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ABSTRACT
Geospatial data comprise around 60% of all the publicly available
data. One of the essential and most complex operations that brings
together multiple geospatial datasets is the spatial join operation.
Due to its complexity, there is a lot of partitioning techniques
and parallel algorithms for the spatial join problem. This leads to
a complex query optimization problem: which algorithm to use
for a given pair of input datasets that we want to join? With the
rise of machine learning, there is a promise in addressing this
problemwith the use of various learnedmodels. However, one of the
concerns is the lack of standard and publicly available data to train
and test on, as well as the lack of accessible baseline models. This
resource paper helps the research community solve this problem by
providing synthetic and real datasets for spatial join, source code
for constructing more datasets, and several baseline solutions that
researchers can further extend and compare to.

CCS CONCEPTS
• Information systems→ Database management system en-
gines; • Computing methodologies→Machine learning ap-
proaches.
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Figure 1: Distribution of best join algorithm in terms of run-
ning time

1 INTRODUCTION
In the era of data science, real data is taking part of all scientific
projects. The majority of these projects require some kind of geospa-
tial data which provide contextual information about the where-
abouts of the study. Spatial join is the main operation that combines
multiple datasets based on the geolocation. For example, it can find
geographically overlapping records or run a point-in-polygon query
to associate GPS points with regions of interest. The importance of
spatial join led to a large number of spatial join algorithms for big
data [2–4, 6, 8, 13, 14].

This large number of solutions for executing a spatial join raises
several challenging research problems in query processing and
query optimization. In this resource paper, we focus on the problem
of spatial join query optimization, that is, given two input datasets
that a user wants to join, how to estimate the cost of spatial join
and how to choose the most appropriate algorithm? In particular,
we focus on four fundamental spatial join algorithms, namely, block
nested-loop join (BNLJ), partition based spatial merge join (PBSM),
distributed index-based join (DJ), and repartition join (REPJ). Unfor-
tunately, the complexity of the spatial join and the modern big-data
systems make these problems extremely difficult. For example, Fig-
ures 1 shows the distribution of the best join algorithm in running
time when we execute them on 300 pairs of different datasets. This
distribution indicates that it is challenging to choose an appropriate
algorithm for a random join input. This motivated our research to
investigate the insights of distributed spatial join algorithms.

The rise of machine learning makes it an attractive solution to
break the complexity of estimating the cost of spatial join. However,
to obtain a good model for such a complex problem, we need a
training set of a large size. The training set must be diverse enough
to catch most of the aspects of spatial join. However, this is a
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time consuming and expensive process due to the complexity of
spatial join. Additionally, machine learning models need both good
and bad examples equally, so we need to run a lot of inefficient
algorithms to make sure that the model will learn to avoid them
in specific scenarios. Each data point, which is corresponding to a
join operation, could take few hours to complete. For example, to
generate a small training set of 300 data points, we had to occupy a
12-node cluster for 190 hours which is an expensive process that
not everyone has access to.

In this paper, we publish a detailed and curated dataset that has
been carefully designed and curated for over a year and would take
at least a month to reproduce, if at all possible, for other researchers.
We generated this resource in the course of building a machine
learning model for spatial join. Interested readers can find more
details on our recently published paper [11]. The dataset has more
than 7,000 data points and has been collected from two in-house
clusters at UC Riverside and University of Verona, and a cloud-based
cluster hosted by Amazon Web Services (AWS). We also include
all the code and scripts that allow researchers to generate similar
datasets with similar or different characteristics. Finally, we publish
a first-cut machine learning model and a theoretical model that can
be used as baselines for comparison.

The rest of this paper is organized as follows. Section 2 gives
the details of the datasets and proposed features included in this
resource. Section 3 illustrates the spatial join cost models that we
make available as part of this resource. Section 4 gives a quick
overview on how to access and extend the resource. Finally, Sec-
tion 5 concludes the paper and gives some future directions.

2 DATASETS AND PROPOSED FEATURES
In this section, we describe the available datasets in this resource
that can be used to devise spatial join cost models. The described ap-
proach is fully reproducible and extensible. Therefore, researchers
can follow this process to generate their own datasets if they have
specific requirements. Otherwise, researchers can directly use our
published datasets, which are already suitable for different purposes.
In particular, our published datasets include both synthetic and real
data [10]. The synthetic datasets includes the data in different dis-
tributions and scale. The real datasets are provided to validate that
our proposed models work well on both synthetic and real datasets.
Moreover, we also provide a dataset which contains hand-crafted
features, which were proven to be useful for prediction problems.
Researchers can directly use these proposed features, or extend
them with other features based on their own problems.

2.1 Synthetic datasets
The first step to build our learned models for spatial join cost es-
timation is to generate or collect spatial datasets with variable
characteristics. In particular, we utilized an open-source spatial
data generator [7, 12] to generate synthetic datasets. Overall, the
spatial data generator requires the following parameters to gener-
ate a dataset: cardinality, distribution, number of dimensions, type
of geometries, and output format (CSV or GeoJSON). Users have
several options to generate their dataset using the spatial data gen-
erator. First, the most convenient method is to generate data using
Spider [7], an interactive web-based generator for spatial datasets.

Spider provides the visualization of user’s generated datasets. The
web interface is intuitive and easy to use, but might be difficult
to generate batch of datasets. This is the reason we also provide
the Python and Spark API, in which user can programmatically
generate their datasets. If the scale of dataset is not too large, users
can use the published Python program [12] to generate a spatial
dataset as in the following example:

python3 g en e r a t o r . py d i s t r i b u t i o n =uni form
c a r d i n a l i t y =100 d imens ions =2 geometry= po i n t

If users want to generate large-scale datasets and store them in
HDFS, our Spark API would be the best option to complete this
requirement.

import edu.ucr.cs.bdlab.beast._
import edu.ucr.cs.bdlab.beast.generator._
val generatedData: SpatialRDD =
sparkContext.generateSpatialData(
UniformDistribution , 100,
opts=Seq(SpatialGenerator.Dimensions ->2,
PointBasedGenerator.GeometryType ->"point"))

The open-source Python program and Spark API allow users to
generate spatial datasets in batch. For example, they can define the
required parameters in a CSV file, then read each row of that CSV
file to generate the corresponding dataset. In our own datasets for
the learned spatial join cost model, we generate datasets in different
scale: small, medium and large and different distributions: uniform,
diagonal, gaussian, bit, parcel, as shown in Figure 2. In addition,
we also add several real datasets to verify that our model could be
trained using synthetic data and the trained model will still work
well on real data. The detail will be discussed in Section 2.2.

2.2 Real datasets
While the spatial data generator that we used provide huge flexibil-
ity with data distributions and parameters, it cannot fully replace
real datasets with real distributions. Therefore, we provide a group
of real datasets as part of this resource. To avoid adding tens of real
datasets that might have similar distributions, we created 82 real
datasets by spatially partitioning several large-scale datasets, as il-
lustrated in Figure 3. We take the publicly available datasets and use
a grid to spatially partition each of them into smaller datasets, each
representing a different geographical region with different charac-
teristics. This approach is better than using the full real datasets
since it can be used to create arbitrarily many datasets from a single
dataset. In this resource, we propose the script that partitions a
real dataset into smaller ones as well as the partitioned datasets
illustrated in Figure 3. All these real datasets are downloaded from
UCR-Star [5] and users can download more datasets and partition
them in the same way.

2.3 Proposed features and performance metrics
The datasets described in Sec 2.1 and 2.2 are already useful for
many researchers in different purposes. In this section, we take
one step further to provide another option for researchers who
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(a) Uniform (b) Gaussian (c) Parcel (d) Diagonal (e) Combo

Figure 2: Some of the synthetic datasets included in this resource

(a) TIGER2017 LINEARWATER (b) TIGER2018 Faces (c) TIGER2018 Edges

Figure 3: Partitioned real datasets. Each of the six main datasets is further partitioned to create multiple smaller real datasets

want to build machine learning models on insightful features from
spatial join inputs. This is a reasonable requirement, since most of
machine learning models expect fixed-size feature vectors for the
training/testing process. Given the spatial join inputs𝐷𝑖 and𝐷 𝑗 , we
compute a set of features that effectively reflect the knowledge that
is necessary to the model for estimating the cost of a join operation
𝐷𝑖 Z 𝐷 𝑗 . The cost metric could be join selectivity, number of MBR
tests selectivity, or the best join algorithm in terms of running time.
In Table 1 we summarize the proposed set of features in different
groups. Interested readers can find more details on our published
paper [11].

Since spatial join is an expensive operation, collecting data from
a huge amount of join queries is challenging and time-consuming.
Therefore, this dataset would be helpful for researchers who want
to study the insights of spatial join queries, but do not have enough
time or hardware resources to execute their own queries. To gener-
ate the spatial join execution dataset, we make a list of join pairs,
each pair includes two input datasets. Then we execute four join
algorithms, including BNLJ, PBSM, DJ and REPJ, for each pair of
datasets. Once this process is complete, we can collect several met-
rics such as join cardinality, the number of MBR tests and the
running time for each join algorithm.

2.4 Datasets for spatial join cost models
This section discusses the dataset whichwould be used to train/test/e-
valuate in the spatial join cost models. This is a tabular dataset in
which each row contains the extracted features and performance
metrics discussed in Section 2.3. In particular, we computed total
35 features as shown in Table 1. The dataset also include three per-
formance metrics which are join selectivity, MBR tests selectivity
and the best join algorithm. Thus, researchers can use this dataset

Table 1: Summary of features

Computation Group Feature Description

Si
ng

le
da
ta
se
t𝐷

File system Si
ze #geo Number of geometries

size Total input size

Scan(𝐷)

D
en
si
ty

𝑚𝑏𝑟 Minimum bounding rectan-
gle covered by 𝐷

areaavg Average record area
lenavg𝑥 Average record width
lenavg𝑦 Average record height

Histogram(𝐷)

D
is
tr. 𝐸0, 𝐸2 Box counting with base 0

and 2

MasterFile(𝐷)

Pa
rt
iti
on

in
g
&
in
de
xi
ng

#cells Number of cells (partitions)
#splits Number of splits (blocks)
areasumcells Sum of partition areas
marginsumcells Sum of partition semi-

perimeters
overlapsumcells Sum of overlap areas be-

tween pairs of partitions
𝐿𝐵blocks Load balancing: Standard

deviation of block sizes
𝐵𝑈blocks Block utilization: Percent-

age of block usage

Pa
ir
of

da
ta
se
ts Overlap(𝑚𝑏𝑟𝑖 ,

𝑚𝑏𝑟 𝑗 ) O
ve
rla

p Area𝑖 Percentage of overlap area
occupied by dataset 𝑖 or 𝑗Area𝑗

AreaInt Overlap area
𝐽 𝑎𝑐𝑆𝑖,𝑗 Jaccard similarity between

the two MBRs

Conv(ℎ𝑖 , ℎ 𝑗 )

∩
di
st
r. 𝑒0, 𝑒2 Box counting for the convo-

luted histogram with base
0 and 2

for different kinds of spatial join cost model, based on their specific
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requirements. We published this dataset [10] so that researchers
can directly feed the data to their cost models. In case user want
to generate the features of their own datasets, they can utilize the
programs in our open-source project [10] to compute the same
features and metrics from their join queries.

3 PRE-TRAINED MODELS
In this section, we describe our publicly available pre-trained mod-
els for spatial join optimization problems. In particular, we provide
both proposed machine learning based models and baseline models
for comparison purpose. Researchers can utilize our pretrained
models in their query optimizers, or use them as the baseline to
compare with their own proposed cost models.

Join selectivity estimation models: Join selectivity (JS) is
defined as the ratio between the actual number of pairs produced
by the join operation and the total number of pairs produced by
the cross product. When JS is estimated, the corresponding join
cardinality can be obtained by multiplying it for the size of the
cross product. We provide the implementation for both baseline
model [1] and proposed machine learning model [11]. Our proposed
model can achieve up to 4.49% of the mean absolute percentage
error (MAPE), which is pretty good when compared to the 35%
error of the theoretical formula.

MBR tests selectivity models: MBR tests selectivity is the ratio
between the number of MBR tests executed by the join operation
and the total number of pairs produced by the cross product. Since
each join algorithm has a specific strategy, thus the number of MBR
tests is a algorithm-dependent metrics. Based on this fact, we build
four separate models to predict the MBR tests selectivity for four
spatial join algorithms (BNLJ, PBSM, DJ, REPJ). Each model is a
random forest regressor that takes the extracted features as the in-
put, then predict the MBR tests selectivity. Our experiments shows
that the proposed models can achieve up to 1.77%, 1.25%, 4.5%, 3.3%
MAPE value for BNLJ, PBSM, DJ, and REPJ, respectively. These
performance is much better when compared to the theoretical for-
mula above. The detailed experimental results can be found at our
published paper [11].

Algorithm selection models: The baseline algorithm selection
models are implemented based on the ideas in [9] and [2]. The
proposed model is a random forest classification model that take
the extracted features as the input, then predict the best spatial join
algorithm in terms of running time. We train and test the algorithm
selection models using the dataset described in Section 2.4. Our
published paper [11] shows that the proposed machine learning
model outperformed other rule-based algorithm and theoretical
model in the algorithm selection problem.

4 RESOURCE GUIDE
In this section, we briefly describe a guideline of how to access our
published resources, including the datasets, source code and mod-
els. More importantly, we also show how to extend our provided
resources to create your own datasets and models.

4.1 Download datasets and run the models
We publish all of our datasets and source code in a Github reposi-
tory [10]. Researchers who are interested in these datasets could

download them and use directly, or they can also create their own
datasets using the web interface, Python program or Spark API.
Researchers can easily execute our code without any further in-
stallation. Once the datasets are ready, users can use them in their
own spatial join cost models, or just train/test them on our pro-
posed models. The train/test process are simple and intuitive. For
example, users can run the simple commands in the tutorial to train
and test a random forest classification model that predicts the best
join algorithm. Along with the algorithm selection model, our pub-
lished source code also includes the regression models to predict
join selectivity, MBR tests selectivity with both random forest and
decision tree as the estimator.

python main . py −−model c l f _ r a n d om_ f o r e s t −− t ab
t a b u l a r _ t e s t _ d a t a _ p a t h . c sv −−path model_path . h5
−−we igh t s mode l_we ight s_pa th . h5 −−no− t r a i n

4.2 Extend current works
Although our published resources already provide diverse insights
about distributed spatial join operation, it is a reasonable need if
researchers want to extend our resources to build their own models.
The source code is also easy to extend with minimal effort if users
want to run the models on other datasets with different features, or
run the model with different core algorithms (linear models, SVM,
SGD, Nearest Neighbors, Naive Bayes, etc). In addition, we provide
data of high resolution histograms of input datasets, which can be
used in deep learning based model. The reason is that histogram
data could carry hidden characteristics, which might tell us some
useful information of the join query. This would be a good direction
to extend our work to have a better prediction accuracy and reduce
the works of hand-crafted feature extraction.

5 CONCLUSION AND FUTUREWORK
This paper presented a publicly available resource that will facilitate
new research directions in improving spatial join query processing
and optimization. The resource consists of three parts, datasets,
feature extraction, and baselines. In datasets, we provide both syn-
thetic and real datasets that cover a wide range of distributions.
These datasets can be used for benchmarking spatial join. We also
provide the source code that researchers can use and extend to
generate more datasets following the same idea. Second, for fea-
ture extraction, we provide a set of standard features that can be
exploited by machine learning to build query optimization models
for estimating the cost of spatial join or to select the best algorithm.
We provide both the source code that calculates the features and
precalculated features for all the synthetic and real datasets that we
provide. Third, we provide theoretical and machine learning cost
models for estimating the size of the spatial join and the cost of the
algorithm. These models can be used as baselines for evaluating
new cost models to these standard models. We envision that this re-
source will help more researchers in the information management
area to build new standardized query optimizers for spatial join
and related queries.
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