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Abstract

Human brain has been subject of deep interest for centuries, given it’s central
role in controlling and directing the actions and functions of the body as response to
external stimuli. The neural tissue is primarily constituted of neurons and, together
with dendrites and the nerve synapses, constitute the gray matter (GM) which plays
a major role in cognitive functions. The information processed in the GM travel
from one region to the other of the brain along nerve cell projections, called axons.
All together they constitute the white matter (WM) whose wiring organization still
remains challenging to uncover. The relationship between structure organization of
the brain and function has been deeply investigated on humans and animals based
on the assumption that the anatomic architecture determine the network dynamics.

In response to that, many different imaging techniques raised, among which
diffusion-weighted magnetic resonance imaging (DW-MRI) has triggered tremendous
hopes and expectations. Diffusion-weighted imaging measures both restricted and
unrestricted diffusion, i.e. the degree of movement freedom of the water molecules,
allowing to map the tissue fiber architecture in vivo and non-invasively. Based on
DW-MRI data, tractography is able to exploit information of the local fiber orien-
tation to recover global fiber pathways, called streamlines, that represent groups of
axons. This, in turn, allows to infer the WM structural connectivity, becoming widely
used in many different clinical applications as for diagnoses, virtual dissections and
surgical planning. However, despite this unique and compelling ability, data acqui-
sition still suffers from technical limitations and recent studies have highlighted the
poor anatomical accuracy of the reconstructions obtained with this technique and
challenged its effectiveness for studying brain connectivity.



Abstract ii

The focus of this Ph.D. project is to specifically address these limitations and to
improve the anatomical accuracy of the structural connectivity estimates. To this
aim, we developed a global optimization algorithm that exploits micro and macro-
structure information, introducing an iterative procedure that uses the underlying
tissue properties to drive the reconstruction using a semi-global approach. Then, we
investigated the possibility to dynamically adapt the position of a set of candidate
streamlines while embedding the anatomical prior of trajectories smoothness and
adapting the configuration based on the observed data. Finally, we introduced the
concept of bundle-o-graphy by implementing a method to model groups of streamlines
based on the concept that axons are organized into fascicles, adapting their shape and
extent based on the underlying microstructure.

Keywords: Tractography, White matter structure, Bundle-based tractography, Mi-
crostructure informed tractography, MCMC optimization, Diffusion-Weighted Mag-
netic Resonance Imaging



Sommario

Il cervello umano è oggetto di profondo interesse da secoli, dato il suo ruolo cen-
trale nel controllare e dirigere le azioni e le funzioni del corpo in risposta a stimoli
esterno. Il tessuto neurale è costituito principalmente da neuroni che, insieme ai den-
driti e alle sinapsi nervose, costituiscono la materia grigia (GM), la quale riveste un
ruolo centrale nelle funzioni cognitive. Le informazioni processate nella GM viaggiano
da una regione all’altra del cervello lungo estensioni delle cellule nervose, chiamate
assoni. Tutti insieme costituiscono la materia bianca (WM) la cui organizzazione
strutturale rimane tuttora sconosciuta. Il legame tra struttura e funzione del cervello
sono stati studiati a fondo su esseri umani e animali partendo dal presupposto che
l’architettura anatomica determini la dinamica della rete funzionale. In risposta a
ciò, sono emerse diverse tecniche di imaging, tra cui la risonanza magnetica pesata
per diffusione (DW-MRI) ha suscitato enormi speranze e aspettative. Questa tecnica
misura la diffusione sia libera che ristretta, ovvero il grado di libertà di movimento
delle molecole d’acqua, consentendo di mappare l’architettura delle fibre neuronali
in vivo e in maniera non invasiva. Basata su dati DW-MRI, la trattografia è in
grado di sfruttare le informazioni sull’orientamento locale delle fibre per ricostruirne
i percorsi a livello globale. Questo, a sua volta, consente di estrarre la connettività
strutturale della WM, utilizzata in diverse applicazioni cliniche come per diagnosi,
dissezioni virtuali e pianificazione chirurgica. Tuttavia, nonostante questa capac-
ità unica e promettente, l’acquisizione dei dati soffre ancora di limitazioni tecniche
e recenti studi hanno messo in evidenza la scarsa accuratezza anatomica delle ri-
costruzioni ottenute con questa tecnica, mettendone in dubbio l’efficacia per lo studio
della connettività cerebrale.



Sommario iv

Il focus di questo progetto di dottorato è quello di affrontare in modo specifico
queste limitazioni e di migliorare l’accuratezza anatomica delle stime di connettività
strutturale. A tal fine, abbiamo sviluppato un algoritmo di ottimizzazione globale che
sfrutta le informazioni sia micro che macrostrutturali, introducendo una procedura
iterativa che utilizza le proprietà del tessuto neuronale per guidare la ricostruzione uti-
lizzando un approccio semi-globale. Successivamente, abbiamo studiato la possibilità
di adattare dinamicamente la posizione di un insieme di streamline candidate incor-
porando il prior anatomico per cui devono seguire traiettorie regolari e adattando
la configurazione in base ai dati osservati. Infine, abbiamo introdotto il concetto
di bundle-o-graphy implementando un metodo per modellare gruppi di streamline
basato sul concetto che gli assoni sono organizzati in fasci, adattando la loro forma
ed estensione in base alla microstruttura sottostante.

Parole chiave: Trattografia, Struttura della materia bianca, Trattografia basata su
bundle, Trattografia informata dalla microstruttura, Ottimizzazione MCMC, Imag-
ing di risonanza magnetica pesata per diffusione
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Introduction

The brain has been subject of major interest across ages and it’s study has tra-
versed philosophical, experimental, and theoretical phases. Although its central rule
has been theorized since ancient Greece (Gross, 1987), it is only within the last cen-
tury that the study of brain anatomy and function has been placed on a scientific
basis and still they remain largely unknown (Hofman, 2014).

Its responsibilities comprise controlling and directing the actions and functions of
the body as response to external stimuli which also represent a driving force behind its
evolution (Magphail et Bolhuis, 2001; Roth et Dicke, 2012). The brain neural tissue is
primarily constituted of neurons and neural stem cells along with glial cells and blood
vessels providing physical and metabolic support. The ensemble of neural cell bodies
is called soma and, together with dendrites and the nerve synapses, constitute the
gray matter (GM). This can be found in the inner part, called nucleus or subcortical
regions, and in the cerebral cortex which composes the outer layer of the brain.
This last region is highly folded to increase its surface, and plays a major role in
cognitive functions. Together they are responsible of receiving and processing the
visual, somatosensory, auditory, gustatory, and olfactory information, enabling the
control of the movement, memory, and emotions.

The information processed in the GM travel from one region to the other of the
brain as electric impulses along nerve cell projections, called axons (Figure 1.3), which
are organized into fascicles. All together they constitute the white matter (WM)
and represent the subways of information transfer in the brain (Figure1.2). The
importance of uncovering the network structure underlying the information exchange
is crucial from clinical, developmental and evolutionary perspectives.

The relationship between structure organization of the brain and function has
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been deeply investigated on humans and animals based on the assumption that
the anatomic architecture determine the network dynamics (Hagmann et al., 2008;
Honey et al., 2007, 2009; Turk et al., 2016). In recent years this has been extended
by studying how neurodegenerative conditions such as Alzheimer’s and Parkinson’s
diseases (Manza et al., 2016; Son et al., 2017) and multiple sclerosis (Dobryakova
et al., 2017; Petracca et al., 2020; Schiavi et al., 2020b) affect mobility, coordination,
strength, sensation, and cognition(Catani, 2006; Ciccarelli et al., 2008).

The first approach to investigate the neural architecture was by cerebral dissec-
tion, and, while the methodologies have experienced a notable evolution (Cushing,
1909; Dejerine, 1895; Gray, 1918; Ludwig et Klingler, 1956), the idea of depicting the
complex organization of WM pathways remains unfeasible. The introduction of local
fiber tracing methods, based on local injection and subsequent observation of the
propagation of specific chemicals used as markers (Selden et al., 1998; Ugolini, 2010),
yielded to the first high-quality connectivity mapping of cerebral cortex in mammals
(Maunsell et van Essen, 1983; Rockland et Pandya, 1979; Scannell et al., 1995).

Over the years the neuroimaging field has adapted toward the necessity to acquire
and process data rapidly and non-invasively for clinical purposes (e.g. diagnoses).
This gave rise to many different imaging techniques, among which diffusion-weighted
magnetic resonance imaging (DW-MRI) (Behrens et al., 2014; Bihan et al., 1986;
Jones, 2010; Le Bihan et Breton, 1985) has triggered tremendous hopes and expec-
tations being one of the few capable of mapping the tissue fiber architecture in vivo.
Starting from a set of diffusion-weighted (DW) images, Diffusion imaging (DI) esti-
mates the effective scalar diffusivity of water molecules (Le Bihan, 1991), providing
a measurement of biological tissue properties. The possibility to non-invasively ex-
tract fiber orientations from living biological tissue was revolutionary and the first
approach, Diffusion Tensor Imaging (DTI) (Le Bihan, 1991), quickly became a cen-
tral tool in the modern neuroimaging field and it’s currently exploited for clinical and
neurological applications (Catani et al., 2002; Horsfield et Jones, 2002; Johansen-Berg
et Rushworth, 2009).

The possibility to reconstruct the global fiber trajectories based on DW data is
called tractography (see section 1.3) and it notably contributed to the success of
DTI (Basser et al., 2000; Conturo et al., 1999; Mori et al., 1999) but also highlighted
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its many limitations. Indeed, first tractography algorithms were based on “local”
integration procedures of the fiber orientations estimated in each voxel from the mea-
sured DW-MRI. This approach is very fast but also rather sensitive to estimation
errors of the local orientations (Mori et al., 1999); notably, Maier-Hein et al. (2017)
showed that such algorithms tend to follow the easiest path available in crossing re-
gions, which represent the majority of WM voxels (Jeurissen et al., 2012), and thus
fail to reconstruct some anatomical bundles, i.e. false negatives.

To deal with this inadequacy of tractography to explore the whole space of brain
connections, probabilistic alternatives were proposed that use probability distribu-
tions estimated in each voxel to allow uncertainty in the propagation of the tra-
jectories. These methods have demonstrated their ability to recover hard-to-track
connections and to cover more adequately the WM (Côté et al., 2013); however, this
improved capability of exploring brain anatomy leads also to the reconstruction of
implausible fascicles that do not anatomically exist, i.e. false positives.

The effects of such false-negative and false-positive connections in tractography
reconstructions has been recently investigated and, in particular, Zalesky et al. (2016)
have demonstrated that these spurious connections are detrimental to the study of
brain connectivity and can heavily bias all analyses based on this technique.

The advent of the so called “global” tractography algorithms marked an important
milestone on the road to significantly improving the quality of the reconstructions.
These approaches introduced the use of global optimization to reconstruct the set of
streamlines, i.e. tractogram, that are most consistent with the acquired DW-MRI
data and, indeed, the resulting reconstructions showed improved anatomical accu-
racy (Christiaens et al., 2015; Close et al., 2015; Fillard et al., 2009; Kreher et al.,
2008; Mangin et al., 2013; Reisert et al., 2011).

First solutions were based on Markov chain Monte Carlo (MCMC) optimization
procedures for constructing the optimal set of streamlines, but this strategy turned
out to be computationally very heavy given the large amount of parameters that need
to be optimized. Different approaches have been proposed to speed up convergence,
for instance by reducing the number of parameters or their space by forcing anatomical
constraints on the reconstructed streamlines (Girard et Descoteaux, 2012; Smith et al.,
2012).
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One major step to reduce the complexity of this generative strategy, while keeping
a “global” approach, was made with the introduction of discriminative approaches.
The idea behind these methods is to identify the optimal subset of streamlines from a
pre-computed set of candidates, constructed using standard tractography algorithms,
that are most compatible with the measured DW-MRI data; for this reason, they
are sometimes referred to as “filtering” methods (Daducci et al., 2016). Different for-
mulations exist; for instance, in Spherical-deconvolution Informed Filtering of Trac-
tograms (SIFT)/SIFT2 (Smith et al., 2013, 2015a) streamlines are selected based on
the agreement between their trajectories and the local fiber orientation distributions,
whereas the full measured DW-MRI data is considered in COMMIT/COMMIT2 and
Linear Fascicle Evaluation (LiFE) (Daducci et al., 2015; Pestilli et al., 2014; Schi-
avi et al., 2020a). These discriminative methods allowed reducing dramatically the
computational cost required to perform global tractography, and showed great po-
tential to further improve the quality of the reconstructions, notably alleviating the
problem of false positives as well as improving the biological interpretability of the
tractograms (Jbabdi et Johansen-Berg, 2011; Schiavi et al., 2020a).

However, unlike generative methods, they assume a static input configuration, i.e.
shape / position of the candidate streamlines is fixed and cannot be adapted, which
means that the quality of the reconstructions remains indissolubly bounded to the
quality of the algorithm used to build the candidate pathways.

Research goal

The thesis is divided into two parts: methodology (1.4) and clinical applications
(5.2). In the first are presented the steps followed to develop a tracking algorithm
able to exploit the strengths of both global and generative methods to overcome trac-
tography limitations. Along the path we explored different strategies, starting from
a semi-global graph-based method and evolving to a global reconstruction approach.

Semi-global methods represent an interesting option, as they are computation-
ally efficient, robust to noise and their formulation is very flexible. However, they
also come with limitations. For instance, the reconstructed streamlines tend to be
collapsed and to share part of their path, especially in regions with highly curved
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fiber bundles. This can introduce voxels with incorrectly high or low streamline den-
sity , which does not correspond to the underlying fiber geometry. To mitigate this
problem, in section 2 is introduced an iterative procedure that uses microstructure
information and provides feedback to the shortest path tractography algorithm about
the plausibility of the reconstructions.

Although the previous method is able to mitigate the limitations of shortest path
methods, this class of methods cannot be used for exploratory studies, given their
“Regions Of Interest (ROI)-based” nature. In section 3 a method overcoming these
restrictions is introduced, exploiting both the flexibility and the strengths of global
reconstruction approaches. Global generative methods usually requires delicate and
fine-tuning of many parameters representing one of their main limitations. Taking
inspiration from the work of Lemkaddem et al. (2014), we exploited a convenient
streamline parameterization (described in 3.1.2), drastically reducing the number of
variables required and at the same time (intrinsically) preserving some of the real-
world properties of the white matter structure. The shaping is performed using a
Metropolis Hastings MCMC approach (Chib et Greenberg, 1995; Neal et al., 2011) to
randomly search the parameters space. The proposed modification is then accepted
or rejected based on an energy minimization function checking the difference between
the signal observed and the one predicted from the new model. The goal of this
project is to prove that the dynamic adaptation of the spatial configuration of the
streamlines during the filtering allows overcoming the limitations due to a static input
and further improves the reconstructions.

Next step was the implementation of a global reconstruction algorithm, keeping
the “hybrid” nature of the previous one (Battocchio et al., 2019), but tackling trac-
tography reconstruction from a different perspective: the idea was to move away from
streamline-based tracking to directly reconstruct bundles of them, hence introducing
the term bundle-o-graphy. Other bundle-based studies and has proven to improve
accuracy representations of specific neural pathways (Rheault et al., 2019; Schilling
et al., 2020) thanks to the use of prior knowledge in the form of anatomical con-
straints. Tractography, implemented as a bundle-segmentation technique, however,
can’t be used for whole WM structure reconstructions as well for exploratory studies.
The goal of this project was to introduce a method to directly model WM bundles,
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i.e. disentangling tractography reconstructions from streamline representation with-
out losing the global perspective.

As conclusion of the methodology part, a MCMC Bayesian approach is intro-
duced to improve estimation of parameters relating microstructural features, such
as diffusivities and tissue compartment fractions. The vast majority of fitting tech-
niques assume that voxels are independent; in other words, the model is separately
fitted to the signal in each voxel, usually with nonlinear least squares estimation. An
alternative approach is to use a MCMC algorithm to estimate parameter posterior
distributions in each voxel (Harms et Roebroeck, 2018). Orton et al. (2014) intro-
duced a hierarchical Bayesian model fitting approach for the intravoxel incoherent
motion (IVIM) (Le Bihan et al., 1988) model. Their model breaks the assumption of
independent voxels by introducing a Gaussian prior (estimated from the data) over
the microstructural model parameters across a ROI.

In section 5 we generalized the Bayesian approach to be applied to any microstruc-
tural model. We tested how the data-driven Bayesian hierarchical modelling is capa-
ble of properly estimating microstrucural properties across distinct neurological tissue
while reducing noise effects characterizing voxel-by-voxel fitting methods.

The second part of the thesis is characterized by tractography applications to study
brain structural connectivity in both healthy and disease. This gives the opportunity
to face tractography limitations (presented in section 1.4) affecting clinical studies
performed with standard analysis pipeline and how these can be mitigated.

Graph theory and network modelling have been applied to characterize structural
motor network topology in Multiple sclerosis (MS), demonstrating a reduced motor
network efficiency through the quantification of structural damage in WM bundles
connecting pairs of cortical and subcortical GM regions (Pardini et al., 2015). How-
ever, topology differences identified with standard tractography in MS seem to be
mainly driven by density, which, in turn, is strongly influenced by the presence of le-
sions, suggesting caution when interpreting between group differences in connectome
properties.

In section 6 we applied COMMIT (Daducci et al., 2013, 2015) to move from
a qualitative towards a more “quantitative” appraisal of the brain structural con-
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nectome. The application of COMMIT allows the tracking of fibres within WM
lesions, removing the ones deemed implausible according to the chosen microstruc-
tural property only after reconstruction. The aim of this project was to investigate
differences in density and network topology in the COMMIT-weighted connectome
between patients and HC.

Moving from network to tract specific analysis, in section 7 the effects of MS
disruption affecting the Corpus callosum (CC) tract are investigated. As multitude
of studies have clarified over the last decade, damage to specific white matter WM
tracts contributes to different aspects of clinical disability in MS (Barone et al., 2018;
Bester et al., 2013; Bodini et al., 2013; Margoni et al., 2019; Palotai et al., 2020;
Wahl et al., 2011). Amongst WM tracts, the CC is one of the preferential sites of
clinically eloquent damage (Barone et al., 2018; Bodini et al., 2013; Granberg et al.,
2015), since it is the target of both direct damage from focal lesions/diffuse neurode-
generative processes and indirect damage deriving from Wallerian degeneration of
axons transected by hemispheric lesions (Garg et al., 2015). In all previous studies
interhemispheric disconnection has been inferred as a consequence of callosal atro-
phy (indirect quantification of fibre loss expressed as area, volume or thickness) or
callosal microstructural damage (expressed as mean or voxel-wise diffusion metrics).
Whilst both these factors probably influence the structural connectivity between the
two hemispheres, neither of them provides a direct quantification of such connection.

In this section we investigated how streamline density represents a measure of the
interhemispheric connection that accounts not only for the effects of microstructural
and macrostructural damage on fibre reconstruction, but also for the anatomical
variability in CC volume, which is particularly relevant when evaluating MS patients
in advanced disease stages.

Finally, in section 8 the effects of a rare disease called Fabry are investigated. The
pathology is characterized by the inability to metabolize specific glycolipids which,
in turn, accumulate in different tissues, including heart, kidney and central nervous
system (CNS), leading to the development of clinical symptoms (Germain, 2010). Al-
though widespread microstructural alterations of the white matter (WM) are known
to occur in Fabry Disease (FD) patients, as demonstrated by different DTI stud-
ies (Albrecht et al., 2007; Cocozza et al., 2018b), to date no information about the



Introduction 11

integrity of the cortico-basal ganglia motor loop fibers are available.
The goal of this study is to evaluate the microstructural integrity of the main

afferences and efferences of the motor cortices to the basal ganglia motor loop in FD
patients and to investigate the possible presence of structural connectivity changes in
these connections.
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Chapter 1

Context and Background

1.1 The Human Brain

Considered the central unit of the nervous system, the brain is the most complex
and unknown organ of the human body (Hofman, 2014). It’s responsibilities comprise
controlling and directing the actions and functions of the body as response to external
stimuli which also represent a driving force behind its evolution (Magphail et Bolhuis,
2001; Roth et Dicke, 2012). This central unit, along with the spinal cord extending
within the neural arches of the vertebral column, form the central nervous system
CNS.

The brain can be broadly divided into three main structures: brainstem, cere-
bellum and cerebrum. The first connect the lower part of the brain with the spinal
cord and regulates different autonomous body functions as heart rate, breathing and
swallowing. The second is a structure placed at the bottom of the cerebrum, behind
the brainstem and making up 10% of the brain volume. While, historically, it has
been considered the region responsible of motion-related functions it’s tasks involves
the regulation and coordination of the signals generated in the cerebrum. The latter
represents the largest component of the brain, consists of two hemispheres, each di-
vided into five lobes: frontal, parietal, temporal, occipital, and insular (Kubik et al.,
1990), showed in Figure 1.1.

The brain neural tissue is primarily constituted of neurons and neural stem cells
along with glial cells and blood vessels providing physical and metabolic support. The
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Figure 1.1 – The cortex of the brain is folded into gyri and sulci that are used as
references for the analysis of the structure of the brain. Each hemisphere can be

divided into five lobes: frontal, parietal, temporal, occipital and insular (Sobotta et
Johannes, 1908).

neural cell bodies, or soma, together with dendrites and the nerve synapses constitute
the GM that can be found in the outer layer of the brain, the cerebral cortex, and in
the inner part, called nucleus or subcortical regions. The importance of uncovering
the network structure underlying the information exchange has been of interest from
both developmental and evolutionary perspectives. In the last century particular
emphasis has been devoted to the investigation of the cerebral cortex, being among
the most distinctive morphological features of mammalian brains (Northcutt et Kaas,
1995). This is folded into sulci and gyri increasing the surface area and the causes
behind the gyrification process are still debated. Recently Van Essen et al. (2018)
summarised the four key mechanisms presented in literature:

1. mechanical tension
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2. differential regional proliferation
3. mechanical buckling
4. differential expansion and/or elasticity
The first mechanisms suggests that axons physically apply a certain tension caus-

ing strongly connected regions to be closer. The second relies on the fact that different
regions have different neurons’ density:higher concentration produces bulges that then
becomes gyri, whereas reduced proliferation leads to a sulcus or no folding. The third
theory has received considerable attention and it’s based on the expansion of an initial
unfolded sheet over an underlying domain expanding at a slower rate (Tallinen et al.,
2016). Lastly, the fourth mechanism promotes the idea that the folding happens by
preferential expansion of superficial versus deep layers in regions that become gyri in
the first case and sulci in the second.

GM can be divided into regions based on their cytoarchitecture or how the cells
are functionally organized. The most widely used is the Brodmann areas classification
which includes 51 areas (Garey, 1999) broadly divided into three macro-areas based on
their functions: primary sensory areas, primary motor cortex and association areas.
Together they are responsible of receiving and processing the visual, somatosensory,
auditory, gustatory, and olfactory information, enabling the control of the movement,
memory, and emotions (Mercadante et Tadi, 2020).

The information processed in the GM travels from one brain region to the other
as electric impulses, i.e. action potentials, along nerve cell projections, called axons.
Thanks to the electrically insulating myelin sheaths (formed by glial cells) encasing
each neuron, these signals are transmitted more rapidly to other neurons (Figure 1.3.
Axons are organized into bundles and a set of bundles connecting two regions is called
tract. All together they constitute the WM and represent the subways of information
transfer in the brain (see Figure1.2).

The relationship between structure organization of the brain and function has
been deeply investigate on humans and animals based on the assumption that the
anatomical architecture determines the network dynamics (Hagmann et al., 2008;
Honey et al., 2007, 2009; Turk et al., 2016). In recent years this has been extended
by studying how neurodegenerative conditions such as Alzheimer’s and Parkinson’s
diseases (Manza et al., 2016; Son et al., 2017) and multiple sclerosis (Dobryakova
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Figure 1.2 – Coronal view of a brain showing a T1 structural image (A), white
matter (B), cortical grey matter (C) and subcortical grey matter (D).

et al., 2017; Petracca et al., 2020; Schiavi et al., 2020b) affect mobility, coordination,
strength, sensation, and cognition.

Historically, the only way to access the white matter architecture was by dissec-
tion, developed by Arcangelo Piccolhomini in the mid of 16th century, who introduced
the terms “cerebrum” for the cerebral cortex and “medulla” for the white matter (Fig-
ure1.4). A century later, Nicolaus Steno introduced the idea of following “the nerve
threads through the substance of the brain to find out where they go and where they
end” as a way to study the WM structure (Clarke et O’Malley, 1996).

Since then dissection methodologies have evolved (Cushing, 1909; Dejerine, 1895;
Gray, 1918; Ludwig et Klingler, 1956) but the idea of depicting the complex organi-
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Figure 1.3 – The projections of the three-dimensional (3D) neuron image from
confocal stacks of tracing images. Modified from (Al-Kofahi et al., 2002).

zation of WM pathways remains unfeasible. As emphasized by Poliakov et al. (2005),
the nature of the body is 3D, so we need 3D imaging techniques to grasp its complexity
which cannot be done via dissection since it can only follow planar trajectories.

In this context the ability to map WM pathways has witnessed a notable improve-
ment thanks to the introduction of local fiber tracing methods. These techniques are
based on the local injection and the subsequent observation of their propagation (of
specific chemicals used as markers) (Selden et al., 1998; Ugolini, 2010). However, the
huge amount of labor required, along with the limited population of neurons that can
be concurrently studied, strongly restricts the employment of such technique.

Over the years, the neuroimaging field has adapted toward the necessity to acquire
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Figure 1.4 – Johann Christian Reil’s depiction of the human brain dissection viewed
from below (Schmahmann et Pandya, 2007).

and process data rapidly and non-invasively, for clinical purposes (e.g. diagnoses).
This gave rise to many different imaging techniques, among which diffusion-weighted
magnetic resonance imaging (DW-MRI) (Behrens et al., 2014; Bihan et al., 1986;
Jones, 2010; Le Bihan et Breton, 1985) has triggered tremendous hopes and expecta-
tions, being one of the few tools capable of mapping the tissue fiber architecture in
vivo. While other methods, such as axonal tracing techniques, are capable to retrieve
axonal trajectories with high accuracy, these are more invasive and the application is
usually limited to restricted regions.
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1.2 Diffusion-weighted MRI

The first characterization of molecular diffusion, a fundamental physical process
describing molecules motion in liquid and gas, was made by Brown in 1827 observing
pollen grains suspended in water while investigating a fertilization process. In these
states particles collide causing random alterations of their motion direction and the
temperature is a direct measure of the collisions rate. On average, as the molecules
move and bump into each other, they tend to move from areas with higher concen-
tration to areas with lower concentration following a gradient as described by Fick’s
first law (Fick, 1855):

J = −DdC
dx

, (1.1)

where J is the net flux of molecules in a unit of time, C is the local concentration of
molecules, measured in mol/m3, and D is the diffusion coefficient, in m2s−1, which
varies based on the medium chemical and physical properties. Fick’s second law
models how the concentration changes with respect to time:

dC

dt
= D

d2C

dx2 . (1.2)

In particular, for the case of diffusion in two or more dimensions, the ∇ is intro-
duced to generalize the first derivative. Eq. 1.2 becomes:

dC

dt
= D∇2C, (1.3)

which is known as diffusion equation and can be used to model heat propagation
on conductive surfaces as previously introduced by Fourier et al. (1822). Einstein
(1905) related the Brownian motion with Fick’s formulation showing how particles
suspended in a medium experience a displacement in any direction following a prob-
ability distribution p(x, t) with variance:

σ2 = 2Dt. (1.4)

In the case of free diffusivity, i.e., the molecules are free to move with no con-
straints, the probability to observe a particle at distance r at time t is described by
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the Gaussian distribution function:

p(r, t) = 1√
4πtD

− r2
4tD
. (1.5)

A well know example of free diffusion is represented by the ink drop spreading
in water as time passes, shown in Figure 1.5. At the beginning of the experiment,
the particles move away from the center after a certain time, with the same prob-
ability along each direction of the 3D space. When the particles are free to move
in all the directions, as for the experiment in Figure 1.5, the diffusion is defined as
isotropic, anisotropic if the motion is somehow restricted in one or more direction,
e.g. in human brain tissues, where the cell membranes hinder or restrict the motion
of molecules (Basser et al., 1994; Le Bihan et al., 1993). A direct measure of this
anisotropy is the Apparent diffusion coefficient (ADC), which measures the difference
between the observed diffusion coefficient of the constrained molecules and the one
that would be measured in the same media without obstacles.

Figure 1.5 – Diffusion of a ink drop in water at different time points (Lee et al.,
2004)
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The observation that different tissues’ microstructure is characterized by different
diffusivity properties led to the rise of DWI (Le Bihan et Breton, 1985).

1.2.1 Signal acquisition

The idea of measuring ADC to characterize tissue structures became possible
thanks to the introduction of Nuclear Magnetic Resonance (NMR) and the concept
of spin dephasing. Atom nuclei with odd atomic number are characterized by non-
zero spin and charge. If an external magnetic field is applied, an energy transfer
is possible between the base energy to a higher energy level. The energy transfer
takes place at a wavelength that corresponds to radio frequencies and when the spin
returns to its base level, energy is emitted at the same frequency, a process defined
as resonance (Roberts, 1959). The resonance frequency depends on the magnetic
field strength. In particular, what are measured are the relaxation times and, more
precisely, the source of contrast is the difference in relaxation constants that depends
on the tissue chemical and physical properties (Berger, 2002). The spin-lattice re-
laxation time T1, describes the time it takes for the longitudinal magnetization Mz,t

to return to the original value, while the spin-spin relaxation time T2 measures how
the transverse magnetization Mx,y,t goes to zero. As previously mentioned, different
acquisition protocols are able to highlight different tissue properties by changing the
image contrast, allowing to evaluate both healthy and pathological conditions (Bitar
et al., 2006).

The idea to generating images with NMR was firstly introduced by Lauterbur
(1973) who observed that spatial variations of the main magnetic field, defined as
B0, can be introduced through the use of magnetic field gradients. This makes the
spins precess at different frequencies, causing an inhomogeneous dephasing which, in
turns, leads to signal artifacts such as magnetic field gradient and a distribution of
chemical shifts. The dephasing can be reversed by applying a radio-frequency (RF)
pulse of 180◦ that inverts the magnetic spin vectors, a process called spin echo (Hahn,
1950). The echo time (TE) is the time between the excitation pulse and the peak of
the signal.

By applying these gradients in all three dimensions we are able to generate im-
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Figure 1.6 – Stejskal-Tanner sequence: the spin echo is formed by applying a
90◦ RF pulse followed by a 180◦ RF pulse. Diffusion weighting is obtained by
applying a pair of identical unipolar gradient pulses around the slice selective

180◦ RF pulse (Freidlin et al., 2012).

ages. In particular, these gradients are slice-selection, frequency-encoding, and phase-
encoding respectively. Commonly, the first is applied on the same direction of B0

field, while the other two gradients are used to generate the signal in the Fourier
space, creating the k-space matrix, where the frequency-encoding direction is along
one axis, and the phase-encoding direction along the other axis. The Magnetic Reso-
nance (MR) image of a slice is then obtained by performing a two-dimensional (2D)
Fourier transform on the k-space matrix. This process is done for each slice which
are finally stacked to obtain the 3D volume.

The exploitation of spins phasing-dephasing and related signal attenuation to
estimate ADC of different tissues was introduced by Stejskal et Tanner (1965). In their
pioneer paper they introduced the pulsed-gradient spin echo (PGSE) MR sequence
(shown in Figure 1.6), which still remains a standard scheme to sensitize the NMR
signal to diffusion.

The formulation of the signal attenuation related to particle’s movement along
the direction G is expressed by Stejskal-Tanner equation:

S = S0 exp(−bD), (1.6)

where S0 is the standard T2 signal intensity acquired without the application of
gradient G and b is the diffusion weighting, also called b-value (Bihan et al., 1986).
The b-value, measured in smm−2, depends only on the PGSE sequence parameters
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and is computed as follows:

b = γ2G2δ2
(

∆− δ

3

)
, (1.7)

where γ is gyromagnetic ratio of the water proton, δ is the duration of the gradient
pulse separated by time interval ∆. Different parameters configurations will give us
different tissue information and are characterized by distinct levels of signal noise and
artifacts.

1.2.2 Signal reconstruction

Diffusion imaging ( DI) was first introduced by the pioneer works of Taylor et
Bushell (1985) and Le Bihan et Breton (1985) applied to NMR. Starting from a
set of diffusion-weighted imaging (DWI), DI estimates the effective scalar diffusivity
of water molecules (Le Bihan, 1991), providing a measurement of biological tissue
properties.

Diffusion tensor imaging

Based on the work of Douek et al. (1991), Basser et al. (1994) proposed to model
the molecular diffusion as a second order positive-defined tensor D:

D =


Dxx Dxy Dxz

· Dyy Dyx

· · Dzz

 (1.8)

This diffusion tensor (DT) can be visualized as a 3D ellipsoid whose geometric
and diffusion properties are fully described by its three eigenvalues and corresponding
eigenvectors. The eigenvector corresponding to the largest eigenvalue represents the
principal direction of the DT while the other two span the orthogonal planes as shown
in Figure 1.7.
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Figure 1.7 – Graphical representation of diffusion tensor (Basser, 1995).

The probability p to find the a molecule at position r after time t is given by:

p(r, t) = 1√
(4πt)3|D|

exp
(
−r

TD−1r
4t

)
, (1.9)

where |D| is the determinant of D. As can be seen, the Eq. 1.9, defined Gaussian
propagator, approximates the water displacement as a 3-variate normal distribution
with zero mean. The diffusion signal equation S(q, t) is defined as follows:

S(q, t) = S0 exp
(
−TE
T2

)
exp(−qTDq), (1.10)

where S0 is the image without diffusion weighting. It follows that if we want to
estimate the six unknown coefficients of 1.8, DTI needs at least six DW images and
one S0 to solve 1.9. In Basser et al. (1994) 1.10 is solved using least-squares (LS)
or non-negative least-squares (NNLS) approaches.

Different measures can be extracted from DT, such as its trace, ADC, Fractional
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Anisotropy (FA), Mean diffusivity (MD), axial diffusivity (AD), radial diffusivity
(RD) characterizing different diffusion properties (Pierpaoli et Basser, 1996). For
instance, changes in the AD, modeling the diffusivity parallel to the fiber population,
may reflect myelin loss or reduced axonal packing density. Another example is the case
of increased MD and RD (Basser, 1995; Basser et al., 2000), the first measuring the
overall mean-squared displacement of the water molecules while the second measuring
the average diffusivity perpendicular to the axonal fibers, which can be symptom of
axonal and myelin degradation (Song et al., 2003, 2002, 2005). One of the most
famous DTI measure is FA, which is the fraction on diffusion that is directionally
dependent (anisotropic). It is a normalized measure between 0 and 1 and is formulated
as follows:

FA =
√

3
2

√√√√(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3

, (1.11)

where λ1, λ2, λ3 are the three eigenvalues of 1.8. Changes in its values might reflect
changes in axonal packing density or enlarged axonal diameter (Tuch et al., 2005),
but it’s important to notice that FA can be ambiguous, meaning that different tensor
configurations can produce the same FA values. Features of microstructure, such as
cell size, density, permeability and orientation distribution, all affect DTI indices,
and changes in the indices are impossible to associate with more specific changes in
microstructural features (Johansen-Berg et Behrens, 2013).

The possibility to non-invasively extract fiber orientations from living biological
tissue was revolutionary and DTI quickly became a central tool in the modern neu-
roimaging field and successfully applied in clinical and neurological studies (Catani
et al., 2002; Horsfield et Jones, 2002; Johansen-Berg et Rushworth, 2009). The possi-
bility to reconstruct the global fiber trajectories based on iteratively taking discrete
steps in the local principal direction of DT is called tractography (presented in sec-
tion 1.3) and it notably contributed to the success of DTI (Basser et al., 2000; Conturo
et al., 1999; Mori et al., 1999) but also highlighted its many limitations.

The main disadvantages can be summarised in two main points: (i) inability to
model different fiber populations crossing within the same voxel, characterizing up to
90% of the voxels (Jeurissen et al., 2012), and (ii) the inability to discriminate between
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fiber coherence and WM microstructural properties (Dell’Acqua et Tournier, 2019;
Jones et al., 2013).

Different approaches have been introduced to meet the needs of new reconstruc-
tion techniques and higher order models to solve the limitations of DTI. Among
them, High Angular Resolution Diffusion Imaging (HARDI) is able to capture more
information to estimate the parameters of these advanced models.

As consequence, it requires more measures to recover non-Gaussian diffusion char-
acterizing multiple crossing fibers configurations (Tuch, 1999; Tuch et al., 2002). HARDI
computes the average 3D diffusion propagator (Eq. 1.9), that, under narrow-pulse ap-
proximation becomes:

E(q, t) =
∫

R3
p(r, t) exp(−2πiqT r)dr, (1.12)

where E(q, t) is the signal attenuation and q is the so-called wave vector of displace-
ment, introduced by Callaghan et al. (1988) and later in Callaghan (1993). The q
vector relates width, magnitude and orientation of the diffusion gradient pulse G of
the PGSE sequence as follows:

q = γ

2πδG. (1.13)

The advantage of q-space representation is the possibility to separate diffusion
gradient characteristics and diffusion time, allowing to study the evolution of the DW
signal according either to the pulse characteristics itself or to the diffusion time.

Q-space vs mixture models

Models based on q-space, often defined “model free”, estimate the so-called diffusion
orientation density function (dODF), defined as the radial integral of the diffusion
propagator in spherical coordinates (θ, φ):

Ψ(θ, φ) =
∫ ∞

0
p(r, θ, φ)r2dr. (1.14)

The first technique based on q-space, called diffusion spectrum imaging (DSI),
was introduced by Wedeen et al. (2005) and was based on the full sampling of the
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diffusion encoding gradient vector space. In particular, following 1.12, the sampling
involves acquiring data on a regular Cartesian grid which, in turn requires very strong
imaging gradients and long acquisition time to measure hundreds of diffusion direc-
tions. However a good approximation is achieved by acquiring over a dense set of
directions at a constant q-value.

A more time-efficient approach is represented by Q-ball imaging (QBI), based
on HARDI acquisition protocol. Thanks to the use of Funk-Radon transform, QBI
estimates the dODF avoiding the need to the full Fourier transform. Different strate-
gies have been proposed to speed up and improve the reconstruction, as in Descoteaux
et al. (2007) where the authors use high order spherical harmonics series coupled with
a Laplace–Beltrami regularization method to simplify the Funk–Radon transform.

Spherical deconvolution (SD) has recently emerged as one of the main approaches
to model multiple fibre orientations proving to be particularly suited for tractography
applications (Dell’Acqua et Tournier, 2019).

Figure 1.8 shows a comparison between signal reconstruction based on DT and SD
models. Starting from the observations that (i) DWI signal is similar across different
fiber populations and (ii) it will always be low along the main axis of the fibres,
we can represent the signal in a given voxel as a linear sum of the signals for all

Figure 1.8 – Comparison between local signal reconstruction based on DT model
describing voxel the average diffusion profile (left) and a multi-fiber approach based

on fODF computed using SD (Dell’Acqua et Tournier, 2019)
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the fiber populations present in that voxel. When the operation involves the use
of fibre orientation density function (fODF) to represent fiber population orientations,
it represents a convolution over the sphere of an fODF with a chosen fibre response
function. Given an HARDI signal S, a response function R and the fODF in a voxel,
the problem is defined as a multiplication in the frequency space S = R · F .

The inverse problem, F = (RTR)−1S is what SD aims to solve. The direct
solution (e.g. using least-squares formulation) can be unstable if ill conditioned,
generating negative values (the spherical harmonics contain negative values) and false
spurious peaks (Tournier et al., 2007a, 2004), but become are stable and unique if
the deconvolution algorithms are well regularised. In response to that, Constrained
spherical deconvolution (CSD) applies a non-negativity constraint such that, for a
given voxel, the coefficients f of the fODF are computed based on least-squares fit
of the predicted signal to the data m, while minimizing the sum of squares of the
negative amplitudes in the fODF:

f̂ = min
f
‖ Hf −m ‖2 +λ ‖ Af ‖2

_ . (1.15)

The DWI signal reconstruction is performed via the matrix H = MR, where M
maps Spherical harmonics (SH) coefficients to amplitudes along the DW directions
sampled, and R is a diagonal matrix of response function coefficients performing
the SD in the spherical harmonic domain. The SH coefficients are mapped to a dense
set of uniformly distributed directions and ‖ · ‖2

_ represent the squared norm of the
negative components.

One of the main limitations of CSD is that different fiber configurations lead to
the same diffusion profile, as shown by Savadjiev et al. (2008).

As opposed to Q-space techniques, mixture models make physical assumptions
about the microstructure of white matter tissue, assuming a particular model for
the signal that would be measured for a single fibre population. The first approach,
proposed by Inglis et al. (2001) and Tuch et al. (2002), was an extension of the DTI
to model HARDI signal as a mixture of n Gaussian tensors:

p(r, t) =
n∑
i=1

pi√
(4πt)3|Di|

exp
(
−r

TD−1
i r

4t

)
. (1.16)
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One of the main limitations of this approach is the number of compartments
that must be manually defined and that can lead to an over-simplification of the
underlying WM structure (Alexander, 2005).

Similarly to the previuos approach, ball & stick mixture model (Behrens et al.,
2007, 2003) assumes two types of diffusion: anisotropic, characterizing molecules
restricted within or near fiber structures, and isotropic, characterizing particles not
affected by fiber structure barriers.

The restricted diffusion is modeled using an anisotropic Gaussian distribution,
with the possibility to extend it to multiple fiber orientations, while a isotropic Gaus-
sian distribution describes the free unrestricted water diffusion. The signal S in the
direction i becomes:

Si = S0

1−
N∑
j=1

fi

 exp(−biD) +
N∑
j=1

fj exp(−bidGT
i RjAR

T
j Gi)

 , (1.17)

where S0 is the signal without diffusion weighting, D is the diffusion coefficient, bi
and Gi are respectively the b-value and the gradient applied in direction i, fj and
RjAR

T
j correspond to the signal fraction and the anisotropic diffusion tensor of the

jth fiber orientation and N is the total number of fibers.
The signal is computed using a robust Bayesian modeling estimation approach

called automatic relevance determination, and has found successful application in
clinics (Behrens et al., 2014).

This is the case of composite hindered and restricted models of diffusion (CHARMED)
(Assaf et Basser, 2005; Assaf et al., 2004), a more general multi-compartment model
assuming cylinders to have gamma-distributed radii and crossing fiber populations
with different orientations. The cylinder radius, along with the parallel and per-
pendicular diffusivities, determines the intra-axonal signal, while the extra-axonal
diffusion is modelled with a general diffusion tensor unconstrained by any tortuosity
model.

Based on CHARMED, AxCaliber (Assaf et al., 2008; Barazany et al., 2009) esti-
mates the axon diameter distribution assuming that white matter can be represented
by closely packed impermeable cylinders. The method was later improved by Alexan-
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der et al. (2010) with their orientation invariant mapping of axon diameter, which led
to the the minimal model of white matter diffusion (MMWMD) (Dyrby et al., 2013).

The neurite orientation dispersion and density imaging (NODDI) model simplifies
MMWMD by approximating cylinders with sticks and using a Watson distribution
to describe the orientation dispersion. The model assumes three compartments to
characterize tissue with different microstructural environments: intra-cellular, extra-
cellular and isotropic compartments. Following Behrens et al. (2003), the normalized
signal of the intra-cellular compartment (i.e. the stick) is given by:

Sic =
∫

S2
f(n)e−bd‖(G·n)2

dn, (1.18)

where G and b are the measurement gradient and b-value and f(n) represents the
Watson distribution which gives the probability to find a stick oriented along direction
n. Finally, e−bd‖(G·n)2 describes the signal attenuation related to a n-oriented stick
with parallel diffusivity d‖. The extra-cellular compartment, modeling the hindered
water diffusion in the space around neurites is represented by the orientation-dispersed
cylinders signal (Zhang et al., 2011):

Sec = e−bG
T (
∫

S2 f(n)D(n)dn)G, (1.19)

where D(n) is a cylindrically symmetric tensor with principal direction of diffusion
n characterized by parallel and perpendicular diffusivity d‖ and d⊥ respectively. Fi-
nally, an isotropic Gaussian diffusion model describes the free water compartment
characterizing cerebrospinal fluid (CSF). The overall normalized signal S is given by:

S = (1− viso)(vicSic + (1− vic)Sec) + visoSiso, (1.20)

where Sic, Secand Siso are the signal factions of the intra, extra and isotropic compart-
ments respectively and vic is the volume fraction of the intra-cellular compartment.

Models of complex orientation distribution led to the emergence of unified models
that aim to represent both WM and GM. The first attempt was made by Jespersen
et al. (2007) who exploit this opportunity with an analytical two-compartment model
of neurites (dendrites and axons), while (Palombo et al., 2020) recently proposed a
new model of brain microstructure where soma of any brain cell type is explicitly
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included (Ianuş et al., 2022).
Another notable approach based on mixture models is spherical mean technique

(SMT) (Kaden et al., 2016b). The purpose of this technique is to map microscopic
features unconfounded by the effects of fibre crossings and orientation dispersion,
which are common in the brain (Jeurissen et al., 2012). Based on their previous work
(Kaden et al. (2016a)), the method uses microscopic diffusion anisotropy mapping
given the assumption that for any fixed gradient magnitude and timing, the spherical
mean of the diffusion signal over the gradient directions does not depend on the
fibers orientation distribution. In particular, the mean diffusion signal is only a
function of the voxel-averaged microscopic diffusion process. SMT assumes that the
microscopic tissue geometry is rotationally symmetric around axis ω ∈ S2, where
S2 = {ω ∈ R3 :‖ ω ‖= 1} is the two-dimensional unit sphere. Given a diffusion
weighting factor b ≥ 0, normalised gradient direction g ∈ S2 and fixed pulse sequence,
the diffusion signal, expressed as

hb(g, ω) = hb(〈g, ω〉) (1.21)

depends only on the spherical distance 〈g, ω〉 ∈ [−1, 1] between any two points
g, ω ∈ S2. Following 1.21 the mean diffusivity becomes:

eb =
∫ π

2

0
hb(cos(θ))sin(θ)dθ, (1.22)

where θ encodes the angle between the gradient direction and the fiber orientation.
The two compartment model proposed in Kaden et al. (2016a) is composed by an
intra-neurite compartment that represents the dendrites and axons with cylindrical
geometries and the extra-neurite compartment describing neurons, glial cells, astro-
cytes, and extra-cellular space. The diffusion signal is represented by:

hb(g, ω) = vinth
int
b (g, ω) + (1− vint)hext

b (g, ω), (1.23)

where hint
b and hext

b are the signal from the intra and extra-neurite compartment and
vint ∈ [−1, 1] is the intra-neurite volume fraction.
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1.3 Tractography

Thanks to the advanced local reconstruction methods, explained in the previ-
ous section, we are now able to discriminate between different fiber populations
within a voxel. Based on DWI data, tractography, also known as fibre tracking,
is the process of integrating these voxelwise information to extract the structure and
organization of WM (Basser et al., 2000; Mori et al., 1999). A pathway connect-
ing two regions is represented by a streamline, i.e., an ordered sequence of points
s = {x1, x2, ..., xn}, xi ∈ R3, while the set of streamlines is called tractogram. It’s
worth noticing that, given the low resolution of DWI data, a single streamline ends
up representing a group of coherently aligned axons (Jones et al., 2013; Schiavi et al.,
2020a). Tractography has enabled mapping of the brain’s structural connectivity
in both healthy and diseased brains, including many neurological applications such
as neurosurgical planning, aging and development (Ciccarelli et al., 2008; Essayed
et al., 2017). Moreover, inferring structural connectivity permits, for instance, to
analytically represent the neural network as a graph where the different regions are
represented by nodes and the axons connecting them by edges (see Figure 1.9). The
application of graph theory has signed an important step in the study of the innate
complexity of white matter structure (Iturria-Medina et al., 2007).

Although tracking methods share the same aim, strategies for achieving it vary
greatly from algorithm to algorithm. Tractography methods can be classified into
categories depending on how the fiber reconstruction is performed but for the sake of
simplicity we usually divide them into “local”, “semi-global” and “global”.

1.3.1 Local methods

The first class encloses the line propagation methods, i.e., algorithms which re-
trieve the axonal pathways in a step-by-step procedure (see Figure 1.10). First ap-
proaches assumed that each imaging voxel is characterized by a single predominant
fiber orientation, which is the one corresponding to the gradient of maximum diffu-
sivity (Basser et al., 2000; Mori et al., 1999).
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Figure 1.9 – Neural networks can be represented as a graphs to study white matter
connectivity(Pereira et al., 2017).

Figure 1.10 – DT tracking following step-by-step the direction of maximum
diffusivity. (Jeurissen et al., 2019)

The set of local fiber orientations can be mathematically represented as a 3D vector
field and the global fiber trajectories as its streamlines. The equation describing the
curve derives from the fact that the tangent to the streamline must be parallel with
the vector field, which formally becomes r(s) = (x(s), y(s), z(s)) parameterized by its
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arc length s. The equation that must be verified for each voxel, in order to be aligned
with the underlying orientation, is therefore:

dr(s)
ds

= v[r(s)], (1.24)

where r(s) is the relative [x, y, z] location along the streamline at distance s and v
is the vector field first eigenvector of the diffusion tensor. It’s worth noticing that
Eq. 1.24 is defined in continuous space, whilst the orientations are sampled over
the voxel grid. This implies the need of interpolation to “guess” the direction in
between voxel boundaries and Lazar et Alexander (2003) showed that, depending on
the approach, this can lead to propagation error.

Following Eq. 1.24, streamline reconstruction corresponds to compute the solu-
tions to the first-order differential equation and the most straightforward approach is
by performing numerical integration:

r(s) =
∫
s0
r[(s)]ds, (1.25)

where r(s0) is the starting point, also called seed point. The numerical integration
can be performed using Euler integration, proposed by Conturo et al. (1999), using a
step-by-step procedure, moving each time by a fixed (and usually short) distance ∆,
evaluating the following position ri+1 = ri + ∆v(ri).

Local reconstruction approaches, even if are still used as a valuable tool in medical
imaging applications (Catani et al., 2002; Essayed et al., 2017; Pujol et al., 2015),
they presents several limitations. From the mathematical point of view the local
integration assumes constant orientation v within the step-size ∆, which, if too large,
leads to curvature overshoot (see Figure 1.11).
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Figure 1.11 – Curvature overshoot bias caused by a step-size too large to follow the
ground-truth curvature (Zhang et al., 2022).

Secondly, Euler integration is a first-order integration, meaning is susceptible
to local variation between two consecutive steps. The use of higher-order integra-
tion scheme, such as Runge-Kutta have proved to be more robust, as implemented
by Jeurissen et al. (2019). Another problem often underestimated is the seeding
strategy, i.e., where to start the tracking and when to stop. One of the most naive
approaches is to uniformly locate the seeding points in the WM and perform the
tracking in both the directions. While this ensure a good coverage, it doesn’t ensure
that both the extremities will end up in regions of GM, and, at the same time, it
causes larger bundles to be over represented because, by chance, a greater number
of seed points will fall inside their pathways. One way to mitigate this last aspect
is to perform the seeding at the boundaries between WM and GM. However, while
this strategy ensures that at least one of the two edges of the streamlines are within
regions of GM, because of the low spatial resolution of diffusion Magnetic Resonance
Imaging (dMRI) and partial volume effect (PVE) tracking techniques have trouble
penetrating into gyri and fully exploring the gyrus, as showed in Figure 1.12 (St-Onge
et al., 2015).
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Figure 1.12 – The gyral bias. Cortical coverage (blue := absence of streamlines) of
various tractography methods. From the work of Rheault et al. (2020)

With respect to the stopping criteria, the step-by-step orientation integration
described above has no mechanism for determining confidence in the next step as
the streamline progresses. Nevertheless, by construction the streamline accumulates
errors as it extends across regions of high uncertainty. The two main criteria to
stop the tracking process are based on heuristics and imply respectively the use of a
threshold on the FA within the voxel traversed and a maximum curvature threshold.
The first relies on the fact that regions of low FA tend to be associated with high
uncertainty therefore large potential error for the next streamline step. Instead, the
second is related to the anatomical plausibility of finding WM pathways with high
degree of curvature within the voxel.

The tracking method explained above is part of the so called local deterministic
approaches. This class of methods struggles to handle voxels where, for instance,
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there are crossing fibers. In this kind of scenario the main diffusivity direction is in
general tricky to define and the tracking tends to follow the easiest path available in
crossing regions, which represent the majority of WM voxels (Jeurissen et al., 2012).
Given the limitations, deterministic methods are prone to false negatives, i.e., they
fail to recover existing pathways, stopping the reconstruction before reaching the gray
matter, and they are often characterized by poor spatial coverage.

To deal with the inadequacy of tractography to explore the whole space of brain
connections, probabilistic alternatives were proposed. They use probability distribu-
tions estimated in each voxel to allow uncertainty in the propagation of the trajec-
tories. There are three main methods to compute voxel-wise uncertainty: bootstrap-
ping, bayesian methods and calibration methods. The first exploits multi-acquisition
dataset to produce bootstrap parameter estimates which serve to quantify the un-
certainty (Jones, 2003; Pajevic et Basser, 2003). In Bayesian methods, on the other
hand, the diffusion data are combined with a generative model to produce an esti-
mate of the posterior probability density function of the model parameters along with
the orientation of the fibers (Behrens et al., 2007, 2003). Finally, calibration meth-
ods estimate the noise variance from the data, which is added to the orientations to
take care of local inaccuracies and propagation error from the previous tracking steps.
Once we have local estimation of uncertainty we can think to compute the probability
of two regions being connected by solving the numerical integration along the path.
This has been shown to be analytically unfeasible (Behrens et al., 2003) and, instead,
a more intuitive step-by-step sampling procedure of the probability distributions has
proven to be rather effective (see Figure 1.13).
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Figure 1.13 – Comparison of sampling schemes on different local probability density
functions (Behrens et al., 2014).

Local probabilistic methods have demonstrated their ability to recover hard-to-
track connections and to cover more adequately the WM (see Figure 1.14 and Fig-
ure 1.13) (Côté et al., 2013). However, this improved capability of exploring brain
anatomy leads also to the reconstruction of implausible fascicles that do not anatom-
ically exist, i.e. false positives (Johansen-Berg et Behrens, 2013).
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Figure 1.14 – Comparison between the tractography reconstructions performed using
deterministic (left) and probabilistic method (right) of three major WM tracts.

1.3.2 Semi-global methods

A top-down strategy on fiber reconstruction can be found in the so-called “geodesic”
methods, a class of algorithms in between the local and global ones, where in par-
ticular the seek for white matter pathways is modeled as the purse of connections
between regions of the brain (Jbabdi et al., 2008; Parker et al., 2002). Usually,
geodesic methods rely on the shortest path approach to find the path of minimum
length, with respect to a certain metric, connecting the regions of interest. A unique
property of geodesic tracking is symmetry, i.e. the recovered pathways between two
regions are the same independently from the region where we start the tracking.

The basic idea for constructing a geodesic in a metric space is to build a distance
field from a seed region, the very same region one would use as a seed for streamline
tractography. This is done by solving the so-called Eikonal equation (Hamilton, 1828),
a partial differential equation (PDE) that describes the time of arrival at each point
of the space, as a function of the local speed. Formally, the geodesic is found by
minimizing the integral:
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J(γ) =
∫
F(s, γ, γ′)ds, (1.26)

where, based on the metric M, F(s, γ, γ′) =
√
γ′(s)TM(γ(s))γ′(s) represents an in-

finitesimal step along the pathway γ. Given Eq. 1.26 the arrival time u(x) becomes
the minimum value of the integral J(γ) which satisfies:

∆uTM−1∆u = 1,
γ′ ∝M−1∆u.

Following 1.26, we can deduce that the arrival time is directly proportional to the
speed and that this can vary depending on the local metric. This, in turn implies
that in a constant speed field, the PDE can be easily integrated, and the geodesics
are simply straight lines. Conversely, the geodesic follows bending pathways if it
encounters changes of speed, trying to reduce the arrival time. Different methods
have been proposed to compute the function u, like the Tsitsiklis’s (Tsitsiklis, 1995)
method and Sethian’s method (Sethian, 2001), both based on optimisation procedures
such as gradient descent.

Based on the same concept, graph-based tracking represents the orientation vector
field as a weighted graph where each node represent a voxel and the edges the cost of
transition from one voxel to its neighbors. Given this representation, a lower cost is
assigned to edges that are aligned with fiber trajectories. In this context streamlines
reconstruction is performed by following the path with highest coherence in the local
orientations and can be found using classic graph algorithms such as Dijkstra.

Both these semi-global approaches are robust and, on average, computationally
fast. The main limitation is how the exploration is designed, which is intrinsically
constrained. The need of “starting” and “ending” regions, for instance, precludes the
use of this strategy for exploratory studies considering that is not always an easy task
to provide a parcellation of cortical and subcortical sections. Moreover, as shown
in Figure 1.15 the recovered streamlines tend to share the same pathway, especially
in proximity of bending regions, with a consequently non-natural representation of
neuronal density (Bastiani et al., 2012).



1.3. Tractography 40

Figure 1.15 – Graph-based tracking in proximity of a bending region. In such
configurations minimal-path approaches tend to fail to properly recover streamlines
on the outer part of the curve because in most cases they tend to follow the shortest

path and share the same trajectories (bottleneck).

1.3.3 Global methods

This brings us to the last and most recent global streamline tracking algorithms,
which results outperform any other previous ones (Fillard et al., 2011). As we know,
tractography reconstruction is an ill-posed problem for two main reasons: first of all,
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slight changes in the data heavily affect the result of the tracking and, secondly, the
same tracking process cannot deal with error propagation of the local fibre orienta-
tions (Mangin et al., 2013). A way to deal with such class of problems and make
them numerically affordable is by making assumptions, which are then implemented
in the form of constraints. This process is defined as “regularisation” and global
tractography provides simple ways to ‘regularise’ the tractography reconstruction
problem Mangin et al. (2013). This class of methods can be furthermore divided into
generative and discriminative, depending on the reconstruction strategy adopted.

Global generative methods

The “global” perspective in streamline tracking has been introduced more than
two decades ago (Cointepas et al., 2002; Poupon et al., 2001, 1998) and has seen
a notable evolution in the last years. First approaches were based on the idea of
exploit regions within low ambiguous areas to help the reconstruction in more hard-
to-track regions. They relies on two main assumption: axons tend to be organized
into coherently aligned fascicles which follows smooth trajectories. In practice, the
algorithm recovers pieces of tracts and use their orientation as prior to track through
regions with higher ambiguity. The interactions between these segments are modeled
by a Markov Random Fields (MRF) which allows to evaluate the different configura-
tion among neighbour segments, looking for the one providing the best explanation
for the map of diffusion profiles, based on tensor. Finally, The optimization process
was based on curvature-based regularisation and signal explanation.

Following the same idea, Aganj et al. (2011) added the possibility to sample the
space looking for the trajectories that are more in agreement with the diffusion signal.
The method was based on curve parameterization and was more robust to local
inaccuracies but at the same time suffered the high dimensionality of the parameters
space that needs to be explored.

Another interesting approach was proposed by Jbabdi et al. (2007), which recalls
geodesic methods. Like this class of algorithms, it assumes connections between pair
of regions and infers the localization of the tracts and the local fibre Orientation
Distribution Function (ODF) at the same time using a Bayesian approach. Although
being elegant and computationally efficient with respect to other global approaches,
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this method could evaluate one connection at a time and suffered the initialization of
connection trajectories which remained an high-dimensional problem.

A notable step forward in terms of reconstruction quality has been made by the
introduction of the so-called energy-based tracking algorithms (Kreher et al., 2008;
Reisert et al., 2011). The general idea behind these methods is to perform tracking
and signal reconstruction at the same time while minimizing a cost function that is
often defined as “system energy”. Energy-based methods build the model based on
atomic entities (can be, for instance, small segments as in Kreher et al. (2008) and
Reisert et al. (2014), spins (Fillard et al., 2009), particles, etc.) which can interact
following well-defined behaviors designed to mimic real-world axons. Starting from
a random disposition of the segments (see Figure 1.16), covering the whole white
matter, the fibers are “assembled” following an energy gradient descent. Usually, this
is driven by MCMC simulations (van Lieshout, 2000) to sample from the space of
all the possible actions that can alter the organization of the current atoms. At the
beginning, the system is characterized by an high energy or “temperature” T which al-
lows to better explore the parameters space. As the process evolves, the temperature
decreases, constraining the exploration to promote convergence to the configuration
which minimized the total energy, an optimization schedule called simulated anneal-
ing (Perrin et al., 2005), borrowed from annealing in metallurgy which implies heating
and controlled cooling of materials to alter their physical properties. From the work
of Kreher et al. (2008), an example of energy function E, corresponding to a specific
segments configuration ω at system temperature T , can be represented as follows:

ET (ω) = exp
(
− 1
T
UI(ω)

)
exp

(
− 1
T
UD(ω,S)

)
. (1.27)
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Figure 1.16 – Fiber reconstruction steps in Gibbs global tracking algorithm (Kreher
et al., 2008).

Taking inspiration from statistical physics, energy functions like Eq. 1.27 are gen-
erally composed of two components. One is responsible to supervise the “quality”
of the model, represented here by UD, looking the configuration that better explain
the observed diffusion data S, and how the signal is predicted largely varies among
different algorithms. Starting from the simplest “signal fractions” which takes into
account only the number of fibers passing through a voxel (basically a measure of
density), the most recent techniques assume that the tissue is composed of several
different ”compartments”, e.g., axons, glial cells, and extra-axonal space, and that the
DWI signal measured in each voxel can be explained in terms of the unique diffusion
pattern of each of them, hence, taking into account of microstructure characteristics
(Panagiotaki et al., 2012). The second component UI , takes care to produce anatomi-
cally reasonable fibers and, depending on the method, this implies different heuristics.
Reisert et al. (2011) define an interaction potential such that two segments connect if
they are close enough and with similar orientations while Mangin et al. (2013) focus
on the angular changes between consecutive segments to promote smooth trajectories.

A key difference between these approaches and the previously described global
tractography methods is the bottom-up strategy of the optimization framework in
both streamline and signal reconstruction. By construction, energy-based methods
tend to recover streamlines at different steps of the optimization before merging in
single global connections. In fact, simple configurations are easier to optimize, which
implies that most of the computational time is spent disentangling ambiguous regions.
From the signal reconstruction point of view, previous methods allows to use any ODF
model, which is then used to build a pseudo-likelihood function. This is then applied
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to measure the coherence between the streamline segment and the observed data. In
this case, the local minima corresponds to the direction with highest probability in
the fibre ODF. In the work of Reisert and colleagues (Reisert et al., 2011) the signal is
estimated in each voxel based on the local segments configuration, meaning that their
different orientations and displacement influence the diffusion signal interpretation.

Global generative algorithms have proved to produce good results and they are
mostly robust to signal artifacts, but this comes at a price. Facing the reconstruc-
tion problem from such an analytical point of view requires a fine-tuning of several
parameters (that’s not always straightforward) which can lengthen exponentially the
computational time or, in the worst case, cannot converge at all. Different approaches
have been proposed to reduce the parameter space, limiting the computational cost:
Close et al. (2015) presented a method to direct model groups of streamlines using
a bayesian approach, focusing in particular on bundle geometry optimization. While
it represents a good solution to reconstruct specific bundles, these class of methods
often rely on many empirically tuned parameters to shape the geometry of the fas-
cicle and to compute the corresponding signal. Moreover, the initial setup for each
bundle need to be manually defined and they cannot reconstruct multiple bundles
at once. Another notable approach, by Lemkaddem et al. (2014), starts from a set
of candidate trajectories which is iteratively perturbed to fit the diffusion data us-
ing an MCMC optimization approach. In this case, the cornerstone is the adoption
of splines which dramatically reduce the number of parameters needed to represent
anatomically plausible fibers. On the other hand, the method still suffers the cost of
the stochastic procedure implied to optimize both geometry and signal contribution
at the same time.

Global discriminative methods

One major step to reduce the complexity of this generative strategy, while keeping
a “global” approach, was made with the introduction of discriminative approaches.
The idea behind these methods is to identify the optimal subset of streamlines from a
pre-computed set of candidates, constructed using standard tractography algorithms,
that are most compatible with the observed data; for this reason, they are sometimes
referred to as “filtering” methods (Daducci et al., 2016). The results of discriminative
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methods are often in the form of a “weight” assigned to each streamline. These weights
represent an effective cross-sectional area of each streamline, which can be utilized
as a direct measure of connection density (Smith et al., 2020) or to represent the
connectivity “strength” by aggregating all the streamlines connecting two regions.

One of the first notable algorithms is presented in Sherbondy et al. (2009), which
starts with a massive dataset of 180 billions candidate fibers from different sources
looking for the highest resolution and physically plausible projectome, i.e., subset of
fascicles, to date. This is accomplished through a heavy search among the possible
configurations, called projections, of fibers that minimize the global error which takes
into account the intravoxel difference between the signal of the reference diffusion
map and the one predicted by that specific projection and the volume cover. As can
be easily imagined, this is a computationally tremendous task which also needs to
be driven by multiple stochastic restarts to avoid local minima and requires a highly
parallelized cluster to converge to a solution.

Recently, more advanced and optimized formulations have been proposed; in SIFT
(Smith et al., 2013) and its evolution SIFT2 (Smith et al., 2015a), streamlines are
selected based on the agreement between their trajectories and the local fiber orien-
tation distributions, making possible to solve tricky configurations as in voxel with
crossing fibers (see Figure1.17).

Figure 1.17 – The effect of SIFT on the structural connectome estimated based on
the number of streamlines(Smith et al., 2013).
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SIFT is based on the assumption that the input tractogram contains all the fibers
needed to properly represent the observed track density and each streamline represents
some volume of axons per unit length. Following these premises, the streamline
density within each voxel V matches the Fibre Orientation Distribution (FOD) as
follows:

∀{V : PMV > 0, l ≤ LV } : µ · TDV,l = FODV,l, (1.28)

where PMV is the corresponding value of voxel V in the processing mask which
defines those voxels that should influence the model fit and the degree of influence, l
is one of the LV number of lobes in the voxel, TDV,l is the track density attributed
to that particular lobe and FODV,l is the FOD integral of lobe number l in voxel
V . Importantly, this assumption holds only if a proportionality coefficient, defined
as µ in Eq. 1.28, is applied to convert the streamline density attributed to each FOD
lobe into a value that can be compared directly with the integral of that lobe, as
explained in Smith et al. (2020). Based on Eq. 1.28, the metric for quantifying how
well a streamline reconstruction fits the underlying diffusion data becomes:

f =
∑
V

PMV

LV∑
l=1

(µTDV,l − FODV,l)2

 (1.29)

The final streamline configuration is recovered by iteratively removing streamlines
from the dataset to improve the model fit. Given an initial set of N tracks, the
optimal selection of streamlines is a combinatorial optimization problem, with 2N

possible combinations. The solution is found using a gradient descent approach,
where streamlines are iteratively removed if this removal improves the cost function
value. The process has different stopping criteria: if the cost function reaches a pre-
determined threshold, if a certain number of streamlines are kept or if a specific ratio
between number of streamlines and density change is met.

Its evolution, SIFT2, provides a more efficient implementation. The first dif-
ference is how TDl is defined, i.e., the new formulation allows variable contribution
weights from individual streamlines as follows:

TDl =
∑

s:|sl|>0

[
sl · eFs

]
, (1.30)
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where |sl| is the length of the streamline s traversing lobe l, Fs is the weighting
coefficient for the streamline and eFs is a weighting factor. Worth to notice is that,
differently from SIFT, all streamlines have a non-zero contribution to the model.
These weights, instead, are used to scale the contribution such that the streamlines
densities match the FOD lobe integrals throughout the image. The final cost function
is similar to Eq.1.29 but with the addition of a second regularisation component:

f =
L∑
l=1

(
PMl

L∑
l=1

(µTDl − FODl)2
)

+ A · λreg ·
N∑
s=1

[freg(s)] . (1.31)

The regularisation term freg, along with the scaling parameter A, is used to make
the effect of the regularisation comparable for different imaging and reconstruction
parameters. The regularization function has been proposed in two different version:
a conventional Tikhonov regularization and an asymmetric total variation function.
The first constraints the weighting coefficients Fs to remain close to zero, such that the
weighting factors remain close to unity, while the second forces streamlines traversing
the same FOD lobes to have similar weights. Finally the optimization is run using a
combination of gradient descent and expectation-maximization approach.

As opposed to FOD coherence approaches, methods such as LiFE, COMMIT,
COMMIT2 and COMMIT2tree consider the full measured DW-MRI data to evaluate
streamlines contributions. All these methods use similar approaches and formulate
the problem as a linear system. In particular, COMMIT framework describes the DWI
signal in each voxel as a linear combination of given basis functions, as follows:

y = Ax + η, (1.32)

where y ∈ Rndnv+ is the vector containing the nd q-space samples acquired in all the
nv voxels, η is a parameter to account for noise in the data and modeling errors,
A ∈ Rndnv×nc is the matrix which explicitly contains the multicompartment model
for each voxel and x are the positive weights x ∈ Rnc+ are the contributions of the nc
basis functions in A. The signal associated to the multicompartment model is defined
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as follows:

S(q) =
∑
Fi∈F

fICi RIC
(i) (q) +

∑
Fi∈F

fECi REC
(i) (q) + f ISORISO(q). (1.33)

Eq. 1.33 describes the observed signal as the sum of intra-cellular, extra-cellular and
isotropic water compartment diffusion signals. In particular, f IC represents the prod-
uct of restricted diffusion arising from fiber Fi ∈ F by the rotated response function
RIC applied to match the local orientation of Fi and scaled by the length of Fi inside
the voxel. The same is applied for the extra-cellular compartment.

In Eq. 1.32 the linear operator A is a block matrix in the form:

A =
[
AIC |AEC |AISO

]
, (1.34)

containing the three submatrices that encode the restricted, hindered and isotropic
contributions respectively (Figure 1.18 shows a visual representation of the COMMIT
model and the dictionary structure).

Figure 1.18 – Visual representation of COMMIT model (Daducci et al., 2015). For
each voxel the signal is represented as linear combination of water compartments,
modeled as tensors of different shape. The response function are pre-computed and

stored inside the dictionary matrix A.
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Figure 1.19 – Visual representation of COMMIT framework (Daducci et al., 2015).

Following Eq. 1.32, the weights x are estimated by solving the NNLS problem:

argminx≥0 ‖ Ax− y ‖2
2, (1.35)

where ‖ · ‖2 represents the l2 norm in Rn.
The framework, schematically reported in Figure 1.19, is flexible, allowing the

user to choose the forward model to adopt to reconstruct the diffusion signal in or-
der to be sensitive to different quantitative properties of the tissue such as axonal
diameter or intra-axonal signal fraction. It has been recently demonstrated that the
performance of this class of methods can be significantly boosted by combining knowl-
edge and data-driven strategies (Ocampo-Pineda et al., 2021). Indeed, the flexibility
of these formulations allow taking explicitly into account two fundamental assump-
tions about the connections in the brain: first of all fibers are naturally organized
in bundles (Mandonnet et al., 2018; Udin et Fawcett, 1988), secondly, the evolution
has promoted a low number of bundles to minimize the overall wiring cost (Bull-
more et Sporns, 2012). This prior knowledge helps resolve some of the ambiguities
present in the data showing significant improvement of the anatomical accuracy of the
connectome ash showed by Schiavi et al. (2020a) and Ocampo-Pineda et al. (2021).
This is achieved by organizing the streamlines into groups and seeking for solutions
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which explain the measured signal with the minimum number of bundles, using the
Group Lasso regularization (Yuan et Lin, 2006), to promote sparsity in the number
of connections.

These discriminative methods allowed reducing dramatically the computational
cost required to perform global tractography, and showed great potential to fur-
ther improve the quality of the reconstructions, notably alleviating the problem
of false positives as well as improving the biological interpretability of the trac-
tograms (Jbabdi et Johansen-Berg, 2011). However, unlike generative methods, they
assume a static input configuration, i.e. shape and position of the candidate stream-
lines are fixed and cannot be adapted. This means that the quality of the reconstruc-
tions remains indissolubly bounded to the quality of the algorithm used to build the
candidate pathways.

1.4 Tractography limitations

Tractography represents an invaluable tool to study in vivo a wide spectrum of
neurological conditions but suffers from some critical limitations rising from each
stage of the DWI processing pipeline, which can be divided into three major steps:

— Acquisition
— Local orientation reconstruction
— Tracking
Differently from invasive approaches, the reconstruction process is based on indi-

rect measures, which is the cause of the ‘ill-posed’ nature of tractography reconstruc-
tion (Mangin et al., 2013). For each voxel DW-MRI estimates the average amount of
water displacement along the applied gradient meaning that any further information
are based on inference over models which often rely upon strong assumptions (Jones
et al., 2013). Indeed, inferring tissue microstructural information from DW-MRI data
implies solving a difficult inverse problem with non-unique solutions and limited by
many factors as the acquisition resolution, the angular sampling of the diffusion space
and the number of different gradients used. These inaccuracies influence the quality
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of reconstructions performed by tracking algorithms which struggle to recover WM
pathways in regions with high ambiguity.

The white matter of the human brain is made up of a large number of individual
fiber tracts. Local reconstruction inaccuracies and error propagation a have dramatic
impact on the quality of reconstructions (Jbabdi et Johansen-Berg, 2011; Mangin
et al., 2013), causing tractography to be highly susceptible to false positives (Wasser-
mann et al., 2016). Following are reported the most common biases which particularly
affects tracking methods relying on step-by-step procedures.

The so-called bottleneck effect is caused by multiple fascicles merging in correspon-
dence of a small region and then separating afterwards. The diffusion signal in that
section is likely to be represented by a single orientation, meaning that, once the fibers
spread at the exit, the tracking algorithm has to choose among different directions
to follow. Without any prior information on the underlying anatomy or constrains,
the reconstruction faces a combinatorial problem which, most of the times, leads to
the reconstruction of false positives pathways, as clearly demonstrated by Maier-Hein
et al. (2017) and reported in Figure 1.20.

The reconstruction of fascicles overlapping is particularly tricky because of the
different types of configuration we can encounter in WM. In the case of a kissing
configuration, streamlines coming from different source regions merge and then split
again as showed in Figure 1.21(A) by Rheault et al. (2020). In this case, incom-
ing streamlines bend in proximity of the curve in the overlapping region and then,
suddenly, straighten their path due to the blurred single direction of the local model,
until they exit the region. Although the true connections are preserved, the streamline
coverage is reduced, as shown in Figure 1.21(B).

Narrow intersection effect happens in correspondence of crossing or splitting re-
gions, as schematically showed in Figure 1.22. In such conditions, the streamline
reaches a position where multiple directions are considered valid, it is possible that
the algorithm simply picks the wrong one and is the main cause of the error propaga-
tion in local tractography methods. This bias, along with the fact that the majority
of WM voxels are characterized by crossing configurations (Jeurissen et al., 2012), im-
plies that, even if whole-brain tractography reconstructions are able to recover most
of the true positive bundles, these are often spatially underrepresented (Maier-Hein
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Figure 1.20 – Visual inspection of the bottleneck effect. Maier-Hein et al. (2017)
show how in correspondence of merging regions, multiple tracts are represented by a

single fiber directions in the diffusion signal, leading to massive combinatorial
possibilities of plausible configurations for connecting the associated fascicles

endpoints.

et al., 2017). Different tracking parameters, such as the direction sampling angle and
step-size, can alleviate the effect, while in general anatomical-informed approaches are
more robust. This effect often occurs in regions close to the cortex, where deep WM
tracts projections merge and split as they reach the gyri.

This finally brings us to the gyral bias, a well-know termination bias largely stud-
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Figure 1.21 – Streamline reconstruction of a kissing fibers configuration, comparing
the ground-truth geometry and FOD vector fields (A and A1) with the one

recovered using probabilistic tractography and the associated vector fields (B and
A2) (Rheault et al., 2020).

ied in the tractography field (Schilling et al., 2018; Van Essen et al., 2014). The low
resolution characterizing dMRI acquisitions causes gyral crowns to be prone to partial
volume effects. This, in turn, biases orientation estimates along theWM-GM bound-
ary to point in the direction of the adjacent white matter (which is often tangential
to the border, as described by Van Essen et al. (2014) and showed in Figure 1.23.
Even if these orientation estimates form the input of most tracking algorithms, sim-
plistic tracking methods tend to be particularly biased, causing the crowns to be
over-connected while the banks and fundi remain under-represented.

To alleviate the effects of these biases on tractography reconstructions, two strate-
gies can be adopted: whole brain tractography followed by filtering and ROI-based
tracking.

In the first case, the spatial coverage is improved by computing a massive amount
of streamlines covering the whole WM volume using local or global tractography
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Figure 1.22 – Toy example depicting the narrow intersection effect: on the left is
reported the ground-truth configuration with two bundles merging and splitting in a

kissing-like configuration. On the right is shown invalid streamlines taking the
wrong path in proximity of the crossing region.

algorithms (Jeurissen et al., 2019; Wassermann et al., 2016). The major drawback in
this approach is that increasing the number of streamlines leads to a larger number of
false positive, resulting in an intrinsic trade-off between sensitivity, i.e. capability of
reconstructing real WM bundles, and specificity, i.e. retrieving only true connections
(see Figure 1.24).

Advanced filtering methods are able to remove some false positives by exploiting
voxel-wise information on fiber orientation distribution, as in SIFT (Smith et al.,
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Figure 1.23 – Example of gyral bias showing the effects of local orientation
estimation from low-resolution dMRI data on streamline tracking of a gyral

blade (Van Essen et al., 2014).

Figure 1.24 – Relative error in the estimation of the clustering coefficient and
network efficiency in the human connectome when false positive and false negative
connections were added based on the order of streamline counts (Zalesky et al.,

2016).

2013), SIFT2 (Smith et al., 2015a), or microstructure properties, as in LiFE (Pestilli
et al., 2014), COMMIT (Daducci et al., 2015), COMMIT2 (Schiavi et al., 2020a) and
COMMIT2tree (Ocampo-Pineda et al., 2021), however, the accuracy of the reconstruc-
tions is indissolubly bound to the quality of the input tractogram. In fact, they assume
a static configuration of streamlines throughout the filtering process, whose position
and shape is assumed to be correctly estimated by the tractography algorithm.
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The reconstruction of specific bundles can be performed more efficiently using a
ROI-based or bundle-specific strategy. The first implementations of this approach
implied the use of seeding masks and the tuning of tracking parameters to specifically
reconstruct bundles of interest, as in Basser et al. (2000),Catani et al. (2002) and
Behrens et al. (2007). Similar approach was used by Chamberland et al. (2014), who
were able to improve the output of a tracking method on specific regions by iteratively
tuning the tracking parameters. Although ROI-based tractography is more efficient,
it does not ensure adequate volume coverage, mainly due to the limitations of the
tracking algorithms.

Recently proposed approaches enhance bundle reconstruction by injecting anatom-
ical priors to better guide the recovery of fascicles across hard-to-track regions (Wasserthal
et Neher, 2018; Wasserthal et al., 2019), showing the benefits of using prior informa-
tion to drive the tracing (Schilling et al., 2020). Rheault et al. (2019) built a bundle
template to scale the FOD, which is then employed to extract streamlines connecting
specific regions using a multi-parametric approach. The same bundle-wise approach
was explored by Poulin et al. (2018) who used a deep recurrent neural network to
learn bundle-specific directional priors.

Although being effective to recover specific tracts, using the same strategy for
whole-brain reconstructions is, currently, unfeasible. For such reasons, global tracking
algorithms represent a promising strategy which allows exploiting microstructural in-
formation and straightforward injection of anatomical priors, but the high demand in
computational time is still a hard burden for real-world clinical applications(Jeurissen
et al., 2019).
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Part I

Methodological contributions

In this part are presented the steps followed to develop a framework able to exploit
both microstructural information and anatomical priors to overcome global tractog-
raphy limitations. This has been achieved by exploring different strategies, from a
semi-global graph-based method to a global reconstruction approach. In the last sec-
tion a MCMC Bayesian approach is introduced to improve estimation of parameters
relating microstructural features.
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Chapter 2

Microstructure-informed geodesic
tracking

Shortest path tractography, e.g. (Iturria-Medina et al., 2007; Jbabdi et al., 2008;
Parker et al., 2002), addresses the reconstruction from a different perspective with
respect local tracking methods: streamlines are reconstructed by seeking for paths of
least hindrance to diffusion that connects two regions, defined as the shortest path
with respect to a given metric. This yields a good compromise between accuracy
and efficiency. For instance, in (Zalesky, 2008), voxels are set as nodes of a graph
which are connected to their immediate spatial neighbours by edges. Their weights
represent probabilities of transition that are based on the coherence between the
corresponding ODFs estimated from DW-MRI. Reconstructing streamlines that con-
nect different brain regions can then be seen as finding the shortest path between the
corresponding nodes.

This is an attractive approach for two reasons: (i) it is very efficient as optimized
graph search algorithms exist and (ii) the possibility to define ad-hoc metrics makes
this formulation flexible and allows for adding additional information into the track-
ing process. Nonetheless, a major drawback of these approaches is that many recon-
structed streamlines tend to be collapsed and to share part of their path, especially in
regions with highly curved fiber bundles. This can introduce voxels with incorrectly
high or low streamline density , which does not correspond to the underlying fiber
geometry (Bastiani et al., 2012).
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In this article, we present an iterative procedure that uses microstructure informa-
tion to provide feedback to the tractography algorithm about the plausibility of the
reconstructed streamlines with the aim of mitigating the main limitation of graph-
based tractography approaches. In the following sections, we first describe the details
of the algorithm and then report results based on numerical simulations to highlight
the potential of the proposed method.

2.1 Methods

Our proposed method uses an iterative procedure that alternates between graph-
based tractography and evaluation of the plausibility of the reconstructed streamlines.
The procedure is illustrated in Figure 2.1. An initial estimate of the graph is con-
structed from the DW-MRI signal by capturing the structural coherence between
neighbouring voxels. Then, the algorithm loops over the following steps:

— STEP1: graph-based streamline tractography ;
— STEP2: evaluation of the tractogram plausibility;
— STEP3: graph’s weights update to improve the evaluation.

This loop is stopped when the root mean square error (RMSE) between the reference
streamline density (computed from the DW-MRI data) and the one computed by
COMMIT Daducci et al. (2015) reaches a plateau. In other words, it stops when new
iterations would not add streamlines that improve the WM volume coverage.

We use DSI-studio 1 to compute the ODFs from the DW-MRI signal. The ODFs
are then used to compute the graph’s transition probabilities with the MITTENS
software (Cieslak et al., 2018).

2.1.1 STEP1: graph-based streamline tractography

In the graph, WM voxels are represented by nodes that are connected to their
immediate spatial neighbours through weighted edges. These weights are based on
estimates that the WM structure continues from one voxel into its neighbour. The
probability that a voxel is connected to any other voxel is defined as the product of

1. http://dsi-studio.labsolver.org
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Figure 2.1 – A schematic illustration of the proposed iterative procedure to provide
feedback to the tracking algorithm about the plausibility of the current reconstructed
streamlines.

the negative logarithm of transition probabilities along the shortest path connecting
these two voxels (Zalesky, 2008). This can be computed efficiently using Dijkstra’s
algorithm (Dijkstra, 1959), which is implemented in the MITTENS software (Cieslak
et al., 2018).The streamlines are constructed as the sequences of nodes corresponding
to shortest paths between ROIs. This is made by running Dijkstra’s algorithm (Di-
jkstra, 1959), iterating over each node from a ROI and looking for the shortest path
that connects it with any node of the other ROIs.

We then apply a smoothing function based on splines to preserve the fibers smooth-
ness anatomical prior. To do that we divided each streamline based on the same
number of points and then performs an interpolation using a user-defined percentage
of them. In this study we interpolate the streamlines using 25% of the points.

2.1.2 STEP2: evaluation of the tractogram plausibility

After reconstructing the streamlines with STEP1, the plausibility of the trac-
togram is evaluated using the COMMIT framework (Daducci et al., 2015). In a
nutshell, COMMIT expresses tractography and tissue microstructure in a unified
framework using convex optimization. Given a tractogram F , the acquired DW-MRI
image I ∈ RNx×Ny×Nz×Nd+ , composed of Nd measurements over Nv = NxNyNz voxels,
can be modelled as I = A(F) + η, where A : F → I is an operator modelling the
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signal contribution of each fiber to every voxel and η is the noise. Notably, if the
trajectories and compartment signal patterns are known a priori, A can be efficiently
implemented as a linear operator. The signal in each voxel can be seen as a linear
combination of the diffusion arising from the streamlines intersecting the voxel, in
addition to local contributions from other tissues; then, the joint problem can be
expressed as a system of linear equations:

y = Ax + η , (2.1)

where y ∈ RNdNv+ contains the measured data and A ∈ RNdNv×Nc is the linear operator
implementing a generic multi-compartment model for the contribution of the tracts
to the signal in each voxel. These contributions x ∈ RNc+ can be estimated by solving
a non-negative least-squares problem:

argmin ||Ax− y||22 such that x ≥ 0 . (2.2)

In our case, we used a simple model which accounts for only the restricted (intra-
axonal) water pool as represented by the streamlines, and can adequately provide the
relative density distribution map and the RMSE needed for the stopping criterion.
The set of streamlines is then filtered according to the weights given by COMMIT,
discarding the ones with null contribution to the signal. This is based on the as-
sumption that either a streamline contributes notably to the signal explanation or
the following iterations will add more streamlines that will reduce the contributions
of the previous ones.

2.1.3 STEP3: graph’s weights update to improve the evalu-
ation

The third step is to update the graph using the voxel-wise fitting error. In partic-
ular, we focus on the streamlines density distribution of the set of candidate fibers in
relation with the reference streamlines density obtained by processing the DW-MRI
data. The graph is modified to improve the density coverage of the WM structure,
promoting or penalizing paths passing through voxels with a streamlines density dif-
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ferent from the reference one. In the proposed framework, we iterate over all the edges
of the graph, updating their weights using the dissimilarity between the correspond-
ing voxels streamline density and the ones of the reference density. For each edge, the
updating function takes as input the original weight (computed based on the ODFs
and geometric constraints) and the average between the differences in streamlines
density of the nodes at its ends, and it assigns a new weight. The aim of this new
value is to promote or penalize the passing of the streamlines through that specific
voxel. This is emphasized using the parameter γ (see Algorithm 1). Moreover, the
value of γ influences the streamline-tracking and the RMSE rate of decrease which
determines the method’s rate of convergence.

To summarize, if we let G be the voxel-graph built starting from the diffusion data,
density_map the density map computed by COMMIT from the set of streamlines
retrieved, GT_density_map the reference phantom density map, ROIs the regions
among which we want to estimate the streamlines, E the set of edges E = e1, e2, ..., en

of the graph G, W the set of the corresponding weights W = we1, we2, ..., wen, Nodes
the set of nodes andW ′ the set of weights of the updated graph Ḡ, the update-function
has been implemented as described in Algorithm 1.

To ensure that the reconstructed streamlines are consistent with the underlying
anatomy, we always update the weights of the initial graph, whose edges encode the
coherence between neighbouring voxels.

2.1.4 Testing dataset

To evaluate quantitatively our algorithm we used the simulated dataset that pre-
pared for the IEEE International Symposium on Biomedical Imaging (ISBI) 2013
Reconstruction Challenge (Caruyer et al., 2014). The phantom consists of 27 known
ground-truth fiber bundles, mimicking challenging branching, kissing, crossing struc-
tures at angles between 30◦ and 90◦, with various bundle curvature and size (see
Figure 2.2a)). The normalized streamlines density of the ground truth is shown in
Figure 2.2b, and was obtained computing the number of bundles passing through
each voxel and dividing the resulting image by the maximum value.
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Algorithm 1 Procedure to update the weights of the graph’s edges using microstruc-
ture information.
Input: (G, GT_density_map, density_map)
Result: Ḡ : W ′ ∝ W | (density_map - GT_density_map)
foreach n ∈ Nodes do

node_density = density_map[n]
GT_n_density = GT_density_map[n]
n_density_diff = node_density - GT_n_density
foreach neighbour of n do
average_node_density = (n_density_diff + neighbour_density_diff) ·12
scalar_factor = w_n(n, neighbour) + average_node_density
if node_density == GT_n_density then

continue
end
if node_density > GT_n_density then

w′n(n, neighbour) = scalar_factor + scalar_factor ·γ
else

w′n(n, neighbour) = scalar_factor + scalar_factor · 1
γ

end
end

end
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Figure 2.2 – Simulated dataset used for validation: (a) 3D view of the bundles geome-
try, (b) corresponding normalized streamline density , (c) mask used for tractography.

2.2 Results and discussion

Figure 2.3 shows that the spatial distribution of the streamlines reconstructed
with our method is in closer agreement with the underlying ground truth streamline
density. The process of flattening the density corresponding to bottlenecks created
by the original shortest path algorithm implies that the streamlines do not follow
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necessarily the most direct trajectory but the one which, after the graph update step,
has the lowest sum of the edge weights along the path that connects the two regions,
reflecting the reference WM pathways distribution.

In the first column of Figure 2.3, we can notice how some of the reconstructed
streamlines are characterized by local changes of direction. This might be due to a
fixed γ value for all nodes when updating the edge weights. This implies that is some
cases we are promoting or penalizing excessively the passage through a node, causing
local direction changes in streamlines. These erroneous streamlines can be discarded
with the COMMIT evaluation. However, the use of the streamline density in the
evaluation limits the filtering of all erroneous streamlines. In future work, we plan to
use the full DW-MRI signal in our framework to update the edge weights, not solely
optimizing for streamline density but also local streamline orientations.

The decrease in the absolute error of the streamline density shown in the third col-
umn Figure 2.3 corresponds to a more uniform coverage of the WM volume obtained
by the streamlines reconstructed with our proposed approach. We can notice how
our algorithm is able to retrieve paths that were poorly reconstructed without the
microstructure information while flattening the overall density (see the red arrows).

As all the streamline-tracking methods, graph-based shortest path tractography
presents limitations. In this article, we introduced a method to overcome the problem
of bottlenecks and consequent incorrect streamline density . This is possible with the
graph data structure that allows an easy integration of local microstructure proper-
ties estimation. This guides the algorithm to provide a more realistic WM density
representation.

Although we presented a method to alleviate geodesic tractography limitations,
semi-global method are still intrinsically constrained by their ROI-based approach. In
the next chapter we introduce a global adaptive method overcoming these restrictions.
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Figure 2.3 – Comparison between: a) ground truth, b) shortest path tractography
without microstructure information and c) our proposed method.
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Chapter 3

From static to dynamic tracking

In this work we moved from a semi-global to a global approach for tractography
reconstructions. Indeed, even if we were able to mitigate the limitations of shortest
path methods, this class of methods cannot be used for exploratory studies, given
their “ ROI-based” nature.

Global discriminative approaches have shown very promising results (Schiavi et al.,
2020a; Smith et al., 2015b) but, unlike generative methods, they assume a static con-
figuration of streamlines throughout the filtering process, whose position and shape
is assumed to be correctly estimated by the tractography algorithm.

We propose an hybrid procedure with the aim of exploiting the advantages of both
filtering and MCMC-based approaches. Starting from an initial set of streamlines
estimated with classical tractography, our method can adapt the configuration of
streamlines by alternating the filtering to short runs of classical MCMC-based tech-
niques. In this work, in particular, we present results obtained using the COMMIT
framework.

Our experiments clearly indicate that the possibility to dynamically adapt the
spatial configuration of the streamlines during the filtering allows overcoming the
limitations due to a static input and further improves the reconstructions. The pre-
sented method promotes higher spatial coverage and lower number of invalid bundles
while not affecting the valid ones, showing great potential for microstructure-informed
filtering and tractography techniques.
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3.1 Methods

The proposed method is inspired by the work of Lemkaddem (Lemkaddem et al.,
2014) and can be divided in three main steps (see flowchart in Figure3.1):

1. Construction of the initial set of streamlines using tractography. This trac-
togram is. first, pre-filtered to remove streamlines prematurely stopping inside
the WM and, then, randomly divided into two groups: the first group, called
M , is the initial set of streamlines to optimize and the other one, called A, is
an auxiliary set used as support in the following phase.

2. Parameterization of the streamlines using splines, in order to drastically reduce
the complexity for their representation as well as to guarantee smoothness of
their trajectories.

3. Alteration and evaluation of the streamline configuration following an MCMC-
based optimization approach.

Figure 3.1 – Schematic representation of the 3 main steps of the proposed approach.
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3.1.1 Initial set of streamlines

The input tractogram for the proposed approach can be reconstructed with any ar-
bitrary tracking technique. In this work, I’ve used local deterministic SD_STREAM
tracking, implemented in the MRtrix3 toolbox (Tournier et al., 2012). As mentioned
above, the first operation is the removal of streamlines that do not reach any cortical
and/or subcortical structures. Practically, this is done using labeled ROIs.

3.1.2 Parametric representation of the streamlines

Global generative algorithms have introduced different parameterization approaches.
The most famous comprehend the adoption of small segments covering the whole
white matter volume, as in (Reisert et al., 2014, 2011), or the use of spin glass model
as in (Fillard et al., 2009). These approaches, however, need a large number of
parameters and fine tuning to drive the spatial optimization. Among the different
parameterizations that have been proposed, B-splines has proven to be a valuable
alternative and they have been exploited in different ways, starting from Jbabdi et al.
(2007) until the more recent approach of Lemkaddem et al. (2014).

We recall that a B-spline of degree d is a piece-wise concatenation of polynomial
curves joining in correspondence of n + 1 control points, called knots, {Qi}ni=0 as
follow:

X(t) =
n∑
i=0

Ni,d(t)Qi (3.1)

where Ni,d(t) are B-spline basis functions computed recursively using a sequence of
scalars ti along the curve such that:

Ni,n(t) =

 0 if t ≤ ti or t ≥ ti+n

6= 0 otherwise
. (3.2)

One of the main advantages of this formulation is the possibility to reduce the
number of points needed to represent the original input set of streamlines. Indeed,
instead of using all the original points, the streamlines can be represented by set-
ting an a-priori number of knots (equal for all the streamlines) and using Eq. 3.1 to
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uniquely determine each curve. To compute the sequence of knots for each stream-
line, Douglas-Peucker reduction algorithm (H et K, 1973) has been employed, which
minimizes the number of knots needed to represent the curve. In particular, this
minimization is efficiently performed by recursively checking that the distance be-
tween the original curve and the simplified one is below a certain imposed threshold
defined as “smoothing error”. Among the variety of different spline functions, I chose
to adopt cubic B-splines, named Catmull-Rom (Catmull et Rom, 1974). This class
of splines is characterized by the fact that the knots are a subset of the points com-
posing the original streamline and, in particular, the first and the last knots coincide
with the first and last point of the streamline. The fact that the control points are
chosen along the streamline, combined with the use of cubic polynomial curves for
the interpolation, ensures that the corresponding spline has a similar shape of the
original streamline. This, in turn, permits to discard curves that lie outside the WM
or that do not connect GM regions. Besides being easy to handle, the Catmull-Rom’s
splines presents also other convenient characteristics: they are able to approximate a
large variety of smooth trajectories, making them particularly suitable to represent
anatomically plausible WM pathways (see Figure 3.2 and, at the same time, they are
fast to compute.

Adapting shape and position of streamlines.

Three different proposals have been implemented to alter the configuration of
streamlines:

1. Move streamline’s control points

2. Add a streamline to the set M from the set A

3. Remove a streamline from the set M and add it to A

With the first proposal a streamline is randomly chosen from the set M and its
trajectory is altered. This is performed in two possible ways: either by moving one
control point or by translating the whole streamline (i.e. simultaneously translate all
the control points). In the first case, to find the new spatial position of the control
point, the new coordinates are sampled from a Gaussian distribution centered around
the original position of that point. To reduce the degrees of freedom of this step, the
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Figure 3.2 – Visual comparison of the interpolation using linear, quadratic and cubic
splines for the reconstruction of the Corticospinal tract (CST).

magnitude of the movement has been fixed to half of the voxel dimension and, at
the same time, limited to the surface perpendicular to the direction the streamline as
shown in Figure 3.3.

The second proposal consists in randomly choosing a streamline from the auxiliary
set A and append it toM . Vice versa, the third proposal removes a random streamline
from M and add it to A.

3.1.3 Optimization

The optimization step is driven by a Bayesian approach which allows to exploit
global information to guide the streamlines adaptation. Given the observed data d
and a set of competing models for the data {Mi|i = 1, 2, 3...}, each defined by a set of
parameters θi, we can compute the posterior probability distribution function (PDF)
following the Bayes’ theorem:
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p(Mi|d) = p(d|Mi)p(Mi)
p(d) , (3.3)

where p(d|Mi) represents the likelihood of observing the experimental data given
the model Mi, p(Mi) is the prior probability of the model parameters and p(d) is a
normalizing constant.

Given a pre-computed set of streamlines the idea is to adapt their shape and
trajectory to better represent the underlying neural pathways structure.

In this context,Mi represents the parametric representation of a set of streamlines
defined by θi control points coordinates in the 3D space, and p(d|Mi) scores how well
the configuration Mi explain the measured diffusion data d.

The probability of a given configuration is defined by the following distribution:

fT (M) = exp
(
−ED(M,d)

T

)
exp

(
−EP (M)

T

)
, (3.4)

where, according to 3.3, fT represents the non-normalized joint distribution

p(d|Mi)p(Mi) = p(Mi|d), (3.5)

at the system temperature T . The first term, e−
ED(M,d)

T , defines the likelihood func-
tion, while the second is independent from the measure data and defines the prior
probability. The likelihood function scores how well a specific configuration M ex-
plains the data observed, and it can be defined as the difference between the measured
and the simulated signal as follow:

ED(M,d) =

√√√√( 1
V

) V∑
v=1

(Sv − dv)2, (3.6)

where V is the number of voxels in the WM volume.
In our case, the signal Sv for each voxel v, of the white matter (WM) volume is

simulated as follow:

Sv =
N∑
i=1

xiLi, (3.7)
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where N is the number of streamlines passing through voxel v, xi is a unique
weight, assigned to streamline i, that is used to scale the contribution of all its
segments and Li is the segment length inside v.

Our prior knowledge is represented by EP (M) as follow:

EP (M) = |M |, (3.8)

where |M | represents the number of streamlines in the configurationM . To maximize
the posterior probability we adopted a MCMC Metropolis-Hastings-Green (Green,
1995; Hastings, 1970; Metropolis et al., 1953) sampling approach and Simulated An-
nealing (Perrin et al., 2005) optimization to explore the space of parameters.

Given the current configuration Mi, a new configuration Mi+1 is accepted with
probability:

paccept = min(1, R) (3.9)

where R is the Green’s ratio

R = fT (Mi+1)
fT (Mi)

p(Mi|Mi+1)
p(Mi+1|Mi)

q(Mi+1)
q(Mi)

, (3.10)

with p describing the probability density functions associated to the proposal to
move from configuration Mi to configuration Mi+1, and q is the probability to choose
one among the three proposals introduced in the previous section:

1. add or remove streamline

2. move one control point

3. move entire streamline

Regarding the first proposal, a new streamline is added to the configuration by
drawing randomly and uniformly from a set A of pre-computed streamlines, i.e. the
associated probability density takes the form p(Mi+1|Mi) = |A|−1 where |A| is the
number of streamlines in A. On the other way, the removal of a streamline from
the configuration is equal to the probability of picking a streamline randomly and
uniformly from the current configuration Mi, meaning p(Mi|Mi+1) = |Mi|−1. The
corresponding Green’s ratio becomes:
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R = fT (Mi+1)
fT (Mi)

|Mi|−1

|A|−1
qr
qa
, (3.11)

where qr and qa are, respectively, the probabilities for choosing the Remove and
the Add transitions.

While, for the first proposal, the probability density functions are asymmetric,
meaning that p(Mi|Mi+1) 6= p(Mi+1|Mi) for the other proposals we adopt a gaussian
distribution as probability density functions, usually defined as random walk sampling
step.

Given these symmetric proposals, the acceptance probability becomes propor-
tional to how likely each of the current state Mi and the proposed state Mi+1 are
under the full joint density. Hence, the Green’s ratio for these proposals is given by:

R = fT (Mi+1)
fT (Mi)

. (3.12)

Based on the simulated annealing approach, at the beginning, the system is charac-
terized by a high temperature (T ), which decreases as the process advances. High val-
ues of T imply that “bad” configurations are accepted, allowing the system to explore
a wider range of configurations. In previous works, it has been shown how a geometric
lowering schedule of the temperature ensures the convergence (Lieshout, 1994) and,
at the same time, improves the chances to sample from maxima of P (M |D). Starting
from a modelM , the space of its parameters is explored by altering the configuration.

3.2 Results and discussion

Data
To show the effectiveness of the method, I’ve tested its performances on two differ-
ent synthetic configurations created with Phantomas 1, an open source software that
allows manually defining 3D geometries of fiber bundles as well as generating the
corresponding DW-MRI signal. In both cases, I’ve simulated an acquisition protocol
with 64 directions at b-value = 3000 s/mm2, 1 mm isotropic voxel and signal-to-noise
ratio of 30.

1. http://www.emmanuelcaruyer.com/phantomas.php

http://www.emmanuelcaruyer.com/phantomas.php
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Dataset 1. As a proof of concept, I’ve created a simple configuration consisting
of a single straight bundle without noise. The input tractogram was composed by
10000 streamlines, keeping only those covering the superior part of the WM volume
(see Figure 3.4 left).

Dataset 2. I’ve then assessed the performance on a more challenging bundle con-
figuration represented by the dataset provided for the IEEE ISBI 2013 Reconstruction
Challenge. This dataset consists of 27 bundles arranged in a configuration mimicking
the majority of the troublesome scenarios that can be found in the brain. These
include branching, kissing, crossing structures with various diameters and at different
angles. From the signal reconstruction point of view, the phantom reproduces both
partial volume effects, given by the presence of multiple fiber compartments within
the same voxel and CSF contamination. As for the previous dataset, the input trac-
togram was reconstructed using SD_STREAM with standard parameters, discarding
streamlines shorter than 5 mm. To quantitatively evaluate the performances of the
method on this phantom, I carried out also the connectivity analysis, comparing the
configurations against the known ground-truth (GT); in particular, the number of
valid bundles (VBs), i.e., bundles connecting regions known to be connected has been
assessed, as well as the invalid bundles (IBs), i.e., those connecting regions known to
be disconnected. I also report the WM volume coverage based on the valid streamlines
for each input tractogram and the associated RMSE.

Results
The single bundle configuration allows to highlight the potential of the method in
adapting the position of the streamlines in order to better cover the WM volume.
Starting from a set of streamlines covering only the superior part of the created phan-
tom (see Figure 3.4 left), COMMIT finds the contributions for each one, discarding
some of the redundant that are not necessary to explain the diffusion signal. How-
ever, this does not improve the RMSE because the streamline spatial configuration
remains fixed, which, in this case, implies that the bundle remains under-represented,
as shown by the underlying RMSE map. The result of the optimization performed
by the method is reported in Figure 3.4 right. The output set of streamlines has been
moved and adapted to better cover the entire volume of the bundle which, in turn,
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decreases the differences between the observed and the reconstructed signals shown
by the RMSE map below.

Results of the optimization on the second dataset are reported in Figure 3.5. At
the top of the first column, is shown the geometry of the dataset and, at the bot-
tom, the plot of the RMSE values across the optimization process. The descending
trend of the error shows that the streamlines adaptation leads to a configuration that
better explain the observed signal. In the second column the RMSE map of the in-
put configuration filtered by COMMIT and the one computed from the optimized
tractogram are compared. In the third column is reported the corresponding config-
urations, highlighting the impact of the presented approach on the framed vertical
bundle in particular. Starting from an underrepresented bundle, the method is able
to better distribute the streamlines inside the WM volume, reducing the difference
between the reconstructed and the observed diffusion signal.

Table 3.1 shows the potential of the presented method with respect to connec-
tivity analysis and compared the quality of the input tractogram, after filtering it
with COMMIT and with the presented method. The results show that the method is
able to simultaneously reduce the complexity of the entire tractogram while improving
the reconstruction quality. In fact, by increasing the quality of the reconstructions,
it’s also able to better discriminate between valid and invalid connections, conse-
quently promoting the removal of more false positives. Also, besides decreasing the
fitting error, the optimized configuration has a better WM volume coverage, less IBs,
stable VBs with 75% less streamlines.

Finally, it is worth to notice that the introduced formulation is completely in-
dependent on how the signal reconstruction is performed, meaning that also other
state-of-the-art filtering approaches, e.g., SIFT, SIFT2, LiFE and COMMIT2, may
benefit from the proposed hybrid procedure.

Nowadays, the ability of state-of-the-art filtering techniques to improve the accu-
racy of the tractograms heavily depends on the quality of input tractograms them-
selves. We showed how the possibility of adjusting the streamlines configuration
during the filtering allows improving further the quality of the tractography recon-
struction, both from the qualitative and the quantitative point of view.

We believe that this method could support microstructure-informed techniques



3.2. Results and discussion 77

Tractograms VBs IBs WM coverage # streamlines RMSE
raw 27 94 73.4% 50205

COMMIT 27 88 72.7% 20366 0.049 ± 0.056
COMMIT

+ 27 83 92.8% 12444 0.028 ± 0.031
Dynamic Filtering

Table 3.1 – Quantitative comparison between the input tractogram (first row), after
filtering it with COMMIT (middle) and with the proposed method (bottom row).

by increasing the quality of the reconstruction and helping in the characterization of
the brain structural connectivity.
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Figure 3.3 – Probability distribution on the plane tangent to the direction of the
streamline.
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Figure 3.4 – Single bundle dataset: on the left is shown the input tractogram. The
tractogram is composed by a set of packed streamlines covering only the superior
part of the bundle. The underlying map represents the RMSE computed between
the corresponding reconstructed diffusion signal and the observed one. On the right
is shown the resulting configuration after optimization with out method and the
corresponding RMSE map.

Figure 3.5 – ISBI 2013 dataset: at the top of the first column is shown the geometry of
the phantom and at the bottom the plot of the RMSE values across the optimization
process. The second and the third columns shows, respectively the RMSE maps and
streamline configurations corresponding to the input tractogram filtered by COMMIT
(top) and to the optimized configuration (bottom).
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Chapter 4

Adaptive bundle-based global
tractography

Following the work presented in 3.1, we implemented a global reconstruction al-
gorithm, keeping the “hybrid” nature of the previous one (Battocchio et al., 2019)
but tackling tractography reconstruction from a different perspective: the idea is
to move away from streamline-based tracking with the aim to directly reconstruct
bundles of them; for this reason we call it bundle-o-graphy. Thanks to a conve-
nient parameterization, we can model groups of coherent streamlines using a minimal
set of parameters which, in turn, allows us to extend a state-of-the-art discrimina-
tive method, i.e COMMIT (Daducci et al., 2015), with the possibility of efficiently
adapting the configuration of the bundles as in generative approaches. Our experi-
ments conducted both on synthetic and real data clearly indicate the potential of our
solution for improving the anatomical accuracy of the reconstructions.

4.1 Methods

The general structure of the algorithm is presented in Figure 4.1 and takes inspira-
tion from our previous work (Battocchio et al., 2021). In summary, bundle-o-graphy
takes as input a tractogram that can be the computed using any tractography algo-
rithm, or it can be the result of different reconstructions combined. In the first stage,
we reduce the number of the input streamlines based on a clustering procedure. For
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Figure 4.1 – Bundle-o-graphy workflow. Given an input tractogram the first step
aims to reduce the number of streamlines needed to represent connections between
pairs of regions. Additionally, each streamline is parameterized using a subset of the
initial points to approximate their trajectory. The second step is characterized by the
shift from streamline to bundle-based representation. Here a volume is assigned to
each streamline, allowing to mimic the contribution of a set of aligned fibers centered
around the original trajectory. Finally the bundle-based configuration is optimized
by adapting their shape and geometry following a MCMC optimization approach.

each cluster, the representative streamlines are then parameterized using splines. The
resulting trajectories are then used as prior to represent fascicles of coherent stream-
lines aligned along each pathway, meaning that the signal contribution of the original
streamlines is not strictly limited to the voxel they traverse. The shape and volume
of each bundle is then continuously adapted to find the optimal configuration that
best explains the observed signal.

In the following, we provide more details about each stage of the algorithm.

4.1.1 Streamline reduction and simplification

Streamline reduction in performed based on hierarchical clustering, following the
approach implemented by Schiavi et al. (2020a). We first divide the streamlines with
respect to anatomical information, in particular based on the regions they connect
given a cortical and sub-cortical brain parcellation (Figure 4.2A). Secondly, each group
of streamlines is clustered based on geometrical criterion, in our case represented by
their average euclidean distance. To this aim, we exploit QuickBundle (Garyfallidis
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Figure 4.2 – Streamline reduction workflow: the first step implies subsetting the input
tractogram based on a cortical and subcortical regions segmentation. Figure 4.2A
is an example showing the cortical-spinal tract segmented based on Freesurfer at-
las. Each connection is than clustered (Figure 4.2B) keeping only the representative
streamlines for each cluster. These are simplified using Ramer-Douglas-Peucker al-
gorithm (Figure 4.2C) which reduces the number of points needed to approximate
the streamline trajectories. Finally these coordinates are interpolated using cubic
b-splines (Figure 4.2D.)

et al., 2012) (Figure 4.2B) to extract the principal trajectories for each region. Thanks
to this procedure we can simplify the bundle representation and reduce the tractogram
complexity. In particular, by removing unwanted redundancy we are able to downsize
the input tractogram using, on average, only the 2% of the initial set of streamlines.

The resulting streamlines are then simplified to minimize the number of parame-
ters needed to represent each trajectory, as in the work of Lemkaddem et al. (2014),
using the Douglas-Peucker reduction algorithm (H et K, 1973), which selects the
minimal subset of coordinates given an approximation threshold (Figure 4.2C). Fol-
lowing Jbabdi et al. (2007); Lemkaddem et al. (2014) we found that between 4 and
6 points is the minimal set necessary to represent any anatomically plausible trajec-
tory. The set of points is then interpolated using a particular class of cubic B-splines,
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named Catmull-Rom (Catmull et Rom, 1974)(Figure 4.2D), characterized by several
desirable properties. First of all, they preserve the starting and ending points, i.e.,
the first and last points remain the original ones, meaning that the original con-
nectivity is preserved giving the fact that the reduced streamlines connect the same
regions. Secondly, the interpolated trajectories intersect all the control points, which
permits a better supervision of their spatial position and to avoid the reconstruction
of pathways outside white matter regions.

4.1.2 Bundle representation

Once the input tractogram has been reduced and simplified, we assign a volume
to each streamline by exploiting a feature embedded in COMMIT. In particular,
each tract is considered as the centroid of a cylinder, with constant radius, extending
along the whole trajectory. The bundle is generated by creating a set of replicas
disposed equidistantly over concentric circles of increasing radius centered around
each point of the streamline. Starting in correspondence of the initial point, all
circles lie on a plane that is always orthogonal to the streamline direction. Each
point of the replicas is then computed based on Frenet-Serret frames (Frenet, 1852;
Serret, 1851) which allows to compute the displacement of the replicas’ following
points along the streamline trajectory. The circles discretization, i.e., the number of
replicas created, and the number of circles used to sample the space are empirically
fixed. The signal contribution corresponding to the bundle is computed considering
all the voxel traversed by the centroid and its replicas. While the signal contribution
is constant along the trajectory, it can vary as we move outward from the center to
take care of uncertainty at the boundaries of the bundle. To do so we implemented a
blurring function, used to radially scale the signal contribution, shown in Figure 4.3
and defined as follows:

P (x) =


1 if x < σC ,

exp
(
− x2

2σ2
G

)
otherwise.

(4.1)

Based on Eq. 4.1, the signal contribution of the bundle core, which extent is
modulated by the parameter σC , is not scaled, while the signal corresponding to the
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Figure 4.3 – Bundle simulation: the contribution of each original streamline can be
modeled as a cylinder centered along the trajectory. The volume can be radially
adapted using a blurring function to allow uncertainty as we move outward from the
central pathway. The two parameters, σC and σG regulate the extent of the core and
the Gaussian dumping respectively

replicas falling farther is exponentially reduced depending on the distance x from the
center according to a gaussian dumping function regulated by σG. A more detailed
description of the bundle creation process can be found in Daducci et al. (2021).
Following this implementation, bundle simulation turns into modeling the space of
influence of a streamline which requires only the parameter σC while σG is empirically
fixed.

4.1.3 Optimization

The shape and the volume of each streamline are optimized following a Bayesian
approach which permits to exploit global information to better adapt the reconstruc-
tion with respect to the underlying WM structure. Given the observed data d and a
set of competing models for the data {Mi|i = 1, 2, 3...}, each defined by a set of pa-
rameters θi, we can compute the posterior probability distribution function following
the Bayes’ theorem:

p(Mi|d) = p(d|Mi)p(Mi)
p(d) , (4.2)

where p(d|Mi) represents the likelihood of observing the experimental data given
the model Mi, p(Mi) is the prior probability of the model parameters and p(d) is a
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normalizing constant.
In this context,Mi represents the parametric representation of a set of streamlines

defined by θi control points coordinates in the 3D space, and p(d|Mi) scores how well
the configuration Mi explain the measured diffusion data d.

The probability of a given configuration is defined by the following distribution:

fT (M) = exp
(
−ED(M,d)

T

)
exp

(
−EP (M)

T

)
, (4.3)

where,in our case, fT represents the non-normalized joint distribution

p(d|Mi)p(Mi) ∝ p(Mi|d). (4.4)

In particular, the first term, e−
ED(M,d)

T , defines the likelihood function, while the
second is independent from the measure data and defines the prior probability. Finally
T defines the system temperature, a parameter used to speed up the convergence.
The likelihood function scores how well a specific configuration M explains the data
observed. In our case the estimation is based on the voxel-wise Intra-cellular (IC)
signal fraction and it can be defined as the difference between the measured and the
simulated signal as follow:

ED(M,d) =

√√√√( 1
V

) V∑
v=1

(Sv − dv)2, (4.5)

where V is the number of voxels in the WM volume.
In our case, the signal Sv for each voxel v, of the WM volume is simulated as

follow:

Sv =
N∑
i=1

xiLi, (4.6)

where N is the number of streamlines passing through voxel v, xi is a unique weight,
assigned to streamline i, that is used to scale the contribution of all its segments and
Li is the segment length inside v.

Our prior knowledge is represented by EP (M) as follow:
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EP (M) = λ|B|+ β|M |, (4.7)

where |B| represents the number of connections between pairs of regions of the cor-
tical and subcortical parcellation and |M | the total number of streamlines in the
configuration M . Finally, λ and β are scaling factors empirically set.

To maximize the posterior probability we adopted a MCMC Metropolis-Hastings-
Green (Green, 1995; Hastings, 1970; Metropolis et al., 1953) sampling approach and
Simulated Annealing (Perrin et al., 2005) optimization to explore the space of pa-
rameters.

Given the current configuration Mi, a new configuration Mi+1 is accepted with
probability:

paccept = min(1, R) (4.8)

where R is the Green’s ratio

R = fT (Mi+1)
fT (Mi)

p(Mi|Mi+1)
p(Mi+1|Mi)

q(Mi+1)
q(Mi)

, (4.9)

with p describing the probability density functions associated to the proposal to move
from configuration Mi to configuration Mi+1, and q is the probability to choose one
among the three proposals introduced in the previous section:

1. add or remove connection

2. move one control point

3. move entire blurred streamline

4. change blur extent

Regarding the first proposal, a new connection is added to the configuration by
drawing randomly and uniformly from the set of connections A, i.e. the associated
probability density takes the form p(Mi+1|Mi) = |A|−1 where |A| is the number of
connections in A. On the other way, the removal of a connection from the configura-
tion is equal to the probability of uniformly sampling from the current configuration
Mi, meaning p(Mi|Mi+1) = |Bi|−1. The corresponding Green’s ratio becomes:
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R = fT (Mi+1)
fT (Mi)

|Bi|−1

|A|−1
qr
qa
, (4.10)

where qr and qa are, respectively, the probabilities for choosing the Remove and the
Add transitions.

While, for the first proposal, the probability density functions are asymmetric,
meaning that p(Mi|Mi+1) 6= p(Mi+1|Mi) for the other proposals we adopt a gaussian
distribution as probability density functions, usually defined as random walk sampling
step.

Given these symmetric proposals, the acceptance probability becomes propor-
tional to how likely each of the current state Mi and the proposed state Mi+1 are
under the full joint density. Hence, the Green’s ratio for these proposals is given by:

R = fT (Mi+1)
fT (Mi)

. (4.11)

Based on the simulated annealing approach, at the beginning, the system is char-
acterized by a high temperature (T ), which decreases as the process advances. High
values of T imply that “bad” configurations are accepted, allowing the system to
explore a wider range of configurations. In previous works, it has been shown how
a geometric lowering schedule of the temperature ensures the convergence (Lieshout,
1994; Perrin et al., 2005) and, at the same time, improves the chances to sample
from maxima of P (M |D). Starting from a model M , the space of its parameters is
explored by altering the configuration.

To better asses convergence we run two separate optimizations. In the first case,
the system is allowed only to add or remove connections while, in the second, all four
proposals are adopted.

4.1.4 Data and Experiments

To show the effectiveness of the method, we tested it on both synthetic and real
data.

Synthetic data. We used the dataset provided for the IEEE ISBI 2013 Recon-
struction Challenge (Caruyer et al., 2014), which simulates an acquisition protocol
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with 64 directions at b-value=3000 s/mm2, 1 mm isotropic voxel and signal-to-noise
ratio of 30. This dataset consists of 27 fascicles arranged in a configuration mimick-
ing most of the challenging bundle configurations that can be found in the brain, like
bundles with various diameters branching, kissing and crossing at different angles.
From the signal reconstruction point of view, the phantom reproduces both partial
volume effects, given by the presence of multiple fiber compartments within the same
voxel and CSF contamination. We performed streamlines reconstruction with three
different tractography algorithms (iFOD2 (Tournier et al., 2010), SDStream (Tournier
et al., 2012), Trekker (Aydogan et Shi, 2021)), generating 1 million streamlines using
default parameters for each. We divide the tractograms into bundles based on the
parcellation provided with the dataset and then performed clustering to reduce the
number of streamlines used to represent each connection.

In vivo brain data. We also evaluated bundle-o-graphy on in vivo human data
from the “HCP test-retest” dataset (Van Essen et al., 2013). We downloaded the
preprocessed diffusion data corresponding to subject 172332 and the structural T1-
weighted image with the corresponding standard Desikan-Killiany (Desikan et al.,
2006) parcellation in 85 gray matter ROIs performed with FreeSurfer (Fischl et al.,
2004a). To do so, we first segment the T1-weighted image using FMRIB’s automated
segmentation tool (Zhang et al., 2001) to derive the multi-tissue image. This allowed
performing the tissue-informed multi-shell spherical deconvolution and to recover the
fiber orientation distributions (Jeurissen et al., 2014). We performed three whole
brain reconstructions, using SDStream, iFOD2 and Trekker. For the deterministic
and probabilistic methods we perform anatomically constrained tractography (Smith
et al., 2012) with default parameters, generating 3 million streamlines, while, for
Trekker, we used the white matter mask as the seed region for the tracking, generating
1 million streamlines.

4.1.5 Evaluation metrics

For each dataset we computed the IC signal fraction maps in each voxel. Different
models can be used for the estimation, as standard models like NODDI (Zhang et al.,
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2012) or SMT (Kaden et al., 2016b), implemented as open-source available at 1.
For the synthetic dataset we processed the three input tractograms and computed

the total white-matter overlap based on the corresponding IC maps, i.e., the total
percentage of WM volume covered by the streamlines. We investigated the connec-
tivity, reporting the strength and the L1- and L2-distances between estimated and
ground-truth (GT) connectivity matrices. We assessed the number of true positive
connections (TPCs), i.e., number of connections between pair of regions known to
be connected and the false positives connections (FPCs), i.e., the number of those
connecting regions known to be disconnected. We also reported the connectivity
estimation focusing on a well known hard-to-track connection along with the WM
coverage computed by segmenting the the WM mask to isolate that specific connec-
tion. Then, we carried the same analysis on the resulting configuration showing the
effects of bundle-o-graphy optimization.

For the in vivo brain dataset, we compared the estimated IC maps computed
by COMMIT and the signal fitting RMSE corresponding to the three reconstruction
before and after the application of bundle-o-graphy. We also carried out analysis
focusing on three major connections, CC, Pyramidal tract (PyT) and Arcuate fas-
ciculus (AF) (Rheault et al., 2019), reporting the corresponding estimated IC maps
before and after the optimization along with their WM coverage.

4.2 Results and discussion

A visual inspection of the impact of bundle-o-graphy is shown in Figure 4.4. On
the first row the estimated IC map corresponding to a well known hard-to-track
connection reconstructed with the three tractography algorithms and processed with
COMMIT is reported, along with the connectivity estimates and WM overlap. On
the second row the corresponding results of the optimization with bundle-o-graphy.
Starting from an underrepresented connection, the method is able to better distribute
the streamlines inside the WM volume and adapt their spatial extent, converging to
the same connectivity value across tractograms computed with different methods. Ta-
ble 4.6 shows that, thanks to bundle-o-graphy, we were able to simultaneously reduce

1. https://github.com/ekaden/smt
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Figure 4.4 – Impact of the optimization on different reconstruction algorithms on the
synthetic phantom. On the first and second row are reported the intra-cellular signal
fraction maps corresponding to the vertical hard-to-track connection of the input and
optimized configurations respectively.

the complexity of the entire tractogram while improving the connectivity evaluation.
This, in turn, allows to better discriminate between true positives and false positives
connections, drastically reducing the number of false positives (see Figure 4.5). More-
over, the optimized configuration has a better WM volume coverage with a fraction
of the initial streamlines. Results on in vivo dataset are shown in Figure 4.7 and
Figure 4.8. The first shows a comparison between the signal fitting error associated
to the three input tractograms before (first row) and after bundle-o-graphy optimiza-
tion (second row). In all three optimized tractograms, the reduction in the RMSE is
coupled with an improved streamlines density estimation, as can be see in Figure 4.8
(second row). Thanks to bundle-o-graphy we are able to increase the overall WM
coverage while improving density homogeneity at the same time.

Figure 4.9 shows the results focusing on three specific tracts, comparing the recon-
structions before and after the application of bundle-o-graphy. For each connection
theIC maps corresponding to the input (first row) and the optimized (second row)
are reported. Thanks to bundle-o-graphy we were able to better represent the un-
derlying WM anatomy, converging to connections that shares similar signal density
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Figure 4.5 – Impact of the optimization on the removal of false positives connections.
The connectivity graphs show in red the connections between pair of regions if they
represent false positives connections or in green if they correspond to true positive
ones. In the first row are reported the connectivity graphs of the input tractograms,
while on the second row is reported the connectivity evaluated after bundle-o-graphy
optimization.
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Figure 4.6 – Summary table of the comparison between SDStream, iFOD2 and
Trekker reconstructions before and after the optimization on the synthetic dataset.
Bundle-o-graphy improves overall white matter coverage and improves connection-
specific and global connectivity estimation. The optimized tractograms present a
reduced number of FPCs, while keeping all the TPCs.

patterns along their trajectories. Finally, Figure 4.10 shows the comparison between
the cortical surface projections of the CC tract corresponding to the input recon-
struction (first row) and the respective optimized connections. The results show how
subcortical WM volume coverage is coupled with a significantly improved cortical
projection extent.

Results on both synthetic and real data show the impact of our bundle-based
approach. Bundle-o-graphy is able to minimize the number of connections between
regions, keeping only those necessary to explain the signal and discarding the implau-
sible ones. With COMMIT2, Schiavi et al. (2020a) achieve notable results by using a
linear optimization approach but, differently from their work and discriminative meth-
ods in general, bundle-o-graphy is capable of improving tractography reconstructions
by adapting the shape and the position of each bundle. The adaptation performed
by the presented method has many benefits, both qualitatively and quantitatively.
The first advantage is crucial in the case of WM pathways poorly reconstructed and
hence underrepresented, as shown in 4.4, where, thanks to bundle-o-graphy, we were
able to isolate and improve the reconstruction of the connection. In the second case,
the removal of invalid connections and the bundles adaptation in terms of geometry
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Figure 4.7 – Comparison between the RMSE maps corresponding to the input trac-
tograms computed with the three different reconstruction algorithms (first row) and
the adapted configurations (second row).
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Figure 4.8 – Comparison between the estimated IC maps of the input tractograms
(first row) and the adapted configurations (second row).
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Figure 4.9 – Comparison between the estimated IC maps corresponding to
the CC, PyT and AF reconstructed with the three different tractography algorithms.
For each method, the first row shows the the connection segmented from the in-
put tractogram while the second reports the connection segmented from the adapted
one. The last column shows the corresponding visual inspection of the volume and
geometry of the tracts.
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Figure 4.10 – Comparison between the cortical projections of the CC tracts seg-
mented from the input tractograms computed with the three different reconstruction
algorithms (first row) and the respectively adapted connections (second row).
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and extent, allows to be remarkably independent from the tractography algorithm
used to compute the initial set of streamlines, converging to similar connectivity es-
timates. Moreover, the possibility to represent groups of streamlines as set of packed
and aligned fascicles leads to a more homogeneous and smooth tract density (see
Figure 4.8), which reduces the variability introduced by tracking algorithms. This is
particular evident for connections going through or passing by hard-to-track regions,
where tractography algorithms are known to fail (see Figure 4.7).

The idea of direct modeling groups of streamlines has been already explored in
previous works, as in Close et al. (2015). However these methods often rely on many
empirically tuned parameters to shape the geometry of the bundle and to compute
the corresponding signal as well as the fact that the initial setup for each bundle need
to be manually defined and they cannot reconstruct multiple bundles at once.

While the reconstruction method used to compute the initial set of streamlines still
influences the performances, our approach allows to converge to similar connectivity
and WM density patterns as shown in Figure 4.4 and 4.9. The differences between
the resulting streamline configurations can be explained by two main factors: initial
number of false positive connections and reconstruction quality of the valid ones. The
first requires more iterations to filter out the implausible bundles while, in the second
case, the signal cannot be fully explained by the valid connections. In the case of valid
connections particularly underrepresented, this implies that to cover the WM regions
some of the invalids need to be kept to explain the signal even if this is notably limited
thanks to the adaptation and consequent improvement of the true positives coverage.
Currently bundle-o-graphy is not able to recover configurations presenting missing
valid connections, i.e. false negatives, from the input tractogram. A possible way to
overcome this in the future could be the integration if a tracking step, for instance
mimicking the dynamic seeding approach implemented in Smith et al. (2015a).

Finally, the flexibility of the presented method potentially allows to exploit any
possible discriminative framework to perform the evaluation as long it provides a mea-
sure of how well the streamlines configuration explain the observed data. Moreover,
thanks to its formulation, bundle-o-graphy facilitates the embedding of prior infor-
mation to drive the reconstruction. For instance, these information can be exploited
to introduce hierarchies between streamlines belonging to the same connection, as
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in COMMIT2tree Ocampo-Pineda et al. (2021), further improving our ability to filter
out false positives connections. Future work includes the exploitation of priors com-
ing from different imaging modalities, as in the work of Schiavi et al. (2022), which
can be integrated in different ways.

Although tracking algorithms have shown a notable evolution, state-of-the-art
streamline reconstructions are still anatomically inaccurate and difficult to reproduce,
limiting their potential to study white matter connectivity which is fundamental to
characterize the healthy structure of the human brain, as well as its perturbation in
disease. Thanks to a convenient parameterization, bundle-o-graphy allows to com-
bine both the potential of filtering techniques with the flexibility of generative global
optimization approaches. We demonstrated the feasibility and the effectiveness of
bundle-o-graphy both on synthetic and in vivo data, showing how bundle-o-graphy
can improve the biological accuracy of the reconstruction regardless the input data.
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Chapter 5

Hierarchical Bayesian
Microstructure Modelling

DW-MRI measures the microscopic motion of water molecules, and is hence
sensitive to tissue microstructure microstructure. Microstructural modelling combines
specifically-designed dMRI acquisitions with a tissue model to enable estimation of
parameters relating to tissue microstructure. These techniques have been widely
applied in neuroimaging, with prominent examples of brain microstructure imaging
including NODDI (Zhang et al., 2012), the standard model of diffusion in neuronal
tissue (Novikov et al., 2019) and the spherical mean technique (Kaden et al., 2016b).
Microstructural modelling has also provided insights into body Magnetic Resonance
Imaging (MRI) (Koh et al., 2011), for example in prostate cancer (Panagiotaki et al.,
2015).

The core fitting procedure in microstructure imaging estimates model parameters
given the observed dMRI signal (Figure 5.1, top panel). The vast majority of fitting
techniques assume that voxels are independent; in other words, the model is separately
fitted to the signal in each voxel, usually with nonlinear least squares estimation. An
alternative approach is to use a MCMC algorithm to estimate parameter posterior
distributions in each voxel (Harms et Roebroeck, 2018). Orton et al. (2014) introduced
a hierarchical Bayesian model fitting approach for the IVIM (Le Bihan et al., 1988))
model. Their model breaks the assumption of independent pixels by introducing a
Gaussian prior (estimated from the data) over the microstructural model parameters
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across a ROI. By using a MCMC algorithm to fit the Bayesian model, they showed
an improvement in IVIM parameter maps of the liver. This approach has also been
applied to combined T2- IVIM modelling in the placenta (Flouri et al., 2020).

In this work, we generalise the Bayesian approach to apply to any microstruc-
tural model, derive the corresponding MCMC algorithm, and implement arbitrary
upper and lower parameter bounds. We also utilise regional priors, which may be
more appropriate than a global prior for fitting across distinct neurological tissue
types. The MCMC algorithm is implemented in Python by utilising the Diffusion
Microstructure Imaging in Python (Dmipy) (Fick et al., 2019)) software package. We
demonstrate our algorithm on simulations and on Human Connectome Project (HCP)
data, and show clear advantages over the standard least squares fitting technique.

5.1 Methods

5.1.1 General Bayesian Microstructure model

The approach of Orton et al. (2014) is extended to a general multi-compartment
microstructural model. A schematic of the hierarchical Bayesian framework is shown
in Figure 5.1.

We consider a general multi-compartment model of Ncomp compartments, with a
set of underlying microstructure-related parameters θ. For notational convenience we
group θ by parameter type as

θ =
{
{fk}Ncomp−1

k=1 , {xj}Jj=1

}
, (5.1)

where fk denotes compartment signal fractions and xj the other parameters, e.g.
diffusivities, orientations, radii, etc. Assuming that relaxation times are fixed across
compartments, the signal fractions sum to 1, i.e. ∑Ncomp

k=1 fj = 1, meaning that fNcomp
is not a free parameter but fixed as 1−∑Ncomp−1

k=1 fk.
A general microstructural model comprises a mapping - or signal equation - be-

tween underlying tissue-related parameters θ and acquisition parameters tn (typically
b-value and gradient direction), and a dMRI signal intensity Sn, i.e.
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Figure 5.1 – Schematic of Bayesian hierachical model for a general microstructure
model. Top panel defines a general microstructure model, g that maps microstructure-
related parameters θ and acquisition parameters t to dMRI signal S. The microstruc-
ture parameters can be grouped by parameter type as θ =

{
{fk}Ncomp−1

k=1 , {xj}Jj=1

}
where fk are the compartment signal fractions and xj are the other parameters. Sec-
ond panel defines the voxelwise likelihood function. Third panel displays the ROI-
wide Gaussian priors, note that θµ and Σ are learnt from the data for all ROIs. Fourth
panel displays the voxelwise parameter posterior distributions and corresponding pa-
rameter maps.
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Sn = S0gn(θ, tn), (5.2)

where S0 is the signal intensity without diffusion weighting. The experimentally-
measured signal in the presence of noise is hence modelled as

yn = Sn + εn = S0gn(θ, tn) + εn, (5.3)

where yn is the measured signal and εn is noise.
We now consider all measurements for a voxel i, i.e. the signal intensities at all

acquisition parameters t = {t1, ..., tN} - which we denote yi = [y1, ..., yN ]T . The
likelihood, assuming normally distributed noise with variance σ2

y , is therefore

p(yi|θi, S0, σ
2
y) = (2πσ2

y)−N/2 exp
(
−1
2σ2

y

N∑
n=1

(yn − S0gn(θi, tn))2
)
, (5.4)

where θi denotes the microstructural model parameter values in voxel i. Orton et al.
(2014) demonstrated that the “nuisance parameters" S0 and σ2

y can be marginalised
out from Eq. (5.4) to give the following marginalised likelihood:

p(yi|θi) ∝
[
yTi yi − (yTi gi)2/gTi gi

]−N/2
, (5.5)

where gi = [g1(θi, t1), ..., gN(θi, tN)] are the model predicted signals for voxel i.

Parameter Transforms
Microstructure model fitting needs to enforce physically reasonable minimum and
maximum values of parameters; for example, diffusivities need to be positive. Here
we generalise the transforms used by Orton et al. (2014) to enable arbitrary minimum
and maximum constraints. For a parameter p, we define a transform

p′ = log(p− pmin)− log(pmax − p), (5.6)

which maps the interval (pmin, pmax) to R. By defining the Bayesian prior on the
transformed parameter p′, we therefore constrain p between pmin and pmax. Default
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values for pmin and pmax are set as the minimum and maximum values defined in
the Dmipy variable “model.parameter_ranges"; however, they can also be manually
defined by the user.

Bayesian shrinkage priors
Orton et al. (2014) used a multivariate Gaussian Bayesian shrinkage prior on the IVIM
model parameters, with the prior defined over a single user-defined ROI. The Bayesian
fitting method is generalised here to the multiple ROI case simply by running the
derived MCMC algorithm separately on the voxel-wise dMRI data from each ROI;
however, note that here and throughout the methods section we consider the sin-
gle ROI case for brevity, without loss of generality. The prior generalised for any
microstructural model is denoted

p(θ|θµ,Σ) = N(θ; θµ,Σ)′ (5.7)

where θµ is a vector whose elements encode the prior means of the parameters, Σ is
their covariance and N(θ; θµ,Σ) denotes the multivariate normal probability density
function (PDF) with variable θ, mean θµ and covariance Σ. Again, we emphasise that
θµ and Σ are estimated from the data.

To generalise from Orton et al. (2014) two-compartment model to an arbitrary
multi-compartment model, all signal fractions must to sum to one. We enforce this
(following Harms et Roebroeck (2018)) by modifying the prior to

p(θi|θµ,Σ) =

N(θi; θµ,Σ) if ∑n−1
j=1 fj ≤ 1

0 otherwise
(5.8)

To complete the model we define a hyper-prior on θµ and Σ as a non-informative
Jeffrey’s prior

p(θµ,Σ) = |Σ|−1/2. (5.9)

Posterior Distributions
Each ROI has its own posterior distribution, which can be written as in Orton et al.
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(2014)

p(θ1:M , θµ,Σ|y1:M) ∝ p(y1:M |θ1:M)p(θ1:M |θµ,Σ)p(θµ,Σ)

where θ1:M = {θ1, θ2, ..., θM} are the parameters and y1:M = {y1, ...,yM} the dMRI
data for all voxels in the ROI. Substituting in equations (5.5), (5.7), (5.9) gives

p(θ1:M , θµ,Σ|y1:M) ∝
(
M∏
i=1

[
yi
Tyi − (yi

Tgi)2/gi
Tgi

]−N/2
)(

M∏
i=1

N(θi; θµ,Σ)
)
|Σ|−1/2

from which we can draw samples with a MCMC algorithm.

MCMC Monte Carlo Markov chain algorithm
The MCMCalgorithm is derived here, and given as pseudocode in Algorithm 2. Fol-
lowing Orton et al. (2014), the MCMC updates for the ROI-wide prior parameters θµ
and Σ are Gibbs moves. The conditional distributions are (up to proportionality)

p(θµ|θ1:M ,Σ,y1:M) ∝
M∏
i=1

N(θi; θµ,Σ) = N(θµ;m,V )

where m = M−1∑M
i=1 θi V = M−1Σ, and the second line comes from rearrang-

ing the multivariate normal PDF so that θµ is the variable. The MCMC update is
therefore sampled as follows

θµ ∼ N(m,V ) (5.10)

where N(m,V ) is a multivariate normal distribution with mean m and covariance
V . Following the same steps for Σ (see Orton et al. (2014) for full details) gives
the MCMC update for Σ

Σ ∼ W−1(Φ,M − 3) (5.11)

where Φ = ∑M
i=1(θi − θmu)(θi − θmu)T and W−1 is the inverse-Wishart distribution.
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Voxelwise parameters

For the non-signal fraction voxelwise parameters the posterior distribution up to
proportionality is

p(xi,j|xi,−j, {fi,k}Ncomp−1
k=1 , θµ,Σ) ∝

[
yi
Tyi − (yi

Tgi)2/gi
Tgi

]−N/2
N(θi; θµ,Σ) (5.12)

where xi,j is the value of parameter xj in voxel i, xi,−j = {xi,1, ..., xi,j−1, xi,j+1, ..., xi,J}
denotes the set of all non-signal fraction parameters except xi,j, and {fi,k}Ncomp−1

k=1 are
the signal fractions for voxel i.

As in Orton et al. (2014), we sample from this with a Metropolis-Hastings algo-
rithm. Proposed parameters are first sampled from Gaussian distributions as

x∗i,j ∼ N(xi,j, wxi,j), (5.13)

where xi,j is the current value of the parameter, x∗i,j is the proposed parameter value
and wxi,j is the variance of the proposal distribution, which should reflect the scale
of the parameter and can be tuned for optimal algorithm performance.

The acceptance probability utilises the ratio of the posterior distributions for xi,j
and x∗i,j

α(xi,j → x∗i,j) = min
1,

p(x∗i,j|xi,−j, {fk}
Ncomp−1
k=1 , θµ,Σ)

p(xi,j|xi,−j, {fk}Ncomp−1
k=1 , θµ,Σ)

 , (5.14)

where the values on the right of the posterior are the current parameter values in
the MCMC algorithm.

The signal fraction parameters MCMC moves are the same, except that the pos-
terior distributions now contain the terms enforcing ∑Ncomp

k=1 fk = 1, i.e.

p(fi,k|xi,1, ..., xi,J , fi,−k, θµ,Σ) ∝


[
yi
Tyi − (yi

Tgi)2/gi
Tgi

]−N/2
if ∑Ncomp−1

k=1 fk ≤ 1

0 otherwise,
(5.15)
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where fi,−k = {fi,1, ..., fi,k−1, fi,k+1, fi,K} are the other signal fractions apart from fi,k.
Again we sample proposed values as

f ∗i,k ∼ N(fi,k, wfi,k) (5.16)

where fi,k is the current signal fraction. The acceptance probabilities are

α(fi,k → f ∗i,k) = min
{

1,
p(f ∗i,k|xi,1, ..., xi,J , fi,−k, θµ,Σ)
p(fi,k|xi,1, ..., xi,J , fi,−k, θµ,Σ)

}
. (5.17)

Metropolis-Hastings Acceptance Ratio.

We tuned the Metropolis-Hastings jumping variances wθi during the burn-in pe-
riod to achieve an acceptance ratio that samples the posterior distribution efficiently.
Following Orton et al. (2014), at every 100 MCMC steps we applied the update rule

wθi = wθi101/ (2 (101−Rθi)) (5.18)

where Rθi is the number of times the proposed parameter update was accepted in the
previous 100 steps. This scheme aims to adjust the jumping variances such that an
acceptance rate of approximately 50% is achieved.

5.1.2 Models

The MCMC algorithm was tested using the ball-stick model, defined as

g(θ, t) = fpar exp (−bDpar(n.g)) + (1− fpar) exp (−bDiso) , (5.19)

where b is the b-value, g is the gradient direction and n is the stick orientation,
which is parameterised by two angles φ1 and φ2 constrained such that φ1 ∈ (0, π) and
φ2 ∈ (−π, π).

The signal fractions were constrained as fk ∈ (0.01− 0.99) and the diffusivities as
Dpar, Diso ∈ (0.1− 3)µm2/ms.
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Algorithm 2 MCMC algorithm for Bayesian model fitting of a general microstruc-
tural model. This pseudocode describes the algorithm for a single ROI. For multi-
ple ROIs, the algorithm is simply run separately on each ROI.
for voxels i = 1 to i = N do
Calculate initial values for voxelwise parameters: {xi,j}Jj=1, {fi,k}

Ncomp
k=1 with least

squares estimation
end for
S ← number of MCMC steps
for MCMC steps s = 1 to s = S do
θ(s)
µ ← sample from Equation (5.10)

Σ(s) ← sample from equation (5.11)
for voxels i = 1 to i = N do
for non-signal fraction parameters j = 1 to j = J do
εxi,j ← N(x(s−1)

i,j , wxi,j)
x∗i,j ← x

(s−1)
i,j + εxi,j

calculate α(xi,j → x∗i,j) from Equation (5.14)
u← sample from unif(0, 1)
if u < α then
x

(s)
i,j ← x∗i,j

else
x

(s)
i,j ← x

(s−1)
i,j

end if
end for
for signal fraction parameters k = 1 to k = Ncomp − 1 do
εfi,k ← N(f (s−1)

i,k , wfi,k)
f ∗i,k ← f

(s−1)
i,k + εfi,k

calculate α(fi,k → f ∗i,k) from Equation (5.17)
u← sample from unif(0, 1)
if u < α then
f

(s)
i,k ← f ∗i,k

else
f

(s)
i,k ← f

(s−1)
i,k

end if
end for
f

(s)
i,Ncomp ← 1−∑Ncomp−1

k=1 fi,k
if s mod 100 = 0 then
for voxels i = 1 to i = N do
Update {wxi,j}Jj=1 and {wfi,k}

Ncomp−1
k=1 using Equation (5.18)

end for
end if

end for
end for
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Algorithm implementation
Note that while all distributions have been presented in the linear scale, they were
calculated in log-scale for numerical convenience. Parameter values were initialised
with a voxel-wise least squares fit, estimated using the Dmipy brute2fine option (Fick
et al., 2019). The MCMC algorithm was then run for 2000 steps with a burn-in of
1000 steps; weights were updated every 100 steps during the first half of the burn-in
period. In our experience this was sufficient to sample the posterior distributions, and
aligns with the work of Harms et Roebroeck (2018). We calculated model parameter
posterior distributions and representative statistics from the 1000 MCMC samples
after the burn-in. Parameter maps were generated using the mean of the posterior
distributions in each voxel.

5.1.3 Data

To test the MCMC algorithm’s ability to infer correct model parameter values, we
ran simulations using the Shepp-Logan phantom. We generated synthetic images with
a matrix size of 128× 128 and defined ground truth parameters in each major region
(see Figure 5.3A, top row). We then simulated the signal in each voxel using Dmipys
simulate_signal function with the same acquisition parameters as the HCP data (see
below), added Gaussian noise to give a Signal to noise ratio (SNR) of 10 in the
b = 0 data, and ran the MCMC algorithm on these synthetic datasets. We perturbed
initial parameter values to verify that the algorithm could find the global minimum.
Bayesian priors were defined over the whole phantom excluding the background (i.e.
one ROI).

We then applied our Bayesian model fitting approach on publicly-available data
provided by the HCP WU-Minn Consortium (48 Subjects Test Retest Data Release,
release date: Mar 01, 2017, available online at humanconnectome.org) HCP data
neuroimaging. Data from a single subject was used. The WM, GM, sub-cortical GM
and ventricle ROIs derived from the Freesurfer T1 segmentations (these provided the
best contrast between tissues) were transformed into diffusion space via linear and
non-linear registration between the subject’s T1-weighted image and the b = 0 dMRI
data. The MCMC algorithm was applied with the Bayesian priors defined over these
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four ROIs.

5.2 Results and discussion

Figure 5.2 displays the output of several runs of the MCMCalgorithm for a sin-
gle voxel in the Shepp-Logan data. The MCMC chains and posterior distributions
demonstrate that voxel-wise parameter estimates converged to the ground truth value
under a range of perturbations. Figure 5.3 compares the least squares and Bayesian
parameter maps with the ground truth. The Bayesian approach more accurately
replicated the ground truth and provided lower errors than least squares approach,
particularly in low SNR cases.

Figure 5.4 shows the MCMC algorithm results on the HCP data. The Bayesian
fit clearly removed some apparent outlier voxels when compared to the least squares
fit (see arrows).

In this work we present an extension to previous approaches that enables Bayesian

Figure 5.2 – MCMC output from the Bayesian ball-stick model fit on the Shepp-
Logan phantom data. The left panel shows three MCMC chains for the stick parallel
diffusivity in a single voxel; the initial parameter value in each run was given a
different perturbation. The right panel shows the posterior distribution from each
run, calculated on all samples after the burn-in of 1000 steps. The ground truth
parameter value is indicated by the black lines.
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Figure 5.3 – Ball-stick model parameter maps in the Shepp-Logan phantom syn-
thetic images. A. Ground truth (top row), least-squares derived (middle row) and
Bayesian derived (bottom row) parameter maps for the stick parallel diffusivity (Dpar)
in µm2s−1, ball isotropic diffusivity (Diso) in µm2s−1, stick signal fraction (fpar) and
elevation orientation parameter (φ1) in radians. B. Relative error maps for the least-
squares fits (top row) and Bayesian fits (bottom row). Bayesian priors were defined
over the whole image. The mean relative error (ε̂) and mean absolute relative error
(|ε̂|) are displayed for each fitted parameter (both in %). Computation time for the
Bayesian method was approximately 1 hour.
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Figure 5.4 – Ball-stick parameter maps in the HCP data for the least squares fit (top
row) and Bayesian fit (bottom row). Parameters as Figure 5.3. The Bayesian priors
were defined over four ROIs as described in Methods section 5.1.3. Computation
time for the Bayesian method was approximately 3.5 hours.
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hierarchical model Bayesian hierarchical model fitting for a general microstructural
model with arbitrary parameter constraints and regional priors. The algorithm is
implemented by utilising and adapting the Dmipy software package, and is made
publicly available 1. On synthetic data, we show that Bayesian fitting of the ball-stick
model more accurately recovered ground truth maps than least squares fitting, par-
ticularly for parameters more susceptible to noise such as the stick parallel diffusivity.
On HCP data, the algorithm reduced the appearance of apparent outlier voxels.

Although high SNR images from the HCP were used as the test data here, we
anticipate the biggest gains of this approach will be seen in lower SNR data and more
complex models. This may enable estimation of richer microstructural detail in a
greatly reduced acquisition time.

The algorithm has limitations that motivate future work. The Bayesian approach
assumes Gaussian noise, which may not be appropriate in all cases, particularly in
low SNR cases. We also assumed that a Gaussian prior is suitable for all parameters;
however, this may not be the optimal choice, particularly for orientation parameters
where a flat prior may be more appropriate and could enable improved orientation
parameter maps over LSQ (see Figures 5.3 and 5.4). Alternative prior choices are an
avenue for future work. Utilising probabilistic segmentations, rather than the cur-
rent hard-thresholded ROIs which may bias parameter estimation in partial volume
voxels, is possible, but may complicate the MCMC inference. More complex model
choices, as well as comparisons with alternative model fitting methods (e.g. Harms
et Roebroeck (2018)), should also be explored to better quantify the benefits of our
Bayesian approach.

To conclude, we derive a general Bayesian hierarchical microstructural model
Bayesian hierarchical model and a MCMC algorithm for model inference given dMRI
diffusion MRI data. The algorithm, and corresponding open-source software, newly
enables Bayesian model fitting for a wide range of microstructure microstructure
imaging techniques.

1. github.com/PaddySlator/dmipy-bayesian
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Part II

Clinical applications

The second part of the thesis is characterized by tractography applications to
study brain structural connectivity in subjects affected by MS and FD. This gives the
opportunity to face tractography limitations (presented in section 1.4) affecting clin-
ical studies, carried with standard analysis pipeline, and how these can be mitigated.
In the first case, a network connectivity study has been performed, where metrics
were investigated taking in account microstructual features, while another analysis
inspects the effects of MS disruption affecting the CC tract specifically.

In the context of FD, the microstructural integrity of the tracts connecting the
motor cortices to the basal ganglia is inspected, investigating the possible presence
of structural connectivity changes in these connections.
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Chapter 6

Sensory-motor structural
connectivity analysis

Graph theory and network modelling have been applied to characterize structural
motor network topology in MS, demonstrating a reduced motor network efficiency
through the quantification of structural damage in white matter WM bundles con-
necting pairs of cortical and subcortical grey matter GM regions (Pardini et al.,
2015). More broadly, graph analysis of the structural connectome (Sporns et al.,
2005) (i.e. the set of white-matter pathways between pairs of grey matter regions)
has been successfully used to discriminate MS patients from HC and to classify MS
clinical phenotypes (Kocevar et al., 2016; Li et al., 2013; Llufriu et al., 2017; Nigro
et al., 2015). However, such between-group differences may be primarily driven by
discrepancy in network density (Van Wijk et al., 2010), which is likely to be reduced
in pathologic conditions as a consequence of macroscopic damage and fibres loss.
Thus, resulting in a less accurate tracking of streamlines (Ozturk et al., 2010). In
the framework of graph analysis, methods such as the minimum spanning tree have
been applied to account for differences in density, by reducing networks to a backbone
structure insensitive to alterations in connection strength or linked density (Tewarie
et al., 2015). An alternative and indirect way to deal with group-differences in density
is to extract connectivity metrics from an atlas of bundles built from healthy subjects
keeping network density constant (Pagani et al., 2020). Tracing fibres in HC offers
the additional advantage to avoid inaccuracy in tract reconstruction related to the
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presence of WM lesions. Therefore, in MS studies, tractography is often performed
in the control group (or a subset of it) and the reconstructed tracts are subsequently
registered to patients’ data to derive the metrics of interest ( (Pagani et al., 2020;
Pardini et al., 2015; Steenwijk et al., 2015). Although the underlying idea is the
same, its implementation is slightly different in each of these works. Pagani et al.
(2020) first co-registered the diffusion tensor images of healthy controls to the stan-
dard Montreal Neurological Institute (MNI) space; then they used the average of
those data to perform tractography saving only the tracts connecting pairs of corti-
cal areas with more than five streamlines as voxel maps. Finally, registered all the
remaining subjects to MNI space and they used the common tractogram to compute
the individual connectomes. Pardini et al. (2015) instead performed tractography in
each individual healthy subject’s space and then registered the recovered track den-
sity images to the MNI space to create a population-averaged maps for each tracts
of interest. They then co-registered these maps to each subject involved in the study
to compute the connectomes. Finally Steenwijk et al. (2015) implemented a similar
method of Pardini et al. (2015), but they computed for each subject and tract sepa-
rately the average of weighted lesion volume and weighted average of FA in normal
appearing white matter. When tractography is conducted directly in MS patients,
an FA threshold is set during fibre reconstruction and a minimum number of fibres is
selected to define single bundles in order to reduce the risk of false-positive connec-
tions (Nigro et al., 2015; Shu et al., 2011). The shortcoming of this approach is the
drastic reduction in reconstructed fibres, especially in those bundles that are rich in
crossing fibre (Sinke et al., 2018). More recently, a SIFT (Smith et al., 2013) has been
employed to reduce reconstruction bias and improve biological plausibility (Koubiyr
et al., 2019), but the accuracy of SIFT application to pathological brains is still under
debate (Zalesky et al., 2019).

Furthermore, the characterization of the structural connectome in MS has to take
into account the impact of WM lesions on connectivity which is usually assessed
through correlation analysis between graph metrics and lesion loads (He et al., 2009;
Romascano et al., 2015). A more specific disconnection analysis can also be con-
ducted, quantifying dedicated graph measures that estimate the indirect, compen-
satory connections between two regions developed after the transection of the direct
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connection between them (Li et al., 2013). More recently, the impact of macroscopic
lesions on structural connectivity was modelled assuming transection of all fibres
passing through WM lesions (Pagani et al., 2020).

Finally, the quantification of the connection strength in structural connectomes is
an open issue. Typically, the connection strength between each pair of grey-matter
regions is “quantified” by counting the number of streamlines connecting them, i.e.
streamline count, but this approach is not quantitative (Jones et al., 2013). Mi-
crostructure informed tractography (Daducci et al., 2016) was recently proposed as
a means to improve the estimation of structural connectivity by combining tractog-
raphy with local microstructural features of the tissue and fitting the actual contri-
butions of the streamlines to the measured diffusion MRI data. These contributions
do not allow to estimate the microscopical fibre count, but this approach has the
potential to provide a more “physically quantitative” assessment of the connectivity
than the simple streamline count. In fact, as the contributions of the streamlines (or
weights) are estimated such that they explain the diffusion MRI data and the con-
nectivity is “physically quantified” based on these weights. This possibility to extract
more “quantitative” metrics from the reconstructed connectomes may allow for a fair
comparison of network properties despite density discrepancies. However, to the best
of our knowledge, this approach has never been proposed in clinical studies.

In this proof of concept study, we investigated the topology of the “physically
quantitative” sensory-motor network (SMN) (i.e. the network whose weights are esti-
mated through microstructure informed tractography) in MS using the COMMIT (Da-
ducci et al., 2013, 2015). COMMIT allows the tracking of fibres within WM lesions
and removes the ones deemed implausible according to the chosen microstructural
property only after reconstruction. The goal of this study was to test if abnormali-
ties in network topology are still identifiable when focusing on more “quantitative”
network properties. We focused on patients with PMS, who present the highest le-
sion loads, atrophy degree and, presumably, density reduction among MS clinical
phenotypes. Specifically, we evaluated if (i) COMMIT can improve the detection
of differences in structural connectome density between MS patients and HC com-
pared to the raw connectome; (ii) differences in network density affect between-group
comparisons of connectome properties; (iii) WM lesions and GM atrophy influence
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connectome properties; (iv) SMN network properties are related to clinical disability.

6.1 Methods

Subjects

Forty-two patients with PMS (22 primary and 20 secondary progressive 28F,
mean age 51.4 ± 11.4 years, mean disease duration 15.6±13.3 years), and 24 HC
(11F, mean age 50.3 ± 8.5 years) were prospectively enrolled. Inclusion criteria for
patients with MS were: age between 18 and 70 years, MS diagnosis fulfilling the
revised McDonald criteria (Polman et al., 2011) and Expanded Disability Status
Scale (EDSS) score ≤ 7.0. Exclusion criteria were: coexistence of any major systemic
condition, diagnosis of psychiatric disorders, contraindications to undergo an MRI
scan, pregnancy, history of head trauma, alcoholism, drug addiction or neurologi-
cal disorders other than MS. Clinical examination, performed within 1 week from
the MRI scan, included EDSS, Timed 25-Foot Walk Test (T25FW) and 9-Hole Peg
Test (9-HPT).Written informed consent was obtained from all participants before the
beginning of the study procedures, according to the Declaration of Helsinki. The pro-
tocol was approved by the Institutional Review Board of the Icahn School of Medicine
at Mount Sinai.

MRI acquisition All subjects underwent MRI on a Siemens Skyra 3T scanner
(Siemens, Erlangen. Germany) with a 32-channel head coil. The MRI protocol in-
cluded the following sequences: axial T2-weighted 3D (repetition time (TR): 8000 MS, TE:
95 MS, spatial resolution 0.5x0.5x3.0 mm3); sagittal T1-weighted 3D magnetization-
prepared rapid gradient echo (MPRAGE) (TR/TE: 3000/2.47 MS, inversion time
(TI): 1000 MS, spatial resolution 0.8×0.8×0.8 mm3; GRAPPA with acceleration
factor R = 2); twice-refocused spin echo cho planar imaging (EPI) sequence for dif-
fusion MRI with b-values of 1000 and 2000 s/mm2 and 30 directions each (repeated
twice), in addition to b=0 images (TR/TE: 4700/100 MS, flip angle 80deg, spatial
resolution1.8x1.8x2 mm3).
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Lesion and cortical segmentations

Quantification of T2-hyper-intense and T1-hypo-intense lesion volume was per-
formed in each patient by a single experienced observer unaware of subject identity,
employing a segmentation technique based on user-supervised local thresholding (Jim
7.0, Xinapse System, Leicester, UK 1) as described in Petracca et al. (2018). The cor-
responding T1-images were then accordingly filled using T1-hypo-intense lesion mask
and FSL 2.

For all subjects, we processed T1-filled images with FreeSurfer 3 and we auto-
matically segmented them (Fischl et al., 2002, 2004b) using the standard Desikan-
Killiany atlas (Desikan et al., 2006)) which allowed obtaining a cortical parcellation
in 85 ROIs. From this parcellation we retrieved the nodes of the motor network
comparing FreeSurfer ROIs and the Harvard-Oxford cortical and subcortical struc-
tural atlas included in FSL (Smith et al., 2004). In particular, the primary sensory
motor cortex (S-M1) was defined by the post central and precentral gyrus ROIs; the
secondary motor cortex (M2) by the paracentral gyrus ROI; the secondary sensory
cortex (S2) by the supramarginal gyrus; the posterior associative sensory cortex (AS
Sens C) by the precuneus and superior parietal gyrus ROIs; the prefrontal cortex
(PFC) by the lateral orbitofrontal, medial orbitofrontal, rostral middle frontal and
superior frontal ROIs; the deep GM by the union of the thalamus, caudate, putamen
and pallidum ROIs acting as relay for projection tracts and, finally, the cerebellum
(cerebellum) as itself. The obtained nodes for one of the healthy subjects included in
our analyses are shown in Figure 6.1.

SMN gray matter fraction (GMF) was computed as the sum of the volumes of
all above listed areas divided by intra-cranial volume (ICV).

Diffusion MRI processing

Diffusion MR images were corrected for motion and eddy currents (Andersson et
Sotiropoulos, 2016) using FSL. To perform whole brain anatomically constrained trac-

1. http://www.xinapse.com
2. https://fsl.fmrib.ox.ac.uk
3. http://surfer.nmr.mgh.harvard.edu
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tography (Smith et al., 2012), we first co-registered the T1 and diffusion images using
FLIRT (Jenkinson et al., 2002) of FSL with boundary based cost function (Greve et
Fischl, 2009). Then we computed the fiber orientation distribution functions using
the multi-shell multi-tissue constrained spherical deconvolution approach (Jeurissen
et al., 2014; Tournier et al., 2007a) and generated 1 million streamlines using the
iFOD2 (Tournier et al., 2010) tractography algorithm implemented in MRtrix 4. In
light of the discussion in Zalesky et al. (2019), we processed the resulting trac-
tograms using COMMIT (Daducci et al., 2013, 2015) with stick and zeppelin ball
model (Alexander et al., 2010). COMMIT is a powerful framework that allows to
decompose a signal in contributions coming from different compartments. The main
assumption of the framework is that the contribution of a streamline is constant
along its path, while the remaining components can be different in each voxel. In
this case, we applied COMMIT to dMRI signal and we decomposed the signal in
intra-axonal, extra-axonal and isotropic contributions according to the stick and zep-
pelin ball model (Alexander et al., 2010). Indeed, with this model we imposed that
the intra-axonal diffusion signal was constant along each tract and (when needed) we
indirectly accounted for the presence of free water due to a lesion with the zeppelin
and ball compartments.

Finally, for each subject, both the raw (i.e. obtained using the number of stream-
lines as entries) and the COMMIT-weighted connectomes (i.e. obtained using COMMIT
weights as entries) were built using the motor network parcellation described above
(Figure 6.2). As entries (aij) of COMMIT derived matrices we used the weighted
average intra-axonal signal contribution of each bundle:

aij =
∑Nij
k=1 x

k
ij · lk∑Nij

k=1 lk
Nij

, (6.1)

where i, j are the indices of ROIs connected by the bundle, Nij is bundle’s number
of streamlines, xkij is the weight of the streamline k obtained by COMMIT and lk

its length. In this way, each entry contained the total signal fraction associated to
the bundle, which was given by the weighted average of the streamline contribution

4. http://www.mrtrix.org
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(obtained with COMMIT) multiplied by its length and divided by the average length
of the bundle.

In light of the recent results showed in (Buchanan et al., 2020), in the supplemen-
tary material, we also report additional results obtained by thresholding the number
of streamlines in the raw connectomes according to two widely used techniques: pro-
portional and consistency thresholding. For further details we refer the reader to the
online supplementary material.

Graph analysis

As it was done in previous works (Pagani et al., 2020; Pardini et al., 2015; Steen-
wijk et al., 2015), for each subject we computed six global network measures from
the obtained connectomes using the Brain Connectivity Toolbox (Rubinov et Sporns,
2010): modularity (reflecting the segregation of the network), global efficiency (cor-
responding to the average inverse shortest path length in the network, and inversely
related to the characteristic path length), clustering coefficient (reflecting the degree
to which the nodes tend to cluster together), mean strength (corresponding to the
average of all the nodal strengths, where the nodal strength is the sum of the weights
of links connected to the node), assortativity (reflecting if nodes tend to be connected
to other nodes with similar strengths) and density (corresponding to the fraction of
present connections to possible connections). For each node of the subjects’ connec-
tome we also computed local efficiency and local nodal strength to investigate which
node of the SMN was more affected by the disease.

Statistical Analysis

All analyses were performed using Statistical Package for Social Science (SPSS
V.25.0).

Between-group comparisons were performed via ANCOVA analysis, entering age
and gender as covariates. In order to assess differences in density estimation related
to the application of COMMIT, we performed between-group comparisons both on
results from raw connectomes and COMMIT-weighted connectomes, and repeated
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the analysis entering density as additional covariate.
The relationship between network global properties, T2 lesion load and GM atro-

phy were tested via partial correlation accounting for age and gender.
The relationship between network properties and clinical disability was tested with

stepwise regression models, entering age and gender in the first block and network
global/local properties in the second block.

Results were considered significant for p<0.05 (Bonferroni corrected < 0.008 for
global properties [0.05/6 as the number of network global properties considered];
Bonferroni corrected < 0.003 for local properties [0.05/14 as the number of nodes
considered]).

6.2 Results and discussion

Raw connectomes

Mean values and standard deviations of the global network metrics are reported
in 6.3. After Bonferroni correction for multiple comparisons, modularity, global ef-
ficiency and mean strength were significantly different between the two groups of
subjects when accounting for age and sex. When controlling also for density only
the difference in modularity was still present. Of note, no significant differences in
density were identified between the two groups.

Mean values and standard deviations of the local network metrics are reported
in Tab. 6.4 (strength) and 6.3(efficiency). After Bonferroni correction for multiple
comparisons, significant differences were identified in 5 nodes in terms of strength and
in 9 nodes in terms of efficiency between the two groups of subjects when accounting
for age and sex. When controlling also for density, significant differences were still
identified in 2 nodes in terms of strength and in 6 nodes in terms of efficiency.

COMMIT-weighted connectomes

Mean values and standard deviations of the global network metrics are reported
in Tab. 6.6. After Bonferroni correction for multiple comparisons, all the explored
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metrics, except the clustering coefficient, were significantly different between the two
groups of subjects when controlling for age and sex. When controlling also for density
the difference in assortativity disappeared.

Mean values and standard deviations of the local network metrics are reported
in Tab. 6.7 (strength) and 6.8 (efficiency). After Bonferroni correction for multiple
comparisons, significant differences were identified in 6 nodes in terms of strength and
in 7 nodes in terms of efficiency between the two groups of subjects when accounting
for age and sex. When controlling also for density significant differences were still
identified in the same nodes in terms of strength and in 7 nodes in terms of efficiency.

Relationship between raw connectome global properties, WM lesions and
GM atrophy

Accounting for age and gender, significant correlations were identified between T2
lesion volume and global efficiency (r = −0.655, p < 0.0001), clustering coefficient
(r = −0.469, p = 0.002), modularity (r = 0.640, p < 0.0001), density (r = −0.696,
p < 0.0001), mean strength (r = −0.630, p < 0.0001). No correlations were identified
between SMN GMF and global metrics.

Relationship between COMMIT-weighted connectome global properties,
WM lesions and GM atrophy

Accounting for age and gender, significant correlations were identified between T2
lesion volume and global efficiency (r = −0.431, p = 0.005), modularity (r = 0.507,
p = 0.001) and density (r = −0.738, p < 0.0001) as well as between SMN GMF and
mean strength (r = 0.425, p = 0.006).

Clinical impact of raw connectome abnormalities

The models including demographic variables and network global properties ac-
counted for 40% of variance in 9HPT scores (for density R2=0.40, p=0.001, Beta=-
0.57, p=0.003) and 32% of variance in 25FWT (for density R2=0.32, p=0.004, Beta=-
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0.51, p=0.001; for assortativity R2=0.32, p=0.004, Beta=0.51, p=0.001). No signif-
icant results were yielded by the model including demographic variables and node
local properties.

Clinical impact of COMMIT-weighted connectome abnormalities

The models including demographic variables and network global properties ac-
counted for 27% to 35% of variance in 9HPT scores (for modularity R2=0.27, p=0.018,
Beta=0.45, p=0.007; for density R2=0.35, p=0.003, Beta=-0.53, p=0.001). The
model including demographic variables and node local properties accounted for 58% of
variance in 9HPT scores (for right prefrontal cortex local efficiency R2=0.58, p=0.008,
Beta=-0.53, p=0.003); and 66% of variance in T25FWT scores (for associative sensory
cortex local efficiency R2=0.66, p=0.001, Beta=1.12, p<0.001).

Notwithstanding all previous efforts in investigating structural connectivity and
disconnection in MS, in this study we propose a methodological approach - COMMIT
- that accounts for the presence of lesions and fibres loss and provides a means to
directly compare connectomes with different density.

Thanks to its capability of decomposing the intrinsic signal contribution of each
streamline in the tractogram, COMMIT may represent an effective method to cope
with density discrepancies between healthy subjects and patients. The main idea
behind this method is to assume that one (or more) microstructure feature does not
vary along the length of a tract and therefore it is possible to effectively estimate its
value for the entire tract (rather than only voxel-wise). This estimation is done simul-
taneously for all the streamlines by fitting them to a map related to the selected mi-
crostructure feature. If only dMRI data are available, it is reasonable to assume that
the intra-axonal diffusion signal is constant along the tract and COMMIT uses any
predefined microstructural model to estimate it. Similarly to what was recently found
in Lipp et al. (2020), using the recently introduced multi-shell multi-tissue spherical
deconvolution (Jeurissen et al., 2014) and the probabilistic algorithm (Tournier et al.,
2010) to generate streamlines, we were able to propagate the tracking also inside MS
lesions to build the input tractograms. We then applied COMMIT to decide if a
streamline passing through a lesion is essential to explain the signal or not and con-
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sequently keeps or discards it to construct the final tractogram. In the present work,
we employed as microstructural model the stick and zeppelin ball model (Alexan-
der et al., 2010) which indirectly accounts for the presence of free water due to a
lesion with the zeppelin and ball compartments. Finally, to construct the COMMIT-
weighted connectomes we chose not to use the traditional number of streamlines
connecting two cortical regions of interest (streamlines count), which was shown not
to be quantitative (Jones et al., 2013). Conversely, we considered the more infor-
mative total signal fraction associated to the bundle, which is given by the weighted
average of the streamline contribution (obtained with COMMIT) multiplied by its
length and divided by the average length of the bundle. This approach offers two main
advantages. First, by forcing fibre tracking within lesions and subsequently filtering
them according to the signal preservation along the streamline, COMMIT retains
in the tractogram only fibres whose microstructure is not irredeemably damaged by
lesions or subtle inflammatory/neurodegenerative processes ongoing in the normal
appearing WM (Lassmann, 2018). Thus, producing a weighted network composed by
“healthy” and partly damaged fibres whose signal is not irreversibly compromised and
can be fitted with a stick. As a consequence of COMMIT’s filtering, in the COMMIT-
weighted connectomes we observed a reduction in density in comparison with the raw
connectomes both in patients and controls(Figure 6.9).

A number of implausible connections, related to tractography intrinsic limita-
tions, as well as the fact that our control group presumably presented age-related
subtle WM abnormalities, were removed in healthy controls. As expected though,
the number of implausible connections removed in patients was even higher, which
explains why differences in terms of density between patients and controls became ap-
parent only after COMMIT application. Second, by giving the possibility to compare
more “quantitative” metrics rather than measures derived from the non-quantitative
streamline number (Jones et al., 2013), COMMIT offers the possibility to assess dif-
ferences in network properties beyond changes driven by density discrepancy. This is
supported by the results of our between-group comparison, which shows that, while
topology differences identified with standard tractography were mainly driven by den-
sity, differences in global and local properties derived from the COMMIT-weighted
connectomes were insensitive to density correction (Figure 6.9, 6.10, 6.11). Finally,



6.2. Results and discussion 125

it is worth highlighting that although COMMIT estimates the actual weight of the
edges in the network by fitting the corresponding streamlines to the white-matter
signal, normalization may still be required to account for ROI size differences in the
chosen parcellation (Sotiropoulos et Zalesky, 2019). In fact, larger ROIs may be con-
nected with more streamlines simply because of their size. Note, however, that this
applies to raw and COMMIT-weighted connectomes alike, and hence it does not bias
our results. Future studies will investigate the possibility to COMMIT to account
also for this aspect.

Differences in connectome global properties estimated after COMMIT application
suggest that also the COMMIT-weighted connectome presents the topology abnor-
malities previously described in MS (Kocevar et al., 2016; Li et al., 2013; Llufriu et al.,
2017; Nigro et al., 2015; Pardini et al., 2015). Indeed, the COMMIT-weighted SMN
was less efficient, more dispersed and weaker in MS than in HC, supporting the
notion that also seemingly intact connections are not sufficient to preserve brain
structure. As COMMIT retains also connections partly affected by WM lesions, WM
bundles entered in the COMMIT-weighted connectome still suffer the consequences
of smouldering inflammation, axonal and neuronal damage within focal lesions, and
periventricular damage sustained by detrimental soluble factors q(Lassmann, 2018).
Fibres damage and loss above a certain threshold could eventually leave a vulnerable
structure, not able to sustain efficient network function. Assortativity was the only
network property still affected by density after COMMIT application, suggesting that
nodes’ connection strength in the COMMIT-weighted connectome depends on the
presence of preserved connections. The strong link between density and assortativity
is also highlighted by their comparable predictive power on clinical disability. Locally,
strength and efficiency were decreased in the prefrontal cortex, primary sensory-motor
areas, associative sensitive cortex and deep GM, confirming the diffuse involvement of
cortical and deep GM regions reported in the progressive phenotypes (Eshaghi et al.,
2018) (Figure 6.10, 6.11). COMMIT-weighted SMN global properties showed strong
to moderate associations with WM lesion load and atrophy, confirming that brain
topological organization is related to the accrual of macrostructural damage (Pagani
et al., 2020), with lesion load playing a predominant role in progressive MS (Steen-
wijk et al., 2015). Of note though, raw SMN global properties showed even stronger
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relationships with WM lesion load, once again supporting the notion that network
properties derived from raw connectomes are substantially influenced by the presence
of lesions. On the other hand, the effects of atrophy were not detectable, possibly
because of the dominant influence of WM lesion load itself. As per the clinical im-
pact of network topology, raw connectomes properties were not predictive of clinical
status, while among COMMIT-weighted connectomes properties the main role was
played by nodes’ local efficiency, which predicted a large amount of variance in motor
disability. Prefrontal cortex efficiency was particularly relevant for manual dexterity
performance, highlighting the importance of motor planning for the execution of fine
motor movements, while efficiency of associative sensory cortex was significantly cor-
related with the ambulation performance. Interestingly, it seems that the efficiency
of integrative rather than primary areas is particularly relevant for clinical function
preservation within the weighted connectome, highlighting the compensatory role of
these regions in advanced disease stages.

Topology differences identified with standard tractography in MS seem to be
mainly driven by density, which, in turn, is strongly influenced by the presence of
lesions, suggesting caution when interpreting between group differences in connec-
tome properties. Moving from a qualitative towards a more “quantitative” appraisal
of the brain structural connectome, COMMIT application allowed the identification
of a significant difference in density between patients and HC and the exploration
of network topology in the COMMIT-weighted connectome. Differences observed in
network global and local properties suggest that preserved connections undergo a
topological reorganization in MS. Within such reorganization of the brain connec-
tome, decreased local efficiency in key areas of the SMN represent the most relevant
correlates of motor disability. Based on these results, we believe that COMMIT may
help characterize the topological organization of structural networks in pathological
conditions, allowing a fair comparison of connectomes which takes into account dis-
crepancies in network density. More importantly, our study shows that discrepancy-
corrected network properties are clinically meaningful and, therefore, may help guide
prognosis assessment and treatment choice.
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Figure 6.1 – Motor network hubs used in our analysis in a representative healthy
subject. The primary sensory-motorcortex (S-M1) is shown in red; the secondary
motor cortex (M2) in green;the secondary sensory cortex (S2) in light blue; the
posterior associative sensory cortex (AS Sens C) in yellow; the prefrontal cortex

(PFC) in blue; the deep grey matter (Deep GM) in pink (for the right hemisphere)
and orange (for the left hemisphere) and the cerebellum in purple.
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Figure 6.2 – Matrix representation of the connectomes obtained with the two
different methods: counting the number of streamlines connecting two pairs of grey

matter regions (top); or assigning the quantitative measures obtained
with COMMIT (bottom). For both method we report the average connectomes
obtained for the two groups of subjects: healthy controls (left) and PMS patients
(right). In both cases (raw and COMMIT), the pattern of connections is similar,

but while in the upper case the information contained in the connectomes is
non-quantitative, in the bottom ones it represents the intra-axonal signal fraction

associated to each connection. We also observe that some interhemispheric
connections present in the raw connectomes disappear after the application

of COMMIT.
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Figure 6.3 – Global graph metrics of HCs and PMS patients computed on the raw
connectomes.

Figure 6.4 – Nodes strength of HCs and PMS patients computed on the raw
connectomes.
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Figure 6.5 – Nodes efficiency of HC and PMS patients computed on the raw
connectomes.

Figure 6.6 – Global graph metrics of HCs and PMS patients on COMMIT-weighted
connectomes.
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Figure 6.7 – Nodes strength of HCs and PMS patients computed
on COMMIT-weighted connectomes.

Figure 6.8 – Nodes efficiency of HCs and PMS patients computed
on COMMIT-weighted connectomes.
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Figure 6.9 – Boxplots showing the differences in global network measures
between HCs (white) and PMS patients (grey) for both raw and COMMIT

tractograms. We observe that after the application of COMMIT the differences
between HC and PMS patients are more pronounced.Also, the presence of outliers is

often mitigated when COMMIT is applied.
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Figure 6.10 – Barplot showing the local efficiency of all the hubs of the motor
network for both raw and COMMIT connectomes. The statistically significant
differences between HCs in white and PMS patients in grey and accounting for

discrepancies in age, sex and density are marked with an asterisk.
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Figure 6.11 – Barplot showing the strength of all the nodes of the motor network for
both raw and COMMIT tractograms. The statistically significant differences

between HCs in white and PMS patients in grey and accounting for discrepancies in
age, sex and density are marked with an asterisk. With the application of COMMIT
differences in the left associative sensory cortex, sensory-motor and right deep grey

matter strength appears.
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Chapter 7

Corpus callosum damage in
multiple sclerosis

Over the last decades, the application of advanced neuroimaging techniques and
new processing methods (Inglese et Petracca, 2018) has clarified that damage of
specific white matter WM tracts contributes to different aspects of clinical disability
in MS (Barone et al., 2018; Bester et al., 2013; Bodini et al., 2013; Margoni et al.,
2019; Palotai et al., 2020; Wahl et al., 2011). Amongst WM tracts, the CC is one
of the preferential sites of clinically eloquent damage (Barone et al., 2018; Bodini
et al., 2013; Granberg et al., 2015), since it is the target of both direct damage from
focal lesions/diffuse neurodegenerative processes and indirect damage deriving from
Wallerian degeneration of axons transected by hemispheric lesions (Garg et al., 2015).
So far, the relevance of CC damage has been documented in relapsing–remitting
multiple sclerosis (RRMS) (Barone et al., 2018; Bester et al., 2013; Bodini et al.,
2013; Wahl et al., 2011), benign (from a physical disability standpoint) MS (Bester
et al., 2013) andprimary progressive multiple sclerosis (PPMS) (Bodini et al., 2013)
but a characterization of the interhemispheric disconnection across the entire disease
spectrum is still lacking. From a methodological standpoint, in all previous studies
interhemispheric disconnection has been inferred as a consequence of callosal atrophy
(indirect quantification of fibre loss expressed as area, volume or thickness) or callosal
microstructural damage (expressed as mean or voxel-wise diffusion metrics). Whilst
both these factors probably influence the structural connectivity between the two
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hemispheres, neither of them provides a direct quantification of such connection.
Here the streamlines passing through the CC were quantified with a tractography-

based approach, and the density of interhemispheric connection accounting for the
number of reconstructed streamlines and volume of the CC was computed. Stream-
line density represents a measure of the interhemispheric connection that accounts
not only for the effects of microstructural and macrostructural damage on fibre recon-
struction but also for the anatomical variability in CC volume, which is particularly
relevant when evaluating people with multiple sclerosis (pwMS) in advanced disease
stages. Specifically, CC damage was assessed in five callosal subregions, and it was in-
vestigated whether (i) damage was evenly distributed along the CC; (ii) a phenotype
specific pattern of CC damage could be identified indifferent MS phenotypes; (iii) a
relationship could be established between CC density, hemispheric/ CC macroscopic
lesions and GM atrophy; (iv) CC damage could account for the motor and cognitive
status of pwMS.

7.1 Methods

Participants
Fifty-fiv pwMS [13 RRMS, 20 s secondary progressive multiple sclerosis (SPMS),
22 PPMS, diagnosed according to the revised McDonald criteria (Polman et al., 2011)
and 24 HCs were prospectively enrolled (Tab. 7.1). Written informed consent was ob-
tained from all participants before the beginning of the study procedures, according
to the Declaration of Helsinki. The protocol was approved by the Institutional Re-
view Board of the Icahn School of Medicine at Mount Sinai. Clinical examination,
performed within 1 week from the MRI scan, included the EDSS, the Timed 25-Ft
Walk Test (T25FWT), the Nine-Hole Peg Test (9-HPT) and the Brief International
Cognitive Assessment of Multiple Sclerosis battery [ Brief Visuospatial Memory Test
Revised (SDMT), Brief Visuospatial MemoryTest Revised (BVMT), California Ver-
bal Learning Test II (CVLT)] (Tab. 7.2).

Magnetic resonance imaging data acquisition and processing
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Figure 7.1 – From left to right, images taken from a healthy subject participating
in our study: (a) sagittal view of the T1-weighted image with the corpus callosum
parcellation in anterior, mid-anterior, central, mid-posterior and posterior; (b) all the
streamlines passing through the corpus callosum coloured according to the corpus
callosum region they cross.

Images were acquired using a 3-T MRI scanner. T1 images were segmented using
the standard FreeSurfer Desikan–Killiany atlas (Desikan et al., 2006) and the CC
was divided into five ROIs: anterior, mid-anterior, central, mid-posterior and pos-
terior (Figure 7.1). The volume of each ROI was obtained and the portion affected
by T2 hyperintense lesions was quantified, as well as the hemispheric lesion vol-
ume (LV). The GM fraction was computed. Whole-brain anatomically constrained
tractography (Smith et al., 2012) was performed and the streamlines passing through
each CC ROI were extracted. The CC density was computed as the ratio between the
number of streamlines and the volume of the considered CC portion in each subject.
See Appendix S1 for more details.

Statistical analysis
All analyses were performed using the Statistical Package for the Social Sciences 1.
Between-group comparisons were performed with ANCOVA , accounting for age,
gender and disease duration. The relationship between CC density, hemispheric/ CC
macroscopic lesions and GM atrophy as well as the relationship between MRI vari-

1. SPSS V.25.0, SPSS Inc., Chicago, IL, USA
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ables and motor/cognitive disability were assessed with hierarchical linear regression
models. See Appendix S1 for more details.

7.2 Results and discussion

Table 7.1 – (a) P values of the ANCOVA analysis for the between-group compari-
son 1HCs versus RRMS versus SPMS versus PPMS, corrected for age and gender.
(b)–(d) P values of the post hoc subgroup comparisons RRMS versus HCs (b), SPMS
versus HCs (c), PPMS versus HCs (d). (1) p values of the ANCOVA analysis for
the between-group comparison RRMS versus SPMS versus PPMS, corrected for age,
gender and disease duration. (2)–(4) p values of the post hoc subgroup comparisons
SPMS versus RRMS (2), PPMS versus RRMS (3), PPMS versus SPMS (4). For
age and gender, p values of the chi-squared/Fisher test and ANOVA comparison are
reported. Significant p values are highlighted in bold. Results that would survive
Bonferroni correction (demographics 0.05/3 = 0.02, MRI variables 0.05/12 = 0.004)
are shown in italics. All values are reported as mean ± standard deviation.

Demographic and clinical assessment
Differences in demographic and clinical features are reported in Tab. 7.1 and 7.2.

Topology of CC damage and phenotypic pattern: between-group compar-
isons Differences in streamline density were detected between pwMS and HCs in the
mid-anterior (p = 0.050), central (p = 0.029), mid-posterior (p = 0.024) and posterior
(p = 0.009) CC. A post hoc analysis revealed no differences in CC density between
people with RRMS and HCs, with a trend present only for the posterior CC (p =
0.066). People with SPMS showed a widespread decrease in density in comparison
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Table 7.2 – Clinical features of the study population. p-values of the ANCOVA
analysis for the between-group comparison RRMS vs SPMS vs PPMS, corrected for
age, gender and disease duration are reported in (1), as well as p-values of the post-
hoc subgroup comparisons SPMS vs RRMS (2), PPMS vs RRMS (3), PPMS vs
SPMS (4). ANCOVA analysis of cognitive scores was additionally corrected for years
of education. Results that would survive Bonferroni correction (0.05/ 6= 0.08, are
shown in italics. All values are reported as mean ± standard deviation.

with HCs, involving the mid-anterior (p = 0.019), central (p = 0.015), mid-posterior
(p = 0.003) and posterior (p = 0.003) CC. People with PPMS showed a significant
decrease in density in comparison with HCs in the posterior CC (p = 0.003), with
a significance trend for the mid-posterior CC (p = 0.060) (Figure 7.2). The results
of the between-group comparisons and a direct comparison of pwMS subgroups are
summarized in Tab. 7.1.

Relationship between CC density, LV and GM fraction
Accounting for the effects of age, gender and disease duration, CC density was signifi-
cantly predicted by fraction (R2 = 0.194, p = 0.012), with CC LV and hemispheric LV
as only independent predictors (β = 0.425, p = 0.001, and β = 0.416, p = 0.002, re-
spectively).

Relationship between CC damage and clinical disability
Accounting for age, gender, disease duration and years of education, the models
including CC density, CC LV, hemispheric LV and GM fraction significantly predicted
BVMT (R2 = 0.362, p = 0.013), CVLT (R2 = 0.199, p = 0.027) and SDMT (R2 =
0.309, p = 0.003), with CC density being an independent predictor of BVMT (β =
0.344, p = 0.023) and GM fraction being an independent predictor of BVMT (β =
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Figure 7.2 – Fibre density for pwMS and controls. Box plots displaying the 25%–75%
values (boxes) ± 95% values (whiskers) and median values (horizontal lines within
boxes) of mean fibre density in the different sections of the corpus callosum. p values
of the ANCOVA analysis are reported (#, significance trend, ∗p < 0.05, ∗∗p < 0.01).

0.540, p = 0.001), CVLT (β = 0.319, p = 0.033) and SDMT (β = 0.303, p = 0.031).
Accounting for age, gender and disease duration, the models including CC density, CC
LV, hemispheric LV and GM fraction significantly predicted EDSS (R2=0.239, p =
0.008), 9-HPT(R2 =0.270, p= 0.007) and T25FWT (R2=0.232, p = 0.012), with CC
density being an independent predictor of EDSS (β = 0.328, p = 0.018), 9-HPT (β =
0.327, p = 0.018) and T25FWT (β = 0.357, p = 0.021), CC LV being an independent
predictor of T25FWT (β = 0.432, p = 0.002) and GM fraction being an independent
predictor of T25FWT (β = 0.431, p = 0.017). Detailed results of the regression
models are reported in, Tab. 7.3.
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Table 7.3 – Results of the hierarchical multiple linear regression analysis.Results that
would survive Bonferroni correction (0.05/4=0.01) are shown in italics.

Topology of CC damage and phenotypic pattern
Our analysis demonstrated the presence of an inter-hemispheric disconnection in MS,
mainly affecting the splenium and the posterior portion of the CC body. This
finding expands previous results about the presence of microstructural CC damage
in MS (Barone et al., 2018; Wahl et al., 2011), confirming the prevalent posterior
involvement reported in PPMS (Margoni et al., 2019). In all phenotypes, streamline
loss mainly pertained to the occipito-temporal and limbic regions, which were severely
involved in PPMS and SPMS and showed a subtle involvement in RRMS, possibly as
a consequence of the injury of tracts connecting GM regions more prone to atrophy or
of direct axonal loss induced by macroscopic WM damage. Streamline density distri-
bution along the CC in people with SPMS, together with the topography of damage
detected in people with RRMS, seem to suggest that CC damage develops following
a postero–anterior gradient. Intriguingly, this pattern seems to replicate the topogra-
phy of regional GM progression over time which consistently involves cingulate and
posterior regions, together with deep GM regions, earlier than anterior regions in
all MS phenotypes (Eshaghi et al., 2018). The subgroup comparison of streamline
density and CC LV indicated that regions other than the posterior CC showed more
extensive damage fibre loss (mid-anterior and central CC) and higher LV (anterior



7.2. Results and discussion 142

and mid-posterior CC) in the SPMS phenotype in comparison to the RRMS pheno-
type. Regarding LV, the difference between RRMS and SPMS became evident only
in the anterior CC, again suggesting an initial sparing of this area, and in the mid-
posterior CC, where the phenomenon of lesion repair might be hampered by virtual
hypoxia occurring in fibres connecting high energy consumption regions such as the
left and right precuneus (Eshaghi et al., 2018). As for the more severe fibre loss ob-
served in the mid-anterior and central CC in the SPMS phenotype in comparison to
the RRMS phenotype, it is speculated that the posterior CC, although involved early
in the disease course, is less sensitive to further damage accrual along the disease
course, probably because it has a higher fibre density than other CC regions. People
with PPMS showed a degree of streamline density reduction in the posterior CC sim-
ilar to people with SPMS, whilst presenting a lower lesion load both in the CC and
hemispheric WM, which suggests that streamline density is modulated also by other
factors such as, for example, GMatrophy of connected regions.

Relationship between CC density, LV and GM fraction
People with SPMS showed not only a more severe density reduction but also a higher
lesion load in the hemispheric WM as well as in all CC subregions, suggesting a re-
lationship between macroscopic damage and density reduction. On the other hand,
the finding that CC involvement shows a postero–anterior gradient (similarly to GM
atrophy), as well as a previous description of a correlation between GM atrophy
and CC area (Klawiter et al., 2015) might suggest a relationship between streamline
loss in the CC and cortical atrophy. Amongst these potential drivers, the results of
our regression model point at focal WM lesions as the main correlates of CC density
reduction, with an almost equal role played by local damage and Wallerian degen-
eration from hemispheric lesions. Whilst the involvement of specific GMregions has
been interpreted as the consequence of higher energy consumption, meningeal inflam-
mation and WM lesions (Eshaghi et al., 2018; Steenwijk et al., 2016), the posterior
disconnection observed in our studyseems to be related to the direct and indirect ef-
fect of macroscopic WM lesions, confirming previous longitudinal data that explored
the relation between T2-weighted lesions and callosal atrophy at 5 years (Pelletier
et al., 2001).
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When exploring the possible influence of disease duration on CC density, no sig-
nificant predictive value of disease duration was identified, suggesting that the loss
of fibres is related to the accrual of GM and macroscopic WM damage over a critical
value rather than to a linear effect of disease duration.

Relationship between CC damage and clinical disability
Both callosal atrophy and microstructural damage have been described as substrates
of clinical impairment in RRMS and progressive MS (Barkhof et al., 1998; Barone
et al., 2018; Bester et al., 2013; Bodini et al., 2013; Papathanasiou et al., 2017; Pel-
letier et al., 1993, 2001); therefore, CC density , which is a measure of microstructural
damage that accounts for CC volume, was expected to significantly explain the clin-
ical disability of pwMS. As CC density was highly related to WM lesions, and GM
is a known predictor of disability in MS, their joint and independent contribution
to motor and cognitive disability was evaluated. As expected, GM atrophy played
a prevalent role in the prediction of cognitive impairment, with GM fraction being
related to memory, attention and information processing speed performance. Con-
versely, WM damage, expressed by both callosal density and macroscopic WM lesions,
was only related to information processing speed and flexibility. The relationship be-
tween processing speed, cognitive flexibility and CC damage can be explained by the
role of CC in granting information flow between brain regions (Barkhof et al., 1998;
Pelletier et al., 1993) and expands previous findings in people with SPMS, where
moderate correlations have been identified between CC atrophy and these cognitive
domains within an extensive neuropsychological battery (Papathanasiou et al., 2017).
As for motor disability, an inverse scenario was observed, with an almost exclusive
role of CC damage as predictor of global disability, manual dexterity and ambula-
tion performance. Such association is presumably driven by the SPMS subgroup, for
which a significant decrease in density is observable also in the anterior CC. Deficits
in ambulation performance related to disconnection of premotor and motor areas
have already been described in a variety of neurological conditions such as stroke and
leukoaraiosis (Li et al., 2015; Moretti et al., 2005) and a similar mechanism might
contribute to ambulation disability also in MS, adding to the disability induced by
cerebellar and spinal involvement (Cocozza et al., 2017a; Zackowski et al., 2009).
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Finally, whilst bimanualcoordination relies on CC integrity (Bonzano et al., 2008),
according to the callosal access model (Taylor et Heilman, 1980) also the execution of
unilateral motor tasks requires access to the motor programmes stored in the domi-
nant hemisphere (typically the left) and therefore requires callosal integrity in order to
grant the performance of the non-dominant hand, explaining the contribution of CC
damage to 9-HPT performance in our study. Although it is acknowledged that our
study was conducted on a small sample, limiting the power of our analysis and al-
lowing only exploratory interpretations to be drawn, it is believed that the sound
methodology applied for quantification of CC streamline density contributes to clar-
ification of the mechanisms behind interhemispheric disconnection, sheds some light
on its role as a factor determining clinical disability and offers an interesting hint to
the presence of a topographic pattern of WM involvement in MS.
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Chapter 8

Tract specific connectometry study
in Fabry disease

FD is a rare X-linked lysosomal storage caused by an incomplete catabolization
and subsequent intracellular accumulation of the glycosphingolipids globotriaosylce-
ramide (Gb3), due to the defective activity of the α-galactosidase A (α-GalA) enzyme
(Germain, 2010). The unmetabolized glycosphingolipid therefore accumulate in dif-
ferent tissues, including heart, kidney and CNS, leading to the development of clin-
ical symptoms (Germain, 2010). With reference to CNS involvement, FD has been
long considered to be a condition characterized only by major cerebrovascular events
(Kolodny et al., 2015). Nevertheless, a subclinical although significant impairment
of motor functions, which occurs independently from cerebrovascular involvement, is
present in FD patients, characterized by the presence of poorer fine manual dexterity,
slower gait and reduced hand speed (Löhle et al., 2015).

In line with these clinical findings, recent advanced MRI studies have showed the
presence of a deeper and complex brain involvement in FD patients, with particular
reference to the motor system (Cocozza et al., 2018b). Indeed, an alteration of the
corticostriatal pathway has been described in FD patients, and a reduced functional
connectivity between the motor cortex and the striatum has been described in this
condition (Cocozza et al., 2017c). An additional evidence of the involvement of the
extrapyramidal pathway in FD has been demonstrated in a recent study showing the
presence of susceptibility and volumetric alterations affecting two of the main relay
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stations of the extrapyramidal system, namely the striatum and the substantia nigra
(Russo et al., 2018).

Although widespread microstructural alterations of the white matter (WM) are
known to occur in FD patients, as demonstrated by different DTI studies (Albrecht
et al., 2007; Cocozza et al., 2018b), to date no information about the integrity of the
cortico-basal ganglia motor loop fibers are available. Given this background, aim of
this study was to evaluate the microstructural integrity of the main afferences and
efferences of the motor cortices to the basal ganglia motor loop in FD patients, to in-
vestigate the possible presence of structural connectivity changes in these connections,
to expand the current knowledge about motor involvement in this condition.

8.1 Methods

Participants

In this retrospective cross-sectional study, part of a larger monocentric framework
on the CNS involvement in FD, genetically proven patients were included along with
age- and sex-comparable HC. For both groups, we evaluated male and female subjects
without age limitations, with the following exclusion criteria: left handedness, co-
existence of other systemic conditions or any addiction, history of stroke, head trauma
or any other clinical diagnosis of diseases affecting the CNS.

For all FD patients, clinical variables of systemic organ involvement were obtained
from medical records, and included the following: diabetes mellitus, hypertension, car-
diac arrhythmia, left ventricular hypertrophy, renal failure (for estimated glomerular
filtration rates < 90 mL/min), proteinuria (for scores > 150 mg/24 hours), cephalalgia
and acroparesthesia.

The study was conducted in compliance with the ethical standard, and writ-
ten informed consent was obtained from all subjects according to the Declaration of
Helsinki.

MRI data acquisition
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All subjects underwent an MRI scan on the same 3T scanner (Trio, Siemens
Medical Systems, Erlangen, Germany), equipped with an 8-channel head coil. The
MRI protocol included the following sequences: a) 3D Fluid Attenuated Inversion
Recovery (FLAIR) sequence: 160 slices; TR = 6000 ms, TE =396 ms, TI = 2200 ms;
voxel size = 1.0x1.0x1.0 mm3; b) 3D T1-weighted sequence: 160 slices; TR = 1900
ms, TE = 3.4 ms, TI = 900 ms, flip angle = 9°, voxel size = 1.0x1.0x1.0 mm3; c)
diffusion weighted spin echo sequence: TR = 7400 ms, TE = 88 ms, flip angle = 90°,
voxel size = 2.2x2.2x2.2 mm3 with 64 directions at b=1000s/mm2 in addition to nine
b=0 s/mm2.

MRI data analysis

For FD patients, T2-weighted hyperintense WM lesions were segmented (when
present) by an observer with more than 8 years of expertise in neuROImaging data
analysis, unaware of subject identity, employing a semi-automated technique 1 (Jim
7). From the segmentation procedure, lesion loads were obtained as an index of
macroscopic WM damage. Furthermore, to correct for the potential impact of WM
lesions in the subsequent analyses, the corresponding lesion masks were coregistered
using an affine registration to the T1-weighted volumes for an in-painting procedure,
as implemented in FSL 2, Version 5.0.10 (FMRIB Software Library), by filling the
mask with the mean signal intensity values of the surrounding normal-appearing
WM.

For all the subjects involved in the study, the T1-weighted volumes were segmented
using the standard FreeSurfer Desikan-Killiany atlas (Desikan et al., 2006) which
allowed to obtain a cortical parcellation of GM in 85 different ROIs. Along with this
parcellation, the ICV was also calculated as the sum of GM, WM and cerebrospinal
fluid volumes, in order to correct for differences in head sizes, which are known to
occur in this condition (Pontillo et al., 2018).

DTI data were pre-processed to correct for motion and eddy currents (Andersson
et Sotiropoulos, 2016). Standard DTI metrics of FA, axial diffusivity (AD), radial

1. http://www.xinapse.com/home.php
2. http:// www.fmrib.ox.ac.uk/fsl
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diffusivity (RD) and mean diffusivity (MD) were computed [13] using MRtrix 3. To
perform global anatomical constrained tractography (ACT) (Smith et al., 2012), we
first co-registered the T1 and DT images using FLIRT 4 (Jenkinson et al., 2002) with
boundary based cost function (Greve et Fischl, 2009). Then we computed the fiber
orientation distribution functions (Tournier et al., 2007a,b) and generated 1 million
streamlines using the iFOD2 (Tournier et al., 2010) tractography algorithm from
which, for each subject, we built the corresponding connectome using the FreeSurfer
parcellation in 85 ROIs. From the connectomes we extracted the bundles connecting
the Precentral gyrus (PrCG) with the striatum (computed as caudate nucleus plus
putamen) and with the thalamus, respectively reflecting the main afferent and ef-
ferent pathways of the motor circuit within the cortico-striatal-thalamo-cortical loop
(Lanciego et al., 2012; Obeso et al., 2008), as well as the CST as a representation of
the pyramidal system. Thus, we built a smaller connectome using only these as ROIs
(three for the left and three for the right hemisphere).

Finally, DTI metrics and connectomes were combined to carry on diffusion MRI
connectometry (Yeh et al., 2013) which consists in assigning to each bundle a value
that is obtained by taking the mean of the chosen metric along the streamlines com-
posing the bundle.

An example of the reconstructed tracts is available in 8.1.

Statistical Analysis

Statistical analysis was carried out using the Statistical Package for the Social
Sciences (SPSS) package (Version 23, IBM, Armonk, New York). Differences in term
of age and sex were tested using a two-sample t test and a chi-squared test, respec-
tively. A Generalized Linear Model (GLM) was employed to compare the two groups
in terms of the diffusion MRI connectometry values derived from each DTI metric
(FA, MD, AD, RD) on both hemispheres (left and right), including age, sex and ICV
as covariates, to remove the effects of potential confounding factors not related to mi-
crostructural damage. For each DTI metric, the corresponding mean value averaged

3. http://www.mrtrix.org
4. https://fsl.fmrib.ox.ac.uk
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Figure 8.1 – Image showing the reconstructed tracts in a 29-year-old female healthy
control. From left to right, the cortico-spinal, the cortico-striatal and thalamo-cortical
tracts (red indicates the left side, blue the right side), with the green and yellow areas
indicating the left and right precentral gyri, respectively. Finally, the dark blue and
purple regions of interests represent the left striatum (as the sum of caudate nucleus
and putamen) and the thalamus, while in orange and light blue are displayed the
contralateral regions.

over the entire WM volume was also included in the GLM as a nuisance variable, in
order to correct for an index of global WM microstructural damage.

Results were considered significant for p<0.05.

8.2 Results and discussion

Forty-seven FD patients and forty-nine HC were included in this study, with the
two groups being not different neither for age (p=0.99) nor sex (p=0.10). A complete
list of the demographic and clinical information of the included population is available
in Tab.8.2.

We found a diffuse microstructural damage of the entire WM highlighted by
the significant difference in FA between HC and FD (0.238 ± 0.011 vs 0.233 ±
0.012, p=0.02) (Tab.8.4) (Figure8.3), along with the presence of a microstructural
involvement of cortico-striatal tracts in FD patients, predominantly affecting the
left side compared to the contralateral (Tab.8.5) (Figure8.6). In particular, we
found a significant reduction of mean FA values of the left cortico-striatal fibers
(0.43±0.02 vs 0.41±0.02 for HC and FD, respectively, p=0.001), coupled to an in-
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Figure 8.2 – Subjects demographic and clinical variables of all subjects included in
the study. Age is expressed in years, while ERT duration is expressed in months FD,
SD standard deviation, ERT enzyme replacement therapy, n.a. not applicable.

Figure 8.3 – Box and whiskers plot showing the differences in terms of mean mi-
crostructural values along the entire white matter in Fabry patients compared with
healthy controls. Asterisk indicates significant differences between the two groups.
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Figure 8.4 – Mean values and standard deviations of the diffusion metrics (FA, MD,
AD and RD) of the entire WM for the two groups of subjects. In the last column,
the p values obtained comparing HC and FD using a GLM with age, sex, and ICV
are reported (the significant difference is in italics).

crease in MD (0.67·10-3±0.02·10-3mm2/s vs 0.68·10-3±0.03·10-3mm2/s, p=0.001)
and RD (0.50·10-3±0.02·10-3mm2/s vs 0.52·10-3±0.03·10-3mm2/s, p<0.001) values,
while no differences emerged when AD maps were evaluated (1.00·10-3±0.03·10-
3mm2/s vs 1.01·10-3±0.03·10-3mm2/s, p=0.1109). When evaluating cortico-striatal
connection on the right side, a trend of reduced mean RD was found in FD patients
compared to HC, not reaching the statistical significance (0.55±0.03 vs 0.56±0.04,
p=0.09), while no differences emerged for the remaining variables (p=0.34, p=0.16
and p=0.14 for FA, MD, and AD, respectively). Similarly, the thalamo-cortical
tracts showed a predominant microstructural damage in FD patients for the left
side compared to the contralateral. In particular we found a significant increase
in MD (0.67·10-3±0.02·10-3mm2/s vs 0.68·10-3±0.02·10-3mm2/s, p=0.01) and RD
(0.49·10-3±0.03·10-3mm2/s vs 0.51·10-3±0.03·10-3mm2/s, p<0.001) values, while no
differences emerged when FA and AD maps were evaluated. None of the metrics
showed significant differences in the right hemisphere.

Finally, when evaluating microstructural changes affecting the CST, a less pro-
nounced lateralization was found, with results showing a similar pattern of involve-
ment, although mainly bilateral (Tab.8.5) (Figure8.6).

In FD patients we found prominent microstructural damage of the major WM
tracts implicated in both the extrapyramidal and pyramidal motor systems.

Poorer motor performance compared to age-matched HC has been described in FD
patients, mainly involving functional domains (e.g. gait and hand speed) related to
the extrapyramidal system (Löhle et al., 2015). Along with the evidence from ex-vivo
studies of pathologic Gb3 accumulation in different neuronal populations including
the substantia nigra (Kaye et al., 1988; de Veber et al., 1992), recent neuroimaging
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Figure 8.5 – Mean values and standard deviations of the diffusion metrics (FA, MD,
AD and RD) of the three WM tracts (PrCG-striatum, thalamus-PrCG, and CST)
for the two groups of subjects. The p values obtained comparing HC and FD using
a GLM with age, sex, ICV, and mean values of the metric in the entire WM are
reported in the last column (significant differences are in italics).
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Figure 8.6 – Box and whiskers plot showing the results of the tractometry analy-
ses, with mean diffusion metrics along the evaluated tracts in Fabry patients com-
pared with healthy controls. Asterisk indicates significant differences between the
two groups.

studies demonstrated the occurrence of neurodegenerative phenomena in two of the
main hubs within the cortico-striatal-thalamo-cortical motor loop (i.e. striatum and
substantia nigra), as well as functional disconnection between the motor cortex and
the basal ganglia in this condition (Cocozza et al., 2017c; Russo et al., 2018). In
conjunction with these previous evidences, our results may support the hypothesis
of a primary neurodegenerative damage of the extrapyramidal system, occurring at
least in part independently from micro- and macro-vascular pathology.

Indeed, microstructural damage of the cortico-striatal and thalamo-cortical pro-
jections may result from mechanisms of retrograde (Patel et al., 2016) and antero-
grade (Kanamori et al., 2012) transneuronal axonal degeneration, respectively, caused
by primary neurodegeneration of intermediate relay stations -mainly the substantia
nigra- within the cortico-striatal-thalamo-cortical motor loop. In accordance with this
speculation, similar alterations of DTI metrics have been demonstrated in the frontal
WM of Parkinson’s disease (PD) patients (Atkinson-Clement et al., 2017; Cochrane
et Ebmeier, 2013; Planetta et al., 2014). On the other hand, other tractography stud-
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ies on PD patients reported opposed DTI alterations (i.e. increased FA and reduced
MD) of the motor cortico-striatal and thalamo-cortical tracts (Mole et al., 2016),
while concordant evidences exist on theCST showing an increase of FA (and a par-
allel reduction of MD) associated to PD, suggesting a reorganization of these fibers
possibly reflecting a compensatory increase in axonal density due to axonal sprouting
(Arkadir et al., 2014; Atkinson-Clement et al., 2017).

Furthermore, the prominent alteration of WM RD over AD showed by FD patients
in our sample appears to suggest myelin damage rather than axonal degeneration
(Alexander et al., 2007), so that the observed alterations may actually reflect subtle
ischemic demyelination of the investigated tracts resulting from vascular pathology
(Kelley, 2006; Shi et Wardlaw, 2016). Indeed, a similar pattern of DTI metrics al-
terations is known to characterize both white matter hyperintensities (WMH) and
normal appearing white matter (NAWM) of patients with cerebral small vessel dis-
ease (SVD) (Pasi et al., 2016; Raja et al., 2019). In particular, several voxel-based
DTI studies demonstrated that the occurrence of vascular parkinsonism is associated
with more prominent microstructural damage of the bifrontal WM, the corona radi-
ata and the anterior limb of internal capsule, which are the main tracts involved in
movement control (Deverdun et al., 2014; Salsone et al., 2019; Van Der Holst et al.,
2015; Wang et al., 2012). Indeed, it has been hypothesized that SVD disrupts the
structural integrity of WM tracts, including the corticostriatal and thalamocortical
fibers, thereby reducing the influence of the basal ganglia on motor, premotor, and
supplementary motor cortices (Van Der Holst et al., 2015). This disconnection of
the basal ganglia–thalamo-cortical circuit could possibly lead to subcortical atrophy,
ultimately resulting in parkinsonism. Furthermore, SVD could also lower the thresh-
old for developing parkinsonism symptoms, modifying the threshold for Lewy body
pathology to become symptomatic (Van Der Holst et al., 2015). In this light, a simi-
lar mechanism could be theorized for FD, in which widespread WM microstructural
damage has been demonstrated, not sparing the major frontal WM projection tracts
(Albrecht et al., 2007; Cocozza et al., 2018a), whose prominent involvement could
make FD patients more prone to the development of symptomatic or even subclin-
ical impairment of motor functional domains, mainly related to the extrapyramidal
system.
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The prominence of WM microstructural damage on the left side observed in our
sample of FD patients reasonably relies on the hand-dominance of the studied sub-
jects. Indeed, an asymmetry in DTI metrics of major motor WM tracts is known to
exist in HC, with higher anisotropy values in the dominant hemisphere (Angstmann
et al., 2016; Catani et al., 2010; Nathan et al., 1990; Trivedi et al., 2009). Therefore,
in a condition in which a widespread microstructural damage occurs, differences of
DTI metrics are more likely to emerge on the dominant side. Furthermore, due to
the higher level of activation and energy demand, motor WM tracts of the domi-
nant hemisphere are theoretically more disposed to ischemic injury and excitotoxic
mechanisms (Tekkök et al., 2007).

Whatever its origin, disruption of the cortico-striatal projection fibers may un-
derlie the reduction of functional connectivity between the motor cortex and the
basal ganglia observed in this condition (Cocozza et al., 2017c). Nevertheless, it is
known that the relationship between structural and functional connectivity may not
be straightforward, so that future dynamic effective connectivity resting-state fMRI
studies are warranted in order to unravel the causal connection between motor cortex
and striatum functional activation (Park et al., 2018).

Based on these observations, the question remains as to in which proportion pri-
mary neurodegenerative phenomena and cerebrovascular damage contribute to the
motor functional impairment observed in FD. To disentangle this issue, further stud-
ies are needed, possibly oriented toward the direct investigation of microstructural
damage at the level of substantia nigra and nigrostriatal connections, whose alter-
ations bear the potential to represent more specific markers of primary neurodegen-
erative parkinsonism (Deng et al., 2018; Langley et al., 2016; Theisen et al., 2017;
Zhang et al., 2001, 2015). Furthermore, the lack of clinical data also needs to be
acknowledged as a limitation of our study. However, even if theoretically the cor-
relation with clinical measures of motor impairment could have helped to elucidate
the functional meaning of the observed WM alterations, it is known that neurological
alterations in

FD patients are mild (Löhle et al., 2015) and thus hardly relate to findings of
advanced brain MRI techniques (Cocozza et al., 2017c; Russo et al., 2018).

Although characterized by these limitations, our results confirm the presence of an



8.2. Results and discussion 156

extrapyramidal involvement in FD patients, showing the presence of microstructural
changes significantly affecting the cortico-striatal pathway in this condition, further
confirming the presence of a deep and complex involvement of motor circuits in FD.
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Conclusion

The introduction of dMRI presents a cornerstone in the neuroimaging field, becom-
ing an invaluable tool for in-vivo study of the brain structure. However, data acquisi-
tion still suffers from low resolution, artifacts and noise due to technical limitations.
In this context tractography tries to describe the WM architecture by reconstructing
axonal pathways based on dMRI data. The limited quality of the data, as well as
the complexity of the task, yield to an “ill-posed” inverse problem characterized by
non-unique solutions.

In section 5 we presented a MCMC Bayesian approach to improve signal recon-
struction robustness while enhancing the estimation of parameters describing mi-
crostructural properties based on dMRI data. This is achieved by using a hierarchical
approach on prior information and proved to be more appropriate for fitting across
distinct tissue types while reducing noise effects characterizing voxel-by-voxel fitting
methods.

In chapter 1.3 we presented how different tractography methods perform and we
showed how these limitations have impact on brain connectivity studies in patients
affected by MS and Fabry disease (5.2).

Then we focus on the so called “global” tractography algorithms, highlighting
strengths and drawbacks of both generative and discriminative methods 1.3.3. We
propose a novel approach developed in three different stages and representing the core
of this thesis(1.4).

The first stage is presented in section 2, where we introduced a graph-based semi-
global method tackling the problem of bottlenecks in streamlines reconstruction caus-
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ing density inhomogeneity in correspondence of bending regions. To solve the prob-
lem, we introduced an iterative procedure that uses microstructure information and
provides feedback to the shortest path tractography algorithm about the plausibility
of the reconstruction.

The second stage is represented by the introduction of a global adaptive method,
exploiting both the flexibility and the strengths of global reconstruction approaches,
while overcoming the ROI-based nature of the previous one. Thanks to a convenient
parameterization, we were able to dramatically reduce the number of parameters
needed to represent the streamlines, while their trajectory were adapted using an
MCMC approach informed by the observed diffusion data. The results show how the
dynamic adaptation allows overcoming the limitations due to a static input, charac-
teristic of global discriminative approaches, and further improves the reconstructions.
This, in turn allows to better discriminate between valid and invalid connections, con-
sequently promoting the removal of more false positives.

As final stage, we introduced the concept of bundle-o-graphy. Built upon the
global adaptive approach previously described, we presented a method to directly
model WM bundles, i.e., disentangling tractography reconstructions from streamline
representation. By scaling-up the reconstruction process, the possibility to directly
model and optimize bundles dramatically decreases the complexity of the tractogra-
phy task. This, in turn, allow to exploit the potential of bundle-based reconstruction
approaches while keeping a global perspective.

We believe the proposed methods could represent a step forward in characterizing
and quantifying the structural connectivity by combining micro and macro-structure
information, following the idea that multi-modality, nowadays, represents the most
promising way to overcome tractography limitations.
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Appendix A

Collaborations and Doctoral
activities

A.1 Collaborations
— Joint PhD University of Verona - University of Sherbrooke, Canada

In April 2019 I’ve had the opportunity to move to one of the most well known laboratory
in the field, the Sherbrooke Connectivity Imaging Laboratory (SCIL) at University of Sher-
brooke, headed by Prof. Maxime Descoteaux. This is enclosed in an international collabo-
ration providing qualifications recognized in two different countries, Italy and Canada, and
where the two university institutions share the responsibilities of supervising, coordinating
and examining the researcher’s work towards the PhD degree.

— Diffusion connectivity application to study the cortico-striatal integrity in Fabry disease -
University of Verona, University “Federico II”, Naples
Recent evidences suggested the presence of an alteration of the extrapyramidal system in
FD Cocozza et al. (2017b), a rare X-linked lysosomal storage disorders long considered to
be characterized by major cerebrovascular events only. In particular, an alteration of the
cortico-striatal pathway has been described in these patients, with a reduced functional
connectivity between the motor cortex and the striatum, bilaterally. Although a widespread
alteration of the microstructural integrity of WM has been described in FD patients, to
date no direct investigation of the possible damage of the cortico-striatal fibers has been
performed. Given this knowledge, aim of the work was to study the microstructural integrity
of the cortico-striatal connections in FD patients, compared to a group of HC, to investigate
the possible presence of structural connectivity changes in these connections and expand the
current knowledge about motor involvement in FD.



A.2. Journal publications 185

— Using microstructure informed tractography to reduce discrepancy in the density of struc-
tural connectomes - University of Verona, Icahn School of Medicine at Mount Sinai, New
York
Graph theory is a valuable framework to study brain connectivity and has been widely ap-
plied to investigate neurological conditions such as MS. However, especially when comparing
healthy subjects with patients affected by brain diseases, graph measures may be influenced
by the discrepancy in density Fornito et al. (2016); van Wijk. et al. (2010) . In the case of
structural connectomes this discrepancy can be related to the known biases in tractography
Girard et al. (2014) . Even though it is known that reducing this effect will highlight the true
differences in graph’s topology between groups of subjects, up to date there is no common
strategy to deal with this issue. We proposed to use microstructure informed tractography
to directly account for such density differences and provide a fair comparison between MS
patients and HC.

— Exploring the presence and clinical impact of interhemispheric disconnection in progressive
multiple sclerosis - University of Verona, Icahn School of Medicine at Mount Sinai, New
York
We explored the presence and clinical impact of interhemispheric disconnection in PMS
through a tractography-based approach, quantifying the number of streamlines passing
through callosal subregions. In PMS, we identified a reduced number of streamlines in
the splenium and the anterior portion of the CC body. Patients with primary and sec-
ondary progressive phenotype presented different patterns of CC involvement. The reduced
number of streamlines in central and anterior CC was related to motor disability and fatigue,
while loss of the integrity in the posterior portion of CC was the main feature of cognitively
impaired patients.

A.2 Journal publications
— Battocchio, M., Girard, G., Barakovic, M., Ocampo, M., Thiran, J.P., Schiavi, S., Da-

ducci, A., 2019. Improving graph-based tractography plausibility using microstructure infor-
mation. Computational Diffusion MRI, Springer International Publishing. pp. 367–375.

— Cocozza, S., Pontillo, G., Battocchio, M., Riccio, E., Caccavallo, S., Russo, C., Di Risi, T.,
Pisani, A., Daducci, A., Brunetti, A., 2019. Microstructural damage of the cortico-striatal
and thalamo-cortical fibers in fabry disease: a diffusion mri tractometry study. Neuroradi-
ology , 1432–1920

— Petracca, M., Schiavi, S., Battocchio, M., El Mendili, M.M., Fleysher, L., Daducci, A.,
Inglese, M., 2020. Streamline density and lesion volume reveal a postero–anterior gradient of
corpus callosum damage in multiple sclerosis. European Journal of Neurology 27, 1076–1082

— Schiavi, S., Petracca, M., Battocchio, M., El Mendili, M.M., Paduri, S., Fleysher, L.,
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Inglese, M., Daducci, A., 2020. Sensory-motor network topology in multiple sclerosis: Struc-
tural connectivity analysis accounting for intrinsic density discrepancy. Human Brain Map-
ping 41, 2951–2963

— Battocchio, M., Schiavi, S., Descoteaux, M., Daducci, A., 2021. Improving tractography
accuracy using dynamic filtering. Computational Diffusion MRI, Springer International
Publishing. pp. 45–54.

— Powell, E., Battocchio, M., Parker, C.S., Slator, P.J., 2021. Generalised hierarchical
bayesian microstructure modelling for diffusion mri. Computational Diffusion MRI, Springer.
pp. 36–47

— Gabusi, I., Pontillo, G., Petracca, M., Battocchio, M., Bosticardo, S., Costabile, T.,
Daducci, A., Pane, C., Riccio, E., Pisani, A., Brunetti, A., Schiavi, S., and Cocozza S., 2022.
Structural disconnection and functional reorganization in Fabry Disease: a multimodal MRI
study. Brain Communications (accepted)

— Battocchio, M., Schiavi, S., Descoteaux, M., Daducci, A., 2022. Bundle-o-graphy: improv-
ing structural connectivity estimation with adaptive microstructure-informed tractography
(under review)

A.3 Conference abstracts
— Matteo Battocchio, Gabriel Girard, Muhamed Barakovic, Mario Ocampo, Jean-Philippe

Thiran, Simona Schiavi and Alessandro Daducci, September 2018. “Graph based microstruc-
ture informed tractography”, poster Medical Image Computing and Computer Assisted In-
tervention Society (MICCAI).

— Matteo Battocchio, Sirio Cocozza , Simona Schiavi , Giuseppe Pontillo , Camilla Russo
, Antonio Pisani , Alessandro Daducci and Arturo Brunetti, May 2019. “Microstructural
changes of the cortico-striatal pathway in Fabry disease: a diffusion MRI connectometry
study”, abstract International Society for Magnetic Resonance in Medicine (ISMRM) and
Italian chapter ISMRM.

— Sirio Cocozza, Matteo Battocchio, Giuseppe Pontillo, Simona Schiavi, Camilla Russo, Anto-
nio Pisani, Alessandro Daducci and Arturo Brunetti, 2019. “Microstructural damage of fibers
connecting anterior and posterior nodes of the DMN in Fabry disease”, abstract OHBM.

— Sirio Cocozza, Matteo Battocchio, Giuseppe Pontillo, Simona Schiavi, Camilla Russo, An-
tonio Pisani, Alessandro Daducci and Arturo Brunetti, 2019. “A diffusion connectometry
study of the cortico-striatal patwhway integrity in Fabry Disease”, abstract OHBM 2019.

— Simona Schiavi , Maria Petracca , Matteo Battocchio , Mohamed Mounir El Mendili ,
Matilde Inglese and Alessandro Daducci, 2019. “Using microstructure informed tractography
to reduce discrepancy in the density of structural connectomes. An application to Multiple
Sclerosis”, abstract ISMRM.
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— Maria Petracca, Simona Schiavi, Matteo Battocchio, Mohamed Mounir El Mendili, Swetha
Paduri, Lazar Fleysher, Alessandro Daducci and Matilde Inglese, 2019. “Motor network
topology in MS: structural connectivity changes accounting for density reduction”, abstract
OHBM and Italian chapter ISMRM 2019.

— Maria Petracca , Matteo Battocchio , Simona Schiavi , Mohamed Mounir El Mendili ,
Lazar Fleysher , Alessandro Daducci and Matilde Inglese. “Investigating the contribution of
interhemispheric disconnection to disability and fatigue in Progressive Multiple Sclerosis”,
abstract ISMRM 2019.

— Matteo Battocchio , Simona Schiavi, Maxime Descoteaux and Alessandro Daducci. “Im-
proving tractography accuracy using dynamic filtering”, oral at MICCAI September 2020.

— Matteo Battocchio, Simona Schiavi, Maxime Descoteaux and Alessandro Daducci. “Bundle-
o-graphy” Educational oral ISMRM 2021, Magna Cum Laude Merit Award.

— Matteo Battocchio, Simona Schiavi, Maxime Descoteaux and Alessandro Daducci. “Testing
the feasibility and effectiveness of bundle-based global tractography (bundle-o-graphy) in real
human brain data”, abstract ISMRM 2022.

— G Girard, J Rafael-Patino, R Truffet, D Baran Aydogan, N Adluru, V A Nair, V Prab-
hakaran, B B Bendlin, A L Alexander, S Bosticardo, I Gabusi, M Ocampo-Pineda, M
Battocchio, Z Piskorova, P Bontempi, S Schiavi, A Daducci, A Stafiej, D Ciupek, F Bogusz,
T Pieciak, M Frigo, S Sedlar, S Deslauriers-Gauthier, I Kojcic, M Zucchelli, H Laghrissi,
Y Ji, R Deriche, K G Schilling, B A Landman, A Cacciola, G A Basile, S Bertino, N
Newlin, P Kanakaraj, F Rheault, P Filipiak, T Shepherd, Y C Lin, D G Placantonakis, F
E Boada, S H Baete, E Hernández-Gutiérrez, A Ramírez-Manzanares, R Coronado-Leija, P
Stack-Sánchez, L Concha, M Descoteaux, S Mansour L, C Seguin, A Zalesky, K Marshall,
E J Canales-Rodríguez, Y Wu, S Ahmad, P T Yap, A Théberge, F Gagnon, F Massi, J L
Villarreal Haro, M Pizzolato, E Caruyer, and J P Thiran. Structural connectivity estimates
are accurate: the outcome of diffusion-simulated connectivity (DiSCo) challenge, abstract
ISMRM 2022.

— Ilaria Gabusi, Giuseppe Pontillo, Simona Schiavi, Sara Bosticardo, Maria Petracca, Mat-
teo Battocchio, Antonio Pisani, Arturo Brunetti, Alessandro Daducci, and Sirio Cocozza.
Combined structural and functional connectivity changes in Fabry disease, abstract ISMRM
2022.

A.4 Attended Conferences and Workshops
— MICCAI 16 - 20 September 2018, Granada, Spain

MICCAI is dedicated to the promotion, preservation and facilitation of research, education
and practice in the field of medical image computing and computer assisted medical inter-
ventions including biomedical imaging and robotics, through the organization and operation
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of regular high quality international conferences and publications which promote and foster
the exchange and dissemination of advanced knowledge, expertise and experience in the
field produced by leading institutions and outstanding scientists, physicians and educators
around the world.

— ISMRM 11 -16 May 2019, Montréal, Canada
ISMRM is an international, nonprofit, scientific association whose purpose is to promote
communication, research, development, and applications in the field of magnetic resonance
in medicine and biology and other related topics and to develop and provide channels and
facilities for continuing education in the field.

— Multi-Scale Imaging of the White Matter Anatomy, 17 May 2019, Montreal, Canada
Researchers from around the world specialized in diffusion MRI gathered to discuss neu-
roanatomy observed at multiple scales, from large-scale network connectivity to to axonal
microstructures.

— MIDL 6- 9 July 2020, Montréal, Canada
The MIDL conference aims to be a forum for deep learning researchers, clinicians and
health-care companies to take a leap in the application of deep learning based automatic
image analysis in disease screening, diagnosis, prognosis, treatment selection and treatment
monitoring.

— Brainhack Micro2Macro, January 2021
The Brainhack Micro2Macro 2021 is an official satellite event of the International Global
Brainhack 2020. The goal of this hackathon is to bring together researchers with disparate
backgrounds to collaborate on open science projects in neuroimaging, with a focus on the
link between brain macrostructure and microstructure. During the event I contributed to
the development of a hierarchical bayesian approach for microstructure modelling.

— ISMRM 7 -12 May 2022, London, England
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