be expressed as [20]

C(t) �1 − i
Emft

h̄
+

2
3π

(kn|a|)3
[

1 − 2√
π

eit/ta Γ
(

3
2

, i
t
ta

)]
, (1)

where Γ is the incomplete gamma function, Emf = 4πh̄2nBa/m is the mean-field energy
and ta = ma2/h̄ is the timescale set by the medium-impurity scattering length a. The co-
herence amplitude and phase can be examined using the coherence in the small-angle
approximation. Thus, to the lowest order, the experimentally measured amplitude and
phase correspond to the real and imaginary part of Equation (1).

Remarkably, this two-body prediction is exact for any interaction strength from weak
to strong interactions [20]. Furthermore, it is possible to simplify Equation (1) in the
following limits

C(t) =

⎧⎪⎨⎪⎩
1 − (1 − i) 16

9π3/2

(
t

tn

)3/2
t � ta

1 − iEmft/h̄ − (1 + i)
(

t
tw

)1/2
t � ta

(2)

where tw = m/32πh̄n2
Ba4. The long-time limit of the equation is valid to second order in

the impurity-medium scattering length a, and it can be extended to include a third-order
correction [20]. Furthermore, it clearly demonstrates two distinct regimes. At short times
t � ta the high-frequency scattering is limited by the density and the coherence evolves
with an interaction independent timescale tn and an exponent of 3/2. For longer times
t � ta, this transitions into weak coupling dynamics marked by the appearance of the
mean-field energy, the interaction dependent timescale tw, and the exponent 1/2.

These power laws reflect the behavior of the scattering cross section σ(k) = 4πa2/[1 +
(ka)2] in the two regimes [20]. In a simple picture, it governs the collision rate, which
we assume to equal the rate of decoherence Ċ(t) ∼ −nBσv. At a given time t during the
evolution after the first rf pulse, the characteristic energy associated with decoherence is
E ∼ h̄/t, which sets the wave number k ∼

√
m/h̄t and collisional velocity v ∼

√
h̄/mt.

For short times t � ta, the cross section is unitary-limited σ ∼ 1/k2 ∼ h̄t/m. By integrating
the corresponding rate of decoherence we obtain C(t) ∼ (t/tn)3/2, which precisely reflects
the universal limit of Equation (2). In contrast, for longer times t � ta the cross section is
dominated by the scattering length as σ ∼ a2. Integrating the decoherence rate here yields
the weak coupling limit C(t) ∼ (t/tw)1/2. The timescale ta is therefore key in describing
which regime governs the dynamical evolution of the system.

4. Coherence Amplitude and Phase Evolution

Based on the experiment described in Section 2, it is possible to observe the evolution
of an impurity state by monitoring the coherence amplitude |C| and phase ϕC. Here we
compare such measurements with the theoretical prediction from Section 3. Examples of
measured coherence amplitude and phase are shown in Figure 2 for weak and resonant
interactions with the general two-body description (Equation (1)) for all panels and with
its limits (Equation (2)) for the phase.

For both data sets, the coherence amplitude decreases as function of evolution time,
driven by the dynamical scattering events. This shows that the impurity state evolves and
loses coherence with the initial state (To compare the experimental observations with this
prediction, the coherence amplitude is normalized by fitting Equation (1) with an overall
amplitude within tn.) at a rate which increases for large interaction strengths as expected.

4
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Figure 3. Transition from universal to weak coupling dynamics. (a) The coherence amplitude and (b)
phase evolution at 1/kna = −1.3 (circles) with Equation (1) as a dash-dotted line for its fitted value
ta = 0.2tn (red) and as dashed lines using two additional values 0.05tn (purple) and 0.5tn (blue).
The errors correspond to fit uncertainties.

The coherence amplitude in the upper panels of Figure 2 is affected by additional
decoherence processes which all contribute to its gradual decay. To accurately model
the experiment, we therefore include effects stemming from the inhomogeneous density
distribution, the lifetime of the impurity and shot-to-shot magnetic field fluctuations in our
theoretical description. The dephasing due to the inhomogeneous density distribution is
accounted for by integration of the coherence over the density distribution of the BEC. This
is modeled in the Thomas–Fermi limit using a parabolic density profile. The lifetime of the
impurity due to recombination was measured independently and included by multiplying
the coherence with an exponential decay. The lifetime ranges from ∼7tn at unitarity to
∼42tn at weak interaction strengths. The shot-to-shot magnetic field fluctuations were also
measured independently and incorporated in the theoretical description of the coherence.
This was achieved by multiplying the coherence with the integrated distribution of phases
caused by the slight differences in the magnetic field at each experimental repetition.
Since the temperature of the cloud was ∼50 nK, the corresponding thermal timescale
h̄/kBT ∼ 38tn is beyond the accessible regime of impurity dynamics and thus thermal
effects are negligible. The resulting two-body prediction is illustrated in Figure 2 and
clearly agrees with the data for short times. Since no fitting parameters are employed,
the excellent agreement of the prediction and observations highlights that the theory
captures the dynamical behavior of the system exceedingly well.

The lower panels of Figure 2 show the evolution of the coherence phase as a func-
tion of time, where a faster evolution is observed for larger interaction strengths. Since
the experimental decoherence mechanisms primarily influence the coherence amplitude,
the phase is better suited to observe the power-law behavior of the coherence evolution. It
is therefore plotted in a double logarithmic fashion (Note that the coherence phase cannot
be reliably extracted for long evolution times due to the vanishing coherence amplitude.).
The imaginary part of Equation (1) is also shown in the lower panels of Figure 2 in good
agreement with the observations. To gain further insight, we show the limits of Equation (2)
as well. For weak interactions (Figure 2b) the transition from two-body universal dynamics
to weak coupling dynamics occurs almost immediately and the ∼t1/2 limit of Equation (2)
captures the entire observed phase evolution. At unitarity, the universal dynamics extends
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to much longer evolution times and thus the ∼t3/2 limit of Equation (2) coincides with
Equation (1) and agrees with the experimental observations.

In general, it is remarkable how well the measured coherence amplitude and phase
at short times agree with Equation (1) considering the wide span of interaction strengths
from weak to unitary. Moreover, our result shows that the limits of Equation (2) are valid
and allow a clear distinction of the two regimes. This consolidates our understanding of
the initial two-body dynamics and validates the theoretical prediction.

5. Transition from Universal to Weak Coupling Dynamics

Equation (2) shows that the transition between the universal and the weak coupling
regime is given by ta, which sets an important timescale of the dynamics and motivates
its experimental investigation. In the following we show that the transition time can be
extracted from the observations with a model-dependent fit and discuss the fitted results
as function of interaction strength.

The transition time ta appears in the general short-time prediction Equation (1) as
an interaction dependent timescale. We therefore fit Equation (1) simultaneously to the
coherence amplitude and phase evolution with ta as the only free parameter to extract the
transition between the two regimes. Importantly, we only fit the initial data of each set since
Equation (1) is only valid in the limit of short times. The fitted timescales at four interaction
strengths are shown in Figure 1a together with the predicted transition times between
the dynamical regimes. The extracted transition time increases for stronger interactions
indicating an extended evolution time of universal dynamics. Moreover, the timescale is in
clear agreement with the predicted value of ta.

Remarkably, the fitted value and its error are small compared with the dynamical
timescale tn. Since the duration of the probing pulses is 0.5 μs ∼ 0.1tn, it is not immediately
clear that such small timescales can be extracted experimentally. To illustrate the feasibility,
a fit at 1/kna = −1.3 is shown in Figure 3, which yields an extracted transition time of
0.2(2)tn in agreement with the predicted value of ta = 0.3tn. Additionally, two lines are
shown where ta = 0.05tn and 0.5tn. This figure thus clarifies that ta affects the functional
shape of the coherence at times much larger than its own value. Therefore, even small dif-
ferences in ta cause large discrepancies when compared with the experimental observation,
which is most pronounced for the coherence amplitude Figure 3a.

We thus demonstrate that a transition time can be extracted experimentally in agree-
ment with theoretical predictions. For sufficiently large interaction strengths |1/kna| � 0.5,
a transition to weak coupling dynamics is not observable, since the many-body regime is
entered directly.

6. Two-Body Exponent and Time Constant

The limits given by Equation (2) show that the universal and weak coupling regime
display distinctively different functional behavior corresponding to power-law exponents
3/2 and 1/2, respectively. We now turn our attention to the investigation of this functional
difference by fitting such a power law to the coherence amplitude and observing its
dependence on the interaction strength.

The two limits of the two-body prediction in Equation (2) are especially simple for
the coherence amplitude and follow the form 1 − (t/tc)β. For weak coupling dynamics
β = 1/2 and tc is interaction dependent whereas for universal dynamics β = 3/2 and
tc is constant. By fitting a power law to the coherence amplitude within the regimes of
two-body dynamics, the fitted values of β and tc can indicate the functional behavior at the
chosen interaction strength.

The fitted exponents and time constants are shown in Figure 4 together with the weak
coupling and universal values. For low interaction strengths β agrees with the prediction
of weak coupling dynamics. At stronger interactions it slowly increases and reaches 3/2 at
unitarity in agreement with the universal prediction. The fitted time constant tc initially
decreases for increasing interaction strength and qualitatively follows the behavior of

6



Atoms 2021, 9, 22

the predicted timescale tw of weak coupling dynamics. However, for strong interaction
strengths, where tw diverges, tc remains finite and connects with the universal value
of ∼2.1tn. The error bars correspond to symmetric fit uncertainties and the apparent
asymmetry is due to the logarithmic scale.

Figure 4. Characteristic exponent and time constant. By fitting a power law 1 − (t/tc)β to the
coherence amplitude, we obtain the characteristic exponent (a) and time constant (b) at various
interaction strengths. The theoretically predicted exponent and time constants for universal and
weak coupling dynamics are shown as a dashed blue line and a dash-dotted green line, respectively.
The errors correspond to fit uncertainties.

The experimental observations in the transition region between weak and unitary in-
teractions are influenced by the behavior of both two-body regimes. Therefore, the specific
values of β and tc bear no physical meaning and are a consequence of fitting a single time
dependence to the data when both weak coupling and universal dynamics are present.
Nonetheless, at weak and unitary interactions the fitted power law is dominated by either
one of the two-body regimes and we observe a smooth connection between the two in the
transition region.

7. Conclusions

The results presented here provide a detailed investigation of the initial two-body
dynamics of a quantum impurity in a BEC. The impurity dynamics has previously been
studied [20], and here we have extended the analysis of the initial universal and subsequent
weak coupling dynamics and the transition between them.

An interferometric sequence was used to measure the coherence of the system quenched
into a superposition of an impurity state and a medium state. The evolution of the coher-
ence was predicted by a rigorous short-time model, which showed a universal and a weak
coupling regime with distinct exponents and timescales. A direct comparison between the
experimental observations and the two-body theoretical prediction confirmed the validity
of the model.

The transition between the two regimes was analyzed at four interaction strengths
yielding transition times in clear agreement with the theoretical prediction as shown
in Figure 1. Additionally, the transition was investigated by fitting a power law to the
coherence amplitude, revealing how the exponent and time constant change from weak
coupling to universal dynamics for increasing interaction strength.
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These investigations improve our understanding of the fundamental properties of
quasiparticles. By comparing interferometic observations at long evolution times to ear-
lier spectroscopic results [14–17] a complete model for the Bose polaron in both time
and frequency-domain can be obtained. Furthermore, the experimental methods may
be expanded to help elucidate exotic phenomena such as transport processes [28,29] or
dynamical formation of bipolarons [30].

Author Contributions: Conceptualization, M.G.S., T.G.S., N.B.J. and J.J.A.; methodology, M.G.S.;
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Abstract: Polaron quasiparticles are formed when a mobile impurity is coupled to the elementary
excitations of a many-particle background. In the field of ultracold atoms, the study of the associated
impurity problem has attracted a growing interest over the last fifteen years. Polaron quasiparticle
properties are essential to our understanding of a variety of paradigmatic quantum many-body
systems realized in ultracold atomic gases and in the solid state, from imbalanced Bose–Fermi and
Fermi–Fermi mixtures to fermionic Hubbard models. In this topical review, we focus on the so-called
repulsive polaron branch, which emerges as an excited many-body state in systems with underlying
attractive interactions such as ultracold atomic mixtures, and is characterized by an effective repulsion
between the impurity and the surrounding medium. We give a brief account of the current theoretical
and experimental understanding of repulsive polaron properties, for impurities embedded in both
fermionic and bosonic media, and we highlight open issues deserving future investigations.

Keywords: Fermi polarons; Bose polarons; repulsive interactions; metastable quasiparticles; quasi-
particle lifetime; mediated interactions; repulsive Fermi gas; ultracold atomic mixtures

1. Introduction

Understanding the fate of an impurity particle immersed within a complex medium
represents a paradigmatic problem in quantum physics [1], encompassing a variety of
physical scenarios and spanning an enormous range of energies: from ultracold atomic
gases [2–4], helium liquids [5,6] and solid-state materials [7–10], all the way up to nuclear
and quark matter [11–13]. The interest in such (N + 1) many-body systems is two-fold: on
the one hand, a primary goal is to characterize how the interactions with the surrounding
bath turn the impurity particle into a quasiparticle with modified static and dynamical
properties, such as a renormalized energy, a finite lifetime and an effective mass. On the
other hand, understanding how the bare particle is effectively dressed by its environment
provides important information about the nature of the medium itself, since the impurity
can act as a microscopic, local probe for both the excitations and the collective properties of
the surrounding material.

Importantly, a common set of ideas and technical tools can be applied to investigate the
impurity problem in seemingly disparate setups, the investigation of one system yielding
information on another. In particular, the so-called Fermi polaron—a mobile quantum
impurity embedded in a degenerate Fermi gas—has been successfully investigated and
characterized both in ultracold atomic mixtures [14–29] and in atomically thin semicon-
ductors [30,31], using a single theoretical framework and relying on similar experimental
methods. This has recently stimulated much cross-fertilization between the two fields
(see, e.g., Ref. [32] in this Special Issue). In addition, the original polaron scenario of a
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single electron interacting with phonons in a crystal [7] has now been extended to quantum
impurities immersed in a Bose–Einstein condensate—the so-called Bose polaron [33–37].

Ultracold atoms represent a particularly appealing playground for the exploration
of impurity physics, both in and out of equilibrium, owing to their versatility, their clean
and isolated nature, as well as their accessible time and length scales. Initiated with the
investigation of the highly-polarized limit of resonantly interacting Fermi gases across the
BCS-BEC crossover, and the observation of the so-called attractive Fermi polaron [14,15],
over the last decade a series of groundbreaking experiments have renewed the interest
in the (N + 1) problem within the field of quantum gases. These have already enabled
the characterization of the quasiparticle properties of impurity atoms embedded within
both Fermi [14–29] and Bose [34–38] environments, for various impurity-to-medium par-
ticle mass ratios, and encompassing not only systems in three dimensions (3D), but also
two- [17,18,26] and one-dimensional [33,39,40] environments. Combining the exquisite
control over interatomic interactions enabled by magnetic Feshbach resonances [41] with
advanced spectroscopic tools [42,43], quantum gases allow one to prepare both impurity
and medium particles in single, well-defined quantum states, and to probe quasiparticle
properties with unparalleled accuracy, down to the single-atom level.

As a non-trivial and quite general result, the detailed comparison between experi-
ment and theory has demonstrated that most quasiparticle properties can be accurately
modeled, even in the strong coupling regime, using theoretical methods which are much
simpler than those required for a quantitative description of balanced atomic mixtures. For
instance, excellent agreement between theory and experiment has been demonstrated for
the ground-state properties of a highly imbalanced Fermi mixture, owing to the almost
exact cancellation of a large set of high-order Feynman diagrams [44,45], and the agreement
even extends to the non-equilibrium evolution of impurities immersed in an ultracold
Fermi gas following an interaction quench [22,46]. Simple theories for strongly interacting
many-body systems are rare, and the (N + 1) problem therefore provides an important
testbed for improving our understanding of more complex states of highly correlated
matter. In particular, the study of the extremely polarized case of a single impurity provides
accurate information for systems that feature a sizable concentration of minority particles,
the impurity limit exhibiting some of the critical points of the full phase diagram, whose
topology we can thus learn about by investigating highly polarized systems [47].

In this topical review article, we focus on a specific kind of impurity quasiparticle,
termed the repulsive polaron, discussing experimental and theoretical progress in the un-
derstanding of its highly non-trivial nature from a cold-atom perspective. Originally
introduced to characterize the Stoner instability [48] of a gas of itinerant fermions towards
a ferromagnetic state [3,49,50], the repulsive polaron concept is nowadays generically em-
ployed to denote any impurity particle dressed by strong repulsive interactions with a
surrounding (either fermionic or bosonic) medium. While for genuine impurity-medium
interparticle repulsion, e.g., the one originating from Coulomb or hard-sphere interaction
potentials, the repulsive polaron represents the ground state of the (N + 1)-system, in the
case of van der Waals interactions relevant for cold atomic gases [41] such repulsive quasi-
particles connect to an excited energy branch of the many-body spectrum (see Figure 1).
This is due to the fact that any short-ranged repulsion with a scattering length exceeding
the interaction range inherently requires an underlying weakly-bound molecular level into
which the system may decay, thereby making the repulsive polaron metastable. As a conse-
quence, repulsive quasiparticles in ultracold atomic mixtures represent both a theoretical
and experimental challenge, which has stimulated over the last decade an intense debate
about the nature of the repulsive branch, with even its existence being questioned [51].
On the other hand, this has triggered the rapid development of new theoretical methods
and experimental probes, able to trace in real time the quasiparticle formation, decay and
decoherence [22,28,37,46,52–58].
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Figure 1. Quasiparticle spectrum as a function of interaction strength 1/(kFa). Attractive (green)
and repulsive (purple) polaron energy branches. The shaded area centered around the repulsive
polaron energy represents the quasiparticle spectral width Γ. For widths comparable to its energy,
the repulsive polaron ceases to be a well defined coherent quasiparticle (dashed line ending). In
the case of a fermionic medium, the attractive polaron also stops being well defined at sufficiently
large 1/(kFa), where it undergoes a sharp transition to a dressed molecule quasiparticle [59]. On
the other hand, the ground state of the Bose polaron spectrum does not feature a single-impurity
transition. Inset: impurity spectral function A(ω) at zero momentum for ω > 0, i.e., a vertical cut
through the repulsive polaron spectrum at fixed interaction strength. The center of the polaron
spectral function denotes the polaron energy E, while its half width at half maximum and area relate
to the quasiparticle width Γ and residue Z, respectively.

Here, we provide a concise overview of the recent advances in this research field. Our
discussion will concentrate on the most widely explored scenario of three-dimensional
systems; for impurity problems in lower dimensions, we refer the interested reader to
already available review articles by Levinsen and Parish [4] and by Mistakidis et al. [60],
which focus on two- and one-dimensional systems, respectively. The remainder of the
paper is organized as follows: in Section 2, we outline the theoretical basis for the treatment
of single-impurity problems in ultracold bosonic and fermionic atomic media; in Section 3,
we introduce the main experimental probes of polaron quasiparticle properties, especially
focusing on the metastable repulsive branch; in Section 4, we discuss the origin of the repul-
sive polaron quasiparticle lifetime, reconciling different interpretations for the quasiparticle
damping mechanisms found in the literature; finally, in Section 5, we discuss the emergence
of long-range impurity-impurity interactions mediated by the medium, thereby linking
polaron physics to that of bosonic and fermionic atomic mixtures.

2. Fermi and Bose Polarons

We begin by introducing the problem of a single impurity in a quantum medium
and providing an overview of the basic theoretical concepts. Our focus will be on the
case of short-range interactions between the impurity and medium particles, which is
appropriate for dilute quantum gases. For concreteness, we will restrict our attention
to three-dimensional (3D) systems, since this is the situation for most of the cold-atom
experiments that have been performed thus far. However, the phenomenology of the
repulsive polaron branch is similar in two dimensions [28], and thus our discussion is also
relevant to exciton polarons in atomically thin semiconductors [30].

2.1. Theoretical Description

In this review, we will assume that the medium consists of identical particles of mass
mmed which are in thermal equilibrium at a temperature T and chemical potential μ. The
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medium can, for instance, correspond to an ideal Fermi gas or a weakly interacting Bose
gas. It is governed by a Hamiltonian Ĥmed which, in the two cases, is given by either:

ĤFermi = ∑
k

(εmed
k − μ) f̂ †

k f̂k, (1)

where the creation operator f̂ †
k satisfies the usual fermionic commutation relations, or

ĤBose = ∑
k

(εmed
k − μ)b̂†

kb̂k + ∑
kk′q

VB(q)b̂†
k+qb̂†

k′−qb̂k′ b̂k, (2)

with the bosonic creation operator b̂†
k. The single-particle dispersion in the medium is εmed

k =
|k|2/2mmed ≡ k2/2mmed at momentum k. To be able to directly compare results for the two
cases, we will define a Fermi wave vector kF = (6π2n)1/3 and Fermi energy EF = k2

F/2mmed
in terms of the density n of the bath, independent of the medium statistics (kF and EF are
often labeled kn and En in the Bose polaron literature). In Equation (2) for a bosonic medium,
we have introduced a boson interaction potential VB which is assumed to be of short range
and characterized by a scattering length aB which is positive and small, 0 < na3

B � 1, to
ensure the stability of the Bose gas. Here and throughout this review we use units where the
volume, Boltzmann’s constant kB and the reduced Planck’s constant h̄ are all set to one.

Including the impurity degree of freedom as well as the impurity-medium interactions,
we therefore have the total Hamiltonian:

Ĥ = Ĥmed + ∑
k

εk ĉ†
k ĉk + ∑

k,q
V(q)ρ̂q ĉ†

k+q ĉk. (3)

Here, ĉ†
k is the impurity creation operator and εk = k2/2m is the impurity kinetic energy,

with m the impurity mass. The bosonic operator ρ̂q corresponds to medium density
operators, and takes the form ρ̂q = ∑k f̂ †

k−q f̂k or ρ̂q = ∑k b̂†
k−qb̂k depending on the

statistics of the medium. Note that we treat the impurity within the canonical ensemble,
where we have a fixed number of impurities (one impurity in this case), while we use the
grand canonical ensemble for the medium.

We have written the impurity-medium interactions in the Hamiltonian (3) in terms of
a generic finite-range potential V(q), which can in principle describe an actual repulsive
interaction such as a soft-sphere potential, as well as the short-range attractive interactions
that are the main focus of this review. Importantly, regardless of whether V(q) is attractive
or repulsive, the low-energy scattering amplitude between an impurity and a medium
atom at relative momentum k can be cast in the universal form1

fs(k) = − 1
1/a + ik

, (4)

where a is the s-wave scattering length. This allows us to employ pseudo-potentials for the
impurity-medium interactions that simplify calculations and expose the universal physics.

In the following, we take V(q) = g, where the constant g is the coupling strength, and
we introduce an ultraviolet cutoff Λ—effectively corresponding to the (inverse) range of the
potential—on the relative collision momenta in all two-body scattering processes. We then
use the low-energy scattering amplitude in Equation (4) to relate the physical parameter a
to the “bare” parameters of the model, g and Λ, yielding the relation,

1
g
=

mr

2πa
−

Λ

∑
k

1
εk + εmed

k

=
mr

2πa
− mr

2π2 Λ, (5)

where mr = (1/m + 1/mmed)
−1 is the reduced mass. Here, we immediately see that for

repulsive interactions g > 0, we have the constraint π/Λ > a > 0, where π/Λ mimics the
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range of a repulsive potential. Thus, in this case, the scattering length a is always positive,
and it has an upper limit set by the range of the potential itself.

In the case of ultracold atomic gases where the underlying van der Waals interactions
are attractive, there are no such restrictions on the scattering length and it can be freely tuned
to both positive and negative values by varying an external magnetic field. In particular, in
the vicinity of a broad Feshbach resonance [41], the scattering length a can be enhanced
to greatly exceed any other length scale in the problem, attaining the regime of unitarity-
limited interactions with negligible contribution from finite-range corrections. When the
scattering length is positive, there exists a shallow bound state between the impurity and a
particle from the medium, with binding energy εb = 1/2mra2, corresponding to the pole of
the scattering amplitude fs(k) given by Equation (4), at k = i/a [62].

2.2. Quasiparticle Properties

The interactions between the impurity and the medium lead to excitations of the medium,
and consequently the state corresponding to the bare impurity on top of an unperturbed
bath is no longer an eigenstate of the system Hamiltonian. As illustrated in Figure 1, the
resulting impurity quasiparticle has modified properties such as energy, mass, and residue
(squared wave function overlap with the non-interacting state), and likewise the quasiparticle
can acquire a finite lifetime. We now outline how these formally appear in the theory.

The quasiparticle properties at temperature T = 1/β are all encoded in the retarded
impurity Green’s function,

G(p, t) = −iΘ(t) tr
[
ρ̂med ĉp(t)ĉ†

p(0)
]
, (6)

which is written in terms of the time-dependent impurity operator ĉp(t) = eiĤt ĉpe−iĤt. Here,

ρ̂med = e−βĤmed / tr
[
e−βĤmed

]
is the medium density matrix and the trace is over the eigenstates

of the medium in the absence of the impurity. In a time-independent system, it is convenient to
introduce the impurity Green’s function as a function of frequency via the Fourier transform,

G(p, ω) =
∫

dt eiωtG(p, t). (7)

This satisfies the Dyson equation:

G(p, ω) = G0(p, ω) + G0(p, ω)Σ(p, ω)G(p, ω) =
1

G0(p, ω)−1 − Σ(p, ω)
, (8)

in terms of the impurity self energy Σ and the bare impurity propagator G0(p, ω) =
1/(ω − εp + i0), where the infinitesimal factor +i0 shifts the pole slightly into the lower
half plane.

The impurity self energy allows us to extract the quasiparticle properties [63]. In
particular, the presence of a quasiparticle is related to a pole of the Green’s function, and in
the vicinity of this pole we have:

G(p, ω) � Z
ω − E − p2/2m∗ + iΓ

, (9)

for small momenta. Here, the energy E, residue Z, effective mass m∗, and damping rate Γ
are related to the self energy as outlined in Table 1. The quasiparticle properties manifest
themselves in the spectral function, defined from the Green’s function as:

A(p, ω) = − 1
π

Im[G(p, ω)], (10)

which is one of the key experimental observables of quantum impurity physics (see Figure 1).
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Table 1. Quasiparticle properties of an impurity in a medium. The quasiparticle energy E is found
as the solution of a transcendental equation, and serves as an input into the remaining expressions.
The expressions for m∗, C and ΔN involve Z since, for a general parameter λ, one has ∂λE =

∂λRe[Σ(0, E)] + ∂ERe[Σ(0, E)]∂λE, so that ∂λE = Z∂λRe[Σ(0, E)].

Quasiparticle Property Symbol Relation to Self Energy

Energy E E = Re[Σ(0, E)]

Residue Z Z =
(

1 − ∂Re[Σ(0,ω)]
∂ω

∣∣∣
ω=E

)−1

Effective mass m∗
m∗ = m

Z

(
1 + ∂Re[Σ(p,E)]

∂εp

∣∣∣
p=0

)−1

Damping Γ Γ = −Z Im[Σ(0, E)]

Contact C C
8πmr

= ∂E
∂(−1/a) = Z ∂Re[Σ(0,E)]

∂(−1/a)

Particles in dressing cloud ΔN ΔN = − ∂E
∂μ = −Z ∂Re[Σ(0,E)]

∂μ .

In addition to the above properties, which are familiar from Fermi liquid theory,
the quasiparticles are also characterized by quantities that encode the impurity-medium
correlations. Of particular interest is the impurity Tan contact [64,65],

C = 8πmr
∂E

∂(−1/a)
, (11)

which is related to the probability of a medium particle being close to the impurity. This
contact governs the occupation at large momenta [64] and, when the polaron energy E
corresponds to the ground-state energy at zero temperature, it is a thermodynamic quantity
that plays a role in various thermodynamic properties [64,66]. The impurity contact can
also be a thermodynamic variable at finite temperature, but in this case it should be defined
from the free energy rather than the polaron energy [67].

Another quantity of interest is the number of bath particles in the impurity dressing
cloud [68]

ΔN = −∂E
∂μ

, (12)

defined as the number of particles that must be added to the medium in order to keep its
chemical potential (i.e., the medium density far away from the impurity) fixed when the
impurity is inserted into the system.

The energy, the contact and the number of particles in the dressing cloud are actually
tightly linked, as can be shown by a simple argument based on dimensional analysis [63,69].
Since the polaron energy is independent of the chosen unit of length, we must have
E(T, a, n, R) = λ−2E(Tλ2, a/λ, nλ3, R/λ) for arbitrary scaling factor λ > 0. Here, R
represents an extra length scale which may influence the energy, such as aB in the case of
Bose polarons, or the effective range at narrow Feshbach resonances. Taking dE/dλ = 0
and setting λ = 1, we obtain:

E =

(
T∂T − a

2
∂a +

3n
2

∂n −
R
2

∂R

)
E. (13)

For a broad Feshbach resonance at T = 0, this yields

ΔN = − 1
EF

[
C

16πmra
+ E

]
(Fermi); ΔN = − 2

3μ

[
C

16πmra
+ E +

aB
2

∂E
∂aB

]
(Bose), (14)

in the case of Fermi [70] and Bose polarons. These expressions differ due to the additional
length scale aB in the Bose gas and the density scaling of each chemical potential, which
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is μ = EF and μ = 4πaBn/mmed for Fermi and Bose media, respectively. Moreover, the
additional term in the Bose case can be regarded as a three-body contact [71] involving
the impurity and two bosons2. As a direct consequence of Equation (14), the energy of
attractive Fermi polarons at the unitary point (where a diverges) satisfies ΔN = −E/EF. In
general, we define C and ΔN from the impurity self energy, as displayed in Table 1, such
that we can apply these relationships to arbitrary quasiparticles with a finite lifetime—e.g.,
the repulsive polaron—not just those that correspond to an eigenstate.

2.2.1. Limit of Weak Interactions

In the limit of weak impurity-medium interactions kF|a| � 1, one can apply pertur-
bation theory to obtain exact analytical expressions for the quasiparticle properties. Here,
the scattering length a can be either positive or negative, corresponding to repulsive or
attractive polarons, respectively. Most notably, the behavior up to order (kFa)2 is universal
and independent of the microscopic details of the interactions for both Fermi and Bose
polarons. Indeed, the perturbative expressions at this order are even insensitive to whether
the underlying interactions are attractive or repulsive.

Table 2 summarizes the perturbative results up to O(a2) or to the lowest non-vanishing
order for both types of polarons, where, for simplicity, we specialize to the case of an
impurity of the same mass as the medium particles and we take T to be smaller than the
interaction energy shift such that it has no effect at this order. In the case of the Fermi
polaron, the perturbative expansion was first carried out by Bishop [72]. For the Bose
polaron, the expansion was first considered by Novikov and Ovchinnikov [73] and requires
|a|/ξ � 1 and a2/(aBξ) � 1, where we assume that the Bose medium is condensed
with ξ = 1/

√
8πnaB the condensate healing length (note that the Bose polaron expansion

has been carried out to even higher order in a—for details, see Ref. [74]). From Table 2
we see that, apart from Γ and the number of particles in the dressing cloud, the leading
order behavior is the same, i.e., the statistics of the medium only enters at higher order.
However, already beyond leading order, there are intriguing differences between the two
cases. While the expressions for the correction to, e.g., the energy and the contact look
quite different, they take a similar form when formulated in terms of the compressibility
of the two media. For instance, relating the 2nd order term to the respective speeds of
sound, cF = kF/(

√
3m) and cB = 1/(

√
2mξ), we find that the correction to the energy is

comparable: 3
2π kFa ≈ 0.8macF and 8

√
2

3π
a
ξ ≈ 1.7macB.

Table 2. Perturbation theory results for quasiparticle properties in the case m = mmed, evaluated up to 2nd
order in the impurity-medium scattering length. The result for the damping rate Γ refers to the repulsive
polaron in the case where we have short-range attractive impurity-medium interactions (see Section 4).

Fermi Polaron Bose Polaron

E 4πna
m

(
1 + 3

2π kFa
)

[72] 4πna
m

(
1 + 8

√
2

3π
a
ξ

)
[73]

Z 1 − 2
π2 (kFa)2 [75] 1 − 2

√
2

3π
a2

aBξ [74]

m∗/m 1 + 2
3π2 (kFa)2 [72] 1 + 16

√
2

45π
a2

aBξ [76]

Γ 8(kF a)4

9π3 EF [28] 4πna2

3mξ , if a = aB

C 16π2na2
(

1 + 3
π kFa

)
16π2na2

(
1 + 16

√
2

3π
a
ξ

)
ΔN − 2

π kFa − 4
π2 (kFa)2 [77] − a

aB
− 4

√
2

π
a2

aBξ

2.2.2. Strong-Coupling Polarons

Going beyond the limit of weak impurity-medium interactions, the polaron problem
generally becomes analytically intractable and one must turn to approximation methods. In
particular, the metastable repulsive branch in the strong-coupling regime where |kFa| � 1
has been tackled with a wide variety of methods. For the Fermi polaron, these include
variational methods [28,46,54,78], diagrammatic Monte Carlo [51], diagrammatic methods
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(T-matrix, many-body T-matrix and beyond) [77,79–82], virial expansion [80], functional
renormalization group [83], and functional determinants [55]. In the case of the Bose
polaron, the repulsive branch has been investigated using diagrammatic methods [84,85],
variational methods [35,86–88], quantum Monte Carlo [38,89,90], virial expansion [91], and
functional renormalization group [92,93]. We will briefly discuss the variational method
in Section 4; however an in-depth discussion of the other methods is beyond the scope of
this review.

3. Experimental Probes

We now provide a brief description of the techniques used to probe and characterize
quasiparticle properties in current experiments with ultracold atoms, and we discuss
how the available experimental measurements compare with existing theories. This short
overview focuses on the metastable repulsive polaron state, and mainly addresses the
case of a fermionic medium, where the most advanced experimental protocols have been
developed and already exploited successfully.

The most well-established experimental protocol for probing quasiparticles in ultra-
cold atomic mixtures is radio-frequency (RF) spectroscopy [42]. In the last decade, RF
spectroscopy has been the technique of choice to precisely address a variety of properties
in ultracold atom experiments [43]. It has permitted the first direct observation of both
attractive [14] and repulsive [16,17] Fermi polarons, and since then it has been exploited
extensively in both Fermi and Bose polaron studies [18,23,25,29,34–36]. RF spectroscopy
involves two internal (hyperfine) states of the impurity atoms which are coupled by an
oscillating RF field. Because of its long wavelength, the RF field is essentially uniform
over the sub-millimeter scale of atomic samples, and RF photon absorption transfers a
negligible momentum to the atoms. The two coupled impurity states are chosen so as to
feature different interaction strengths with the surrounding medium, which may in turn
be composed of a third hyperfine state of the same atomic species or an entirely different
atomic species.

In the case of the so-called injection spectroscopy, a weak RF pulse transfers impurities
from a (nearly) non-interacting state to another state featuring strong interactions with the
medium particles. To perform spectroscopy at varying interaction strength, the impurity-
medium scattering length a is tuned by means of a Feshbach resonance [41]. Within the
linear response regime, the RF signal is given by (see, e.g., Refs. [94,95]):

Iinj(ω) ∝ ∑
p

np A(p, εp + ω). (15)

Here, np is the initial momentum distribution function of the impurities, A(p, ω) is the im-
purity spectral function given by Equation (10), and we measure the frequency ω from the
bare transition frequency between the initial and final hyperfine states. Since the RF pulse
has a finite duration, in order to describe the experimental spectral response, Equation (15)
has to be convoluted with a filter function whose width is inversely proportional to the
duration of the RF pulse. To maintain a direct correspondence between the experimentally
recorded spectrum and the impurity spectral function, care must be taken to operate suffi-
ciently close to the linear response regime, as well as to work with sufficiently low impurity
concentrations and sample temperatures. Otherwise, for instance, the first moment of the
experimental RF signal may significantly deviate from the quasiparticle energy [16,38].

Injection spectroscopy allows one to probe the entire many-body spectrum of strongly
interacting impurities, since it addresses both the ground and the excited states of the
impurity-medium Hamiltonian [see Equation (3)]. Indeed, repulsive Fermi polarons have
been revealed by injection spectroscopy (see Figure 2), first in a highly imbalanced, heteronu-
clear Fermi mixture [16] and subsequently in a homonuclear spin mixture [23]. Similarly,
injection RF spectroscopy of mobile impurities immersed in a Bose-Einstein condensate has
allowed the observation of repulsive Bose polarons [34,35]. This RF spectroscopy technique
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has been recently extended to the optical domain [26], exploiting the clock transition and
tunable clock state interactions in alkaline-earth-like atoms [96,97].
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Figure 2. Experimental RF injection spectroscopy of impurities immersed in different media: (a)
a three-dimensional (3D) Fermi gas [16], (b) a two-dimensional (2D) Fermi gas [26], and (c) a 3D
Bose-Einstein condensate [35]. For the 3D and 2D fermionic backgrounds, the impurity-medium
interaction strength is encoded by the dimensionless parameters 1/kFa and log(kFa2D), and are
tuned via a narrow Feshbach resonance [16] and an orbital Feshbach resonance [26], respectively. The
vertical energy scale is normalized to EF and the zero corresponds to the frequency of the atomic
RF transition in the absence of the medium. The repulsive polaron energy branch is clearly visible
in all cases at positive RF detuning, ceasing to be well defined upon approaching unitarity-limited
interactions from the repulsive side, i.e., a > 0 or ln(kFa2D) < 0. Panel (a) is adapted from Ref. [16],
panel (b) from Ref. [26], and panel (c) from Ref. [35].

The opposite protocol, where a strongly interacting state is flipped into a non-interacting
state, is termed ejection spectroscopy, and has been extensively used to probe the ground
state of strongly interacting mixtures with arbitrary population imbalance [43]. While
ejection spectroscopy in general depends on the initial occupation of states in the strongly
interacting system, it simplifies in the case of a very low impurity concentration, where
the impurities are uncorrelated and the distribution function in Equation (15) reduces to a
Boltzmann distribution. There, the ejection and injection spectra are directly related via [98]

Iej(ω) = eβωeβΔF Iinj(−ω), (16)

in terms of the difference in free energy between the interacting and the non-interacting
impurity, ΔF. The exponential prefactor suppresses the repulsive branch at positive ener-
gies, which clearly illustrates why ejection spectroscopy is ideally suited to investigations
of ground-state properties.

The impurity RF response encapsulates a variety of essential information about pola-
ronic states [3]. Most importantly, when the spectrum contains a well-defined quasiparticle,
i.e., a coherent excitation of the medium, the main contribution to the spectral function stems
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from the quasiparticle pole [see Equation (9)], and thus the mean and the width of the RF sig-
nal Iinj(ω) yield a measure of the mean quasiparticle energy E+ 〈p2〉/2m∗ and quasiparticle
width Γ, respectively (see also the inset of Figure 1). Ejection spectroscopy additionally al-
lows one to extract the contact C of the attractive polaron [25,27,36,43,67], which is encoded
in the high-frequency tail of the RF signal [99]. RF spectra have been successfully employed
to extract the quasiparticle energies of both attractive and repulsive (Bose and Fermi)
polarons as a function of the impurity-medium interaction strength [14,16,17,23,29,34,35]
and temperature [25,36]. Experimental results for the energies of repulsive Fermi and
Bose polarons at the lowest achieved temperatures in homonuclear mixtures are shown in
Figure 3, where they are also compared to existing theories. Note that, while the energy of
Fermi polarons depends only on a single parameter (up to second order, only on kFa), the
energy of Bose polarons depends additionally on a/ξ [100]. Future spectroscopic studies in
homogeneous Bose and Fermi gases could resolve the remaining discrepancies between
available measurements performed with harmonically trapped samples and calculations at
fixed density.
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Figure 3. Energy of repulsive Fermi polarons (blue symbols and lines) and Bose polarons (orange
symbols and lines) in the equal-mass case. RF spectroscopy experimental data are taken from Ref. [23]
(filled blue circles) and Ref. [38] (filled orange squares). We also display theoretical results obtained by
a non self-consistent T-matrix approach [77] (solid blue line), functional renormalization group [83]
(dashed blue line) and a variational wavefunction [78] (dotted light blue line) for the repulsive Fermi
polaron, and by the truncated basis method (TBM) [35] (solid orange line) and fixed-node diffusion
QMC [38] (empty orange diamonds) for the repulsive Bose polaron. The mean-field prediction
E = 4πna/m ≡ EF

4
3π kFa (purple dot-dashed line) coincides for the Bose and Fermi polarons.

The quasiparticle width can also be obtained from the RF spectra within linear re-
sponse, although a precise extraction becomes increasingly difficult as the quasiparticle
spectral peak becomes either narrow or broad with respect to the polaron energy. Here,
there are strong distinctions between the attractive and repulsive branches, and between
Fermi and Bose polarons. In the latter Bose polaron case, the attractive polaron quasiparticle
with a finite residue remains the ground state at all interaction strengths, and hence the
quasiparticle width Γ always vanishes at zero temperature. However, for the Fermi polaron,
the attractive polaron is the many-body ground state only for 1/kFa up to the so-called
polaron-molecule transition [59,101,102]. At finite temperature, the attractive polaron width
in the RF signal is simply linked to the impurity-medium collision rate [25,103]. Conversely,
the metastable repulsive polaron retains a finite lifetime even for a zero-momentum impu-
rity, which for weak coupling is governed by a many-body dephasing mechanism rather
than by the decay to lower-lying attractive states (see below and Section 4).

The polaron effective mass is rather challenging to probe, as it requires one to access
the polaron dispersion relation, i.e., to probe the spectral response at different impurity
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momenta [see Equation (9)]. An effective spectroscopic technique relies on the fact that,
due to the enhanced effective mass of polarons m∗ > m, a moving polaron transferred
into a final non-interacting state, or vice versa, will have a RF response peak that varies
with the impurity momentum. For the case of fermionic impurities, one can effectively
adjust the mean impurity momentum by simply varying the impurity concentration, while
still remaining within the highly polarized limit. Indeed, owing to the Pauli exclusion
principle, at low but finite temperatures the mean impurity momentum will progressively
increase, moving from the (small) thermal value in the limit of vanishing concentration
to the (larger) one set by the Fermi momentum of the minority component, which starts
building its own Fermi sea for higher concentration. This effect has been successfully
exploited, both in ejection and injection RF spectroscopy, to yield estimates of the attractive
and repulsive Fermi polaron effective mass [14,23] (see Figure 4). Although it has not been
demonstrated thus far, the same method could be in principle employed in Bose polaron
experiments dealing with fermionic impurities [34,36]. However, such a strategy cannot be
applied to Bose or Fermi polarons that are realized using bosonic minority particles [29,35].
Furthermore, a general drawback of this technique is that it is a priori difficult to disentangle
the measurement of the quasiparticle effective mass from the possible impact of weak
polaron-polaron interactions, that are expected to become progressively more relevant as
the impurity concentration is increased.

0 1 2 3

- 0.5

0

0.5

1

m
/m

*

1/( F a)

Figure 4. Effective mass of the repulsive Fermi polaron in the equal-mass case: experimental results
(blue circles) and theoretical results from a T-matrix approach (dotted green line) [77]. Experimentally,
m∗ is observed to diverge and to even turn negative when approaching the unitary limit, compatibly
with a thermodynamic instability of the repulsive polaron Fermi liquid [102,104] at strong coupling.
The remaining deviation between theory and experimental data may result from higher-order particle-
hole excitations not taken into account in the calculation, as well as from weak polaron–polaron
interactions which are neglected in the experimental extraction of m/m*. The figure is adapted from
Ref. [23].

Momentum-resolved ejection spectroscopy has also been exploited in a highly po-
larized spin mixture in 2D to directly measure the impurity energy dispersion curve as
a function of momentum, yielding an estimate of the attractive Fermi polaron mass [17].
Experimental measurements of the Bose polaron effective mass are presently lacking. Novel
Raman spectroscopic techniques [27] could be exploited to study the impurity spectral
response upon imparting an adjustable momentum to the impurities, both in the case
of fermionic and bosonic media. This may allow one to perform two-photon injection
spectroscopy and extract the effective mass of repulsive polarons.

The injection and ejection RF spectroscopic probes which we have considered thus far
are suited to precisely access quasiparticle spectral properties, as they are well resolved
in energy. However, they cannot be exploited to track the formation of quasiparticles in
real time, because they lack the time resolution necessary to monitor the rapid build-up
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of the polaron dressing cloud. Conversely, dynamical probes such as many-body Ramsey
interferometry are well adapted to this scope [46,52–55], and have indeed enabled the
experimental observation of the formation (and the decoherence) of both Fermi and Bose
polarons [22,37], with the long-time value of the Ramsey contrast being connected to
the quasiparticle residue [22,54]. It has also been shown that coherently driving Rabi
oscillations between the two impurity states involved in the RF spectroscopy protocol is a
powerful complementary technique to probe the polaron quasiparticle properties [28,54]. In
particular, the residue Z is directly connected to the Rabi frequency Ω normalized to the bare
Rabi frequency Ω0 [16], which is obtained by performing Rabi oscillations in the absence
of the medium. Indeed,

√
Z essentially quantifies the wavefunction overlap between the

polaron state and the bare, non-interacting impurity, and one finds that Z � (Ω2 + Γ2)/Ω2
0

as long as Γ �
√

ZΩ0 [28]. This connection affords an alternative route to estimating the
quasiparticle residue from the area of the coherent spectral response [14,25,36], a method
which is extremely challenging once the coherent quasiparticle resonance approaches the
onset of the molecular continuum.
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Figure 5. Rabi oscillations between non-interacting and strongly interacting impurity states in
a fermionic medium. (a) Points are experimental measurements, while lines denote theoretical
predictions based on a variational ansatz with no free parameters [28]. Shaded regions allow for
experimental parameter uncertainties. (b,c) Normalized Rabi frequency extracted from experimental
Rabi oscillations (symbols) in mass-imbalanced [in (b)] [16] and equal-mass [in (c)] [23] mixtures are
compared to theoretical predictions for

√
Z [in (b)] and Z [in (c)] (lines), obtained with a T-matrix

method [16,23,77]. Solid lines in panel (c) take into account the effect of small initial-state interactions.
Panel (a) is adapted from Ref. [28], panel (b) from Ref. [16], and panel (c) from Ref. [23].

Rabi oscillations have allowed experiments to obtain the quasiparticle residue of
attractive and repulsive Fermi polarons [16,23,26] (see Figure 5). By contrast, the extension
of such a method to bosonic media is currently lacking. While this technique appears to
be potentially well-suited also to investigate the Bose polaron properties in two-species
mixtures [34,36], it cannot be directly applied to single-species experiments [35] where the
impurity particles are created upon transferring atoms from the host condensate—prepared
in a certain hyperfine state—into another atomic level. Theoretically, it has recently been
shown that the damping rate of Rabi oscillations can be essentially identified with the
quasiparticle damping rate Γ for coherent quasiparticles with Γ �

√
ZΩ0 [28]. Thus, if

the repulsive branch is both present and remains coherent, valuable information on the
lifetime of repulsive polarons may be extracted from the damping rate of Rabi oscillations
in experiment. As shown in panel (a) of Figure 6, the measured damping rate of Rabi
oscillations of impurities in a Fermi gas is found to be in excellent agreement with the
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quasiparticle damping rate Γ obtained from a finite-temperature variational calculation
containing a single particle-hole excitation [28,46,98]—see Section 4 for a detailed discussion
of this approach.
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Figure 6. Stability of the repulsive Fermi polaron in the equal-mass, broad-resonance case. (a) Deco-
herence rate Γ of the repulsive Fermi polaron. (b) Population decay rate Γp of the repulsive branch
to lower-lying states. Circles are experimental data points from Ref. [23], obtained by measuring:
(a) the damping rate of Rabi oscillations on the repulsive polaron, or (b) the relaxation of the upper
branch measured via a double-pulse experiment. In panel (a), lines denote the quasiparticle spectral
width Γ calculated with a variational method [28,46,98] at T = 0 (dashed, green) and T = 0.13 EF

(solid, green), with functional renormalization group (red, dot-dashed) [83], and at the first non-

vanishing order in perturbation theory, Γpert =
8(kF a)4

9π3 EF [28] (dotted, green—see Table 2). In panel
(b), lines denote the upper branch decay rate predicted by considering polaron-to-polaron recom-
bination (green) [77], polaron-to-free particle recombination (grey) [23], and three-body molecular
recombination (yellow) [105]. Panel (b) is adapted from Ref. [23].

In order to quantify the stability of the repulsive branch against relaxation to lower-
lying attractive states, double-pulse sequences have been employed to directly address the
repulsive branch de-population rate Γp [16,17,23,26,29] (see Figure 6b). This technique is
weakly sensitive to momentum, because it requires fast π-pulses with large Rabi frequency
Ω ∼ EF, thus coupling to all impurities in the medium irrespective of their kinetic energy.
Theoretical calculations of the upper branch population decay rate Γp, based on variants
of T-matrix techniques including two and three particle processes, match well with ex-
perimental measurements in Fermi–Fermi and Fermi-Bose mixtures at a narrow Feshbach
resonance with heavy impurities for all couplings [16,29] and in the strongly-interacting
region at a broad resonance in the mass-balanced case [23]. For the equal-mass, broad-
resonance case [23] at weaker couplings 1/kFa � 1 the measured repulsive branch decay
rate was instead found to match well with the predicted rate of recombination into dimers
via three-body processes, Γ3 [105], as expected in the spin-balanced regime of a Fermi
mixture [56,106]. Future theory approaches beyond the one particle-hole approximation
for Fermi polarons may succeed in describing the trend of Γp for an extended range of
couplings in the equal-mass, universal broad-resonance case.

To conclude, in a fermionic medium with 1/kFa � 1, the repulsive branch decay rate
Γp is generally significantly smaller than the quasiparticle width Γ (see Figure 6), in both
mass-imbalanced and mass-balanced scenarios [16,23], thereby showing that the lifetime of
repulsive Fermi polarons is mostly limited by decoherence processes (see also Section 4).
Future experiments with repulsive fermionic impurities immersed in a Bose medium,
possibly realized by mass-imbalanced mixtures with reduced three-body losses [107], could
further address the important question of the stability of repulsive Bose polarons.

4. Repulsive Quasiparticle Stability

The repulsive polaron quasiparticle is challenging to investigate theoretically, since it is a
metastable object in quantum gases where the underlying short-range interactions are attrac-
tive. In particular, there has been much debate about what controls the stability of the quasi-
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particle, as encoded by the quasiparticle damping rate Γ in Equation (9) [16,21,23,28,77,83].
As discussed in Section 3, Γ directly manifests itself in the damping of Rabi oscillations
and in the broadening of the quasiparticle peak in the spectral function. However, the
quasiparticle damping rate has turned out to be far from trivial to calculate even in the
weak-coupling limit [23,28].

In this section, we will focus on the case of an impurity at rest, such that we can exclude
any spectral broadening due to momentum relaxation [21,103], where the polaron lowers its
momentum via collisions. To gain insight into the quasiparticle stability, let us start with the
non-interacting impurity-medium system at T = 0 and then imagine gradually increasing
the scattering length a from zero, such that we adiabatically populate the repulsive branch.
In the weak-coupling limit kFa � 1 (Table 2), the behavior of the metastable repulsive
polaron up to order a2 is indistinguishable from that of the purely repulsive case, resembling
an infinitely long-lived quasiparticle in the ground state. However, as we further increase
the strength of the interactions, the metastable polaron develops a non-zero Γ, in contrast
to the purely repulsive ground-state polaron. If we assume that Γ is dictated by the decay
into the attractive branch at negative energies (as it was initially assumed [16,77]), then we
can estimate its leading order behavior in a from calculations of three-body recombination
involving the impurity and two medium particles. This yields the scaling a6 for the Fermi
polaron case [105] and a4 for the Bose polaron when a = aB [108], which can be understood
from the fact that the population decay rate Γp in this limit must scale as n2 in the Bose
case and EFn2 in the Fermi polaron case. However, an alternative mechanism for the
quasiparticle damping has recently been proposed [28], whereby the repulsive polaron
loses its coherence by coupling to the many-body continuum at positive energies, as
illustrated in Figure 7. Crucially, this many-body dephasing enters at a lower power of a
(see Table 2) and thus dominates Γ at weak coupling. This is consistent with experimental
observations in Figure 6, as discussed in Section 3.

kF a

E/EF E/EF

kF a(a) (b)

Figure 7. Behavior of repulsive polarons for underlying attractive interactions (a) and purely repulsive
interactions (b). In the former case, the polaron is embedded in a continuum (grey shading) at
positive energies, thus resulting in broadening with increasing kFa. By contrast, in the latter case, the
continuum lies above the polaron energy and the polaron has an infinite lifetime.

As we approach strong interactions, we eventually expect both many-body dephasing
and relaxation to the lower branch to determine the repulsive polaron lifetime. In this
regime, the repulsive polaron becomes increasingly ill-defined and it is quite challenging to
calculate the associated quasiparticle properties. Indeed, as illustrated in Figure 8, different
state-of-the-art calculations give inconsistent results for the spectral function in the case of
the Fermi polaron, clearly indicating the need for future work. In particular, we see that
the theories even disagree on the shape of the repulsive polaron peak at unitary, as well as
yielding different results for the peak position and width.

In the following, we will delve further into one particular method, namely the vari-
ational method, since this describes many-body dephasing within the upper branch and
provides a particularly intuitive way of accounting for excitations of the medium. We will
also show how the case of purely repulsive interactions results in a ground-state polaron
with Γ = 0 in this approach. Finally, we will examine the special case of an infinitely heavy
impurity, since it admits an exact solution that serves as a useful reference point for the
repulsive polaron, even though the quasiparticle residue Z vanishes in this case.
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Figure 8. Spectral function A(ω) ≡ A(0, ω) of the Fermi polaron for m = mmed and T = 0, calculated
using a T-matrix formalism [77] (black, solid), functional renormalization group [83] (green, dashed),
and diagrammatic Monte Carlo [51] (red, dotted), where in the latter case, we display the maximally
smooth solution [51]. We show the results for slightly different values of 1/kFa ≈ 1 (a), and for
1/kFa = 0 (b).

4.1. Variational Description of Attractive and Repulsive Polarons

The basic idea of the variational method is to construct a variational form of the
time-dependent impurity operator and then use this to approximate the impurity Green’s
function (6). In particular, it has proved remarkably fruitful to consider “truncated” opera-
tors with up to one or two excitations of the medium [28,46,88,98]. For the Fermi polaron,
the simplest form we can write down for the zero-momentum impurity operator is [46]:

ĉ0(t) � α0(t) ĉ0 + ∑
k,q

αkq(t) f̂ †
q f̂k ĉq−k, (17)

where the time-dependent complex functions αj(t) are variational parameters. Equation (17)
can be regarded as the operator version of the variational wave function originally intro-
duced by F. Chevy for the attractive Fermi polaron [109]. However, unlike the original
Chevy ansatz which only describes the attractive polaron ground state, the time-dependent
variational operator can capture all the interacting impurity states at arbitrary temperature.
In particular, the variational operator becomes exact in the high-temperature limit, where it
becomes equivalent to the leading order contribution to the virial expansion [46].

Similarly, the operator in the case of the Bose polaron has the form [88]:

ĉ0(t) � α0(t) ĉ0 + ∑
q

αq(t) b̂†
q ĉq + ∑

k

αk(t) b̂k ĉ−k + ∑
k,q

α
q
k(t) b̂†

qb̂k ĉq−k + . . . , (18)

where we have only explicitly written the terms with up to one excitation of the medium.
Note that this differs slightly from the Fermi polaron case, since the second and third terms
in Equation (18) describe bosons being scattered into and out of the condensate, respectively.
In principle, we could obtain the exact impurity operator by including an infinite number
of possible excitations. However, in practice, this is only feasible for special cases such as
the infinitely heavy impurity in a non-interacting quantum gas.

To proceed, we consider the “error operator” ε̂(t) = i∂t ĉ0(t)− [ĉ0(t), Ĥ], which quan-
tifies how well the approximate time-dependent impurity operator satisfies the Heisenberg
equation of motion. We then construct the error quantity Δ(t) ≡ tr

[
ρ̂medε̂(t)ε̂†(t)

]
, which

we minimize with respect to ∂tα
∗
j (t) in order to obtain the differential equations for the

parameters αj(t). Specializing to the Fermi polaron and taking the stationary condition
αj(t) = αje−iωt, we finally obtain the coupled set of equations
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ωα0 = gnα0 + g
Λ

∑
k,q

(1 − nk)nqαkq

ωαkq =
[
εq−k + εmed

k − εmed
q + gn

]
αkq + gα0 + g

Λ

∑
k′
(1 − nk′)αk′q − g

Λ

∑
q′

nq′αkq′ ,

(19)

where we have used the simplified impurity-medium interaction defined by Equation (5),
and we have the Fermi–Dirac distribution for the medium particles,

nk = tr
[
ρ̂med f̂ †

k f̂k

]
=

1

1 + eβ(εmed
k −μ)

. (20)

For the case of purely repulsive interactions, Equation (5) requires g > 2πa/mr > 0,
and we can see in Equation (19) that all the single-particle impurity energies are shifted
upwards by gn, the Born approximation of the interaction energy. Furthermore, gn cor-
responds to an upper bound on the repulsive polaron energy in the ground state since
E ≤ 〈0|ĉ0Ĥĉ†

0|0〉 = gn, where |0〉 is the state of the undisturbed medium at zero temper-
ature. Therefore, the lowest energy solution to Equation (19) at zero temperature will
always lie below the onset of the scattering continuum, and thus the variational approach
yields a ground-state repulsive polaron with an infinite lifetime (see Figure 7). This energy
gap between the polaron ground state and the onset of the continuum is an artifact of the
approximation (similar to what was found for the attractive polaron [104]), since an exact
theory with an infinite number of particle-hole excitations will contain excited polaronic
states with energies arbitrarily close to the ground-state energy. Note that Equation (19)
correctly yields the mean-field energy E � 2πan/mr in the limit n → 0, which one can
show by making use of Equation (5).

For attractive impurity-medium interactions, we can take the limit g → 0− and still
have a well-defined scattering length a, provided we also take Λ → ∞. This corresponds
to the case of a zero-range potential, which is a reasonable description for a dilute atomic
gas where all the relevant length scales are much greater than the range of the van der
Waals interactions. In this case, Equation (19) is equivalent to the non-self-consistent T-
matrix approach [46,110], where the impurity self energy Σ = g ∑Λ

k,q(1 − nk)nqαkq/α0
corresponds to

Σ(0, ω) = ∑
q

nq

[
mr

2πa
− ∑

k

(
1 − nk

ω − εq−k − εmed
k + εmed

q + i0
+

1
εk + εmed

k

)]−1

. (21)

In contrast to purely repulsive interactions, we see here that there is no shift of the single-
particle impurity energies and thus the self energy acquires an imaginary part when ω > 0.
For Bose polarons above the BEC critical temperature, the self energy has the same form
as Equation (21), where the Fermi distributions are instead replaced by Bose distributions,
and we have 1 + nk rather than 1 − nk in Equation (21).

We can determine the lifetime of the metastable repulsive Fermi polaron in the weak-
coupling limit by expanding Equation (21) in a and computing the lowest order contribution
to the imaginary part [28]. This yields, for arbitrary temperature,

Γ � − Im[Σ(0, E)] = π

(
2πa
mr

)2

∑
k,q

nq(1 − nk)δ
(

E − εq−k − εmed
k + εmed

q

)
(Fermi). (22)

Here, we see how Γ is derived from the many-body continuum of states at positive energies,
which is qualitatively distinct from the process of relaxation to lower energy states. Taking
T = 0, m = mmed and using the lowest order energy E = 4πan/m then gives the expression
for Γ in Table 2. We stress that this imaginary contribution arising from many-body
dephasing is not canceled by third-order diagrams involving self-energy insertions [74],
since these only yield real terms.
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The quasiparticle damping rate of the repulsive Bose polaron can be obtained in a
similar manner, yielding the zero-temperature expression:

Γ � πn
(

2πa
mr

)2

∑
k

εmed
k

Ek
δ(E − εk − Ek) (Bose), (23)

where the Bogoliubov dispersion Ek =
√

εmed
k (εmed

k + 2μ), and we have used the second-
order self energy in Ref. [74]. In this case, Γ depends on both the boson–boson and
impurity-boson interactions. However, if we consider the special case where aB = a and
m = mmed, we obtain the simple expression in Table 2.

Finally, let us contrast the quasiparticle decoherence process described in this section
with the standard Fermi liquid picture. There, the dominant mechanism for quasiparticle
damping is momentum relaxation, which at low temperatures yields a lifetime proportional
to 1/T2 [25], and at zero temperatures to 1/p4 [103,111] for attractive Fermi polarons.
However, the repulsive polaron has a finite lifetime at zero momentum, even in the absence
of any decay into lower-lying excitations (such as attractive polarons, dressed molecules
and tightly-bound dimers). In this sense, the repulsive polaron defies the standard Fermi
liquid picture, which predicts that the lifetime should diverge at the impurity “Fermi
surface” (k = 0) [111].

4.2. The Case of an Infinitely Heavy Impurity

A useful reference system is that of an infinitely heavy impurity, which could in
principle be approximately realized in cold-atom experiments by pinning the impurity
atoms in tight traps. Remarkably, this problem affords analytic expressions for the spectral
function when the medium is an ideal gas. Most notably, the Fermi polaron in the limit
m/mmed → ∞ experiences the celebrated Anderson’s orthogonality catastrophe [112],
where the impurity ground states with and without interactions with the surrounding
fermionic bath are orthogonal, i.e., the quasiparticle residue Z = 0, and the spectrum
features a power-law singularity, as quantified by the threshold behavior

A(ω) ∼ θ(ω − ω0)(ω − ω0)
α−1. (24)

Here, the power law coefficient α = δ(kF)
2/π2 is related to the impurity-fermion scattering

phase shift δ(k) = − tan−1(ka) evaluated at the Fermi surface, and the repulsive branch of
the spectrum starts at: ω0 = −

∫ EF
0 dE δ(

√
2mE)/π.

More recently, the case of an infinitely heavy impurity in an ideal Bose gas has also
been investigated [113]. This is, of course, a highly singular limit. Even for a finite
impurity mass, the lack of compressibility of the ideal Bose gas implies that Z = 0 for the
ground state [87,100,114,115] and that the ground-state energy itself becomes ill defined
for a ≥ 0. This highlights the crucial role played by boson-boson interactions in stabilizing
the system [116]. Despite this, the ideal Bose polaron spectrum remains well-defined, and
in the case of an infinitely heavy impurity it can be obtained from an analytic solution of
the impurity time evolution [113]. The analysis of Ref. [113] demonstrated a threshold
behavior of the repulsive branch, valid when 0 < kFa � 1,

A(ω) ∼ θ(ω − ω0)(ω − ω0)
−3/2 exp

(
− 8πn2a4

m(ω − ω0)

)
, (25)

where ω0 = 2πan/m. As in the Fermi case, the spectral function contains a power law, but
in this case there is a strong suppression of spectral weight associated with low-energy
excitations, preventing the power-law singularity.

The behavior in the two cases is illustrated in Figure 9. One major difference is that the
Fermi case features a spectral gap between the attractive and repulsive branches when a > 0,
whereas the Bose case instead has a strongly suppressed weight between the branches.
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Away from the resonance, the repulsive branches look reasonably similar; however as we
approach the resonance, the behavior is remarkably different. We emphasize that in both the
Fermi and Bose cases the problem is integrable, and completely determined by the solution
of the two-body problem involving the impurity and a particle from the medium. Therefore,
there is no analog of three-body recombination, and hence the population decay rate Γp is
identically 0. Likewise, our argument for the many-body dephasing relied on the existence
of a well-defined quasiparticle that is pushed up into a scattering continuum, and thus
also does not apply in either case. These points illustrate the strong qualitative differences
between the mobile and the fixed impurity for properties beyond the impurity energy.
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Figure 9. Spectral function of an infinitely heavy impurity in an ideal Fermi gas at T = 0.01 EF (blue,
solid) [52] or an ideal Bose gas at T = 0 [113] (purple, dashed). We show the result for 1/kFa = 1
(a) and 1/kFa = 0 (b). On the left, the two attractive peaks in the Bose case are due to single or double
occupation of the impurity-boson bound state.

5. Beyond the Impurity Limit: Induced Interactions and Instabilities

5.1. Polaron-Polaron Induced Interactions

When considering more than one impurity, the problem becomes significantly more
complex at low temperatures where there are correlations between impurities. On the
one hand, the statistics of the impurities starts to play a role. On the other, a variety
of thermodynamic phases exist for the various components, which may be normal or
condensed, mixed or phase-separated, etc. Below we will treat separately the different cases
which arise depending on the statistics of the bath and the impurities.

5.1.1. Bosonic Impurities in a Fermi Sea

The energy density of a gas containing N↓ bosonic impurities immersed in a bath of
N↑ � N↓ ideal fermions may be written as [117]:

E(n↑, n↓) =
3
5

EFn↑ + E↓n↓ +
1
2

Fn2
↓. (26)

The various terms represent, in order, the (purely kinetic) energy of the unperturbed Fermi
sea, the energy of isolated polarons, and the contribution due to polaron–polaron interactions.
We have omitted the mean kinetic energy of the impurities, which is negligible when cold
bosonic impurities are considered.

The effective interaction F between Landau quasiparticles can be split into two con-
tributions: F = g1 + Fx. The first is the direct interaction, g1 = 4πa11/m↓, where a11 is the
scattering length between bare impurities (and we assume |kFa11| � 1). The second term
instead describes an exchange contribution, mediated by particle-hole excitations of the
Fermi sea.

To obtain an explicit expression for the exchange interaction term, we follow the simple
derivation outlined in Refs. [118,119]. An ↑ atom and a ↓ polaron interact with a coupling
constant gx given by:

gx =
∂2E

∂n↑∂n↓
=

∂μ↑
∂n↓

=
∂μ↓
∂n↑

. (27)
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Here and in the following, derivatives with respect to the density of a component will be
taken at fixed density of the other. To second order in gx, the polaron-polaron interaction is
then given by:

E (2) = − g2
x

V3 ∑
k,p,q

(1 − n↑
k+q)(1 + n↓

p−q)n
↓
pn↑

k

εmed
k+q + ε∗p−q − ε∗p − εmed

k

, (28)

where n↑
k and n↓

p indicate, respectively, Fermi and Bose distribution functions, since we are
assuming bosonic impurities in a Fermi bath, and we have introduced the polaron disper-
sion ε∗p = p2/2m∗. The exchange contribution to Landau’s polaron–polaron interaction
is then obtained by differentiating with respect to the distribution functions of the two
quasiparticles,

Fx =
δ2E (2)

δn↓
p−qδn↓

p

, (29)

where both p and q are assumed to be vanishingly small. Performing the functional
derivatives one finds:

Fx = − g2
x

V

⎛⎝∑
k

n↑
k − n↑

k+q

εmed
k+q − εmed

k

⎞⎠
q→0

= −g2
xL, (30)

where L is the so-called Lindhard function3, which at zero temperature coincides with the

density of states at the Fermi surface N =
(

∂n↑
∂μ↑

)
=

3n↑
2EF

. Collecting the above results, at
zero temperature we obtain:

Fx = −g2
xN = −

(
∂μ↑
∂n↓

)2 ∂n↑
∂μ↑

= −

⎡⎣−
(

∂μ↑
∂n↓

)
(

∂μ↑
∂n↑

)
⎤⎦2

∂μ↑
∂n↑

. (31)

To simplify this expression, we use the triple product rule
(

∂x
∂y

)
z

(
∂y
∂z

)
x

(
∂z
∂x

)
y
= −1 to find:

−
(

∂μ↑
∂n↓

)
n↑

/
(

∂μ↑
∂n↑

)
n↓

=
∂n↑
∂n↓

∣∣∣∣
μ↑

= ΔN, (32)

where ΔN is the number of bath particles in the dressing cloud of an impurity introduced
in Equation (12). The latter expression shows that the induced quasiparticle interaction for
bosonic impurities may be compactly written as

Fx = − (ΔN)2

N . (33)

This final result highlights the power and beauty of Fermi liquid theory: to derive the
effective interaction we have used perturbation theory to describe the weak interaction
mediated by the bath between two quasi-particles. The strong-coupling effects which
generate the quasiparticles themselves are fully taken into account in Equation (33) by
means of ΔN, a quantity which must be computed using a suitable theory describing the
strongly coupled N + 1 problem (like those described in the earlier sections of this work). As
such, Equation (33) holds for arbitrarily strong impurity-bath interaction strength provided
there are no instabilities or transitions that invalidate the use of Fermi liquid theory.

Very recent measurements targeting locally-large concentrations of bosonic impurities
in a Fermi bath showed a trend compatible with this Fermi liquid prediction [29,121],
but more accurate observations are needed to clearly pinpoint the phenomenon. Indeed,
multiple issues render the measurements complicated in the case of a Bose–Fermi mixture.
First, the relevant Feshbach resonances featured a relatively small magnetic field width, so
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that magnetic field instabilities generated large error bars. Second, the bosonic component
is highly compressible, so that the density distributions can vary rapidly before and after the
“injection”. Indeed, for repulsive Bose–Fermi interactions, the mixture is highly unstable
towards phase-separation [117,122,123]. On the other hand, the absence of Pauli blocking
in the minority component means that it is possible to create mixtures featuring large local
concentrations of impurities. As such, Bose–Fermi mixtures represent a very favorable
setting for studying polaron–polaron induced interactions.

5.1.2. Fermionic Impurities in a Fermi Sea

When a fermionic bath hosts distinguishable fermionic impurities, the energy density
may be written as:

E(n↑, n↓) =
3
5

EFn↑ + Ekin↓ + E↓n↓ +
1
2

Fn2
↓. (34)

A number of differences are present with respect to the discussion of bosonic impurities
given in the previous Section 5.1.1:

i. There is no direct interaction between identical fermionic impurities (i.e., F = Fx).
ii. Pauli pressure dictates that impurities form their own Fermi sea, with Fermi energy

EF↓ = (n↓/n↑)2/3(m/m∗)EF. The corresponding contribution Ekin↓ =
3
5 EF↓n↓ to the

energy density can be sizable, and this indeed permitted a direct measurement of the
effective mass m∗ of the polarons via injection RF spectroscopy in Ref. [23].

iii. Correspondingly, final states available to the interacting impurities are “Pauli blocked”,
rather than “Bose enhanced”, so that in the numerator of Equation (28) one needs to
replace (1 + n↓

p−q) by (1 − n↓
p−q), where n↓

k is now a Fermi distribution function. As
a consequence, the functional derivative with respect to the distribution functions
of the minority particles in Equation (29) leads to an overall sign change in the ex-
change interaction term for fermionic impurities, which ultimately becomes repulsive
and reads:

Fx =
(ΔN)2

N . (35)

Despite intense efforts, experiments on Fermi–Fermi mixtures have so far proved
unable to unambiguously detect the presence of induced polaron–polaron interactions.
Indeed, reported measurements remain compatible within the experimental uncertainties
with a description in terms of uncorrelated quasiparticles up to sizable concentrations of
impurities [14,23]. Somewhat unexpectedly, the contribution Fn2

↓/2 due to induced interac-
tions between quasiparticles disappears from the equation of state when one switches from
the canonical description used above to a grand-canonical formulation [124]. In the latter
case, the equation of state for the mixture gives a pressure which is the sum of the pressures
of an ideal gas of fermions and an ideal gas of polarons, with no interaction terms. The
apparent contradiction is resolved by realizing that the polaron energy is actually a function
of the majority chemical potential μ↑, so that the two pressures are effectively coupled.
A careful calculation shows that the correct interaction term ∝ Fn2

↓ is recovered when
switching back to the canonical ensemble. A grand-canonical description is the appropriate
one when extracting thermodynamic quantities from in-situ measurements on trapped
gases, as performed for example in Ref. [125] following the proposal of Ref. [126], but a
canonical description is generally needed to describe RF experiments or QMC calculations,
where a controlled number of impurities is present in the system. The induced interaction
term between polarons was indeed retained and shown to be important when analyzing
state-of-the-art QMC calculations, and a complete phase diagram featuring the various
possible phases arising in zero temperature Fermi–Fermi mixtures was derived in Ref. [127].

5.1.3. Bosonic Media

A bosonic bath is highly compressible, due to the absence of the large Fermi pressure.
As a consequence, all bath particles condense in the same physical state at low temperatures,
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and the kinetic energy is negligible. On the other hand, the bath bosons experience a
mutual direct (mean field) interaction. The energy density of the mixture may therefore be
written as:

E(n↑, n↓) =
2πaB

m
n2
↑ + Ekin↓ + E↓n↓ +

1
2

Fn2
↓, (36)

irrespective of the impurity statistics, where Ekin↓ =
3
5 EF↓n↓ in the case of fermionic impu-

rities, while it vanishes for bosonic impurities. Even though the fundamental excitations in
the bath are Bogoliubov modes, rather than particle-hole excitations, a calculation similar
to that developed above leads to an identical result [119,128],

Fx = ∓g2
x

∂n↑
∂μ↑

= ∓ (ΔN)2

N (37)

(with − for bosonic impurities and + for fermionic ones), the only difference being that
here N = ∂n↑/∂μ↑ = mmed/(4πaB).

5.2. Ferromagnetic and Pairing Instabilities in Fermi–Fermi Mixtures

As mentioned in the introduction, a major motivation for studying the impurity
problem is the fact that understanding quasiparticle properties of the polarized system
provides important insight into the more challenging phase diagram of its population-
balanced counterpart [47]. This holds true especially for the repulsive Fermi polaron, that
was first considered [49,50] in connection with the physics of itinerant ferromagnetism
of a repulsive Fermi gas, originally introduced by E. Stoner in his textbook model [48].
Repulsive polarons indeed constitute the building blocks of a repulsive Fermi liquid,
which in turn represents the paramagnetic state of a two-component Fermi mixture with
short-ranged inter-species repulsion.

For a hypothetical, genuine two-body repulsive potential, a knowledge of the energy
E of repulsive polarons as a function of the interaction strength suffices to determine the
emergence of a ferromagnetic instability in the (N + 1)-particle system [3,49,50]. This can
be understood if one considers a bath of spin-↑ electrons, interacting with a spin-↓ electron
impurity via a screened, short-range Coulomb repulsion. As long as the polaron energy
does not exceed the Fermi energy EF of the surrounding bath, the spin-down quasiparticle
embedded in the fermionic medium is energetically favored, and the system is in the Fermi
liquid, paramagnetic state. Instead, for E > EF, the system becomes unstable towards a
fully ferromagnetic phase, as it is now energetically convenient for the impurity electron
to flip its spin, resulting in a polarized Fermi gas of N + 1 spin-↑ particles: in this latter
case, the energy cost of adding one spin-↑ electron to the medium is lower than the energy
cost associated with a strong impurity-bath repulsion. In contrast with the case of electrons
in solids, where only the total electron population is fixed, in ultracold gases the two
pseudospin numbers, N↑ and N↓, are generally fixed separately. As a result, the total
“magnetization” N↑ − N↓ is constrained by the two initial spin populations at which the gas
is prepared. Yet, the same energetic argument applies [3], and for E > EF ferromagnetism
appears in this case as an instability of the repulsive Fermi liquid towards the formation of
spatially separated, polarized domains of spin-↑ or spin-↓ particles (see Figure 10).
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Figure 10. Ferromagnetic instability of a repulsive balanced Fermi mixture. (a) The energy of the
upper (purple) and lower (green) many-body branches is illustrated, corresponding to a net repulsive
and attractive interaction, respectively. The ground state is a paired phase, featuring a mean energy
per particle E = 3

5 ξEF at 1/kFa = 0, where ξ ≈ 0.37 is the Bertsch parameter [129]. The repulsive
Fermi liquid may undergo a ferromagnetic phase transition beyond a critical interaction strength
along the upper branch, where a spin-segregated state is energetically favored. For an equal-mass,
balanced mixture at T = 0, this occurs when the mean energy per particle of the mixed, paramagnetic
state exceeds that in a non-interacting Fermi gas, namely E = 3

5 EF, by a factor 22/3. (b) Illustration of
the stability condition for spin-polarized domains. A spin-↓ fermion can tunnel across a spin domain
wall, thereby becoming a repulsive quasiparticle within the spin-↑ domain. On the right, the energy
levels available to the fermion are represented. If a well defined repulsive polaron exists and its
energy overcomes the Fermi energy, i.e., E > EF, tunneling through the interface is suppressed and
the domain wall is energetically stable. Panel (b) is adapted with permission from Ref. [130].

Such a seemingly simple scenario becomes richer and more complex once one consid-
ers the short-ranged attractive potentials relevant for a realistic description of the interaction
between two ultracold atoms. As discussed in the previous sections, the presence of a lower-
lying energy branch, connected with the existence of a weakly-bound molecular level below
the two-body scattering threshold [41], makes repulsive polarons acquire a quasiparticle
decay rate even at T = 0. As a consequence, ferromagnetism inherently competes with the
tendency of the system to relax into the many-body ground state. Around the interaction
strength kFa ∼ 1 relevant for ferromagnetism to develop, the spin-imbalanced ground
state corresponds to phase separation between a superfluid of dimers and a spin-polarized
Fermi gas [127,131]. Therefore, here the attractive branch can be safely regarded as a paired
state where all impurity particles are bound to a partner of the host gas [14].

In this framework, the importance of a proper interpretation of the polaron spectral
width Γ thus becomes clear: If Γ was exclusively linked to the population decay rate
of the repulsive Fermi liquid [3], one would expect the repulsive branch to become ill-
defined at strong repulsion, and the physics of Stoner’s model to be inaccessible with such
systems, since ferromagnetic correlations would be completely forestalled by attractive
ones (such as pairing) [132]. Instead, in agreement with the recent theoretical analysis [28]
outlined in Section 4, experimental pursuits have provided convincing evidence for the
metastability of the repulsive branch even at strong coupling [16,23,26]. In particular, a
short but finite time window was identified within which the instability of the repulsive
Fermi gas towards a magnetically correlated state could be observed. Spectroscopic studies
on 6Li mixtures in the impurity limit indeed revealed well-defined quasiparticles even
at very large repulsion, where E exceeds the Fermi energy of the bath while m∗ diverges,
indicating both an energetic and thermodynamic instability of the repulsive Fermi liquid
state beyond critical interactions [23].

Studies of spin-dynamics in a repulsive Fermi gas initialized in two spin domains sepa-
rated by a sharp domain wall [133] further allowed the characterization of the ferromagnetic
behavior of the system, including the experimental determination of the metastable region
in the temperature-interaction plane. This was linked to the softening of the spin-dipole
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mode, in quantitative agreement with theory models [134,135] that completely neglect
pairing correlations. Finally, later works based on time-resolved pump-probe spectroscopic
techniques succeeded in tracing the out-of-equilibrium dynamics of two-component bal-
anced spin mixtures [56]. For this, fermions were selectively brought to strong repulsion
along the upper branch of a Feshbach resonance, quickly enough to avoid undergoing
substantial dynamics during the preparation itself, starting essentially from the param-
agnetic Fermi liquid state. The rapid growth of short-range anti-correlations between
repulsive quasiparticles was observed beyond critical interactions, demonstrating that
concurrent pairing processes could be initially overcome. These studies [56], paralleled
also by spin-density noise correlation measurements and monitoring of other macroscopic
observables [136], led to the discovery of an unpredicted, emergent heterogeneous phase: a
quantum emulsion where paired and unpaired fermions macroscopically coexist, while
featuring microscale phase separation. In turn, this observation links the physics of the
repulsive Fermi gas to certain strongly correlated electron materials, where competing
order parameters coexist in nanoscale phase separation [137,138].

6. Concluding Remarks

Repulsive mixtures of ultracold atoms, both within and beyond the impurity limit, fea-
ture a very rich and intriguing phenomenology. In particular, owing to the metastability of
the upper many-body branch, quantum mixtures are ideally suited to investigate the compe-
tition between exotic metastable quantum phases arising from repulsive (anti-)correlations
and pairing phenomena. Indeed, in the case of Fermi–Fermi mixtures, the upper branch
population decays on a timescale significantly slower than that set by quasiparticle deco-
herence, which has enabled experiments to gain important insights into aspects of Stoner’s
model [48] and the magnetic properties of itinerant fermionic particles [56,133,136]. Simi-
larly, dilute Bose mixtures allow one to investigate the interplay between attractive and
repulsive inter- and intra-species interactions, potentially leading to the emergence of
quantum droplets [139] as one increases the minority density from the impurity limit. The
presence of the concurrent pairing instability further enriches these scenarios, triggering
non-trivial dynamics over longer timescales. In the Fermi case, this led to the emergence of
unpredicted heterogeneous many-body states [56,136].

In future experiments, it would be interesting to explore the transport properties of
such spatially inhomogeneous, slowly relaxing states, and to probe their emergence in
box-like potentials [140], weak optical lattices [141,142] or lower dimensions [143,144]. For
instance, quantum gas microscopes [145] could uniquely explore the competition between
antiferromagnetic ordering, favored by the underlying lattice structure, and quantum emul-
sions of itinerant fermions. Further, the realization of such rich scenarios opens up exciting
possibilities to dynamically create elusive phases of magnetized superfluidity [146,147]
and to spontaneously attain mesoscopic magnetic impurities within strongly interacting
superfluids [148].

The study of imbalanced quantum mixtures also paves the way for the observation
of a crucially missing milestone in the experimental demonstration of the Fermi liquid
paradigm in ultracold atoms, namely, polaron-polaron interactions. This can, for instance,
be achieved by embedding highly-compressible bosonic impurities in a large Fermi sea
as realized in a recent experiment [29]. The interactions are predicted to be even stronger
between Bose polarons, since a dilute bosonic bath is highly compressible and can more
easily convey excitations [128].

In the future, Bose and Fermi polaron studies with ultracold gases could be extended
to the case where the motion of the impurity and/or the medium is confined within a
lattice potential [53], possibly in reduced dimensions and in the presence of engineered
site-resolved disorder [149]. For a comprehensive modeling of such scenarios, an essential
preliminary step is to derive ab initio the effective interaction parameters associated with
two atoms interacting strongly in an optical lattice potential, extending previous three-
dimensional calculations [150]. The probing techniques discussed in this review could also
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find potential applications in the investigation of magnetic polarons [151–153], i.e., charge
excitations moving within a magnetic background where they become dressed and acquire
renormalized quasiparticle properties [10,154]. In particular, such excitations emerge in
fermionic Hubbard models from the interplay between charge and spin [155], as observed
by experiments [152,153]. These recent observations have attracted much interest [156–158],
since the dynamics of magnetic polarons in doped Mott insulators may explain the behavior
of certain strongly correlated materials such as high-temperature superconductors [159].

The phenomenology of the 3D polarons described in this review largely carries over
to the case of two-dimensional systems. In this context, a promising new platform for
polaron physics, complementary to cold-atom settings, is that of doped atomically thin
semiconductors [30]. These effectively realize a two-dimensional Bose–Fermi mixture
where excitons (bound electron-hole pairs) play the role of impurities in a Fermi sea of
electrons, and these systems are directly analogous to experiments on 2D Fermi polarons in
cold atomic gases [17,26], and can be modeled in a similar fashion [160]. However, this new
platform introduces a number of new experimental knobs such as direct control of medium
density via external gating, strong Rabi coupling of impurities to light in a microcavity [30],
and strong magnetic fields that Landau-quantize the electronic medium [161,162]. Two-
dimensional semiconductor microcavities also hold promise for realizing Bose polarons
using exciton polaritons as the medium [163]. If the impurities are themselves polaritons
one may obtain enhanced photon-photon correlations, while doped systems may foster
new forms of induced electron pairing [164].

In conclusion, the quantum impurity problem in ultracold quantum gases represents a
rare example of a strongly interacting many-body system for which it has been possible to
achieve a remarkable agreement between theory and experiment, for a wide range of both
static and dynamic properties. All fundamental advances in the topic have been driven by
a close synergy between theory and experiment, leading to the development of approaches
with broad applicability. Yet, as discussed in this review, many open questions still remain,
with the emergence of new platforms further challenging our understanding and making
polaron physics an extremely vital field of research.
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Notes

1 More generally, the s-wave scattering amplitude takes the form f (k) = 1/(k cot δ(k)− ik) in terms of the two-body scattering
phase shift δ(k). For a low-energy collision at relative momentum k, this may be expanded as k cot δ(k) = −a−1 + rek2/2 + . . .,
where a is the scattering length and re is the effective range. A Feshbach resonance is classified as narrow if the effective range
plays a relevant role (e.g., if |re| � 1/kF in a many-body problem), while it is termed broad when this may be safely neglected.
Broad resonances are accurately described by the single-channel Hamiltonian introduced in this section, while to investigate
narrow resonances one needs to employ a more sophisticated two-channel model [3,61].

2 Since the derivative of energy with respect to the Bose-Bose scattering length acts on the impurity energy, this term necessarily
involves the impurity and two bosons.

3 We follow here the sign convention used in Ref. [120], but note that other sources define the Lindhard function with the
opposite sign.
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Abstract: The notion of a polaron, originally introduced in the context of electrons in ionic lattices,
helps us to understand how a quantum impurity behaves when being immersed in and interacting
with a many-body background. We discuss the impact of the impurities on the medium particles by
considering feedback effects from polarons that can be realized in ultracold quantum gas experiments.
In particular, we exemplify the modifications of the medium in the presence of either Fermi or Bose
polarons. Regarding Fermi polarons we present a corresponding many-body diagrammatic approach
operating at finite temperatures and discuss how mediated two- and three-body interactions are
implemented within this framework. Utilizing this approach, we analyze the behavior of the spectral
function of Fermi polarons at finite temperature by varying impurity-medium interactions as well
as spatial dimensions from three to one. Interestingly, we reveal that the spectral function of the
medium atoms could be a useful quantity for analyzing the transition/crossover from attractive
polarons to molecules in three-dimensions. As for the Bose polaron, we showcase the depletion of the
background Bose-Einstein condensate in the vicinity of the impurity atom. Such spatial modulations
would be important for future investigations regarding the quantification of interpolaron correlations
in Bose polaron problems.

Keywords: polaron; impurity; spectroscopy of quasiparticles; interpolaron correlations; quantum
depletion; ultracold atoms; Bose–Einstein condensate; Fermi degenerate gases

1. Introduction

The quantum many-body problem, which is one of the central issues of modern
physics, is encountered in various research fields such as condensed matter and nuclear
physics. The major obstacle that prevents their adequate description stems from the
presence of many degrees-of-freedom as well as strong correlations. The polaron concept,
which was originally proposed by S. I. Pekar and L. Landau [1,2] to characterize electron
properties in crystals, provides a useful playground for understanding related nontrivial
many-body aspects of quantum matter and interactions. For instance, a key advantage
of the polaron picture is that, under specific circumstances, it enables the reduction of a
complicated many-body problem to an effective single-particle or a few-body one with
renormalized parameters. In the last decade, the polaron concept has been intensively
studied for two-component ultracold mixtures, where a minority component is embedded
in a majority one (host) and becomes dressed by the low-energy excitations of the latter
forming a polaron. Indeed, ultracold atoms, owing to the excellent controllability of the
involved system parameters, are utilized to quantitatively determine polaron properties,
as has been demonstrated in a variety of relevant experimental efforts. These include,
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for instance, the measurement of the quasiparticle excitation spectra [3–12], monitoring the
quantum dynamics of impurities [13,14], the observation of a phononic Lamb shift [15],
the estimation of relevant thermodynamic quantities [16,17], the identification of medium
induced interactions [18,19], and polariton properties [20–22].

Polarons basically appear in two different types, namely, Fermi and Bose polarons
where the impurity atoms are immersed in a Fermi sea and a Bose-Einstein condensate
(BEC) respectively. Both cases are experimentally realizable by employing a mixture of
atoms residing in different hyperfine states or using distinct isotopes. The impurity-
medium interaction strength can be flexibly adjusted with the aid of Feshbach reso-
nances [23], and as such strong interactions between the impurity and the majority atoms
can be achieved. Due to this non-zero interaction, the impurities are subsequently dressed
by the elementary excitations of t heir background atoms, leading to a quasi-particle state
that is called the polaron. In that light, the polaron and more generally the quasiparticle
generation is inherently related to the build-up of strong entanglement among the impu-
rities and their background medium [24–26]. Moreover, since various situations such as
mass-imbalanced [5], low-dimensional [6], and multi-orbital [11] ultracold settings can
be realized, atomic polarons can also be expected to be quantum simulators of quasipar-
ticle states in nuclear physics [27–31]. Recently, a Rydberg Fermi polaron has also been
discussed theoretically [32].

The single-particle character of polarons has been intensively investigated theoretically
in the past few years by using different approaches [33–50] ranging from variational treat-
ments [33–36] to diagrammatic Monte-Carlo simulations [42–47]. Interestingly, a multitude
of experimental observations regarding polaronic excitations have been well described
based on theoretical frameworks relying on the single-polaron ansatz [3,4,10]. However,
it is still a challenging problem and highly unexplored topic how many polaron systems
behave, especially during their nonequilibrium dynamics. While the single-polaron anal-
ysis clarifies the mechanism of polaron formation via the dressing from the surrounding
majority cloud, the many-polaron study is dedicated to the question of how polarons
interact with each other through the exchange of the excitations of their host. Therefore,
the background medium plays a crucial role in understanding many-polaron physics. In
this sense, the concept of induced interpolaron interactions has attracted a tremendous
attention [51–61]. For instance, in recent experiments, the sizable shift of the effective scat-
tering length due to the fermion-mediated interaction has been observed in Fermi polaron
systems [18,19]. The corresponding impact on the medium atoms due to the presence of
strong impurity-bath correlations is under active investigation [55]. In the case of Bose
polarons [7–9,13–15,62–67], the influence of the impurities on their environment (BEC)
is more pronounced when compared to Fermi polarons due to the absence of the Pauli
blocking effect. Characteristic examples, here, constitute the self-localization [68–73] and
temporal orthogonality catastrophe [24] phenomena as well as complex tunneling [74–77]
and emergent relaxation processes [60,78]. They originate from the presence of the impurity
which imprints significant deformations to its environment when the interaction between
the subsystems is finite.

In this work, we first provide a discussion on the role of the background atoms in many-
polaron problems that are tractable in ultracold atom settings. Particularly, we present
diagrammatic approaches to Fermi polaron systems and elaborate on how mediated two-
and three-body interpolation interactions are consistently taken into account within these
frameworks [55,56]. Importantly, a comparison of the Fermi polaron excitation spectral
function in three dimensions (3D) and at finite temperatures is performed among different
variants of the diagrammatic T-matrix approach. Namely, the usual T-matrix approach
(TMA) which is based on the self-energy including the repeated particle-particle scattering
processes consisting of bare propagators [79,80], the extended T-matrix approach (ETMA)
where the bare propagator in the self-energy is partially replaced [81–83], and the self-
consistent T-matrix approach where all the propagators in the self-energy consist of dressed
ones [84,85] are employed. We reveal how medium-induced interactions are involved
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in these approaches and examine their effects in mass-balanced Fermi polaron settings
realized, e.g., in 6Li atomic mixtures. Subsequently, we discuss the polaron excitation
spectrum in two (2D) and one (1D) spatial dimensions. The behavior of the spectral function
of the host and the impurities at strong impurity-medium interactions is exemplified.
Finally, the real-space Bogoliubov approach to Bose polarons in 3D is reviewed. The
latter allows us to unveil the condensate deformation due to the presence of the impurity
and appreciate the resultant quantum fluctuations [86]. We argue that the degree of
the quantum depletion of the condensate decreases (increases) for repulsive (attractive)
impurity-medium interactions, a result that is associated with the deformation of its density
distribution. This is in contrast to homogeneous setups where the depletion increases
independently of the sign of the interaction.

This work is organized as follows. In Section 2, we present the model Hamiltonian
describing ultracold Fermi polarons in 3D. For the Fermi polaron, we consider uniform
systems and develop the concept of the diagrammatic T-matrix approximation. After
explaining the ingredients of the diagrammatic approaches in some detail, we clarify how
mediated two- and three-body interactions are incorporated in these approaches. The
behavior of the resultant polaron spectral function at finite temperatures and impurity
concentrations in three-, two-, and one-dimensions is discussed. In Section 3, we utilize the
real-space mean-field formulation for Bose polarons and expose the presence of quantum
depletion for the three-dimensional trapped Bose polaron at zero temperature. In Section 4,
we summarize our results and provide future perspectives. For convenience, in what
follows, we use kB = h̄ = 1.

2. Fermi Polarons

2.1. T-Matrix Approach to Fermi Polaron Problems

Here we explain the concept of many-body diagrammatic approaches to Fermi po-
larons, namely, settings referring to the situation where fermionic impurity atoms are
immersed in a uniform Fermi gas. Since such a two-component Fermi mixture mimics
spin-1/2 electrons, we denote the bath component as σ = B =↑ and the impurity one by
σ = I =↓. Note that these are standard conventions without loss of generality. The model
Hamiltonian describing this system reads

H = ∑
p,σ

ξp,σc†
p,σcp,σ + g ∑

p,p′ ,q
c†

p+q/2,↑c†
−p+q/2,↓c−p′+q/2,↓cp′+q/2,↑, (1)

where ξp,σ = p2/(2mσ)− μσ is the kinetic energy minus the chemical potential μσ, and mσ

is the atomic mass of the σ component. The parameters cp,σ and c†
p,σ refer to the annihilation

and creation operators of a σ component fermion, respectively, possessing momentum p.
We measure the effective coupling constant g of the contact-type interaction between

two different component fermions by using the low-energy scattering parameter, namely,
the scattering length a. In 3D, it is known [87] that the coupling constant g3D and the
scattering length a are related via

mr

2πa
=

1
g3D

+
mrΛ
π2 , (2)

with m−1
r = m−1

↑ + m−1
↓ being the reduced mass. In this expression, the momentum

cutoff Λ is introduced to avoid an ultraviolet divergence in the momentum summation
of the Lippmann–Schwinger equation expressed in momentum space. This allows us to
achieve the effective short-range interaction of finite range re ∝ 1/Λ. Similarly, the relevant
relations in 2D and 1D read [88]

a2D =
1
Λ

e−
π

mrg2D , and a1D =
1

mrg1D
, (3)

respectively, where g2D and g1D are the coupling constants in 2D and 1D.
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First, we introduce a thermal single-particle Green’s function [89]

Gσ(p, iωn) =
1

iωn − ξp,σ − Σσ(p, iωn)
, (4)

where ωn = (2n + 1)πT is the fermion Matsubara frequency introduced within the finite-
temperature T formalism and n ∈ Z [89]. The effect of the impurity-medium interaction
is taken into account in the self-energy Σσ(p, iωn). The excitation spectrum A↓(p, ω) of a
Fermi polaron can be obtained via the retarded Green’s function GR

↓ (p, ω) = G↓(p, iωn →
ω + iδ) (where δ is a positive infinitesimal) through analytic continuation [89]. In particular,
it can be shown that

A↓(p, ω) = − 1
π

ImGR
↓ (p, ω). (5)

Experimentally, this quantity can be monitored by using a radio-frequency (rf) spectroscopy
scheme where the atoms are transferred from their thermal equilibrium state to a specific
spin state which interacts with the medium [90]. Indeed, the reverse rf response Ir(ω) [10]
and the ejection one Ie(ω) [16] are given by

Ir(ω) = 2πΩ2
Rabi ∑

p
f (ξp,i)A↓(p, ω + ξp,↓) (6)

and

Ie(ω) = 2πΩ2
Rabi ∑

p
f (ξp,↓ − ω)A↓(p, ξp,↓ − ω), (7)

respectively. Here, ξp,i represents the kinetic energy of the initial state in the reverse rf
scheme. In Equations (6) and (7), ΩRabi is the Rabi frequency.

Importantly, the self-energy Σ↑(p, iωn) of the background plays an important role in
describing the mediated interpolaron interactions. This fact will be evinced below and it is
achieved by expanding Σ↑(p, iωn) with respect to Gσ and G0

σ. The chemical potentials μσ

are kept fixed by imposing the particle number conservation condition obeying

Nσ = T ∑
p,iωn

Gσ(p, iωn). (8)

Moreover, in the remainder of this work, we define the impurity concentration as follows

x =
N↓
N↑

. (9)

Additionally, within the TMA [34,54] the self- energy Σσ(p, iωn) of the σ compo-
nent reads

Σσ(p, iωn) = T ∑
q,iν�

Γ(q, iν�)G0
−σ(q − p, iν� − iωn), (10)

where Γ(q, iν�) is the many-body T-matrix, as diagrammatically shown in Figure 1a,
with the boson Matsubara frequency iν� = 2�πT (� ∈ Z). Here, G0

σ(p, iωn) = (iωn −
ξp,σ)−1 is the bare thermal single-particle Green’s function. Furthermore, by adopting a
ladder approximation illustrated in Figure 1d, the T-matrix Γ(q, iν�) is given by

Γ(q, iν�) =
g

1 + gΠ(q, iν�)
, (11)
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where

Π(q, iν�) = T ∑
p,iωn

G0
↑(p + q, iωn + iν�)G0

↓(−p,−iωn) (12)

is the lowest-order particle-particle bubble. The latter describes a virtual particle-particle
scattering process associated with the impurity-medium interaction g which is replaced
by g3D, g2D, and g1D in 3D, 2D, and 1D, respectively. Note that in Equation (10) the
impurity-impurity interaction is not taken into account.

The extended T-matrix approach (ETMA) [55] constitutes an improved approxima-
tion that allows us to take the induced polaron-polaron interactions into account in a
self-consistent way. In this method, as depicted in Figure 1b we include higher-order
correlations by replacing the bare Green function G0 in Equation (10) with the dressed one
Gσ. Namely

ΣE
σ(p, iωn) = T ∑

q,iν�

Γ(q, iν�)G−σ(q − p, iν� − iωn). (13)

Figure 1. Feynman diagrams for (a) the T-matrix approach (TMA), (b) the extended T-matrix
approach (ETMA), and (c) the self-consistent T-matrix approach (SCTMA). Γ and ΓS are the many-
body T-matrices, whose perturbative expansions are shown schematically in (d,e), consisting of bare
and dressed propagators G0

σ and Gσ, respectively. While in TMA, all the lines in the self-energy
(a) consist of G0

σ, they are replaced with Gσ partially (upper loop of (b)) in ETMA and fully in SCTMA
(c) (see also (e) where G0

σ is replaced by Gσ compared to (d)), respectively.

Importantly, the TMA and ETMA approaches are equivalent to each other in the single-
polaron limit i.e., x → 0, where the self-energy of the fermionic medium ΣE

↑ (capturing
the difference between G0

↑ and G↑ in Equations (10) and (13), respectively) is negligible.
Additionally, at zero temperature, these two treatments coincide with the variational ansatz
proposed by F. Chevy [33]. Recall that μ↑ = EF and μ↓ = E(a)

P at T = 0 and x → 0, where

EF = p2
F/(2m↑) denotes the Fermi energy of the majority component atoms while E(a)

P
corresponds to the attractive polaron energy.

Proceeding one step further, it is possible to construct the so-called self-consistent T-
matrix approach (SCTMA) [56,91,92] which deploys the many-body T-matrix ΓS composed
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of dressed propagators as schematically shown in Figure 1e. In particular, the correspond-
ing T-matrix is given by

ΓS(q, iν�) =
g

1 + gΠS(q, iν�)
, (14)

where

ΠS(q, iν�) = T ∑
p,iωn

G↑(p + q, iωn + iν�)G↓(−p,−iωn), (15)

which describes a scattering process denoted by G↑ and G↓, of the dressed medium atoms
with the impurities and the dressed ones (polarons), respectively. This is in contrast to
Equation (12) obtained in ETMA and consisting of G0

σ which represents the impurity-
medium scattering process of only the bare atoms. Using this T-matrix, we can express the
SCTMA self-energy ΣS

σ (see also Figure 1c) as

ΣS
σ(p, iωn) = T ∑

q,iν�

ΓS(q, iν�)G−σ(q − p, iν� − iωn). (16)

We note that within the ETMA, the impurity self-energy ΣE
↓ (Equation (11)) can be

rewritten as

ΣE
↓ (p, iωn) = T ∑

q,iν�

Γ(q, iν�)
[

G0
↑(q − p, iν� − iωn)

+ G0
↑(q − p, iν� − iωn)Σ↑(q − p, iν� − iωn)G↑(q − p, iν� − iωn)

]
≡ Σ↓(p, iωn) + δΣ↓(p, iωn), (17)

with the higher-order correction δΣ↓(p, iωn) beyond the TMA being

δΣ↓(p, iωn) = T2 ∑
q,q′ ,iν� ,iν�′

Γ(q, iν�)Γ(q′, iν�′)G
0
↑(q − p, iν� − iωn)G↑(q − p, iν� − iωn)

× G↓(q
′ − q + p, iν�′ − iν� + iωn)

≡ T ∑
p′ ,iωn′

V(2)
eff (p, iωn, p′, iωn′ ; p, iωn, p′, iωn′)G↓(p′, iωn′). (18)

In this expression, V(2)
eff (p1, iωn1 , p2, iωn2 ; p′

1, iωn′
1
, p′

2, iωn′
2
) represents the induced impurity-

impurity interaction (diagrammatically shown in Figure 2a) with incoming and outgoing
momenta and frequencies {pi, iωni} and {p′

i, iωn′
i
}, respectively, where i = 1, 2. It reads

V(2)
eff (p1, iωn1 , p2, iωn2 ; p′

1, iωn′
1
, p′

2, iωn′
2
) = δp1+p2,p′

1+p′
2
δn1+n2,n′

1+n′
2

× T ∑
q,iν�

Γ(q, iν�)Γ(q + p2 − p′
1, iν� + iωn2 − iωn′

1
)G0

↑(q − p1, iν� − iωn1)G
0
↑(q − p′

1, iν� − iωn′
1
). (19)

Here, δi,j is the Kronecker delta imposing the energy and momentum conservation in the
two-body scattering.
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Figure 2. Feynman diagrams for induced (a) two- and (b) three-body interactions V(2,3)
eff among

polarons. The arrows represent the direction of momentum and energy transfer in each propagator.

The self-energy ΣS
↓ of the impurities within the SCTMA involves a contribution of

induced three-impurity correlations due to the dressed pair propagator ΣS
↓. The latter can

again be decomposed as

ΣS
↓(p, iωn) ≡ ΣE

↓ (p, iωn) + δΣ′
↓(p, iωn), (20)

where

δΣ′
↓(p, iωn) = T ∑

q,iν�

[ΓS(q, iν�)− Γ(q, iν�)]G↑(q − p, iν� − iωn)

= T ∑
q,iν�

ΓS(q, iν�)Γ(q, iν�)Φ(q, iν�)G↑(q − p, iν� − iωn). (21)

Here we defined

Φ(q, iν�) = ΠS(q, iν�)− Π(q, iν�)

= T ∑
p,iωn

[
G↑(p + q, iωn + iν�)G↓(−p,−iωn)− G0

↑(p + q, iωn + iν�)G0
↓(−p,−iωn)

]
� T ∑

p,iωn

[
G0
↑(p + q, iωn + iν�)

]2
ΣS
↑(p + q, iωn + iν�)G0

↓(−p,−iωn), (22)

which represents the difference between the Π and ΠS, namely, the medium-impurity
and the medium-polaron propagators. In the last line of Equation (22), we assumed that
G↑ � G0

↑ and ΣS
↓ � 0. Thus, one can find a three-body correlation effect beyond the ETMA

as shown in Figure 2b and captured by

δΣ′
↓(p, iωn) �T ∑

p′ ,iωn′

V(3)
eff (p, iωn, p′, iωn′ , p′′, iωn′′ ; p′, iωn′ , p, iωn, p′′, iωn′′)

× G↓(p′, iωn′)G0
↓(p′′, iωn′′), (23)

where V(3)
eff (p1, iωn1 , p2, iωn2 , p3, iωn3 ; p′

1, iωn′
1
, p′

2, iωn′
2
, p′

3, iωn′
3
) is the induced three-polaron

interaction term. Its explicit form reads
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V(3)
eff (p1, iωn1 , p2, iωn2 , p3, iωn3 ; p′

1, iωn′
1
, p′

2, iωn′
2
, p′

3, iωn′
3
) = δp1+p2+p3,p′

1+p′
2+p′

3
δn1+n2+n3,n′

1+n′
2+n′

3

× T ∑
q,iν�

Γ(q, iν�)Γ(q + p3 − p′
1, iν� + iωn3 − iωn′

1
)Γ(q + p′

2 − p1, iν� + iωn′
2
− iωn1)

× G0
↑(q − p′

1, iν� − iωn′
1
)G0

↑(q − p1, iν� − iωn1)G
0
↑(q − p′

1 + p3 − p′
3, iν� − iωn′

1
+ iωn3 − iωn′

3
). (24)

From the above discussion, it becomes evident how the medium-induced two-body and
three-body interpolaron interactions are included in the ETMA and the SCTMA treatments.
Recall that in the TMA the interpolaron interaction is not taken into account. Even so,
observables such as thermodynamic quantities (e.g., particle number density) and spectral
functions obtained via rf spectroscopy can in principle provide indications of the effect of
interpolaron interactions through Σσ(p, iωn).

2.2. Spectral Response of Fermi Polarons

In the following, we shall present and discuss the behavior of the spectral function
of Fermi polarons for temperatures ranging from zero to the Fermi temperature of the
majority component as well as for different spatial dimensions from three to one. For
simplicity, we consider a mass-balanced fermionic mixture i.e., m↑ = m↓ ≡ m. The
latter is experimentally relevant for instance by considering two different hyperfine states,
e.g., |F = 1/2, mF = +1/2〉 and |F = 3/2, mF = −3/2〉 of 6Li. In this notation, F and mF
are the total angular momentum and its projection, respectively, of the specific hyperfine
state [10] at thermal equilibrium.

2.2.1. Three-Dimensional Case

The resultant spectral function Aσ(p = 0, ω) of the fermionic medium (σ =↑) and
the impurities (σ =↓) is depicted in Figure 3 as a function of the single-particle energy ω.
Here, we consider a temperature T = 0.3TF, impurity concentration x = 0.1, and impurity-
medium interaction at unitarity, i.e., (pFa)−1 = 0. The Fermi temperature is TF = p2

F/(2m↑)
and the Fermi momentum pF. Evidently, the spectral function of the majority component
(Figure 3a) exhibits a peak around ω + μ↑ = 0 in all three diagrammatic approaches
introduced in Section 2. The sharp peak around ω + μ↑ = 0 corresponds to the spectrum
of the bare medium atoms given by A(p, ω) = δ(ω − ξp,↑) at p = 0. This indicates
that the imprint of the impurity-medium interaction on the fermionic host is negligible
for such small impurity concentrations x = 0.1; see also the discussion below. Indeed,
the renormalization of μ↑ (which essentially evinces the backaction on the majority atoms
from the impurities) in the ETMA at unitarity is proportional to x [55] and in particular

μ↑
EF

= 1 − 0.526x. (25)

It can be shown that in the weak-coupling limit, this shift is given by the Hartree correction
ΣH
↑ = 4πa

m N↓ [89]. However, at the unitarity limit presented in Figure 3, such a weak-
coupling approximation cannot be applied and therefore the factor 0.526 in Equation (25)
originates from the existence of strong correlations between the majority and the minority
component atoms.
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Figure 3. Zero -momentum spectral functions Aσ(p = 0, ω) of (a) the majority (medium) and (b) the
minority (impurities) fermions for varying energy ω at unitarity, (pFa)−1 = 0. We consider a temper-
ature T = 0.3TF and an impurity concentration x = 0.1. The solid, dashed, and dash-dotted lines
represent the results of the TMA, ETMA, and SCTMA approaches respectively. While A↑(p = 0, ω)

is almost the same among the three approaches, A↓(p = 0, ω) within the SCTMA experiences a
sizable difference compared to the response obtained in the TMA and the ETMA approaches.

The corresponding polaronic excitation spectrum is captured by A↓(p = 0, ω)

(Figure 3b) having a dominant peak at ω + μ↓ = −E(a)
P where E(a)

P is the attractive
polaron energy. Notice here that since this peak is located at negative energies it in-
dicates the formation of an attractive Fermi polaron. This observation can be under-
stood from the fact that in the absence of impurity-medium interactions, the bare-particle
pole, namely, the position of the pole of the bare retarded single-particle Green’s func-
tion G0,R

↓ (p = 0, ω) = (ω + iδ + μ↓)−1, occurs at ω + μ↓ = 0. Moreover, the attrac-

tive polaron energy E(a)
P (being of course negative) is defined by the self-energy en-

ergy shift as E(a)
P = Σ↓(0, E(a)

P ). Thus, one can regard the deviation of the position of

the peak from ω + μ↓ = 0 as the attractive polaron energy E(a)
P , since it is given by

A↓(p = 0, ω) ∼ δ(ω + μ↓ − E(a)
P ). Recall that, in general, for finite temperatures T and im-

purity concentrations x, μ↓ �= E(a)
P holds in contrast to the single-polaron limit at T = 0 [55].

Additionally, a weak amplitude peak appears in A↓(p = 0, ω) at positive energies ω � EF.
It stems from the metastable upper branch of the impurities, where excited atoms repul-
sively interact with each other. This peak becomes sharper at positive scattering lengths
away from unitarity. Indeed, for positive scattering lengths, the quasi-particle excitation
called a repulsive Fermi polaron emerges [25].

Figure 4a presents the polaron spectral function A↓(p = 0, ω) with respect to the
interaction parameter (pFa)−1 obtained within the ETMA method at T = 0.03TF and
x = O(10−4). From the position of the poles of GR

↓ (p = 0, ω), one can extract two

kinds of polaron energies, namely, E(a)
P and E(r)

P corresponding to the attractive and the
repulsive polaron energies, respectively. The interaction dependence of these energies
is provided in Figure 4b. E(r)

P approaches the Hartree shift ΣH
↓ = 4πa

m N↑ without the
imaginary part of the self-energy (being responsible for the width of the spectra) and
finally becomes zero [25]. Indeed, the spectrum in Figure 4a shows that the peak of the
repulsive polaron at ω + μ↓ > 0 becomes sharper when increasing (pFa)−1, indicating

the vanishing imaginary part of the self-energy. On the other hand, E(a)
P decreases with

increasing (pFa)−1 as depicted by the position of the low-energy peak (where ω + μ↓ < 0)
in Figure 4a. Eventually, the attractive polaron undergoes the molecule transition as we
discuss below. Another important issue here is that in the strong-coupling regime the
attractive polaron undergoes the transition to the molecular state with increasing impurity-
bath attraction [93]. Although this transition was originally predicted to be of first-order,
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recent experimental and theoretical studies showed an underlying crossover behavior and
coexistence between polaronic and molecular states [17]. We note that in the case of finite
impurity concentrations, a BEC of molecules can appear at low temperatures; see also
Equations (26) and (27) below. It is also a fact that the interplay among a molecular BEC,
thermally excited molecules, and polarons may occur at finite temperatures [94]. In the
calculation of the attractive polaron energy E(a)

P for different coupling strengths (Figure 4b),
however, we do not encounter the molecular BEC transition identified by the Thouless
criterion [95]

1 + gΠ(q = 0, iν� = 0) = 0. (26)

In particular, in the strong-coupling limit, from Equation (26) combined with the particle
number conservation (Equation (8)) the BEC temperature TBEC of molecules satisfies [96]

TBEC � 2π

(
x

12π2ζ(3/2)

) 2
3
TF, (27)

where ζ(3/2) � 2.612 is the zeta function. Since we consider a small impurity concentration
x = O(10−4) here, T = 0.03TF is far above TBEC ∝ x

2
3 .

Figure 4. (a) Polaron spectral function A↓(p = 0, ω) for several coupling strengths (pFa)−1. The
spectrum is calculated within the ETMA at temperature T = 0.03TF and impurity concentration

x = O(10−4) [55]. Panel (b) represents the attractive and repulsive polaron energies, namely, E(a)
P

and E(r)
P , respectively, as a function of (pFa)−1. The polaron energies have been extracted from the

peak position of A↓(p = 0, ω), that is, the pole of GR
↓ (p = 0, ω). The experimental data of Ref. [10]

are plotted in black circles for direct comparison with the theoretical predictions.

According to the above-description, induced polaron-polaron interactions are medi-
ated by the host atoms, which are taken into account within the ETMA and the SCTMA
methods as explicated in Section 2, are weak in the present mass-balanced fermionic mix-
ture. These finite temperature findings are consistent with previous theoretical works [51–53]
predicting a spectral shift of the polaron energy ΔE = FEFGx with F = 0.1∼0.2 at T = 0
(where EFG is the ground-state energy of a non-interacting single-component Fermi gas at
T = 0) as well as the experimental observations of Ref. [4]. On the other hand, the pres-
ence of induced polaron–polaron interactions in the repulsive polaron scenario cannot be
observed experimentally [10], a result that is further supported by recent studies based on
diagrammatic approaches [55].

Furthermore, the spectral deviations between the TMA and the ETMA treatments
represent the effect of induced two-body interpolaron interactions in the attractive polaron
case. However, in our case there is no sizable shift between the spectral lines predicted
in these approaches (Figure 3b). Indeed, the induced two-body energy is estimated to
be of the order of 10−3EFG at x = 0.1. The induced three-body interpolaron interaction,
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which is responsible for the difference among the ETMA and the SCTMA results, exhibits a
sizable effect on the width of the polaron spectra. We remark that at T = 0.3TF and x = 0.1
(Figure 3b) although the minority atoms basically obey the Boltzmann statistic, since their

temperature is higher than the Fermi degenerate temperature TF,↓ =
(6π2 N↓)

2
3

2m [55] namely
T = 0.3TF � 1.39TF,↓, effects of the strong medium-impurity interaction on the polaron
spectra are present manifesting for instance as a corresponding broadening. Although
the SCTMA treatment tends to overestimate the polaron energy, the observed full-width-
at-half maximum (FWHM) of the rf spectrum given by 2.71(T/TF)

2 [16] can be well
reproduced by this approach. The latter gives 2.95(T/TF)

2 whereas the FWHM in ETMA is
1.61(T/TF)

2 [56]. We should also note that the decay rate related to the FWHM for repulsive
polarons as extracted using TMA (and simultaneously ETMA) agree quantitatively with
the experimental result of Ref. [10]. For the attractive polaron, the quantitative agreement
between the experiment and these diagrammatic approaches is broken at high temperatures.
For instance, the recent experiment of Ref. [16] showed that the transition from polarons
to the Boltzmann gas occurs at T � 0.75TF [16], while the prediction of the diagrammatic
approaches is above TF [56]. Besides the fact that such polaron decay properties may
be related to multi-polaron scattering events leading to many-body dephasing [12], they
are necessary for further detailed polaron investigations at various temperatures and
interaction strengths that facilitate the understanding of the underlying physics of the
observed polaron-to-Boltzmann-gas transition.

The dependence of the polaron spectra A↓(p, ω) on the energy and the momentum of
the impurities is illustrated in Figure 5 for T = 0.2TF, x = 0, and (pFa)−1 = 0. To infer the
impact of the multi-polaron correlations on the spectrum we explicitly compare A↓(p, ω)
between the ETMA and the SCTMA methods. As it can be seen, A↓(p, ω) exhibits a sharp
peak which is associated with the attractive polaron state and shows an almost quadratic
behavior for increasing momentum of the impurities. It is also apparent that the SCTMA
spectrum (Figure 5b) at low momenta is broadened when compared to the ETMA one
(Figure 5a) due to the induced beyond two-body interpolation correlations, e.g., three-body
ones. At small impurity momenta, the spectral peak of the attractive Fermi polaron within
the present model as described by Equation (1), is generally given by

A↓(p, ω) � Zaδ

(
ω + μ↓ −

p2

2m∗
a
− E(a)

P

)
, (28)

where Za and m∗
a are the quasiparticle residue [25] and the effective mass of the attractive

polaron, respectively. At unitarity it holds that Za � 0.8, m∗
a � 1.2m, and E(a)

P � −0.6EF
within the zero-temperature and single-polaron limits [34]. The behavior of these quantities
has been intensively studied in current experiments [3,4,10] and an adequate agreement
has been reported using various theories. For instance, Chevy’s variational ansatz (be-
ing equivalent to the TMA at T = 0 and x → 0) [33,34] gives Za = 0.78, m∗

a = 1.17m,
and E(a)

P = −0.6066EF. More recently, the functional renormalization group [39] pre-

dicts Za = 0.796 and E(a)
P = −0.57EF, while according to the diagrammatic Monte Carlo

method [47] E(a)
P = −0.6157EF. In this sense, nowadays, the corresponding values of

these quantities can be regarded as important benchmarks, especially for theoretical ap-
proaches. It is also worth mentioning that higher-order diagrammatic approximations
such as the SCTMA do not necessarily lead to improved accuracy in terms of the values
of relevant observables. In particular, a detailed comparison between the predictions of
the TMA and the SCTMA has been discussed in Ref. [54] demonstrating that the former
adequately estimates the experimentally observed polaron energy whereas the SCTMA
overestimates its magnitude in the strong-coupling regime. Moreover, the diagrammatic
Monte Carlo method based on bare Green’s functions in self-energies exhibits a better
convergence behavior compared to the ones employing dressed Green’s functions due to
the approximate cancellation of higher-order diagrams [44]. As such, the partial inclusion

51



Atoms 2021, 9, 18

of higher-order diagrams by replacing the bare Green’s functions with the dressed ones
may lead to overestimating the molecule-molecule and the polaron-molecule scattering
lengths in the strong-coupling regime [56].

As we demonstrated previously (see Figure 3), besides the fact that the spectral
response within the SCTMA method is broader compared to the one obtained in the
ETMA, the two spectra feature a qualitatively similar behavior. Indeed, both approaches
evince that the spectra beyond p = pF are strongly broadened. Recall that in this region
of momenta the atoms of the majority component, which form the Fermi sphere, cannot
follow the impurity atoms. This indicates that the dressed polaron state ceases to exist
due to the phenomenon of the Cherenkov instability [97,98], where the polaron moves
faster than the speed of sound of the medium and consequently it becomes unstable
against the spontaneous emission of elementary excitations of the medium. Such a spectral
broadening can also be observed in mesoscopic spin transport measurements [99] and
may also be related to the underlying polaron-Boltzmann gas transition [16] since the
contribution of high-momentum polarons can be captured in rf spectroscopy due to the
thermal broadening of the Fermi distribution function in Equation (7) at high temperatures.
Moreover, the momentum-resolved photoemission spectra would reveal these effects across
this transition.

Figure 5. Polaron spectral function A↓(p, ω) as a function of the momentum p and the energy ω of the impurities at
temperature T = 0.2TF, impurity concentration x = 0.1, and interaction (pFa)−1 = 0. A↓(p, ω) is calculated within (a) the
ETMA and (b) the SCTMA approaches. The vertical dashed line marks the Fermi momentum p = pF of the medium. While
the two approaches predict qualitatively similar spectra with a sharp peak at low momenta and broadening above p = pF,
the SCTMA result (b) shows a relatively broadened peak at low momenta compared to the ETMA one (a).

We remark that the medium spectral function A↑(p, ω) is also useful to reveal the prop-
erties of strong-coupling polarons in the case of finite temperature and impurity concentra-
tion. Figure 6 presents A↑(p, ω) for various impurity-medium couplings ((pFa)−1 = −0.4,
0, 0.4, 0.7, and 1.0) at T = 0.4TF and x = 0.1. At (pFa)−1 = −0.4 and (pFa)−1 = 0,
A↑(p = 0, ω) features a single peak at ω + μ↑ = 0. On the other hand, at intermediate
couplings (pFa)−1 = 0.4 and (pFa)−1 = 0.7, besides a dominant spectral maximum a
second peak appears around ω + μ↑ = EF. The latter evinces the backaction from the
repulsive polaron because the inset of Figure 6 shows that the repulsive polaron is located
around ω + μ↑ � EF. Moreover, at (pFa)−1 = 1, another peak emerges in the low-energy
region (ω + μ↑ � −3EF). This low-energy peak elucidates the emergence of two-body
molecules with the binding energy given by Eb = 1/(ma2) due to the strong impurity-
medium attraction. Concluding, the spectral function of the medium atoms can provide
us with useful information for the recently observed smooth crossover from polarons to
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molecules [17]. Notice also that spectral and thermodynamic signatures of the polaron-
molecule transition have been recently reported within a variational approach [100], while
the associated molecule-hole continuum can be captured using the TMA method [101].

In the following, we shall elaborate on the behavior of the spectral function of lower
dimensional Fermi polarons solely within the TMA approach. The latter provides an
adequate description of the polaron formation in our case since the induced interpolaron
interaction [59,60] is weak in the considered mass-balanced system.

Figure 6. Spectral function of the medium A↑(p = 0, ω) within the ETMA approach at zero momen-
tum of the impurity and for different impurity-medium couplings (pFa)−1 = −0.4, 0, 0.4, 0.7, and 1.0.
The temperature and the impurity concentration are given by T = 0.4TF and x = 0.1, respectively.
The inset shows the corresponding impurity spectral functions A↓(p = 0, ω). While the sharp peak
at ω + μ↑ � 0 in A↑(p = 0, ω) is associated with the bare state, the small amplitude side peaks
at positive (ω + μ↑ � EF) and negative energies (ω + μ↓ � −3EF for the case with (pFa)−1 = 1)
originate from the backaction due to the impurities.

2.2.2. Spectral Response of Fermi Polarons in Two-Dimensions

In two spatial dimensions, the attractive impurity-medium effective interaction g2D < 0
is always accompanied by the existence of a two-body bound state whose energy scales as
−1/(ma2

2D) [102]. Simultaneously, the repulsive polaron branch appears at positive ener-
gies [25] in addition to the attractive one located at negative energies. This phenomenology
is similar to the case of a positive impurity-bath scattering length in 3D [101]. To elaborate
on the typical spectrum of 2D Fermi polarons below we employ a homogeneous Fermi
mixture characterized by an impurity concentration x = 0.1, temperature T = 0.3TF, and a
typically weak dimensionless coupling parameter ln(pFa2D) = 0.4 where a2D is the 2D
scattering length introduced in Equation (3). The spectral response of both the fermionic
background (A↑(p, ω)) and the impurities (A↓(p, ω)) for varying momenta and energies
of the impurities within the TMA approach is depicted in Figure 7. We observe that the
small impurity concentration, i.e., x = 0.1, leads to the non-interacting dispersion of the
spectrum of the majority component given by A↑(p, ω) � δ(ω − ξp,↑); see Figure 7a. In
this case, therefore, the medium does not experience any backaction from the impurities.
Importantly, one can indeed identify a sizable backaction on the medium in the case of a
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larger impurity concentration and smaller impurity-medium 2D scattering length as shown
in Figure 7(b1,b2) where T = 0.3TF, x = 0.3, and ln(pFa2D) = 0. Moreover, since the repul-
sive interaction in the excited branch of the impurities (ω + μ↓ � EF) is relatively strong,
the impurity excitation spectrum at positive energies (ω + μ↓ > 0) is largely broadened.
We note that the stable repulsive polaron branch can be found in the case of small a2D. It
also becomes evident that the impurity spectrum in 2D is largely broadened beyond p = pF
as compared to the 3D spectral response (Figure 5). Simultaneously, the intensity of the
metastable impurity excitation in the repulsive branch becomes relatively strong in both the
2D and 3D cases. This result implies that fast-moving impurities do not dress the medium
atoms and occupy the non-interacting excited states in such high-momentum regions.

Figure 7. Spectral function Aσ(p, ω) of the Fermi (a1) medium and (a2) impurities in two-dimensions
for different momenta and energies of the impurities. We consider a temperature T = 0.3TF, impurity
concentration x = 0.1, and dimensionless coupling parameter ln(pFa2D) = 0.4. The vertical dashed
line indicates the Fermi momentum p = pF of the majority component atoms. While the majority
component (a) exhibits a sharp peak with quadratic dispersion ω + μ↑ = p2/(2m), the minority
atoms (b) form the attractive polaron at negative energies (ω + μ↓ < 0) and a broadened peak
associated with the repulsive impurity branch at positive energies (ω + μ↓ > 0). For comparison, we
provide the spectral functions of the medium (b1) and the impurities (b2) in the case of T = 0.3TF,
x = 0.3 and ln(pFa2D) = 0. Evidently, the feedback on the medium from the impurities is enhanced
in the low-momentum region (p � 0).

2.2.3. Fermi Polarons in One-Dimension

In one spatial dimension the quasiparticle notion is somewhat more complicated as
compared to the higher-dimensional case. Interestingly, various experiments are nowadays
possible to realize 1D ensembles and thus probe the properties of the emergent quasi-
particles. Below, we provide spectral evidences of 1D Fermi polarons and in particular
calculate the respective Aσ(p, ω) (Figure 8) for the background fermionic medium and the
minority atoms within the T-matrix approach including the Hartree correction. The system
has an impurity concentration x = 0.326, it lies at temperature T = 0.157TF, and the 1D
dimensionless coupling parameter for the impurity-medium attraction is (pFa1D)

−1 = 0.28
in Figure 8(a1,a2). For comparison, we also provide Aσ(p, ω) in Figure 8(b1,b2) for the
repulsive interaction case (pFa1D)

−1 = −0.55 with system parameters x = 0.264 and
T = 0.598TF. We remark that the impurity-medium attraction is considered weak herein
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such that the induced interpolaron interactions are negligible. In this sense, we do not
expect significant deviations when considering the ETMA or even the SCTMA approaches.

Figure 8. Spectral function Aσ(p, ω) of the fermionic (a1) background and (a2) impurity atoms
of concentration x = 0.326 with an attractive medium-impurity interaction for varying momenta
and energies of the impurities in one-dimension. The system is at temperature T = 0.157TF and
dimensionless coupling parameter (pFa1D)

−1 = 0.28. PT =
√

2mT is the momentum scale associated
with the temperature T. The vertical dashed line marks the Fermi momentum p = pF of the
background atoms. The majority component (a1) is largely broadened due to the backaction from
the impurities in the low-momentum region (p <∼ pT). On the other hand, the minority component
(a2) exhibits a sharp peak in the low-momentum region below p = pF and it is broadened above
p = pF. For comparison, we show the (b1) medium and (b2) impurity spectral functions in the case of
repulsive medium-impurity interaction characterized by (pFa1D)

−1 = −0.55, where the temperature
and the impurity concentraion are given by T = 0.598TF and x = 0.264. Although the impurity
quasiparticle peak in the low-energy region (ω + μ↓ � 0) is shifted upward, the tendency of a spectral
broadening is similar to the attractive case.

It is also important to note here that in sharp contrast to higher spatial dimensions,
the coupling constant g1D does not vanish when Λ → ∞ in the renormalization pro-
cedure; see Section 2.1. Thus, we take the Hartree shift ΣH

σ = g1D N−σ into account in
the building block of the self-energy diagrams [103]. This treatment is not necessary in
the single-polaron limit since ΣH

↑ → 0 and ΣH
↓ → g1DT ∑p,iωn G0

↑(p, iωn) (which is in-
cluded in the TMA self-energy) when x → 0. The non-vanishing coupling constant in
1D plays an important role in the emergence of induced interpolaron interactions as it
has been recently demonstrated, e.g., in Refs. [61,104,105]. The polaronic excitation prop-
erties obtained within the TMA approach show an excellent agreement with the results
of the thermodynamic Bethe ansatz [106]. The latter provides an exact solution in 1D
and in the single-polaron limit at T = 0 [102,107]. From these results, it is found that
there is no transition but rather a crossover behavior between polarons and molecules.
As it can be seen by inspecting Figure 8(a1) the spectrum of the majority component is
affected by the scattering with the impurities. This is attributed to the relatively large
impurity concentration x considered here. In particular, A↑(p, ω) is broadened at low
momenta below p = pF. On the other hand, the spectral response of the impurities in
Figure 8(a2) exhibits a sharp peak associated with the attractive polaron below p = pF
and it becomes broadened above p = pF. Apparently, the curvature of the position
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of the polaron peak corresponding to the effective mass (curvature of the dispersion)
is changed around this value of the momentum. Similar broadening effects of sharp
peaks can be found even in the case of repulsive impurity-medium interaction shown in
Figure 8(b1,b2). However, the low-energy sharp peak (corresponding to the repulsive po-
laron) in the impurity spectrum (Figure 8(b2)) is shifted to larger energies as a consequence
of the impurity-medium repulsion.

3. Bose Polarons

In this section, we shall discuss the Bogoliubov theory of trapped Bose polaron sys-
tems in real space [86,108,109]. The reason for focusing on a real-space Bogoliubov theory
is to elaborate on the deformation of the BEC medium in the presence of an impurity.
Indeed, the interaction between the impurity and the medium bosons leads to significant
inhomogeneities of the density distribution of the background which cannot be described
within a simple Thomas–Fermi approximation. Such a modification of the boson distri-
bution causes, for instance, enhanced phonon emission [61,78]. Moreover, in cold atom
experiments the background bosons and the impurity are generally trapped. Considering
the impact of inhomogeneity that naturally arises in trapped systems, therefore, we treat
the Bose polaron in real space without plane wave expansion because the momentum
is not a good quantum number. Below, we review the description of a Bose polaron in
trapped 3D systems at zero temperature using the Bogoliubov theory and elaborate on the
ground state properties. We remark that our analysis, to be presented below, is applicable
independently of the shape of the external potential while for simplicity herein we consider
the case of a harmonic trap.

In particular, we consider a 3D setting where a single atomic impurity is trapped in an
external harmonic potential denoted by VI(r) and is embedded in a BEC medium that is
also trapped in an another harmonic potential VB(r) whose center coincides with that of
VI(r). Hereafter, we use units in which h̄ = 1. This system is described by the following
model Hamiltonian

Ĥ =
∫

ddr ψ̂†(r)

[
− ∇2

2mI
+ VI(r)

]
ψ̂(r) + gIB

∫
ddr φ̂†(r)φ̂(r)ψ̂†(r)ψ̂(r)

+
∫

ddr φ̂†(r)

[
− ∇2

2mB
+ VB(r) + gBBφ̂†(r)φ̂(r)

]
φ̂(r).

(29)

Here, φ̂ and ψ̂ are the field operators of the bosonic medium and the impurity, respectively.
mI(B) is the mass of the impurity atom (the medium bosons) and μ is the chemical potential
of the medium bosons. The effective couplings gIB and gBB refer to the impurity-boson and
boson-boson interaction strengths, respectively.

3.1. Bogoliubov Theory for Bose Polaron Problems

First, we calculate the expectation value of the Hamiltonian in terms of the single-
impurity state |imp〉 = â†

imp|0〉imp in order to integrate out the impurity’s degree-of-freedom

ĤB =
∫

ddr ψ∗(r)
[
− ∇2

2mI
+ VI(r)

]
ψ(r)

+
∫

ddr φ̂†(r)

[
− ∇2

2mB
+ VB(r) + gIB|ψ(r)|2 + gBBφ̂†(r)φ̂(r)

]
φ̂(r),

(30)

where âimp denotes the annihilation operator of an impurity in the ground state; ψ(r) is
the corresponding wave function that can be determined self-consistently by Equation (35).
In this way, we have obtained the effective Hamiltonian for the medium bosons, in which
the bosons experience an effective potential constructed by the external trap and the
density of the impurity gIB|ψ(r)|2. Since we have set the temperature to zero in the
present study, we have to assume that the medium bosons possess a condensed part,

56



Atoms 2021, 9, 18

the so-called order parameter or the macroscopic wavefunction, when using perturbation
theory. It is known [87,110,111] that when BEC occurs, the vacuum expectation value of
the field operator φ̂ leads to a non-zero function which is used as an order parameter,
i.e., 〈φ̂(r)〉b = φ(r), where 〈· · · 〉b means b〈0| · · · |0〉b. The vacuum |0〉b is determined
from the effective Hamiltonian (30) within the Bogoliubov theory to the second order of
fluctuations. This is equivalent to splitting the operator as φ̂ = φ + ϕ̂, where 〈ϕ̂〉b = 0.
Substituting this into the Hamiltonian of Equation (30) and expressing it in terms of
the different orders of ϕ̂, we can readily obtain the expansion ĤB � H(0) +H(1) +H(2)

because the number of the non-condensed bosons is significantly smaller than that of the
condensed ones at zero temperature and weak couplings. In this expression, the individual
contributions correspond to

H(0) =
∫

ddr ψ∗
[
− ∇2

2mI
+ VI

]
ψ +

∫
ddr φ∗

[
− ∇2

2mB
+ VB + gIB|ψ|2 +

gBB

2
|φ|2 − μ

]
φ, (31)

H(1) =
∫

ddr ϕ̂†
[
− ∇2

2mB
+ VB + gIB|ψ|2 + gBB|φ|2 − μ

]
φ + h.c., (32)

H(2) =
1
2

∫
ddr

(
ϕ̂† ϕ̂

)( L M
M∗ L∗

)(
ϕ̂

ϕ̂†

)
, (33)

where L(r) = − ∇2

2mB
+ VB(r) + gIB|ψ(r)|2 + 2gBB|φ(r)|2 − μ, and M(r) = gBBφ2(r). Note

that we assume the weakly interacting limit of the medium to ensure the BEC dominating
condition and thus gBB is adequately small such that the perturbation theory is valid. In the
above expansion we ignore the contributions stemming from the third- and fourth-order
terms in the field operator assuming that they are negligible for the same reason.

Subsequently, let us derive the corresponding equations of motion that describe the
Bose-polaron system. From the Heisenberg equation, the bosonic field operator ϕ̂ satisfies
i∂t〈ϕ̂〉b = 〈[ϕ̂, Ĥ(1) + Ĥ(2)]〉b = 0 in the interaction picture. Accordingly, it is possible to
retrieve the celebrated Gross-Pitaevskii equation describing the BEC background[

− ∇2

2mB
+ VB(r) + gIB|ψ(r)|2 + gBB|φ(r)|2 − μ

]
φ(r) = 0. (34)

We remark that here, for simplicity, we consider the stationary case where the conden-
sate is time-independent. Next, by following the variational principle for ψ namely
δ〈HB〉b/δψ∗ = 0, we arrive at the Schrödinger equation for the impurity wavefunction[

− ∇2

2mI
+ VI(r) + gIB|φ(r)|2 + gIBnex(r)

]
ψ(r) = 0, (35)

where nex(r) = 〈ϕ̂†(r)ϕ̂(r)〉b is the density of the non-condensed bosons in vacuum, the so-
called quantum depletion.

To evaluate this expectation value, we need the ground state |0〉b of the Hamiltonian
that can be obtained by the diagonalization of Equation (33). Namely, H(2) = ∑n Enb̂†

nb̂n

is achieved using the following field expansion ϕ̂(r) = ∑n

[
b̂nun(r) + b̂†

nv∗n(r)
]
. Here the

complete set {ui, vi} satisfies the following system of linear equations being the so-called
Bogoliubov-de-Gennes (BdG) equations [112,113]( L(r) M(r)

−M∗(r) −L(r)

)(
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
. (36)

We remark that the BdG equations are commonly used in mode analysis of condensates.
In this context, the real eigenvalues constitute the spectrum, while the complex eigenvalues
unveil the dynamically unstable modes of the condensate [114,115]. More precisely, if com-
plex eigenvalues exist then the Hamiltonian can not be expressed in the above-mentioned
diagonal form in terms of the annihilation/creation operators. As such, the dynamically
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unstable situation is beyond the scope of the present description. By using this expansion,
we can calculate the vacuum expectation, e.g., nex(r) = ∑n |vn(r)|2. For the numerical
calculations, to be presented below, the total number of bosons NB is conserved, i.e.,

NB = N0 + Nex, with N0 =
∫

ddr |φ(r)|2 and Nex =
∫

ddr nex(r). (37)

This condition is achieved by tuning the chemical potential μ of the bosonic medium. Notice
that Nex becomes non-zero due to thermal fluctuations at finite temperature, while in the
ultracold regime it can be finite due to the presence of quantum fluctuations, otherwise
termed quantum depletion [116]. We also remark that all of the above Equations (34)–(36)
need to be solved simultaneously. The above-described treatment will be referred to in the
following as the real-space formulation of the Bose-polaron problem.

3.2. Quantum Depletion around a Bose Polaron

Since NB is fixed (Equation (37)), the number of condensed particles N0 changes due
to the existence of Nex. This is a quantum effect that occurs even at zero temperature, and it
is called quantum depletion [111]. We need to clarify that the term quantum depletion
refers to the beyond mean-field corrections for the description of the bosonic ensemble. In
the following, we shall investigate the effect of an impurity on the quantum depletion of
the medium bosons at zero temperature. Indeed, the quantum depletion is a measurable
quantum effect that is included in Equation (35) and its quantification makes it possible to
evaluate the backaction of the impurity on the medium condensate.

A commonly used external confinement in cold atom experiments is the harmonic
potential. As such, here, we consider that the traps of the impurity and the bosonic medium
are spherically symmetric, namely,

VB(r) =
1
2

mBω2
Br2 and VI(r) =

1
2

mIω
2
I r2. (38)

Accordingly, the order parameter of the BEC and the impuritys’ wave function have spher-
ically symmetric forms, and therefore the underlying BdG eigenfunctions are separable
with the help of spherical harmonics as

φ(r) = φ(r), ψ(r) = ψ(r),
{

unr�m(r)
vnr�m(r)

}
=

{Unr�(r)
Vnr�(r)

}
Y�m(θ1, θ2) , (39)

where r = |r|. Here, (nr, �, m) denote the radial, azimuthal, and magnetic quantum
numbers, respectively.

As a further simplification, we consider the situation where ωI is sufficiently larger
than ωB, namely, the impurity is more tightly confined than the medium bosons. As such,
the order parameter φ of the condensate changes much more gradually with respect to
the spatial change of the impurity’s wave function ψ. Since the impurity’s wave function
is relatively narrow compared to the condensate and the impurity-medium interaction is
weak, the impurity essentially experiences to a good approximation an almost flat (homo-
geneous) environment. This also means that trap effects are not very pronounced in this
case. In this sense, φ can be regarded as being constant and the impurity’s wave function

can be well approximated by a Gaussian function i.e., ψ(r) �
(

π
mIωI

)− 3
4 exp

(
−mIωI

2 r2). We
remark that in the presence of another external potential, e.g., a double-well, one naturally
needs to employ another appropriate initial wavefunction ansatz for the impurity. To
experimentally realize such a setting it is possible to consider a 40K Fermi impurity im-
mersed in a 87Rb BEC, where mI/mB � 0.460. For the medium we employ a total number
of bosons NB = 105 and the ratio of the strength of the trapping potentials ωI/ωB = 10
with ωB = 20 × 2π Hz [9]. Moreover, for the boson-boson and impurity-boson interactions,

58



Atoms 2021, 9, 18

we utilize the values 1/(aBBn1/3
B ) = 100 and 1/(aIBn1/3

B ) = ±1 with nB = NB

/(
4π
3 d3

B

)
and dB =

√
mBωB.

To reveal the backaction of the impurity on the bosonic environment we provide the
corresponding ground state density profiles of the condensed and the depleted part of the
bath in Figure 9a,c, respectively. In the case of gIB > 0 ( gIB < 0), the condensate experiences
an additional potential hump (dip) at the location of the impurity and eventually it seems
to be slightly repelled from (pulled towards) the impurity as shown in Figure 9b, where
the deformation of the radial profile of the condensate from the case of zero impurity-
medium interactions is provided. Moreover, in order to appreciate the role of the quantum
depletion of the BEC environment we illustrate its depletion density in the absence and
in the presence of the impurity in Figure 9b,d, respectively. Apparently, the degree of the
quantum depletion decreases (increases) (Figure 9d) for gIB > 0 (gIB < 0), a phenomenon
that is accompanied by the deformation of the condensate density. The effect of the impurity
on the quantum depletion of the condensate is summarized in the Table 1. Inspecting the
latter we can deduce that the quantum depletion decreases (increases) when the interaction
is repulsive (attractive). This is a non-trivial result caused by the presence of the trap since
in a uniform system [117–119] the depletion always increases irrespectively of whether the
interaction is positive or negative.
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Figure 9. Radial profiles of (a) the order parameter φ̄(r) = φ(r; gIB = 0)/
√

N0/4π and (c) the density of depletion
n̄ex(r) = nex(r; gIB = 0) in the absence of an impurity. Differences of the radial profiles of (b) the order parameter
δΦ(r) = (φ(r; gIB)− φ(r; gIB = 0))/

√
N0/4π and (d) the density of depletion δnex(r) = nex(r; gIB)− nex(r; gIB = 0) in the

presence of an impurity from the result depicted in (a) and (c), respectively.
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Table 1. The number of depletion Nex and its deviation δNex = 4π
∫

dr r2δnex(r) from the case of
zero impurity-medium interaction. It is evident that degree of depletion increases (decreases) for
attractive (repulsive) interactions.

1/(aIBn1/3
B ) ∞ +1 −1

Nex 24.244 24.220 24.270
δNex 0 −2.361× 10−2 2.584× 10−2

4. Conclusions

In this work, we have discussed the existence and behavior of Fermi and Bose po-
larons that can be realized in ultracold quantum gases focusing on their backaction on
the background medium. We have explicated three different diagrammatic approaches
applicable to Fermi polarons in the homogeneous case. These include the TMA, the ETMA,
and the SCTMA frameworks, where the ETMA considers induced two-body interpolaron
interactions and the SCTMA includes two- and three-body ones. Importantly, we have
explicitly derived the mediated two- and three-body interpolaron correlation effects as
captured within the different diagrammatic approaches. Although these induced interac-
tions are weak in the considered mass-balanced Fermi polaron systems, our framework
can be applied to various settings such as mass-imbalanced Fermi polaron systems. Using
this strong-coupling approach, we analyze the spectral response of the Fermi polaron in
one-, two-, and three- spatial dimensions at finite temperature. It has been shown that the
spectral function of the minority component exhibits a sharp polaron dispersion in the low-
momentum region but it is broadened for higher momenta. Moreover, we argue that the
spectral response reflects the character of majority atoms forming a Fermi sphere while a
strong interaction between the majority and the minority atoms induces a two-body bound
state between a medium atom and an impurity particle. The presence of this two-body
bound state becomes more important in lower dimensions.

Next, we present the mean-field treatment of trapped Bose polarons in three-dimensions
and analyze the role of quantum depletion identified by the deformation of the background
density within the framework of Bogoliubov theory of excitations. A systematic investi-
gation of the latter enables us to deduce that the repulsive (attractive) impurity-medium
interaction, giving rise to repulsive (attractive) Bose polarons, induces a decreasing (in-
creasing) condensate depletion captured by the deformation of the density distribution of
the host. This effect is a consequence of the presence of the external confinement since for
a homogeneous background the quantum depletion increases independently of the sign
of the impurity-medium interaction. Therefore, this result is considered as a particular
feature of the trapped system.

Our investigation opens up the possibility for further studies on various polaron
aspects. In particular, the effect of finite temperatures and the impurity concentration on
the 2D Fermi polaron spectral response is expected to play a significant role close to the
Berezinskii-Kosterlitz-Thouless transition of molecules [120]. Moreover, systems charac-
terized by highly mass-imbalanced components, e.g., heavy polarons, provide promising
candidates for the realization of more pronounced polaron-polaron induced interactions.
However, the treatment of these settings will most probably require a more sophisticated
approach including for instance three-body correlations between the atoms of the medium.
Additionally, the investigation of finite sized systems at non-zero temperatures in the
dimensional crossover from 3D to 2D as it has been reported e.g., in Ref. [121] but in
the ultracold and single-polaron limits offers an interesting perspective for forthcoming
endeavors. Furthermore, the comparison of the predictions of our methodology to treat
the effect of quantum fluctuations in Bose polaron settings with other approaches based
also on the mean-field framework [118,119] is certainly of interest. Finally, the backac-
tion of the impurities on the medium when considering dipolar interactions between the
medium atoms may affect the density collapse of the medium at strong impurity-medium
attractions [122] and thus provides another intriguing prospect.

60



Atoms 2021, 9, 18

Author Contributions: Conceptualization, H.T., J.T., S.I.M., E.N. and K.I.; methodology, H.T. and J.T.;
software H.T. and J.T.; validation, H.T. and J.T.; formal analysis, H.T. and J.T.; investigation, H.T. and
J.T.; resources, H.T. and J.T.; data curation, H.T. and J.T.; writing—original draft preparation, H.T. and
J.T.; writing—review and editing, H.T., J.T., S.I.M., E.N. and K.I.; visualization, H.T., J.T., S.I.M., E.N.
and K.I.; supervision, E.N. and K.I. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by a Grant-in-Aid for JSPS fellows (Grant No. 17J03975) and for
Scientific Research from JSPS (Grants No. 17K05445, No. 18K03501, No. 18H05406, No. 18H01211,
and No. 19K14619).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data discussed in this study are available within the article.

Acknowledgments: The authors thank K. Nishimura, T. Hata, K. Ochi, T. M. Doi, and S. Tsutsui
for useful discussion. S.I.M. gratefully acknowledges financial support in the framework of the
Lenz-Ising Award of the University of Hamburg.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pekar, S.I. Local quantum states of electrons in an ideal ion crystal. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 1946, 16, 341.
2. Landau, L.D.; Pekar, S.I. Effective mass of a polaron. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 1948, 18, 418.
3. Nascimbène, S.; Navon, N.; Jiang, K.J.; Tarruell, L.; Teichmann, M.; McKeever, J.; Chevy, F.; Salomon, C. Collective Oscillations of

an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass. Phys. Rev. Lett. 2009, 103, 170402. [CrossRef]
4. Schirotzek, A.; Wu, C.-H.; Sommer, A.; Zwierlein, M.W. Observation of Fermi Polarons in a Tunable Fermi Liquid of Ultracold

Atoms. Phys. Rev. Lett. 2009, 102, 230402. [CrossRef] [PubMed]
5. Kohstall, C.; Zaccanti, M.; Jag, M.; Trenkwalder, A.; Massignan, P.; Bruun, G.M.; Schreck, F.; Grimm, R. Metastability and

Coherence of Repulsive Polarons in a Strongly Interacting Fermi Mixture. Nature 2011, 485, 615. [CrossRef]
6. Koschorreck, M.; Pertot, D.; Vogt, E.; Fröhlich, B.; Feld, M.; Köhl, M. Attractive and repulsive Fermi polarons in two dimensions.

Nature 2012, 485, 619. [CrossRef]
7. Hohmann, M.; Kindermann, F.; Gänger, B.; Lausch, T.; Mayer, D.; Schmidt, F.; Widera, A. Neutral Impurities in a Bose-Einstein

Condensate for Simulation of the Fröhlich-Polaron. EPJ Quantum Technol. 2015, 2, 23. [CrossRef]
8. Jorgensen, N.B.; Wacker, L.; Skalmstang, K.T.; Parish, M.M.; Levinsen, J.; Christensen, R.S.; Bruun, G.M.; Arlt, J.J. Observation of

Attractive and Repulsive Polarons in a Bose-Einstein Condensate. Phys. Rev. Lett. 2016, 117, 055302. [CrossRef] [PubMed]
9. Hu, M.-G.; Van de Graaff, M.J.; Kedar, D.; Corson, J.P.; Cornell, E.A.; Jin, D.S. Bose Polarons in the Strongly Interacting Regime.

Phys. Rev. Lett. 2016, 117, 055301. [CrossRef] [PubMed]
10. Scazza, F.; Valtolina, G.; Massignan, P.; Recati, A.; Amico, A.; Burchianti, A.; Fort, C.; Inguscio, M.; Zaccanti, M.; Roati, G.

Repulsive Fermi Polarons in a Resonant Mixture of Ultracold 6Li Atoms. Phys. Rev. Lett. 2017, 118, 083602. [CrossRef]
11. Oppong, N.D.; Riegger, L.; Bettermann, O.; Höfer, M.; Levinsen, J.; Parish, M.M.; Bloch, I.; Fölling, S. Observation of Coherent

Multiorbital Polarons in a Two-Dimensional Fermi Gas. Phys. Rev. Lett. 2019, 122, 193604. [CrossRef] [PubMed]
12. Adlong, H.S.; Liu, W.E.; Scazza, F.; Zaccanti, M.; Oppong, N.D.; Fölling, S.; Parish, M.M.; Levinsen, J. Quasiparticle Lifetime of

the Repulsive Fermi Polaron. Phys. Rev. Lett. 2020, 125, 133401. [CrossRef] [PubMed]
13. Catani, J.; Lamporesi, G.; Naik, D.; Gring, M.; Inguscio, M.; Minardi, F.; Kantian, A.; Giamarchi, T. Quantum Dynamics of

Impurities in a One-Dimensional Bose Gas. Phys. Rev. A 2012, 85, 023623. [CrossRef]
14. Scelle, R.; Rentrop, T.; Trautmann, A.; Schuster, T.; Oberthaler, M.K. Motional Coherence of Fermions Immersed in a Bose Gas.

Phys. Rev. Lett. 2013, 111, 070401. [CrossRef] [PubMed]
15. Rentrop, T.; Trautmann, A.; Olivares, F.A.; Jendrzejewski, F.; Komnik, A.; Oberthaler, M.K. Observation of the Phononic Lamb

Shift with a Synthetic Vacuum. Phys. Rev. X 2016, 6, 041041. [CrossRef]
16. Yan, Z.; Patel, P.B.; Mukherjee, B.; Fletcher, R.J.; Struck, J.; Zwierlein, M.W. Boiling a Unitary Fermi Liquid. Phys. Rev. Lett. 2019,

122, 093401. [CrossRef]
17. Ness, G.; Shkedrov, C.; Florshaim, Y.; Diessel, O.K.; von Milczewski, J.; Schmidt, R.; Sagi, Y. Observation of a smooth polaron-

molecule transition in a degenerate Fermi gas. Phys. Rev. X 2020, 10, 041019. [CrossRef]
18. DeSalvo, B.J.; Patel, K.; Cai, G.; Chin, C. Observation of fermion-mediated interactions between bosonic atoms. Nature 2019,

568, 61. [CrossRef]
19. Edri, H.; Raz, B.; Matzliah, N.; Davidson, N.; Ozeri, R. Observation of Spin-Spin Fermion-Mediated Interactions between

Ultracold Bosons. Phys. Rev. Lett. 2020, 124, 163401. [CrossRef]
20. Peyronel, T.; Firstenberg, O.; Liang, Q.-Y.; Hofferberth, S.; Gorshkov, A.V.; Pohl, T.; Lukin, M.D.; Vuletić, V. Quantum nonlinear
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Ultra-Dilute Gas of Polarons in a Bose–Einstein Condensate

Luis A. Peña Ardila

Institut für Theoretische Physik, Leibniz Universität, 30167 Hannover, Germany; luis.ardila@itp.uni-hannover.de

Abstract: We investigate the properties of a dilute gas of impurities embedded in an ultracold gas of
bosons that forms a Bose–Einstein condensate (BEC). This work focuses mainly on the equation of
state (EoS) of the impurity gas at zero temperature and the induced interaction between impurities
mediated by the host bath. We use perturbative field-theory approaches, such as Hugenholtz–
Pines formalism, in the weakly interacting regime. In turn, for strong interactions, we aim at
non-perturbative techniques such as quantum–Monte Carlo (QMC) methods. Our findings agree
with experimental observations for an ultra dilute gas of impurities, modeled in the framework of
the single impurity problem; however, as the density of impurities increases, systematic deviations
are displayed with respect to the one-body Bose polaron problem.

Keywords: polaron–polaron interaction; induced interaction; gas of impurities; quantum–Monte
Carlo

1. Introduction

In a non-relativistic framework, interactions mediated by a scalar bosonic field are in
general attractive in 3D. This paradigm maps into a system of impurities interacting with
an ultra-cold bosonic gas. In the case of a single impurity, the problem is known as the Bose
polaron problem. In solid state systems, polarons are relevant to describe specific properties
in materials. For instance, understanding the motion of electrons in a polar crystal gives
insight into how good a material conducts. Yet, a complete microscopical description of
the problem is unfeasible due to the complexity and imperfections in solids. Landau and
Pekar introduced the concept of polaron [1,2], to give an approximate good description of
the many-body problem in terms of quasiparticles—a strongly correlated system maps into
a weakly interacting gas of elementary excitations. Thus, the particles in the system are
modeled as almost non-interacting particles with a renormalized energy and mass. This
simplification yields that the latter problem is more trackable within analytical, yet robust,
approaches. For instance, electrons in a polarizable lattice [3] and electrons in 3He and 4He
have been prominent candidates to test Landau theory [4,5].

Besides the single-particle renormalization quantities, quasiparticles may interact
among them because they are not in free space and ripples in the medium interfere, i.e., its
host medium could mediate interactions. Restoring to the concept of adiabaticity—also in
the heart of Landau’s theory—one can consider a system of non-interacting particles at t = 0
and suddenly quench the interaction; thus, a one-to-one correspondence is established
between particles and the low-energy excitations of the non-interacting system in the
neighborhood of the Fermi surface and even yet-excited states are occupied, the interaction
between quasiparticles is not negligible. In the case of bosons, the Pauli principle is no
longer a constraint, and the interaction between bosonic quasiparticles are more significant
with respect to its fermionic counterpart [6].

Detection of quasiparticles, as well as their experimental control, is achievable by
using ultracold quantum gases. Impurities embedded in a degenerate quantum gas form
either a Fermi polaron [7–13] or a Bose polaron [14–19] depending on the statistical nature
of the host bath. In addition, tunability on the impurity–bath interaction [20,21] allows
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exploring the strongly interacting regime, inaccessible in the solid-state realm. Theo-
retically, the problem of a single impurity in a quantum gas have been addressed with
several techniques such as mean-field, perturbation theory, renormalization group, modi-
fied Gross-Pitaevskii equation, variational ansatzes and field-theory approaches [22–36]
and numerical approaches such as quantum Monte-Carlo methods [37–40]. Interestingly,
the single-particle polaron problem agrees very well with experiments, where the number
of impurities is on the order of five up to ten percent with respect to the total number of
atoms of the host gas. A priori, one of the conclusions drawn from this observation is that
the interaction between polarons appears to be negligible. Recently, it has been shown
that polaron–polaron interaction can manifest only when the impurity–bath interaction is
sizable in slow impurities [41]. The typical scenario is the strongly interacting regime where
the scattering length is much larger than the interparticle distance between host atoms
(the bath becomes more compressible favoring the effective interaction). In the particular
case of two impurities, induced interactions are attractive, and bound-states known as
bipolaron are expected to be formed [42–44]. Recently, the ground state properties of a gas
of impurities in a BEC have been extracted from the structure factor of the impurity gas by
using variational methods [45]. Strong induced interactions can also be manifested in the
weakly interacting regime if the momentum of the impurity is resonant with a mode of
the condensate [6], however, in this work we are interested in the case of slow polarons
(momentum zero).

In this work, we turn our attention to the case of many impurities, where impurity
statistics plays an important role. Here we investigate the ground state properties of bosonic
impurities immersed in a Bose–Einstein condensate at zero temperature using perturbative
approaches such as Hugenholtz–Pines for weak coupling. At the same time, QMC tech-
niques are employed to study the strongly interacting regime. From an experimental point
of view, a system of few impurities immersed in a quantum gas is more realistic than the
case of a single one. Yet, there is an open question of whether the interactions between
polarons are relevant for the different time scales in the system.

The article is organized as follows. In Section 2, we present the EoS for a multi-impurity
system in the weakly interacting regime. Here we employ the Hugenholtz–Pines formalism,
and we derive an expression for small polarization and coupling strength. Furthermore,
we introduce the general form of the Jastrow wave function and the specific potentials used
in QMC calculations. Section 3 discusses the results, and finally, conclusions are drawn in
Section 4.

2. Methods

The system consists of a two-component quantum gas formed by bosons. The first
component (host gas) is a Bose–Einstein condensate (BEC) characterized by a density n1,
while the second component is embedded into the host gas and is formed by atoms of
density n2 termed from now on, as impurities. The Hamiltonian in the second quantization
of the system reads,

H = ∑
p

P̂2

2mI
ĉ†

p ĉp + ∑
k

h̄2k2

2mB
â†

k âk +
1

2V ∑
k,k′ ,q

V11(q)â†
k+q â†

k′−q âk′ âk

+
1

2V ∑
k,k′ ,q

V22(q)ĉ†
k+q ĉ†

k′−q ĉk′ ĉk +
1
V ∑

k,k′ ,q
V12(q)â†

k+q ĉ†
k′−q ĉk′ âk , (1)

the operators ĉp (ĉ†
p) annihilate (create) an impurity atom of mass mI and momentum P,

whereas âk (â†
k) annihilates (creates) a boson of mass mB and momentum h̄k. The intra-

and interspecies interactions are short-range and without loss of generality we consider
the equal mass case mI = mB = m. The boson–boson and impurity–boson interaction
terms can be written as V11(k) = 4πh̄2a11/m and V12(k) = 4πh̄2a12/m respectively; the
impurity-impurity term reads V22(k) = 4πh̄2a22/m. Where a11, a12 and a22 are the s-wave
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scattering lengths. In current experiments a22 is finite, however in order to disentangle an
induced interaction effect form the bare impurity–impurity interactions we may consider
the case a22 = 0, such as the case of bi-polarons [42,44].

2.1. Weakly Interacting Regime

In this section, we estimate the polaron energy for the gas of impurities interacting
with a majority condensate. The system can be accurately described by using the Gross–
Pitaevskii theory in the regime, where the coupling strength impurity–bath is small or
comparable with the one of the host bath. For a large number of atoms in the condensate
and slow-moving impurities, one writes the chemical potential of the mixture as:

μ1 = − h̄2∇2

2m ψ1(r) + g11n1(r) + g12n2(r) + Vext,1(r) + μ
(1)
LHY(ψ1(r), ψ2(r))

μ2 = − h̄2∇2

2m ψ2(r) + g22n2(r) + g12n1(r) + Vext,2(r) + μ
(2)
LHY(ψ1(r), ψ2(r))

(2)

Here, μ2 is identified as the polaron energy in the weakly interacting regime and Vext,i
is the external potential experienced by the components in the mixture. Components 1 and
2 can be chosen as two hyperfine states and one can safely use the same external potential.
The beyond mean-field or Lee–Huang–Yang (LHY) contribution reads, μLHY

2 = ∂n2 εLHY,
where εLHY is the density energy computed within the Hugenholtz–Pines formalism [46]
and coincides with the results for the chemical potential in a two-component quantum
mixture [47]. Thus, the polaron energy up to the second-order reads

μLHY
2 =

32
√

π

3
√

2

(
n1a3

11

)3/2 h̄2

ma2
11

∑
λ=±

Q3/2
λ ∂n2Qλ, (3)

with the term Q± = 1 + P a22
a11

±
√(

1 − P a22
a11

)2
+ 4P

(
a12
a11

)2
and the polarization P = n2/n1.

Computing explicitly the derivative in Equation (3) one has

μLHY
2 =

32
√

π

3
√

2
h̄2

ma2
11
(n1a3

11)
3/2 ∑

λ=±
Wλ, (4)

with the function Wλ defined as

Wλ =
a22

a11
Q3/2

λ

⎛⎜⎜⎝1 + λ

(
P a22

a11
− 1

)
+ 2 a2

12
a11a22√(

1 − P a22
a11

)
+ 4P

(
a12
a11

)2

⎞⎟⎟⎠. (5)

The results derived so far are exact for a weakly interacting mixture and they coincide
with [47]. The beyond-single impurity limit can be obtained by expanding out the energy
in terms of P and keep, as well, the terms up to the second-order in the coupling strength
(a12/a11)

2; thus, the polaron energy reads

μ2 =

[
μsingle +

32
√

π

3
√

2

(
n1a3

11

)3/2
(

a22

a11

)
F(P)

]
h̄2

ma2
11

(6)

where the single polaron energy [25,37] in the weakly interacting regime is recovered

μsingle = 4πn1a3
11

a12

a11

(
1 +

32
3
√

π
(n1a3

11)
1/2 a12

a11

)
(7)

and the function taking into account the effects of the impurity concentration is

F(P) = k1P + k2P3/2 + k3P2, (8)
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where k1 = 8
√

2
(

a12
a11

)2
, k2 = 4

√
2
(

a22
a11

)1/2
((

a22
a11

)
− 5

2

(
a12
a11

)2
)

and k3 = 12
√

2
(

a22
a11

)(
a12
a11

)2
.

Note that, for a22 = 0, the interactions vanishes in the weakly interacting regime. If we
consider a11 = a22 = a, the polaron energy reads, μ2 = μsingle +

32
√

π

3
√

2

(
n1a3)3/2F(P),

F(P) = 8
√

2
( a12

a

)2
P + 4

√
2
(

1 − 5
2

( a12

a

)2
)

P3/2 + 12
√

2
( a12

a

)2
P2. (9)

In the derivation of the previous equation it is important to highlight that results

are reliable in weak coupling, namely
√

n1a3
11

a12
a11

� 1 and small polarization, M/N � 1.
In the strongly interacting regime, one expects a large condensate depletion because of the
strong presence of impurities. Hence, we use non-perturbative methods, such as Monte
Carlo techniques. The method implementation for a system of impurities is discussed in
the next session.

2.2. Strongly Interacting Regime

In this section, we exclusively use QMC methods to compute the ground-state energy
of a system of M impurities immersed in a bath of N bosonic atoms. In QMC simulations
we use a box of size L = (N/n1)

1/3 > ξ, being ξ = (8πn1a11)
−1/2 the healing length of the

bath. In addition, periodic boundary conditions are employed. The general Hamiltonian of
the system reads

H = − h̄2

2m

(
N

∑
i=1

∇2
i +

M

∑
α=1

∇2
α

)
+ ∑

i<j
V11(rij) + ∑

α<β

V22(rαβ) +
N

∑
i=1

M

∑
α=1

V12(riα), (10)

and the previous Hamiltonian is written in a similar way to the one in Equation (1).
However, we employ different model potentials in our definitions, corresponding to finite
and short-range potentials. In particular, we use a hard-sphere potential where the radius
of the sphere corresponds to the boson–boson and impurity–impurity scattering lengths,
respectively. Instead, the impurity–boson potential is modeled by a square well for both
attractive and repulsive interactions, namely V(r) = −V0 for r ≤ R0, being R0 the range
of the potential and V(r) = 0 otherwise [37,48]. We fix the strength of the potential V0
and the impurity–boson scattering length depends on the range of the potential via a12 =

R0

[
1 − tan θ(R0)

θ(R0)

]
with θ(R0) =

√
V0

h̄2/mR2
0
. In addition, rαβ =

∣∣rβ − rα

∣∣ and rij =
∣∣ri − rj

∣∣
is the intra-particle distance between impurities and bosons respectively. Whereas riα =
|ri − rα| is the interparticle distance between the impurity and the host bath component.
The trial wave function for this system is written as the product,

ψT(R1, R2) = Πα<β f1(rαβ)Πi<j f2(rij)ΠiΠα f12(riα) (11)

Here R1 and R2 represent the positions of the impurities and bosons, respectively.
The Jastrow wave function is obtained by solving the two-body problem with the pairwise
potentials aforementioned. Explicit expressions for the trial wave functions are widely
discussed in references [37,48]. The local energy in QMC algorithms is defined as

EL = − h̄2

2m

(
∇2

R1
+∇2

R2

)
ψT(R1, R2)

ψT(R1, R2)
+

V(R1, R2)ψT(R1, R2)

ψT(R1, R2)
, (12)

here R1 ={r1, r2, · · ·, rN} and R2 ={s1, s2, · · ·, SM} are the position of the atoms of compo-
nent 1 and component 2 respectively and V(R1, R2) is an external potential. By using the
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definition of the trial wave-function in Equation (11), the gradients in the previous equation
can be computed explicitly,

∇2
R1

ψT(R1, R2) = Ψ2(R2)
[(

∇2
R1

Ψ1(R1)
)

Ψ12(R1R2) + Ψ1(R1)
(
∇2

R1
Ψ12(R1, R2)

)
+ 2∇R1

Ψ1(R1) · ∇R1
Ψ12(R1, R2)]] (13)

and

∇2
R2

ψT(R1, R2) = Ψ1(R1)
[(

∇2
R2

Ψ2(R2)
)

Ψ12(R1R2) + Ψ2(R2)
(
∇2

R2
Ψ12(R1, R2)

)
+ 2∇R2

Ψ2(R2) · ∇R2
Ψ12(R1, R2)] (14)

and plugging into the local energy and rearranging terms one obtains

EL = − h̄2

2m

⎧⎨⎩∇2
R1

Ψ1(R1)

Ψ1(R1)
+

∇2
R2

Ψ2(R2)

Ψ2(R2)
+

(
∇2

R1
+∇2

R2

)
Ψ12(R1, R2)

Ψ12(R1, R2)

+ 2
∇R1

Ψ1(R1)

Ψ1(R1)
· ∇R1

Ψ12(R1, R2)

Ψ12(R1, R2)
+ 2

∇R2
Ψ2(R2)

Ψ2(R2)
· ∇R1

Ψ12(R1, R2)

Ψ12(R1, R2)

}
+ V(R1, R2) (15)

the local energy is finally obtained as

EL = EA
L (R1) + EB

L (R2) + EA
L (R1, R2) + EB

L (R1, R2) + F1 · F12 + F2 · F21 + V(R1, R2) (16)

with the local energies and quantum force terms written as

(
EA

L (R1) EA
L (R1, R2)

EB
L (R1, R2) EB

L (R2)

)
= − h̄2

2m

⎛⎜⎝ ∇2
R1

Ψ1(R1)

Ψ1(R1)

∇2
R1

Ψ12(R1 ,R2)

Ψ12(R1 ,R2)
∇2

R2
Ψ12(R1 ,R2)

Ψ12(R1 ,R2)

∇2
R2

Ψ2(R2)

Ψ2(R2)

⎞⎟⎠ (17)

and

(
F1(R1) F12(R1, R2)

F21(R1, R2) F2(R2)

)
= − h̄2

2m

⎛⎝ 2
∇R1

Ψ1(R1)

Ψ1(R1)

∇R1
Ψ12(R1 ,R2)

Ψ12(R1 ,R2)
∇R2

Ψ12(R1 ,R2)

Ψ12(R1 ,R2)
2
∇R2

Ψ2(R2)

Ψ2(R2)

⎞⎠ (18)

respectively. Thus, the EoS of the impurity gas is computed as,

μ = E(M, N)− E(N). (19)

Here, E(N, M) is the ground state energy of the full system, whereas E(N) depicts
the energy of the host bosons. The “quantum force” can be used to build an alternative
estimator to check the correct implementation of the trial wave function in a similar
way to the single-impurity case [49]. In addition, to use the numerical method in the
regime where the Bogoliubov theory breaks down, our numerical technique includes all
possible correlations in the system and includes the critical role of the Bose–Bose interaction
and the quantum nature of both impurities and bath [50], which ultimately defines the
compressibility of the bath that is relevant for mediated interactions.

3. Results and Discussion

In this section, we compute the EoS μ of the impurity gas for weak and strong cou-
pling using QMC methods and compare the polaron energy expansion in the Fröhlich
regime. The latter is obtained within the Hugenholtz–Pines formalism and derived under
the assumption that the depletion of the condensate is small enough to justify the use of
the Bogoliubov approximation. In contrast, QMC techniques allow computing the accu-
rately the polaron EoS within statistical uncertainly. This non-perturbative technique does
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not rely on the Bogoliubov approximation and it is suitable for describing the strongly
interacting regime.

In Figure 1 we plot the total polaron energy (Equation (19)) as a function of the di-
mensionless coupling strength 1/(kna12) with kn =

(
6π2n1

)1/3. For a gas parameter,
n1a3

11 = 10−5 we scan all the coupling strengths from the weak to the strong coupling
regime. Comparison with the perturbative results in Section 2.1 is affordable in the weak
coupling and low polarization limits. The polaron energy is computed for different po-
larizations ranging from P = 0.05 to P = 0.15. Note that current experiments in polaron
physics with ultra-cold atoms rely on impurity polarization of the order of P = 0.1 or less
and resemble our current case as the inter-species impurity–impurity scattering length is
finite and repulsive. The latter is important to guarantee the mechanical stability of the
system as P increases.
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P=0.047
P=0.078
P=0.11
P=0.15
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3
x=0.15P = 0.15

Figure 1. Total polaron energy μ (excited state) as a function of the coupling strength for different
polarization P = M/N in the weak and intermediate coupling. The gas parameter is taken to
be na3

11 = 10−5. Inset: comparison between perturbation theory and the QMC result for highest
polarization P = 0.15. The red squares represents the theoretical results using perturbation theory
in [37] (Subfigure adapted from [49]), whereas the black dashed line depicts the calculation in this
work (see Equation (9)), here a11 = a22. Error bars are smaller than the size symbol.

The single impurity regime holds for values of the coupling strength |1/(kna12)| � 1,
yet deviations from this limit are displayed as both the impurity–boson coupling (kna12)
and the polarization increases. In fact, the analytical result obtained in Equation (6) is strictly
valid for |1/(kna12)| � 1 and small polarization, i.e., P � 1. Higher correlations play an
important role in the beyond mean-field regime and are captured by our numerical method.
The bare polaron energy μ increases with the number of impurities, as similarly observed
in [45]. The repulsive mean-field energy of the impurity gas ∼g22n2 is much larger than
any attractive induced interaction mediated by the bath. The upwards shift of the energy
agrees with recent results in reference [45]. For small polarization, for example, P = 0.047,
the theory agrees reasonably with the numerical calculation up to values of 1/kna12 � 1,
noticeable as the polarization increases, the agreement between the perturbative approach
and the simulations still prevails for larger values of 1/kna12. Up to a concentration near
to the 15%, the critical value where no dependence is observed is around 1/(kna12) � 1.4
for these specific parameters. Similarly to the single-polaron case, the unitary limit is not
reachable from this repulsive branch.

In Figure 2a, we compute the EoS, see Equation (19), for a system of a few impurities
with a negative coupling strength a12 and null direct interacting between impurities a22 = 0.
Similarly to Figure 1 where the EoS is normalized to the polarization at weak coupling,
all lines overlap; however, in the strongly interacting regime, small deviations are pre-
sented, which are better displayed when the induced interaction is computed. In Figure 2a,
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the green symbols depict QMC calculations for the polaron energy in the single impurity
case [19]. The polaron energy has a negligible dependence with the number of impurities
for values of polarization P < 0.1 in current experiments [15], however by considering no
net inter-impurity interaction as in the current calculation, the dependence appear to be
considerable from values of polarization larger than the 5%. In experiments, a positive
impurity-impurity interaction dominates over any residual interaction and the system
is stable.

(a) (b)

Figure 2. (a) EoS for polarons (ground-state) we added a and b for subfigure, please check. as a
function of the number of impurities and coupling strength. Error bars are smaller than the size
symbol. (b) Induced interaction for a ultra dilute gas of impurities computed as in Equation (20) for a
polarization P = 0.109.

However, for a22 = 0, the system has two possibilities, either (i) the attractive induced
interaction drives the impurity system into a collapse, for a large polarization—similarly to
the case of a condensate with attractive interactions in a homogeneous space [51] or (ii) a
few-particle bound-state such as multi-polaron can stabilize the system [52]. The reason
is that impurities tend to attract to each other regardless of the sign of a12. A naive way
to understand the induced interaction is considering two impurities interacting with a
homogeneous condensate. If a12 > 0, there is a local hole in the density, thus creating a local
density depletion in the impurities neighborhood and therefore, the energy minimizes as the
impurities get closer. Contrary, for a12 < 0, the local depletion caused by the impurity atoms
creates a local bump and the energy is minimized as the two approaches the high-density
regions. In the weakly interacting regime, the induced interaction corresponds to a Yukawa-
type of interaction in 3D [42] or exponential trend in 1D [44,53]. A two-body impurity–
impurity (bipolaron state) bound state always exist for −1 < 1/kna12 < 0, hence it may
favor the formation of few-body bound states, akin to the case of ionic polarons [54,55]
where a many-body bound state emerges from bound two-body correlations. In fact,
from our calculations, higher concentrations of impurities may drive the system into
clusterization. To compute the effective interaction, we calculate the ground-state energy
of the whole system consisting of M impurities and N bosons, E(M, N) with respect to
the energy of the host bath in the absence of impurities, namely μM = E(M, N)− E(0, N),
and compare it with the binding energy of the single polaron (μ1 = E(1, N)− E(0, N)).
If polarons do not interact, E(M, N) equals ME(1, N), which is the typical case of weak
coupling. Thus an attractive induced interaction appears when

Δμ = E(M, N)− ME(1, N) + (M − 1)E(0, N) < 0 (20)

In Figure 2b, we compute the induced interaction Δμ as a function of the coupling
strength. As expected, the attractive induced interaction increases as a function of the
coupling strength. In the weakly interacting regime, it is negligible, in stark contrast,
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to the strong coupling, where few-body bound states of impurities arise similar to the
bi-polaron (in the case of two impurities). Although the induced interaction is relevant
in the strongly interacting regime, there might be a critical number for the polarization
where the system undergoes a dynamical collapse, similar to an ideal gas with underlying
attractive interactions. Another interesting point is the attractive interaction between
polarons that can compete with the direct repulsion between impurities which is set
by imposing a positive a22 and the system may undergo into amorphous nucleation of
impurities, forming thus an ultra dilute liquid of impurities. Both the transition and the
role of impurity interaction need to be addressed carefully in the future. Additional quasi-
particles properties such as the residue can be obtained by computing the limit at larges
distances of the one-body density matrix of the impurity gas [54,56].

4. Conclusions

In this work, we have studied the role of an impurity gas in a Bose–Einstein condensate
and the possibility of creating multipolaronic states. Our studies focused on the role of
the impurity–bath and impurity–impurity interaction, which is the situation in current
experiments of polarons and mixtures. The single polaron limit in the Fröhlich framework
is recovered for very weak impurity–boson coupling and low polarization. The EoS of the
polaron gas strongly depends on both the polarization and the impurity–boson couplings.
In this work, we compute this equation for impurities in the ground state and excited state.
In the former, multi-polaron states or few-body impurity states are expected to be formed
in the neighborhood of the resonance. We explicitly compute the induced interaction
and compare the results with mean field approaches in the weakly interacting regime.
A significant problem arises in the strongly interacting regime as still remains a question on
the stability of the impurity gas as interactions and polarization grow out of the impurity
limit. Another exciting avenue, as an outlook, is the role of thermal fluctuations. Contrary to
the single impurity case, statistics and temperature play essential roles. Finite temperature
effect may favor the stabilization of the system against collapse [57]. In addition, both a
non-negligible concentration of impurities and finite temperature effects may combine,
changing the polaron properties drastically in comparison with the single impurity case
at T = 0, as recently revealed for Fermi polarons [58]. Finally, another avenue is studying
the role of the direct impurity–impurity interaction and its influence on forming a gas or
liquid of polarons and the role of bosonic quasi-particles in the formation of self-bound
structures [59–61].
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Abstract: We present a comprehensive discussion of the ground-state properties of dilute D-dimensional
Bose gas interacting with a few static impurities. Assuming the short-ranged character of the boson-
impurity interaction, we calculated the energy of three- and two-dimensional Bose systems with one
and two impurities immersed.

Keywords: Bose polaron and bipolaron; effective field theory approach; induced interaction

1. Introduction

The problem of impurities in mediums formed by bosons is comprehensively studied
in condensed matter physics. Even properties of a single atom immersed in the weakly
interacting Bose gas change drastically [1–5]. Depending on the strength of the boson–
impurity interaction, a number of physically distinct impurity phases can be realized,
namely, the Bose-polaronic state [6–9] in various spatial dimensions, which is very simi-
lar to the free-particle one but with the modified, due to the presence of bath, kinematic
characteristics; the molecular state [10,11], when the impurity captures one boson with the
formation of a dimer; a set of the Efimov states [12–15] with the universal scaling behavior
of energy levels, and higher-order conglomerates, [16–21] which involve a larger number
of host atoms. Remarkably, some of these phases can be observed in experiments [22,23].
The experimental progress in the field of ultra-cold atomic gases has recently lead to the ob-
servation [24] of Bose polarons at finite temperatures. This experiment confirmed previous
theoretical predictions [25–30] about the breakdown of the quasi-particle picture description
of Bose polarons in a close vicinity of the Bose–Einstein condensation (BEC) point.

Recently, the problem of two impurities immersed in the dilute one and three-dimensional
Bose gases has become a subject of extensive examination. Physically, this problem is
substantially distinguishable from the single Bose polaron one due to the emergence of the
induced effective interaction [31–34] between impurity particles. In 1D, the character of
this interaction crucially depends on a sign of the boson–impurity coupling constant [35];
the effective attraction is found for positive couplings, while the induced repulsive po-
tential is inherent for the negative interactions. While it increases, the induced attractive
interaction between impurities leads to the formation of bipolarons [36] in the continuum
and on the lattice [37] and even to the emergence of the two-polaron bound states [38].
In one-dimensional geometries with harmonic trapping, the induced interaction causes the
clustering [39] of two initially non-interacting atoms and modifies their quench dynam-
ics [40]. By switching the boson–impurity interaction in 3D dilute BEC with two impurities,
the transition from weakly interacting through the Yukawa potential bipolarons to the
Efimov trimer state was predicted in Ref. [41]. Recently, properties of a single polaron in 2D
BEC have been discussed both analytically [42,43] and numerically [44,45]. The arbitrary D
one-polaron case was considered in Ref. [46]. As far as we know, the problem of two Bose
polarons in 2D Bose gas has never been discussed; therefore, the objective of this study
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was to make the first step toward the revealing of peculiarities of the bipolaron physics
and the boson-induced effective interaction between impurities by considering the static
limit. The absence of the impurity dynamics in this limit allows to find the exact solution
of the problem in the dilute 1D Bose mediums both in one- [47] and two-particle [48,49]
cases. In 3D, only a case of the ideal Bose gas [50,51] is the exactly tractable one, while the
presence of a weak boson–boson interaction requires [52] a substantial numerical efforts.

2. Formulation

2.1. Model

The discussed model consists of the D-dimensional (here we focus on D = 2, 3 cases)
Bose gas loaded in volume LD (with the periodic boundary conditions imposed) with
the weak interparticle interaction and microscopic number N of heavy (infinite-mass)
impurities immersed in it. Heavy particles are supposed to be randomly placed in positions
{rj}. In the following, we adopt the imaginary-time path-integral approach with Euclidean
action

S =
∫

dxψ∗(x){∂τ − ε + μ − Φ(r)}ψ(x)− gB,Λ

2

∫
dx|ψ(x)|4, (1)

where x = (τ, r) denotes the “position” in D + 1-dimensional space (and consequently∫
dx =

∫ β
0 dτ

∫
LD dr), and the complex field ψ(x) is periodic in τ with period β (which is

the inverse temperature of the system). We also use the shorthand notations for bosonic
dispersion ε = − h̄2∇2

2m and the chemical potential μ that fixes average density n of Bose gas
and for the term

Φ(r) = ∑
1≤j≤N

gI,ΛδΛ(r − rj), (2)

that describes the interaction between Bose particles and impurities. The δ-like two-body
potential is ill-defined in the higher (D ≥ 2) dimensions, and therefore, in order to obtain
any reasonable results one should adopt some renormalization scheme. The latter is typi-
cally realized by the implication of the ultraviolet cutoff Λ in all momentum summations
and in the simultaneous rewriting of bare couplings gB,Λ and gI,Λ via the two-body vacuum
binding energies εB and εI

g−1
B,Λ = g−1

B − 1
LD ∑

k

1
2εk

, (3)

g−1
I,Λ = g−1

I − 1
LD ∑

k

1
εk

, (4)

respectively, (from now on, we assume that all summations over the wave-vector k are re-
stricted from the above |k| < Λ). Such a “regularization” is already used in the definition of
the point-like boson–impurity interaction potential, δΛ(r) =

1
LD ∑|k|<Λ eikr, in Equation (2).

The ”observable” couplings gB and gI are specified as follows

g−1
B = −Γ( 2−D

2 )

(4π)
D
2

(
m
h̄2

) D
2
|εB|

D
2 −1, (5)

g−1
I = −Γ( 2−D

2 )

(2π)
D
2

(
m
h̄2

) D
2
|εI |

D
2 −1, (6)

where Γ(z) stands for the gamma function. Note that the bound states are only possible for
positive gBs and gIs, but it is convenient to parameterize negative couplings by the binding
energies. By careful inspection of the D → 2 limit, one can conclude that Equations (3)–(6)
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provide a correct description of zero-range potentials even in the two-dimensional case.
Moreover, the D = 2 pseudo-potential always provides the existence of one bound state.

The alternative method (see, for instance [53]) to deal with point-like interactions is to
initially start from some “physical” (Gaussian, for instance) potentials and then relate the
appropriate coupling constant to the s-wave scattering lengths aB and aI in the limit where
the effective ranges are the smallest parameters with the dimension of length in the system.
In the following, no restrictions are set on a magnitude of the boson–impurity interaction,
while the Bose gas itself is expected to be extremely dilute.

2.2. Effective Field Theory Approach

The further analysis will be performed in a spirit of the effective field theory approach
(see, for a review [54]), which is known to be extremely convenient for the many-boson
systems. Particularly, this formulation automatically guarantees the implementation of the
Hugengoltz–Pines theorem (which is a concrete manifestation of the Goldstone theorem)
in every order of a loop expansion. Moreover, the effective field theory approach provides
a non-perturbative predictions for the Bose gas thermodynamics. In the limit of weak
boson–boson coupling, the loop expansion is identical to the perturbation theory in terms
of characteristic small parameter aD

B n. The main idea of the method relies on the separation
of “classical” dynamics during the computations of the partition function by means of the
path integral

ψ(x) = ψ0(r) + ψ̃(x), ψ∗(x) = ψ∗
0 (r) + ψ̃∗(x), (7)

where the introduced classical fields are determined by the minimization of the action (1):
δS0 = δS[ψ∗

0 , ψ0] = 0. Note that in general |ψ0(r)|2 should not be confused with the Bose
condensate density. In the absence of impurities, Φ(r) = 0, the solution ψ0(r) is real
and uniform. Putting a microscopic amount of heavy particles in the Bose condensate,
we cannot principally change the character of this solution provided that ψ0(r) becomes
only slightly non-uniform, i.e.,

∫
LD dr|ψ0(r)|2 ∝ LD. Of course, one may argue that the

localized solutions ψ0(r) decrease the total energy by ∝ −N |εI |, but any non-zero repulsion
between bosons immediately increases the energy of the system by ∝ N2gB/aD

I . Therefore,
the collapsed BEC state [50] is not energetically preferable in the thermodynamic limit,
where both the number of the repulsively interacting bosons N and the volume of the box
LD infinitely increase.

Performing the shift (7), we end up with the following effective action

Seff = S0 −
1
2

∫
dx[ψ̃∗(x), ψ̃(x)]K̂

[
ψ̃(x)
ψ̃∗(x)

]
, (8)

where only the Gaussian in the fluctuation fields part is explicitly written down. Here the
2 × 2 matrix operator K̂ with elements

K̂11 = ε − μ + Φ(r) + 2gB,Λ|ψ0(r)|2 − ∂τ ,

K̂12 = K̂∗
21 = gB,Λψ2

0(r),

K̂22 = ε − μ + Φ(r) + 2gB,Λ|ψ0(r)|2 + ∂τ . (9)

is introduced. Taking into account the equation for ψ0(r){
ε − μ + Φ(r) + gB,Λ|ψ0(r)|2

}
ψ0(r) = 0, (10)

and performing the Gaussian integration in (8), we finally obtain the grand potential of the
Bose system with the impurities immersed

Ω = − gB,Λ

2

∫
LD

dr|ψ0(r)|4 +
1

2β
Sp ln K̂ − const, (11)
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where Sp denotes the trace in the D + 1 space. A constant term (counterterm) in (11)
is most straightforwardly represented in the plane-wave basis const = 1

2 ∑k〈k|ε − μ +
2gB,Λ|ψ0(r)|2 + Φ(r)|k〉 but cannot be obtained by the functional integration and has to
be written by hand [55] in order to resolve a standard normal-ordering routine. Conse-
quently, the calculation of thermodynamics for “Bose gas + static impurities” reduces to
finding a solution of Equation (10) and then, with ψ0(r) in hand, to the evaluation of the
functional determinant. Note that by taking into account S0 only, one reproduces the
mean-field [56–61] description of the system generalized to N impurities in the static limit.
In comparison to other Bose-polaron theories, the adopted approach takes into account the
correct short-distance boson-impurity physics from the very beginning of the celebrated
Bogoliubov treatment of dilute Bose condensates.

2.3. Limit of Dilute Bose Gas

In the general case, the above program, which can be realized to the very end in
1D [48] even at finite impurity masses [56,58,62], requires considerable numerical efforts in
the higher dimensions, but the limit of weak inter-boson interaction can be handled more
or less easily. Indeed, the intrinsic, for the dilute Bose gas, length-scale is represented by
the coherence length ξ = h̄

mc (with c =
√

ngB/m being the sound velocity), which is large
in comparison to the average distance between particles and to the boson–boson s-wave
scattering length aB. The magnitude of the boson–impurity interaction, in turn, is dictated
by the boson–impurity s-wave scattering length aI . So, if we additionally assume that
aI � ξ, the solution of Equation (10) can be immediately found ψ0(r) =

√
μ/gB,Λ � √

n.
In all other cases, we can apply the successive expansion in terms of the ψ0-field “non-
uniformity”

ψ0(r) =
√

μ/gB,Λ

{
1 − ψ̄

(1)
0 (r)− ψ̄

(2)
0 (r) . . .

}
, (12)

where after the substitution in Equation (10) the dimensionless functions ψ̄
(1)
0 (r), ψ̄

(2)
0 (r)

satisfy the following equations:

{ε + 2μ + Φ(r)}ψ̄
(1)
0 (r) = Φ(r), (13)

{ε + 2μ + Φ(r)}ψ̄
(2)
0 (r) = 3μ

(
ψ̄
(1)
0 (r)

)2
. (14)

Note that the above approximate procedure does not require the boson–impurity
interaction to be weak. Furthermore, by a naive dimensional analysis, it is easy to argue that
both at the weak and strong couplings gI , the contribution of the second-order correction
ψ̄
(2)
0 (r) in the thermodynamics of the system is much smaller than the one originating from

ψ̄
(1)
0 (r). Therefore, in our consideration below we fully focus on the first-order correction.

However, even this simple approximation effectively sums up some infinite set of terms of
the standard pertubation theory for a model with the uniform condensate [47]. Equation (13)
with Φ(r) given by (2) can be solved for arbitrary N by means of the Fourier transformation

ψ̄
(1)
0 (r) = ∑

1≤j≤N
Aj

1
LD ∑

k

eik(r−rj)

εk + 2μ
, (15)

with εk =
h̄2k2

2m and coefficients Aj = ∑1≤i≤N Tji(−2μ), where matrix Tji(−2μ) is introduced
in Appendix A.

We can now proceed with the calculations of the functional determinant in (11). Taking
into account the extreme diluteness of the Bose subsystem, it is enough to expand Sp ln K̂ �
Sp ln K̂(0) + Sp

{
[K̂(0)]−1ΔK̂

}
, where K̂(0) is given by (9) but with ψ0(r) →

√
μ/gB,Λ and

ΔK̂ = K̂ − K̂(0). Following our previous discussion, we ignore in ΔK̂ all higher-order
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corrections except ψ̄
(1)
0 (r). After this, the calculations are relatively simple, and at absolute

zero we obtain the Ω-potential in the adopted approximation

Ω � −LD μ2

2gB,Λ
+

μ

gB,Λ
∑

1≤j≤N
Aj

+
1
2 ∑

k

〈k|E − ε − μ − Φ(r)|k〉+ 1
LD ∑

k

{
1 − εk + μ/2

Ek

}
∑

1≤j≤N
Aj, (16)

where E =
√
(ε + Φ(r))2 + 2μ(ε + Φ(r)) and Ek =

√
ε2

k + 2μεk stands for the Bogoliubov
spectrum of the “pure” Bose system. It should be noted that for dilute Bose systems the
impact of the quantum fluctuations (terms with the summations over the wave-vector) to Ω
is much smaller than the first two terms (the mean-field contributions). The last step to be
performed in these calculations is to replace the bare couplings gB,Λ and gI,Λ via (3) and (4),
respectively. This procedure provides the convergence of sums over the wave-vector in
the last two terms of (16). Then, the trace in the third term of (16) can be computed (see
Appendix A for details). With the well-defined grand potential, we can relate, by using
the thermodynamic identity n = − ∂

∂μ
Ω
LD , the chemical potential of the Bose system to

its equilibrium density n. Performing these calculations, one must keep in mind that the
presence of a microscopic number of impurities cannot principally change the properties of
the system. So, if we denote (and appropriate grand potential ΩB) the chemical potential
of Bose gas without exterior particles by μB, the difference Δμ = μ − μB ∝ N/LD should
be small. Using this fact and n = − ∂

∂μ
ΩB
LD − ∂

∂μ
ΔΩ
LD , we can identify a small correction

Δμ = − ∂ΔΩ
∂μB

/ ∂2ΩB
∂μ2

B
. The latter formula allows to determine the energy that the Bose system

gains when N impurities are immersed

ΔEN = (Ω − ΩB)|μ→μB , (17)

which is an explicit manifestation of the well-known theorem about small corrections to
the thermodynamic potentials.

3. Results

Before we proceed to describing our main results, it is necessary to analyze the case of
“pure” bosons. Setting Φ(r) = 0 in (16) and calculating integrals, we obtain for density

n =
μB
gB

{
1 − Γ(D)

D
2 Γ2(D

2 )

(
μB
|εB|

) D
2 −1

}
, (18)

which allows to obtain the expression for μB iteratively. For the weakly non-ideal three-
dimensional bosons we find the well-known formula (|εB| = h̄2

ma2
B

in 3D)

μB =
4πh̄2aBn

m

{
1 +

32
3
√

π

√
na3

B + . . .
}

. (19)

Similarly, in the two-dimensional case we have the transcendental equation [63]

n =
mμB

4πh̄2

{
ln

|εB|
μB

− 1
}

. (20)

Being convinced that the limit of Bose gas without impurities is correctly reproduced
by the adopted approach, we are ready to present our main results concerning the binding
energy of one- and two-impurity atoms in the dilute three- and two-dimensional Bose gases.
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3.1. 3D Case

In the 3D case, the general structure of the two-impurity binding energy in the dilute
Bose gas (nξ3 � 1) can be represented as

ΔE2 = ΔE(0)
2

[
ε1

(
aI
ξ

;
R
ξ

)
+

1
nξ3 ε2

(
aI
ξ

;
R
ξ

)
+ . . .

]
, (21)

where ΔE(0)
2 = 2gIn is the contribution of the ideal Bose gas; aI is the s-wave scattering

length that parameterizes the (renormalized) two-body coupling gI =
2πh̄2aI

m ; and R is the
distance between two static particles. The first term in (21) has a simple analytic form

ε1

(
aI
ξ

;
R
ξ

)
=

ξ/aI

ξ/aI − 2 + e−2R/ξ /(R/ξ)
, (22)

and originates purely from the mean-field correction to the grand potential (the second
term in (16)), while ε2

(
aI
ξ ; R

ξ

)
contains both the mean-field and purely quantum corrections.

Note that in the formula for Ω only the one-loop corrections were taken into account, and
a consistent consideration of the next to a leading order terms in series expansion over
the small parameter 1/(nξ3) necessarily requires the calculation of the two-loop diagrams
to the grand potential. By setting the distance between heavy particles R to infinity, one
obtains from (21) the one-impurity limit. A typical behavior of functions ε1,2

(
aI
ξ ; ∞

)
is

presented in Figure 1.

Figure 1. Dimensionless functions ε1,2

(
aI
ξ ; ∞

)
determining the one-impurity energy in 3D dilute

Bose gas.

Let us recall that the problem considered here is the exactly solvable one, when the
bosons are non-interacting. Therefore, it should be clearly understood that the presented
results are accurate if the coherence length ξ is the largest parameter with the dimension of
the length in the system. In order to reveal the interplay between regimes of very dilute
aI/ξ → 0 Bose gas and intermediate boson–impurity interaction, we plotted in Figure 2
the binding energy of two heavy particles for the positive and negative s-wave scattering
lengths aI .
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Figure 2. Mean-field and the first-order quantum corrections ε1,2

(
aI
ξ ; R

ξ

)
to the energy of 3D dilute

Bose gas generated by two impurities for aI
ξ = ±0.01 and aI

ξ = ±1.

Comparing these findings to the ideal Bose gas results [50], we can observe similar
patterns in the behavior of the systems at weak coupling: at positive aI , the binding energy
is the monotonic function of R, while at the negative boson–impurity scattering lengths
both, ε1,2

(
−0.01; R

ξ

)
have a simple-pole singularity. When the interaction increases (see

right panel in Figure 2) the mean-field and quantum corrections to the ground-state energy
of 3D Bose gas possess an infinite discontinuities independently of a sign of aI .

3.2. 2D Case

In general, the low-dimensional dilute Bose systems with static impurities are very
peculiar. When the interaction between bosons is switched off, these systems are insen-
sible to the boson–impurity interaction in their un-collapsed ground state, and therefore,
the binding energy of the heavy particles requires a finite compressibility of the host system
to be non-zero. This is a general result for the low-dimensional (1D and 2D) ideal Bose
gases with impurities that is independent of the approximations made. Introducing the
two-body s-wave scattering length aI through the boson–impurity vacuum bound state
energy |εI | = 2e−2γ h̄2/(ma2

I ), we can write down the energy that the 2D Bose gas gains
when two heavy particles are immersed in it

ΔE2 = 2
2πh̄2n

m

[
ε1

(
aI
ξ

;
R
ξ

)
+

1
nξ2 ε2

(
aI
ξ

;
R
ξ

)
+ . . .

]
. (23)

As in the 3D case, the mean-field correction casts into a simple analytic form

ε1

(
aI
ξ

;
R
ξ

)
=

1

ln
(

e−2γξ2

a2
I

)
− 2K0

(
2R
ξ

) , (24)

K0(z) is the modified Bessel function of the second kind [64]. Note that in contrast to
a 3D case, ε2

(
aI
ξ ; R

ξ

)
tends to zero (at least logarithmically) in the limit of ideal Bose gas

(ξ → ∞). At large distances R, Equation (23) gives the double binding energy of a single
impurity, which is presented in Figure 3.

Particularly, these calculations clearly demonstrate the weakening of the role of quan-
tum fluctuations in the formation of polarons in two-dimensional Bose systems. Actually,
this observation [62] seems to be intrinsic for the low-dimensional systems in general.

83



Atoms 2022, 10, 19

Figure 3. Dimensioless one-impurity binding energy terms ε1,2

(
aI
ξ ; ∞

)
(see Equation (23)) in 2D case.

The numerical computations of the two-impurity energies (see Figure 4).

Figure 4. The two-impurity dimensionless binding energy corrections ε1,2

(
aI
ξ ; R

ξ

)
in 2D dilute

Bose gas.

The 2D Bose gas demonstrates qualitative similarity between the two- and three-
dimensional cases. At weak boson–impurity interactions aI/ξ � 1, where our effective
field-theoretical formulation is supposed to make a quantitative predictions, the mean-field
term ε1

(
aI
ξ ; R

ξ

)
as well as the one that includes the quantum corrections ε2

(
aI
ξ ; R

ξ

)
behave

as monotonic functions of R. The interaction-induced effective two-body potential between
static particles at large aI/ξ always contains a singularity.

4. Conclusions

In summary, by means of the effective field theory formulation, we calculated the
impurity-induced shifts to the ground-state energies of the two- and three-dimensional
dilute Bose gases. Particularly, by taking into account the extreme diluteness of the host
bosons, we proposed the approximate procedure that allows to calculate the properties
of an arbitrary (microscopic) number of static impurities in terms of a characteristic small
parameter 1/(nξD) (where n and ξ are the density and the coherence length of bosons,
respectively). The numerical calculations of the binding energies of two static impurities in
dilute 2D and 3D Bose gases that were performed for a wide range of the boson–impurity
interactions and distances between impurities has revealed the peculiarities of the medium-
induced (Casimir) forces: (i) the two-body effective potential always demonstrates singular
behavior at the distances between impurities comparable to the boson–impurity s-wave
scattering lengths aI ; (ii) an impact of purely quantum corrections decreases with the
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lowering of a spatial dimensionality. Similar singularities are also intrinsic for the binding
energy of a single impurity at aI ∼ ξ, which may signal [65] about the inapplicability of
the adopted approximate treatment for calculations of the “classical” solution ψ0(r) in that
region, where the full numerical solution to Equation (10) is required.
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Appendix A

For completeness, in this section we give some details of the calculations not presented
in the main text. Let us first start from the equation that determines the classical field ψ0(r).
Explicitly writing down Equation (13), after the implementation of ansatz (15)

∑
1≤j≤N

AjδΛ(r − rj) + ∑
1≤j≤N

gI,ΛδΛ(r − rj) ∑
1≤i≤N

Ai
1

LD ∑
k

eik(r−ri)

εk + 2μ

= ∑
1≤j≤N

gI,ΛδΛ(r − rj),

and combining j = i terms in double sum with the first term of equation, we obtain

Aj

[
1

gI,Λ
+

1
LD ∑

k

1
εk + 2μ

]
+ ∑

1≤i �=j≤N

1
LD ∑

k

eik(rj−ri)

εk + 2μ
Ai = 1.

The divergent sum in the square brackets is now regularized by the renormalization
of a coupling constant (4), so the final result contains only observable gI . One can easily
recognize the square brackets as the boson–impurity two-body T-matrix

t−1
I (ω) = g−1

I,Λ − 1
LD ∑

k

1
ω − εk

,

and introducing auxiliary notations

Δij(ω) =
1

LD ∑
k

eik(ri−rj)

ω − εk
,

we find the result for coefficients Aj announced in the main text

Ai = ∑
1≤j≤N

Tij(−2μ), T−1
ij (−2μ) = δijt−1

I (−2μ)− Δij(−2μ)(1 − δij).
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For the calculation of the trace in the second term of (16), we used formal identity

∑
k

〈k|E − ε − μ − Φ(r)|k〉 =
∫

dωD(ω)

[√
ω2 + 2μω − ω − μ

]
,

D(ω) = ∑
k

〈k|δ(ω − ε − Φ(r)|k〉.

The density of states D(ω) is easily calculated within the Green’s function method [50]

D(ω) = ∑
k

[
δ(ω − εk)−

1
π

Im
〈k|T (ω + i0)|k〉
(ω + i0 − εk)2

]
,

where the T-matrix T (ω) characterizes the scattering of a single boson on N impurities

〈q|T (ω)|k〉 = ∑
1≤i,j≤N

e−iqri Tij(ω)eikrj .

The calculations of 〈k|T (ω + i0)|k〉 in the density of states requires the knowledge of
an explicit analytic formulas for the boson–impurity two-body T-matrix

t−1
I (ω) =

Γ( 2−D
2 )

(2π)
D
2

(
m
h̄2

) D
2 [

(−ω)
D
2 −1 − |εI |

D
2 −1

]
,

and a function Δij(ω) = ΔR(ω) of distance R = |ri − rj| between two impurities in
arbitrary D

ΔR(ω) =
1

(2π)
D
2

2mkD−2
ω

h̄2

K D
2 −1(Rkω)

(Rkω)
D
2 −1

,

where kω =
√

2m(−ω)/h̄, and Kν(z) is the modified Bessel function of the second kind [64].
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Abstract: Recent studies have demonstrated that higher than two-body bath-impurity correlations
are not important for quantitatively describing the ground state of the Bose polaron. Motivated by the
above, we employ the so-called Gross Ansatz (GA) approach to unravel the stationary and dynamical
properties of the homogeneous one-dimensional Bose-polaron for different impurity momenta and
bath-impurity couplings. We explicate that the character of the equilibrium state crossovers from
the quasi-particle Bose polaron regime to the collective-excitation stationary dark-bright soliton
for varying impurity momentum and interactions. Following an interspecies interaction quench
the temporal orthogonality catastrophe is identified, provided that bath-impurity interactions are
sufficiently stronger than the intraspecies bath ones, thus generalizing the results of the confined
case. This catastrophe originates from the formation of dispersive shock wave structures associ-
ated with the zero-range character of the bath-impurity potential. For initially moving impurities,
a momentum transfer process from the impurity to the dispersive shock waves via the exerted
drag force is demonstrated, resulting in a final polaronic state with reduced velocity. Our results
clearly demonstrate the crucial role of non-linear excitations for determining the behavior of the
one-dimensional Bose polaron.

Keywords: Bose polaron; pattern formation; temporal orthogonality catastrophe; Lee-Low-Pines
transformation; mobile and immobile impurities

1. Introduction

Polaronic excitations constitute an ubiquitous class of quasi-particles, incorporating
important ramifications in multiple branches of physics [1]. In material science polarons
are encountered in several classes of technologically relevant materials, for instance, in
He droplets [2,3], polar [4–8] or organic [9–11] semiconductors and transition metal ox-
ides [12,13], while their broad relevance stretches even towards biophysics [14]. Their
formation, properties and interactions are key elements in important phenomena such
as the electric conductivity of polymers [15,16], the organic magnetoresistance [17], the
Kondo effect [18] and even high-temperature superconductivity [19–24]. Therefore, it is
not surprising that ultracold atoms, being one of the prime platforms for quantum simula-
tion [25], have been employed for studying polaronic structures. In these systems, two
different kinds of polaronic excitations have been experimentally realized to date. Namely,
the Fermi polaron [26–31] referring to an impurity interacting with an extensive gas of
fermionic atoms, and the Bose polaron [32–37], where the environment possesses a bosonic
character. Accordingly, these systems have recently been a topic of intense theoretical study
in the ultracold community especially regarding their stationary properties [38,39,39–63].
Lately, it has been argued that the ground state of the Bose polaron can be well-described in
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terms of a simple Gross-Pitaevskii mean-field type variational approach [55–65] herewith
referred to as the Gross Ansatz (GA)1. The latter neglects all correlations except for the
two-body bath-impurity ones.

The dynamics of the Bose polaron has also been actively explored [66–74,74–83].
Among the many different facets of the polaron dynamics, here we will focus on the phe-
nomenon of temporal orthogonality catastrophe [58,79–83]. The latter occurs when an
impurity is embedded into an adequately strongly repulsive Bose gas and is manifested by
the rapid evolution of the system state towards a configuration orthogonal to the initial one,
signifying the dynamical decay of the Bose polaron. In particular, the temporal orthogonal-
ity catastrophe has been extensively explored in the case of confined one-dimensional (1D)
Bose gases, where an effective potential description, delineated by the bath density and
impurity-medium coupling, has been found to be crucial for understanding the dynam-
ical behavior of the system [72,76,77,80–85]. This potential is speculated to be the origin
of the temporal orthogonality catastrophe, leading to the question of whether a similar
mechanism appears in the homogeneous setting where the notion of the effective potential
does not exist. Recent studies indicate that this actually might be the case [58,60,61]. One
of our central objectives is thus to address this issue and reveal the origin of the temporal
orthogonality catastrophe phenomenon for homogeneous Bose gases.

The main culprit for the manifestation of this phenomenon in homogeneous systems
refers to the possible emission of non-linear waves by the Bose-Einstein Condensate (BEC).
Importantly, over the past decades the Gross-Pitaevskii equation has proven to perfectly
describe such non-linear excitations [86,87]. The relevant ones for the 1D setting refer,
among others, to dark-solitons [88–90] and dispersive shock waves [91–94], which have
been also realized experimentally [95–98]. In addition, numerous recent studies exemplified
that these excitations also occur in the presence of interparticle correlations [73,98–105],
albeit possessing a more involved behavior than their mean-field counterparts. In this
context, it is crucial to answering whether such non-linear excitations contribute to the
dynamics of the Bose polaron, a question which is further mandated by the similarity
between the GA equations-of-motion and the Gross-Pitaevskii one.

In this work, we employ the GA formulation to examine the equilibrium and dynami-
cal properties of the repulsive Bose polaron and its relation to non-linear pattern formation.
After revisiting the ground state behavior of the Bose polaron [55–57,59], we focus on
the equilibrium properties of a moving polaron, where we unveil the crossover from the
polaronic to a dark-bright soliton regime. The above indicates a quite intriguing crossover
of the impurity state which for weak interspecies repulsions and/or impurity momenta
realizes a quasi-particle and in the opposite limit contributes to a collective excitation of
the bosonic host. The comparison of the equilibrium results obtained through GA with the
Multi-Layer Multi-Configuration Time-Dependent Hartree method for atomic mixtures
(ML-MCTHDX) [106], verifies the exceptional accuracy of the former in describing the
two-particle interspecies correlations of the system. In particular, the GA approach provides
in this case almost identical results to the correlated ML-MCTDHX method for the energy,
effective mass, and bath-impurity correlations of the Bose polaron, while it overestimates
the polaronic residue.

We subsequently explore the dynamical response of the system within GA, by em-
ploying interspecies interaction quenches from zero to a finite repulsive coupling. Here,
the temporal orthogonality catastrophe is exhibited for all initial impurity momenta, as
long as the bath-impurity interactions are sufficiently stronger than the intraspecies bath
ones, a phenomenon that generalizes the results reported in the confined scenario [79–83].
Interestingly, we show for the first time that this mechanism is related to the formation
of dispersive shock wave structures associated with the short-range character of the bath-
impurity potential. Note that independently shock wave formation has been demonstrated
after the collision of two polaronic clouds immersed in a Fermi medium [107]. In all cases,
the post quench state of the system corresponds to a Bose polaron, accompanied by two
dispersive shock wave excitations traveling away from the impurity and having a velocity
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equal to the speed of sound. For moving impurities, we monitor the drag force being
exerted by the bosonic host to the impurity and resulting in a momentum transfer from the
impurity to the emitted dispersive shock waves. This process leads to the final polaronic
state possessing a reduced velocity when compared to the initial one and tending to vanish
for strong repulsions as a consequence of the amplification of the drag force. The above
demonstrates the crucial role of non-linear excitations in the dynamics of the Bose polaron.

This work is structured as follows. Section 2 introduces the homogeneous binary
mixture setup and the concept of the Lee-Low-Pines transformation. In Section 3 we
present our main theoretical approach in terms of the GA, which we apply to characterize
the static and moving Bose polaron at equilibrium. In order to establish the validity of the
GA approach in characterizing the 1D polaron, in Section 4 we compare our GA results with
the fully correlated ML-MCTDHX approach. The dynamics of the Bose polaron, associated
with the emergence of the temporal orthogonality catastrophe phenomenon is outlined
in Section 5. In Section 6 we summarize our results and provide future perspectives for
further study. Appendix A elaborates on the bosonic momentum renormalization in
the thermodynamic limit of 1D systems, while Appendix B explores the impact of the
range of the interspecies interaction potential on the nature of the emitted excitations
during the dynamics. Finally, Appendix C outlines the ingredients of the employed
computational approaches.

2. Polaron Hamiltonian and Lee-Low-Pines Transformation

We consider a system of NB bosons of mass mB interacting with a single impurity
atom of mass mI within a 1D ring of perimeter L. It is described by the Hamiltonian

Ĥ =− h̄2

2mB

NB

∑
k=1

∂2

∂x2
k
− h̄2

2mI

∂2

∂x2
I
+ gBI

NB

∑
k=1

δ(xk − xI) + gBB

NB

∑
k=1

∑
k′<k

δ(xk − xk′), (1)

where xk, k = 1, . . . , NB, correspond to the coordinates of the bath particles and xI refers
to the position of the impurity. In addition, gBB and gBI correspond to the intraspecies
interactions of the bath atoms and the interspecies coupling among the bath atom and the
impurity respectively. Notice, that ring confinement of ultracold gases is experimentally
feasible [108,109]. Here we are also interested in the limit L → ∞, where our results con-
verge to the thermodynamic limit of homogeneous systems and the boundary conditions
become irrelevant. In this context, box potentials emulating the homogeneous thermo-
dynamic limit results can be also realized experimentally [110–113]. In either case, the
system is adequately described as 1D when it is subjected to strong confinement along
with the transverse spatial directions. The transverse confinement leads to the modification
of the scattering length of the atomic collisions and allows for the control of the involved
interaction strengths via confinement and Fano-Feshbach resonances [114].

There are several theoretical approaches to tackle the properties of the Hamiltonian
of Equation (1) for small gBB. Traditionally they mainly relied on the linearization of the
intraspecies interaction term of the bath via the Bogoliubov approach [43,49,50,115]. Here
we will take an alternative route based on the spatial homogeneity of the system, which
allows us to further simplify the Hamiltonian of Equation (1), by performing the so-called
Lee-Low-Pines transformation [116–118]. The latter is a coordinate transformation to the
frame-of-reference of the impurity, namely rk = xk − xI and rI = xI . The transformed
Hamiltonian reads

ĤLLP = − h̄2

2mr

NB

∑
k=1

∂2

∂r2
k
+ gBI

NB

∑
k=1

δ(rk) + gBB

NB

∑
k=1

∑
k′<k

δ(rk − rk′)

− h̄2

2mI

∂2

∂r2
I
− h̄2

mI

NB

∑
k=1

∑
k′<k

∂

∂rk

∂

∂rk′
+

h̄2

mI

NB

∑
k=1

∂

∂rk

∂

∂rI
,

(2)
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where mr = (m−1
B + m−1

I )−1 is the reduced mass of the bath-impurity system. Interestingly,
the momentum operator of the impurity p̂I = −ih̄ ∂

∂rI
commutes with the transformed

Hamiltonian, Equation (2), and therefore the momentum of the impurity is conserved in
the Lee-Low-Pines transformed frame. This allows us to simplify the two-species system
into an effective single-species one, by replacing p̂I = pI ∈ R. This reduction comes with
the expense of having to deal with an additional momentum-momentum interaction term
for the bath atoms, with a coupling inversely proportional to the mass of the impurity mI .

3. Gross Ansatz Treatment of the Lee-Low-Pines Hamiltonian

In the case mI → ∞, ĤLLP reduces to the well-studied Lieb-Liniger model [119], with an
additional δ-shaped potential at the origin r = 0. It is known [120] that the excitation
spectrum of the Lieb-Liniger model is well described by the Bogoliubov one [121] for
γLL = 2mBgBB/(h̄2n0) � 1, where n0 is the density of the bath atoms, n0 = NB/L.
This motivates a mean-field treatment of the Hamiltonian of Equation (2) in the case of
small gBB. In particular, we expand the state of the system in terms of the so-called GA,
|Ψ(t)〉 = |ΨGA(t)〉, with [3,122],

ΨGA(rI , r1, . . . , rNB ; t) =
1√
L

e
i
h̄ pI rI

NB

∏
k=1

ψ(rk; t), (3)

with pI being the momentum of the impurity in the Lee-Low-Pines frame. Additionally,
ψ(r; t) is the single-particle wavefunction occupied by all the bath atoms. Note here
that, within GA, ψ(r; t) depends only on rk = xk − xI . Another important feature of this
wavefunction ansatz, Equation (3), is that it neglects all correlations emanating among
the bath particles. As a consequence, it assumes that the bath despite the presence of the
impurity, remains in a BEC state. Nevertheless, the correlations among the impurity and
the bath particles are properly taken into account. This can be verified by considering the
two-body density of the bath and the impurity atoms

ρ
(2)
IB (xI ; x1; t) = n0|ψ(x1 − xI ; t)|2 = n0|ψ(r1; t)|2 �= ρ

(1)
B (x1; t)ρ(1)I (xI ; t) =

n0

L
. (4)

In summary, the GA allows us to obtain the variationally optimal two-body correlations
between the impurity and the bath, by neglecting all higher-order correlations [3].

3.1. The Polaron Solution

To find the variationally optimal configuration within the GA approximation we
have to minimize the energy functional stemming from ĤLLP, under the constraint of a
normalized ψ(r). The corresponding functional can be obtained by e.g., following the
Dirac-Frenkel variational principle [123,124] and introducing the Lagrange coefficient μ(t)

E[ψ(r; t)] =
〈

ΨGA(t)
∣∣∣∣ĤLLP − ih̄

d
dt

∣∣∣∣ΨGA(t)
〉
+ μ(t)NB

(
1 −

∫
dr |ψ(r; t)|2

)
=

p2
I

2mI
+ μ(t)NB + NB

∫
dr

[
− ih̄ψ∗(r; t)

∂ψ(r; t)
∂t

− h̄2

2mr
ψ∗(r; t)

∂2ψ(r; t)
∂r2

+ gBIδ(r)|ψ(r; t)|2 + gBB
2

(NB − 1)|ψ(r; t)|4 + ih̄pI
mI

ψ∗(r; t)
∂ψ(r; t)

∂r

− h̄2(NB − 1)
2mI

(∫
∂r′ ψ∗(r′; t)

∂ψ(r′; t)
∂r′

)
ψ∗(r; t)

∂ψ(r; t)
∂r

− μ(t)|ψ(r; t)|2
]

.

(5)
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The variation of Equation (5) yields the Gross-Pitaevskii type [121] equation

ih̄
∂

∂t
ψ(r; t) =

[
− h̄2

2mr

∂2

∂r2 +
ih̄2k0(t)

mI

∂

∂r
+ gBIδ(r)

+ gBB(NB − 1)|ψ(r; t)|2 − μ

]
ψ(r; t),

(6)

where h̄k0(t) ≡
(

pI + ih̄(NB − 1)
∫

dr′ ψ∗(r′; t) ∂ψ(r′ ;t)
∂r′

)
. Notice here the non-linear depen-

dence of Equation (6) on ∂ψ
∂r , which goes beyond the framework of the standard Gross-

Pitaevskii equation and accounts for the coupling of the impurity momentum with the
state of the bath.

Herewith, let us focus on stationary solutions, ψ(r; t) = ψ(r), where Equation (5)
reduces to the corresponding energy functional and k0(t) = k0, μ(t) = μ. We remark that
Equation (6) has already been solved in Ref. [94] for NB, L → ∞, while n0 = NB/L = finite
and in the case of a given value of k0. Setting ψ(r) =

√
n(r)/NBeiϕ(r) the ingredients of the

underlying solution read

n(r) = n0

[
β2 +

1
γ2 tanh2 |r|+ r0√

2γξ

]
, and

ϕ(r) =
r
|r|

[
tan−1

(
1

βγ
tanh

r0√
2γξ

)
− tan−1

(
1

βγ
tanh

|r|+ r0√
2γξ

)]
,

(7)

with β = v/c, γ = (1 − β2)−
1
2 , the speed of sound defined as c =

√
gBBn0/mr and

the flow velocity v = h̄k0/mI of the BEC relative to the impurity. The healing length is
ξ = h̄/

√
2mrgBBn0 and the Lagrange coefficient, μ = gBBn0, which can be identified as

the chemical potential [121]. In order to express the solution belonging to Equation (7) in
terms of the system parameters gBI and pI , the values of r0 and v have to be determined
self-consistently by solving the following two algebraic equations

gBI =
h̄c
γ3

tanh r0√
2γξ

β2 + sinh2 r0√
2γξ

,

pI =
h̄β

ξ

[
− 1√

2
mI
mr

+
2n0ξ

γ

(
1 − tanh

r0√
2γξ

)]
− h̄n0Δϕ.

(8)

Here Δϕ is the phase difference of the BEC wavefunction, ψ(r), at r = ±∞, namely

Δϕ = lim
r→∞

ϕ(r)− lim
r→−∞

ϕ(r)

= 2
[

tan−1
(

1
βγ

tanh
r0√
2γξ

)
− tan−1

(
1

βγ

)]
.

(9)

Before proceeding, let us stress that the solution of Equation (7) possesses uncon-
ventional boundary conditions as the wavefunction changes by a phase factor eiΔϕ from
r → −∞ to r → +∞. This is the reason of the existence of the term ∝ Δϕ in Equation (8).
In particular, in the presence of such boundary conditions the bosonic momentum needs to
be renormalized by a finite amount [121] (see also Appendix A). This implies that pI is not
connected with v via the relation pI = mIv, a fact that will become particularly important
later on. Additionally, a phase difference Δϕ �= 0 which is realized for pI �= 0 implies
a global change in the BEC wavefunction ψ(r). This feature indicates that the 1D Bose
polaron, within GA, possesses the character of a collective excitation of the BEC.
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3.2. The Case of a Static Polaron

Recently, the properties of the Gross-Pitaevskii type Equation (6) have been inten-
sively studied [55–62,64,65] especially in one and three spatial dimensions. Below we will
briefly review the implications of the 1D solution Equation (7) on the properties of the
polaron [55–59]. For pI = 0 the self consistency Equation (8) can be solved exactly, yielding
β = 0 and

r0 =
ξ√
2

sinh−1
(

2h̄c
gBI

)
. (10)

Consequently, most of the properties of the Bose polaron depend on the ratio,

gBI
2h̄c

=
√

γLL
gBI
gBB

(
1 +

mB
mI

)− 1
2
. (11)

Recall that the GA description is expected to be valid as long as γLL � 1. Therefore, the
behavior of the polaron is mainly tunable via the ratio of the intra and interspecies interac-
tion strengths and the mass imbalance among the impurity and the bath particles. However,

this mass ratio, mB/mI , affects Equation (11) only weakly since 0.18 <
(

1 + mB
mI

)− 1
2
< 0.98

for all currently experimentally realizable ultracold setups2, leading to the conclusion
that the most important factor for characterizing the state of the polaron is the interaction
strength fraction gBI/gBB.

A quantity that will be important for the description of the polaron dynamics is its
energy, Ep = E[ψ(r)]− E0, with E0 = gBBn2

0/2, being the excess energy of the polaron state
with respect to the energy of the system for gBI = 0. Thus, the energy of the static polaron
(see also Equation (5)) reads

Ep =
h̄cn0

3

⎧⎨⎩4 −
[√

1 +
( gBI

2h̄c

)2
− gBI

2h̄c

]3

− 3

[√
1 +

( gBI
2h̄c

)2
− gBI

2h̄c

]⎫⎬⎭. (12)

A simple Taylor expansion in terms of gBI
2h̄c , demonstrates that the energy of the polaron

within GA grows linearly for small gBI , as is also expected for the non-interacting BEC
background, ψ(r) =

√
n0. Significant deviations only appear when gBI ≈ 2h̄c, where the

energy of the polaron becomes smaller than the one of the corresponding non-interacting
profile, ENI = gBIn0, since the BEC density in the vicinity of the impurity is suppressed.
For strong repulsions, namely gBI/(2h̄c) � 1, the energy of the polaron saturates to the
value 4h̄cn0/3, a tendency which has been shown to qualitatively agree with corresponding
Quantum Monte Carlo predictions in Ref. [54].

Figure 1a, demonstrates the behavior of Ep over the characteristic energy scale h̄cn0
for increasing gBI/(2h̄c). By comparing the behavior of this quantity with the first-order
asymptotics of Equation (12), we can observe the emergence of the three distinct inter-
action regimes. Namely, for small, gBI/(2h̄c) < 0.25, and large values, gBI/(2h̄c) > 2,
the impurity-medium energy, Ep, matches the results of the corresponding asymptotic
expansions. In contrast, within the intermediate interaction regime 0.25 < gBI/(2h̄c) < 2
deviations between the exact values of Ep, Equation (12), and the approximate Taylor
expansions occur. Finally, let us note that the typical energy scale of the system h̄cn0 is
related to the corresponding interaction-independent one h̄2n2

0/mB via

h̄cn0 =

√
γLL

2

(
1 +

mB
mI

)
h̄2n2

0
mB

, (13)

which is a function of the Lieb-Liniger parameter, γLL, and the mass ratio, mB/mI . The above
indicate that the energy scale of the Bose polaron is small compared to the non-interacting
energy scale, h̄2n2

0/mB, at least when we focus on the case of a BEC host in which γLL � 1.
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Figure 1. Analytical predictions for the energy and critical velocity of the Bose polaron within
GA. (a) Polaron energy, Ep [Equation (12)] and (b) critical velocity of the polaronic solution, βcrit,
[Equation (14)] for varying bath-impurity interaction strength, gBI . In both cases the solid lines
indicate the exact results while the dashed lines correspond to weak (leftmost line), O

( gBI
2h̄c

)2, and

strong (rightmost line), O
(

2h̄c
gBI

)2
, asymptotic Taylor expansions.

3.3. Moving Polaron and the Soliton Solution

Having briefly commented on the analytic polaron solution for pI = 0, let us elaborate
on the case of a moving polaron with pI �= 0, where no analytic solution exists and it has
been far less discussed in the literature. In that case, the parameters of the polaron need to
be found numerically by solving the self-consistency Equation (8), for r0 and β [57]. It can
be easily proven that solutions of Equation (8) for r0 exist only in the case that the velocity
of the polaron β, does not exceed the critical one βcrit [94]. The value of the critical velocity,
vcrit = βcritc, can be obtained by finding the maximum with respect to r0 of the right-hand
side of the first self consistency equation, Equation (8), see also Ref. [94]. This process
yields the following algebraic equation

gBI
2h̄c

=
√

2
(

1 − β2
crit

)√√
1 + 8β2

crit −
(
1 + 2β2

crit
)

4β2
crit − 1 +

√
1 + 8β2

crit

. (14)

Notice here, that the value of the critical velocity depends only on the ratio gBI/(2h̄c).
The behavior of βcrit along with its strong and weak asymptotics is provided in Figure 1b.
It can be seen that for gBI = 0 the critical velocity is equal to the speed of sound, βcrit = 1,
and for increasing gBI it is suppressed. For large gBI , βcrit behaves as βcrit ∝ 1/gBI , in
agreement with the predictions of Ref. [94].

At a first glance, one would expect that the value of βcrit can be employed for deriving
an upper bound for the maximally allowed pI , however here we will argue that this is not
the case. In particular, for pI = ±h̄n0π the Gross-Pitaevskii type Equation (6) can be solved
analytically yielding the black soliton solution

ψpI=±h̄n0π(r) = ∓√
n0 tanh

r√
2ξ

. (15)

Since the impurity lies at xI = 0 being the notch of the black-soliton, this solution
actually corresponds to a dark-bright soliton for the composite system. It might seem
contradictory that in the case of relatively large momenta, |pI | = πh̄n0, a stationary BEC
flow is encountered. However, this counterintuitive result can be attributed to the fact that
pI does not refer to the momentum of the impurity in the laboratory frame. In particular
by inverting the Lee-Low-Pines transformation we obtain

p̂lab
I = pI −

NB

∑
i=1

(
−ih̄

∂

∂ri

)
︸ ︷︷ ︸

≡ p̂B

, (16)
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with p̂B being the momentum of the bath in the impurity frame, which is invariant under
the frame transformation, since ∂/∂ri = ∂/∂xi. Therefore, the conservation law of pI in the
impurity frame implies that the total momentum, pI = 〈 p̂lab

I 〉+ 〈 p̂B〉, is conserved in the
laboratory frame. Notice that for the black soliton solution, 〈 p̂B〉 = ±h̄n0π = pI , which
agrees with the fact that the solution is static, 〈 p̂lab

I 〉 = 0.
In order to analyze the crossover from the static polaronic to the black soliton so-

lution, we focus on the solutions of Equation (8) for 0 ≤ pI ≤ h̄n0π. The solutions for
varying pI and gBI while keeping gBB = 0.1h̄2n0/mB fixed are presented for mI = 0.5mB
(Figure 2(a1)–(d1)), mI = mB (Figure 2(a2)–(d2)) and mI = 2mB (Figure 2(a3)–(d3)). Inde-
pendently of the impurity mass the velocity of the polaron satisfies βp ≤ βcrit (Figure 2(ai),
i = 1, 2, 3), hinting towards the conclusion that the state described by Equation (7) is stable3

for every pI and gBI . Moreover, the polaron velocity β exhibits a non-monotonic behavior
since for small momenta pI < mIc, β is increasing with pI until it reaches a maximum at a
gBI-dependent momentum value pI,0 ≥ mIc. Beyond that point β decreases with increasing
pI until it reaches the value of β = 0 for pI = πh̄n0. In addition, it can be seen that the
solution for r0 (Figure 2(bi), i = 1, 2, 3) is appreciably larger than 0 only for pI < mIc (see
dashed line) and for gBI < 0.5h̄2n0/mB.

Figure 2. Characteristic properties of the moving Bose polaron within GA. (a1–a3) Velocity of the
polaron over its critical one, βp/βcrit, (b1–b3) offset parameter, r0, of the polaron solution, (c1–c3)
polaron energy, Ep and (d1–d3) expectation value ratio of the impurity momentum between the
laboratory and the impurity frames, 〈 p̂lab

I 〉/pI , for different values of gBI and pI . The distinct
columns correspond to different impurity masses, mI = mB/2 (left panels), mI = mB (middle panels)
and mI = 2mB (right panels). In all cases, the data correspond to thermodynamic limit calculations,
N, L → ∞, with gBB = 0.1h̄2n0/mB and dashed lines represent pI = mIc.

The energy of the moving polaron is presented in Figure 2(ci), i = 1, 2, 3. Here there
are two notable effects. For a fixed gBI , Ep depends more weakly on pI as the value of gBI

increases. This is a manifestation of the increase of the effective mass, m∗ =

(
∂2Ep

∂p2
I

)−1
,

of the polaron with gBI reported in Ref. [57]. Moreover, for momenta pI → h̄n0π or large
interactions the energy of the polaron tends to saturate to the corresponding energy of the
dark-bright soliton solution, Equation (15), Eb = limgBI→∞ Ep = 4

3 h̄n0c. It is evident from
Figure 2(ci), that this asymptotic value of energy decreases with increasing mI a fact that
can be understood by inspecting Equation (13).
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The above indicate two distinct regimes for the behavior of the system, the polaron
regime encountered for low momenta pI ∼ 0 and interactions, gBI ∼ 0, and the dark-
bright soliton regime for high momenta, pI ∼ ±h̄n0π and/or strong interactions, gBI → ∞.
To characterize the crossover of these two regimes we employ the quantity 〈 p̂lab

I 〉/pI ∈ [0, 1],
see Figure 2(di) with i = 1, 2, 3. This quantity compares the momentum contribution of
the motion of the impurity, 〈 p̂lab

I 〉, to the induced BEC flow, 〈 p̂B〉 = pI − 〈 p̂lab
I 〉. Therefore,

values proximal to 1 indicate that the impurity motion is the dominant contribution and
as a consequence, the system is in the polaron regime. On the other hand, values close
to 0 signify that the dominant contribution is the BEC flow and accordingly the system
behaves as a dark-bright soliton. As Figure 2(di) testifies, the polaron regime occurs only
for pI < mIc and gBI < 0.5h̄2n0/mB, where also r0 � 0, see also Figure 2(ai). Otherwise,
the state of the system lies within the dark-bright soliton regime.

As already mentioned previously the mass of the impurity does not significantly
alter the behavior of the system. It only affects the system quantitatively by shifting the
threshold mIc2, where the velocity of the impurity becomes supersonic in the case of
gBI = 0. Indeed, this threshold is related to the crossover between the polaronic and
dark-bright soliton regimes causing a shift along pI for the structures manifested among
the different observables.

Concluding, we are in a position to infer the dual character of the 1D polaron as
captured by the GA approximation. For varying interaction strengths and momenta the
character of impurity changes. In the case of small gBI and pI the impurity contributes to
a well-defined quasiparticle associated with the local excitation of its BEC environment
due to its presence. In the opposite scenario of large gBI or pI → ±πh̄n0 the impurity is
embedded within a collective excitation akin to a static dark-bright soliton. The exploration
of this crossover should provide an interesting perspective for future experiments.

4. Impact of Correlations and Validity of the GA Approximation

Let us now investigate the impact of correlations on the above-mentioned properties of
the polaron. For this purpose we employ the Multi-Configuration Time-Dependent Hartree
Method for Bosons (MCTDHB) [125,126], being a reduction of the ML-MCTDHX [106], that
is able to capture all the relevant correlations emanating in the system. Since currently, the
MCTDHB method can only simulate systems with a definite number of particles, here we
will focus (in both the ML-MCTDHB and GA case) on a system with NB = 100 confined
within a ring of length L = 100n−1

0 .
Notice that within MCTDHB we can work with the Lee-Low-Pines transformed Hamil-

tonian of Equation (2) by exploiting the pI symmetry of the Hamiltonian of Equation (1).
The many-body wavefunction of the system in this case can be reduced, without any loss
of generality, to

Ψ(xI , x1, x2, . . . , xNB) =
1√
L

e
i
h̄ pI xI ΨB

(
x1 − xI︸ ︷︷ ︸

r1

, x2 − xI︸ ︷︷ ︸
r2

, . . . , xNB − xI︸ ︷︷ ︸
rNB

)
. (17)

Then MCTDHB can be employed in order to variationally optimize the ΨB(r1, . . . , rNB)
part of the many-body wavefunction in the absence of any approximation. This allows us
to probe the effect of correlations between the atoms of the bath that the GA of Equation (3),
neglects. For more details regarding our MCTDHB calculations see Appendix C.

The equilibrium state properties of the polaron for weak intraspecies bath repulsions,

gBB = 0.1 h̄2n0
mB

, in the equal mass case, mI = mB are compared in Figure 3 within the
results of the MCTDHB and the GA approaches. In order to contrast the state of a system
confined in a ring of L = 100n−1

0 to the thermodynamic limit NB, L → ∞, we also provide
the corresponding results of the GA when extrapolated to the thermodynamic limit, see
Ref. [55–59].
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The behaviour of the bath-impurity two-body correlations, g(2)IB (0; xB) =
L
n0

ρ
(2)
IB (0; xB),

Equation (4), for different interspecies repulsions gBI is demonstrated within the MCTDHB
approach in Figure 3a. For increasing gBI we observe a gradual depletion of ρ

(2)
IB (0; xB)

in the vicinity of the impurity, xB ≈ xI = 0, stemming from the repulsive bath-impurity
coupling [73,82]. These anti-correlations are accompanied by bunching of bath-impurity
correlations, g(2)IB (0; xB) = Lρ

(2)
IB (0; xB)/n0 > 1, for xB > 10n−1

0 (hardly visible in Figure 3a)
which originates from the conservation of the total particle number of bath atoms on
the ring. To contrast our findings with the approximate GA method, in Figure 3b we
compare the effect of anti-correlations between the bath and the impurity atoms captured
by ρ

(2)
IB (0; 0) among the different approaches. Note here, that this quantity is closely related

to the Tan contact [59,127–133]. We find that the GA is able to reproduce the behavior
observed within the MCTDHB approach. The fully correlated approach predicts only a
slightly more pronounced anti-bunching as shown in the inset of Figure 3b. Notice also that
the results of the ring confined setups agree very well with the thermodynamic limit ones,
indicating the insignificance of finite-size effects for ρ

(2)
IB (0; 0). To appreciate better the effect

of the correlations and the confinement of the particles in a ring, Figure 3c compares the

bath-impurity correlations, ρ
(2)
IB (0, xB), for strong repulsions, gBI = 2 h̄2n0

mB
, between the two

approaches. As it can be easily deduced the GA results closely follow the MCTDHB ones.
The only deviations occur away from the position of the impurity xB > 10n−1

0 (see also the

inset of Figure 3c), where in the fully correlated case spatial oscillations of the ρ
(2)
IB (0; xB)

profile are observed. These deviations can be explained by the fact that in the bath a
correlation hole appears for two atoms being in close proximity (not shown here for brevity,
see also Ref. [134] and references therein). Notice also that the results referring to the ring
geometry yield ρ

(2)
IB (0,±L/2) > n0/L. This is a consequence of the particle conservation,

occurring in order to accustom for the lower density in the vicinity of the impurity. In
contrast, this behavior is absent in the thermodynamic limit, where ρ

(2)
IB (0, |r| > ξ) ≈ n0/L.

Figure 3d reveals that the inclusion of bath-bath correlations does not significantly
affect the energy of the polaron Ep = E(gBI)− E(gBI = 0). This leads to the conclusion
that the GA provides an excellent prediction for the polaronic energy, in agreement with
Ref. [55]. Of course, the presence of higher-order correlations within the MCTDHB approach
results in a slight reduction of the polaronic energy as illustrated in the inset of Figure 3d.
In contrast, the effect of the ring confinement provides a more important kinetic energy
penalty4, which can be identified by comparing the confined results to the thermodynamic
limit case.

Regarding the effective mass, m∗, depicted in Figure 3e, also a remarkable agreement
among both methods and system sizes is observed, see in particular the inset of Figure 3e.
Indeed, the effective mass of the polaron is related to the local correlations of the dressing
cloud in the vicinity of the impurity [38], where finite-size effects are insignificant, and are
well described by the GA. The last quantity of interest for the Bose-polaron is its quasi-

particle residue5, Zp =
√
|〈Ψ0|Ψp〉|2, with |Ψ0〉, |Ψp〉 being the non-interacting and the

polaronic states respectively [80,82,83]. In Figure 3f it can be seen that the results including
beyond two-body bath-impurity correlations differ significantly from the GA ones. This is
because the residue, Zp, is related with the many-body wavefunction overlap of the pola-
ronic state to the non-interacting one, and therefore correlations of all orders significantly
affect this quantity. In particular, it can be verified that, while finite-size corrections seem to
not be significant in the case of the GA, the presence of higher-order correlations suppresses
appreciably the polaronic residue. Importantly, despite the remarkable agreement on the
level of two-body correlations the overlap between the MCTDHB and the GA wavefunction
for the system confined in the ring ranges from 67 to 68%, see the inset of Figure 3f. This
reduction of the many-body wavefunction overlap can be explained by the fact that MCT-
DHB in contrast to the GA allows for the depletion of the bath wavefunction ΨB(r1, . . . , rNB)
due to the presence of quantum fluctuations. Notice that any depleted many-body state,
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where even a single bath atom is in a state orthogonal to the BEC wavefunction, ψ(r), has
exactly zero overlap with the fully condensed many-body wavefunction described by the
GA. Nevertheless, in this case, despite the zero overlap of these two many-body states, the
corresponding low-order correlation functions would be almost identical for NB � 1.

Figure 3. Comparison of the Bose polaron characteristics between the GA and the correlated

MCTDHB framework. (a) Bath-impurity correlations, ρ
(2)
IB (0; xB), for varying interspecies interaction

strength, gBI , within MCTDHB. (b) Bath-impurity correlations at coincidence, ρ
(2)
IB (0; 0), for different

gBI and for all employed approaches (see legend). (c) Comparison of the correlation profile ρ
(2)
IB (0; xB)

within the MCTDHB and the GA for gBI = 2h̄2n0/mB. The inset of (c) provides a magnification

of ρ
(2)
IB (0; xB), showing the behavior of the system away from the impurity. Comparison of (d) the

polaron energy, Ep, (e) the inverse effective mass, mI/m∗ and (f) the polaron residue among the
different approaches and for varying gBI . To elucidate the comparison between GA and MCTDHB,
the insets of (b,d,e) provide the difference of the corresponding observables between the distinct
approaches (see legend). The inset of (f) indicates the many-body overlap between the MCTDHB and
the GA many-body states for varying gBI . In all cases, mI = mB, pI = 0 and gBB = 0.1h̄2n0/mB. The
relevant ring confined setups are characterized by NB = 100 and L = 100n−1

0 .

5. Dynamical Response of the System: The Temporal Orthogonality Catastrophe

Having identified the main properties of the equilibrium state of the Bose polaron in
free 1D space now we proceed by considering its dynamical response. In particular, in the
same manner as in Refs. [58,68,79,82,83,135], we examine the polaron generation after an
abrupt quench of the interaction strength, gBI , from gBI = 0 to some final positive value
g f

BI > 0. Within the GA approximation, Equation (3), and for gBI = 0 the lowest in energy
wavefunction of the composite system with a given value of impurity momentum, pI , reads

Ψ0(xI , x1, . . . , xNB ; pI) = L− NB+1
2 exp

(
− i

h̄
pI xI

)
. (18)

We are especially interested in observing the overlap of the time-evolved interacting
state, |Ψ(t)〉 to the initial non-interacting one |Ψ(0)〉 = |Ψ0〉. As already discussed in
Refs. [29,83,136] this observable can be directly probed in spectroscopic experiments and
allows to address the polaronic properties. Another, important concept in homogeneous
systems is the influence of the impurity momentum on the subsequent dynamics of the
quenched, bath-impurity system, which we also consider below.

Regarding the numerical details of our simulations, we have considered NB = 1600
particles, with mB = mI confined in a ring with perimeter L = 1600n−1

0 . The increase of the
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ring perimeter is essential for approaching the thermodynamic limit and avoiding effects
stemming from the imposed boundary conditions. In the following, we have exclusively
employed the GA approach, since for such large particle numbers ensuring in general the
convergence of fully correlated approaches is computationally beyond reach.

5.1. Dynamics of a Subsonic Impurity
5.1.1. Dynamics of Two-Body Correlations

Typical spatiotemporal evolution patterns of the two-body correlation function,
g(2)IB (0; xB; t) = (L/n0)ρ

(2)
IB (0; xB; t), for an initial velocity of the impurity that does not

exceed the speed of sound c =
√

gBBn0/mr ≈ 0.45h̄n0/mB, are presented in Figure 4a,b.
The different panels correspond to varying initial impurity momenta, pI , but in all cases
the final interaction strength g f

BI = gBB = 0.1h̄2n0/mB is kept fixed.

Figure 4. Quench dynamics of an impurity in a homogeneous Bose gas. (a,b) Spatiotemporal

evolution of the two-body interspecies correlations, ρ
(2)
IB (0; xB), for different initial impurity momenta,

pI (see column labels). Here the postquench interaction is g f
BI = 0.1h̄2n0/mB = gBB. The dashed lines

indicate xB = (±1 − β f )ct, with β f the final velocity of the generated polaron provided as an inset
label. (c,d) The time-dependent overlap, |〈Ψ0|Ψ(t)〉|, of the post-quench many-body wavefunction,
Equation (3), with the initial state, for varying gBI . The insets of (c,d) provide the time-evolution
of |〈Ψ0|Ψ(t)〉| within a more extensive gBI range. (e,f) present the modulus and phase of the GA
bath-wavefunction, ψ(xB; t) respectively for g f

BI = 0.1h̄2n0/mB, pI = 0.4h̄n0 and t = 400 mB
h̄n2

0
. For

comparison (e,f) also provide the equilibrium profile of the polaron, Equation (7), with β = β f = 0.64.
In all cases the system is confined in a ring of L = 1600n−1

0 and contains NB = 1600 while mI = mB.

In the case of a static impurity, pI = 0, it can be seen that the quench leads to the
emission of two ρ

(2)
IB (0; xB; t) disturbances for initial times (t < 10) that travel away from

the impurity with a velocity proximal to the speed of sound, ±c, see the dashed lines in
Figure 4a. These disturbances subsequently break into structures, possessing an oscillatory
two-body density pattern in space and being reminiscent of dispersive shock waves [91–94],
see the box in Figure 4a and also Appendix B. In the vicinity of the impurity, r = 0, a
depletion of bath atoms emerges similarly to the case of a static polaron analyzed previously,
see Sections 3.2 and 4. For later times, t ≥ 300 mB

h̄n2
0
, the two-body density ρ

(2)
BI (0; xB; t) in the

spatial extent of the impurity |xB| < 30n−1
0 , matches very well to the expected profile for a

static, β = 0, polaron whose form is given by Equation (7).
This behavior can be explained due to the instantaneous quench and the sharpness

of the δ(r) interaction potential among the bath and the impurity. In particular, it is well
documented in the BEC literature [137–139] that rapidly switching on the potential within
the spatial extent of a BEC leads to the phenomenon of phase imprinting6. The resulting
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disturbance in the vicinity of the impurity subsequently propagates outwards leading to the
excitation of the bosonic host and the formation of dispersive shock wave structures. These
excitations carry away the additional energy due to the quench allowing for the polaron to
be formed behind them. For more details on this mechanism see also Appendix B.

For increasing impurity momentum, pI = 0.4h̄n0 ≈ mIc, we observe a qualitatively
different system response, see Figure 4b. Here, the two-body density disturbance emitted
“upstream” (i.e., towards the direction of motion of the impurity) recedes from the impurity
at a much slower pace than the corresponding “downstream” disturbance while the former
has a significantly larger amplitude than the latter. These observations are explained in
terms of the drag experienced by the moving impurity. More specifically, it is known that
if the velocity of a perturbing potential relative to a superfluid exceeds a certain critical
value then the superfluidity of the environment is broken and the potential experiences a
drag force. The latter is analyzed in Refs. [81,91,140] in the case that an external potential
is dragged through a BEC. Note that this external potential possesses a well-defined
instantaneous position, independently of the exerted drag force. However, the physical
situation described here is slightly different because the impurity is a quantum particle
that carries definite kinetic energy. Therefore, when a drag force emerges, it leads to the
deceleration of the impurity up to the point that its velocity is so small that the drag
force is nullified. Except for the reduction of the impurity velocity, the drag force leads to
Cherenkov-like7 radiation [141–143]. This leads to the amplification of the disturbances
emitted “upstream” of the impurity and the emergence of an associated energy transfer
process from the impurity to its bosonic environment.

The finite asymptotic velocity of the impurity is indicated in ρ
(2)
IB (0; xB; t) as a difference

in the magnitude of the relative velocity of the emitted dispersive shock waves. Indeed, by
assuming that the disturbances travel with a velocity vDSW ≈ ±c then in the impurity frame
their velocities would be modified to vDSW − vp = (±1 − β f )c, where β f c is the velocity of
the polaron. To estimate the final velocity of the polaron ∝ β f , we fit the density and phase
profile of the GA wavefunction ψ(|r| ≤ 30n−1

0 ; t), after an evolution time of t = 400 mB
h̄n2

0
, to

the corresponding analytic expression8, Equation (7), for obtaining β f and r0. In Figure 4b,
we demonstrate that the above approximations are in excellent agreement with the motion
of the dispersive shock waves. Notice here, that the emitted structures realize a so-called
“light” cone via which the correlations among the bath and the impurity are spread in the
system after the quench [144,145]. In particular, by examining the modulus (Figure 4e)
and phase (Figure 4f) of ψ(r; t), we can verify that the corresponding profiles match the
equilibrium polaron solution with β = β f , Equation (7), in the spatial extent between the
shock waves. Therefore, these excitations provide a means for transferring information
regarding the generation of the Bose polaron throughout the BEC with a velocity equal to c,
see also the dashed lines in Figure 4b.

5.1.2. Time-Dependent Overlap: Temporal Orthogonality Catastrophe

Having appreciated, the main features of the two-body correlation dynamics, we now
analyze their imprint on the time-dependent overlap |〈Ψ0|Ψ(t)〉| for different g f

BI . The
quantity |〈Ψ0|Ψ(t)〉| is commonly referred to as the fidelity between the |Ψ0〉 and |Ψ(t)〉
many-body states and it is related to the time-evolution of the quasi-particle residue, Zp, of
the polaron [82,83]. By inspecting the static polaron case, pI = 0, presented in Figure 4c, we
observe a very similar behavior as in the case of a parabolically trapped Bose-gas-impurity
system examined in Ref. [83]. For interactions satisfying gBI < gBB = 0.1h̄2n0/mB �
2h̄c ≈ 0.9h̄2n0/mB the time-dependent overlap |〈Ψ0|Ψ(t)〉| possesses a value proximal to 1,
indicating that the state of the impurity after the quench is almost equivalent to the non-
interacting one (Equation (18)). Indeed, as it can be deduced from Figure 3d,f, in this regime
the residue of the polaron is Zp ≈ 1 and also its energy is proximal to Ep ≈ gBIn0. These
imply that the quench does not result in a pronounced production of excitations such as the
dispersive shock waves exhibited in Figure 4a, that would substantially affect |〈Ψ0|Ψ(t)〉|
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as we discuss below. For stronger interactions, |〈Ψ0|Ψ(t)〉| changes drastically. Around
gBI ≈ gBB = 0.1h̄2n0/mB, we find that |〈Ψ0|Ψ(t)〉| is substantially depleted during the
dynamics, reaching a finite value |〈Ψ0|Ψ(t)〉| > 0 for long times t > 300 mB

h̄n2
0
, see Figure 4c.

This behavior is inherently related to the emission of dispersive shock wave disturbances
and the formation of the Bose polaron behind them as observed in Figure 4a.

To explain this behavior for intermediate interactions we have to examine the equilib-
rium properties of the Bose polaron and in particular its energy, Equation (12). As shown
in Figure 1a, the non-linear correction terms in Equation (12) become important, leading
to a sizable correction from the linear behavior observed for gBI < gBB. This leads to
an energy surplus of the post-quench state, possessing E = gBIn0, when compared to
the corresponding polaronic state that the system eventually relaxes too. Therefore, the
emergence of dispersive shock waves can be explained as a mechanism that carries the
excess energy away from the region of the impurity. The presence of these additional
structures leads to the depletion of the time-dependent overlap |〈Ψ0|Ψ(t)〉|. A similar be-
haviour occurs also for stronger interactions, gBI > gBB = 0.1h̄2n0/mB, where |〈Ψ0|Ψ(t)〉|
eventually saturates to zero. Because of this the final state of the system is almost orthogo-
nal to the initial one, therefore leading to the phenomenon of the temporal orthogonality
catastrophe [79,80,82,83].

Let us now comment on the influence of the initial impurity momentum on the time-
dependent overlap |〈Ψ0|Ψ(t)〉|. Figure 4d, depicts |〈Ψ0|Ψ(t)〉| for a finite momentum
impurity pI = 0.4h̄n0, where a similar response to the static case, Figure 4c, takes place.
The most important difference is observed for gBI ≈ gBB, where a larger suppression of
|〈Ψ0|Ψ(t)〉| occurs for pI = 0.4h̄n0 than for pI = 0. The discrepancy of the moving impurity
case, when compared to the static one, can be explained in terms of the additional drag
force that emerges in the former scenario. As already discussed above, the drag force leads
to an impurity velocity smaller than the initial one since part of the initial momentum of
the impurity is transferred to the “upstream” emitted dispersive shock wave excitation,
see Figure 4b. This reduction of the impurity velocity during the dynamics leads to further
suppression of |〈Ψ0|Ψ(t)〉| than the one observed for pI = 0, resulting in the appearance of
the temporal orthogonality catastrophe phenomenon even in the case of gBI ≈ gBB.

5.1.3. Drag Force and Momentum Transfer Mechanism

Let us now elaborate on the influence of the drag force in the time evolution of the
polaronic state. As already mentioned for a moving polaron the drag force reduces the
velocity of the impurity up to a value where the drag force is nullified. According to
Refs. [81,146] the drag force can be approximated as

FD =
∫

dr |ψ(r)|2 dVBI
dr

= −gBI
d|ψ(r)|2

dr

∣∣∣∣
r=0

, (19)

where VBI is the impurity potential perturbing the BEC, and it corresponds in our case to
the bath-impurity interaction term, VBI = gBIδ(r). Equation (19) indicates that the drag
force is proportional to the derivative of the density in the vicinity of the impurity standing

as a material barrier. In the case of a polaron, Equation (7) reveals that d|ψ(r)|2
dr = 0 for

r = 0, and therefore the drag-force is zero. This implies that a trivial upper bound that the
final velocity of the impurity should satisfy is β f < βcrit, in order to allow for polaronic
solutions. For impurities moving with subsonic velocities, we can get a better upper bound
for the final velocity of the polaron by considering the available values of the pI for the
final equilibrium polaronic state. In the case that the polaronic state is created adiabatically,
then the final state after the quench would possess a momentum pI and the corresponding
velocity βp(pI), indicated in Figure 2a. However, since we are considering an interaction
quench this scenario is not realized and instead we would have a final momentum for the
polaron p f

I ≤ pI and a final velocity β f ≤ βp(pI).
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To justify the above let us clarify the role of the conserved quantity pI in the dynamics.
According to Equation (16), we have pI = 〈Ψ(t)| p̂lab

I |Ψ(t)〉+ 〈Ψ(t)| p̂B|Ψ(t)〉 and therefore
only the sum of the impurity and bath momenta in the laboratory frame has to be conserved.
Recall that, the state of the system for long times corresponds to a polaron and two disper-
sive shock wave excitations that are far away from one another so that they do not interact,
see Figure 4b. Due to the exerted drag force on the impurity and the consequent induced
Cherenkov radiation, the upstream shock wave carries a larger (in magnitude) momentum
than the downstream one. Therefore, these two structures contribute a value Δp > 0 to the
total momentum, equal to the corresponding difference of their momenta. This, in turn,
implies that the momentum of the polaron for long times satisfies, p f

I = pI − Δp < pI and
due to the increasing tendency of βp(pI) with pI < mIc, see Figure 2(a2), β f ≤ βp(pI).

The above arguments can be directly verified by our numerical calculations, see
Figure 5a, where we compare the velocity after the quench, β f (obtained by the same
procedure as in Figure 4a,b to βp(pI). This procedure yields that except for gBI ∼ 0,
β f < βp(pI) holds independently of the value of pI , demonstrating the diabatic character
of the polaron formation after an interaction quench of gBI . Additionally, the dynamics
become more diabatic as the post-quench interaction strength is increased with the velocity
of the polaron approaching a value of β f = 0 for strong gBI , independently of pI . This
more diabatic character of the dynamics with increasing gBI can be understood by invoking
Equation (19) implying that the amplitude of the drag force scales proportionally to the
bath-impurity interaction strength. According to the above, and as Figure 5b testifies, the
drag force is applied more abruptly to the impurity particle as gBI increases, leading to
a higher degree of excitation of the bath and hence larger momentum transfer, ΔpI . This
momentum transfer can be directly probed in experiments by monitoring the momentum
in the laboratory frame, plab

I (t) = 〈Ψ(t)| p̂lab
I |Ψ(t)〉. Figure 5c indicates the decreasing

tendency of plab
I (t) with time for all interaction strengths. Most importantly, even for

small times t < 50 mB
h̄n2

0
and gBI > gBB, plab

I (t) becomes smaller than the corresponding

equilibrium value for the polaron, see the corresponding lines in Figure 5b,c, demonstrating
the existence of the momentum transfer mechanism.

Figure 5. Characterization of the drag force exerted on the impurity by the Bose gas. (a) The critical,
βcrit (dashed line) and equilibrium, βp(pI) (solid lines) velocities of the Bose polaron with gBI = g f

BI ,
compared to the final velocity of the polaron formed after the quench, β f (pI) (data points) for varying

g f
BI . The parameters of the system are as in Figure 4 and pI is given in the legend. (b) Temporal

evolution of the drag force exerted to an impurity, initially possessing pI = 0.4h̄n0, for different
values of the post-quench interspecies interaction strength, g f

BI . (c) Time-evolution of the impurity

momentum for pI = 0.4h̄n0 and varying g f
BI . The solid lines in (b,c) indicate the time that plab

I

becomes equal to the corresponding value for the equilibrium polaron with gBI = g f
BI .

5.2. Dynamics of a Supersonic Impurity

To conclude, we shall briefly comment on the case of a supersonically moving impurity.
Figure 6 illustrates a characteristic example of the corresponding correlation dynamics,
when pI = 1h̄n0 and g f

BI = 0.07h̄2n0/mB < gBB = 0.1h̄2n0/mB. We observe that for small
times t < 100 mB

h̄n2
0

in addition to the emitted dispersive shock waves, also a density depletion

takes place downstream of the impurity (see the boxed area in the inset of Figure 6a). As
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the impurity slows down due to the exerted drag force, the polaron starts to form at times
t ≈ 100 − 200 mB

h̄n2
0
. The depleted part of the density then collides at t ≈ 400 mB

h̄n2
0

(see the

encircled region in the inset of Figure 6a) with the newly formed polaron lying at xB = 0.
Eventually the density depletion overtakes the polaron ending up in the upstream region,
xB > 0, for longer times, t > 600 mB

h̄n2
0

(see Figure 6a). Similar to the subsonic cases the motion

of the downstream shock wave (hardly visible in Figure 6a) and the large amplitude density
excitation emanating in the upstream region are moving with a velocity equal to the speed
of sound. Notice the agreement of the excitation trajectory with xDSW = (±1 − β f )ct + x0
for t > 300 mB

h̄n2
0
, here β f = 0.7464 is the final velocity of the polaron found via fitting the

polaron profile as discussed previously.
The origin of this additional excitation can be traced back to known properties for 1D

BEC subjected to barrier dragging [73]. It is known that for barrier velocities exceeding
a threshold vb > c, stationary flow solutions (in the frame comoving with the barrier)
exist, see the discussion in Ref. [93,146]. These solutions are characterized by a flat profile
downstream of the barrier and a periodically modulating density in the upstream region.
However, for such structures in contrast to the polaron corresponding to Equation (7), the
drag force exerted to the barrier is finite. Consequently, since the impurity playing the role
of the potential barrier possesses a finite momentum such flows cannot be stationary and
have to decay when the velocity of the impurity becomes smaller than vb. To substantiate
the above claim, we solve the corresponding Gross-Pitaevskii equation in the frame of the
potential barrier

ih̄
∂

∂t
ψ(r) =

[
− h̄2

2mB

∂2

∂r2 + ih̄v0
∂

∂r
+ gBIδ(r) + gBB(NB − 1)|ψ(r)|2

]
ψ(r), (20)

where the constant velocity of the barrier, v0, is set to the initial velocity of the impurity.
In particular note that Equation (20) is a reduction of Equation (6) for mI → ∞ and
v0 = pI/mI = constant. Therefore, it corresponds to the asymptotic polaron solution for
an infinitely heavy impurity, mI → ∞. Figure 6b presents the spatiotemporal evolution
of the BEC density after a quench from gBI = 0 to g f

BI = 0.07h̄2n0/mB and v0 = 1h̄n0/mB,
gBB = 0.1h̄2n0/mB. At the initial stages of the dynamics, we observe the emission of the
downstream dispersive shock wave (hardly visible in Figure 6b). However, the picture
regarding the rest of the emerging structures is different than what was discussed for the
mI = mB polaron. In particular, we observe that upstream of the impurity a stationary
oscillatory density pattern forms, reminiscent of the above mentioned solutions described
in Refs. [93,146]. Notice also that downstream of the impurity another dispersive shock
wave structure is emitted. The trajectories of the fronts of the two emitted shock waves
indicate a relative velocity vDSW = (±c − v0) with respect to the impurity. Therefore,
these dispersive shock waves form a “light” cone, similar to what we have observed for
subsonically moving polarons. However, since in this case v0 > c ≈ 0.32h̄n0/mB, both
shock waves lie in the downstream region of the barrier.

To relate the results of Equation (20) to the case of a polaron, we consider a massive
impurity with mI = 10mB. The justification of this choice is that a massive impurity
possesses larger inertia and therefore it is less susceptible to deceleration stemming from
the drag force exerted by the BEC. This allows us to probe a possible intermediate-mass
regime for the cases depicted in Figure 6a,b. Figure 6c shows the time evolution of ρ

(2)
IB (0; xB)

for a quench with the same parameters as in Figure 6a,b. For initial times, t < 200 mB
h̄n2

0
,

the two-body correlations exhibit the same structure as the one observed in the Gross-
Pitaevskii case. In particular notice the emission of the two downstream dispersive shock
waves forming a “light” cone (vDSW = (±c − pI/mI)) and the quasi-stationary upstream
oscillatory density pattern. Subsequently, due to the finite momentum of the impurity and
the exerted drag force from the BEC, the impurity slows down. This can be verified by
observing that for t > 200 mB

h̄n2
0

the position of the fronts of the emitted shock waves does not
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follow xDSW = (±c − pI/mI)t. Instead, they are shifted towards the impurity due to their
reduced velocity. Turning to long times, t > 600 mB

h̄n2
0
, a sizable depletion of the BEC density

in the vicinity of the impurity, xB = 0 (see Figure 6c), appears indicating the formation of
the polaron.

Figure 6. Dynamics of an initially supersonically moving impurity. (a–c) Spatiotemporal evolution of

the bath-impurity correlation function, ρ
(2)
IB (0; xB), for a quench to g f

BI = 0.07h̄2n0/mB and pI = 1h̄n0.
The inset of (a) provides a magnification of the corresponding bath-impurity correlation function in
the vicinity of the impurity. The mass of the impurity is provided in the corresponding labels, while
gBB = 0.1h̄2n0/mB, NB = 3200 and L = 3200n−1

0 . The light dashed lines indicate xI = (±c− pI/mI)t
and the dark dashed lines in (a) correspond to xI = (±1 − β f )ct + x0, with β f = 0.7464 the final
velocity of the polaron and x0 = 64n−1

0 an offset selected for illustration purposes. (d) The time

evolution of ρ
(2)
IB (0; xB), for the same parameters as in (a) except for g f

BI = 1h̄2n0/mB. The trajectories
indicated by the dashed lines correspond to xI = (±1 − β f )ct, with β f = 0.08.

By invoking the results of Figure 6b,c, we can interpret the initial stages of the dynam-
ics, t < 100 mB

h̄n2
0
, of Figure 6a (referring to mI = mB) as the formation of a quasi-stationary

supersonic BEC flow pattern and its decay when the velocity of the impurity becomes lower

than vb. After a transient time 100 < t h̄n2
0

mB
< 400 where the polaron forms and slows down

due to the drag-force it experiences, an equilibrium polaron state is reached for t > 400 mB
h̄n2

0
where the drag-force is nullified, similarly to the case of an initially subsonic impurity.

Finally, we comment that the dynamics of the system exhibit similar behavior as the
one observed in Figure 6a, as long as, the interspecies interaction strength, gBI , is sufficiently
weak. Indeed, it is known [93,146] that for larger interspecies interactions (or equivalently
the barrier heights) the velocity threshold for the formation of stationary supersonic flow,
vb, increases. In addition, the amplitude of the drag-force, Equation (19), is proportional
to gBI , yielding a rapid deceleration of the impurity for large interspecies interactions.
Accordingly, for strong bath-impurity repulsions, no stationary supersonic flow can be
approached during the dynamics, since both the threshold vb increases and the deceleration
of the impurity becomes more prominent. In this case, the dynamics of supersonically
moving impurities is qualitatively similar to the regime pI ≈ mIc, compare Figure 6d to
Figure 4b.

6. Conclusions

We have examined the stationary and dynamical properties of the 1D Bose polaron
in the absence of external confinement. It has been argued that, the stationary properties
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of the Bose polaron can be reliably evaluated within the GA approach for the case of a
weakly interacting Bose gas [55–57,59]. Within this approximation, all non-trivial bath-bath
correlations are neglected and the bath-impurity two-body correlations are variationally
optimized. By comparing with the correlated MCTDHB approach, we verify that the GA
adequately captures important properties of the polaron such as its energy, effective mass,
and the bath-impurity two-body correlation profiles. However, it is found that the residue
is overestimated within GA as it neglects the quantum depletion of the BEC background.
Importantly, regarding a moving impurity, we have demonstrated that the character of
the equilibrium many-body state crossovers from a polaronic quasi-particle to a collective
excitation, having the form of a dark-bright soliton. Indeed, for small interactions and
momenta, a polaron is generated and characterized by a localized depletion of the two-body
bath-impurity correlation when the corresponding particles are in close proximity. In the
opposite case of strong interactions or large momenta, the state of the mixture is similar to
a stationary dark-bright soliton.

Regarding the dynamical response of the system we show that the phenomenon of the
temporal orthogonality catastrophe which has been originally observed in confined polaron
systems [79,80,82,83] generalizes to the homogeneous case (see also [58]). In all cases, the
system approaches an equilibrium polaron state in the long-time dynamics accompanied
by additional excitations induced by the quench. In particular, for a static impurity, the
many-body wavefunction of the system becomes orthogonal to the corresponding non-
interacting one for long timescales, despite the fact that the corresponding polaron state
possesses a finite overlap to the non-interacting one [59]. For moving impurities the
temporal orthogonality catastrophe is more pronounced since the drag force leads to
the deceleration of the impurity. Dispersive shock wave structures play an important
role in the quenched polaron dynamics as they provide the means to transfer the excess
energy due to the quench away from the spatial extent of the impurity allowing for the
eventual relaxation of the system to an equilibrium polaron configuration. Even in the
case of a supersonically moving impurity, a final equilibrium polaron configuration is
reached. However, the timescale needed for the slow-down of the impurity depends
crucially on its mass. The emission of these non-linear structures in the time-evolution
highlights the importance of non-linear and non-perturbative processes for understanding
the dynamics of impurity systems. In addition to the above, the generality of the temporal
orthogonality catastrophe mechanism for abrupt interaction quenches mandates a different
experimental protocol relying on adiabatic transfer to the polaron configuration [80] for
realizing strongly interacting Bose polaron states. Our results can be experimentally probed
in setups employing one-dimensional gases with ring confinement [108,109] or embedded
in a box potential [110–113], provided that the ring or box length is much larger than
the healing length of the BEC. Note also, that the quench scheme analyzed here can be
experimentally realized by employing a radiofrequency spectroscopy protocol in a similar
manner to [29,79,82,83]. Here the impurity is transferred from a hyperfine state that is non-
interacting to a state that is interacting with the medium by a strong π/2-pulse resonant
with the corresponding transition.

There are several avenues for further research that can be pursued in future studies. In
particular, all the results presented herein refer to the weak interaction regime of the Bose
gas where its state can be well approximated as a BEC and its excitations treated within
the Bogoliubov approximation. For stronger bath-bath interactions, where the elementary
excitations of the Bose gas do not follow the Bogoliubov approximation [120], it is intriguing
to examine the applicability of the GA approach and its limitations. In addition, in this
interaction range particle-hole excitations, namely the type II excitations of the Lieb-Liniger
model [119], become significant and it is therefore interesting to inspect whether they
contribute to the modification of the polaronic quasiparticle or the emergence of a distinct
type of excitations. Our findings indicating the importance of non-linear dynamics for char-
acterizing the fate of the polaron might also be important for the case of higher dimensions,
where recent studies indicate the possibility of the temporal orthogonality catastrophe
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[60,61]. This is particularly important since phenomena related to pattern formation and the
emergence of drag force are well known for two- and three-dimensional systems [121]. For
instance, the creation and dynamics of structures such as oblique solitons and vortices [143]
might be relevant for understanding the quench induced dynamics of the Bose polaron in
two dimensions and the temporal orthogonality catastrophe in such systems.
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Appendix A. Bosonic Momentum Renormalization

To appreciate the physical context of the unconventional boundary conditions of
Equation (7) we consider a system confined in a 1D ring of perimeter L � ξ. In this case
the phase of ψL(r) satisfies ϕL(r) = ϕL(r + L) and therefore the solution of Equation (7)
cannot be embedded in this finite system. However, the system for |r| � ξ, should behave
in a similar manner to Equation (7), since the boundary conditions should not alter the
behavior of the system at this spatial scale. In particular, the convergence of ρ

(2)
IB (0; xB) to

the limit L → ∞ is observed already for L = 800n−1
0 , see Figure A1a. This implies that also

in this setting a phase shift occurs. Indeed, such phase shifts in the vicinity of the impurity
can be observed for r ≈ 0 in the numerical solution of Equation (6) for a system confined in
a ring of finite perimeter, see Figure A1b.

Figure A1. Convergence of the GA Bose polaron solution to the N, L → ∞ limit. (a) Bath-impurity

correlation function, ρ
(2)
IB (0; xB) for gBI = 1h̄2n−1

0 /mB, gBB = 0.1h̄2n0/mB, pI = 0.1h̄n0 and mI = mB

but different ring lengths L (see legend). In order to keep n0 = 1 in our calculations, we demand

NB = n0L, while the spatial region |xB| > 60n−1
0 is not depicted, since ρ

(2)
IB (0; xB) ≈ ρ

(2)
IB (0; 60n−1

0 ).
(b) The phase profile, φ(xB) = arg(ψ(xB)), of the solutions for the above mentioned parameters and
for the same varying values of L.

107



Atoms 2022, 10, 3

To compensate for this phase shift a phase gradient appears in the ring solution at
r � ξ so that ϕL(±L/2) = 0. Notice that this phase gradient corresponds to a flow of the
BEC counteracting the one stemming from the polaron and hence the former is referred
to as the counterflow in the following. This effect is captured in Figure A1b by examining
different values of L. In addition, it can be clearly seen that this gradient decreases for
increasing L and therefore in the case that L → ∞ the slope of this gradient is nullified.
Importantly, this alteration of the phase profile in the case of finite systems, results in a
contribution to the bath momentum since the latter is defined as

pB = −ih̄NB

∫
dr ψ∗(r)

dψ(r)
dr

≈ h̄
∫

dr n(r)
dϕ(r)

dr
, (A1)

where we have employed that ψ(r) =
√

n(r)/NBeiϕ(r) and assumed that dn(r)
dr = 0 in the

spatial extent where the counterflow occurs, r � ξ. Since the phase gradient occurs for large
r � ξ, where n(r) → n0 and dϕ(r)

dr ≈ constant, its momentum contribution is finite and char-
acteristic of the phase difference created by the solution Δϕ = ϕ(r = L/2)− ϕ(r = −L/2).
In particular, as evident in Figure A1b we can approximate dϕ(r)

dr = −Δϕ
L . The above imply

that the momentum of the system in the thermodynamic limit L → ∞ is shifted by a finite
amount from the result obtained by integrating the wavefunction of Equation (7) such that

pB = −ih̄NB

∫ +∞

−∞
dr ψ∗(r)

dψ(r)
dr

−h̄n0Δϕ︸ ︷︷ ︸
≡pb.c.

. (A2)

The term pb.c. = −h̄n0Δϕ is a characteristic shift caused by the unconventional bound-
ary conditions of the solution, Equation (7), and should always be added to the “bare” part
stemming from the integration of the corresponding wavefunction. This “renormalization”
of the bosonic momentum is well-known in the literature, for a more detailed discussion
we refer the interested reader to Ref. [121].

Appendix B. The Impact of the Interspecies Interaction Potential

As discussed in the main text, dispersive shock wave excitations are emitted from
the spatial regime of the impurity following an interspecies interaction quench. Here we
will elaborate on the origin of such excitations by comparing the case of a zero-range
δ-shaped interaction potential with finite width ones. The key to understand the emission
of non-linear patterns at initial times is the concept of phase imprinting and the relation of
the phase of the BEC with its flow. It is well known [43,80] that the typical time-scale for
the formation of excitations in a BEC is of the order of ξ/c ∼ h̄/μ, where ξ, c and μ are the
healing length, speed of sound and chemical potential of the BEC respectively. Therefore,
the bath atoms cannot react to any change of the system parameters occurring much faster
than this time scale.

Similarly, to Ref. [80] this allows us, for t � h̄/μ, to neglect the effect of terms
proportional to ∂

∂rk
appearing in the Hamiltonian ĤLLP, Equation (2). Within the GA the

above imply that the equation of motion of Equation (6) reduces to

ih̄
∂

∂t
ψ(r; t) =

[
VBI(r) + gBB|ψ(r; t)|2︸ ︷︷ ︸

≈μ

−μ

]
ψ(r; t), (A3)

which can be solved yielding a time-evolution ψ(r; t) = e−
i
h̄ VBI(r)tψ(r; 0) for the variational

single-particle wavefuction of the bath. In this solution, a spatially dependent shift of the
BEC phase proportional to the local value of the interaction potential appears. The phase
of the BEC wavefunction, and hence the above mentioned shift, is important because it
dictates the local velocity of the BEC flow according to
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vsuperflow(r; t) ≡ h̄
mB

∂

∂r
ϕ(r; t)

t�h̄/μ
=

1
mr

(
−∂VBI(r)

∂r

)
t, (A4)

where ϕ(r; t) = arg(ψ(r; t)). Equation (A4) indicates that steep interaction potentials, lead
to large values for the flow velocity of the BEC and importantly also large gradients of
the flow velocity. When this relative flow of the BEC becomes comparable to the speed of
sound c then the superfluidity of the medium is broken and additional excitations emerge,
according to the Landau criterion for superfluidity. This procedure for inducing non-linear
excitations, commonly referred to as phase imprinting, has been widely employed experi-
mentally for the creation of non-linear structures such as vortices and solitons [137–139].
Importantly for our discussion, the generation of dispersive shock waves by rapidly switch-
ing on a repulsive interaction potential has been demonstrated in Ref. [92]. In that work,
the steepness of the perturbing potential was controlled by keeping its width fixed and in-
creasing its amplitude. Below we will take a complementary approach where the steepness
is increased by keeping gBI =

∫
dr VBI(r) fixed while reducing the overall width of the

interspecies interaction potential. More specifically, we compare VBI(r) = gBIδ(r) with the
Gaussian-shaped potential

VBI(x) =
gBI√
2πw

e−
x2

2w2 , (A5)

where w parametrizes the finite width of the interaction. Note here that also Equation (A5)
reduces to the δ-function limit for w → 0. In this context our discussion below outlines the
extrapolation of the concepts developed in [92] to the case of potentials with an infinitesi-
mal range.

Figure A2 compares the polaron formation dynamics after a quench of the bath-
impurity interaction strength to g f

BI = 0.1h̄2n0/mB = gBB for NB = 1600 bath atoms
in a ring with L = 1600n−1

0 for the different interaction potentials. Here, an initially
static impurity, pI = 0, is considered possessing mI = mB. Figure A2a presents the
time-evolution of ρ

(2)
BI (0; xB) for a Gaussian interaction potential, Equation (A5), with

width w = 4n−1
0 � ξ ≈ 3.16n−1

0 . In particular, Figure A2a demonstrates the emission of
dispersive shock waves, which are moving with velocity proximal to c (see the dashed
lines in Figure A2a). The oscillatory density pattern associated with these structures can
be clearly seen in Figure A2b for t = 300 mB

h̄n2
0

and |xB| > 100n−1
0 . It is associated with

a corresponding oscillatory phase as demonstrated in Figure A2c. These results are in
agreement with previous studies on dispersive shock wave patterns [91,94]. The behavior
of the system for short times, t = 0.1 mB

h̄n2
0
� ξ/c ≈ 7.07 mB

h̄n2
0

elucidates the mechanism

for the generation of these structures, see the insets of Figure A2b,c. In particular, the
expected profile

ϕ(xB, t) = − t
h̄

VBI(x) (A6)

describes well the phase of the system, see the inset of Figure A2c. Also as a consequence
of Equation (A4), we can observe that even at such short times a small portion of the BEC
atoms (notice the 10−6 scale in the inset of Figure A2b) have already moved away from
the impurity following the gradient of the phase. The above outcomes are in line with
the experiment of Ref. [92]. Indeed, due to the phase imprinting at initial times, the bath
particles are forced to move away from the impurity building up the wavepackets seen
at xB ≈ 5n−1

0 in the inset of Figure A2b. Since the accumulated phase, Equation (A6),
increases linearly with time the velocity of the flow-forming these wavepackets increases
and can thus reach supersonic speeds, when compared to the stationary flow away from
the impurity, leading to the formation of dispersive shock waves. As the steepness of the
potential increases by reducing the value of w this phenomenon is amplified due to the
faster increase of the superflow velocity in the spatial extent of the impurity, and therefore
in the δ-potential limit it becomes maximal motivating the occurrence of dispersive shock
wave structures, also in this case.
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Figure A2. Emergence of dispersive shock waves for short-range interaction potentials. (a) Spatiotem-

poral evolution of ρ
(2)
IB (0; xB) for g f

BI = 0.1h̄2n0/mB = gBB, pI = 0, L = 1600n−1
0 and NB = 1600

in the case that a Gaussian bath-impurity interaction potential with width w = 4n−1
0 is employed.

(b) Same as (a) but for the particular time instant t = 300mB/(h̄n2
0). (c) the phase profile correspond-

ing to (b). The insets of (b,c) correspond to t = 0.1mB/(h̄n2
0). (d–f) correspond to the same quantities

as in (a–c) respectively, calculated for the same set of parameters. However, here the bath-impurity
potential corresponds to δ-function. (g–i) the same quantities as in (a–c) but for a wider Gaussian
potential w = 20n−1

0 . The insets of (c,f,i) in addition to the GA numerical results also indicate the
approximate profile expected from the phase imprinting of the impurity potential (see text).

To verify the above expectation we next focus on the case of the δ-potential. The phe-
nomenology in that case is similar to the Gaussian-potential one (see Figure A2d), which is
also supported by examining the density, Figure A2e, and phase, Figure A2f, profiles e.g.,
for t = 300 mB

h̄n2
0
. In the δ-potential case, we cannot, however, find evidence for the mecha-

nism of phase imprinting since for t = 0.1 mB
h̄n2

0
� ξ/c ≈ 7.07 mB

h̄n2
0
. Indeed, the density of the

BEC in the vicinity of the impurity is significantly disturbed (see the inset of Figure A2e)
while the corresponding phase does not match the expected profile of Equation (A6). To ex-
plain these apparent discrepancies one has to consider the δ-potential as the asymptotic
limit of a progression of VBI(x) characterized by reducing width. Indeed, as the width of
the potential, w, decreases, phase imprinting and the consequent generation of dispersive
shock waves occur for smaller times. In the asymptotic case of a δ potential, these pro-
cesses are exhibited within an extremely small timescale resulting in the signatures of the
dispersive shock waves already appearing for t = 0.1 mB

h̄n2
0
, compare Figure A2e,f with their

corresponding insets.
To make a more explicit connection to the experimental results of Ref. [92], let us briefly

comment on the case of a potential with very large width, w = 20n−1
0 � ξ. In this case, the

behavior of the system is qualitatively different than for the previous cases, see Figure A2g,
as no dispersive shock waves are produced. Indeed, the emitted excitations refer to density
modulations of the BEC within a length scale much larger than ξ. Because of this and due
to the linearity of the Bogoliubov dispersion relation for quasimomenta k < 1/ξ, we can
conclude that such excitations are a superposition of sound waves, propagating away from
the impurity with a group velocity given by the speed of sound [147,148]. The smoothness
of the corresponding density profile can be verified by observing the density and the phase
of the BEC at t = 300 mB

h̄n2
0
, see Figure A2h,i respectively. At first glance, the reason behind the

generation of these excitations is not evident since for initial times the structures emerging
in the density and phase of the BEC are qualitatively equivalent to the case of w = 4n−1

0 ,
compare the insets of Figure A2b,c with Figure A2h,i respectively. Here the significant
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quantitative difference in the amplitude of these patterns is the cause for the qualitatively
different long-time behavior that these two systems exhibit. In particular, for w = 20n−1

0 ,
the variation of the phase is much smoother and it increases much slower in time than in
the case of w = 4n−1

0 . This allows the bath particles to travel away from the impurity at
much smaller speeds than in the case of a narrower potential and therefore the velocity of
the superflow can smoothly decay to zero as we get away from the impurity. Consequently,
no non-linear excitations are produced since the Landau criterion is never violated and
the only structure that gets emitted is a small density disturbance corresponding to the
above-mentioned sound waves.

Appendix C. Details on the Computational Techniques

To examine the non-equilibrium dynamics of the system we numerically solve the GA
equation of motion, Equation (6), for a finite number of particles so that n0 = NB/L = 1.
Recall that in this case the chemical potential, μ(t), corresponds to a Lagrange multiplier,
which has to be evaluated by demanding that the particle number is conserved. The process
outlined above, allows us to cast the equation-of-motion in the single-particle Schrödinger
type equation

ih̄
∂

∂t
|ψ(t)〉 =

(
Ĥ[ψ(r; t)]− 〈ψ(t)|Ĥ[ψ(r; t)]|ψ(t)〉

)
|ψ(r; t)〉, (A7)

with Ĥ[ψ(r; t)] = − h̄2

2mB
∂2

∂r2 +
ih̄2k0(t)

mI
∂
∂r + gBIδ(r) + gBB(NB − 1)|ψ(r; t)|2, denoting the ef-

fective single-particle Hamiltonian and ψ(r) ≡ 〈r|ψ(t)〉. Then the effective Schrödinger
equation of Equation (A7) is discretized by employing an exponential discrete variable rep-
resentation [149]. For the corresponding time-evolution, we use the standard fourth-order
Runge-Kutta integrator. Notice here, that the employed basis set intrinsically introduces
periodic boundaries at both ends of the potential. An advantage of the exponential discrete
variable representation is that the first and second derivative matrices of the correspond-
ing basis refer to the Fourier ones, allowing us to employ the Fast-Fourier-Transform
algorithm for numerical efficiency. In place of the δ-potential an approximation of it is
employed, namely

[VBI ]j =
gBI
Δx

δj, n
2
, (A8)

where δjk is the Kronecker delta, j = 0, 2, ..., n − 1 represents the index of each of the n grid

points located at xj = − L
2 + jL

n , and Δx = L/n is the grid spacing. Within the discrete vari-
able representation framework, it can be shown that the approximation for the δ-potential of
Equation (A8) is variationally optimal. To estimate the validity of our numerical results, we
repeat the calculations for different spatial, Δx, and temporal, Δt, discretizations. We have
verified that ψ(r; t) for time-intervals t < 400 becomes independent of the discretization for
Δt = 0.0005 and Δx = 25/256, where dimensionless units h̄ = mB = n0 = 1 are employed.

To estimate the impact of correlations in the ground state properties of the Bose
polaron we utilize the Multi-Layer Multi-Configuration Time-Dependent Hartree method
for atomic mixtures (ML-MCTDHX) [106]. The key idea of ML-MCTDHX lies in the usage
of a time-dependent and variationally optimized many-body basis set, which allows for the
optimal truncation of the total Hilbert space. Since here we simulate only the Bose gas part
of the many-body wavefunction the ML-MCTDHX method, reduces to the simpler Multi-
Configuration Time-Dependent Hartree method for bosons (MCTDHB) approach [125,126].
Within the latter the ansatz for the bath many-body wavefunction, |ΨB(t)〉, is taken as a
linear combination of time-dependent permanents |n1, n2, . . . , nM(t)〉,

|ΨB(t)〉 = ∑
n1,n2,...,nM |∑M

k=1 nk=NB

A�n(t)|n1, n2, . . . , nM(t)〉, (A9)
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with time-dependent weights A�n(t). In turn, each time-dependent permanent is expanded
in terms of M time-dependent variationally optimized single-particle functions φk(r; t),
with k = 1, . . . , M, as follows

〈r1, . . . , rNB |n1, n2, . . . , nM(t)〉 =(
M

∏
k=1

nk!

)− 1
2 NB !

∑
i=1

n1

∏
j=1

φ1(rPi(j); t)
n1+n2

∏
j=n1+1

φ2(rPi(j); t) · · ·
NB

∏
j=1+∑M−1

k=1 nk

φM(rPi(j); t),
(A10)

where Pi is the operator performing the ith permutation of {1, 2, . . . , NB}. For our numer-
ical implementation the single-particle functions are expanded within a primitive basis
corresponding to the exponential discrete variable representation that we also use in the
GA case. The time-evolution of the NB-body wavefunction under the effect of the Hamilto-
nian ĤLLP reduces to the determination of the A-vector coefficients and the single-particle
functions, which follow the variationally obtained equations of motion [125,126]. Let us
note here that in the limiting case of M = 1, the method reduces to Equation (A7), while for
the case of M = Mp, this method is equivalent to a full configuration interaction approach.

To obtain the ground state within MCTHDB we rely on the so-called improved relax-
ation scheme. This scheme can be summarized as follows:

1. initialize the system with an ansatz set of single-particle functions φ
(0)
k (r), where

k = 1, . . . , M,
2. diagonalize the Hamiltonian within a basis spanned by the single-particle functions,
3. set the eigenvector with the lowest energy as the A(0)-vector,
4. propagate the single-particle functions in imaginary time within a finite time interval dτ,

5. update the single-particle functions to φ
(1)
k (r) and

6. repeat steps 2–5 until the state coefficients converge within the prescribed accuracy.

For the diagonalization at step 2, the Lanczos approach is employed and for the
propagation of φk(r; τ) at step 4, we employ the Dormand-Prince integrator. For ensuring
the consistency of the truncation with respect to M, we have compared our M = 3 and
M = 4 calculations verifying that the results presented in Figure 3 differ at most by 0.1%.
Our results shown in the main text correspond to M = 4.

Notes

1 To avoid confusion, since within the common Gross-Pitaevskii equation for an ideal BEC all correlations are neglected, here we
will instead adopt the term GA [3] when referring to the technique employed in Refs. [55–65].

2 The lower bound corresponds to a 6Li impurity immersed in a 176Yb bath and the upper bound to a 176Yb impurity immersed in
a Bose medium of 7Li.

3 Importantly, by explicitly evaluating the Hessian matrix for the numerical solutions presented in Figure 2 we can prove that(
HEp

)
ij
=

∂2Ep
∂ai∂aj

is positive definite , where i, j = 1, 2, with a1 = β, a2 = r0. This supports the stability of the solution within the

subspace spanned by Equation (7).
4 The bath density is expelled from the vicinity of the impurity and accumulates in the spatial region away from it xB > 10n−1

0 , see
also Figure 3c. This density increase leads to greater kinetic energy scaling quadratically with the bath density. However, since
the number of expelled atoms is roughly constant as the perimeter of the ring L increases this correction becomes negligible for
L → ∞.

5 Note that the residue of polaronic quasiparticles can be monitored experimentally via radiofrequency spectroscopy [27,80].
6 This means that due to the presence of the potential, the phase of the BEC shifts, leading to a flow of the bosonic density away

from the repulsive potential. Note here that the amplitude of this phase disturbance increases with the decrease of the width of
the perturbing potential. This effect is maximized for a δ-shape as the one corresponding to the bath-impurity interactions.

7 This term denotes the excitation of the BEC due to the locally supersonic motion of the impurity. This effect is analogous to the
emission of electromagnetic radiation when electrons move through a dielectric medium with a velocity greater than the phase
velocity of light.
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8 Note here that the phase of ψ(r; t) is shifted so that arg[ψ(r = 0; t)] = 0 and the rest of the parameters in Equation (7) are fixed to
their corresponding values in the thermodynamic limit, namely ξ = (0.1)−1/2n−1

0 .
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Abstract: Two-dimensional semiconductors inside optical microcavities have emerged as a versatile
platform to explore new hybrid light–matter quantum states. A strong light–matter coupling leads
to the formation of exciton-polaritons, which in turn interact with the surrounding electron gas to
form quasiparticles called polaron-polaritons. Here, we develop a general microscopic framework to
calculate the properties of these quasiparticles, such as their energy and the interactions between
them. From this, we give microscopic expressions for the parameters entering a Landau theory for the
polaron-polaritons, which offers a simple yet powerful way to describe such interacting light–matter
many-body systems. As an example of the application of our framework, we then use the ladder
approximation to explore the properties of the polaron-polaritons. Furthermore, we show that they
can be measured in a non-demolition way via the light transmission/reflection spectrum of the
system. Finally, we demonstrate that the Landau effective interaction mediated by electron-hole
excitations is attractive leading to red shifts of the polaron-polaritons. Our work provides a systematic
framework to study exciton-polaritons in electronically doped two-dimensional materials such as
novel van der Waals heterostructures.

Keywords: polariton; Fermi polaron; Landau theory; quasiparticle interactions

1. Introduction

Semiconductors in optical microcavities constitute a rich setting for exploring hybrid
light–matter quantum systems with potential optoelectronic applications [1,2]. An im-
portant example is the case of exciton-polaritons, which are quantum mechanical super-
positions of photons and bound electron-hole pairs confined in a two-dimensional (2D)
semiconductor layer inside an optical cavity [3,4]. An appealing feature of polaritons is
that they inherit the properties of both their fundamental constituents, thereby providing
a tunable way to transfer attributes from matter to light, and vice versa. Hence, not only
can they be selectively excited, controlled and detected by optical means, but they also
possess strong interactions that introduce novel non-linear optical effects [5,6]. As exciton-
polaritons can be considered bosons for extended temperature and density ranges, they
exhibit effects such as Bose–Einstein condensation and superfluidity [7–14], although the
pump-loss nature of the experiments leads to a number of important differences compared
to the equilibrium condensates.

Atomically thin transition-metal dichalcogenids (TMDs) [15–17] are among the 2D ma-
terials that have been in the spotlight in recent years. They are composed by two hexagonal
planes of a transition metal atom M (Mo, W) that covalently binds with chalcogen atoms (S,
Se, Te) to form an hexagonal lattice with a trigonal prismatic arrangement (MX2) [18–20]. It
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has been found that atomically thin layers of TMDs are thermodynamically stable and that
they are direct-gap semiconductors from the visible to the infrared spectrum [17,19,21,22].
The extrema of the bands are located at the finite momentum K+ (K−) points in the hexag-
onal Brillouin zone and connected by a broken inversion symmetry. Together with a strong
spin-orbit coupling (SOC) this leads to valley-spin locking, i.e., the coupling between the
valley and spin degrees of freedom [23–25]. As a result, there are valley selective optical
rules [17,26,27], which, together with strong light–matter coupling [28,29] offer a promising
playground for spin optoelectronics and valleytronics [24,30,31].

The large binding energy of excitons in TMDs as compared to other microcavity
semiconductors such as quantum-wells [32–34], combined with the possibility to control
the electron density in the different valleys, opens up exciting new venues to explore
Bose–Fermi mixtures in a hybrid light–matter setting [35–37]. This has stimulated a num-
ber of studies regarding the properties electron–exciton mixtures and their coupling to
light [38–48]. In particular, the emergence of new quasiparticles, the so-called Fermi-
polaron-polaritons have been observed [49]. They can be roughly described as a coherent
superposition of photons and Fermi polarons, which are formed by the polaritons interact-
ing with the surrounding electron gas (2DEG) in analogy with what is observed in atomic
gases [50–57].

Two recent experiments have observed large energy shifts of these polaron-polaritons
due to the injection of itinerant electrons in a monolayer TMD indicating the presence of
induced interactions between them [36,58], which opens the door to exploring interacting
quasiparticles in a new hybrid light–matter setting. Landau’s theory of quasiparticles
stands out as a powerful yet simple framework to precisely describe such interacting
many-body systems, including their single particle and collective properties both in and
out of equilibrium [59–61]. In light of this, an important question concerns how to calculate
the parameters entering such a Landau theory for polaron-polaritons.

Inspired by this, we present here a theoretical framework for polaron-polaritons
in a 2DEG in terms of Green’s functions. Moreover, we show how this can be used to
calculate the parameters of a Landau theory of polaron-polaritons, which encompasses the
strong light–matter coupling. Apart from assuming that the concentration of the polaron-
polaritons is much smaller than that of the 2DEG and that equilibrium theory can be
applied, our theory is completely general. We then give a concrete example of these results
by employing an approximate many-body theory, the so-called ladder approximation,
which includes strong two-body correlations leading to a bound state between an exciton
and an electron, i.e., a trimer. Using this, we explore the different polaron-polariton
branches and demonstrate how the transmission/reflection spectrum of the system offer a
new experimental way to determine the energy and residue of the underlying polarons
in a non-demolition way. The energy of the polaron-polaritons is then shown to decrease
with their concentration corresponding to an attractive Landau quasiparticle interaction
mediated by particle-hole excitations in the 2DEG.

The remainder of the manuscript is structured as follows. In Section 2, we introduce
the system and discuss the formation of the hybrid light–matter polaritons. In Section 3,
we turn our attention to the effects of interactions and show how this can be described mi-
croscopically. We then connect this to Landau’s quasiparticle theory providing microscopic
expressions for the quasiparticle energies and their effective interactions. In Section 4, we
apply these results to the ladder approximation and analyse the predicted properties of the
quasiparticles and the interactions between them. We also propose a new way to measure
these via the light transmission/reflection spectrum. Finally, in Section 5 we present our
conclusions and offer some perspectives.

2. System

We consider a 2D semiconductor in an optical microcavity. Photons in the cavity are
strongly coupled to excitons in the semiconductor and the excitons in turn interact with a
2D electron gas (2DEG). The Hamiltonian for the system is Ĥ = Ĥ0 + ĤI , where
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Ĥ0 = ∑
k

[
εek ê†

k êk + εxk x̂†
k x̂k + εck ĉ†

k ĉk

]
+ ∑

k

Ω
(

x̂†
k ĉk + ĉ†

k x̂k

)
(1)

are the non-interacting and the light–matter coupling terms. Here x̂†
k, ĉ†

k, and ê†
k, creates an

exciton, photon, and electron, respectively, with two-dimensional crystal momentum k.
The energy of these particles is εxk = k2/2mx, εck = k2/2mc + δ, and εek = k2/2me, where
mx, mc, and me are their masses and δ is the detuning between the exciton and photon
energies at zero momentum. We set h̄ = kB = 1 throughout. For concreteness, we take
mc = 10−5mx, mx = 2me and assume the light–matter coupling Ω to be real. The energy
offset of the electrons will be absorbed into their chemical potential. It follows from the
optical and valley selection rules of TMDs [15–17] that polarised photons couple to excitons
in a specific spin and valley state, which in turn predominantly interacts with the 2DEG
in the opposite valley. Here, we focus on a given spin and valley and therefore suppress
those degrees of freedom in Equation (1) and onwards. The excitons are assumed to have a
binding energy much larger than any other relevant energy scale in the system so that they
can be considered as point bosons. For high exciton densities or localised excitons, their
composite nature becomes important and the point boson approximation breaks down,
leading to changes in the effective light–matter interaction and saturation effects [36,46].

The non-interacting Hamiltonian equation, Equation (1), is readily diagonalised by
means of a Hopfield transformation [3][

x̂k

ĉk

]
=

[Ck −Sk

Sk Ck

][
L̂k

Ûk

]
(2)

where L†
k (U†

k) are the creation operators of lower and upper polaritons, respectively, with

momentum k. The corresponding Hopfield coefficients are C2
k = (1 + δk/

√
δ2

k + 4Ω2)/2

and S2
k = 1 − C2

k with δk = εck − εxk, and

εσk =
1
2

(
εck + εxk ±

√
δ2

k + 4Ω2
)

, (3)

giving the energy of the standard upper σ = U and lower σ = L exciton-polaritons in
the absence of the Fermi sea. Interactions between the excitons and electrons in opposite
valleys are described by the term

ĤI =
1
A ∑

q,k,k′
Vq ê†

k+q x̂†
k′−q x̂k′ êk, (4)

where A is the area of the system. For small Fermi energies and relevant momenta the
electron–exciton interaction can be approximated as a contact one Vq � T0 [49]. This is
equivalent to treating the exciton-polaritons as point-like bosons. Additionally, we assume
that the Coulomb interaction between the electrons are included by a renormalisation of
their dispersion using Fermi liquid theory [62,63], and we furthermore neglect the direct
interaction between excitons. For small densities, the latter is rather weak due to the large
binding energy of the excitons, which is typically two orders of magnitude larger than the
rest of energy scales [32–34,64], and it can easily be included at the mean-field level.

3. Fermi Polaron-Polaritons

We now consider the situation where the density of exciton-polaritons is small com-
pared to the electron density. In this case, the effects of the exciton-polaritons on the
2DEG can be neglected and the problem reduces to that of mobile bosonic impurities in an
electron gas. The interaction between the exciton-polaritons and the surrounding electron
gas then gives rise to the formation of quasiparticles denoted Fermi polaron-polaritons
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or, in short, polaron-polaritons. Apart from the presence of strong light coupling this has
strong similarities to the formation of Fermi polarons in atomic gases [65]. In this section
we will describe their generic properties both from a microscopic point of view as well
as using Landau’s quasiparticle framework. We will furthermore provide precise links
between the two descriptions when appropriate. While these results are general, we will
illustrate them by using a microscopic approximated many-body theory as an example.

3.1. Microscopic Theory

Despite the fact that polariton systems are driven by external lasers, many of their
steady-state properties can be accurately described using equilibrium theory with a few
modifications, such as chemical potentials being determined by the external laser fre-
quencies [6]. We therefore employ finite temperature quantum field theory to analyse
the problem microscopically [66]. Since the electrons are unaffected by the excitons, we
can focus on the cavity photons and excitons described by the 2 × 2 exciton-photon finite-
temperature Green’s function G(k, τ) = −〈Tτ{Ψ̂k(τ)Ψ̂†

k(0)}〉, where Ψ̂k = [x̂k, ĉk]
T and

Tτ denotes the imaginary time ordering. By Fourier transformation, it can be written in
terms of the free propagator G0(k) and the proper self-energy (k) as

G−1(k) = G0
−1(k)− (k) =

[
iωl − εxk 0

0 iωl − εck

]
−

[
Σxx(k) Ω

Ω 0

]
. (5)

where k = (k, ωl), ωl = 2πlT with l = 0,±1, . . . is a bosonic Matsubara frequency, T is the
temperature, and Σxx(k) is the exciton self-energy. As usual, one can obtain the retarded
Green’s function by analytic continuation G(k, ω) = G(k, iωl)|iωl→ω+i0+ .

In the absence of light, the problem is equivalent to impurity particles interacting
with a Fermi sea, which is known to lead to the formation quasiparticles called Fermi
polarons [65,67,68]. The coupling to light turns these polarons into polaron-polaritons,
and in analogy with Equation (3), the energy of these quasiparticles is given by the self-
consistent solutions of

εσk =
1
2

[
εck + εxk + Σxx(k, εσk)±

√
[δk − Σxx(k, εσk)]

2 + 4Ω2
]

. (6)

Here, the subindex σ denotes the different quasiparticle branches emerging in the
system. Also, a new set of Hopfield coefficients arise giving the matter and photon
components of the polaron-polaritons. As in Equation (2) they are

C2
kσ =

1
2
+

εck − εxk − Σxx(k, εσk)

2
√
[εck − εxk − Σxx(k, εσk)]

2 + 4Ω2
and S2

kσ = 1 − C2
kσ. (7)

3.2. Landau Theory

Landau’s description of macroscopic systems in terms of quasiparticles is a highlight
in theoretical physics and provides a remarkably simple yet accurate description of oth-
erwise complex many-body systems [59,60]. This includes both their single-particle and
collective equilibrium and non-equilibrium properties, and it is therefore important to
understand how it can be applied to polaron-polaritons. We now address this question
and provide precise links between Landau’s framework and the microscopic theory in the
previous section.

The foundation of Landau’s theory idea is to write the energy E of a system in powers
of its low energy excitations, which have particle-like properties, i.e., the quasiparticles
as [61]

E = Eg + ∑
q,σ

ε0
kσnkσ +

1
2A ∑

k,k′ ,σ,σ′
fkσ,k′σ′nkσnk′σ′ + ..., (8)

122



Atoms 2021, 9, 81

where Eg is the ground state energy of the system and ε0
kσ is the quasiparticle energy.

The distribution function in a given quasiparticle branch σ is given by nkσ, and fkσ,k′σ′

is the interaction between quasiparticles in branches σ and σ′ with momenta k and k′.
In principle, there are terms of higher order in nkσ in Equation (8), which correspond to
three-body interaction terms and higher. However, such terms are usually not important
for realistic densities and it is standard in Landau’s quasiparticle theory to truncate the
series at quadratic order corresponding to including two-body interactions, as we do here.

In the present case, the quasiparticles are the polaron-polaritons and their energy
ε0

kσ are given by solutions of Equation (6) taking the zero impurity limit, i.e., a vanishing
quasiparticle distribution function nkσ = 0. The ground state of the system is simply the
2DEG with no polaron-polaritons present with the energy AneεF/2 where ne is the density
of the 2DEG with Fermi energy εF. When the number of quasiparticles is non-zero, it
follows from Equation (8) that their energy is

εkσ = ε0
kσ +

1
A ∑

k′σ′
fkσ,k′σ′nk′σ′ . (9)

It follows from Equation (9) that the interaction between the quasiparticles can be
found as [69]

fkσ,k′σ′

A =
dεkσ

dnk′σ′
= ZkσX 2

kσ

∂Σxx(k, εkσ)

∂nk′σ′
, (10)

where

Z−1
kσ = 1 −X 2

kσ∂ωΣxx(k, εkσ) (11)

is the residue of a polaron-polariton in branch σ with momentum k and we have used
Equation (6) in the second equality. Here, Xkσ = Skσ when the quasiparticle energy is
determined using the +

√. . . version of the upper polariton poles in Equation (6), whereas
Xkσ = Ckσ when the −√. . . version of the lower polariton in Equation (6) is used. Com-
pared to the usual microscopic many-body formula for Landau’s quasiparticle interac-
tion [70,71], Equation (10) has the additional feature of containing the many-body Hopfield
coefficients. They reflect that it is only the excitonic part of the quasiparticles which interact
with the surrounding 2DEG.

Equations (5)–(10) provide a framework for describing polaron-polaritons in a 2DEG
microscopically and moreover show how to connect this to Landau’s quasiparticle theory.
The main assumptions are that the concentration of polaron-polaritons is much smaller
than that of the electrons so that their effects on the 2DEG can be neglected, and that we
can use equilibrium theory to describe its steady state properties. We now illustrate these
results using an approximate many-body theory.

4. The Ladder Approximation

To give a concrete example of the results in the previous section, we apply the much
used ladder approximation to describe polaritons interacting with a 2DEG. This theory has
turned out to be surprisingly accurate for mobile impurities in atomic Fermi gases [65],
which is a problem with many similarities to the one at hand. The basic idea is to include the
two-body scattering physics exactly in a many-body environment and it is thus particularly
suited to describe systems with strong two-body correlations such as molecule formation
or hard core repulsion [66]. In the present context, the molecules correspond to bound
states of an exciton and an electron, i.e., a trion, which indeed have been observed in
TMDs [35,72–78] motivating the use of this approximation. In the ladder approximation,
the exciton self-energy is given by

Σxx(k) =
T
A ∑

q
Ge(q)T (k + q), (12)
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where k = (k, iωl), G−1
e (k, iωj) = iωj − ξe

k is the electron propagator with iωj = (2j+ 1)πT
a fermionic Matsubara frequency, and ∑q denotes a sum over both Matsubara frequencies
and 2D momentum. The electron energy is taken with respect to the Fermi energy of
the 2DEG, i.e., ξek = εek − εF. In Equation (12), we have introduced the exciton–electron
scattering matrix given by [79–81]

T (k) =
1

ReΠV(k = 0, εT)− Π(k)
, (13)

where Π(k) is the in-medium exciton–electron pair-propagator

Π(k) = − T
A ∑

q
G(0)

xx (k + q)Ge(−q) = ∑
σ

∫ d2q

(2π)2 X
2
σk+q

1 + nB(ξk+qσ)− nF(ξe−q)

iωj − ξk+qσ − ξe
−q

. (14)

Here, G(0)
xx (k) = ∑σ X 2

σk/(iωl − ξkσ) is the exciton Green’s function in the absence
of interactions expressed in terms of the upper σ = U and lower polariton σ = L with
ξkσ = εkσ − μσ where εkσ is given by Equation (3). In this way, we include the hybridisation
of the exciton and the photon in the scattering matrix. Note that we have introduced the
chemical potentials μσ to account for a non-zero concentration of the polaritons described by
the Bose–Einstein distribution nB(x) = [exp(βx)− 1]−1, whereas nF(x) = [exp(βx) + 1]−1

is the Fermi–Dirac distribution for the electrons.
In deriving Equation (13) we have assumed a momentum independent exciton–electron

interaction, which is accurate for kFax
B � 1, where ax

B is the Bohr radius giving the typical
size of the exciton. Additionally, the bare coupling strength has been expressed in terms
of the energy εT of the trion in the absence of the 2DEG as ReΠV(0, εT) = T −1

0 [79–81]. At
the level of a single impurity and zero temperature, the T -matrix formalism is equivalent
to Chevy’s variational ansatz [67], which has recently been employed to explore Fermi
polaron-polaritons in TMD monolayers [49]. As we shall demonstrate below, our field-
theoretical approach is readily extended to include the effects of temperature and a non-
zero quasiparticle concentration. Such effects are usually challenging to incorporate in a
variational approach.

4.1. Zero Polaron-Polariton Density

We now discuss the properties of polaron-polaritons in the limit where their density
vanishes, which corresponds to taking nB(ξσk+q) → 0 in Equation (14). In this case,
the Matsubara sum in Equation (12) yields

Σxx(k) =
∫ d2q

(2π)2 nF(ξeq)T (k + q, iων + ξeq). (15)

In Figure 1, we show the zero momentum photonic spectral density Acc(ω) =
−2ImGcc(k = 0, ω) as a function of the detuning δ obtained by inverting Equation (5).
We use the experimentally realistic values Ω = 8 meV and εT = −25 meV [35,82]. In
Figure 1a,b we show the spectral function for increasing electron densities with εF/εT =
0.015 (ne = 8.0 × 1010) and 0.19 (ne = 1.0 × 1012), respectively. For a typical experimen-
tal temperature T ≈ 1K [58], the thermal energy remains much smaller than the Rabi
coupling (kBT/Ω ≈ 0.05), the trion binding energy, and the Fermi energy of the system.
Temperature effects are therefore expected to be negligible.
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Figure 1. Photon spectral distribution Acc(k = 0, ω) for ne = 8.0 × 1010 (εF/εT = 0.015) (a) and
ne = 1.0 × 1012 (εF/εT = 0.19) (b). We observe three quasiparticle branches L, M and U of exciton-
polaron-polaritons (red curves). The yellow solid curves correspond to the uncoupled photon and
exciton energies, while the cyan lines give the polariton branches in absence of electron–exciton
interactions. The horizontal green solid line indicates the bare binding energy of the trion εT

and the dashed yellow the binding energy in the presence of many-body correlations. (c) Size
of the Rabi coupling for the L-M branches (attractive polaron) ΩLM (blue) and the M-U branches
(repulsive polaron) ΩMU (black) as a function of the ratio εF/εT . (d) Value of the detuning where the
avoided crossings between the polaron-polariton branches occur with the same color coding as in
(c). The background colors show the 2D polaron spectral function in the absence of light. For the
calculations we employ an additional artificial broadening η/2Ω = 0.01. (e) Spectral function of the
Fermi polaron as a function of εF/εT for Ω = 0.

Let us first focus on the limit δ � |Ω|, where the photon is decoupled from the
excitons and electrons. In addition to the photon, there are two quasiparticle branches
in this limit: The so-called attractive polaron corresponding to the exciton attracting the
electrons around it giving a quasiparticle energy below the trion energy, and the repulsive
polaron corresponding to the electron repelling the electrons around it giving an energy
above zero. We see that the repulsive polaron has the most spectral weight for low electron
density with εF/εT = 0.015, whereas the attractive branch starts to gain more spectral
weight for a high electron density with εF/εT = 0.19. This is consistent with what it is
found for polarons in atomic gases, since a small electron density with εF � εT corresponds
to the so-called BEC limit and a large electron density εF � εT corresponds to the BCS limit.
For atomic gases, one indeed has that the residue of the attractive polaron approaches unity
in the BCS limit, whereas that of the repulsive polaron vanishes and vice versa in the BEC
limit [65,83].

When δ/|Ω| decreases, the photon starts to couple to the attractive and repulsive po-
larons resulting in three hybrid light–matter quasiparticle branches, which we have denoted
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as the upper U, middle M, and lower L polaron-polaritons. There are two prominent avoided
crossings between these branches as it can be seen in Figure 1a,b, and their size and position
can be understood as follows. In absence of any light–matter coupling, the impurity forms an
attractive (repulsive) polaron with energy ω

a(r)
k and residue Za(r)

k [44,65,83]. The coupling of
these polarons to the photon can be described by the photon Green’s function

G−1
cc (k, ω) ≈ ω − εck − Ω2

[
Za

k

ω − ωa
k

+
Zr

k

ω − ωr
k

]
, (16)

which is illustrated in Figure 2. It describes the repeated transitions between the photon and
the polarons by the Rabi coupling as the polaron-polariton propagates through the medium.
Equation (16) includes only the quasiparticle peaks of the exciton propagator and ignores
any many-body continuum of states in the spirit of Landau theory. From Equation (16), we
see that the matrix element giving the size of the avoided crossing of the photon branch
with the repulsive and attractive polarons is

ΩUM = Ω
√

Zr
k and ΩLM = Ω

√
Za

k, (17)

respectively. This explains why the avoided crossing for the repulsive/attractive polaron is
large/small for small electron density εF/εT = 0.015 in Figure 1a, since this corresponds to
the BEC limit where the residue of the repulsive polaron approaches unity [65,83]. In the
same fashion, the avoided crossing of the repulsive/attractive polaron is small/large for large
electron density in Figure 1b, since this corresponds to the BCS limit where the attractive
polaron has a residue close to unity and the residue of the repulsive polaron vanishes.

Figure 2. Feynman diagram for the coupling of the photon propagator (black, wavy line) to the
exciton (red line). The dotted lines represent the Rabi coupling.

To explore this further, we plot in Figure 1c the size of the two avoided crossings
extracted as the minimum energy difference between the polaron-polariton branches as a
function of the electron density. This clearly shows how ΩUM decreases with increasing
electron density, reflecting the decreasing weight of the repulsive polaron. As the BCS limit
is approached, the repulsive polaron becomes ill-defined and we cannot determine ΩUM.
Mirroring this, ΩLM increases with increasing electron density since the residue of the
attractive polaron increases as the BCS limit is approached. Since the avoided crossing of
the photon with the exciton in the absence of electrons is given by Ω, we conclude from this
that the residues of the repulsive and attractive polarons can be extracted by measuring
the size of their avoided crossings.

Furthermore, from Equation (17) we see that the position of the avoided crossings is
determined by when the energies of the attractive and repulsive polarons cross the photon
branch. To illustrate this, we plot in Figure 1d the value of the detuning where the avoided
crossings occur as a function of the electron density. We also plot the spectral function of
the polaron in a 2D Fermi gas in the absence of light coupling determined from Equation (5)
setting Ω = 0 [83] in Figure 1e. The good agreement between the peaks of this spectral
function giving the energies of the attractive and repulsive polarons in a Fermi gas and
the positions of the two avoided crossings confirms that the underlying physics is indeed
driven by the coupling of polarons to light.

In conclusion, these results unfold a new experimental way to determine the energy and
residue of the polaron in a non-demolition way by detecting the light transmission/reflection
spectrum of the system. This method represents an important alternative to earlier approaches
based on Rabi-oscillations in radio-frequency (RF) spectroscopy [51,55,84,85]. We note that
these avoided crossings have already been observed experimentally [49,58,86].
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4.2. Non-Zero Polaron-Polariton Density

We now consider the case of a non-zero polaron-polariton density focusing on how
this affects their energy. From this, we will derive a microscopic expression for Landau’s
quasiparticle interaction within the ladder approximation.

Our starting point is Equation (12) for the exciton self-energy. For a non-zero density
of excitons, evaluating the Matsubara sum yields [69]

Σxx(k, iων) =
∫ d2q

(2π)2

[
nF(ξeq)T (k + q, iων + ξeq)

+
∫ ∞

−∞

dω′

π

nF(ω
′)ImT (k + q, ω′ + i0+)

iων − ω′ + ξeq
−

nF(ω
tr
k+q)Ztr

k+q

iων − ωtr
k+q + ξeq

]
. (18)

Compared to Equation (15), the finite exciton density gives rise to the two new terms
in the second line of Equation (18). The last term is a contribution coming from a non-zero
population of the trion state, which appears as a pole in the many-body scattering matrix
at the energy ωtr

k with residue Ztr
k . This results in an interaction between the trions and

the excitons mediated by the exchange of an electron [69], which has been observed to
give rise to large optical non-linearities. We neglect this term in the following assuming a
zero population of trions and refer the reader to Ref. [36] for an analysis of the interesting
interaction between excitons and trions mediated by electron exchange.

A non-zero exciton density enters the self-energy explicitly via the second term in
Equation (18), which comes from the branch-cut of the exciton–electron scattering matrix.
Physically, it corresponds to the propagation of an electron and an exciton with population
nF(ω). The exciton density also enters the scattering matrix T via the exciton-electron
pair propagator given by Equation (14). In Figure 3, we plot the energy shift of the
lowest polaron-polariton branch ΔεqL = εqL − ε0

qL for q = 0 as a function of its density
nL = A−1 ∑q nB(ξqL) for several values of the cavity detuning. Here, ε0

qL denotes the
energy of the lower polaron-polariton branch in the limit of vanishing density consistent
with the notation in Section 3.2. The energy shift is obtained by solving Equation (6) for a
varying chemical potential of the polaritons. We see that the energy shift is negative and
depends approximately linearly on density nL. From Landau theory, this negative shift
corresponds to an attractive interaction between the quasiparticles as can be seen explicitly
from Equation (9).

To derive a microscopic expression for the interaction between the polaron-polaritons,
it follows from Equation (10) that we must evaluate the derivative of the exciton self-
energy with respect to their distribution nqσ = nB(ξqσ). We thus expand Equation (18)
as Σxx(k, ω) = Σnσ=0(k, ω) + δΣ(k, ω) + O(n2

σ), and by evaluating this on-shell with
ω = ξkσ one obtains [69]

∂Σxx(k, ξkσ)

∂nk′σ′
=X 2

k′σ′

∫ d2p

(2π)2
1

ξkσ − ξk′σ′ + ξpe − ξk−k′+pe
×[

nF(ξ
e
p)T 2(k′ − p, ξkσ + ξe

p)− nF(ξ
e
k−k′+p)T 2(k′ − p, ξe

k−k′+p + ξk′σ′)
]
. (19)

Here, it is understood that all energies ξkσ as well as the T matrix are evaluated for
vanishing quasiparticle density. This expression can be generalised to a non-zero density by
using the full density-dependent T -matrix as shown in Appendix A. Note that since we are
using a non self-consistent approximation, it is the density of the bare upper and polaritons
that enter inside the exciton self-energy. To derive Equation (19), we have identified these
densities with those of the polaron-polaritons, which corresponds to the first step in a
self-consistent calculation.
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Figure 3. Energy shift of the L polaron-polariton branch as a function of their concentration for
representative values of the cavity detuning from δ/2Ω = −3.0 to 2.0. The color coding is indicated
in the figure. We employ a finite but small temperature βεF = 0.1

The effective interaction between polaron-polaritons in branches σ and σ′ with momenta
k and k′ can now be obtained by inserting Equation (19) in Equation (10). Equation (19) is
illustrated diagrammatically in Figure 4, which shows that it corresponds to an induced
interaction between two polaron-polaritons mediated by particle-hole excitations of the
electron gas. Indeed, when the polaron-polariton energy is detuned far from the trion
energy one can approximate the scattering matrices in Equation (19) by the constant T �
T (0, ξkσ), and the interaction becomes proportional to the 2D Lindhard function [69], which
is characteristic of a particle-hole mediated interaction [71]. For stronger interactions between
the excitons and the electrons, one must retain the full energy and momentum dependence of
the scattering matrix in Equation (19).

Figure 4. Feynman diagram of the interaction between quasiparticles σ (red lines) and σ′ (cyan lines)
mediated by the 2DEG. The wiggly line corresponds to the induced interaction which translates to a
T -matrix repeated scattering mediated by an electron-hole pair (black lines) in the 2DEG.

We now return to Figure 3 where the energy shift of the lowest polaritonic branch
(σ′ = L) is shown as a function of the same lowest polariton concentration (σ = L).
We can understand it in terms of the effective interaction between the lowest polaron-
polaritons. The interaction is attractive since the energy shift is negative, and it increases
in strength with the detuning δ. The reason for this is two-fold. First, it is the excitonic
component that interacts with the electrons and this component increases with the detuning
for the lowest polaron-polariton. Second, the energy of the lowest polaron-polariton
approaches the trion energy with increasing δ, which gives rise to strong resonant effects
in the electron–exciton scattering. As a result, we see from Figure 3 that there can be
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a sizeable negative energy shift of the polaron-polariton due the attractive interaction
mediated by particle-hole excitations in the 2DEG. So far, one has instead observed a
temporary positive energy shift corresponding to a repulsive interaction, which has been
attributed to a non-equilibrium phase filling effect [58]. It would thus be very interesting to
investigate this further experimentally as the effective interaction between quasiparticles is
a key component of Landau’s quasiparticle theory and because it may give rise to strong
non-linear optical effects [69,87].

5. Conclusions

We presented a theoretical framework for describing polaron-polaritons in 2D semicon-
ductors inside optical microcavities. Microscopic expressions for the parameters entering
a Landau quasiparticle theory were given, which provides a simple yet accurate way to
describe this new system of interacting hybrid light–matter quasiparticles. Our frame-
work is general apart from assuming that the concentration of the quasiparticles is much
smaller than the surrounding electron gas and that equilibrium theory can be applied.
To illustrate the results, the ladder approximation was then used to explore the system.
We also proposed a new non-demolition scheme to probe the energy and residue of the
polaron-polaritons via the Rabi splittings in the light transmission/reflection spectrum.
Finally, we showed that the Landau effective interaction between the polaron-polaritons
mediated by particle-hole excitations in the electron gas is attractive.

Our theoretical framework provides a systematic way to analyse current experiments
exploring exciton-polaritons in monolayer TMDs [49,58]. It can moreover be extended
to study a new class of exciton-polaritons in van der Waals heterostructures with inter-
layer Feshbach resonances [88,89], hybridised inter- and inter-layer excitons [90], dipo-
laritons [91], and spatially localised excitons [92,93]. The rich features predicted in these
systems [94,95] open the door to using polaritons as quantum probes in strongly correlated
electronic states [96] and to realising and controlling strongly interacting photons. An excit-
ing development is to explore the regime of higher polaron-polariton concentrations, where
many intriguing phases, such as a Bose–Einstein condensate of polaron-polaritons [37],
superconductivity, and supersolidity [97] have been predicted.
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Appendix A. Strong Coupling Polariton Interactions

We take the self-energy as calculated in Equation (18), but without considering the
T -matrix real pole,
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Σxx(k, iων) =
∫ d2q

(2π)2 nF(ξeq)T (k + q, iων + ξeq) (A1)

+
∫ d2q

(2π)2

∫ ∞

−∞

dω′

π

nF(ω
′)ImT (k + q, ω′ + i0+)

iων − ω′ + ξeq
,

Next, we employ the following relationships

ImT =
[
(ReT )2 + (ImT )2

]
ImΠ

[
(T − iImT )2 + (ImT )2

]
ImΠ = (A2)[

T 2 − 2iT ImT − (ImT )2 + (ImT )2
]

ImΠ =
[
T 2 − 2iT ImT

]
ImΠ.

This becomes a series over the imaginary part of the pair propagator. We separate the
principal and imaginary parts of the pair propagator in Equation (14) as

Π(q, ω) = ∑
σ

∫ d2p

(2π)2 X 2
σq+p

[
1 − nF(ξe−p) + nB(ξσq+p)

]
x (A3)[

P 1
ω − ξe−p − ξσq+p

− iπδ(ω − ξe−p − ξσq+p)

]
,

inserting it in Equation (A2), we obtain

ImT (q, ω) = −π
[
T 2 − 2iT ImT

]
x (A4)

∑
σ

∫ d2p

(2π)2 X
2
σq+p

[
1 − nF(ξe−p) + nB(ξσq+p)

]
δ(ω − ξe−p − ξσq+p).

Substituting this result in the second term of Equation (A1) and using that nF(x +
y)(1 − nF(x) + nB(y)) = nF(x)nB(y); therefore, the self-energy reads

Σxx(k, ω) =
∫ d2q

(2π)2

{
nF(ξeq)T (k + q, ω + ξeq) (A5)

−∑
σ

∫ d2p

(2π)2

X 2
σk+q+pnB(ξσk+q+p)nF(ξe−p)

ω − ξσk+q+p + ξeq − ξe−p + i0+
x[

T 2(k + q, ξe−p + ξσk+q+p + i0+) −2iT (k + q, ξe−p + ξσk+q+p + i0+)ImT (k + q, ξe−p + ξσk+q+p + i0+)
]}

.

As explained in the main text, the quasiparticle interactions are given by the functional
derivative of Equations (10) with respect to the quasiparticle distribution [61,70]

fσk,σ′k′

A = Zσ′k′
∂ξσk

∂nσ′k′
= Zσ′q′X 2

σ′k′
∂Σ(k, ξσk)

∂nσ′k′
, (A6)

this entails the calculation of the derivative of the second part of the self-energy

δ

δnB(ξσ′k′)

[
nB(ξσk)

(
T 2(k, ω)− 2iT (k, ω)ImT (k, ω)

)]
= (A7)

δnB(ξσk)

δnB(ξσ′k′)

{
T 2(k, ω)− 2iT (k, ω)ImT (k, ω)+

nB(ξσk)[2T (k, ω)− 2iImT (k, ω)]
∂T (k, ω)

δnB(ξσ′k′)
− nB(ξσk)T (k, ω)

(
∂T (k, ω)

δnB(ξσ′k′)
− ∂T ∗(k, ω)

δnB(ξσ′k′)

)}
.
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The functional derivative of the T -matrix is given by

δ

δnB(ξσ′k′)
T (k, ω) =

T 2
0

[1 − T0Π(k, ω)]2
δΠ(k, ω)

δnB(ξσ′k′)
= (A8)

T 2(k, ω)∑
σ

∫ d2p

(2π)2

X 2
σk+p

ω − ξe−p − ξσk+p

δnB(ξσk+p)

δnB(ξσ′k′)
=

= T 2(k, ω)
∫ d2p

(2π)2 X
2
σk+p

δσ,σ′δ(k′ − (k + p))

ω − ξe−p − ξσk+p + i0+
=

X 2
σ′k′ T 2(k, ω)

ω − ξek−k′ − ξσk′ + i0+
.

As the derivative is of the order T 2, if we keep only terms associated to second-order
diagrammatic contributions, we can approximate

δ

δnB(ξσ′k′)

[
nB(ξσk)

(
T 2(k, ω)− 2iT (k, ω)ImT (k, ω)

)]
� T 2(k, ω)δ(k − k′)δσ,σ′ . (A9)

In this way, after substituting the derivative of the T -matrix into the derivative of the
self-energy, the mediated potential on-shell, up to second order diagrams, reads

∂Σ(k, ξσk)

∂nσ′k′
= X 2

σ′k′

∫ d2q

(2π)2
1

ξσk − ξσ′k′ + ξeq − ξek−k′+q + i0+
x (A10)[

nF(ξeq)T 2(k′ − q, ξσk + ξeq + i0+)− nF(ξek−k′+q)T 2(k′ − q, ξek−k′+q + ξσ′k′ + i0+)
]
,

which is identical to Equation (19) from the main text.
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Staehli, J.L.; et al. Bose-Einstein condensation of exciton polaritons. Nature 2006, 443, 409–414. [CrossRef]
8. Balili, R.; Hartwell, V.; Snoke, D.; Pfeiffer, L.; West, K. Bose-Einstein Condensation of Microcavity Polaritons in a Trap. Science

2007, 316, 1007–1010. [CrossRef]
9. Amo, A.; Lefrère, J.; Pigeon, S.; Adrados, C.; Ciuti, C.; Carusotto, I.; Houdré, R.; Giacobino, E.; Bramati, A. Superfluidity of

polaritons in semiconductor microcavities. Nat. Phys. 2009, 5, 805–810. [CrossRef]
10. Amo, A.; Sanvitto, D.; Laussy, F.P.; Ballarini, D.; Valle, E.d.; Martin, M.D.; Lemaître, A.; Bloch, J.; Krizhanovskii, D.N.; Skolnick,

M.S.; et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 2009, 457, 291–295.
[CrossRef]

11. Kohnle, V.; Léger, Y.; Wouters, M.; Richard, M.; Portella-Oberli, M.T.; Deveaud-Plédran, B. From Single Particle to Superfluid
Excitations in a Dissipative Polariton Gas. Phys. Rev. Lett. 2011, 106, 255302. [CrossRef]

12. Kohnle, V.; Léger, Y.; Wouters, M.; Richard, M.; Portella-Oberli, M.T.; Deveaud, B. Four-wave mixing excitations in a dissipative
polariton quantum fluid. Phys. Rev. B 2012, 86, 064508. [CrossRef]

13. Lagoudakis, K.G.; Wouters, M.; Richard, M.; Baas, A.; Carusotto, I.; André, R.; Dang, L.S.; Deveaud-Plédran, B. Quantized
vortices in an excitonâ??polariton condensate. Nat. Phys. 2008, 4, 706–710. [CrossRef]
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Abstract: Recently it was shown that anyons on the two-sphere naturally arise from a system of
molecular impurities exchanging angular momentum with a many-particle bath (Phys. Rev. Lett.
126, 015301 (2021)). Here we further advance this approach and rigorously demonstrate that in the
experimentally realized regime the lowest spectrum of two linear molecules immersed in superfluid
helium corresponds to the spectrum of two anyons on the sphere. We develop the formalism within
the framework of the recently experimentally observed angulon quasiparticle.

Keywords: anyons; quasiparticles; Quantum Hall Effect; topological states of matter

1. Introduction

The discovery of the fractional Quantum Hall Effect and the advent and application of
topological quantum field theories have revolutionized our understanding of the quantum
properties of matter [1–8]. Among the prospective applications, the notion of topologi-
cal quantum computation has recently emerged as one of the most exciting approaches
for constructing a fault-tolerant quantum computer by seeking to exploit the emergent
properties of many-particle systems to encode and manipulate quantum information in
a manner which is resistant to error [9–12]. One simple such proposal for topological
quantum computing and information storage relies on the existence of topological states of
matter whose quasiparticle excitations are anyons.

An anyon is a type of quasiparticle that can arise in systems confined to two dimen-
sions and whose exchange properties interpolate between bosons and fermions [13–15].
Because of the topological peculiarities of two spatial dimensions, the world lines of
anyons can braid nontrivially around each other [13,16,17], and therefore, unlike fermions
or bosons, exchanging two anyons twice is not topologically equivalent to leaving them
alone. This opens up a whole new domain of quantum statistics known as intermediate or
fractional statistics. Even though the realization of anyons in experimentally feasible sys-
tems has been subject of recent research [18–25], all these works concern particles moving
on the Euclidean plane R2, or a subset thereof. However, since the statistical behaviour
of anyons depends on the topology, and even more importantly on the geometry and
symmetry, of the underlying space, investigations on curved spaces can demonstrate novel
properties of quantum statistics [2,26–32] (see also graph geometries [33,34]). Indeed it has
been recently demonstrated that the emerging fractional statistics for particles restricted
to move on the sphere, instead of on the plane, arises naturally in the context of quantum
impurity problems, particularly, in the context of molecular impurities [35]. There, it has
been shown that the emerging statistical interaction manifests itself in the alignment of
molecules, which could also be of use as a powerful technique to measure the statistics
parameter. This paves the way towards experimental realization as well as detection of
anyons on the sphere using molecular impurities.
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Atoms 2021, 9, 106

In the present manuscript, we explicitly show how the angulon Hamiltonian [36–38]
gives rise to a system of two interacting anyons on the two-sphere S2. The angulon represents
a quantum impurity exchanging orbital angular momentum with a many-particle bath, and
serves as a reliable model for the rotation of molecules in superfluids [39–42]. In particular, we
demonstrate that, under appropriate time-reversal symmetry breaking conditions, restricting
the angulon Hamiltonian to states in the first Born–Oppenheimer approximation gives rise to
the anyon Hamiltonian. Time-reversal symmetry is broken by using an additional external
magnetic field and applying rotation, while the Born–Oppenheimer approximation is satisfied
by considering heavy molecules. We further discuss and supply some technical details of
the argument that had been left out in [35]. Note that the phenomenon of quantum statistics
transmutation typically involves emergent scalar interaction potentials and non-statistical
gauge fields as well, and it is necessary to have sufficient control of these effects in order to
provide robust signatures of anyons.

2. Anyon Hamiltonian

Anyons are identical particles described by wave functions Ψ which acquire a phase
factor eiαπ , respectively e−iαπ , under permutation of two sets of coordinates. In contrast
to fermions and bosons, we do not assume that the statistics parameter α is an integer.
Namely, it could be any real number, say between 0 and 1, or between −1 and 0, i.e., a
fraction of an integer (thereby ‘fractional statistics’). Consequently, we have to distinguish
between the continuous exchange processes where two particles make an elementary
anti-clockwise braid around each other, in which case the wave function gains a factor
eiαπ , and processes where they braid clockwise around each other, in which case the wave
function has to acquire the inverse factor e−iαπ . Here we however see a difference on the
sphere compared to the plane, since e.g., the 2-particle braid group reduces from Z on
the plane to Z2 on the sphere, due to a double exchange being topologically trivial. This
also means that we cannot determine topologically which way the particles braided, and
thus reduces the whole problem to the ordinary case of bosons or fermions, α ∈ {0, 1}.
In fact, this conclusion is a manifestation of the symmetry of the full sphere, and indeed
the existence of anyons necessarily requires the breaking of time-reversal or orientation
symmetry (corresponding to the choice of sign of α and the handedness of braids in our
braid group representation). A similar analysis for the N-particle case leads to the condition
(N − 1)α ∈ Z, analogous to the well-known Dirac quantization condition [26,28,30]. We
can overcome this issue, by instead considering the punctured sphere S2 \ {N}, where
N denotes the north pole (and S will denote the south pole), i.e., we consider anyons
which are no longer invariant under the action of O(3) but only with respect to rotations in
the polar angle. Clearly, S2 \ {N} is topologically equivalent to the plane. Nevertheless,
the analysis of anyons living on the sphere (or a subset thereof) requires novel ideas and
techniques. The first reason for this is that S2 \ {N} carries a non-flat geometry, i.e., the
free dynamics of two anyons is given by the Hamiltonian

Hsing
Anyon := −

2

∑
j=1

∇2
j := −

2

∑
j=1

gab∇a
j ∇b

j ,

where gab is the metric tensor of the sphere, and we put suitable conditions at N and on
the coincidence set for the particles (for simplicity, we may consider functions Ψ vanishing
on the diagonal of the configuration space (S2 \ {N})2; cf. [43–45].) The second difference
to the plane is that the natural orientation-preserving symmetry group of the full sphere is
given by the three dimensional rotations SO(3), while the symmetry group of the plane
consists of a rotation around a single axis and translations in the plane. As one might
expect, and we will see explicitly below, the symmetry group plays a crucial role in deriving
the emergence of anyons from suitable impurity problems.
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It will be convenient to represent the anyonic wave function as Ψ = eiαφψ, where ψ is
a bosonic wave function and φ is a fixed smooth multivalued function with the property
φ(q2, q1) = φ(q1, q2)± π under simple continuous exchange of the two coordinates qj ∈ S2,
in order that Ψ acquires a correct phase factor e±iαπ . A concrete example of such a function
φ is given in complex stereographic coordinates z1, z2 ∈ C by 1

i log
(

z1−z2
|z1−z2|

)
. Applying the

unitary transformation eiαφ to the free anyon dynamics yields

HAnyon := e−iαφHsing
Anyoneiαφ = −

2

∑
j=1

(
∇j + iα∇jφ

)2
= −

2

∑
j=1

(
∇j + iAj

)2 , (1)

with the anyon statistics gauge field Aj given by Aj := α∇jφ. Note that HAnyon, which is
unitarily equivalent to the free anyon dynamics (although by a singular gauge transfor-
mation, thereby changing the reference geometry) has the advantage of acting on bosonic
(single-valued) wave functions ψ.

3. Emerging Gauge Field from the Angulon Hamiltonian

The angulon Hamiltonian for two rotors/impurities is defined by

Hangulon := −
2

∑
j=1

∇2
j + ∑

l,m
ωl b†

l,mbl,m + b†
Z(q1,q2)

+ bZ(q1,q2)
, (2)

where −∇2
j = L2

j = L2
jx + L2

jy + L2
jz is the rotor Hamiltonian, qj ∈ S2 is the position

of the j-th impurity on the sphere, bl,m are collective rotation modes of the bath, and

b(†)Z(q1,q2)
= ∑l,m Zl,m(q1, q2)

(∗)b(†)l,m defines the coupling between these systems at the Fröh-
lich level [36–38]. Note that this Hamiltonian is typically fully invariant under the action of
O(3), so that we cannot expect any non-trivial anyons to emerge.

Instead, in the following, we aim to derive the statistics gauge field Aj as emergent
from the following modified angulon Hamiltonian:

H′
angulon,Ω := Hangulon + Ω2V(q1, q2) + Ω ∑

l,m1,m2

(
Λq̄

)
l,m1,m2

b†
l,m1

bl,m2 , (3)

where q̄ := (q1 + q2)/|q1 + q2| is the normalized center of mass of the two impurities,(
Λq̄

)
l,m1,m2

:= ∑
m

m Dl
m,m2

(α, β, γ)Dl
m,m1

(α, β, γ)

is the momentum operator aligned in the direction of −q̄ which we define with the help
of the Wigner matrix Dl

m,m2
(α, β, γ) where α, β, γ are the Euler angles of a rotation Rα,β,γ

with the property Rα,β,γ(S) = q̄, V is an additional quadratic potential, and the parameter
Ω, which will describe the strength of a simultaneous magnetic field and a rotation, is
assumed to be large. With the convention above, the momentum operator Λz aligned
with the z − axis reads Λz = ΛS . Note that having the momentum operator Λq̄ aligned
in the direction q̄ will simplify our computation significantly. In the next section we will
discuss a model where we take the operator Λz = ΛS aligned with the z-axis as usual,
and argue that as Ω → ∞ they describe the same limit within a certain setup. We will also
discuss how one can realize the modified operator H′

angulon,Ω, by coupling Hangulon to an
additional constant magnetic field. In this concrete realization of Equation (3) the scaling
on V comes naturally.

We refer to Hamiltonian (3) as modified, since it has a dispersion relation
∑l,m ωl b†

l,mbl,m + Ω ∑l,m1,m2

(
Λq̄

)
l,m1,m2

b†
l,m1

bl,m2 which is not invariant under a change
of orientation. Furthermore, the introduction of a suitably chosen potential V punctures
the sphere and therefore breaks the SO(3) invariance as well. Let us denote with θj the
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azimuthal angle of the impurity position qj and with ϕj its polar angle w.r.t. the laboratory
reference frame. The q1, q2-dependent coefficients of Z(q1, q2) are then given by

Zl,m := ∑
j

cl Yl,m(θj, ϕj) ,

where Yl,m are the spherical harmonics and cl are real coefficients. We will occasion-
ally suppress the q1, q2-dependency of Z(q1, q2), and simply write Z. Note that we
may instead of Equation (3) consider a symmetry-breaking interaction such as Z̃ :=
(1 + ΩΛq̄ω−1)−1Z(q1, q2) leading to the emergence of anyons with the same statistical
gauge field. As stated, however, we here aim for a simplest possible realization of anyons,
as a first step.

The full Hamiltonian (3) acts on an appropriate dense domain in the tensor product
Hilbert space of the impurities L2

sym/asym(S2 × S2), where L2
sym(S2 × S2) is the bosonic

Hilbert space and L2
asym(S2 × S2) the fermionic one, with the Fock space F

(
L2(S2)) of the

bath. Following the analysis for impurity problems in the planar case [25], the statistics
gauge field emerges from H′

angulon,Ω, by restricting it to the ground state of its pure many-

body part ∑l,m ωl b†
l,mbl,m + Ω ∑l,m1,m2

(
Λq̄

)
l,m1,m2

b†
l,m1

bl,m2 + b†
Z(q1,q2)

+ bZ(q1,q2)
which acts

only on the Fock space F
(

L2(S2)) of the bath. Namely, with the help of a coherent state
transformation, we can write the ground state as (we use the notation bx = ∑l,m xlmblm and
: for action or composition)

Φ(q1, q2) := exp
[
b(ω+ΩΛq̄)−1Z(q1,q2)

− b†
(ω+ΩΛq̄)−1Z(q1,q2)

]
· |0〉 . (4)

Explicitly, by completing the square,

b† ·
(
ω + ΩΛq̄

)
· b + b†

Z + bZ = (b + ξ)† ·
(
ω + ΩΛq̄

)
· (b + ξ)− c ,

with ξ := (ω + ΩΛq̄)−1Z and c := ξ†(ω + ΩΛq̄)ξ. We see that the non-symmetric disper-
sion relation ω + ΩΛq̄ leads to a breaking of symmetry in the vacuum section Φ(q1, q2),
since the coefficients (ω + ΩΛq̄)−1 · Z(q1, q2) are no longer invariant under the action
of O(3).

In the following, we consider a gapped dispersion ωl → ∞ and heavy impurities
such that the ground state decouples from the rest of the Hamiltonian. In this regime, the
low energy spectrum of Hamiltonian (3) can be described by the first Born–Oppenheimer
approximation

〈ψ|HEmerg|ψ〉 := 〈ψΦ|H′
angulon,Ω|ψΦ〉 ,

where ψ(q1, q2) is an impurity wave function (bosonic or fermionic). By applying the
coherent state transformation S0 := exp

[
b(ω+ΩΛq̄)−1Z(q1,q2)

− b†
(ω+ΩΛq̄)−1Z(q1,q2)

]
as above,

we see that, formally,

HEmerg = 〈0| − ∑
j
(∇j + S−1

0
(
∇jS0

)
)2|0〉+ Ω2V − Z†(ω + ΩΛq̄)

−1Z .

The issue with this representation is that we do not have a nice expression for
the quantity S−1

0 ∇jS0. This is due to the fact that the following family of operators is
non-commuting:

{b(ω+ΩΛq̄)−1Z(q1,q2)
− b†

(ω+ΩΛq̄)−1Z(q1,q2)
: q1, q2 ∈ S

2} ,

and therefore we cannot apply the usual chain rule ∇j exp[F] = ∇jF exp[F]. In order to
arrive at an explicit expression, we will apply two unitary transformations, which should
map the non-commuting family to a commuting one. Note that this transformation has to be
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q1, q2-dependent, since a single fixed unitary transformation always maps non-commuting
families to non-commuting ones.

We first need to transform the whole system to a fixed reference point, such that
q̄ �→ q̄′ = S , i.e., such that the middlepoint q̄ between q1 and q2 stays fixed at the south
pole S . For an arbitrary position q �= N which is not the north pole, let T ∈ SO(3)
be a rotation which maps q into the south pole, i.e., T(q) = S . Clearly there are many
rotations which satisfy T(q) = S . Therefore, we demand further that T leaves the axis
S × q invariant for q �= S and define T to be the identity if q = S . The conditions T(q) = S
and T(S × q) = S × q uniquely determine the map T. Since T is q-dependent, we will
write Tq = T. In the following, we will always use the center of mass q̄ as the argument,
i.e., we consider Tq̄. In order to promote Tq̄ to a transformation on the whole Hilbert space,
note that we can write it as

Tq̄ = exp

⎡⎣⎛⎝ 0 −zq̄ yq̄
zq̄ 0 −xq̄

−yq̄ xq̄ 0

⎞⎠⎤⎦ ,

with coefficients (xq̄, yq̄, zq̄) := d(q̄,S)(S × q̄)/|S × q̄|, where d(q̄,S) is the geodesic dis-
tance of q̄ to the south pole S . Let us furthermore denote transformed points as q′ := Tq̄ · q.
With this at hand, we can define the transformation of a Fock space valued state Ψ(q1, q2) as

T̂(Ψ)(q1, q2) := exp
[
i b† ·

(
xq̄Λx + yq̄Λy + zq̄Λz

)
· b

]
· Ψ(q1, q2) .

Recall that the transformation Tq̄ only makes sense as long as q̄ �= N . Therefore, we
only consider this transformation T̂ for confined states Ψ, for example only for states which
have a support contained in an open set O ⊂ O ⊂ {q ∈ S2 : q3 < 0}. Note that this is not
necessarily a real restriction, since the modified operator H′

angulon,Ω contains a confining
potential V anyway, which we will assume to have its minimum close to S .

We can write the transformed Hamiltonian T̂−1H′
angulon,ΩT̂ as

−∑
j

(
∇j + T̂−1(∇j T̂

))2
+ Ω2V(q1, q2) + b† · (ω + ΩΛz) · b + b†

Z(q′1,q′2)
+ bZ(q′1,q′2)

.

Note that after the transformation, the angular momentum operator Λz is aligned with
respect to the z-axis instead of the direction q̄. Let us denote with φ = φ(q1, q2) the polar
angle of q′1, which is the position of the first impurity after the rotation T. Furthermore,
let R = Rφ be a rotation around the z-axis by an amount of φ. Then, the polar angle of the
transformed point q′′1 := R−1(q′1) is zero, while the polar angle of q′′2 := R−1(q′2) equals π.
Both points q′′1 , q′′2 have the same azimuthal angle θ. We promote R = Rφ to an operation
on the whole Hilbert space by

R̂(Ψ)(q1, q2) := exp
[
iφ b† · Λz · b

]
· Ψ(q1, q2) .

The transformed operator R̂−1T̂−1H′
angulon,ΩT̂R̂ then reads

−∑
j

(
∇j + R̂−1T̂−1(∇j T̂

)
R̂ + i

(
∇jφ

)
∑
l,m

m b†
l,mbl,m

)2

+ Ω2V(q1, q2) + b† · (ω + ΩΛz) · b

+ b†
Z(q′′1 ,q′′2 )

+ bZ(q′′1 ,q′′2 )
,
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In the final step, we diagonalize the pure many body part b† · (ω + ΩΛz) · b + b†
Z(q′′1 ,q′′2 )

+

bZ(q′′1 ,q′′2 )
, by applying the coherent state transformation

S := exp
[
b(ω+ΩΛz)−1Z(q′′1 ,q′′2 )

− b†
(ω+ΩΛz)−1Z(q′′1 ,q′′2 )

]
.

Since the coefficients at the transformed points Zl,m(q′′1 , q′′2 ) = (1 + (−1)m)clYl,m(θ, 0)
are all real valued and the expressions only dependent on θ, we know that the collection{

b(ω+ΩΛz)−1Z(q′′1 ,q′′2 )
− b†

(ω+ΩΛz)−1Z(q′′1 ,q′′2 )
: q1, q2 ∈ O

}
is a family of commuting operators. Consequently, we can finally apply the chain rule and
compute S−1(∇jS

)
quite explicitly as

S−1(∇jS
)
= b(ω+ΩΛz)−1∇jZ(q′′1 ,q′′2 )

− b†
(ω+ΩΛz)−1∇jZ(q′′1 ,q′′2 )

.

We can express the transformed Hamiltonian S−1R̂−1T̂−1H′
angulon,ΩT̂R̂S as

−∑
j

(
∇j + iα(θ)

(
∇jφ

)
+ Yj + S−1(∇jS

)
− i

(
∇jφ

)(
bW + b†

W

)
+ i

(
∇jφ

)
∑
l,m

m b†
l,mbl,m

)2

+ Ω2V(q1, q2)− E0 + b† · (ω + ΩΛz) · b ,

with the abbreviations
W := Λz(ω + ΩΛz)

−1Z(q′′1 , q′′2 ) ,

Yj := S−1R̂−1T̂−1(∇j T̂
)

R̂S ,

E0 := Z(q′′1 , q′′2 )
T(ω + ΩΛz)

−1Z(q′′1 , q′′2 ) ,

and

α(θ) := Z(q′′1 , q′′2 )
T(ω + ΩΛz)

−1Λz(ω + ΩΛz)
−1Z(q′′1 , q′′2 ) .

Observe that the vacuum expectation of i∇jφ
(
bW + b†

W
)

and i∇jφ ∑l,m m b†
l,mbl,m is

zero. Therefore these terms will only contribute to the emergent scalar potential but
not to the emergent gauge field. Let us recall the definition of the vacuum section Φ in
Equation (4). With the help of the unitary maps T, R and S we can write Φ = T̂R̂S |0〉 and
consequently

HEmerg := 〈Φ|H′
angulon,Ω|Φ〉 = 〈0|S−1R̂−1T̂−1H′

angulon,ΩT̂R̂S|0〉

= − 〈0|∑
j

(
∇j + iα(θ)

(
∇jφ

)
+ Yj + S−1(∇jS

)
− i

(
∇jφ

)(
bW + b†

W

)

+i
(
∇jφ

)
∑
l,m

m b†
l,mbl,m

)2

|0〉+ 〈0|Ω2V − E0 + b† · (ω + ΩΛz) · b|0〉 .

The second expectation is simply 〈0|Ω2V − E0 + b† · (ω + ΩΛz) · b|0〉 = Ω2V − E0. In
order to compute the first one, let us define the magnetic potential Aj := α(θ)∇jφ and the
gauge covariant derivative ∇A

j := ∇j + iAj. Let us further abbreviate

Uj := (ω + ΩΛz)
−1[∇jZ(q′′1 , q′′2 )− i∇jφΛzZ(q′′1 , q′′2 )

]
.
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Then we can rewrite the first vacuum expectation as

〈0| − ∑
j

(
∇A

j + Yj +
(

bUj + b†
Uj

)
+ i

(
∇jφ

)
∑
l,m

m b†
l,mbl,m

)2

|0〉

= −∑
j

[(
∇A

j + 〈0|Yj|0〉
)2

− 〈0|Yj|0〉2 + 〈0|(Yj + bUj + b†
Uj

+ i
(
∇jφ

)
∑
l,m

m b†
l,mbl,m)

2|0〉
]

.

Let us define the magnetic background potential Ãj := −i 〈0|Yj|0〉 and the modified
scalar potential

Ṽ := Ω2V + ∑
j
〈0|Yj|0〉2 − ∑

j
〈0|(Yj + bUj + b†

Uj
+ i

(
∇jφ

)
∑
l,m

m b†
l,mbl,m)

2|0〉 − E0 ,

then we can compactly express the emergent Hamiltonian as

HEmerg = −∑
j

(
∇A

j + iÃj

)2
+ Ṽ .

In case of constant α(θ) = α, the operator −∑j

(
∇A

j

)2
corresponds to the anyon

Hamiltonian (1) with statistics parameter α, i.e.,

HEmerg = HAnyon + ∑
j

(
Ã2

j − i
(
∇j · Ãj

)
− 2iÃj · ∇A

j

)
+ Ṽ . (5)

In reference [35], approximately constant α (depending on Ω) is indeed realized for
a suitable, and experimentally feasible, choice of ω and cl . Particularly, ω is chosen at
the roton minimum of the dispersion relation of superfluid helium, which allows us to
achieve a gapped dispersion, and the coupling cl is described by the model interaction
used in order to describe angulon instabilities and oscillations observed in the experiment.
Therefore, the Hamiltonian H′

angulon,Ω gives rise to a system of two anyons, coupled to an

additional magnetic potential Ãj and an additional scalar potential Ṽ.
In the following let us verify that the magnetic potential Ãj is regular, which on a

suitable scale means that curl Ãj can be treated as a background field and thus does not
influence the statistics. First of all, we can write it as

Ãj = −i 〈0|S†R̂†T̂−1∇j(T̂)R̂S|0〉 = −i 〈Φ|T̂−1∇j(T̂)|Φ〉 ,

where Φ is as usual the vacuum section. First we want to compute the Lie algebra element
T−1

q̄
(
∇jTq̄

)
. In order to verify that Tq̄ is a matrix-valued C∞ (smooth) function, so especially

that its derivative exists and is a continuous function, recall the explicit representation

Tq̄ = exp

⎡⎣ d(q̄,S)
|S × q̄|

⎛⎝ 0 −(S × q̄)3 (S × q̄)2
(S × q̄)3 0 −(S × q̄)1

−(S × q̄)2 (S × q̄)1 0

⎞⎠⎤⎦ .

As long as S × q̄ �= 0, i.e., as long as q̄ �= S and q̄ �= N , Tq̄ is clearly C∞. Since we want
to investigate the limit q1, q2 → S anyway, we do not have to worry about the case q̄ = N .
Regarding the south pole itself, observe that the function d(q̄,S)/|S × q̄| is C∞, even for
q̄ = S . Consequently, we know that T−1

q̄
(
∇jTq̄

)
exists and it is a smooth function as long
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as q̄ �= N . Note that T−1
q̄

(
∇jTq̄

)
is an element of the Lie algebra of SO(3), and therefore

we can write it as

T−1
q̄

(
∇jTq̄

)
=

⎛⎝ 0 −γ(q1, q2) β(q1, q2)
γ(q1, q2) 0 −α(q1, q2)

−β(q1, q2) α(q1, q2) 0

⎞⎠ ,

with continuous and real functions α(q1, q2), β(q1, q2) and γ(q1, q2). Consequently, we can
write the operator T̂−1(∇j T̂

)
as

T̂−1(∇j T̂
)
= b† ·

(
αj(q1, q2)iΛx + β j(q1, q2)iΛy + γj(q1, q2)iΛz

)
· b .

From the representation above we see that the additional magnetic field Ãj is regular and
therefore does not contribute to the statistics, i.e., HEmerg describes anyons subject to an
additional magnetic gauge field Ãj(q1, q2) as well as an additional electric potential field
Ṽ(q1, q2). Let us now describe a set-up, where the additional magnetic background field
Ã = (Ã1, Ã2) can be neglected entirely, i.e., we look for reasonable conditions such that
Ã −→

q1,q2→S
0. Since T and Φ are compatible with rotations around the z axis, we know

that Ã(q1 = S , q2 = S) = 0. It is therefore enough to verify that the vector field Ã is
continuous. By our representation of T̂−1(∇j T̂

)
above, the continuity of Ã follows from

the continuity of 〈Φ(q1, q2)|b† · Λe · b|Φ(q1, q2)〉, e ∈ S2, in q1, q2. A sufficient condition for
〈Φ(q1, q2)|b† · Λe · b|Φ(q1, q2)〉 being continuous would be the following growth condition
on the coefficients: |cl | ≤ C

l and ωl ± Ωl ≥ l1+ε with ε > 0. While the former condition
can be fulfilled with the model parameter describing the molecule-helium interaction, see
reference [35], the latter condition can be satisfied by considering a strong magnetic field.
Then, Ã −→

q1,q2→S
0 vanishes for q1, q2 close to the south pole, in contrast to the singular

gauge field ∇jφ which has a pole at S .
With the convergence Ã −→

q1,q2→S
0 at hand, we can verify that the coupling to the

background field ∇A
j �→ ∇A

j + iÃj can be neglected in the limit of large Ω. In order to do
this, let us define the dilatation operator

D� :

{
L2(�S2)⊗ L2(�S2) → L2(S2)⊗ L2(S2),
Ψ �→ D�(Ψ)(q1, q2) := Ψ(�q1, �q2) .

.

Note that the statistics gauge field A transforms exactly like the derivative operator as
D−1
� AD� = �A. Therefore, D−1

� ∇A
j D� = �∇A

j and D−1
� HAnyonD� = �2HAnyon. Transform-

ing the emerging Hamiltonian yields

D−1
�

(
�−2HEmerg

)
D� = −∑

j

(
∇A

j + i�−1 Ã
(
�−1q1, �−1q2

))2
+ �−2Ṽ(�−1q1, �−1q2) .

Using the assumption that the confining potential V is quadratic, we see that the
natural length scale of the confinement is given by the equation �−4Ω2, i.e., � :=

√
Ω. In

the next section we will see that a quadratic potential comes naturally, however different
choices for V could yield other interesting limits. Since � → ∞ in the limit of large Ω, we
conclude Ã

(
�−1q1, �−1q2

)
→ 0. With the abbreviation VΩ(q1, q2) := 1√

Ω
Ṽ( q1√

Ω
, q2√

Ω
) we

then have the asymptotic result

D−1√
Ω

(
1√
Ω

HEmerg

)
D√

Ω −→
Ω→∞

√
Ω HAnyon + VΩ .
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Hence, in the limit of large Ω, the emerging Hamiltonian corresponds to a system of
two anyons living on a sphere of radius � =

√
Ω, with no additional magnetic field but

coupled only to an additional scalar potential VΩ.

4. Realization of a Modified Quantum Dispersion Relation

We now come back to the standard angulon Hamiltonian (2), and modify it by coupling
it to an external magnetic potential AΩ

j := Ω(−yj, xj, 0), i.e., we consider the operator

Hangulon,Ω := −∑
j

(
∇j − iAΩ

j

)2
+ ∑

l,m
ωl b†

l,mbl,m + b†
Z + bZ . (6)

Let Jz = Lz,1 + Lz,2 + b† · Λz · b be the total angular momentum of the two particles
together with the many body environment. By rotating the system in the x − y plane at the
cyclotron frequency Ω we obtain

H̃angulon,Ω : = e−itΩJz
(

Hangulon,Ω − i∂t

)
eitΩJz + i∂t

= −∑
j

((
∇j − iAΩ

j

)2
+ ΩLz,j

)
+ b† · (ω + ΩΛz) · b + b†

Z + bZ

= −∑
j
∇2

j + Ω2 ∑
j
(x2

j + y2
j ) + b† · (ω + ΩΛz) · b + b†

Z + bZ ,

where we used ΩLz,j = −iAΩ
j · ∇j. With the definition V(q1, q2) := ∑j(x2

j + y2
j ), we see

that H̃angulon,Ω almost coincides with

H′
angulon,Ω = −∑

j
∇2

j + Ω2V(q1, q2) + b† ·
(
ω + ΩΛq̄

)
· b + b†

Z + bZ ,

except that the angular momentum operator Λz in H̃angulon,Ω is aligned in the z direction,
while for H′

angulon,Ω the operator Λq̄ is aligned in the center of mass direction q̄.
In the previous section we have seen that the modified angulon Hamiltonian H′

angulon,Ω
gives rise to a system of two interacting anyons in the limit of large Ω. In the following, we
want to argue why the same conclusion holds for the slightly different operator H̃angulon,Ω,
i.e., we are going to justify that anyons emerge in the low energy regime of H̃angulon,Ω as
well. Let us define the Fock space valued function

Ψ := exp
[
b(ω+ΩΛz)−1Z − b†

(ω+ΩΛz)−1Z

]
· |0〉 ,

which is the vacuum state of the many-body part of H̃angulon,Ω, i.e., it is the ground state of

HΩ := b† · (ω + ΩΛz) · b + b†
Z + bZ .

In order to observe the emergence of anyons, let us define the alternative section

Φ := exp
[
b(ω+ΩΛq̄)−1Z − b†

(ω+ΩΛq̄)−1Z

]
· |0〉 ,

which gives rise to the correct gauge field Az. The issue is that Φ is no longer the vacuum
section of HΩ. However, if we can show that EΦ := 〈Φ|HΩ|Φ〉 approximates the true
ground state energy of HΩ

Ẽ0 := −Z†(ω + ΩΛz)
−1Z ,

and if there is a spectral gap from a nondegenerate ground state, then we can argue that
the states (considered as rays of the Hilbert space) are close.
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Let us now verify that the energy deviation ε := EΦ − Ẽ0 is small in the limit of large
Ω. First of all, we can express ε as

ε = Z†
[
(ω + ΩΛq̄)

−1Ω(Λz − Λq̄)(ω + ΩΛq̄)
−1 − (ω + ΩΛz)

−1Ω(Λz − Λq̄)(ω + ΩΛq̄)
−1

]
Z .

Let us make the reasonable assumption that ω + ΩΛq̄ is non degenerate, i.e., for
simplicity let us assume that ωl ± Ωl ≥ δΩ(l + 1) for some 0 < δ < 1. Furthermore, we
assume that |Zl,m| ≤ C

l+1 for some C. We define the operator ν by νl :=
√

δ(l + 1) in the
diagonalizing basis of Λz. Since Λq̄ is block-diagonal with respect to l, Λq̄ commutes with
ν and consequently we can rewrite the first part of the error ε = ε1 − ε2 (the second part
can be rewritten in the same way)

ε1 = (ν−1Z)†
[
Ων2(ω + ΩΛq̄)

−1Ω−1ν−1(Λz − Λq̄)ν
−1(ω + ΩΛq̄)

−1ν2
]
(ν−1Z) .

Note that we have the bound on the operator norm ‖Ων2(ω + ΩΛq̄)−1‖ ≤ 1, as well
as ‖ν−1(Λz − Λq̄)ν−1‖ ≤ 2

δ and ‖χ<Lν−1(Λz − Λq̄)ν−1‖ � 1 for q̄ → S , where we define
χ<L

l := 1 for l < L and χ<L
l := 0 otherwise. By our assumption |Zl,m| ≤ C

l , we know that
‖ν−1Z‖2 =: C̃ < ∞, therefore we obtain ‖(1 − χ<L

� )ν−1Z‖ −→
L→∞

0 and

lim
q̄→S

Ωε1 ≤ lim
q̄→S

2
(

C̃‖χ<Lν−1(Λz − Λq̄)ν
−1‖+ 2

δ
‖(1 − χ<L

� )ν−1Z‖2
)

=
4
δ
‖(1 − χ<L

� )ν−1Z‖2 −→
L→∞

0 .

Applying a similar argument for ε2 yields the estimate for the total error ε � 1
Ω . Note that

the ground state energy itself satisfies Ẽ0 ≈ 1
Ω . Consequently, the error term ε is negligibly

small even compared to the ground state energy Ẽ0, i.e.,

ε � Ẽ0 .

We conclude that EΦ := 〈Φ|HΩ|Φ〉 approximates the ground state energy Ẽ0 =
〈Ψ|HΩ|Ψ〉 of HΩ, and since HΩ has a uniform spectral gap this especially means that there
exists θq̄ ∈ [−π, π) such that ‖Φ − eiθq̄ Ψ‖ � 1. This justifies the usage of the section Φ
instead of Ψ in the Born–Oppenheimer approximation.

Lastly, we stress that the Born–Oppenheimer approximation itself and the emergence
of the exact anyonic spectrum, i.e., the spectrum of the Hamiltonian (1), was justified both
analytically and numerically for simpler but highly representative models in [25,35].

5. Conclusions

In conclusion, we explicitly show that in the Born–Oppenheimer approximation the
many-particle bath manifests itself as the statistics gauge field on the two-sphere with
respect to the molecular impurities immersed into it.

The analysis of anyons on the sphere becomes much more difficult than the well-
studied planar case, mainly because of non separation of center of mass from relative
variables. This problem has also been stressed and tackled in recent studies of anyons
on the two-sphere [30,31,35], which have been successful in computing the spectrum of
two anyons subject to a homogeneous magnetic field (technically a monopole such that
the Dirac quantization condition is satisfied). Our result in this work cannot be directly
compared with the explicit spectrum for two anyons computed in [31,35] since it involves
additional scalar interactions and a not completely homogeneous magnetic field, and, even
more crucially, an effective trapping potential due to the specific rotation setup. Analytical
and numerical analyses of the spectra in the present situation are subjects of future work.

We further demonstrate that a possible experimental realization is feasible within
the framework of the angulon quasiparticle by applying an external magnetic field to the
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molecular impurities and rotating the impurity-bath system. This lays the foundations for
realizing anyons on the two-sphere in terms of molecular impurities in superfluid helium.
We finally note that although the dispersion relation of superfluid helium nanodroplets
is continuous, the interaction between the molecule and the helium droplet is dominated
at a finite excitation momentum, see reference [38]. This allows us to explore the problem
with a gapped dispersion relation so that the Born–Oppenheimer approximation can be
achieved by considering heavy impurities as discussed in reference [35].
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Abstract: Disorder is everywhere in nature and it has a fundamental impact on the behavior of many
quantum systems. The presence of a small amount of disorder, in fact, can dramatically change the
coherence and transport properties of a system. Despite the growing interest in this topic, a complete
understanding of the issue is still missing. An open question, for example, is the description of the
interplay of disorder and interactions, which has been predicted to give rise to exotic states of matter
such as quantum glasses or many-body localization. In this review, we will present an overview of
experimental observations with disordered quantum gases, focused on one-dimensional bosons, and
we will connect them with theoretical predictions.

Keywords: Bose–Einstein condensates; cold gases in optical lattices; quantum phase transitions;
disordered systems

1. Introduction

Ultracold atoms platforms are able to mimic the physics of other quantum many-body
systems [1–3]. Thanks to the high degree of tunability of many important parameters,
they have been used to study the low-temperature quantum phases and the transport
properties of neutral particles with short-range interaction [4,5]. Their strong versatility
allows researchers to use these platforms to investigate the physics of disorder [6–8],
mainly using two different kinds of optical disordered potentials: laser speckles [9–20]
and quasiperiodic lattices [21–34], both allowing for the first observation of Anderson
localization in matter-waves [15,24]. Although the present review is devoted to one-
dimensional (1D) bosons, it is important to mention that the possibility to control the
dimensionality of the systems allowed experimentalists to also study 2D diffusion [35] and
coherence [36], coherent backscattering [37,38], and 3D Anderson localization with both
fermions [39] and bosons [40,41].

Despite many years of investigation and the many efforts that have been undertaken,
both from the experimental and theoretical point of view, a clear and complete charac-
terization of the effect of disorder on transport and coherence of a quantum system is
still missing. An open issue, for example, is the description of the non-trivial interplay
between disorder and interactions, which has been predicted to give rise to exotic states
of matter such as quantum glasses [42,43] or many-body localization [44,45]. In particu-
lar, a transition between a superfluid phase for weakly repulsive bosons and a localized
Bose glass phase for strong repulsion has been predicted both for one-dimensional [42]
and higher-dimensional [43] bosons. However, the first experimental attempts to insert
weak interactions in Anderson-localized disordered systems have clearly shown that the
interaction energy can compete with disorder and induce delocalization by restoring coher-
ence [25,26] or transport [27–30]. The quest for the effect of strong interactions requires to
freeze the radial degrees of freedom, for example, by reducing the dimensionality of the
system. One-dimensional bosons are the prototype disordered systems, with an established
theoretical framework, useful to answer to some of the fundamental questions about the
quantum phases and the transport properties of low-temperature matter.

Atoms 2021, 9, 112. https://doi.org/10.3390/atoms9040112 https://www.mdpi.com/journal/atoms147
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In this review, we will focus on the experimental observations obtained with ultracold
quantum gases [21–23,31–34]. In particular, after a brief survey of the theoretical back-
ground of 1D disordered systems, we review the experimental results achieved to detect
and study disordered interacting quantum phases, analyzing their signature on coherence,
transport, and energy excitation properties.

2. Theoretical Background of 1D Disordered Systems

Let us consider a disordered Bose gas in a discrete 1D space, whose space dependence
is described by the site index j. This system is described by a modified Bose–Hubbard
Hamiltonian:

H = −J ∑
j
(b†

j+1bj + b†
j bj+1) +

U
2 ∑

j
nj(nj − 1) + ∑

j
(εj + VHO

j )nj (1)

where bj denotes the boson annihilation operator at site j, while the site occupation quan-
tified by the usual operator nj = b†

j bj. The first two terms on the right-hand side of
Equation (1) represent the usual Bose–Hubbard interactions, corresponding to site-to-site
tunneling with a rate J and the on-site repulsion (U > 0). The third term in Equation (1)
accounts for the presence of both the harmonic trap VHO

j and the disorder potential εj.
The disorder potential εj can be generated in several ways, resulting in a specific

spectral distribution. Both theoretically and experimentally, two cases are the most rele-
vant: (a) random distribution of energies εj ∈ [−Δ, Δ] and (b) quasiperiodic distribution
εj = Δ cos(2π jσ) with σ being an irrational number [46]. The latter can be experimentally
generated by superimposing to a main periodic potential an auxiliary lattice one with
incommensurate wavelength (λ2 = λ1/σ). Hence, the three main energy scales charac-
terizing the Hamiltonian, i.e., the tunneling energy J, the quasidisorder strength Δ, and
the interaction energy U, can be controlled by tuning the depth of the main lattice S1, the
depth of the secondary one S2 (being Δ = σ2S2/2), or the interparticle scattering length
on a Feshbach resonance [47], respectively. The simultaneous presence of disorder and
commensurate potential generates a competition between the three possible quantum
phases, namely the superfluid (SF) phase, the Mott insulator (MI), which occurs at large
interactions for commensurate fillings, and the so-called Bose glass (BG) phase, which is
induced by disorder. Figure 1 shows the zero-temperature (T = 0) phase diagram of 1D
bosons in the quasiperiodic lattice as a function of the ratios Δ/J and U/J, obtained by
numerically solving the Bose–Hubbard problem [48].
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Figure 1. Phase diagrams for a quasiperiodic Bose–Hubbard model for densities n = 1 (a) and
n = 0.5 (b). Figure adapted from Reference [48].

We must distinguish between two physically different situations depending on the
average boson occupation number n = N/M, where N is the number of bosons and M is
the length of the 1D system. For incommensurate fillings (n < 1), the system is similar to
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the continuum case [49], with a SF phase replaced by a BG phase by increasing the disorder
strength Δ. On the other hand, for unit filling (n = 1), the ground state is a MI with a gap.
Adding disorder, such a gapped phase persists up to the value Δ = U/2 (dashed line)
where the excitation spectrum becomes gapless and the system first becomes a SF and then
a BG.

One-dimensional disordered bosonic systems, as described by Equation (1), provide
an ideal platform for testing and developing precise theoretical methods for studying
many-body physics, which yields useful predictions about the position of quantum phase
transitions and the indications on the most appropriate observables for their detection. In
the case of pseudorandom quasiperiodic disorder, phase diagrams have been obtained by
exact numerical results on the Bose–Hubbard model in small systems [50,51]. However,
they suffer a limited accuracy in locating the points of phase transition. More detailed
results have been found by means of quantum Monte Carlo methods [52] and the density-
matrix renormalization group (DMRG) algorithm [48]. These theoretical works represent
the groundwork for the experimental detection of disordered quantum phases, and they
also point out the experimental tools to detect the quantum phase transitions of these
systems. In particular, beside the compressibility, Reference [48] points out to the measure-
ment of coherence of the quantum gas, which is detected by time-of-flight imaging from
the width of the momentum distribution (see for results Section 3.1). Another interesting
tool for detecting phase transition is the observation of excitation spectrum (see Section 3.3).
The excitation spectrum of strongly repulsive 1D bosons in a disordered or quasiperiodic
optical lattice has been computed [53]. The predicted excitation spectrum shows a peculiar
behavior with two excitation peaks, one as expected around the repulsion energy scale U
with width ∼ 2Δ and the other one centered at Δ with the same width. The prediction of
the presence of an absorption feature in the low-frequency band appears as a consequence
of the formation of a Bose glass at incommensurate filling, thus making the excitation
spectrum measurement an important tool of investigation. Experimentally, it can be easily
assessed by coherent lattice modulation spectroscopy [21,54].

3. Experimental Results

The experimental realization of a 1D bosonic system with ultracold gases is schemati-
cally shown in Figure 2. Starting from a 3D Bose–Einstein condensate (BEC), the atoms
are typically loaded in a strong 2D optical lattice [55]. This traps the atoms to an array
of tightly confining 1D potential tubes, thus generating a set of many quasi-1D systems.
Along the 1D tubes, another optical lattice is employed to produce a set of disordered
quasi-1D systems, which are described by the disordered Bose–Hubbard Hamiltonian
in Equation (1). Here, the disorder is introduced either with a secondary optical lattice,
generating the quasiperiodic disordered lattice [21], or by a second atomic species as system
impurity [31].

A systematic experimental study of the many-body properties of such a system can
be performed by momentum distribution or by excitation energy measurements. The
coherence (Section 3.1) and transport (Section 3.2) properties of the tubes can be studied by
measuring the momentum distribution of the system, achieved through absorption imaging
after a free expansion. These measurements correspond to an average over all the tubes of
the systems, and thus over its different densities. In the case of transport measurements, to
induce a dynamics on the atoms along the tubes, the system is brought out of equilibrium by
a sudden change of the harmonic trap. The excitation spectra of the system are obtained by
modulating the amplitude of the main lattice depth. The amount of energy absorbed by the
system can be extracted by temperature measurements of the 3D BEC, which is recreated
after an adiabatic switch-off of the 1D confinement [33]. Alternatively, the modulation
heating effect can be detected by phase coherence measurements. Phase coherence is
restored by reducing the depths of the trapping lattices to less than five recoil energies [56],
while phase interference is imaged after a time-of-flight. Typically, the amount of heating
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can be quantified either by the visibility V of the interference peaks [31], which is defined
analogously to the optical case as a function of the atomic density ρ

V =
ρmax − ρmin
ρmax + ρmin

,

or by the width of the central peak [21,22] (see Section 3.3).

Figure 2. Schematic drawing of the typical experimental realization of a 1D disordered bosonic
system. Two strong optical lattices are used to provide a tight confinement and form an array of 1D
potential tubes. The axial quasiperiodic potential is formed by superimposing two incommensurate
optical lattices of wavelengths λ1 and λ2. The harmonic trap results from the intensity gradient of
the Gaussian laser beams.

3.1. Coherence

An overview of the nature of a disordered interacting system has been provided by
measurements of the momentum distribution P(k) in an array of 1D tubes of 39K atoms
in a quasiperiodic lattice. An experimental measurement of the coherence of the system
is shown in Figure 3, where the width Γ of P(k) is plotted as function of the interaction
strength U and the disorder strength Δ. At small Δ and U, the observation of a narrow
P(k) is a signature of a coherent regime (blue zone). For increasing values of the two
energy scales, the coherent regime is progressively replaced by a more incoherent regime
(green, yellow, and red zones). The observed increase of Γ can be attributed to either the
emergence of an insulating phase or to an increase in the temperature. The latter effect on
Γ has been experimentally excluded by entropy measurements [33]. In fact, the measured
entropy does not show any increase with increasing disorder strength. This suggests that
the increased Γ is due to the emergence of an insulating phase, as predicted for the T = 0
temperature case. Despite the finite T and the inhomogeneity of the experimental tubes,
the diagram behavior resembles that of the T = 0 theoretical predictions for homogeneous
systems, where the existence of a BG phase is predicted [42,43,48,52].
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Figure 3. Measured rms width Γ of the momentum distribution P(k) of arrays of quasi-1D samples
of 39K atoms in the U − Δ diagram. Γ is reported in units of k1, where k1 = 2π/λ1 is the main lattice
wavevector. The dashed line indicates the upper bound for the existence of the MI, according with
T = 0 DMRG calculations. Left panels show the measured momentum distribution (solid black line)
for two points of the diagram in the SF (bottom) and BG (top) regions, compared with the T = 0
DMRG calculations (dashed-dotted blue line). Figure adapted from Reference [33].

Comparing the experimental diagram with the theory in Figure 1, we see that for
increasing interaction along the Δ = 0 line, Γ increases due to the progressive formation
of an incoherent MI. For increasing disorder along the U = 0 line, the system forms an
Anderson insulator for Δ > 2J [57]. For weak disorder and interaction, the system is in a SF
regime, surrounded by a re-entrant insulating regime extending from small to large U. In
the weakly interacting regime, a crossover from the incoherent disorder-induced insulator
toward more coherent regimes is observed when the interaction energy nU � Δ − 2J
(see dashed-dotted line in Figure 3). In the strongly interacting regime, disorder and
interactions cooperate to localize the system and a second crossover towards less coherent
regimes occurs. The interaction induced MI, which for a homogeneous system with n = 1
is expected to survive in the disordered potentials only for moderate disorder Δ < U/2,
is expected to exist in the experimental inhomogeneous one only below the dashed black
line shown in Figure 3. In this region, as an effect of the inhomogeneous density of the
experimental system, for Δ < 2J, the MI coexists with a SF fraction, which is localized by
the disorder in a BG phase for Δ > 2J.

For a complete comparison of the experimental phase diagram with theoretical pre-
dictions, it would be necessary to include both finite temperature and inhomogeneity
of the experimental system into numerical simulations. This would result in costly nu-
merical calculations. If only system inhomogeneity is included, zero-temperature DMRG
calculations (left panels in Figure 3) find a diagram with a general behavior close to the
experimental one but with a SF Γ much smaller than that observed in the experiments [33].
To include the finite temperature of the experimental system, two different DMRG schemes
have been developed: (i) a direct simulation of the thermal density matrix in the form
of a matrix-product purification and (ii) a less costly phenomenological method based
on DMRG ground-state data that are extended to finite temperatures by introducing an
effective thermal correlation length [34]. These simulations have shown that, while in the
weakly interacting regime thermal effects can be rather strong, they are significantly less
relevant in the strongly interacting one. There, the scaling of the correlation length with
T shows a weak dependence below a crossover temperature, indicating that the strongly
correlated quantum phases predicted by the T = 0 theory can persist at finite temperatures.

3.2. Transport

The insulating nature of the incoherent region has been confirmed by transport measure-
ments. The mobility can be measured by observing the system evolution after an impulse
has been applied to it. In Figure 4a,b, the results from the first experiments with 87Rb atoms
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are shown. The clean case (Δ = 0) is compared with two different disordered configurations:
atomic impurities (Figure 4a) and quasiperiodic potential (Figure 4b). When a variable im-
pulse is applied to the system, the velocity acquired by the atoms can be fitted with a linear
function whose slope defines the mobility coefficient. In the absence of disorder, the mobil-
ity coefficient decreases with the increasing in the potential lattice depth S1 and reaches
zero mobility when entering in the MI region. When disorder is present, the behavior is
analogous, suggesting the system is entering in an insulating regime. Nevertheless, while
with impurities the transition to the zero-mobility was shifted towards smaller values of S1,
in the case of the quasiperiodic potential (with constant S2), no shift of the critical depth is
measured. Such different behavior could be due to the fact that increasing S1 towards the
insulating regime, the disorder Δ/J is decreasing, thus pushing the critical interaction to
enter the BG regime to larger values of U/J, where the BG phase coexists with the MI one.
This problem has been bypassed in 39K experiments by using Feshbach resonances to tune
the interaction independently from the value of S1 [58,59].
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Figure 4. (a,b) Mobility coefficient of 87Rb after impulse excitation versus lattice depth S1 without disorder (black circles)
compared with different disorder configurations: (a) atomic impurities ( fimp = 0.5, red squares) and (b) an incommensurate
lattice (S2 = 3, green diamonds). The lattice depths are defined in units of recoil energies, Si = Vi/Eri with i = 1, 2. Figure
adapted from Reference [31]. (c,d) Transport after trap excitation of an array of quasi-1D samples of weakly interacting 39K
atoms: (c) critical momentum pc for weak interaction (U/J = 1.26) as a function of the disorder strength and (d) critical
Δc/J at the fluid–insulator transition in the disorder-interaction plane, extracted by several piecewise fits of pc as a function
of Δ for different values of fixed U (solid line in panel (c)). In the inset of panel c, the time evolution of δp, from which pc

has been extracted (stars), is shown for three values of Δ: Δ = 0 (red circles), Δ = 3.6J (purple triangles), and Δ = 10J (blue
squared). Figure adapted from Reference [32].

Figure 4c,d shows momentum dependent transport measurements in the weakly
interacting regime. The experimental protocol consists of tracking the time evolution of the
momentum δp acquired by the system for different values of the disorder strength Δ and the
interaction energy U, tuned via Feshbach resonance. Typical datasets of such measurements
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are plotted in the inset of Figure 4c, where Δ is different for each dataset, while U is kept
constant. Here, we can observe that the system explores a sharp transition from a weakly
dissipative regime (at small δp), well fitted with a damped oscillation function (solid lines),
to a strongly unstable one (at large δp). The critical momentum pc separating the two
regimes has been identified as the momentum value, where the experimental data deviate
from the fitting curve used in the first regime (stars in the inset of Figure 4c). The measured
critical momentum pc at each Δ, similarly to the previously described mobility coefficient,
linearly decreases until it reaches a plateau value, corresponding to the insulating regime
of the system. With a piecewise fit of pc, one can extract the critical disorder strength Δc
to enter in the insulating regime at fixed interaction energy U (Figure 4c). Repeating the
measurements for different interactions, it has been observed that the critical disorder to
enter the insulating regime increases with U/J (Figure 4d), at least for weak interaction. By
employing the vanishing of pc for the observed instability the fluid–insulator transition
driven by disorder has been located, across the interaction-disorder plane in the weakly
interacting regime. In fact, while the experiments with 87Rb atoms are limited to the
strongly interacting regime, the momentum-dependent measurements with 39K samples
allow researchers to investigate the weakly interacting one.

In order to confirm the insulating nature of the observed incoherent regimes in the full
diagram of Figure 3, the momentum δp acquired by the 39K system after a fixed time from
its excitation has been measured (Figure 5). This effective mobility is shown in Figure 5a
for the clean case and for two fixed values of the disorder strength. With no disorder and
small U the system is conductive, while the mobility decreases when approaching the MI
region. With finite disorder, instead, the system is insulating for both very weak and strong
interactions, while a finite mobility can be recovered for moderate values of U. These
results indicate that the incoherent regimes at both weak and strong U are also insulating,
thus confirming the re-entrant behavior of the insulating regime observed in the coherence
diagram. An additional measurement performed at a higher temperature indicates that,
as expected by theory [44], the mobility for intermediate disorder strength is essentially
T-independent in the explored range kBT = (3.1–4.5)J (Figure 5b).
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Figure 5. Effective mobility as a function of disorder and interactions. (a) Momentum δp acquired
by the system after a fixed evolving time t = 0.9 ms in the tilted potential for three different disorder
strengths, Δ = 0 (black triangles), Δ = 6.2J (blue squares), and Δ = 8.8J (orange circles). (b) The
Δ = 6.2J measurements are acquired for two temperatures of the SF component, kBT = 3.1(4)J (full
blue) and kBT = 4.5(7)J (empty magenta). Figure adapted from Reference [33].

3.3. Excitation Spectra

To probe the nature of the insulating phases, it is necessary to investigate the excita-
tion properties of the system. This can be undertaken by performing lattice modulation
spectroscopy, i.e., by measuring the energy absorbed by the system after a sinusoidal
amplitude modulation of the main lattice at fixed frequency ν. While the MI is known to
be gapped, the BG phase is predicted to be a gapless insulator. First experiments with 87Rb
observed the broadening of the typical MI spectrum (Figure 6), with both quasiperiodic
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potentials [21,31] and localized impurity atoms [31]. Despite showing signatures of BG
formation, they do not permit to distinguish a specific signature of the BG spectrum due
to the strong interaction (U > 50J) and the strong disorder (Δ > 50J) regime. Moreover,
noise correlation spectroscopy allowed experimentalists to monitor the destruction of the
MI ordered structure in the presence of an additional secondary lattice potential (Figure
6g), but not to highlight a specific feature due to the BG phase.
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Figure 6. Excitation spectra (a–f) and noise correlations spectroscopy (g) of arrays of quasi-1D samples of 87Rb atoms.
(a–c) Spectra in a quasiperiodic potential for a depth S1 = 25 of the main lattice and increasing depths of the secondary
lattice: (a) S2 = 0 , (b) S2 = 0.2 , and (c) S2 = 0.5. Here, the spectra have been quantified by measuring the Gaussian
width of the central peak of the momentum distribution of atoms released from the lattices with reduced intensity (S1 = 5,
S2 = 0). Figure adapted from Reference [22]. (d–f) Visibility of excitation gap for different disorder configurations: (d)
in the absence of disorder for S1 = 9 and S1 = 14 (open and filled black circles), (e) for S1 = 14 with atomic impurity
fractions fimp = 0.1 (open purple squares) and fimp = 0.5 (filled red squares), and (f) for S1 = 14, with no impurities and
an incommensurate lattice of depth S2 = 1 (orange triangles). Here, the spectra have been quantified by measuring the
interference peak visibility in the momentum distribution of atoms released from the lattice with reduced intensity (S1 = 4,
S2 = 0) [60]. Figure adapted from Reference [31]. (g) Noise correlation spectroscopy in a quasiperiodic potential: the ratio
between the height of the k2 and k1 correlation peaks as a function of S2. Figure adapted from Reference [23]. The lattice
depths are defined in units of recoil energies, Si = Vi/Eri with i = 1, 2.

Experiments with 39K permit to explore the excitation spectrum in the full range of
interaction and disorder diagram and to find regions where it is possible to distinguish
the gapless spectrum of the BG from the gapped one of the MI. In these experiments, the
absorbed energy has been quantified by measuring the temperature of the BEC after the
adiabatic switch-off of the 1D confinement. Depending on the amount of acquired energy,
the time-of-flight atomic distribution can be fitted either by a two-component function
(a Thomas–Fermi profile plus a Gaussian distribution) or by a Gaussian function. In the
former case, the heating is related to the BEC fraction; in the latter, it is related to the width
σ of the Gaussian distribution. Let us start from the strongly interacting regime, where,
in the presence of moderate disorder, the BG phase should coexist with the MI (Figure
7). In the clean case, the spectrum is characterized by the double peak shape typical of
the trapped MI, with a first peak centered at hν = U due to excitation between sites in the
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MI domains with the same filling. In addition, a second peak is centered at hν = 2U due
to excitation between sites in the MI domains with different occupations. Adding a finite
disorder, the spectrum shows a clear change. First, there is a broadening of the MI peaks, as
already observed with 87Rb experiments at strong disorder. Second, at low frequencies, it
appears an extra peak filling the Mott gap, centered around hν = Δ, which can be ascribed
to the regions with incommensurate filling, i.e., to the BG phase.

Figure 7. Excitation spectra of arrays of quasi-1D samples of 39K atoms with strong interactions. (a–c) Experimental spectra
for U = 26J and Δ = 0 (a), Δ = 6.5J (b), and Δ = 9.5J (c). The spectra have been quantified by measuring the relative
variation of the BEC fraction with respect to the unexcited value (ν = 0). The blue arrows are at hν = Δ, the dashed-dotted
line in (a) is at hν = U, and the continuous lines are fits with multiple Gaussians. Figure adapted from Reference [33].

The agreement between BG theory and experiment is best understood once the MI
background is subtracted from the experimental data. Figure 8 shows a zoom of the
excitation spectra around the disorder strength energy Δ after the Gaussian background of
the MI peak has been subtracted, and the resulting peak response has been normalized to
unity. We can see that the experimental spectra of the BG are reasonably well reproduced
by theory calculations, where a fermionized-boson model has been used [53,61].
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Figure 8. Excitation spectrum of the strongly interacting BG. The experimental data (black circles)
for the low-frequency part of the spectra in Figure 7 are compared with theory (red solid line) for
two disorder strengths: (a) Δ = 6.5J and (b) Δ = 9.5J. The grey region shows the effect of a 20%
uncertainty on Δ. The red arrows are at hν = Δ. Figure adapted from Supplemental Materials of
Reference [33].

We now analyze the spectral properties of the system across the phase diagram. In
Figure 9, the behavior of the excitation spectrum moving from weak to strong interaction
at a given finite disorder is shown. In the case of weak interaction, the excitation spectra
at Δ = 8.9J are shown for three increasing values of U (Figure 9a–c). For vanishing U,
a weak excitation peak centered at Δ has been observed, consistent with the presence of
an Anderson insulator. The experimental excitation spectrum is well reproduced by a
non-interacting bosonic model (Figure 9a). Increasing U, the system response progressively
enhances and broadens (Figure 9b), ending up with an excitation spectrum that is undis-
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tinguishable from that of a clean SF (Figure 9c). This behavior is thus consistent with the
system crossing the BG–SF transition.

In the case of strong interaction, the excitation spectra at the Δ = 6.5J are shown
for three increasing values of U (Figure 9d–f). The peak centered at Δ is the signature of
the strongly correlated BG. Such “Δ-peak” can be observed only in a limited region of Δ
and U values. When U is comparable with Δ, the MI and BG peaks overlap, the former
being typically larger and covering the latter (Figure 9d). When U is much larger than Δ,
the fraction of sites with incommensurate density that can form a BG becomes negligible
and, again, only the MI peaks are clearly detectable (Figure 9f). Furthermore, for very
large disorder strengths (Δ > 20J), the spectrum becomes very broad and is only weakly
affected by interaction, indicating that the system behavior is dominated by disorder, and
any feature is observable.
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The measurements of the excitation spectra, together with those of coherence (Figure 3)
and transport (Figure 5), confirm an opposite nature of the two regimes of weak and strong
U, respectively, bosonic and fermionic, and an opposite role of the interactions. In the
low-U bosonic case, small repulsive interactions compete with disorder and screen the
disorder-induced localization, favoring the coupling of single-particle states and gradually
restoring coherence between particles and superfluidity. In the large-U fermionic case,
instead, strong interactions induce fermonization of the bosonic sample, thus favoring, in
the presence of disorder, Anderson localization.

4. Outlook and Perspectives

In this brief review, we discuss the experiments with 1D bosons where the effect of
disorder has been investigated in the disorder-interaction plane. The topic of quantum
matter in the presence of disorder is very complex, in particular, when dealing with
experimental systems being inhomogeneous and at finite temperature. The coexistence of
fractions with different densities, in fact, transforms the theoretical sharp quantum phase

156



Atoms 2021, 9, 112

transitions into broad crossovers. A way to overcome this limit in future experiments could
be to use a flat-top beam shaper providing homogeneous trapped systems [62–66]. This
should also allow, in the strongly interacting regime, for a better discrimination of the BG
and the MI phases. Concerning the problem of the finite temperature, it would be very
important to reduce the actual temperature of the atomic 1D systems. The main source of
heating is typically the phase noise affecting the 2D strong radial lattices and the main axial
one. Recent theoretical calculations suggest to use a shallow quasiperiodic potential to
reduce the lattice heating effect without losing information about the underlying quantum
phases [67]. Another possibility could be to apply a phase stabilization on the lattices [68].

An intriguing direction of investigation would be the direct study of the effect of
temperature on 1D disordered phases. A possible experimental implementation consists of
using a second BEC insensitive to the lattices as a thermal bath [69,70]. This would ensure
both the thermal equilibrium in the 1D system and to have an independent measure of its
temperature.

Another interesting question related to disordered systems is whether the existence of
the finite temperature insulating phase in the weakly interacting regime could be related to
the hot topic of many-body localization [71]. Different experiments with ultracold atoms
recently investigated the many-body localization phenomenon, mainly for fermions [72–75],
and only later for a disordered Bose–Hubbard system [76–78], but its existence is still under
debate [79].
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Abstract: In a mixture of two kinds of identical bosons, there are two types of pairs: identical bosons’
pairs, of either species, and pairs of distinguishable bosons. In the present work, the fragmentation
of pairs in a trapped mixture of Bose–Einstein condensates is investigated using a solvable model,
the symmetric harmonic-interaction model for mixtures. The natural geminals for pairs made of
identical or distinguishable bosons are explicitly contracted by diagonalizing the intra-species and
inter-species reduced two-particle density matrices, respectively. Properties of pairs’ fragmentation
in the mixture are discussed, the role of the mixture’s center-of-mass and relative center-of-mass
coordinates is elucidated, and a generalization to higher-order reduced density matrices is made.
As a complementary result, the exact Schmidt decomposition of the wave function of the bosonic
mixture is constructed. The entanglement between the two species is governed by the coupling of
their individual center-of-mass coordinates, and it does not vanish at the limit of an infinite number
of particles where any finite-order intra-species and inter-species reduced density matrix per particle
is 100% condensed. Implications are briefly discussed.

Keywords: Bose–Einstein condensates; mixtures; identical-boson pairs; distinguishable-boson pairs;
natural geminals; natural orbitals; reduced density matrices; intra-species reduced density matrices;
inter-species reduced density matrices; fragmentation; condensation; infinite-particle-number limit;
harmonic-interaction models; pair fragmentation; Schmidt decomposition; center-of-mass; relative
center-of-mass

1. Introduction

Condensation and fragmentation are basic and widely-studied concepts of Bose–
Einstein condensates emanating from the properties of the reduced one-particle density
matrix [1–5]. The bosons are said to be condensed if there is a single macroscopic eigenvalue
of the reduced one-particle density matrix [6] and fragmented if there are two or more such
macroscopic eigenvalues [7]. These eigenvalues are commonly called natural occupation
numbers, and the respective eigenfunctions of the reduced one-particle density matrix are
referred to as natural orbitals. The fragmentation of Bose–Einstein condensates has been
investigated, e.g., in [8–27].

The condensation and especially fragmentation of the reduced two-particle density
matrix of interacting identical bosons is less studied; see, e.g., [28]. Here, the analysis
of the reduced two-particle density matrix would determine whether pairs of bosons
are condensed or fragmented. The respective eigenfunctions of the reduced two-particle
density matrix are often called natural geminals. We note that natural geminals in electronic
systems have long been explored; see, e.g., [29–40].

Consider now a mixture of two kinds of identical bosons, which are labeled species 1
and species 2. Mixtures of Bose–Einstein condensates is a highly investigated topic; see,
e.g., [41–70]. One may ask, just like for the single-species bosons, about the condensation
or fragmentation of each of the species and how, for instance, one species is affected by
the presence of the other species and vice versa. To answer this question, the intra-species
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reduced one-particle density matrices of species 1 and 2 are required, i.e., analyzing the
intra-species occupation numbers and natural orbitals. Following the above line, one
could also investigate the fragmentation of higher-order intra-species reduced density
matrices in the mixture. For instance, to investigate whether pairs of identical bosons,
of either species 1 or species 2, are fragmented, diagonalizing the intra-species reduced
two-particle density matrices is needed. In summary, the fragmentation of identical bosons
and its manifestation in higher-order reduced density matrices stem from the properties of
intra-species quantities.

However, a mixture of Bose–Einstein condensates offers a degree-of-freedom or many-
particle construction which does not exist for single-species bosons, namely, inter-species
reduced density matrices. Now, if the fragmentation of identical bosons and pairs is defined
as the macroscopic occupation of respective eigenvalues following the diagonalization
of intra-species reduced density matrices, we may analogously define the fragmentation
of distinguishable bosons’ pairs as a macroscopic occupation of the eigenvalues of the
inter-species reduced two-particle density matrix. Obviously, the latter is the lowest-order
inter-species quantity, since at least one particle of each species is needed to build an
inter-species entity.

The above discussion defines the goals of the present work, which are: (i) to investigate
the fragmentation of pairs of identical bosons and establish the fragmentation of pairs
of distinguishable bosons in a mixture of Bose–Einstein condensates; (ii) to construct the
respective natural geminals of the mixture, for identical pairs and for distinguishable pairs;
(iii) to show that the fragmentation of distinguishable bosons’ pairs in the mixture persists
with higher-order inter-species reduced density matrices; (iv) to construct the Schmidt
decomposition of the mixture’s wave function and discuss some of its properties at the
limit of an infinite-number of particles where the mixture is 100% condensed; and (v) to
achieve the first four goals analytically, using an exactly solvable model.

To this end, we recruited the harmonic-interaction model for mixtures [71–76], or,
more precisely here, a symmetric version of which [77]. The harmonic-interaction model for
single-species bosons (and fermions) has been used extensively in the literature, including
for investigating the properties of Bose–Einstein condensates [78–92]. In our work, we built
on results obtained and techniques used for the reduced density matrices of single-species
bosons within the harmonic-interaction model [78–82], and, among others, generalized
and extended them for the intra-species and particularly the inter-species reduced density
matrices of mixtures [74].

The structure of the paper is as follows: In Section 2, we construct and investigate the
fragmentation of intra-species and inter-species pair functions in the mixture. In Section 3,
we extend the results and explore the fragmentation of pairs of distinguishable pairs.
Furthermore, a complementary result for the Schmidt decomposition of the mixture’s
wavefucntion at the limit of an infinite number of particles is offered. In Section 4, a
summary of the results and an outlook of some prospected research topics are provided.
Finally, Appendix A collects the details of fragmentation of bosons and pairs in the single-
species system for a comparison with the mixture.

2. Intra-Species and Inter-Species Natural Pair Functions

2.1. The Symmetric Two-Species Harmonic-Interaction Model

We consider a mixture of two Bose–Einstein condensates described by the Hamiltonian
of the symmetric two-species harmonic-interaction model [74,77]:

Ĥ(x1, . . . , xN , y1, . . . , xN) = ∑N
j=1

(
− 1

2m
∂2

∂x2
j
+ 1

2 mω2x2
j

)
+ λ ∑N

1≤j<k
(
xj − xk

)2
+

+∑N
j=1

(
− 1

2m
∂2

∂y2
j
+ 1

2 mω2y2
j

)
+ λ ∑N

1≤j<k
(
yj − yk

)2
+ λ12 ∑N

j=1 ∑N
k=1

(
xj − yk

)2.
(1)

There are N bosons of type 1, N bosons of type 2, and the mass of each boson is m.
λ is the intra-species interaction strength, either between two bosons of type 1 or two
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bosons of type 2, and λ12 is the inter-species interaction strength between type 1 and type 2
bosons. Dimensionality plays no role in the present work; hence, we work in one spatial
dimension. h̄ = 1 is used throughout. Employing Jacoby coordinates for the mixture and
translating back to the laboratory frame, the 2N-boson wave function and corresponding
many-particle density matrix are given by

Ψ(x1, . . . , xN , y1, . . . , yN) =
(

mΩ
π

) N−1
2

(
M12Ω12

π

) 1
4
(

Mω
π

) 1
4

×e−
α
2 ∑N

j=1

(
x2

j +y2
j

)
−β ∑N

1≤j<k(xjxk+yjyk)+γ ∑N
j=1 ∑N

k=1 xjyk ,

(2a)

Ψ(x1, . . . , xN , y1, . . . , yN)Ψ∗(x′1, . . . , x′N , y′1, . . . , y′N) =
(

mΩ
π

)N−1( M12Ω12
π

) 1
2
(

Mω
π

) 1
2

×e−
α
2 ∑N

j=1

(
x2

j +x′j
2+y2

j +y′j
2
)
−β ∑N

1≤j<k

(
xjxk+x′jx

′
k+yjyk+y′jy

′
k

)
+γ ∑N

j=1 ∑N
k=1

(
xjyk+x′jy

′
k

)
,

(2b)

with
Ω =

√
ω2 + 2N

m (λ + λ12), Ω12 =
√

ω2 + 4N
m λ12,

α = mΩ + β, β = m
2N (Ω12 + ω − 2Ω), γ = m

2N (Ω12 − ω),
(2c)

and the relative center-of-mass M12 = m
2N and center-of-mass M = 2mN masses. The wave

function and similarly the many-particle density of the mixture depend on two dressed
frequencies, Ω and Ω12, and consist of three parts: One-body part with coefficient α, intra-
species two-body coupling with coefficient β, and inter-species two-body coupling with
coefficient γ, whereas α and β depend on the intra-species and inter-species interactions, γ
depends on the inter-species interaction only.

Another issue worth mentioning is the stability region of the mixture, namely when
the mixture is bound. The condition that a bound solution of the mixture exists requires that
all 2N degrees-of-freedom (oscillators after diagonalization with the Jacoby coordinates)
are bound. Namely, the 2(N − 1) relative-coordinate oscillators, which depend on both
the intra-species and the inter-species interactions λ and λ12, should be bound; the relative
center-of-mass oscillator, which depends on the inter-species interaction λ12 only, should
be bound; and the center-of-mass oscillator which does not depend on any of the two
interactions and is always bound. Thus, for a bound mixture, both dressed frequencies Ω
and Ω12 must be positive. This implies the conditions λ + λ12 > −mω2

2N and λ12 > −mω2

4N ,
respectively, on the interactions. In other words, the inter-species interaction λ12 is bound
from below, implying that the mutual repulsion between the two species cannot be too
strong but is not bound from above, meaning that the mutual attraction between the two
species can be unlimitedly strong. Furthermore, the intra-species interaction λ can take any
value as long as the inter-species interaction is sufficiently attractive, i.e., λ > −mω2

2N − λ12.
We shall return to the dressed frequencies Ω and Ω12 below. Note that in our work, we use
the notions bound and stable interchangeably. For example, the border of stability of the
mixture is the above-described border of parameters within which the ground state exists.

2.2. Intra-Species Natural Pair Functions

The intra-species reduced density matrices are defined when all bosons of the other
type are integrated out. We concentrate in what follows on the reduced one-particle and in
particular the two-particle density matrices of species 1,

ρ
(1)
1 (x, x′) = N

∫
dx2 · · · dxNdy1 · · · dyNΨ(x, x2, . . . , xN , y1, . . . , yN)

×Ψ∗(x′, x2, . . . , xN , y1, . . . , yN),

ρ
(2)
1 (x1, x2, x′1, x′2) = N(N − 1)

∫
dx3 · · · dxNdy1 · · · dyNΨ(x1, x2, x3, . . . , xN , y1, . . . , yN)

×Ψ∗(x′1, x′2, x3, . . . , xN , y1, . . . , yN).

(3)
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In a symmetric mixture, the corresponding reduced density matrices of species 2,
ρ
(1)
2 (y, y′) and ρ

(2)
2 (y1, y2, y′1, y′2), are the same and need not be repeated.

The reduction of the many-particle density (2b) to its finite-order reduced density
matrices is somewhat lengthy and given in [74]. We start from the final expression for the
intra-species reduced one-particle density matrix, which is given by

ρ
(1)
1 (x, x′) = N

(
α+C1,0

π

) 1
2 e−

α
2

(
x2+x′2

)
e−

1
4 C1,0(x+x′)2

= N
(

α+C1,0
π

) 1
2 e−

α+
C1,0

2
2

(
x2+x′2

)
e−

1
2 C1,0xx′ ,

α + C1,0 = (α − β) [(α−β)+Nβ]2−N2γ2

[(α−β)+Nβ][(α−β)+(N−1)β]−N(N−1)γ2 .

(4)

The coefficient C1,0 governs the properties of the intra-species reduced one-particle
density matrix and reminds one that all bosons of type 2 and all but a single boson of
type 1 are integrated out. As might be expected, ρ

(1)
1 (x, x′) depends on the three parts of

the many-boson wave function, i.e., on the α, β, and γ terms (2a). In the absence of inter-
species interaction, i.e., for γ = 0, the coefficient C1,0 boils down to that of the single-species
harmonic-interaction model; see Appendix A for further discussion.

Just as for the case of single-species bosons [81,82], the intra-species reduced one-
particle density matrix (4) can be diagonalized using Mehler’s formula. Mehler’s formula
can be written as follows:[

(1−ρ)s
(1+ρ)π

] 1
2 e

− 1
2
(1+ρ2)s

1−ρ2

(
x2+x′2

)
e
+

2ρs
1−ρ2 xx′

= ∑∞
n=0(1 − ρ)ρn 1√

2nn!

( s
π

) 1
4 Hn(

√
sx)e−

1
2 sx2 1√

2nn!

( s
π

) 1
4 Hn(

√
sx′)e−

1
2 sx′2 ,

(5)

with s > 0 and, generally, for intra-species and inter-species reduced density matrices as
well as later on for Schmidt decomposition of the wave function, 1 > ρ ≥ 0. Hn are the
Hermite polynomials.

Comparing the structure of the intra-species reduced one-particle density matrix
ρ
(1)
1 (x, x′) with that of Mehler’s formula one readily has

s(1)1 =
√

α(α + C1,0) =

√
α(α−β)

{
[(α−β)+Nβ]2−N2γ2

}
[(α−β)+Nβ][(α−β)+(N−1)β]−N(N−1)γ2 ,

ρ
(1)
1 =

α−s(1)1

α+s(1)1

=

√
α{[(α−β)+Nβ][(α−β)+(N−1)β]−N(N−1)γ2}

(α−β){[(α−β)+Nβ]2−N2γ2} −1√
α{[(α−β)+Nβ][(α−β)+(N−1)β]−N(N−1)γ2}

(α−β){[(α−β)+Nβ]2−N2γ2} +1
,

1 − ρ
(1)
1 =

2s(1)1

α+s(1)1

,

(6)

where 1 − ρ
(1)
1 is the condensate fraction of species 1 (and of species 2), i.e., the fraction

of condensed bosons, and ρ
(1)
1 is the depleted fraction, namely, the fraction of bosons

residing outside the lowest, condensed mode. s(1)1 is the scaling, or effective frequency, of
the intra-species natural orbitals. The condensate fraction, depleted fraction, and scaling of
the natural orbitals are all given in closed form as a function of the number of bosons N,
and the intra-species λ and inter-species λ12 interaction strengths. A specific application of
the general expressions (6) for the mixture appears below.
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For the intra-species two-particle reduced density matrix, we have:

ρ
(2)
1 (x1, x2, x′1, x′2) = N(N − 1)

(
α+C1,0

π

) 1
2
(

α+C2,0
π

) 1
2 ×

×e−
α
2

(
x2

1+x2
2+x′1

2+x′2
2
)

e−β(x1x2+x′1x′2)e−
1
4 C2,0(x1+x2+x′1+x′2)

2
,

α + β + 2C2,0 = (α − β) [(α−β)+Nβ]2−N2γ2

[(α−β)+Nβ][(α−β)+(N−2)β]−N(N−2)γ2 ,

(7)

where C1,0 is the coefficient of the intra-species reduced one-particle density matrix (4), and
the combination (α + β + 2C2,0) would appear shortly after.

To obtain the natural geminals of ρ
(2)
1 (x1, x2, x′1, x′2), we define the variables q1 =

1√
2
(x1 + x2), q2 = 1√

2
(x1 − x2) and q′1 = 1√

2

(
x′1 + x′2

)
, q′2 = 1√

2

(
x′1 − x′2

)
, i.e., the center-of-

mass and relative coordinate of two identical bosons. With this rotation of coordinates, we
have for the different terms in (7):

x2
1 + x2

2 + x′1
2 + x′2

2 = q2
1 + q′1

2 + q2
2 + q′2

2,

x1x2 + x′1x′2 = 1
2

(
q2

1 + q′1
2 − q2

2 − q′2
2
)

,(
x1 + x2 + x′1 + x′2

)2
= 2

(
q2

1 + q′1
2 + 2q1q′1

)
.

(8)

Consequently, one readily finds the diagonal form

ρ
(2)
1 (q1, q′1, q2, q′2) = N(N − 1)

(
α−β

π

) 1
2 e−

α−β
2

(
q2

2+q′2
2
)
×

×
(

α+β+2C2,0
π

) 1
2 e−

α+β+C2,0
2

(
q2

1+q′1
2
)

e−C2,0q1q′1 ,
(9)

where the normalization coefficients before and after diagonalization are, of course, equal
and satisfy (α + C1,0)(α + C2,0) = (α − β)(α + β + 2C2,0).

After the transformation (8), the first term of ρ
(2)
1 (q1, q′1, q2, q′2) is separable as a function

of q2 and q′2, whereas by using Mehler’s formula onto the variables q1 and q′1, the second
term can be diagonalized. Thus, comparing the second term in (9) and Equation (5), we
find

s(2)1 =
√
(α + β)(α + β + 2C2,0) =

√
(α2−β2)

{
[(α−β)+Nβ]2−N2γ2

}
[(α−β)+Nβ][(α−β)+(N−2)β]−N(N−2)γ2 ,

ρ
(2)
1 =

(α+β)−s(2)1

(α+β)+s(2)1

=

√
(α+β){[(α−β)+Nβ][(α−β)+(N−2)β]−N(N−2)γ2}

(α−β){[(α−β)+Nβ]2−N2γ2} −1√
(α+β){[(α−β)+Nβ][(α−β)+(N−2)β]−N(N−2)γ2}

(α−β){[(α−β)+Nβ]2−N2γ2} +1
,

1 − ρ
(2)
1 =

2s(2)1

α+s(2)1

.

(10)

With expressions (10), the decomposition of the intra-species reduced two-particle
density matrix in terms of its natural geminals is explicitly given by

ρ
(2)
1 (x1, x2, x′1, x′2) = N(N − 1)∑∞

n=0

(
1 − ρ

(2)
1

)(
ρ
(2)
1

)n
Φ(2)

1,n(x1, x2)Φ
(2),∗
1,n (x′1, x′2),

Φ(2)
1,n(x1, x2) =

1√
2nn!

(
s(2)1
π

) 1
4

Hn

(√
s(2)1

2 (x1 + x2)

)
e−

1
4 s(2)1 (x1+x2)

2

×
(

α−β
π

) 1
4 e−

1
4 (α−β)(x1−x2)

2
.

(11)

Equation (11) is a general result on the intra-species natural geminals of the mixture.
Together with (10), they imply that 1 − ρ

(1)
2 is the fraction of condensed pairs of species 1
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(and of species 2), ρ
(2)
1 is the fraction of depleted pairs, i.e., the fraction of pairs residing

outside the lowest, condensed natural geminal, and s(2)1 is the scaling, or effective frequency,
of the intra-species natural pair functions. The intra-species natural geminals along with
their condensate and depleted fractions are prescribed as explicit functions of the number of
bosons N, and the intra-species λ and inter-species λ12 interactions. A specific application
of the general decomposition (10) and (11) to natural geminals of the mixture is provided
below. Finally, we point out that the generalization to higher-order intra-species reduced
density matrices and corresponding natural functions follow the above pattern and are not
discussed further here.

Let us work out an explicit application where we shall find and analyze fragmentation
of identical boson’s pairs. Consider the specific scenario where λ + λ12 = 0, i.e., that
the intra-species interaction is inverse to and ‘compensates’ the effect of the inter-species
interaction on each of the species in the manner that the intra-species frequency is that of
non-interacting particles, Ω = ω. This implies that the frequency of 2N − 1 oscillators,
the 2(N − 1) relative-coordinate oscillators, and the center-of-mass oscillator is ω, and
that only the relative center-of-mass oscillator carries an interaction-dressed frequency
which is Ω12. We would see the consequences below. Then, the coefficients of the three
parts of the wave function simplify, and one has α = mω + β = mω

[
1 + 1

2N

(
Ω12
ω − 1

)]
and β = γ = m

2N (Ω12 − ω). Consequently, the expressions (6) and (10) simplify, and
the intra-species reduced one-particle and two-particle density matrices can be evaluated
further. Thus, we readily find

s(1)1 = mω

√
1+ 1

2N

(
Ω12

ω −1
)

1+ 1
2N

(
ω

Ω12
−1

) ,

ρ
(1)
1 =

√[
1+ 1

2N

(
Ω12

ω −1
)][

1+ 1
2N

(
ω

Ω12
−1

)]
−1√[

1+ 1
2N

(
Ω12

ω −1
)][

1+ 1
2N

(
ω

Ω12
−1

)]
+1

,

1 − ρ
(1)
1 = 2√[

1+ 1
2N

(
Ω12

ω −1
)][

1+ 1
2N

(
ω

Ω12
−1

)]
+1

(12a)

for the intra-species reduced one-particle density matrix, where α+C1,0 = mω 1
1+ 1

2N

(
ω

Ω12
−1

)
is used, and

s(2)1 = mω

√
1+ 1

N

(
Ω12

ω −1
)

1+ 1
N

(
ω

Ω12
−1

) ,

ρ
(2)
1 =

√[
1+ 1

N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1

)]
−1√[

1+ 1
N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1

)]
+1

,

1 − ρ
(2)
1 = 2√[

1+ 1
N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1

)]
+1

(12b)

for the intra-species reduced two-particle density matrix, where α+ β = mω
[
1 + 1

N

(
Ω12
ω − 1

)]
and α+ β+ 2C2,0 = mω 1

1+ 1
N

(
ω

Ω12
−1

) are utilized. We see that the fragmentation of identical

pairs and bosons are governed by the ratio Ω12
ω and its inverse ω

Ω12
, meaning that it takes

place both at the attractive and repulsive sectors of interactions. Moreover, the condensed
and depleted fractions of the pairs and bosons are symmetric to interchanging Ω12

ω and ω
Ω12

;
see discussion below.

Let us analyze explicitly macroscopic fragmentation of geminals, i.e., when there
is a macroscopic occupation of more than a single intra-species natural pair function of
ρ
(2)
1 (x1, x2, x′1, x′2). As a reference, we also refer to the corresponding and standardly
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defined macroscopic fragmentation of the intra-species natural orbitals of ρ
(1)
1 (x, x′). The

structure of the eigenvalues, emanating from Mehler’s formula and its applicability to the
various reduced density matrices, suggests that, say, the ‘middle’ value ρ = 1 − ρ = 1

2 , i.e.,
when the condensed and depleted fractions are equal, is a convenient manifestation of
macroscopic fragmentation. Indeed, for this value the first few natural occupation fractions
(1 − ρ)ρn, n = 0, 1, 2, 3, 4, . . . are

1
2

,
1
4

,
1
8

,
1
16

,
1

32
, . . . , (13)

namely, there is 50% occupation of the first natural geminal, 25% occupation of the second,
12.5% of the third, 6.25% of the fourth, 3.125% of the fifth, and so on. For brevity, we refer
to the fragmentation values in (13) as 50% fragmentation.

Now, one can compute for which ratio Ω12
ω , or, equivalently, for which inter-species in-

teraction λ12 = mω2

4N

[(
Ω12
ω

)2
− 1

]
, the intra-species reduced two-particle and one-particle

density matrices are macroscopically fragmented as in (13). Thus, solving (12a) for 50%
natural-orbital fragmentation, we find

ρ
(1)
1 =

1
2

=⇒ Ω12

ω
=

(
1 +

8N2

N − 1
2

)
±

√√√√(
1 +

8N2

N − 1
2

)2

− 1, (14)

and working out (12b) for 50% natural-geminal fragmentation, we obtain

ρ
(2)
1 =

1
2

=⇒ Ω12

ω
=

√
1 +

4N
mω2 λ12 =

(
1 +

4N2

N − 1

)
±

√(
1 +

4N2

N − 1

)2

− 1. (15)

There are two ‘reciprocate’ solutions for both the natural geminals and natural orbitals:
We see that 50% fragmentation occurs for strong attractions, i.e., when Ω12

ω is large, or near
the border of stability for repulsions, which is when Ω12

ω is close to zero. In addition, to
achieve the same degree of 50% with a larger number N of species 1 (and species 2) bosons,
a stronger attraction or repulsion is needed. Finally, comparing the natural-geminal with
the natural-orbital fragmentation at the same 50% value, one sees from (15) and (14) that
slightly weaker interactions, attractions or repulsions, are needed for the former.

It is also useful to register the one-particle and two-particle densities, i.e., the diagonal
parts ρ

(1)
1 (x) = ρ

(1)
1 (x, x′ = x) and ρ

(2)
1 (x1, x2) = ρ

(2)
1 (x1, x2, x′1 = x1, x′2 = x2), which read

ρ
(1)
1 (x) = N

(
α+C1,0

π

) 1
2 e−(α+C1,0)x2

= N

(
mω

π
[
1+ 1

2N

(
ω

Ω12
−1

)]
) 1

2

e
− mω

1+ 1
2N

(
ω

Ω12
−1

) x2

,

ρ
(2)
1 (x1, x2) = N(N − 1)

(
α−β

π

) 1
2 e−

α−β
2 (x1−x2)

2
(

α+β+2C2,0
π

) 1
2 e−

α+β+2C2,0
2 (x1+x2)

2

= N(N − 1)
(mω

π

) 1
2 e−

mω
2 (x1−x2)

2

(
mω

π
[
1+ 1

N

(
ω

Ω12
−1

)]
) 1

2

e
− mω

2
[

1+ 1
N

(
ω

Ω12
−1

)] (x1+x2)
2

.

(16)

From the densities (16), we can infer a measure for the size of identical pairs’ and
bosons’ clouds using the widths of the respective Gaussian functions therein. Thus, we have

σ
(1)
1,x =

√
1+ 1

2N

(
ω

Ω12
−1

)
2mω ,

σ
(2)

1, x1+x2√
2

=

√
1+ 1

N

(
ω

Ω12
−1

)
2mω , σ

(2)

1, x1−x2√
2

=
√

1
2mω .

(17a)
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We can understand intuitively why the width σ
(2)

1, x1−x2√
2

is the typical length of the

harmonic trap. For this, recall that σ
(2)

1, x1−x2√
2

is associated with the relative two-boson

coordinate q2, q′2. The general intra-species two-particle reduced density matrix (9) is
diagonal in this relative coordinate. The respective exponent is α − β = mΩ. Then, since
for the specific case studied λ + λ12 = 0 the exponent boils down to that of the bare
harmonic potential, i.e., Ω = ω, we readily obtain the result.

To assess the combined impact of the intra-species and inter-species interactions atop
the fragmentation of the reduced density matrices, it is useful to compute the sizes (17a)
for large inter-species attractions or inter-species repulsions at the border of stability. One
finds, respectively,

lim Ω12
ω →∞

σ
(1)
1,x =

√
1− 1

2N
2mω , σ

(1)
1,x −→ ∞ for Ω12

ω → 0+,

lim Ω12
ω →∞

σ
(2)

1, x1+x2√
2

=

√
1− 1

N
2mω , σ

(2)

1, x1+x2√
2

−→ ∞ for Ω12
ω → 0+,

(17b)

where σ
(2)

1, x1−x2√
2

as discussed above is independent of the interactions. Interestingly, the

size of the densities for strong inter-species attractions, which is accompanied by strong
intra-species repulsions because λ + λ12 = 0, saturates at about the trap’s size and does
not depend on the strengths of interactions. In other words, a high degree of fragmentation
is possible in the mixture without shrinking of the density due to strong inter-species
attractive interaction or expansion of the intra-species densities due to strong intra-species
repulsive interaction. For the sake of comparative analysis, it is instructive to make contact
with the fragmentation of single-species bosons in the harmonic-interaction model; see
Appendix A.

2.3. Inter-Species Natural Pair Functions

As mentioned above, in a mixture of two types of identical bosons, there are other
kinds of pairs, namely, pairs of distinguishable particles. If we are to examine the lowest-
order inter-species reduced density matrix, we can ask regarding distinguishable pairs
questions analogous to those asked concerning identical pairs. The purpose of this subsec-
tion is to derive the relevant tools and answer such questions.

The inter-species reduced two-particle density matrix, i.e., the lowest-oder inter-
species quantity, is defined from the all-particle density matrix as

ρ
(2)
12 (x, x′, y, y′) = N2

∫
dx2 · · · dxNdy2 · · · dyNΨ(x, x2, . . . , xN , y, y2, . . . , yN)

×Ψ∗(x′, x2, . . . , xN , y′, y2, . . . , yN).
(18)

For the harmonic-interaction model of the symmetric mixture, it can be computed
analytically and, starting from (2b), is given by [74]

ρ
(2)
12 (x, x′, y, y′) = N2

[
(α1+C1,1)

2−D2
1,1

π2

] 1
2
×

×e−
α1
2

(
x2+x′2+y2+y′2

)
e−

1
4 C1,1

[
(x+x′)2+(y+y′)2

]
e+

1
2 D1,1(x+x′)(y+y′)e+

1
2 D′

1,1(x−x′)(y−y′),

(19a)

where
α + C1,1 ∓ D1,1 = (α − β) (α−β)+N(β∓γ)

(α−β)+(N−1)(β∓γ)
,

D′
1,1 = γ.

(19b)

We see that the structure of the inter-species reduced two-particle density matrix is
more involved than that of the intra-species reduced two-particle density matrix, as well as
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that of the product of the two, species 1 and species 2 intra-species reduced one-particle
density matrices. Nonetheless, it can be diagonalized.

To diagonalize ρ
(2)
12 (x, x′, y, y′), one must couple and make linear combinations of co-

ordinates associated with distinguishable bosons. Defining u = 1√
2
(x + y), v = 1√

2
(x − y)

and u′ = 1√
2
(x′ + y′), v′ = 1√

2
(x′ − y′), we have for the different terms in (19):

x2 + y2 + x′2 + y′2 = u2 + u′2 + v2 + v′2,

(x + x′)2 + (y + y′)2 = (u + u′)2 + (v + v′)2 = u2 + u′2 + v2 + v′2 + 2(uu′ + vv′),

(x ± x′)(y ± y′) = 1
2

[
(u ± u′)2 − (v ± v′)2

]
= 1

2

(
u2 + u′2 − v2 − v′2

)
± (uu′ − vv′).

(20)

Consequently, we readily find the decomposition

ρ
(2)
12 (u, u′, v, v′) = N2

(
α1+C1,1−D1,1

π

) 1
2 e−

α1+
C1,1

2 −
D1,1+D′

1,1
2

2

(
u2+u′2

)
e−

1
2 [C1,1−(D1,1−D′

1,1)]uu′

×
(

α1+C1,1+D1,1
π

) 1
2 e−

α1+
C1,1

2 +
D1,1+D′

1,1
2

2

(
v2+v′2

)
e−

1
2 [C1,1+(D1,1−D′

1,1)]vv′ ,

(21)

where the normalizations after and before diagonalization are, of course, equal. As
might be expected, since the structure of ρ

(2)
12 (x, x′, y, y′) is more involved than that of

ρ
(2)
1 (x1, x2, x′1, x′2), the diagonalization of the former is more intricate. Fortunately, we can

do that using the application of Mehler’s formula twice, on the appropriately-constructed
inter-species ‘mixed’ coordinates u, u′ and v, v′. We thus obtain

s(2)12,± =

√(
α ∓ D′

1,1

)
(α + C1,1 ∓ D1,1) =

√
(α ∓ γ)(α − β) (α−β)+N(β∓γ)

(α−β)+(N−1)(β∓γ)
,

ρ
(2)
12,± =

(α∓D′
1,1)−s(2)12,±

(α∓D′
1,1)+s(2)12,±

=
(α∓γ)[(α−β)+(N−1)(β∓γ)]

(α−β)[(α−β)+N(β∓γ)]
−1

(α∓γ)[(α−β)+(N−1)(β∓γ)]
(α−β)[(α−β)+N(β∓γ)]

+1
,

1 − ρ
(2)
12,± =

2s(2)12,±
(α∓D′

1,1)+s(2)12,±
,

(22)

where the “+” terms quantify the fragmentation in the u, u′ part of the inter-species reduced
two-particle density matrix and the “−” terms quantify the fragmentation in the v, v′ part
of the inter-species reduced two-particle density matrix; also see below. Equation (22) is one
of the main results of the present work and bears a clear and appealing physical meaning:
that pairs made of distinguishable bosons can be fragmented and that this fragmentation is
governed by the center-of-mass and by a relative coordinate of distinguishable bosons. We
shall return to this point in what follows.

We can now prescribe the decomposition of the inter-species reduced two-particle
density matrix to its distinguishable natural pair functions, which is given by

ρ
(2)
12 (x, x′, y, y′)

= N2 ∑∞
n+=0 ∑∞

n−=0

(
1 − ρ

(2)
12,+

)(
1 − ρ

(2)
12,−

)(
ρ
(2)
12,+

)n+
(

ρ
(2)
12,−

)n−
Φ(2)

12,n+ ,n−(x, y)Φ(2),∗
12,n+ ,n−(x′, y′),

Φ(2)
12,n+ ,n−(x, y) = 1√

2n+n+ !

(
s(2)12,+

π

) 1
4

Hn+

(√
s(2)12,+

2 (x + y)

)
e−

1
4 s(2)12,+(x+y)2

× 1√
2n−n− !

(
s(2)12,−

π

) 1
4

Hn−

(√
s(2)12,−

2 (x − y)

)
e−

1
4 s(2)12,−(x−y)2

.

(23)
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All in all, (23) implies that the distinguishable-pair ‘condensed fraction’ is given by(
1 − ρ

(2)
12,+

)(
1 − ρ

(2)
12,−

)
and the respective depleted fraction by 1−

(
1 − ρ

(2)
12,+

)(
1 − ρ

(2)
12,−

)
=

ρ
(2)
12,+ + ρ

(2)
12,− − ρ

(2)
12,+ρ

(2)
12,−. Each of the inter-species ‘mixed’ coordinates x±y√

2
carries its own

scaling, s(2)12,±. The distinguishable natural geminals Φ(2)
12,n+ ,n−(x, y) are, needless to say,

orthonormal to each other.
We proceed now for an application. We considered above the specific case of λ + λ12 = 0,

which leads to Ω = ω, α = mω
[
1 + 1

2N

(
Ω12
ω − 1

)]
, and β = γ = m

2N (Ω12 − ω). Recall that
this implies that the frequency of 2N − 1 coordinates, the 2(N − 1) relative coordinates,
and the center-of-mass coordinate is ω and that only the relative center-of-mass coordinate
has an interaction-dressed frequency, Ω12. To evaluate ρ

(2)
12 (x, x′, y, y′), we also need the

combinations (α + C1,1 − D1,1) = mω and
(

α − D′
1,1

)
= mω for the “+” branch, as well

as (α + C1,1 + D1,1) = mω 1
1+ 1

N

(
ω

Ω12
−1

) and
(

α + D′
1,1

)
= mω

[
1 + 1

N

(
Ω12
ω − 1

)]
for the

“−” branch.
Thus, expressions (22) can readily be evaluated, and the following picture of inter-

species fragmentation is found:

s(2)12,+ = mω, ρ
(2)
12,+ = 0, 1 − ρ

(2)
12,+ = 1, (24a)

indicating that there is no contribution to fragmentation from the symmetric ‘mixed’
coordinate u, u′. On the other end,

s(2)12,− = mω

√
1+ 1

N

(
Ω12

ω −1
)

1+ 1
N

(
ω

Ω12
−1

) ,

ρ
(2)
12,− =

√[
1+ 1

N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1

)]
−1√[

1+ 1
N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1

)]
+1

,

1 − ρ
(2)
12,− = 2√[

1+ 1
N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1

)]
+1

,

(24b)

namely, that the fragmentation fully originates from the asymmetric ‘mixed’ coordinate
v, v′. We conclude that, whereas the fragmentation of identical pairs is associated with
their center-of-mass coordinate, the fragmentation of distinguishable pairs is linked, in
this explicit case, only with a relative coordinate between two distinguishable bosons.
Interestingly, the degree of intra-species and inter-species pair fragmentation is the same in
the specific case considered, despite pertaining to different parts of the mixtures’ many-
boson wave function. Furthermore, there are different numbers of pairs: N

2 intra-species
identical pairs (for each of the species) and N inter-species pairs of distinguishable bosons.

Now, one can compute the ratio Ω12
ω =

√
1 + 4N

mω2 λ12 for which the inter-species

reduced two-particle density matrix is 50% fragmented as in (13). Since ρ
(2)
12,+ = 0 does not

contribute, the only contribution to fragmentation comes from ρ
(2)
12,−. Thus, solving (24b)

for 50% distinguishable-pair-function fragmentation, we obtain

ρ
(2)
12,− =

1
2

=⇒ Ω12

ω
=

(
1 +

4N2

N − 1

)
±

√(
1 +

4N2

N − 1

)2

− 1. (25)

As above, there are two ‘reciprocate’ solutions: one for strong inter-species attraction
and the second close to the border of stability for intermediate-strength inter-species
repulsion. We remind that since λ + λ12 = 0 in our example, the respective intra-species
interaction is opposite in sign. In addition, to achieve the same degree of 50% fragmentation
with a larger number N of distinguishable pairs, a stronger inter-species attraction or
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repulsion is needed. Furthermore, as discussed above, comparing distinguishable-pair
and identical-pair fragmentation at the same 50% value in this example, one sees from (25)
and (15) that the same interaction is needed.

Finally, we prescribe the inter-species two-particle density, namely, the diagonal part
ρ
(2)
12 (x, y) = ρ

(2)
12 (x, x′ = x, y, y′ = y), which is given by

ρ
(2)
12 (x, y) = N2

(
α1+C1,1−D1,1

π

) 1
2 e−

α1+C1,1−D1,1
2 (x+y)2

×
(

α1+C1,1+D1,1
π

) 1
2 e−

α1+C1,1+D1,1
2 (x−y)2

= N2(mω
π

) 1
2 e−

mω
2 (x+y)2

(
mω

π
[
1+ 1

N

(
ω

Ω12
−1

)]
) 1

2

e
− mω

2
[

1+ 1
N

(
ω

Ω12
−1

)] (x−y)2

.

(26)

Next, the size of the distinguishable pairs’ cloud can be assessed from the density (26)
using the widths of the respective Gaussian functions. Accordingly, we find

σ
(2)
12, x+y√

2

=

√
1

2mω
, σ

(2)
12, x−y√

2

=

√√√√1 + 1
N

(
ω

Ω12
− 1

)
2mω

. (27a)

The explanation why the width σ
(2)
12, x+y√

2

is also the typical length of the harmonic

potential is somewhat less intuitive. The distinguishable pair center-of-mass coordinate
u, u′ appears in the general inter-species reduced two-particle density matrix (21) in a
coupled form which requires diagonalization via Mehler’s formula. We find in the specific
case λ + λ12 = 0 that γ = β. This leads to a neat cancellation of terms, and the retaining of
a single term in the Mehler’s expansion with the typical length of the harmonic potential.

To show the combined effect of the intra-species and inter-species interactions ac-
companying the fragmentation of ρ

(2)
12 (x, x′, y, y′), it is useful to compute the sizes (27a)

for large inter-species attractions or inter-species repulsions at the border of stability. We
obtain, respectively,

lim
Ω12

ω →∞
σ
(2)
12, x−y√

2

=

√
1 − 1

N
2mω

, σ
(2)
12, x−y√

2

−→ ∞ for
Ω12

ω
→ 0+, (27b)

where σ
(2)
12, x+y√

2

as discussed above is independent of the interactions. We see that the size

of the inter-species density saturates as does the trap’s size and does not depend on the
strengths of interactions in the limit of strong inter-species attractions. Analogously to
identical pairs, a strong fragmentation of distinguishable pairs is possible in the mixture
without the shrinking of the inter-species density due to strong inter-species attractive
interaction. At the other end, when the inter-species repulsion is close to the border
of stability, the inter-species density expands boundlessly. Summarizing, inter-species
fragmentation is governed by the ratio Ω12

ω and takes place both at the attractive and
repulsive sectors of interactions. For the sake of analysis, we compared the results for
inter-species pair fragmentation with intra-species pair fragmentation and discussed the
similarity and differences between the respective two-particle densities (16) and (26).

3. Pair of Distinguishable Pairs and Schmidt Decomposition of the wave function

Following the results of the previous section on the fragmentation of distinguishable
pairs, there are two questions that warrant answers. The first is whether inter-species
fragmentation persists beyond distinguishable pairs, say, to pairs of distinguishable pairs?
Inasmuch as single-species and intra-species fragmentations take place at the lowest-level
reduced one-particle density matrix and persist at higher-level single-species reduced
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density matrices, we wish to establish the result of inter-species fragmentation at the level
of higher-order reduced density matrices. After all, the reduced two-particle density matrix
is the lowest-order inter-species one. The second question deals with the nature of the
inter-species coordinates governing fragmentation. At the level of distinguishable-pair
fragmentation, i.e., within the inter-species reduced two-particle density matrix, one cannot
unambiguously tell whether the relative center-of-mass coordinate of the two species is
involved or whether other relative inter-species coordinates govern fragmentation. This
is because in a pair of distinguishable particles, one cannot distinguish between the two
types of coordinates.

As seen in the previous section, the inter-species reduced two-particle density matrix
is more intricate than the intra-species ones, and consequently, its diagonalization is
more involved. We derive now the inter-species reduced four-particle density matrix
and examine which ‘normal coordinates’ govern its diagonalization. Then, the natural
four-particle functions are obtained explicitly and investigated.

Finally, and as a complementary result of the techniques used for inter-species frag-
mentation, we carry the connection between inter-species and intra-species center-of-mass
coordinates, in conjunction with the usage of Mehler’s formula within a mixture, fur-
ther. This is performed by constructing the Schmidt decomposition of the mixture’s wave
function and discussing the consequences of this decomposition at the limit of an infinite
number of particles.

3.1. Inter-Species Fragmentation in Higher-Order Reduced Density Matrices

The inter-species reduced four-particle density matrix is defined as

ρ
(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2) = N2(N − 1)2 ∫ dx3 · · · dxNdy3 · · · dyN

×Ψ(x1, x2, x3, . . . , xN , y1, y2, y3, . . . , yN)Ψ∗(x′1, x′2, x3, . . . , xN , y′1, y′2, y3, . . . , yN).
(28)

Note that here we only treat the four-particle quantity with two identical bosons per
each species. Integrating the harmonic interaction-model for symmetric mixtures, we find
the final expression explicitly

ρ
(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2) = N2(N − 1)2

[
(α+C1,1)

2−D2
1,1

π2

] 1
2
[
(α+C2,2)

2−D2
2,2

π2

] 1
2

×e−
α
2

(
x2

1+x2
2+x′1

2+x′2
2+y2

1+y2
2+y′1

2+y′2
2
)

e−β(x1x2+x′1x′2+y1y2+y′1y′2)

×e−
1
4 C2,2

[
(x1+x2+x′1+x′2)

2
+(y1+y2+y′1+y′2)

2]
×

×e+
1
2 D2,2(x1+x2+x′1+x′2)(y1+y2+y′1+y′2)e+

1
2 D′

2,2(x1+x2−x′1−x′2)(y1+y2−y′1−y′2),

(29a)

where
α + β + 2(C2,2 ∓ D2,2) = (α − β) (α−β)+N(β∓γ)

(α−β)+(N−2)(β∓γ)
,

D′
2,2 = γ,

(29b)

and α+C1,1 ∓D1,1 are given in (19b). The combinations of parameters α+ β+ 2(C2,2 ∓ D2,2)
would appear below shortly.

To diagonalize ρ
(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2), we need to mix and rotate the coordi-

nates of the two species into new coordinates appropriately. Thus, defining the new coordi-
nates as the center-of-mass, relative center-of-mass, and relative coordinates of two identical
pairs, one for each of the species, u1 =

1
2 [(x1 + x2) + (y1 + y2)], v1 =

1
2 [(x1 + x2)− (y1 + y2)],

u2 = 1√
2
(x1 − x2), v2 = 1√

2
(y1 − y2) and u′

1 = 1
2
[(

x′1 + x′2
)
+

(
y′1 + y′2

)]
, v′1 = 1

2 [
(

x′1 + x′2
)

−
(
y′1 + y′2

)
], u′

2 = 1√
2

(
x′1 − x′2

)
, v′2 = 1√

2

(
y′1 − y′2

)
, we have for the different terms in (29a):
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x2
1 + x2

2 + y2
1 + y2

2 + x′1
2 + x′2

2 + y′1
2 + y′2

2 = u2
1 + u′

1
2 + v2

1 + v′1
2 + u2

2 + u′
2

2 + v2
2 + v′2

2,

x1x2 + x′1x′2 + y1y2 + y′1y′2 = 1
2

(
u2

1 + u′
1

2 + v2
1 + v′1

2 − u2
2 − u′

2
2 − v2

2 − v′2
2
)

,(
x1 + x2 + x′1 + x′2

)2
+

(
y1 + y2 + y′1 + y′2

)2
= 2

[(
u1 + u′

1
)2

+
(
v1 + v′1

)2
]
,[

(x1 + x2)±
(

x′1 + x′2
)][

(y1 + y2)±
(
y′1 + y′2

)]
=

(
u1 ± u′

1
)2 −

(
v1 ± v′1

)2.

(30)

Relations (30) imply that one could equally define inter-species linear combinations

of the relative coordinates, since u2
2 + v2

2 =
[
(x1−x2)+(y1−y2)

2

]2
+

[
(x1−x2)−(y1−y2)

2

]2
and

u′
2

2 + v′2
2 =

[
(x′1−x′2)+(y′1−y′2)

2

]2
+

[
(x′1−x′2)−(y′1−y′2)

2

]2
. We chose the former combinations.

Plugging (30) into (29), we readily find for the transformed inter-species reduced
four-particle density matrix

ρ
(4)
12 (u1, u′

1, v1, v′1, u2, u′
2, v2, v′2) = N2(N − 1)2

×
(

α−β
π

) 1
2 e−

α−β
2

(
u2

2+u′
2

2
)(

α−β
π

) 1
2 e−

α−β
2

(
v2

2+v′2
2
)

×
[

α+β+2(C2,2−D2,2)
π

] 1
2 e−

α+β+C2,2−(D2,2+D′
2,2)

2

(
u2

1+u′
1

2
)

e−[C2,2−(D2,2−D′
2,2)]u1u′

1

×
[

α+β+2(C2,2+D2,2)
π

] 1
2 e−

α+β+C2,2+(D2,2+D′
2,2)

2

(
v2

1+v′1
2
)

e−[C2,2+(D2,2−D′
2,2)]v1v′1 ,

(31)

where the normalization coefficients before and after diagonalization are, naturally, equal
and fulfill [α + (C1,1 ∓ D1,1)][α + (C2,2 ∓ D2,2)] = (α − β)[α + β + 2(C2,2 ∓ D2,2)].

As can be seen in (31) and (21), the similarities and differences between the structures
of ρ

(4)
12 (u1, u′

1, v1, v′1, u2, u′
2, v2, v′2) and ρ

(2)
12 (u, u′, v, v′) clarify the issue of which coordinates

are coupled and identify the coordinates that are not. In particular, just like for the two-
particle quantity, we can apply Mehler’s formula twice, on the appropriately constructed
inter-species ‘mixed coordinates’ u1, u′

1 and v1, v′1, to diagonalize the inter-species reduced
four-particle density matrix. When this is performed, one obtains

s(4)12,± =

√(
α + β ∓ 2D′

2,2

)
[α + β + 2(C2,2 ∓ D2,2)]

=

√
(α + β ∓ 2γ)(α − β) (α−β)+N(β∓γ)

(α−β)+(N−2)(β∓γ)
,

ρ
(4)
12,± =

(α+β∓2D′
2,2)−s(4)12,±

(α+β∓2D′
2,2)+s(4)12,±

=
(α+β∓2γ)[(α−β)+(N−2)(β∓γ)]

(α−β)[(α−β)+N(β∓γ)]
−1

(α+β∓2γ)[(α−β)+(N−2)(β∓γ)]
(α−β)[(α−β)+N(β∓γ)]

+1
,

1 − ρ
(4)
12,± =

2s(4)12,±
(α+β∓2D′

2,2)+s(4)12,±
,

(32)

where the “+” terms quantify, the fragmentation in the u1, u′
1 part of the inter-species

reduced four-particle density matrix and the “−” terms determine the fragmentation in the
v1, v′1 part of the inter-species reduced four-particle density matrix. As found and shown
in (31), there is no fragmentation due to the relative-coordinate parts u2, u′

2 and v2, v′2.
Equation (32) adds to the main results of the present work and bears a transparent and
appealing physical meaning: in the mixture, inter-species fragmentation is quantified by
the eigenvalues obtained from Mehler’s formula when the latter is applied to the mixture’s
center-of-mass and relative center-of-mass coordinates of distinguishable pairs of pairs.
Extensions to larger distinguishable aggregates of species 1 and species 2 identical bosons
in the mixture is possible along the above lines and are not pursued further here.
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We can now prescribe the decomposition of the inter-species reduced four-particle
density matrix, inasmuch as the reduced two-particle density matrix was decomposed,
into its natural four-particle functions made of distinguishable particles. The final result is
given by

ρ
(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2) = N2(N − 1)2 ∑∞

n+=0 ∑∞
n−=0

(
1 − ρ

(4)
12,+

)(
1 − ρ

(4)
12,−

)
×
(

ρ
(4)
12,+

)n+
(

ρ
(4)
12,−

)n−
Φ(4)

12,n+ ,n−(x1, x2, y1, y2)Φ
(4),∗
12,n+ ,n−(x′1, x′2, y′1, y′2),

Φ(4)
12,n+ ,n−(x1, x2, y1, y2)

= 1√
2n+n+ !

(
s(4)12,+

π

) 1
4

Hn+

(√
s(4)12,+
2 [(x1 + x2) + (y1 + y2)]

)
e−

1
8 s(4)12,+[(x1+x2)+(y1+y2)]

2

× 1√
2n−n− !

(
s(4)12,−

π

) 1
4

Hn−

(√
s(4)12,−
2 [(x1 + x2)− (y1 + y2)]

)
e−

1
8 s(4)12,− [(x1+x2)−(y1+y2)]

2

×
(

α−β
π

) 1
4 e−

α−β
4 (x1−x2)

2
(

α−β
π

) 1
4 e−

α−β
4 (y1−y2)

2
.

(33)

Equation (33) means that the pair-of-distinguishable-pairs ‘condensed fraction’ is
given by the product

(
1 − ρ

(4)
12,+

)(
1 − ρ

(4)
12,−

)
and the respective depleted fraction is

1 −
(

1 − ρ
(4)
12,+

)(
1 − ρ

(4)
12,−

)
= ρ

(4)
12,+ + ρ

(4)
12,− − ρ

(4)
12,+ρ

(4)
12,−. The center-of-mass and relative

center-of-mass coordinates of the two pairs, (x1+x2)±(y1+y2)
2 , carry the respective scalings

s(4)12,±. The natural four-particle functions Φ(4)
12,n+ ,n−(x1, x2, y1, y2) are enumerated by the

two quantum numbers n+, n− and are obviously orthonormal to each other.
We proceed now to examine the fragmentation in this higher-order inter-species re-

duced density matrix. We investigate, as mentioned above, the specific case of λ + λ12 = 0.
To compute ρ

(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2), we require the quantities [α + β + 2(C2,2 − D2,2)]

= mω and
(

α + β − 2D′
2,2

)
= mω for the “+” branch, as well as [α + β + 2(C2,2 + D2,2)] =

mω 1
1+ 2

N

(
ω

Ω12
−1

) and
(

α + β + 2D′
2,2

)
= mω

[
1 + 2

N

(
Ω12
ω − 1

)]
for the “−” branch.

Now, expressions (32) can readily be evaluated, and the following picture of higher-
order inter-species fragmentation is found:

s(4)12,+ = mω, ρ
(4)
12,+ = 0, 1 − ρ

(4)
12,+ = 1, (34a)

indicating that there is no contribution to fragmentation from the center-of-mass ‘mixed
coordinate’ u1, u′

1. This is additional to the no contribution to fragmentation coming from
the relative coordinates u2, u′

2 and v2, v′2; see (31). For the relative center-of-mass ‘mixed
coordinate’ v1, v′1, on the other end, one finds

s(4)12,− = mω

√
1+ 2

N

(
Ω12

ω −1
)

1+ 2
N

(
ω

Ω12
−1

) ,

ρ
(4)
12,− =

√[
1+ 2

N

(
Ω12

ω −1
)][

1+ 2
N

(
ω

Ω12
−1

)]
−1√[

1+ 2
N

(
Ω12

ω −1
)][

1+ 2
N

(
ω

Ω12
−1

)]
+1

,

1 − ρ
(4)
12,− = 2√[

1+ 2
N

(
Ω12

ω −1
)][

1+ 2
N

(
ω

Ω12
−1

)]
+1

,

(34b)

namely, that the fragmentation of pairs of distinguishable pairs fully originates from the
relative center-of-mass ‘mixed coordinate’ v1, v′1. We see that also the higher-order inter-
species fragmentation is governed by the ratio Ω12

ω and takes place both at the attractive and
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repulsive sectors of interactions. In conclusion, the higher-order inter-species fragmentation
is proved.

Now, one can compute the ratio Ω12
ω =

√
1 + 4N

mω2 λ12 for which the inter-species

reduced four-particle density matrix is 50% fragmented, as in (13). Since ρ
(4)
12,+ = 0 does

not contribute in this specific case, the only contribution to fragmentation comes from
ρ
(4)
12,−. Thus, solving (34b) for 50% distinguishable-four-particle-function fragmentation, we

obtain

ρ
(4)
12,− =

1
2

=⇒ Ω12

ω
=

(
1 +

2N2

N − 2

)
±

√(
1 +

2N2

N − 2

)2

− 1. (35)

As for distinguishable pairs, there are two ‘reciprocate’ solutions: one for strong
attractions and the second close to the border of stability for repulsions. In addition, to
achieve the same degree of 50% fragmentation with a larger number N

2 of distinguishable
four-boson aggregates, a stronger attraction or repulsion is needed. Furthermore, com-
paring distinguishable-four-boson and distinguishable-two-boson fragmentation at the
same 50% value, one sees from (35) and (25) that slightly weaker interactions–attractions
or repulsions–are needed for the former. This behavior of the fragmentation of increasing
orders of inter-species reduced density matrices is analogous to and generalizes that of
intra-species and single-species reduced density matrices; see the previous section and the
appendix, respectively.

Finally, we present for completeness the inter-species four-particle density, i.e., the
diagonal part ρ

(4)
12 (x1, x2, y1, y2) = ρ

(4)
12 (x1, x2, x′1 = x1, x′2 = x2, y1, y2, y′1 = y1, y′2 = y2),

which is given by

ρ
(4)
12 (x1, x2, y1, y2) = N2(N − 1)2

(
α−β

π

)
e−

α−β
2 (x1−x2)

2
e−

α−β
2 (y1−y2)

2

×
[

α+β+2(C2,2−D2,2)
π

] 1
2 e−

α+β+2(C2,2−D2,2)
4 [(x1+x2)+(y1+y2)]

2

×
[

α+β+2(C2,2+D2,2)
π

] 1
2 e−

α+β+2(C2,2+D2,2)
4 [(x1+x2)−(y1+y2)]

2

= N2(N − 1)2(mω
π

) 3
2 e−

mω
2 (x1−x2)

2
e−

mω
2 (y1−y2)

2
e−

mω
4 [(x1+x2)+(y1+y2)]

2

×
(

mω

π
[
1+ 2

N

(
ω

Ω12
−1

)]
) 1

2

e
− mω

4
[

1+ 2
N

(
ω

Ω12
−1

)] [(x1+x2)−(y1+y2)]
2

.

(36)

To proceed, the size of the distinguishable four-boson cloud can be estimated from the
widths of the respective Gaussian functions in the density (36). Thus, we obtain

σ
(4)

12, x1−x2√
2

=
√

1
2mω , σ

(4)

12, y1−y2√
2

=
√

1
2mω , σ

(4)

12, (
x1+x2)+(y1+y2)

2

=
√

1
2mω ,

σ
(4)

12, (
x1+x2)−(y1+y2)

2

=

√
1+ 2

N

(
ω

Ω12
−1

)
2mω .

(37a)

The explanations why the widths σ
(4)

12, x1−x2√
2

, σ
(4)

12, y1−y2√
2

with intra-species relative co-

ordinates and, separately, the width σ
(4)

12, (
x1+x2)−(y1+y2)

2

with inter-species center-of-mass

coordinate are all the typical length of the harmonic potential follow those given above,
alongside Equations (17a) and (27a), respectively, and are not reproduced here.

To show the combined effect of the inter-species and intra-species interactions accom-
panying the fragmentation of ρ

(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2), it is instrumental to compute
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the sizes (37a) for large inter-species attractions or inter-species repulsions at the border of
stability. We obtain, respectively,

lim
Ω12

ω →∞
σ
(4)

12, (
x1+x2)−(y1+y2)

2

=

√
1 − 2

N
2mω

, σ
(4)

12, (
x1+x2)−(y1+y2)

2

−→ ∞ for
Ω12

ω
→ 0+, (37b)

where σ
(4)

12, x1−x2√
2

, σ
(4)

12, y1−y2√
2

, and σ
(4)

12, (
x1+x2)+(y1+y2)

2

, as mentioned above, do not depend on the

interactions. We see that the size of the inter-species four-boson density also saturates at
about the trap’s size, and does not depend on the strengths of interactions in the limit
of strong inter-species attractions. As for the pair of distinguishable bosons, a strong
fragmentation is possible in the mixture with hardly any shrinking of the density in
comparison with that of the bare trap due to the condition λ + λ12 = 0, namely when
strong inter-species attractive interaction is accompanied by strong intra-species repulsion
of equal magnitude. In summary, inter-species fragmentation in higher-order reduced
density matrices is also governed by the ratio Ω12

ω and takes place both at the attractive and
repulsive sectors of interactions.

3.2. Inter-Species Entanglement and the Limit of an Infinite Number of Particles

In the previous sections, the reduced density matrices for identical and distinguishable
pairs of bosons were diagonalized, and the intra-species and inter-species fragmentations
explored. Both kinds of fragmentations are critical phenomena in the sense that, going
to the limit of an infinite number of particles while keeping the interaction parameters
(products of the number of particles times the interaction strengths) constant, the respective
reduced density matrix per particle becomes 100% condensed [74]. This can be easily found
from the leading natural eigenvalues of the natural functions explicitly obtained above; see
the general (6), (10), (22), (32) and specific (12), (24), (34) expressions, which are all equal to
1 in this limit.

In the present, concluding subsection, we touch upon a property of the mixture which
does not diminish at the limit of an infinite number of particles. Classifying properties of
Bose–Einstein condensates and their mixtures at the limit of an infinite number of particles,
and especially when many-body and mean-field theories do not coincide, is an active field
of research, where variances of observables and the overlap between the many-body and
mean-field wave functions are discussed elsewhere; see [75–77,93–101]. Here, combining
the techniques used in the previous sections, we apply Mehler’s formula to perform the
Schmidt decomposition of the wave function.

Let us examine the mixture’s wave function, for which the coordinates of the two
species are coupled to each other owing to the inter-species interaction; see the last term
in (2a). As a reminder, the wave function is obtained by representing the Hamiltonian (1)
with the mixture’s Jacoby coordinates, for which it is fully diagonalized, and translating it
back to the laboratory frame. To decouple the coordinates of each species, in the sense of
prescribing the Schmidt decomposition of the wave function, it is useful to go ‘half a step’
backward, and express (2a), using the individual species’ Jacoby coordinates.

The Jacoby coordinates of each species are given by

Xk =
1√

k(k+1)
∑k

j=1
(

xk+1 − xj
)
, 1 ≤ k ≤ N − 1, XN = 1√

N ∑N
j=1 xj,

Yk =
1√

k(k+1)
∑k

j=1
(
yk+1 − yj

)
, 1 ≤ k ≤ N − 1, YN = ± 1√

N ∑N
j=1 yj,

(38)

where, for the derivation given below, it is useful to distinguish between the two cases
for the definition of, say, YN : The plus sign is assigned to positive γ, namely, to attractive
inter-species interactions for which Ω12 > ω, and the minus sign is assigned to negative γ,
i.e., to repulsive inter-species interactions where Ω12 < ω.
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For the symmetric mixture, given the above Jacobi coordinates of each species, Equa-
tion (38), the wave function reads

Ψ(X1, . . . , XN , Y1, . . . , YN) =
(

mΩ
π

) N−1
2

(
M12Ω12

π

) 1
4
(

Mω
π

) 1
4

×e−
1
2 mΩ ∑N−1

k=1 (X2
k+Y2

k )e−
1
2 m(Ω12+ω)

2 (X2
N+Y2

N)e±
1
2 m(Ω12−ω)XNYN .

(39a)

Indeed, all relative coordinates are decoupled, and the only coupling due to the
inter-species interaction is between the center-of-mass XN of species 1 bosons and the
center-of-mass YN of species 2 bosons. Consequently, applying Mehler’s formula to the
terms with the intra-species center-of-mass Jacoby coordinates XN and YN the Schmidt
decomposition of (39a) is readily performed and given by

Ψ(X1, . . . , XN , Y1, . . . , YN) = ∑∞
n=0

√
1 − ρ2

SDρn
SDΦ1,n(X1, . . . , XN)Φ2,n(Y1, . . . , YN),

Φ1,n(X1, . . . , XN) =
(

mΩ
π

) N−1
4 e−

1
2 mΩ ∑N−1

k=1 X2
k 1√

2nn!

( sSD
π

) 1
4 Hn

(√
sSDXN

)
e−

1
2 sSDX2

N ,

Φ2,n(Y1, . . . , YN) =
(

mΩ
π

) N−1
4 e−

1
2 mΩ ∑N−1

k=1 Y2
k 1√

2nn!

( sSD
π

) 1
4 Hn

(√
sSDYN

)
e−

1
2 sSDY2

N ,

√
1 − ρ2

SD =
2
√

Ω12
ω

1+ Ω12
ω

, ρSD =

(
Ω12

ω

)±1
−1(

Ω12
ω

)±1
+1

, sSD = m
√

ωΩ12.

(39b)

We repeat that the plus sign is for attraction and the minus for repulsion, which

is what guarantees that ρSD and consequently the Schmidt coefficients
√

1 − ρ2
SDρn

SD,
n = 0, 1, 2, 3, . . . are always positive. sSD defines the inverse width of the individual species’
center-of-mass Gaussians in the Schmidt basis Φ1,n(X1, . . . , XN) and Φ2,n(Y1, . . . , YN).

Let us concisely discuss the properties of the Schmidt decomposition of the mixture,
Equation (39b). Clearly and interestingly, the Schmidt coefficients are independent of
the intra-species dressed frequency Ω, which only appears in conjunction with intra-
species relative coordinates, i.e., the Schmidt coefficients depend solely on the inter-species
interaction. Furthermore, there is a kind of symmetry between respective attractive and
repulsive inter-species interactions, as one obtains the same Schmidt coefficients for the

inter-species frequency Ω12
ω =

√
1 + 4Nλ12

mω2 and inverse frequency ω
Ω12

= 1√
1+ 4Nλ12

mω2

.

Last but not least, the same Schmidt coefficients are obtained when the product of the
number of bosons in each species times the inter-species interaction strength, Nλ12, is held
fixed, and N is increased to infinity. In other words, whereas identical and distinguishable
bosons, pairs, four-particle aggregates, etc. are 100% condensed at the limit of an infinite
number of particles, i.e., the leading eigenvalue of all finite-order intra-species and inter-
species reduced density matrices per particle is 1, the mixture’s wave function exhibits a
fixed amount of entanglement at the infinite-particle-number limit. This is a good place to
bring the present study to an end.

4. Summary and Outlook

The present work aims at developing and combining concepts from quantum theory
of many-particle systems with novel results on the physics of trapped mixtures of Bose–
Einstein condensates. The notions of natural orbitals and natural geminals are fundamental
to many-particle systems made of identical particles. These natural functions entail the
diagonalization of the reduced one-particle and two-particle density matrices, respectively.
In a mixture of two kinds of identical particles—here explicitly two types of bosons—
there are, naturally, identical bosons and pairs made of indistinguishable bosons of either
species. To find their natural orbitals and natural geminals, the construction and subsequent
diagonalization of respective intra-species reduced density matrices is necessary. In the
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mixture, there are, additionally, pairs made of distinguishable bosons. Analogously, their
theoretical description would require assembling, diagonalizing, and analyzing the inter-
species reduced two-particle density matrix. In the present work, we have investigated
pairs made of identical or distinguishable bosons in a mixture of Bose–Einstein condensates,
covering both the structure of the respective natural pair functions, on the more formal
theoretical side, and the exploration of pairs’ fragmentation. Like identical bosons, which
can, depending on whether the reduced one-particle density matrix has one or more
macroscopic eigenvalues, be condensed or fragmented, so do the pairs of bosons. We
showed in the present work that, in the mixture, both pairs made of identical bosons and
pairs consisting of distinguishable bosons can be condensed and moreover fragmented.

To tackle the above and other questions, we employed a solvable model, the symmetric
harmonic-interaction model for mixtures. The natural geminals for pairs made of identi-
cal or distinguishable bosons were explicitly contracted as a function of the inter-species
and intra-species interactions. This was performed by diagonalizing the corresponding
intra-species and inter-species reduced two-particle density matrices using applications
of Mehler’s formula on appropriately constructed linear combinations of intra-species
and inter-species coordinates. Here, the role of the mixture’s center-of-mass and rela-
tive center-of-mass coordinates was identified and explained. The structure of identical
and distinguishable pairs in the mixture was discussed, and a generalization to pairs
of distinguishable pairs using the inter-species reduced four-body density matrix was
made. A particular case, where attractive and repulsive inter-species and intra-species
interactions are (opposite in sign and) equal in magnitude, was worked out explicitly. The
fragmentation of bosons, pairs, and pairs of pairs in the mixture was proven, and the size
of the respective densities analyzed. Last but not least, as a complementary investigation,
the exact Schmidt decomposition of the mixture’s wave function was performed. The
entanglement between the two species was shown to be governed by the coupling of their
individual center-of-mass coordinates and, consequently, not to vanish at the limit of an
infinite number of particles where any finite-order intra-species and inter-species reduced
density matrix per particle is 100% condensed.

The results reported in this work were obtained analytically, because the one-body
trapping potential and the two-body inter-particle interactions are all harmonic. It is
relevant to inquire whether the results would be robust in general. We know that fragmen-
tation of single-species bosons takes place in traps of various shapes; see, e.g., [13], for the
inter-particle interactions of various ranges [24], and at the level of the one-particle and two-
particle reduced density matrices [28]. Furthermore, as seen in Appendix A, fragmentation
of bosons and pairs occurs, respectively, at the level of the one-particle and two-particle
reduced density matrices within the single-species harmonic-interaction model. We can
therefore quite confidently foresee that the results obtained here analytically, of intra-
species and inter-species pairs’ fragmentation using the (symmetric) harmonic-interaction
model for mixtures, would persist for trapped interacting bosonic mixtures in general.
Demonstrating that explicitly we would have to resort to many-body numerical tools, see,
e.g., in [50,59,62,67]. Similarly, our analytical and numerical experience for studying single-
species trapped bosons at the limit of an infinite-number of particles [95,96,99,101], along
with the corresponding analytical results for variances and overlaps in mixtures [75,77],
strongly suggest that a similar generality would hold true for the Schmidt decomposition
of trapped interacting mixtures at the infinite-particle-number limit.

The present investigations suggest several directions for further developments. We
have treated the symmetric mixture, and an anticipated extension to generic trapped mix-
tures, with different numbers of bosons, masses, and interaction strengths for each species,
would be in place. In what capacity can the fragmentation of identical pairs in the different
species be made to differ, and to what extent would the fragmentation of distinguishable
pairs become more complex? Do the center-of-mass and relative center-of-mass coordinates
keep their role in the diagonalization of inter-species reduced density matrices for a generic
mixture? It also makes sense, in a generic mixture, to investigate the fragmentation of aggre-
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gates with unequal numbers of bosons from each species, such as, for instance, the analysis
of inter-species reduced three-particle density matrices. Another foreseen extension is
about mixtures with more species and, if feasible, about generic multi-species mixtures
where, e.g., one species could serve as a bridge between two baths. Take for instance
the (symmetric) three-species harmonic-interaction model. The diagonalization of the
Hamiltonian would require relative coordinates for each of the species, the center-of-mass
coordinate of all bosons, and two relative center-of-mass coordinates to be determined [71].
The major challenge would be the reduction of the all-particle density matrix to the various
intra-species and inter-species reduced density matrices. Recall that, for single-species
bosons, the reduction of the all-particle density matrix leads to ‘vector’ recursive relations
(the coefficients of the reduced density matrices depend on one index) [78] and that for
a two-species mixture, the reduction of the all-particle density matrix results in ‘matrix’
recursive relations (the coefficients of the various intra-species and inter-species reduced
density matrices depend on two indices) [74]. It is thus reasonable to expect that in the
three-species mixture, the reduction of the all-particle density matrix would require ‘tensor’
recursive relations. Finally, for a three-species mixture, the question whether an extended
or general Schmidt decomposition [102] is at all feasible would become relevant, and if the
answer is positive, whether in conjunction, the three individual species’ center-of-mass
coordinates would become disentangled. Surely, exciting generalizations are awaiting for
further investigations.

Finally, one could forecast that the topic of Bose–Einstein condensates and mixtures in
the limit of an infinite number of particles would be enriched by exploring the Schmidt
decomposition of the wave function. Recall that at the infinite-particle-number limit, any
finite-order intra-species and inter-species reduced density matrix per particle is 100%
condensed. Here, studying the variances of observables and overlaps of wave functions
has deepened our understanding of the differences between many-body and mean-field
theories of Bose–Einstein condensates and mixtures at the limit of an infinite number of
particles. However, these properties are already defined for single-species bosons. The
Schmidt decomposition, on the other hand, is a property that enters the topic of the infinite-
particle-number limit starting, obviously, only from a two-species mixture—all of which
paves the way for further intriguing investigations to come.
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Appendix A. Comparison to Fragmentation in the Single-Species System

The Hamiltonian of the single-species harmonic-interaction model is given by [78]

Ĥ(x1, . . . , xN) =
N

∑
j=1

(
− 1

2m
∂2

∂x2
j
+

1
2

mω2x2
j

)
+ λ

N

∑
1≤j<k

(
xj − xk

)2. (A1)

Employing single-species Jacoby coordinates and translating back to the laboratory
frame, the N-boson wave function and corresponding density matrix are given by

Ψ(x1, . . . , xN) =
(

mΩ
π

) N−1
4 (mω

π

) 1
4 e−

α
2 ∑N

j=1 x2
j −β ∑N

1≤j<k xjxk ,

Ψ(x1, . . . , xN)Ψ∗(x′1, . . . , x′N) =
(

mΩ
π

) N−1
2 (mω

π

) 1
2 e−

α
2 ∑N

j=1

(
x2

j +x′j
2
)
−β ∑N

1≤j<k

(
xjxk+x′jx

′
k

)
,

α = mΩ + β = mΩ
[
1 + 1

N
(

ω
Ω − 1

)]
, β = mΩ 1

N
(

ω
Ω − 1

)
, Ω =

√
ω2 + 2λN

m .

(A2)

The stability of the system, i.e., the condition that a bound solution exists, means that
the interaction satisfies λ > −mω2

2N .
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The reduced one-particle density matrix reads

ρ(1)(x, x′) = N
(

α+C1
π

) 1
2 e−

α+
C1
2

2

(
x2+x′2

)
e−

1
2 C1xx′ ,

α + C1 = (α − β) (α−β)+Nβ
(α−β)+(N−1)β

= mΩ 1
1+ 1

N (
Ω
ω −1)

.
(A3)

Comparing the structure of the reduced single-particle density matrix that of Mehler’s
formula [81,82], one readily has

s(1) =
√

α(α + C1) = mΩ
√

1+ 1
N (

ω
Ω −1)

1+ 1
N (

Ω
ω −1)

,

ρ(1) = α−s(1)

α+s(1)
=

√
[1+ 1

N (
ω
Ω −1)][1+ 1

N (
Ω
ω −1)]−1√

[1+ 1
N (

ω
Ω −1)][1+ 1

N (
Ω
ω −1)]+1

,

1 − ρ(1) = 2s(1)

α+s(1)
= 2√

[1+ 1
N (

ω
Ω −1)][1+ 1

N (
Ω
ω −1)]

.

(A4)

The reduced two-particle density matrix ρ(2)(x1, x2, x′1, x′2) reads, after the rotation of
coordinates,

ρ(2)(q1, q′1, q2, q′2) = N(N − 1)
(

α−β
π

) 1
2 e−

α−β
2

(
q2

2+q′2
2
)

×
(

α+β+2C2
π

) 1
2 e−

α+β+C2
2

(
q2

1+q′1
2
)

e−C2q1q′1 ,

α + β + 2C2 = (α − β) (α−β)+Nβ
(α−β)+(N−2)β

= mΩ 1
1+ 2

N (
Ω
ω −1)

,

(A5)

where q1 = 1√
2
(x1 + x2), q2 = 1√

2
(x1 − x2) and q′1 = 1√

2

(
x′1 + x′2

)
, q′2 = 1√

2

(
x′1 − x′2

)
.

Comparing the structure of the reduced two-particle density matrix with that of Mehler’s
Formula (5), we readily find

s(2) =
√
(α + β)(α + β + 2C2) = mΩ

√
1+ 2

N (
ω
Ω −1)

1+ 2
N (

Ω
ω −1)

,

ρ(2) = (α+β)−s(2)

(α+β)+s(2)
=

√
[1+ 2

N (
ω
Ω −1)][1+ 2

N (
Ω
ω −1)]−1√

[1+ 2
N (

ω
Ω −1)][1+ 2

N (
Ω
ω −1)]+1

,

1 − ρ(2) = 2s(2)

(α+β)+s(2)
= 2√

[1+ 2
N (

ω
Ω −1)][1+ 2

N (
Ω
ω −1)]

,

(A6)

where α + β = mΩ
[
1 + 2

N
(

ω
Ω − 1

)]
. We see from (A4) and (A6) that fragmentation of

bosons and pairs is governed, in the single-species harmonic-interaction model, by the
ratio Ω

ω and takes place both at the attractive and repulsive sectors of the interaction.
Similarly to the main text, we compute for which ratio Ω

ω , or, equivalently, for which

interaction λ = mω2

2N

[(
Ω
ω

)2
− 1

]
, the two-particle and one-particle reduced density ma-

trices are macroscopically fragmented as in (13). Note the difference that, here, Ω
ω is the

single-species interaction and in the main text, for the mixture, Ω12
ω is the inter-species

interaction. Thus, solving (A4) for 50% natural-orbital fragmentation, we find

ρ(1) =
1
2

=⇒ Ω
ω

=

(
1 +

4N2

N − 1

)
±

√(
1 +

4N2

N − 1

)2

− 1, (A7)

and working out (A6) for 50% natural-geminal fragmentation, we obtain
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ρ
(2)
1 =

1
2

=⇒ Ω
ω

=

√
1 +

2Nλ

mω2 =

(
1 +

2N2

N − 2

)
±

√(
1 +

2N2

N − 2

)2

− 1. (A8)

There are two ‘reciprocate’ solutions for both the natural geminals and natural orbitals:
Indeed, 50% fragmentation occurs for strong attractions, namely, when Ω

ω is large, or in the
vicinity of the border of stability for repulsions, i.e., when Ω

ω is close to zero. In addition,
to achieve the same degree of 50% fragmentation with a larger number of bosons N, a
stronger attraction or repulsion is needed. Finally, comparing the natural-geminal with
natural-orbital fragmentation at the same 50% value, one sees from (A8) and (A7) that
slightly weaker interactions attractions or repulsions are needed for the former, in a similar
manner to intra-species fragmentation in the mixture discussed in the main text.

Finally, we prescribe the one-particle and two-particle densities, i.e., the diagonal parts
ρ(1)(x) = ρ(1)(x, x′ = x) and ρ(2)(x1, x2) = ρ(2)(x1, x2, x′1 = x1, x′2 = x2) which read

ρ(1)(x) = N
(
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π

) 1
2 e−(α+C1)x2

= N
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mΩ
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2
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,
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π
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2 e−
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2
(

α+β+2C2
π

) 1
2 e−
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(
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2 e−
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e
− mΩ
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2

.

(A9)

Here, in the single-species case, λ governs the size of the densities which, as we now
show, depending on the interaction stronger than for the mixture; also see the main text for
comparison and further discussion.

We can deduce the size of pairs’ and bosons’ clouds using the widths of the corre-
sponding Gaussian functions in the densities (A9). Hence, we have

σ
(1)
x =

√
1+ 1

N (
Ω
ω −1)

2mΩ ,

σ
(2)
x1+x2√

2

=

√
1+ 2

N (
Ω
ω −1)

2mΩ , σ
(2)
x1−x2√

2

=
√

1
2mΩ .

(A10a)

To describe further effects of the interaction λ accompanying fragmentation of the
reduced density matrices (A4) and (A6), we compute the sizes (A10a) for strong attractions
or repulsions at the border of stability. We obtain, respectively,

lim Ω
ω →∞ σ

(1)
x =

√
1

2mωN , σ
(1)
x −→ ∞ for Ω

ω → 0+,

lim Ω
ω →∞ σ

(2)
x1+x2√

2

=
√

1
mωN , σ

(2)
x1+x2√

2

−→ ∞ for Ω
ω → 0+,

lim Ω
ω →∞ σ

(2)
x1−x2√

2

= 0, σ
(2)
x1−x2√

2

−→ ∞ for Ω
ω → 0+,

(A10b)

as all widths (A10a) depend on the interaction strength. The size of the densities for strong
attractions diminishes to much smaller values than the trap’s size, values that depend
on the number of bosons but not on the strength of interaction. Thus, a high degree of
fragmentation due to the strong attractive interaction is possible in the single-species system
only together with the shrinking of the density. Alternatively, toward the edge of stability
region, the density of the single-species system expands due to repulsive interaction
unlimitedly as the degree of fragmentation increases. These should be compared to and
contrasted with the results in the main text for the intra-species densities and the interplay
between inter-species and intra-species interactions within intra-species fragmentation in
the mixture.
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68. Sowiński, T.; García-March, M.Á. One-dimensional mixtures of several ultracold atoms: A review. Rep. Prog. Phys. 2019,
82, 104401. [CrossRef]

69. Mistakidis, S.I.; Volosniev, A.G.; Schmelcher, P. Induced correlations between impurities in a one-dimensional quenched Bose gas.
Phys. Rev. Res. 2020, 2, 023154. [CrossRef]

70. Andriati, A.; Brito, L.; Tomio, L.; Gammal, A. Stability of a Bose condensed mixture on a bubble trap. Phys. Rev. A 2021,
104, 033318. [CrossRef]

71. Osadchii, M.S.; Muraktanov, V.V. The System of Harmonically Interacting Particles: An Exact Solution of the Quantum-Mechanical
Problem. Int. J. Quantum Chem. 1991, 39, 173. [CrossRef]

72. Bouvrie, P.A.; Majtey, A.P.; Tichy, M.C.; Dehesa, J.S.; Plastino, A.R. Entanglement and the Born-Oppenheimer approximation in
an exactly solvable quantum many-body system. Eur. Phys. J. D 2014, 68, 346. [CrossRef]

73. Armstrong, J.R.; Volosniev, A.G.; Fedorov, D.V.; Jensen, A.S.; Zinner, N.T. Analytic solutions of topologically disjoint systems. J.
Phys. A 2015, 48, 085301. [CrossRef]

74. Alon, O.E. Solvable model of a generic trapped mixture of interacting bosons: reduced density matrices and proof of Bose-Einstein
condensation. J. Phys. A 2017, 50, 295002. [CrossRef]

75. Klaiman, S.; Streltsov, A.I.; Alon, O.E. Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and
Mean-Field Properties. J. Phys. Conf. Ser. 2018, 999, 012013. [CrossRef]

76. Alon, O.E. Solvable Model of a Generic Driven Mixture of Trapped Bose-Einstein Condensates and Properties of a Many-Boson
Floquet State at the Limit of an Infinite Number of Particles. Entropy 2020, 22, 1342. [CrossRef]

77. Klaiman, S.; Streltsov, A.I.; Alon, O.E. Solvable model of a trapped mixture of Bose-Einstein condensates. Chem. Phys. 2017,
482, 362. [CrossRef]

78. Cohen, L.; Lee, C. Exact reduced density matrices for a model problem. J. Math. Phys. 1985, 26, 3105. [CrossRef]
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Abstract: The resonant profile of the rate coefficient for three-body recombination into a shallow
dimer is investigated for mass-imbalanced systems. In the low-energy limit, three atoms collide
with zero-range interactions, in a regime where the scattering lengths of the heavy–heavy and the
heavy–light subsystems are positive and negative, respectively. For this physical system, the adiabatic
hyperspherical representation is combined with a fully semi-classical method and we show that
the shallow dimer recombination spectra display an asymmetric lineshape that originates from
the coexistence of Efimov resonances with Stückelberg interference minima. These asymmetric
lineshapes are quantified utilizing the Fano profile formula. In particular, a closed-form expression is
derived that describes the width of the corresponding Efimov resonances and the Fano lineshape
asymmetry parameter q. The profile of Efimov resonances exhibits a q−reversal effect as the inter- and
intra-species scattering lengths vary. In the case of a diverging asymmetry parameter, i.e., ∣q∣ → ∞,
we show that the Efimov resonances possess zero width and are fully decoupled from the three-body
and atom–dimer continua, and the corresponding Efimov metastable states behave as bound levels.

Keywords: few-body collisions; Efimov effect; mass-imbalanced systems; recombination

1. Introduction

The Efimov effect is one of the most counter-intuitive phenomena in few-body physics,
where an infinity of three-body bound states is formed even when the scattering length of
the two-body subsystems is negative [1–4]. This phenomenon was theoretically predicted
by V. Efimov to occur for three equal-mass particles that interact via zero-range potentials,
with trimer binding energies that scale geometrically [5]. The existence of these exotic trimer
states was experimentally confirmed by Kraemer et al. in an ultracold gas of Cs atoms [6].
This suggested new possibilities for theoretical and experimental investigations [1–3,7–12]
to address various physical aspects of the Efimov states, such as the discrete-scale invariance
of the trimer binding energies [13] or the sensitivity of the ground-state energy on the short-
range physics. In particular, the latter stems from the fact that, within the zero-range model,
the trimer spectrum is unbound from below due to Thomas collapse [14] and an auxiliary
parameter, i.e., three-body parameter, was introduced in order to specify the ground-state
energy rendering the entire spectrum system dependent [5]. However, experimental and
theoretical advances demonstrated that, for ultracold atoms, the Efimov spectrum exhibits
a certain class of universality, i.e., van der Waals universality [15–25]. Namely, it was shown
that the lowest Efimov state appears at scattering lengths a(1)− ≈ −10�vdW, with �vdW being
the length scale of van der Waals interactions between two neutral atoms.

Mass-imbalanced ultracold gases are an ideal platform to explore more deeply the
idiosyncrasies of Efimov spectra. In particular, three-body collisions of ultracold atoms
with unequal masses offer more favorable experimental conditions that enable observation
of multiple successive trimer states and measurement of their geometrical energy scaling,
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i.e., the smoking gun of Efimov physics [26–28]. Apart from this, mass-imbalanced ensem-
bles offer a large parameter space, such as the particles’ mass ratio, the sign and magnitude
of the inter- and intra-species scattering lengths, which provide fertile ground to investi-
gate the pristine attributes of the Efimov states. Specifically, theoretical and experimental
efforts have mapped out a large portion of the parameter space, addressing the underlying
physics of recombination processes in heavy–heavy–light (HHL) systems [26,27,29–32].
The particular case that stands out corresponds to HHL systems that possess inter- and
intra-species scattering lengths of opposite sign, i.e., aHL < 0 and aHH > 0, respectively. For
example, in the experimental works of Refs. [29,33], it was demonstrated in the regime of
broad Fano–Feshbach resonances [34] that the lowest Efimov state is in good agreement
with the predictions of the universal zero-range and van der Waals theory. However,
subsequent experimental investigations show that deviations from the universal theory
are more pronounced for narrow Fano–Feshbach resonances [35]. Furthermore, within the
zero-range theory, Ref. [36] illustrated that the diabaticity of the three-body collisions
imposes additional limitations on the universal properties of the Efimov spectrum, where
mostly adiabatic collisions yield trimer states independent of the three-body parameter,
as was pointed out in the case of Refs. [29,33].

Additionally, Ref. [36] showed that three-body recombination into a shallow heavy–
heavy dimer possesses a unique property that only mass-imbalanced systems exhibit,
namely the co-existence of Efimov resonances with Stückelberg suppression effects in the
same range of scattering lengths. In this work, we further study this particular attribute of
HHL systems and demonstrate that the corresponding Efimov resonances in the recombi-
nation rate coefficient plotted versus scattering length can display an asymmetric profile,
which can be quantified by the Fano profile formula. In particular, our analysis employs
the adiabatic hyperspherical framework for zero-range two-body interactions, which is
combined with a fully semi-classical theory [36]. Moreover, a simplified version of the
semi-classical approach is shown, where the lowest hyperspherical curves are approxi-
mated by universal potential tails at large hyperradii, as in Ref. [37]. This permits us to
derive closed-form relations for the S-matrix elements, which are expressed in terms of
the width of the Efimov resonance and Fano’s lineshape asymmetry parameter q. As an
example, the asymmetric profiles of the Efimov resonances in the recombination coefficient
of 6Li-133Cs-133Cs and 6Li-87Rb-87Rb are analyzed, both of which showcase a q-reversal
phenomenon as a function of the inter- and intra-species scattering length ratio. Further-
more, we observe that, for a diverging q parameter, the Efimov resonances behave as
bound states that are embedded in the continuum [38]. This occurs since the decay width
of the resonances vanishes as ∣q∣ → ∞ and the corresponding Efimovian quasi-bound states
decouple from the three-body and atom–dimer continua.

The structure of this work is as follows: in Section 2, the Hamiltonian of the three-body
system and the parameters of interest are given. Sections 2.1 and 2.2 provide a detailed
review of the methods that are employed in our analysis. More specifically, Section 2.1
discusses the adiabatic hyperspherical representation and the fully semi-classical treatment
of the coupled hyperradial equations. In Section 2.2, a simplified version of the semi-
classical theory is given that permits us to express the S-matrix elements of recombination
processes into shallow dimers in terms of the inter- and intra-species scattering lengths.
Finally, Section 3 focuses on the asymmetric profile of Efimov resonances in the spectrum
of the three-body recombination coefficient for HHL systems.

2. General Considerations and Methods

Consider a three-body system that consists of two heavy (H) alkali atoms and a light (L)
one at low energies. The particles mutually interact through s-wave pairwise interactions
that are modeled via Fermi–Huang’s zero-range pseudopotential. Our greatest interest here
is in the regime where the mass-imbalanced system can recombine into a shallow heavy–
heavy dimer with a recoiling light atom. This scenario arises for inter- and intra-species
interactions of opposite sign, meaning that the scattering length between a heavy–light or
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heavy–heavy pair of particles is aHL < 0 or aHH > 0, respectively. Furthermore, relaxation
and recombination processes into deep dimer channels are neglected, and we focus on the
physics that arises due to energies near the break-up threshold, i.e., the zero-energy limit.
For this purpose, we focus on the two lowest potential curves of HHL systems, which
suffice to describe three-body recombination processes into shallow dimers, as was shown
in Ref. [36], permitting the derivation of closed-form expressions for the S-matrix.

2.1. The Adiabatic Hyperspherical Representation and the Semi-Classical Approach

The total three-body Hamiltonian for the HHL system of interest is given by the
following expression:

Htot = 3∑
i=1
− h̄2

2mi
∇2

i +∑
i>j

Vij(rij), with

Vij(rij) = 4π h̄2aij

2μij
δ(rij)∂rij[rij×],

(1)

where Vij represents the Fermi–Huang pseudopotential. aij and μij refer to the scattering
length and two-body reduced mass of the ij-pair of particles, respectively. ∇2

i denotes the
Laplacian for ri, and mi indicates the mass of the i-th particle. Note that the scattering
lengths aij between the atoms are chosen to be larger than any other length scale of the
system, permitting us to focus on the universal characteristics of the three-body system
under consideration.

Utilizing the Jacobi vector choice of Ref. [39], Equation (1) can be separated into
the Hamiltonians of center of mass and relative degrees of freedom. Since the s-wave
interactions involve only the relative distance between a pair of particles, the center-of-
mass Hamiltonian is fully decoupled, meaning that the relative one retains all the relevant
information of the three-body system. Therefore, we focus only on the relative Hamiltonian,
which gives, after transforming it into hyperspherical coordinates (for details, see [2]),
the following expression:

Hrel = − h̄2

2μR5/2
∂2

∂R2 R5/2 +Had(R; Ω), (2)

where μ = √m1m2m3/(m1 +m2 +m3) ≡ mH/√1+ 2mH/mL indicates the three-body re-
duced mass, R is the hyperradius, and Ω is a collective coordinate denoting the five
hyperangles [40,41]. Had(R; Ω) represents the part of the Hamiltonian that contains the
hyperangular centrifugal potential as well as the two-body interactions expressed in the
hyperspherical coordinates.

Had(R; Ω) = h̄2

2μ
Λ̂2 + 15h̄2

8μR2 +∑
i>j

Vij(R; Ω), (3)

where Λ̂ denotes the grand angular momentum operator.
In the spirit of the adiabatic hyperspherical representation, the properly symmetrized

three-body wave function is provided by the following ansatz:

Ψ(R, Ω) = 1
R5/2 ∑

ν
φν(R; Ω)Fν(R), (4)

where Fν(R) and φν(R; Ω) indicate the ν-th hyperradial and hyperangular part of the wave
function, respectively. In particular, φν(R; Ω) components of Ψ(R, Ω) are obtained by
diagonalizing Equation (3) at a fixed hyperradius R.

Had(R; Ω)φν(R; Ω) = Uν(R)φν(R; Ω), (5)
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where the eigenvalues Uν(R) are the so-called adiabatic hyperspherical potential curves .
Substitution of Equations (4) and (5) into the Schrödinger equation of the Hamiltonian

Hrel and integration over all the hyperangles Ω yields a set of coupled ordinary second-
order differential equations that solely depend on the hyperradius R.

[ − d2

dR2 + 2μ

h̄2 (Uν(R) − E)]Fν(R) = ∑
ν′

Vνν′(R)Fν′(R), (6)

where Vνν′(R) indicate the non-adiabatic coupling matrix elements/operators that are
given by the following expressions:

Vνν′(R) = 2Pνν′(R) d
dR
+Qνν′(R) with (7)

Pνν′(R) = ⟨φν(R; Ω)∣ ∂

∂R
φν′(R; Ω)⟩

Ω
(8)

Qνν′(R) = ⟨φν(R; Ω)∣ ∂2

∂R2 φν′(R; Ω)⟩
Ω

, (9)

where ⟨. . .⟩Ω denotes the integration over the hyperangles only.
Owing to the zero-range interactions, the non-adiabatic coupling matrix elements,

Pνν′(R) and Qνν′(R), as well as the hyperspherical potential curves, Uν(R), can be calcu-
lated semi-analytically [1,39,42,43]. However, the resulting hyperspherical potential curves
Uν(R), especially the lowest one, possess attractive singularities at the origin, i.e., the
Thomas collapse. Therefore, an auxiliary parameter is introduced in order to truncate the
attractive singularity in the potential curves, which, in its simplest form, consists of a hard
wall placed at a small hyperradius, R ≈ r3b. The three-body parameter r3b is arbitrary (from
the point of view of zero-range theory) and is usually fixed via experimental observations.
In addition, the zero-range approximation greatly simplifies the computational cost since
only hyperradial equations in Equation (6) require a numerical solution using standardized
R-matrix methods [44–46].

Figure 1 depicts the two lowest hyperspherical potential curves U1/3
ν (R/aHH) as

obtained from zero-range approximation: the upper (blue) potential that vanishes at large
hyperradii R in the break-up threshold and the lower (red) potential, which, in the limit of
large R, approaches the energy of the HH dimer. The light blue region denotes the hard wall
boundary condition at r3b/aHH that removes the attractive singularity of the lower curve.
The potential curves of Figure 1 suffice in order to intuitively understand the recombination
of three free particles into a universal pair of atoms with a recoiling one. Consider the

three-body system at a collisional energy Ē (in units of h̄2

mH a2
HH

) indicated by the dotted line

in Figure 1. In particular, we are interested in the low-energy limit in order to validate the
two-channel approximation and highlight the threshold behavior of three-body collisions in
HHL settings. Viewing this three-body system heuristically as a time-dependent collision,
starting from infinite long distances, the three particles propagate inwards in the upper
potential curve and tunnel with some probability under the repulsive barrier and then
probe the corresponding classical allowed region at short hyperradii. In this region, the non-
adiabatic P-matrix element P12 between the upper and lower potential curve plays a key
role in inducing transitions. More specifically, at distances RLZ/aHH (vertical dashed line),
the corresponding P-matrix maximizes, indicating the strong coupling regime. This means
that the particles transition with a certain probability from the upper to the lower curve and
subsequently propagate outwards, fragmenting into a two-body molecule plus a spectator
atom. This recombination process is quantified mainly by evaluating the ∣S12∣2 element of
the scattering S-matrix.

As was shown in Ref. [36], the ∣S12∣2 matrix element can be obtained analytically
within the two-channel approximation by combining the Landau–Zener physics with
the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approach. The main constituents of this
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semi-classical approach are depicted in Figure 1. More specifically, we assume that the
P-matrix element of the potential curves in Figure 1 possesses a Lorentzian lineshape in the
vicinity or R ≈ RLZ, and we include the Langer correction in JWKB integrals [47]. Under
these considerations, the ∣S12∣2 matrix element for the hyperspherical potential curves in
Figure 1 reads:

∣S12∣2 =e−2τ p(1− p) cos2(ΦU
L −ΦL

L − π

4
+ λ){(1− e−4τ

16
)[p cos2(ΦL

L +ΦU
R − π

4
) (10)

+ (1− p) cos2(ΦU
L +ΦU

R + λ)] − (1− e−2τ

4
)2 p(1− p) cos2(ΦU

L −ΦL
L − π

4
+ λ)

+ e−4τ

16
}−1

,

where e−2τ indicates the tunneling probability in a single collision with the repulsive barrier
of the upper potential curve in Figure 1.

Figure 1. An illustration of the lowest hyperspherical potential curves U1/3
ν (R/aHH)with aHH > 0

and aHL < 0. The red (blue) line saturates at large hyperradii in the atom–dimer (three-body break-up)
threshold. The quantities ΦU

L and ΦU
L indicate the JWKB phase accumulation in the upper potential

curve. For the lower potential, the corresponding phase is denoted by ΦL
L. The vertical dashed

line represents the hyperradius where the non-adiabatic coupling P-matrix element P12 maximizes.
The horizontal dotted line refers to the three-body collisional energy Ē in units of h̄2

mH a2
HH

, and the

three-body parameter, r3b
aHH

, depicted by the blue region.

The JWKB phases in the upper curve are indicated by the terms ΦU
L and ΦU

R . More
specifically, ΦU

L is the phase accumulation from the far-left classical turning point up to
R ≈ RLZ, whereas ΦU

R is the JWKB integral from R ≈ RLZ up to the inner classical turning
point of the repulsive barrier. Similarly, in the lower potential curve, ΦL

L corresponds to
the phase accumulation between the hard wall (blue shaded region) located at r3b

aHH
and

R ≈ RLZ. Furthermore, p corresponds to the Landau–Zener non-adiabatic probability to
transition from the upper to the lower hyperspherical potential curve in a single pass
through the avoided crossing region. The non-adiabatic probability p is evaluated from the
P-matrix elements, which, as we mentioned above, are approximated to have a Lorentzian
lineshape versus the hyperradius and a maximum at R ≈ RLZ [48]. λ is the Stokes phase
and it is a correction added to the components of the hyperradial wave function, i.e., Fν(R)
with ν = 1, 2, as they propagate through the non-adiabatic transition region [49,50]. The
Stokes correction phase depends on the non-adiabatic probability p and it obeys the relation

λ = argΓ(i
δ

π
)− δ

π
ln

δ

π
+ δ

π
+ π

4
, (11)

where δ = − ln p
2 . Figure 2 shows the Stokes phase versus p, where, in the diabatic (adiabatic)

limit, i.e., p = 1 (0), the Stokes phase tends to λ = −π/4 (0). Equation (10) captures the two
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main effects that occur in HHL systems. More specifically, the roots of the numerator of
Equation (10) indicate the Stückelberg suppression effects minimizing the probability of
the HHL system to recombine into a shallow dimer. On the other hand, the roots of the
denominator in Equation (10) denote the Efimov resonance phenomenon that enhances
the recombination into a shallow dimer. An additional insight obtained by Equation (10)
is that the Stückelberg suppression effects depend on the three-body parameter due to
the phase ΦL

L accumulation in the lower potential curve. In principle, also the Efimov
resonances depend on r3b; however, as Equation (10) suggests, in the limit of adiabatic
collisions, i.e., p≪ 1, only the phase accumulation in the upper potential curve survives,
which is independent of the three-body parameter, meaning that such collisions possess a
universal character.
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Figure 2. The Stokes correction phase as a function of the non-adiabatic probability p.

The degree of diabaticity p is depicted in Figure 3, in the zero-energy limit, as a function
of aHH/∣aHL∣ for different mass ratios mH/mL, covering, in this manner, the regime from
strong-to-weak mass-imbalanced atomic ensembles. Note that we consider values of the
ratio aHH/∣aHL∣ that correspond to ∣aHL∣ and aHH , both being larger than the van der Waals
length scales of the HL and HH pairs of atoms, respectively, ensuring the validity of the
zero-range theory. In particular, we observe in Figure 3 that, for a large mass ratio, i.e.,
mH/mL = 21, the corresponding three-body collision is more diabatic than in the case of
weak mass imbalance, i.e., mH/mL = 6.3. This means that HHL systems with strong mass
imbalance, i.e., mH/mL > 21, can easily transition from the three-body continuum to the
shallow dimer–atom channel, implying that the corresponding recombination process is
strongly affected by the three-body parameter r3b. This behavior of the non-adiabatic prob-
ability p on mH/mL can be understood in terms of the ratio of the P-matrix elements and
the energy difference of the hyperspherical potential curves, i.e., Δ, at R = RLZ. According
to Ref. [48], the probability p is given by the relation p = e−πΔ/[4vP12(RLZ)], where v refers to
the semi-classical velocity of the particles at R = RLZ. Thus, for aHL → −∞, the ratio of the
energy gap Δ and P12(RLZ) increases as mH/mL decreases, yielding, in return, a decreasing
probability p and vice versa.

As an example, Figure 4 illustrates the scaled S-matrix element ∣S12∣
2

(kaHL)4
for the 6Li-

87Rb-87Rb three-body system at low energies E = h̄2k2

2μ . Figure 4a corresponds to the semi-
classical model using Equation (10), and Figure 4b refers to the case where the hyperradial
equations are solved numerically within the R-matrix approach. Both panels are in excellent

agreement and the qualitative features, i.e., the enhancement and suppression of ∣S12∣
2

(kaHL)4
, are

similar to those shown in Ref. [36]. In particular, as discussed in Ref. [36], the enhancement

of ∣S12∣
2

(kaHL)4
is associated with an Efimov resonance. Namely, the upper potential curve in

Figure 1 can support a quasi-bound state behind the repulsive barrier at specific values of
the ratios ∣aHL ∣

aHH
and r3b

aHH
. Therefore, for colliding energies E that match the energy of the
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quasi-bound three-body state, the atoms can easily tunnel under the barrier, where they
can probe the non-adiabatic transition region and eventually hop with some probability to
the Rb2 +Li channel. Therefore, the presence of a quasi-bound state in the upper potential

curve in Figure 1 causes ∣S12∣
2

(kaHL)4
to be more pronounced. On the other hand, the suppression

of ∣S12∣
2

(kaHL)4
is a manifestation of Stückelberg physics due to the destructive interference of

the alternative pathways, which prevents the three particles from exiting to infinity along
the Rb2 +Li channel. However, in Ref. [36], the 6Li-133Cs-133Cs system was investigated

and the corresponding ∣S12∣
2

(kaHL)4
possesses one main qualitative difference from 6Li-87Rb-

87Rb. Specifically, the 6Li-133Cs-133Cs system exhibits narrower Efimov resonances (see
Figure 2b,c in Ref. [36]) than those shown Figure 4 for 6Li-87Rb-87Rb. This difference mainly
arises from the fact that the collisions in 6Li-133Cs-133Cs are more diabatic than in 6Li-87Rb-
87Rb. As Figure 3 suggests, the non-adiabatic probability p for 6Li-133Cs-133Cs is much
closer to the unit than for the case of 6Li-87Rb-87Rb. The lower values of p for 6Li-87Rb-87Rb
indicate the weak coupling of the quasi-bound Efimov state to the atom–dimer continuum,

which, in return, is manifested as a broad resonance in the ∣S12∣
2

(kaHL)4
matrix element.
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Figure 3. The degree of diabaticity p as a function of the scattering length ratio aHH/∣aHL∣ for different
mass ratios mH/mL, covering the regime of strong-to-weak mass-imbalanced three-body systems.

Figure 4. The scaled ∣S12∣
2

(kaHL)4 matrix element versus the ratios ∣aHL ∣
aHH

and r3b
aHH

for the 6Li-87Rb-87Rb system at low energy

E = h̄2k2

2μ . (a) Semi-classical approach and (b) R-matrix numerical calculations.
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2.2. A Simplified Semi-Classical Model

In the following, we focus on the derivation of a simplified semi-classical model based
on the prescription given in Ref. [37]. Our goal is to unveil the scaling behavior of the S12
matrix element with respect to the length scales and the degree of diabaticity p that govern
HHL systems by incorporating only the necessary approximations. Therefore, for our
purposes, from this point on, we assume that the colliding energy of the three atoms tends
to zero, i.e., E = h̄2k2/2μ → 0.

As in Figure 1, Figure 5 illustrates the two lowest hyperspherical potential curves,
which are properly parameterized using only the limiting tails of the curves of Figure 1
in a piecewise manner. Namely, for the upper potential curve (blue line) in Figure 5,

the universal tail U1(R) = − h̄2

2μR2 (s2
0 + 1/4) is shown for hyperradii ranging from the non-

adiabatic transition region, i.e., RLZ, up to R ∼ γ∣aHL∣. Moreover, for R > γ∣aHL∣, we
consider only the tail of the repulsive barrier of the potential curve shown in Figure 1,

which falls off as U1(R) ∼ h̄2

2μR2 (15/4), with the outer classical turning point being located
at R ∼ 2/k. In addition, the effects of motion along the upper potential curve for R < RLZ
are mapped to an arbitrary phase Φ. For the lower curve, at small hyperadii, we employ

the universal tail U2(R) = − h̄2

2μR2 [(s∗0 )2 + 1/4], whereas, for R > RLZ, we assume that the
potential curve is constant, with energy equal to the heavy–heavy dimer. Note that the
parameters s0 and s∗0 correspond to the universal Efimov scaling coefficients for two and
three resonant two-body interactions, respectively, and they are tabulated in Ref. [51] for
several HHL systems.

Based on the piecewise potential curves of Figure 5 and considering the low-energy
limit, i.e., k → 0, the tunneling amplitude e−τ and the semi-classical phases ΦU

L , ΦU
R and ΦL

L
are given by the following expressions:

e−τ ≈ ∫ 2/k

γ∣aHL ∣

√
4/R2 ≈ (γkaHL/2)2, ΦU

L = Φ, (12)

ΦU
R ≈ ∫ γ∣aHL ∣

β∣aHL ∣

√
s2

0/R2 ≈ s0 ln
γ∣aHL∣
βaHH

(13)

and ΦL
L ≈ ∫ β∣aHL ∣

r3b

√(s∗0 )2/R2 ≈ s∗0 ln
βaHH

r3b
. (14)

where the dimensionless parameters β and γ define the interval of hyperradius R such that

the upper potential curve has the form U1(R) = − h̄2

2μR2 (s2
0 + 1/4). In general, β and γ are

considered free parameters and they can be fixed by a fitting procedure to experimental
or numerical data. Moreover, recall that the above JWKB integrals include the Langer cor-
rections. After substitution of Equation (12)–(14) into Equation (10), the S-matrix element
S12 reads

∣S12∣2(kaHL)4 =
γ4

16
p cos2 (s∗0 ln

r3b

aHH
+ψ1 + λ){ p

1− p

× sin2[s0 ln
∣aHL∣
aHH

+ψ2 − (s∗0 ln
r3b

aHH
+ψ1)]

+ cos2(s0 ln
∣aHL∣
aHH

+ψ2 + λ)
− p cos2(s∗0 ln

r3b

aHH
+ψ1 + λ)}−1

, (15)

where the terms (1 − (γkaHL/2)8/16) ≈ 1 and (1 − (γkaHL/2)4/4) ≈ 1 since we focus on
the low-energy regime, i.e., k → 0. The phases ψ1 and ψ2 obey the expressions ψ1 =
Φ − s∗0 ln β −π/4 and ψ2 = Φ + s0 ln(γ/β), respectively.
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Equation (15) captures the main properties of the S-matrix element S12 shown in
Figure 4. The numerator of Equation (15) describes the positions of the Stückelberg inter-
ference minima, which, as shown in Figure 4, scale logarithmically with respect to the ratio
r3b/aHH . Moreover, the spacing between successive minima is constant on a logarithmic
scale and related to the universal Efimov scaling coefficient s∗0 . On the other hand, the roots

of the denominator of Equation (15) trace out the maxima of ∣S12∣
2

(kaHL)4
in Figure 4, i.e., the

Efimov resonances, where the position of the successive resonances is defined by the s0
universal factor. We note that Equation (15), due to its simple structure, can be used as a
fitting formula for experimental measurements by treating the (ψ1, ψ2, γ) or (Φ, β, γ) as
fitting parameters.

Figure 5. An illustration of the approximate hyperspherical potential curves shown in Figure 1,
where s0 and s∗0 are the universal Efimov scaling coefficients. These piecewise curves are used in
Equations (12), (13) and (15).

3. Asymmetric Lineshapes in Three-Body Recombination Coefficients

Figure 4 demonstrates that recombination resonant features are intertwined with
Stückelberg interference minima. This constitutes a unique feature of mass-imbalanced
systems since, for homonuclear three-body collisions, the corresponding S-matrix element
exhibits either Efimov resonances or Stückeleberg suppression effects for negative or
positive scattering lengths, respectively. Therefore, this section focuses on the lineshape of
the ∣S12∣2 squared matrix element plotted as a function of the ratio r3b

aHH
at fixed values of

∣aHL ∣
aHH

. In order to demonstrate the asymmetric lineshape of the Efimov resonances in HHL
systems, it suffices to consider a range of r3b

aHH
values in the neighborhood of a Stückelberg

minimum, assuming a total colliding energy E ≈ 0.
Under these considerations, utilizing the Fano profile formula, Equation (15) can be

expressed in terms of the width of the resonance, Γ, and the Fano q-parameter, which
describes the asymmetry of the profile of the ∣S12∣2.

∣S12∣2(kaHL)4 = A
(x + q)2
x2 + 1

, with (16)

A = γ4(1− p)
16

sin2(s∗0 xr +ψ1 + λ){ cos [2(s0 ln
∣aHL∣
aHH

− s∗0 xr +ψ2 −ψ1)] + (1− p) cos [2(s∗0 xr +ψ1 + λ)]}−1

,

where x = 2(ln r3b
aHH
− xr)/Γ, with xr referring to the values of the ratio ln r3b

aHH
that minimize

the denominator of Equation (15) at fixed ∣aHL ∣
aHH

. Note that Equation (16) has the same
functional form as the conventional Fano formula, i.e., σ = σ0(ε + q)2/(ε2 + 1) [52], where
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the ratio ln r3b
aHH

is the independent variable instead of the energy. For Equation (16),
the Fano lineshape asymmetry parameter q and the width Γ are given by the following
expressions:

q = − 2
s∗0 Γ

cot(s∗0 xr +ψ1 + λ) and (17)

(Γ
2
)2 = 1− p(s∗0 )2 p

[ cos2(s0 ln
∣aHL∣
aHH

+ψ2 + λ) − p cos2(s∗0 xr

+ψ1 + λ) + p
1− p

sin2(s0 ln
∣aHL∣
aHH

− s∗0 xr +ψ2 −ψ1)]
× { cos[2(s0 ln

∣aHL∣
aHH

− s∗0 xr +ψ2 −ψ1)]
+ (1− p) cos[2(s∗0 xr +ψ1 + λ)]}−1

. (18)

Note that Γ is dimensionless here, in contrast to the usual Fano lineshape, where Γ
has units of energy (or frequency).

The three-body recombination coefficient of HHL systems can be expressed in terms
of the S12 matrix element, yielding the relation

K3 = 64h̄π2

μk4 ∣S12∣2, (19)

where k = √2μE/h̄2, with E being the total colliding energy of the three-body system.
For a total colliding energy E ≈ 0, Figure 6a,b depict the scaled recombination co-

efficient mHK3
h̄a4

HL
versus the ratio ln r3b

aHH
in the vicinity of a Stückelberg minimum for two

three-body systems, i.e., 6Li−133 Cs−133 Cs and 6Li−87 Rb−87 Rb, respectively. More specif-
ically, the symbols in both panels correspond to the full semi-classical calculations, whereas
the solid lines are obtained by Equation (15), i.e., the simplified semi-classical model, using
γ, ψ1 and ψ2 as fitting parameters.

Note that Table 1 summarizes the values of these parameters for both HHL systems
exhibiting universal characteristics, since they are independent of scattering length ratio
∣aHL ∣
aHH

. Therefore, in order to extract the values of the γ, ψ1 and ψ2 parameters, it suffices
to fit only the semi-classical calculations for ∣aHL∣/aHH = 47.4 and ∣aHL∣/aHH = 101.1 in
panels (a) and (b), respectively. However, the phases ψ1 and ψ2 and the amplitude γ
depend on the mass ratio of the HHL system since the corresponding hyperspherical
potential curves are strongly influenced by variations in mH/mL. Evidently, both panels
showcase the asymmetric profile of the Efimov resonance as a distinctive feature of HHL
systems, where Equation (15) is in excellent agreement with the corresponding semi-
classical calculations. In particular, in Figure 6a, we observe that, for scattering length
ratios in the range 55 < ∣aHL ∣

aHH
< 69, the Efimov resonance occurs to the left of the Stückelberg

minimum and its width decreases towards ∣aHL ∣
aHH
→ 70. For ∣aHL ∣

aHH
> 70, the Efimov resonance

emerges to the right of the Stückelberg minimum with an increasing width. This behavior
of the resonant structure as a function of the ratio ∣aHL ∣

aHH
is known as the q-reversal effect,

where the asymmetry parameter q changes sign at ∣aHL ∣
aHH
∼ 70. For 6Li-87Rb-87Rb shown in

Figure 6b, a similar behavior is observed, demonstrating that the occurrence of q-reversal
is independent of the particles’ mass ratio. The q-reversal phenomenon is a manifestation
of quantum interference, and, in HHL systems, it occurs when s∗0 xr +ψ1 + λ = nπ/2, with n
being an integer.
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Table 1. A summary of the universal parameters used in Equations (16)–(18) for the systems of
6Li−133 Cs−133 Cs and 6Li−87 Rb−87 Rb. Note that the values of s0 and s∗0 are calculated in Ref. [51].

HHL System s0 s∗0 γ ψ1 ψ2

6Li-133Cs-133Cs 1.983 2.003 4.42 0.46 0.13

6Li-87Rb-87Rb 1.633 1.682 3.13 0.8 0.4
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Figure 6. In the limit of E → 0, the scaled recombination coefficient mH K3
h̄a4

HL
is shown as a function

of ln r3b
aHH

for (a) 6Li-133Cs-133Cs and (b) 6Li-87Rb-87Rb. The symbols refer to the corresponding
calculations in the semi-classical approach. The solid lines indicate the fitting of Equation (15) using
the universal parameters shown in Table 1.

Additionally, Figure 7 demonstrates the validity of the Fano lineshape formula given
in Equation (16). More specifically, Figure 7 illustrates a comparison of the scaled recombi-
nation coefficient between the fitting of Equation (15) (red and black dots) and the Fano
lineshape formula from Equation (16) (red and black solid lines) at low collisional energies.
In particular, the red (black) symbols and lines refer to the 6Li-133Cs-133Cs (6Li-87Rb-87Rb)
for a scattering length ratio ∣aCsLi∣

aCsCs
= 67.8 ( ∣aRbLi∣

aRbRb
= 126.2). We observe that the Fano lineshape

formula from Equation (16) is in good agreement with the corresponding semi-classical
calculations of Equation (15).
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Figure 7. A comparison of the scaled recombination coefficient obtained via the fitting of Equation (15)
(points) and the Fano lineshape formula (solid lines) from Equation (16) for two HHL systems. The red
points and lines correspond to 6Li-133Cs-133Cs for a scattering length ratio ∣aCsLi∣

aCsCs
= 67.8. The black

points and lines denote the 6Li-87Rb-87Rb system at ∣aRbLi∣
aRbRb

= 126.2. Note that the total colliding energy
is set to zero.

The width Γ of the Efimov resonances and the lineshape asymmetry q are shown in
Figure 8 for 6Li−133 Cs−133 Cs (see panels (a) and (b)) and 6Li−87 Rb−87 Rb (see panels (c)
and (d)). Γ and q are obtained via Equations (17) and (18) using the universal parameters
of Table 1. In panels (b) and (d), we observe the q-reversal effect, where, at ∣aHL ∣

aHH
= 70 and

∣aHL ∣
aHH

= 140, the lineshape asymmetry q diverges. This implies that, for large q parame-
ters, the recombination coefficient approaches a symmetric lineshape that is centered at
xr. Furthermore, we observe that, at ∣q∣ → ∞, the corresponding widths of the Efimov
resonances tend to zero, i.e., Γ → 0, as is illustrated in Figure 8a for 6Li-133Cs-133Cs and
Figure 8c for 6Li-87Rb-87Rb. This means that, in this range of parameters, the Efimovian
quasi-bound state stabilizes into a bound one that is fully decoupled from the three-body
and the atom–dimer continua. This counter-intuitive phenomenon is known as a bound
state in the continuum and such states have been observed in various fields of physics [38].
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Figure 8. Panels (a–d) show the width of the Efimov resonance Γ and the asymmetry parameter q
versus the scattering length ratio ∣aHL ∣

aHH
for the 6Li-133Cs-133Cs (6Li-87Rb-87Rb) system, respectively.

Note that the total colliding energy is set to zero. Moreover, Γ and q are obtained via Equations (17)
and (18), respectively, using the universal parameters shown in Table 1.
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4. Summary

In summary, the properties of three-body recombination processes into shallow dimers
for HHL systems are investigated. Focusing on the low-energy regime, we consider
inter- and intra-species interactions that possess negative and positive scattering lengths,
respectively, thereby highlighting the threshold behavior of such HHL systems. For this
three-body system, we have reviewed the theoretical methods used in Ref. [36] and, in
particular, the semi-classical approach, providing additional details on the Stokes phase
and the degree of diabaticity p. Furthermore, a simplified version of the semi-classical
method is derived by approximating the hyperspherical curves with piecewise potential
tails, as in Ref. [37]. The simplified semi-classical model provides closed-form expressions
of the S-matrix elements that describe the process of three free particles recombining into
the shallow dimer–atom channel. Namely, we show that Equation (15) captures all the
main attributes of the recombination spectra for HHL systems, such as the asymmetric
lineshape in the three-body recombination coefficient, the logarithmic scaling of the Efimov
resonances and Stückelberg interference minima. In particular, Figure 6 demonstrates
that Equation (15) can be used as a fitting formula for the recombination spectra in HHL
systems since the parameters ψ1, ψ2 and γ are insensitive to the scattering length ratio
∣aHL ∣
aHH

. Focusing on the resonant profile of the recombination coefficient, Equation (15) is
parameterized in terms of the width of the resonance Γ and the lineshape asymmetry q.
This parameterization enables us to identify two emergent phenomena that occur only in
heteronuclear three-body collisions: (i) the q-reversal effect, which describes the change
in the asymmetry of the profile of the three-body recombination coefficient as a function
of the scattering length ratio ∣aHL ∣

aHH
, and (ii) the modification of an Efimov resonance into a

bound state embedded in the three-body and atom–dimer continua for ∣q∣ → ∞.
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Abstract: We present numerical simulations to unravel the dynamics associated with the creation of a
vortex in a Bose–Einstein condensate (BEC), from another nonrotating BEC using two-photon Raman
transition with Gaussian (G) and Laguerre–Gaussian (LG) laser pulses. In particular, we consider
BEC of Rb atoms at their hyperfine ground states confined in a quasi two dimensional harmonic trap.
Optical dipole potentials created by G and LG laser pulses modify the harmonic trap in such a way
that density patterns of the condensates during the Raman transition process depend on the sign of
the generated vortex. We investigate the role played by the Raman coupling parameter manifested
through dimensionless peak Rabi frequency and intercomponent interaction on the dynamics during
the population transfer process and on the final population of the rotating condensate. During the
Raman transition process, the two BECs tend to have larger overlap with each other for stronger
intercomponent interaction strength.

Keywords: Bose–Einstein condensate; Laguerre–Gaussian; Raman transition; cold atoms; light–
matter interaction; particle transfer; density pattern

1. Introduction

Creation of vortex states in atomic Bose–Einstein condensates (BECs) has been the
subject of quite intensive research, with particular focus on superfluid properties [1–3]
and quantum turbulence [4–10]. A number of theoretical and experimental studies have
considered the properties of vortex states in single and multicomponent BECs [11–16],
their stability [17–24] and collective excitations [25–29], thus opening up an avenue of
opportunities to explore and develop quantum state engineering in a macroscopic sys-
tem [21,30,31]. Owing to the highly controllable state-of-the-art BEC experiments, the
presence of a vortex in BECs can be detected and their dynamics can be monitored with
good spatial and temporal resolution [31–36]. Numerous techniques, which mainly rely
upon two distinct physical situations, have been proposed theoretically [37–44] and devel-
oped experimentally [45–48] to generate vortices in BECs. In rotating traps, vortices are the
thermodynamic ground states with quantized angular momentum, but in stationary traps,
the creation of vortices requires other dynamical means. Various methods to create vortices
include the perturbation of the system with a time-dependent boundary. In particular, such
time-dependent boundaries can be created either by moving a blue detuned laser through
the condensate [43,49] or by rotating the trap anisotropy [46]. In the other scheme, the
so-called phase imprinting technique [37,42,45,50–54], one can engineer the macroscopic
wavefunctions of BECs by coupling the internal atomic levels with either an optical field
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or a magnetic field. Remarkably, the topological phase pattern of the coupling field is im-
printed into the condensate wavefunctions. This topological phase, which is independent
of the field strength, is uniquely determined by the spatial structure of the coupling field.

The helical phase front of Laguerre–Gaussian (LG) laser beams has been associated
with its orbital angular momentum (OAM) in the paraxial regime [55]. A photon of such
an LG laser modes has phase profile eilφ, and carries lh̄ unit OAM in the transverse plane,
where φ is the angular coordinate and l is an integer, known as the winding number of the
beam. Such LG modes are known to transfer OAM from an optical field to the Rydberg
atom [56], BECs [57–60], and to create a mechanical rotation of particles [61,62]. It was
shown that a coherent coupling between the ground state of condensate with a rotating
condensate in vortex state, can be achieved by the transfer of OAM of photons to the
condensed atoms through Raman transitions [37]. Quantum dynamics of such vortex
coupler using LG beam was studied, and an off-axis motion of the quantized vortex cores
was interpreted as the collapse and revival of the atoms of the condensate [63]. Besides, a
pair of LG laser modes with unequal phase windings couple internal atomic states of BEC
through Raman transitions, and thus giving rise to spin and orbital angular momentum
coupling in the ground states of a spinor BEC [64,65]. Moreover, it has been shown that
almost all the atoms in the non-rotating BEC can be transferred to the BEC with vortex, by
employing LG beams [66,67].

Although an impressive volume of literature has been devoted to this subject, few
of its vital aspects remain further to be explored. One such aspect constitutes the role
played by the interaction between two BEC components on the population transfer. Indeed,
during the transfer process, atoms of two condensates are present in two different hyperfine
states, one with vorticity and another without vorticity. Thus, not only the atom–laser
coupling, but also the atom–atom interaction between two different components is expected
to influence the population transfer process. Note that the focus of the majority of the
previous studies has been on the complete particle transfer from one quantum state to
another. However, it is expected that by maneuvering atom-light coupling and inter-
component interaction one could achieve a population transfer of any desired value. In this
way it equips us to realize a binary-mixture where one component contains a vortex, and
the other does not, thus emulating the so-called vortex-bright-soliton structure [16,68].
Additionally, it is also desirable to know, through the miscibility parameter [15,69,70], how
atoms in the condensate with a vortex penetrate into atoms of the condensate without
any vortex during the transfer process [15,69,70]. Therefore, motivated by experimental
accessibility [71,72] and theoretical novelty of the problem, we theoretically address these
important aspects of the transfer mechanism in this paper.

We investigate the dynamics of population transfer from a nonrotating BEC to a Raman
coupled rotating BEC by employing LG and Gaussian (G) pulses. In this process, the atoms
in rotating BEC gain angular momentum from the LG laser pulse. We consider pulsed G
and LG beams as the pump and Stokes beams, respectively, to transfer the atoms from one
hyperfine level to another. In particular, we choose the temporal width of the pulses to
be in the same time scale determined by the trap frequency. This consideration provides
us the framework to understand the dynamics during the transfer process. Numerically
integrating the Raman coupled multicomponent Gross-Pitaevskii equations, we point out
the following key points: (i) the sign of the vorticity of the condensate as well as the initial
growth region of the vortex state, captured within the density patterns, depend upon
which laser mode is chosen as pump or Stokes beam and (ii) the repulsive inter-component
atomic interaction and peak Rabi frequency of laser beams determine the number of atoms
transferred to the non-rotating BEC. By calculating the overlap integral between the two
condensates we also quantify how two condensates penetrate into each other during the
transfer process.

We have organized the remainder of this paper as follows. In Section 2 we describe
the theory of transfer mechanism. Section 3 provides a brief description of the numerical
schemes used. In Section 4 we present results of the complete particle transfer and effects
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of the inter-particle interactions and the Raman coupling parameter on the final population
of the rotating BEC. In Section 5, we discuss the implication and possible future extensions
associated with the results presented. Appendix A presents the effects of trap frequencies
and the time-delay between the pulses on the population transfer. Finally, in Appendix B
we briefly outline the Hamiltonian and the derivation of the equations of motions.

2. Theoretical Methods

In our study, we consider BEC of alkali atoms trapped in a quasi two- dimensional
harmonic trap confined in the x − y plane with z axis being the quantization axis. In order
to transfer OAM from the optical beam to the BEC, we consider three electronic levels of
the alkali atoms are coupled by a pair of laser pulses in Λ-type configuration as shown in
Figure 1. Atoms of initially prepared BEC are at the state |1〉, one of the hyperfine levels of
the electronic ground state of atoms. The state |3〉 is an intermediate non-resonant excited
state. The final state is considered to be |2〉, another hyperfine level of the electronic ground
state of the atoms. The atoms are irradiated by two laser pulses propagating collinearly
parallel to the quantization axis [73]. We remark that with the dipole approximation of
the atomic transitions, the changes in the internal spin states of atoms are dictated by
polarizations of two light fields. However, the changes in external orbital motion of the
atoms of BEC around the quantization axis are determined by the difference of the orbital
angular momentum (OAM) of two light fields [57]. Let us consider that the OAM of the
twisted laser pulses for the transition from state |1〉 to state |3〉 is l1 and for |3〉 to |2〉
transition is l2. Then, the electric field vectors involved in this absorption or emission
transitions can be written as (for i = 1 and 2)

Ei(x, y, t) = ε̂iEi(t)(x2 + y2)
|li |
2 e

−(
x2+y2

w2
i

)
e−i(kiz−ωi t), (1)

where Ei(t), ε̂i, ki and ωi are the corresponding time dependent amplitude profile, polar-
ization vector, wave number and frequency of the i-th pulse, respectively. We consider the
temporal amplitude profiles of both pulses have the same form [74]:

E1(2)(t) = Emaxe−(
t−τ1(2)

T )2
, (2)

where τ1(2) is the temporal position of the peak value of electric field E1(2). Maximum
amplitude Emax and pulse duration T are the same for both pulses. The optical absorption-
emission cycle imparts OAM onto the atoms in final state |2〉 and creates a vortex in the
BEC with charge (l1 − l2) unit. Because of collinearity of the E1 and E2 pulses, no additional
linear momentum is generated in the final state. In addition to such two-photon transitions
in atomic BEC, these lasers also create extra confining potential, namely optical dipole
potentials for the atoms in the states |1〉 and |2〉 [75]. In practice the value of detuning Δ is
large, which ensures the negligible populations in state |3〉. This allows us to eliminate the
state |3〉 adiabatically. During the transfer process, atoms are present in both the hyperfine
states, |1〉 and |2〉. Therefore, coherent evolution of the condensates of atoms in these two
states, characterized by wavefunctions Ψ1(x, y, t) and Ψ2(x, y, t) respectively, are governed
by two Raman coupled Gross-Pitaevskii equations (see Appendix B for the derivation)

i
∂Ψ1

∂t
=

[
− 1

2
∇2

⊥ +
r2

2
+ ∑

j
G1j

∣∣Ψj
∣∣2 + V1(t)r2|l1|e

− 2r2

w2
1

]
Ψ1 + V′(x, y, t)Ψ2e−i(l1−l2)φ, (3)

and,

i
∂Ψ2

∂t
=

[
− 1

2
∇2

⊥ +
r2

2
+ ∑

j
G2j

∣∣Ψj
∣∣2 + V2(t)r2|l2|e

− 2(r2)
w2

2

]
Ψ2 + V′(x, y, t)Ψ1ei(l1−l2)φ, (4)
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where r2 = x2 + y2, V′ =
√V1V2(r2)(|l1|+|l2|)/2 exp

[
−2r2(1/w2

1 + 1/w2
2)
]
, and V1(2)(t) =

Vmax exp
[
−(t − τ1(2))

2/T2
]

with Vmax = E2
maxd2/h̄2ωΔ. E2

max is maximum light intensity
of both pulses and d is the atomic transition dipole moment and w1(2) is the beam waist of
the corresponding laser pulse. Therefore, the effective trap potentials felt by atoms of the
condensates are

Veff,1(2) =
r2

2
+ V1(2)(t)r

2|l1|(|l2|)e
− 2(r2)

w2
1(2) . (5)

We derive Equations (3) and (4) by nondimensionalizing Equations (A11) and (A12)
respectively. For this, we scale the spatial coordinates by oscillator length aosc =

√
h̄/mω,

time by 1/ω and condensate wavefunctions by
√

N/a3
osc. Here, m is the mass of the atoms

and N is the total number of atoms in the system, and ω is the trapping frequencies along
x and y directions of the harmonic trap. We denote N1 and N2 as the number of atoms
in condensates Ψ1 and Ψ2 respectively, and consider the total number, N = N1 + N2,
is conserved during and after the transfer process. We point out that initially N1 = N
and N2 = 0. Note that, the parameter associated with the peak Rabi frequency, Vmax,
contains parameters from the considered atomic transition, laser pulses and the trap of the
condensate. The quasi-2D configuration of the trap is achieved by ensuring large trapping
frequency in z direction, that is, ωz � ω. The intra and inter-component coupling strengths
are Gii = 2N

√
2πλaii/aosc and Gij = Gji = 2N

√
2πλaij/aosc, respectively, and λ = ωz/ω

is the anisotropy parameter. The intra-component and inter-component scattering lengths
are denoted by aii and aij, respectively. Initially, only the condensate Ψ1 is present within
the trap. With two photon Raman transitions, the condensate Ψ2 grows by gaining atoms
from the condensate Ψ1. During this process atoms in Ψ2 gain (l1 − l2) unit orbital angular
momentum, which is manifested as a phase factor ei(l1−l2)φ in the condensate wavefunction
Ψ2. The phase factor e−i(l1−l2)φ in the coupling term of Equation (3) ensures that no angular
momentum is transferred back to the atoms in condensate Ψ1. Transfer of this angular
momentum to the condensate Ψ2 results in generating quantized vortex in the condensate.
A quantized vortex in a BEC is point like topological defect which is manifested in the
phase profile of the condensate wavefunction Ψ2. Around the vortex the phase of the
condensate wavefunction changes by κ × 2π, where κ is an integer, which is referred to as
the winding number or charge of the vortex.

A system of two component BECs can exhibit two phases, miscible or immiscible,
depending on the the strengths of intracomponent and intercomponent interactions. At
zero temperature, two defect free condensates in a homogeneous trap are miscible when
a2

12 ≤ a11a22, and immiscible for a2
12 ≥ a11a22 [76]. However, these conditions are modified

when the condensates are considered in inhomogeneous trap [77]. Effects of finite tem-
perature [70] and topological defects [15] on the miscible-immiscible transition have been
reported. A well known measure to characterize these two phases is the overlap integral
defined as [15,69,70]

Λ =

[ ∫∫
dx dy n1(x, y) n2(x, y)

]2

[ ∫∫
dx dy n2

1(x, y)
][ ∫∫

dx dy n2
2(x, y)

] , (6)

where n1(2)(x, y) =
∣∣∣Ψ1(2)(x, y)

∣∣∣2 are the densities of the condensates. Λ = 0 corresponds
that the two condensates are spatially separated, that is, the system is in immiscible phase.
Whereas, Λ = 1 implies maximal spatial overlap between the condensates, that is, the
system is in complete miscible phase.

To this end, by utilizing two-photon Raman transition, we transfer the atoms from one
initially populated quantum state to another unpopulated state via an intermediate state,
see Figure 1. A pump field links state |1〉 to electronically excited state |3〉, and Stokes field
links state |3〉 to another low energy state |2〉. We perform a one-way controlled particle
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transfer from one hyperfine state to another, where atoms of the daughter state carries one
unit vortcity, either positive or negative, thus enabling us to create a rotating BEC. In this
context, coherent population transfer is possible if the Stokes field precedes, but temporally
overlaps with, the pump field, and the pulses are applied adiabatically.

Figure 1. Schematic of the electronic states considered, in a Λ configuration. Specifically, the states of
interest are |1〉 and |2〉 which represent the states associated with the two-component Bose–Einstein
Condensate (BEC). These two states are coupled, via |3〉, through detuned Guassian (G) and Laguerre–
Gaussian (LG) laser pulses. In this work two laser pulse sequences are considered: (i) G-LG where
the Gaussian is the pulse (|1〉 → |3〉) beam and the Laguerre–Gaussian is the Stokes (|3〉 → |2〉) beam
and (ii) LG-G where the Laguerre–Gaussian is the pulse (|1〉 → |3〉) beam and the Gaussian is the
Stokes (|3〉 → |2〉) beam.

3. Numerical Methods

We start with a BEC of N atoms at state |1〉, in the absence of laser pulses. Therefore,
we set terms associated with laser pulses in Equation (3) to be zero to obtain the initial
solution. Then, the wavefunction of the initial BEC, Ψ1, is generated by solving Equation (3)
in imaginary time using split-time Crank–Nicolson method [78]. The initial wavefunction
of BEC of the atoms in state |2〉, Ψ2, is considered to be zero. Using these two initial wave
functions, we evolve the system in presence of laser pulses. For this, we solve the coupled
GP equations in Equations (3) and (4) in real time. The phase imprinting in the Ψ2 occurs
dynamically due to the two photon Raman transitions, which is obtained by considering,

Ψ1(x, y, tn+1) = cos
(V′dt

2

)
Ψ1(x, y, tn)− ie−i(l1−l2)φ sin

(V′dt
2

)
Ψ2(x, y, tn), (7)

and

Ψ2(x, y, tn+1) = cos
(V′dt

2

)
Ψ2(x, y, tn)− iei(l1−l2)φ sin

(V′dt
2

)
Ψ1(x, y, tn). (8)

Since Ψ2 is zero at the initial time t0, l1 − l2 unit vortex is imprinted on Ψ2 at t1 = t0 + δt
and vorticity of Ψ1 remains zero. This transfer of angular momentum continues, as long as
both pulses are present. However, since the process is one-way, it stops when all the atoms
in condensate Ψ1 are transferred to the rotating condensate. For simulations, we choose a
square grid of 300 × 300 grid points with a grid spacing δx = δy = 0.05aosc and time step
Δt = 0.0001ω−1. In our study, we consider hyperfine states of 87 Rb with |1,−1〉 as |1〉
and |2,+1〉 as |2〉. The intracomponent scattering lengths a11 and a22 of these two states
are 100.4a0 and 95.44a0 [79] respectively, where a0 is the Bohr radius. The trap frequency
ω = 2π × 30.832 Hz [80] and the anisotropy parameter λ = 40 are the same for both
condensates. For this system the oscillator length aosc = 1.94 μm. Furthermore, the relation
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μ1(2) � h̄ωz holds throughout the time evolution indicating that quasi-2D configuration is
maintained always. Total number of atoms in the system is N = 104. To create a BEC with
a vortex of charge −1 unit, we use G pulse as “pump” of which l1 = 0, and LG Pulse as
“Stokes” with l2 = 1. If we interchange the “pump” and “Stokes” laser pulses, a vortex of
charge +1 unit will be created in the BEC. For simulations, we use the pulses with same
temporal duration of T = 4.9 ms.

4. Results and Discussion

4.1. Creation of Vortex in the BEC

In G-LG pulse sequence, we employ G pulse as pump and LG pulse as Stokes, for
which l1 = 0 and l2 = 1 respectively. For this arrangement, we consider τ1 = 1.4 and
τ2 = 1.0 in the units of 1/ω. During the Raman transitions of atoms from state |1〉 to |2〉
an amount of −1 unit OAM is transferred to the atoms in state |2〉. Here, we describe the
transfer process. First, a photon from the G laser pulse which has zero OAM is absorbed by
the atom in |1〉. As a result, the atom is excited to an intermediate excited state |3〉. Then, a
photon with +1 unit OAM is emitted by the atom at the state |3〉 onto the LG beam. After
this emission process the atom comes back to another ground state |2〉. The conservation
of the total angular momentum of the system, that is, the total angular momentum of atom
plus light pulses, ensures that atom at the state |2〉 gains −1 unit OAM. Thus, −1 unit
vorticity is created in the condensate Ψ2. Similarly, +1 unit vorticity can be created in the
condensate Ψ2 through LG-G pulse sequence, where we use LG pulse as pump and G
pulse as Stokes of which l1 = 1 and l2 = 0 respectively.

4.2. Density Evolution of the Condensates

We have discussed that the sign of the vorticity in condensate Ψ2 depends on the laser
modes chosen as pump and Stokes beam. Here, we point out how the sign of the vorticity
can be inferred from the changes of density patterns of the condensates during the transfer
process. Furthermore, these density patterns serve as promising candidates to elucidate
the residual excitations created during the light–matter interaction, since these excitations
leave their foot-prints on the density profiles creating additional humps and dips [81,82].
Figure 2(a1–a6,b1–b6) illustrate the density profiles of the condensates during the Raman
transitions, when the vortex of charge −1 unit is generated in the condensate Ψ2. Whereas,
Figure 2(c1–c6,d1–d6) illustrate the density profiles when +1 unit vortex is created. In the
lower-left corner of each density profile we mention the fraction of atoms in the condensate
with respect total number of atoms in the system.

From the comparison between the Figure 2(a1–a6,b1–b6,c1–c6,d1–d6), it is evident that
density patterns of the condensates during the creation of −1 unit vortex are different
from the case of creation of +1 unit vortex. During the initial growth of the condensate
Ψ2, the atoms occupy the central region of the trap when the vortex of charge −1 unit is
created, whereas the atoms occupy the peripheral region of the trap when the +1 unit
vortex created. At t = 0, the laser pulses are absent and the condensate Ψ1 is populated by
all the atoms in the system, hence, the condensate Ψ2 is empty. It is important to mention
that for the coherent population transfer, we apply the Stokes beam first. Therefore, in the
early stage of the dynamics population of condensate Ψ2 remains zero. Once the pump
beam is applied, condensate Ψ2 starts growing at the expense of atoms being transferred
from the condensate Ψ1. At the same time, a vortex of either −1 or +1 unit is imprinted on
condensate Ψ2 depending on the angular momenta of the pump and Stokes beams. For the
case of LG-G pulse sequence, which is illustrated in Figure 2(c1–c6,d1–d6), we observe that
11% of atoms has been transferred in the first 10.84 ms, but 68% of atoms are transferred
in the next 1.96 ms. In contrast to this, we observe that fewer numbers of atoms are
transferred to condensate Ψ2 at the same time instants when compared to the G-LG pulse
sequence, which is also evident from Figure 2(b1–b6). In both the cases, the generated
vortex appears with core, that is, zero density region at the center of condensate Ψ2, which
is visible in the density profiles of Ψ2 shown in Figure 2(b1–b6,d1–d6). It is worth noting

208



Atoms 2021, 9, 14

that density depleted region at the center of the trap is also observed in the density profiles
of condensate Ψ1 during the creation of −1 unit vortex in Ψ2 (Figure 2(a1–a6)). However,
such a hole is absent in the condensate Ψ1, when +1 unit vortex is created. To understand
the nature of the density depleted regions, we study the phase profiles of the condensates.
We confirm the presence of phase discontinuity at the center of condensate Ψ2 for both
the cases. It is mentioned earlier that the phase of the condensate wavefunction changes
by κ × 2π around a quantized vortex, where κ is the winding-number or charge of the
vortex. We compute the winding number κ to be −1 when we use G as pulse and LG as
Stokes beam, whereas κ = +1 when we consider LG-G pulse sequence. On the other hand,
the phase profile of the condensate Ψ1 does not possess phase discontinuity during the
transfer process for both cases. Thus, the hole in condensate Ψ1 which is generated during
the application of G-LG pulse sequence, is not a vortex.

Figure 2. (Color online) Shows the time evolution of density profiles of the condensates of (a1–a6), (c1–c6) atoms in |1〉 and
(b1–b6), (d1–d6) those in |2〉, when −1 unit [(b1–b6)] and +1 [(d1–d6)] unit vortex is created in the condensate Ψ2. In the
course of time, the condensate Ψ2 gets populated. The fraction of atoms in the condensate with respect to total number of
atoms N = 104, is mentioned at the bottom left corner of each figure. Atoms are kick-started to be transferred from the
condensate Ψ1 to the condensate Ψ2 in the central region of the trap for −1 unit vortex transfer, but in the peripheral region
of the trap for +1 unit vortex transfer. Almost 100% atoms get transferred to state |2〉 for both the cases.

Focusing our discussion on G-LG pulse sequence, we ascribe the presence of hole in
condensate Ψ1 to the distortion of harmonic trap potential by the optical dipole potential.
In this case, the optical dipole potential is induced by the G laser pulse for the condensate Ψ1
and by the LG laser pulse for the condensate Ψ2. Note that, at t = 0 ms the laser pulses are
absent and the minimum of the harmonic oscillator occurs at the center of the trap. Hence,
we obtain a pancake-shaped density profile of the condensate Ψ1, which has maximum
density at the trap center to minimize trap potential energy. Then, during the application

209



Atoms 2021, 9, 14

of laser pulse, the G-pulse gradually creates a rotationally symmetric “hump” at the center
of the trap, which increases the potential energy at the trap center. Therefore, the minimum
of the effective trap potential Veff,1 gets shifted radially away from the center, resulting in a
rotationally symmetric annular region as the new minimum of the potential. It is important
to mention that the density profile of a condensate in a binary mixture depends on the
effective trap potential in conjunction with the number of atoms in the condensate, intra
and intercomponent scattering length. Therefore, the atoms of the condensate Ψ1 move
away from center of the trap and settle at the annular region to minimize the trap potential
energy. This creates a hole at the center of the density profile of the condensate Ψ1. Since
the optical dipole potential induced by LG pulse has parabolic form around the center of
the trap, the position of the minimum of the effective potential Veff,2 does not change over
time. However, the steepness of this effective potential changes with time. It increases up
to time t = τ1 and then gradually decreases back to its initial value which is determined by
the considered harmonic potential. Therefore, the atoms in the condensate Ψ2 are always
pushed towards the center of the trap to minimize trap potential energy. As a result, during
the growth of Ψ2, the central region of the trap is occupied by the transferred atoms first,
and then rest of the region is occupied.

For LG-G pulse sequence, laser modes of pump and Stokes beam are interchanged.
Now the optical dipole potential is induced by the LG laser pulse for the condensate Ψ1 and
by the G laser pulse for the condensate Ψ2. Therefore, with the increase of the steepness of
the parabolic potential, which is generated by the LG pulse, the atoms in the condensate
Ψ1 are pushed towards the central region of the trap. The atoms that are transferred to
condensate Ψ2 experience the “hump” in the trap potential at the center, which is created
by the G pulse. Thus, the atoms in condensate Ψ2 are pushed towards an annular minimum
region of the effective trap potential. This results in larger core of the vortex in condensate
Ψ2 during the transfer process, which is to be contrasted with the previous case.

4.3. Root-Mean-Square Radius of the Condensates

The growth rate of condensate Ψ2 can be inferred from the rate of change of rms
radii of the condensates. In Figure 3 we illustrate the evolution of the rrms of both con-
densates during the transfer process for the cases when G-LG and LG-G pulse sequences
are considered. From the comparison between the considered cases, we can infer that the
growth rate of the condensate Ψ2 is faster in the case of LG-G pulse sequence than the
case of G-LG pulse sequence. Note that, for the chosen pulses, the strength of the Raman
interaction term V′ is always maximum, at the boundary of the trap. However, atoms in the
condensate try to occupy the minimum of the trap potential to minimize the trap potential
energy. In particular, the effective trap potential Veff,2 of condensate Ψ2 has a minimum

at the center of trap for G-LG pulse sequence, but at a distance r = w0

√
ln
(
4V2(t)/w2

0
)
/2

from the center, for LG-G pulse sequence. Therefore, in the later case, the minimum of the
effective trap potential is closer to the trap boundary where the Raman coupling V′ term
is maximum.

This suggests that the growth rate of the condensate Ψ2 depends on the distance be-
tween the position of the minimum of effective trap potential and the position of maximum
Raman coupling. After the transfer process, the rms radius of Ψ2 oscillates around a mean
value. The frequency of such residual radial oscillations, as can be seen from Figure 3,
is approximately ω′ = ω/3 for both pulse sequences. The amplitude of oscillation is much
smaller than the mean radius of condensate. Most importantly, such a small amplitude of
oscillation indicates that negligible amount residual excitations have been activated during
the population transfer. However, detail analysis of such excitations is out of the scope of
this work.
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Figure 3. (Color online) Shows the time evolution root mean square radius rrms of BEC Ψ1 and Ψ2

for different pulse sequences(see legends). The BECs are confined harmonic trapping potential with
frequency ω = 2π × 30.832 Hz and the intra-and interspecies interactions are taken as a11 = 100.04a0,
a22 = 95.44a0, and a12 = 100a0 respectively. The dynamics is triggered by employing LG[G]-G[LG]
pulse sequence, where LG[G] is the pump beam and G[LG] is the stokes beam.

4.4. Effects of Intercomponent Interaction

We now discuss the effects of intercomponent interaction between the two condensates,
during the transfer process and the final population of the condensate Ψ2. We consider the
LG-G pulse sequence as the representative example.

The scattering length a12, which quantifies interactions between the atoms of the
two different components, plays an important role in determining spatial wavefunctions
and the energy of the condensates. Indeed, for certain temporal duration of pulses and
intercomponent scattering length, the strength of the atom-light interaction Vmax have to be
monitored to get the desired population of atoms in the state |2〉. In the Figure 4, we present
the number of atoms in condensate Ψ2 at the end of the transfer process as a function
of a12 and Vmax. We vary peak Rabi frequency Vmax from 1 to 100 and intercomponent
atomic scattering length a12 from 70a0 to 110a0. Peak Rabi frequency can be controlled
either by changing peak light intensity of the pulse or by changing the detuning. Whereas,
the scattering length can be varied through the magnetic Feshbach resonance [83]. We
observe complete population transfer from condensate Ψ1 to condensate Ψ2 when Vmax is
greater than 100 (not shown in the diagram). Intercomponent interactions merely affect
the transfer process. In this region, atom–light interaction is strong enough to affect
any density distribution determined by a12. However, this situation does not hold for
intermediate values of Vmax, predominantly between 100 and 10. In this region, stronger is
the intercomponent interaction, larger is the number of atoms transferred to condensate
Ψ2. For small values of Vmax, larger values of a12 suppresses the transfer process, which is
evident from Figure 4. It is important to mention that in this limit, we observe the growth
of condensate Ψ2 is different for different values of intercomponent atomic scattering
length. That is, depending on the strength of the atom-light interaction, a12 affects the
population transfer in different manner. For example, for Vmax = 1, the final population
of Ψ2 is suppressed for larger a12, whereas, for Vmax = 10, strong interaction increases the
population in Ψ2 (see Figure 5a,b).
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Figure 4. (Color online) Illustrates the number of atoms transferred to the condensate Ψ2 as a
function of intercomponent scattering length a12 and the light–matter interaction parameter Vmax.
The colorbar shows the fraction of atoms in condensate Ψ2 with respect to the total number of atoms
N = 104 in the system at the end of the transfer process. The population transfer from Ψ1 to Ψ2

is carried-out using LG(pump)-G(stokes) pulse sequence. The system is confined in a harmonic
trapping potential with frequency ω = 2π × 30.832 Hz and the intraspecies scattering lengths are
a11 = 100.04a0 and a22 = 95.44a0.
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Figure 5. (Color online) Shows the time evolution of the population in the condensate Ψ2 for a fixed Rabi frequency, with
(a) Vmax = 1 and (b) Vmax = 10, and different interspecies scattering lengths a12 [see legends]. The dynamics is triggered by
employing LG(pump)-G(stokes) pulse sequence. The BEC Ψ2 is confined in a harmonic trapping potential with frequency
ω = 2π × 30.832 Hz. The total number of atoms in the system is N = 104 and the intraspecies scattering lengths are given
by a11 = 100.04a0 and a22 = 95.44a0. For Vmax = 1, larger a12 suppresses the population transfer processes, but favors the
same for Vmax = 10.

In order to gain further intuition regarding the combined effect of the atom-light cou-
pling and inter-component interaction we resort to the density evolution. Figure 6 presents
few representative snapshots of the density profiles for Vmax = 1 and a12 = 80a0. Note
that this particular parameter set corresponds to 45% particle transfer to Ψ2 (see Figure 5),
therefore, enabling the creation of binary mixture of almost equal particles. This, in par-
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ticular, is better comprehended from the density profiles depicted in Figure 6. Preparing
the initial state characterized by all the atoms residing at the state |1〉 (Figure 6(a1,b1)), the
light–matter interaction is initiated by employing LG-and G beams as pump and stokes
beam, respectively. Note that the large vortex core of Ψ2 during the early stage of pop-
ulation transfer is caused by the presence of the Gaussian potential barrier at its center
(see Figure 6(b2)). However, the same vortex core gradually shrinks as more number of
particles are transferred and the Gaussian barrier gradually diminishes (see Figure 6(b3,b4)).
Finally, the BEC at |2〉 possess 45% of the total number of particles. A close inspection of
Figure 6(a4–a6,b4–b6) reveals that a breathing motion characterized by expansion and con-
traction of the density profiles has been triggered in both Ψ1 and Ψ2. Another observation
is that Ψ2, after the population transfer, exhibits larger vortex core when compared to the
case of complete particle transfer, see Figure 2(d6) and Figure 6(b6).
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Figure 6. (Color online) Shows the time evolution (see the legends) of the density profiles of the BEC Ψ1 at (a1–a6) |1〉 and
those of BEC Ψ2 at (b1–b6) |2〉. The population transfer from Ψ1 to Ψ2 is triggered by utilizing a LG(pump)–G(stokes) pulse
sequence and setting the light–matter interaction parameter Vmax = 1 and the interspecies scattering length a12 = 80a0,
while all other parameters are the same as before. The fraction of atoms the condensate with respect to the total number of
atoms N = 104, is mentioned at the bottom left corner of each figure.

In addition, we observe the peak Rabi frequency plays an important role in determin-
ing the miscibility between the two components during light–matter interaction. This is in
contrast to the case when the light field is absent, that is, miscibility of two condensates
is determined by the intra and intercomponent interactions. To illustrate this, we have
considered Rabi frequencies, Vmax = 1 and Vmax = 10, for which both the condensates Ψ1
and Ψ2 have finite number of atoms N1 and N2, even after the light–matter interaction. For
these two cases, we show the variation of the miscibility parameter Λ with time in Figure 7.
Note that just after the initiation of the transfer process, condensate Ψ2 grows within the
condensate Ψ1, resulting in gradual increase of Λ. However, when a sufficient number of
atoms have been transferred to condensate Ψ2 and both the pulses have significant tempo-
ral overlap, mutual repulsion between the condensates and the optical dipole potential tend
to push the two condensates away from each other. This results in decrease of Λ. Again, the
overlap between the condensates and hence Λ increases as pulses gradually die down. It is
important to notice that during the light–matter interaction we obtain larger values of Λ
for larger values of a12. This indicates, the stronger the intercomponent repulsion between
the two condensates, the larger the overlap between them is. This is to be contrasted with
the case when light–matter interaction is absent, in which, larger intercomponent repulsion
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separates the condensates spatially. After the light–matter interaction, that is, when the
optical dipole potentials disappear, the miscibility between the condensates is determined
by intra- and inter-component interactions.
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Figure 7. (Color online) Shows the time evolution of the overlap integral Λ for a fixed Rabi frequency, with (a) Vmax = 1
and (b) Vmax = 10, and different interspecies scattering lengths a12 [see legends]. The dynamics is initiated by employing
LG(pump)-G(stokes) pulse sequence. The binary BECs are confined in harmonic trapping potential with frequency
ω = 2π × 30.832 Hz. The total number of atoms in the system is N = 104 and the intraspecies scattering lengths are given
by a11 = 100.04a0 and a22 = 95.44a0.

5. Conclusions

In conclusion, we have shown that how two-photon Raman transition can be used to
generate a rotating BEC with vorticity of either sign, by transferring atoms from another
condensate. In this transition, atoms gain angular momentum from the LG laser pulse be-
fore being transferred to a rotating condensate. Density patterns of the condensates during
the light–matter interaction depend on sign of the vorticity of the rotating condensate.

In particular, we have show that how a specific choice of pump and stokes beams can
alter the locations, within the trap, where the transferred particles start accumulating. No-
tably, this result stems form the optical potentials felt by the atoms of each individual state.
Most importantly, the interchange of pump and stokes laser beams not only changes the
sign of vorticity, but also gives rise different dipole potentials influencing both the growth
rate and growth region of the new Bose–Eintein condensate. The growth of the new conden-
sate with −1 unit vorticity is started from the central region of the trap, but a condensate
with +1 unit vorticity starts to grow from the peripheral region of the same. Furthermore,
the “smoothness” of the density profiles and the temporal evolution of rms radius imply
that there are very few excitations emerging during the light–matter interaction.

Moreover, we have shown that the number of transferred atoms can be monitored by
tuning the intercomponent interaction, if the peak Rabi frequency of light–matter interac-
tion is low and in particular, large intercomponent interaction subdues this transfer process.
In this way, by maneuvering the atom-light interaction strength and the intercomponent
scattering length one can create binary mixture of condensates.

Another major finding from our investigation is that intercomponent interaction kind
of plays an opposite role in the process of phase separation during the Raman transition
process, in contrast to literature [84] when such dynamical perturbation is absent. We
find that a stronger intercomponent interaction favors greater miscibility between the
condensates during the light–matter interaction.
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Finally, we point out that the storage of a photon pair entangled in OAM space
through Raman transition in the cold atomic ensemble has served as a sandbox to study
information processing [85]. Besides, because atoms can have higher spin manifolds than
light, the extension of our work to the spinor BEC would be an important study. Various
topological properties can be developed in the ground state depending on Rabi frequency
and atom-atom interaction strength, for example, a Mermin-Ho vortex or a meron pair
phase [86], and might lead to the exhibition of non-Abelian braiding statistics [87] which is
particularly interesting for topological quantum computing protocols [88]. We expect our
study will shed light for further research in this direction.
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Appendix A. Effects of Harmonic Trap and Time-Delay between the Pulses

Here we discuss the effects of the trapping frequencies of the harmonic potentials and
the time-delay between two pulses during the particle transfer and on the final population
of the component Ψ2. In particular, we are interested in the weak atom-light coupling
regime where both components contain finite number of particles. To that purpose we set
Vmax = 1, also the interspecies scattering length is a12 = 80a0. Figure A1a presents time
evolution of the fraction of total number of particles in Ψ2 for different trapping frequencies
ω. It is evident that consideration of a different trapping frequency only changes the time
scale of the relevant phenomenology. Remarkably, it does not alter the final population
of the Ψ2 to a great extent. The onset and the growth rate of the population transfer are
influenced by the trapping frequency. For instance, for ω/(2π) = 30.832 Hz, the transfer
starts at earlier time instant and occurs at a faster rate when compared to the others.

Next we inspect the effect of varying time-delay between the two pulses on the
population transfer in the weak light–matter coupling regime (see Figure A1b). We fix the
peak location (τ2) of the stokes pulse at τ2 = 10.33 ms and vary the peak location (τ1) of the
pump pulse. We notice that maximum particle transfer is approximately 45% of the total
population, which is achieved when τ1 lies in the range 11.36–12.39 ms. However, when the
time delay is too large (τ1 = 15.49 ms) or too small (τ1 = 10.36 ms) the number of particles
in Ψ2 decreases. Besides, when the time delay is very small, in other words temporal
peaks of the two pulses are very close to each other, the growth of the population shows
a very different behavior, see the blue curve in Figure A1b. The noticeable swell, during
the light–matter interaction, in the curve corresponding to τ1 = 10.36 ms can be related
to the creation of significant amount of excitations in both components. These excitations
stemming from the interactions with laser pulses also remain in both components after
the interaction is over. We remark that such residual excitations leave their finger-prints
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onto the density profiles of the components (not shown here for the brevity), and bear the
signatures of the break-down of coherent population transfer.
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Figure A1. (Color online) Time evolution of the fraction of particle number transferred to the BEC Ψ2 for (a) various
trapping frequencies ω and (b) various peak positions of the (τ1) of the pump laser pulse. A LG-G pulse sequence is used to
trigger the dynamics in the weak light–matter interaction regime characterized by Vmax = 1. While studying the effect of
the trapping frequencies [(a)], τ2 and τ1 are fixed at 10.33 ms and 13.43 ms, respectively. On the other, the rapping frequency
ω = 2π × 30.832 Hz and peak position τ2 = 10.33 of stokes pulse are kept fixed when studying the variation of τ1 [(b)]. The
total number of particles in the system is N = 104, and the intra-and interspecies interactions are a11 = 99a0, a22 = 95.44a0

and a12 = 80a0.

Appendix B. Hamiltonian and Derivation of Equation of Motions

Let Ψ̂†
j and Ψ̂j be the creation and annihilation operators respectively for atoms at state

|j〉. The Hamiltonian for interacting boson alkali atoms in a trap potential, with respect to a
frame rotating at the frequency of applied laser fields in the rotating wave approximation
can be written as

H =
∫

dr1Ψ̂†
1(r1, t)ĥ1Ψ̂1(r1, t) +

∫
dr2Ψ̂†

2(r2, t)ĥ2Ψ̂2(r2, t) + h̄Δ
∫

dr3Ψ̂†
3(r3, t)Ψ̂3(r3, t)

+
U11

2

∫
dr1Ψ̂†

1(r1, t)Ψ̂†
1(r1, t)Ψ̂1(r1, t)Ψ̂1(r1, t) +

U22

2

∫
dr2Ψ̂†

2(r2, t)Ψ̂†
2(r2, t)Ψ̂1(r2, t)Ψ̂1(r2, t)

+ U12

∫
dr′Ψ̂†

1(r
′, t)Ψ̂†

2(r
′, t)Ψ̂1(r

′, t)Ψ̂2(r
′, t) + h̄

∫
dr′Ω1(r

′, t)eil1φΨ̂†
3(r

′, t)Ψ̂1(r
′, t)

+h̄
∫

dr′Ω2(r
′, t)eil2φΨ̂†

3(r
′, t)Ψ̂2(r

′, t) + H.c

we have following commutation relations for the bosonic operators:

[Ψ̂j(r, t), Ψ̂†
k(r

′, t)] = δ(r − r′)δjk, (A1)

[Ψ̂j(r, t), Ψ̂k(r
′, t)] = 0,

[Ψ̂†
j (r, t), Ψ̂†

k(r
′, t)] = 0

Now Heisenberg equation of motion gives

ih̄
∂Ψ̂1(r, t)

∂t
= [Ψ̂1(r, t), H] (A2)
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ih̄
∂Ψ̂2(r, t)

∂t
= [Ψ̂2(r, t), H] (A3)

ih̄
∂Ψ̂3(r, t)

∂t
= [Ψ̂3(r, t), H] (A4)

Using bosonic commutation relation and Heisenberg equation of motion we get

ih̄
∂Ψ̂1(r, t)

∂t
= ĥ1Ψ̂1(r, t) + U11Ψ̂†

1(r, t)Ψ̂1(r, t)Ψ̂1(r, t) (A5)

+ U12Ψ̂†
2(r, t)Ψ̂2(r, t)Ψ̂1(r, t) + Ω∗

1(r, t)e−il1φΨ̂3(r, t),

ih̄
∂Ψ̂2(r, t)

∂t
= ĥ2Ψ̂2(r, t) + U22Ψ̂†

2(r, t)Ψ̂2(r, t)Ψ̂2(r, t) (A6)

+ U21Ψ̂†
1(r, t)Ψ̂1(r, t)Ψ̂2(r, t) + h̄Ω∗

1(r, t)e−il2φΨ̂3(r, t),

and

ih̄
∂Ψ̂3(r, t)

∂t
= h̄ΔΨ̂3(r, t) + h̄Ω1(r, t)eil1φΨ̂1(r, t) (A7)

+ h̄Ω2(r, t)eil2φΨ̂2(r, t).

Eliminating of the field operator Ψ̂3(r, t) adiabatically,

ih̄
∂Ψ̂3(r, t)

∂t
= 0 (A8)

Ψ̂3(r, t) = −(Ω1(r, t)eil1φΨ̂1(r, t) + Ω2(r, t)eil2φΨ̂2(r, t))/Δ (A9)

Putting (A9) into (A5) and (A6) we get,

ih̄
∂Ψ̂1(r, t)

∂t
= ĥ1Ψ̂1(r, t) + U11Ψ̂†

1(r, t)Ψ̂1(r, t)Ψ̂1(r, t)+ (A10)

U12Ψ̂†
2(r, t)Ψ̂2(r, t)Ψ̂1(r, t)− h̄|Ω1(r, t)|2

Δ
Ψ̂1(r, t)−

h̄Ω2(r, t)Ω∗
1(r, t)

Δ
Ψ̂2(r, t)e−i(l1−l2)φ

and

ih̄
∂Ψ̂2(r, t)

∂t
= ĥ2Ψ̂2(r, t) + U22Ψ̂†

2(r, t)Ψ̂2(r, t)Ψ̂2(r, t)+ (A11)

U21Ψ̂†
1(r, t)Ψ̂1(r, t)Ψ̂2(r, t)− h̄|Ω2(r, t)|2

Δ
Ψ̂2(r, t)−

h̄Ω1(r, t)Ω∗
2(r, t)

Δ
Ψ̂1(r, t)ei(l1−l2)φ

where Ω1(r) and Ω2(r), Rabi frequencies of the transitions |1〉 → |3〉 and |3〉 → |2〉, are
given by E1(r, t) · d13/h̄ and E2(r, t) · d32/h̄ with d13 and d32 being the corresponding
transition dipole moments. we consider d13 = d23 = d. At T = 0, in limit of low energy s-
wave scattering, and neglecting quantum fluctuation, the field operator Ψ̂j can be replaced
by a complex valued wavefunction Ψj. Therefore, (A3) and (A4) become
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ih̄
∂Ψ1(r, t)

∂t
=
[
− h̄2

2m
∇2 + V(r)− h̄|Ω1(r, t)|2

Δ

]
Ψ1 + U11|Ψ1|2Ψ1 + U12|Ψ2|2Ψ1 (A12)

− h̄Ω2(r, t)Ω∗
1(r, t)

Δ
Ψ2(r, t)e−i(l1−l2)φ

and

ih̄
∂Ψ2(r, t)

∂t
=
[
− h̄2

2m
∇2 + V(r)− h̄|Ω2(r, t)|2

Δ

]
Ψ2 + U11|Ψ2|2Ψ2 + U12|Ψ1|2Ψ2 (A13)

− h̄Ω1(r, t)Ω∗
2(r, t)

Δ
Ψ2(r, t)ei(l1−l2)φ

Using (1) and (4)

∣∣∣Ω(1)2

∣∣∣2 = (
Emaxd32

h̄Δ
)2e(−

t−τ1(2)
T )2

(x2 + y2)|l1(2)|e
−2( x2+y2

w2
1(2)

)

(A14)

and

Ω∗
2Ω1 =(

Emaxd32

h̄Δ
)2e−(

t−τ1
T )2−(

t−τ2
T )2

(x2 + y2)
|l1|+|l2|

2

× e

− 2(x2+y2)(
1

w2
1
+ 1

w2
2

) (A15)

Here the BEC is considered to be confined at z = 0 plane and ω1 ≈ ω2.
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