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Abstract

microRNAs (miRNAs) regulate many biological processes and are used as biomarkers for

the classification of diseases, conditions and developmental stages. miRNAs function by

targeting and negatively regulating specific mRNAs. One limitation of utilising miRNAs in

experimental work is the complex and often redundant behaviour of miRNA-mRNA inter-

actions; as a single miRNA can regulate many mRNAs and one mRNA can be regulated

by multiple miRNAs. This complexity stifles the potential of miRNAs. However, miRNA-

mRNA expression datasets are becoming generated more frequently and they can help to

garner greater understanding of how miRNAs regulate biological systems. Furthermore,

researchers are generating longitudinal datasets as these can elude to greater under-

standing of how biological conditions change over time. Thus there is a rise of longi-

tudinal miRNA-mRNA expression datasets. However, extracting useful information from

increasingly sophisticated datasets is a challenge in biological research. Exploration of

such datasets using computational techniques, such as big data bioinformatics, kinetic

modelling and machine learning could help in identifying interesting miRNA-mRNA inter-

actions. During this PhD I asked if these methodologies can be used to gain insights

from a range of longitudinal miRNA-mRNA expression datasets. Hence, I developed an

R/Bioconductor tool called TimiRGeN to integrate, analyse and generate small networks

from longitudinal miRNA-mRNA datasets. Datasets from kidney fibrosis, chondrogene-

sis dataset, breast cancer and Huntington’s disease (HD) were analysed with TimiRGeN.

Results from the chondrogenesis dataset analysis were taken forward to generate a multi-

miRNA kinetic model. With help from my collaborators this model was validated and pre-

dictions were made. Using the HD dataset, machine learning (ML) techniques trained

models to detect if samples have disease or wild type conditions. Overall, I have de-

veloped and used multiple computational techniques to increase knowledge gained from

longitudinal miRNA-mRNA datasets, and I believe the results show these techniques can

contribute to miRNA research.
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CHAPTER 1

INTRODUCTION

1.1 microRNAs

1.1.1 microRNA biogenesis

microRNAs (miRNAs) are small non-coding single stranded pieces of RNA, roughly 16-22

nucleotides (nt) long. They post transcriptionally negatively modulate gene expression of

specific mRNAs [1, 2, 3]. Binding of a mature miRNA to its target mRNA occurs between

a 7-8 nt sized region found in the 5’ end of the miRNA, otherwise known as the seed

sequence, and complementary binding sites, most often found on the 3’ UTR of the target

mRNA (Figure 1.1) [4, 5, 6]. A mature miRNA must undergo a multi-step and tightly

regulated biogenesis process that begins with transcription by RNA polymerase II to form

a hairpin shaped double stranded piece of RNA known as a pri-miRNA [7, 8]. Nuclear

RNase III DROSHA and its co-factor DGCR8 process the pri-miRNA in the nucleus to

form a 70-100 nt long pre-miRNA [9]. Specific sequences of the pre-mRNA is recognised

by nuclear export protein EXPORTIN5. This protein will then export the pre-miRNA into

the cytoplasm via a RAN-GTP dependent manner [9, 10, 11, 12]. EXPORTIN5 will be

attached to a GTP molecule, and upon recognising its cargo (a pre-miRNA molecule),

hydrolysis will turn the GTP into a GDP, and this leads to a conformational change in

EXPORTIN5. EXPORTIN5 will be recycled for further use [13].
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Figure 1.1: miRNA-mRNA interaction illustration. The figure shows a basic schematic

of how a miRNA-mRNA interaction works, and also provides some detail on how the seed

site region of a mature miRNA can target multiple regions of the 3’ UTR region of a mRNA.

The AUG sequence is the start codon and the UAG sequence is a stop codon. A poly-A

tail is found at the end of the 3’ UTR, and the 5’ end of the miRNA binds to the 3’ end of

the mRNA, before the poly-A tail. The miRNA may also have multiple target sequences

on the 3’ UTR of the mRNA.

Cytoplasmic RNase DICER processes the pre-miRNA into a shorter miRNA duplex [14].

DICER associated protein TRBP recruits a protein complex called RISC to begin strand

selection [15]. One strand of the duplex becomes the mature guide miRNA, and is in-

corporated into the RISC protein complex, forming a miRISC complex (further explained

in subsection 1.1.3) [15]. The latter strand, known as the carrier strand is frequently de-

graded [16]. The guide miRNA leads the miRISC complex to target mRNAs for degra-

dation or translational inhibition. The miRISC complex serves as a miRNA induced gene

silencing unit, and is made up of many proteins, but the core proteins are an Argonaute2

(AGO2) protein and a member of the GW182 family of proteins (Figure 1.2A - 1.2C) [17].

miRtrons

The pre-processing steps described above is not uniform because non-canonical biogen-
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esis of miRNAs has also been reported [18]. These have been referred to as miRtrons.

miRtrons are transcribed from introns and are then spliced as pre-miRNAs (Figure 1.2D).

They do not possess binding motifs for DROSHA recognition; and instead bypass DROSHA

to be exported out of the nucleus for processing by cytoplasmic DICER [19, 20]. Pre-

miRNAs have also been reported to be derived from snoRNAs and tRNAs [21, 22].

1.1.2 miRISC complex

AGO2

The RISC complex and a mature miRNA make up the miRISC complex which will use the

miRNA to locate target mRNAs for silencing. The core of the RISC complex comprises

of an AGO2 unit and a GW182 unit. Mammals have four AGO proteins, and of which

only AGO2 has a catalytic domain [17, 23]. AGO proteins are large and have multiple

domains such as: the N domain which can recognise, recruit and unwind duplexes of

RNAs, the PAZ domain which is where the 5’ end of the miRNA is pocketed, the MID

domain which is where the 3’ end of a mature miRNA is bound, and there is a PIWI

domain. In the case for AGO2, the PIWI domain is the major source of endonuclease

activity in the miRISC complex [24]. A further function of the AGO2 subunit is to protect the

ends of a mature miRNA from degradation, and this contributes to why some miRNAs have

been found to have very long half lives [25, 26]. Often due to complementary mis-matches

the miRNA-mRNA interactions can be misaligned, making mRNA degradation by AGO2

induced endonuclease activity imprecise. More commonly, miRNA induced silencing is a

result of deadenylation, decapping and 5’-3’ decay, which is orchestrated by the AGO2

associated protein from the GW182 family.

GW182 protein family

GW182 protein family includes TNRC6A, TNRC6B and TNRC6C. Within a RISC complex,

the N-terminus of a GW182 protein will directly be bound to the PIWI domain of the AGO2

sub-unit [27, 28]. The AGO2 unit is attracted to the multiple Gly-Trp (GW) repeats found

in the N-terminus [29]. GW182 proteins have a flexible region and this is tailed by a C-

terminus which contains an RRM region which has the ability to bind with PABPC to induce
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transcriptional regulation [29]. PABPC is a highly conserved eukaryotic protein which is

essential for translation initiation and mRNA stability. PABPC is bound to the poly(A) tail

on the 3’ end of mRNAs, protecting that end and circularising the mRNA by binding to the

eukaryotic CAP/eIF (eukaryotic initiation factor) protein complex [30, 31].

mRNA regulation by the miRISC complex

Commonly, mRNAs are found in a circularised structure, rather than an open structure to

avoid decaying enzymes. The circularisation of a mRNA is the result of complexing with

PABPC and the eIF4 complex. The resulting protein-mRNA complex will begin the pro-

cess of translation. However, GW182 subunits compete with eIF4G of the CAP complex,

by binding with PABPC [32, 33]. This leads to the mRNA staying in the open structure,

blocking translation and increasing the likelihood of mRNA decay [30]. Furthermore, inhi-

bition of PABPC-CAP complex binding reduces the ability of the eIF4 proteins to recognise

legitimate mRNAs for translation; reducing the gene expression of mRNAs which are tar-

getted by a miRISC complex [28, 34]. Binding of GW182 proteins and PABPC is useful

in co-ordinating miRISC induced transcriptional silencing [35]. GW182 proteins also re-

cruits cytoplasmic deadenylation complex PAN2-PAN3 which will catalyse the early phase

of deadenylation by clipping the 3’ poly(A) repeat chain to a smaller poly(A) repeat chain

[36, 37, 38, 39]. Following this, GW182 recruits another cytoplasmic deadenylase com-

plex, called the CCR4-NOT complex which comprises of NOT1, NOT2, NOT3 and NOT9

[39, 40, 41, 42, 43, 44]. This complex will complete deadenylation, and it has been shown

that CCR4-NOT is sufficient to complete decapping without PAN2-PAN3. After this, the tar-

getted mRNA will be decapped by an associated decapping protein e.g. DCP1 or DDX6

[45]. Deadynylated and decapped mRNAs are targets for XRN1 to initiate 5’-3’ decay of

the targetted mRNA (Figure 2C) [46].
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Figure 1.2: Illustrations of microRNA biogenesis in four stages. A) details how the

miRNA is transcribed by RNA polymerase II and is then modified by a DROSHA-DGCR8

complex to become a pre-miRNA which can be exported to the cytosine by EXPORTIN5.

B) goes though pre-miRNA maturation into a mature miRNA which complexes with the

RISC complex after modulation by DICER-TBPR. C) illustrates how miRNA-mRNA target-

ing and degradation occurs and D) shows miRtron biogenesis and here miRNAs skip the

pri-miRNA step because they are spliced out of introns as pre-miRNAs. RNA-protein size

ratio has not been considered in these images, as proteins would be many times larger

than the RNAs.

Overall, AGO2 and GW182 proteins contribute to the miRISC complex’s ability to induce

mRNA silencing by direct endonuclease activity by AGO2, translation repression by block-

ing eIF4G-PABPC binding, or by recruitment of deadenylase complexes to deadenylase

and then trigger decap the 5’ end of the target mRNA, which would lead to subsequent 5’-

3’ decay. The lattermost method of miRNA silencing method is mostly likely the common

approach in higher eukaryotic organisms, but much of this process is still unknown. All in

all, miRNA induced mRNA silencing is a very refined method of regulating gene expres-

sion [47, 48].
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1.1.3 Unknown sections of miRNA biogenesis

There are several unknowns which remain in miRNA biogenesis. One is a complete list

of rules for strand selection. So far two rules have been established (nucleotide pref-

erence and thermodynamic preference), however not all miRNAs follow these two rules.

Nucleotide preference can be broken down into two categories; chemical affinity and phos-

phorylation. Beginning with the former, it has been shown that AGO2s MID domain prefer-

entially binds to U more than A, G or C nucleotides. Also, A nucleotides are preferentially

bound in contrast to G and C. So perhaps G-C content leads to strand selection [49].

Also, it seems phosphorylation of the first nucleotide in a strand can lead to an AGO2

subunit binding to the strand. Blocking phosphorylation at the 5’ end of the guide strand

leads to random strand selection [50]. The second strand selection rule is that AGO2

subunits seem to preferentially select miRNA strands which are thermodynamically less

stable [51]. However, despite these ”rules”, most miRNAs do not follow them. A com-

prehensive study by Medley et al., (2021) found that in a range of species an average of

24% of miRNAs don’t follow a single rule and between 17-24% don’t follow both rules [52].

The other biogenesis step which is not fully understood is miRNA decay. The stability of

miRNAs vary greatly, some even having half-lives longer than 100 hours [26]. It seems

some miRNAs are degraded by target-directed miRNA degradation (TDMD). These are

RNAs which complementarily bind to miRNAs to induce miRNA degraded [53]. TDMD

RNAs bind to the 3’ end of the target miRNA and are hypothesised to alter AGO2 confor-

mation to expose the 3’ end of the miRNA, and thus encourages 3’-5’ RNA decay of the

target miRNA [53, 54, 55]. Though much of this process is still unknown, it may answer

how RISC units are recycled and further explain how miRNA turn-over occurs. Alterna-

tively, miRNAs can be excreted into bodily fluids. Some circulating miRNAs are enclosed

within exosomes which have the potential to be trafficked to other cells/ tissues [56]. Un-

der specific disease conditions, miRNAs such as miR-150, miR-142-3p, and miR-451 are

preferentially packaged into circulating exosomes [57]. Furthermore, some miRNAs have

been found in to be differentially expressed in disease conditions, for example miR-21 is
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expressed at lower concentrations in serum exosomes of control patients than in serum

exosomes of glioblastoma patients. Several miRNA exosome pathways have been de-

scribed, but little is known about the specifics of which miRNAs are preferentially selected

for exosomes, though sequence specificity may be a driving factor in selecting miRNAs to

be packaged in circulating exosomes [56]. Another idea is that some circulating miRNAs

are a cellular waste products. Most (90%) circulating miRNAs are microvesicle-free and

bound to an AGO2 protein [58]. This raises the question, why would cells excrete large,

expensive AGO2 proteins? Would it not be more cost-effective for a cell to retain and re-

cycle its AGO2 subunits? Could it be that cells have not developed sophisticated methods

to remove unneeded miRNAs from their cells, or to remove miRNAs from AGO2 proteins?

TDMD RNAs can degrade some miRNAs, however maybe this is a too time consuming

method which cannot efficiently deal with unneeded miRNAs. Thus, cells simply excrete

unneeded miRNA-AGO2 complexes. This theory is difficult to test. Regardless of why

miRNAs are circulating in biofluids, the fact is they do and can be exploited to learn about

the health of individuals.

1.1.4 miRNA-mRNA interactions rules and databases

miRNA target interactions rules

There are many miRNA-mRNA interaction rules which can contribute to the likelihood

of a miRNA-mRNA interaction occurring. Some rules are more important than others

and contribute to a greater chance of a miRNA-mRNA interaction occurring. Prediction

software and databases use many of these rules as features in their algorithms. Such

databases provide an essential resource for researchers investigating miRNAs. There are

many miRNA-mRNA target databases, and most miRNA-mRNA prediction tools use rule

based or machine learning approaches, with a number of biological features to determine

the likelihood and strength of predicted miRNA-mRNA interactions. Below I have listed

most of the miRNA-mRNA interaction rules and described how each one may affect a

miRNA-mRNA interaction [59].

• Seed site specificity - The seed sequence of the miRNA (first 2-8 nt from the 5’

end). Watson-Crick (A-U, G-C) matches between the seed site and the target mRNA.

The closer the nt match, the more likely the miRNA-mRNA will occur and a stronger

20



interaction is likely to occur if the match is perfect [4]. Many tools use this information

in their algorithms, and some allow for a degree of mismatches.

• Evolutionary conservation - Many miRNA sequences and mRNA target site se-

quences have remained evolutionarily conserved for millions of years. It has become

an accepted fact that the seed region of the miRNA has far higher conservation

across species, than non-seed regions of the miRNA [4, 60]. Some algorithms use

conservation between miRNA-mRNA interactions to filter based on cross-species

interactions [4]. Generally, the more conserved an interaction is, the more likely the

interaction occurs, and some prediction sites reflect this by giving these interactions

a better score.

• Gibbs free energy calculations - Free energy calculations are used by some soft-

ware to measure the stability of a predicted miRNA-mRNA interaction.Lower energy

releasing interactions are assumed to be more stable, as they have less energy to

continue interacting [4, 61]. Some algorithms will have a free energy/ thermody-

namic threshold. Overall, free energy calculations can decipher the likelihood of a

miRNA-mRNA interaction leading to a stable (favorable) system.

• mRNA binding site accessibility - Site accessibility predicts the easy of access

a miRNA has to interact with the mRNA binding sites. miRNA-mRNA interactions

occur in a two step process: 1) the miRNA binds to a shorter accessible site of the

mRNA, 2) the mRNA unfolds to reveal a secondary structure from where the miRNA

can access the target sites [62]. Many algorithms will look into site access to score

the likelihood of a miRNA-mRNA interaction occurring.

• Abundance of between miRNA target binding sites - Abundance of 3’ UTR miRNA

binding regions. Many 3’ UTRs can contain multiple miRNA binding sites [63]. The

greater the number of binding sites, the higher the likelihood of off-shoot interactions,

and actually lowers the likelihood of strong miRNA-mRNA interactions.

• AU nucleotide flanking - The higher the level of AU nucleotides flanking the seed

site on the miRNA, the higher the likelihood of site depletion [64, 65].
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• GU wobble - GU wobble is the term which refers to the number of G-U mismatches

allowed in miRNA-mRNA interactions [5].

• CDS, 5’UTR and 3’UTR restrictions - Most miRNA-mRNA interactions occur in the

context of the 3’UTR of the targetted mRNA. However, some algorithms also look

into the whole coding sequencing region of the mRNA, and may also look into the 5’

UTR, as well as the 3’ UTR [66].

• Size and position of miRNA-mRNA - Size of interacting miRNA/ mRNA and posi-

tion of interaction can also be taken into consideration [65, 67]. Length of the miRNA

seed site can affect the likelihood of a miRNA-mRNA interaction occurring. Seed

length can be between 6 and 8 nt long. Generally, 8nt (8mer) long seed seed sites

show the best specificity and 6nt (6mer) long seed sites have poorer specificity for

mRNA target sites [68]. Some algorithms take this information into account and

score longer seed sites more preferably.

miRNA target databases

There are a number of miRNA prediction softwares available, some with experimentally

validated miRNA-mRNA interactions, and others which are entirely algorithm based, and

the features of the algorithms have been described above.

Experimentally validated databases include:

• ComiRNet [69]

• miRecords [70]

• miRSel [71]

• miRTarBase [72]

• miRWalk [73]

• MtiBase [74]
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• starBase [75]

• Tarbase [76]

Interactions which have been functionally validated can be very helpful, as they can be

used to record citations of miRNA work and provide confidence for interactions. The con-

fidence provided by functionally validated interactions could also be extended to cross-

species functional validation i.e. validated and peer-reviewed interactions from human

work can aid mouse research. However, there are some caveats when working with such

databases. These databases may include functional characterisation from a range of

experimental techniques, including more reliable techniques like luciferase assays, and

less reliable techniques such as RNAseq analysis. Deciphering between the reliability of

the experimental techniques is an important factor to consider. Also, the quality of the

database relies on the maintenance staff which curate them. This factor makes some of

these databases (miRsel, Starbase, miRecords) much smaller than well maintained and

updated databases (miRTarBase, miRWalk, Tarbase). Further differences in the stats of

the databases are described in the following review [77].

Algorithmic prediction based databases include:

• HOCTAR [78]

• miRDB [79]

• microPIR [80]

• multiMiR [81]

• Pharmaco-miR [82]

• Targetscan [83]

Again, as with the experimentally validated databases, more regularly updated prediction

based databases have a greater number of miRNA-mRNA interactions, and this can be

seen in this review [77]. However, most of the interactions within these databases will not
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have been validated, and they are predicted based on a number of features. Databases

with alternate algorithms will lead to alternate predictions [59].

1.1.5 Importance of miRNAs

Over 1900 miRNAs, including over 500 unique miRNAs, have been identified in humans

and these can be separated into 87 distinct families of miRNAs which are evolutionarily

conserved genes that regulate over 60% of humans protein coding genes [60, 84]. This

implies there is a positive selection for miRNAs to not undergo mutation and interestingly,

coding DNA sequences have been speculated to be under a negative selection pressure

to avoid being complementary to seed sequences of miRNAs. This indicates the important

roles miRNAs have in biological processes [85]. The importance of miRNAs is evident as

they are found in all cell types in mammals and play important roles in development and

homeostasis [86, 87, 88]. However, more research is needed to identify how miRNAs

regulate biological processes. The role of the miRNAs within the context of different bio-

logical niches has been under investigation for the last few decades; reviews can be found

in bone formation, kidney homeostasis and cartilage formation to name a few [89, 90, 91].

There are several potential uses of miRNAs in the advancement of biomedical research.

Firstly, several miRNAs have been reported to contribute to disease states in humans, so

investigating their specific roles in these circumstances could be interesting. miR-15 and

miR-16 have been reported to be deleted in many cases of chronic lymphocytic leukaemia

[92]. Epstein Barr virus induces miR-155 overexpression in B-cells by promoting sur-

vival factors and this contributes to B-cell lymphoma formation [93]. Both miR-103 and

miR-107 are upregulated in obese/ diabetic mice and their silencing positively affects glu-

cose homeostasis [94]. miR-133b is expressed at deficient levels in mid-brain dopamin-

ergic neurons from Parkinson’s disease samples [95]. Each of these miRNAs mentioned

above are potential drug targets to explore for their respective diseases, and could also

be classified as novel biomarkers within patients.

Secondly, miRNAs can be shuttled around biofluids [96]. This is unique and could pro-

vide medical researchers with a new diagnostic tool and I will explain why. There are
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five methods by which miRNAs can be transported in biofluids: with high-density lipopro-

teins, complexed with an AGO2 protein, packaged in exosomes, packaged in microvesi-

cles or packaged within apoptotic bodies and these methods have been reviewed and

documented in Kumar et al (2017) [58]. Circulating miRNAs have been found at high

expression levels within serum, blood, urine and other fluid, and they can be measured

in fluids as a non-invasive diagnostics tool to classify patient health [97, 98]. For exam-

ple miR-141, miR-149, miR-299-5p and miR-135b are found in the placenta of pregnant

women [99]. Drug induced liver injury patients had miR-122 and miR-192 enriched in tis-

sue and blood plasma, but the results found in the plasma are detected earlier than in the

tissue, making miRNA plasma measurements a more valuable method of diagnosing liver

injury [100]. miR-21 and miR-192 have been found in high quantities in the urine of liver

fluke-associated cholangiocarcinoma patients, and post treatment, the amount of miR-21

and miR-192 decreased, providing potential non-invasive markers for a liver cancer and

metrics to track cancer treatment [101].

Lastly, there is the potential of utilising the native functions of miRNAs to treat diseases.

For example, miR-9 reduces BRCA1 activity which could be a useful tool to treat BRCA1

mutant derived ovarian cancers [102]. Also, miR-182 targets BRCA1 in breast cancer

cells and overexpression of miR-182 leads to more irradiation and PARP inhibitor sensitive

cells [103]. In some conditions, specific miRNAs are downregulated, and re-introducing

them could revert disease phenotypes. For example miR-140-5p re-introduction in in vitro

models of osteoarthritis (OA) leads to a reduction in expression levels of pro-inflammatory

proteins such as NFkB1 and cartilage degradation proteins like ADAMTS5, which are

contributing factors to painful and less functional joints in OA patients [104, 105, 106].

miRNAs are not yet viable for personal medicine

Unfortunately, the potential advantages of miRNAs for medical researchers and patients

are not yet feasible. This is primarily due to the complexities of miRNA biology, which limits

their potential use in biomedicine. The major hurdle being that a single miRNA can tar-

get many mRNAs and a single mRNA can be targetted by many miRNAs. Furthermore,

different cell types and developmental stages are regulated by different miRNAs. This
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makes understanding the role of a specific miRNA difficult. Also, some miRNA-mRNA

interactions are redundant, so downregulation of a miRNA may not cause a noticeable

phenotypic shift. To combat these complexities big data and computational approaches

can be used, in synergy with wet-lab biology to better comprehend the complex biology of

miRNAs.

1.2 Computational approaches to investigate miRNA-mRNA

interactions

To best utilise computational techniques to better understand biological processes, high

quality datasets are required, specifically longitudinal miRNA-mRNA expression datasets.

The miRNAs and mRNAs should be measured at the same time points and ideally each

time point should be measured multiple times. In this PhD, I analysed several longitudinal

miRNA-mRNA datasets from a wide range of biological conditions including: chondrogen-

esis, kidney injury and HD. Here I will briefly introduce the datasets and analysis methods

used to further efforts in computational miRNA investigation.

Longitudinal miRNA-mRNA expression datasets

Post-transcriptional regulation of mRNAs has been a popular focus of research for over

two decades. Next generation sequencing techniques such as RNAseq, microarrays and

microRNAseq have been used to generate miRNA-mRNA expression datasets. However,

static comparisons between different conditions only provides a snap shot of the transcrip-

tome at a given time. To capture more information about biological systems, longitudinal

miRNA-mRNA expression datasets are created. Advantages of using this type of data

includes: allowing for deeper analysis, providing information for kinetic models, and po-

tentially highlighting oscillations and other temporal patterns. The downside is the rarity of

finding high quality datasets due to their expense and labour intensive design.

These datasets are often stored in public repositories such as gene expression omnibus

(GEO) or ArrayExpress [107, 108]. I will present three separate method for analysing
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longitudinal miRNA-mRNA datasets, using the datasets listed below. The three methods

are: bioinformatic analysis, kinetic modelling and machine learning.

• FA (Folic Acid) induced kidney Injury dataset - Bioinformatic Analysis [109, 110].

• UUO (Unilateral Ureter Obstruction) induced kidney Injury dataset - Bioinformatic

Analysis [109, 110].

• Breast Cancer dataset - Bioinformatics Analysis [111].

• Hypoxic Breast Cancer dataset - Bioinformatics Analysis [112].

• Chondrogenesis dataset - Kinetic modelling [113].

• HD dataset - Machine Learning [114, 115].

Bioinformatic analysis

Standard bioinformatics analysis approaches of NGS data will often utilise differential ex-

pression (DE) analysis. This informs us of which genes are under the most change be-

tween two conditions. For longitudinal data there are specific methods which can be used,

e.g. using the zero time point as the denominator, using a cubic spline to fit data, or

analysing all time points at once. Depending on the length of the time course and the

regularity of sampling, particular methods are more suitable. For example, the chondro-

genesis dataset used in this thesis (Chapter (Ch)3 and Ch4) is six time points long, and

most time sampling is irregularly measured within a range of 0 - 14 days (D). In this case,

using the zero time point at the denominator is the best method for DE analysis [116]. After

this, significantly differentially expressed genes (SDEGs) can be put through ontology or

pathway enrichment to find biological significance. This method will identify gene functions

or signalling pathways which are important in the dataset. These techniques have become

standard tools for computational biologists. However, they are poor tools to identify speci-

ficity and untangle complexity. As such, they are useful upstream methods to inform down-

stream tools that are able to find specificity from large complex datasets. This concept is

addressed as DE results are the input for a novel R/Bioconductor package called TimiR-

GeN, which was created in this PhD to integrate, analyse and produce small networks
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from longitudinal miRNA-mRNA expression datasets [117]. Furthermore, TimiRGeN has

several methods for longitudinal miRNA-mRNA pair analysis such as cross-correlation,

regression and calculation of an odds-ratio. These are explained in Ch2, however I wish

to highlight, this is the first miRNA analysis tool which helps to reduce the high volume

of data found in a longitudinal miRNA-mRNA dataset. This is an important concept when

aiming for hypothesis generation from big data. Several hypotheses from analysis with

the TimiRGeN R package have been made. In Ch2 and Ch3 Gene regulatory networks

(GRNs) have been constructed based on these hypotheses.

GRNs and kinetic modelling

GRNs are used in systems biology to display genetic interactions, and ultimately aim to

make complex events in a signalling pathway readable. GRNs are used by: modellers as

blueprints of kinetic models, information sources for bioinformaticians and as repositories

for experimental design for wet-lab experimentalists. In collaborative work, GRNs can be

seen as a meeting point between bioinformatics, modelling and experimental work. The

GRNs topology can be altered as species can be added or removed, drug targets can

be decided and the complexities of a system can be explained clearly. GRNs also serve

as a means to address complexities in biological systems. For example, to represent

feed-back loops, incoherent activity of genes, post-translational modifications, effects of

drugs and displaying multiomic regulation. In this project, the ability of a GRN to clearly

visualise multiomic regulation and complex interactions involving multiple miRNAs is used

to generate a blueprint for a chondrogenesis model. A simple example of a GRN is shown

in Figure 1.3.
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Figure 1.3: Simple GRN with three species. This is an example GRN which consists

of proteins A, B, C which form a feedback loop. Here A catalyses the activation of C, B

catalyses the degradation of A and C catalyses the degradation of B.

Due to the complex nature of many biological systems, solely using experimental work

is labour intensive, expensive and difficult. To complement experimental work, we can

deploy kinetic modelling, a systems biology technique to simulate biological events. This

aids in creating a more cost-effective and efficient investigative process. Kinetic models

can make predictions if sufficient data is available.

Kinetic models use GRNs as a blueprint to help establish key interactions and a suitable

topology. To quantify a kinetic model, the behaviours of all the species must act as pre-

dicted. Two sets of data are required to establish if a model is usable and can make

useful predications and both datasets should ideally be time series. A calibration dataset

which is used to quantify model parameters. This is followed by an independent validation

dataset. Here experimental perturbations are introduced and the model attempts to sim-

ulate the experimental results. Once this is accomplished, a fully validated kinetic model

can now be used to make predictions. For example, modulation of multiple miRNAs is
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difficult in vitro, and so instead simulations can be performed to predict the outcome of

multiple miRNA modulations. Moreover, a well calibrated and validated model can be

used to make theoretical predictions which may be unavailable in wet-lab studies due to

technological limitations. Finally, potential drug targets can be tested in silico.

Biological process ODE

source creates A dt/d = k1

A degrades into sink dt/d = A ∗ k2

A catalyses C dt/d = A ∗ k3

source creates B dt/d = k4

B degrades into sink dt/d = B ∗ k5

B catalyses degradation of A dt/d = B ∗ A ∗ k6

source creates C dt/d = k7

C degrades into sink dt/d = C ∗ k8

C catalyses degradation of B dt/d = C ∗B ∗ k9

Table 1.1: Example ODEs for the simple GRN. Based on the GRN shown in Figure 1.3,

example ODEs are displayed in a table alongside the biological events they represent.

Most parameters are kn. All functions are based on mass-action or constant flux for ease.

The kinetic models I create in this PhD are ordinary differential equation (ODE) based.

These are used to convert biological processes into mathematical equations. For example,

the simple model seen in Figure 1.3 can be represented by ODEs. A variety of functions

and parameters can be used to inform the ODEs, and the aim is to generate simulations of

biological behaviour which match the calibration and validation experimental data. For that

reason, only longitudinal data is suitable for kinetic model creation. Table 1.1 informs how

the simple model presented in Figure 1.3 could be modelled based on simple mass-action

ODEs [118]. Mass-action is used as the default function in COPASI (systems modelling

software) because of its simplicity [119]. A species (A, B or C in the simple example) is

modulated by a parameter. The larger the parameter, the greater the affect on the rate

of the species. Constant flux is used when a Protein is being created from source. This

30



means that protein will be inputted in the model at a rate determined by kn. Multiple GRNs

and a fully validated multi-miRNA chondrogenesis model is presented in Ch4.

Machine learning Finally, machine learning techniques are becoming prominent in bio-

sciences, and its application on big multiomic data sets could lead to finding novel pat-

terns, biomarkers or drug targets. Machine learning requires splitting a data set into

training and testing data. Algorithms are trained on the training data, and then applied

to predict or classify features in the testing data. The complexity of large longitudinal mul-

tiomic datasets makes the potential uses of machine learning a novel and useful tool. A

ML project is described in Ch5.

1.3 Contributions from this PhD

I have used three broad computational techniques to utilise information from longitudinal

miRNA-mRNA datasets. These techniques are: big data bioinformatics via the develop-

ment of the TimiRGeN R package, kinetic modelling and machine learning. Below I briefly

describe the rationale and output of each of these projects.

TimiRGeN R package

I developed the TimiRGeN R/ Bioconductor package. This is a novel tool for integration,

analysis and network generation of longitudinal miRNA-mRNA datasets. This tool can help

researchers make sense of their miRNA-mRNA expression data and find miRNA-mRNA

interactions within signalling pathways of interest. From here, a network representation of

the filtered miRNA-mRNA interactions can be created and miRNA-mRNA interactions can

be analysed using a suite of methods including cross-correlation, regression and cluster-

ing, or the results can be exported into PathVisio or Cytoscape [120, 121]. This type of

open ended analysis can help users to identify how the filtered miRNA-mRNA interactions

may be regulating the signalling pathway of choice, thus aiding in hypothesis genera-

tion. Hypotheses generated like this can be formalised with the creation of GRNs. Figure
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1.5 shows how TimiRGeN has the potential to become a part of any miRNA-mRNA ex-

pression analysis project. Ch2 goes over the TimiRGeN R package, its functions, some

results including figures generated by the package and GRNs constructed with its aid,

and describes the steps needed to successfully create an R/Bioconductor package. This

package lead to a first author publication in Bioinformatics; presented in Appendix A [117].

  

Figure 1.4: TimiRGeN as a part miRNA-mRNA data analysis. This schematic shows

the standard computational process (yellow) to generate hypothesis (green) from miRNA-

mRNA expression data (red). TimiRGeN analysis (green) provides an alternate path of

analysis.

Gene regulatory networks found by TimiRGeN

GRNs have been generated from processing data with TimiRGeN. Several longitudinal

miRNA-mRNA datasets have been analysed and GRNs have been generated from a drug

induced reversible mouse kidney injury model datasets and a chondrogenesis dataset
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[109, 110, 113]. These GRNs formalise hypotheses generated by the results from TimiR-

GeN. A novel feature of generating GRNs from network based approaches, rather than

solely from literature, is the possibility of finding of indirect influences not reported in the

literature. Both Ch2 and Ch3 showcase the GRNs generated from analysing longitudinal

miRNA-mRNA datasets with TimiRGeN.

Validated miR-199b-5p chondrogenesis model

Ch3 also introduces chondrogenesis and the importance of miRNA regulators in this pro-

cess. Using TimiRGeN, a chondrogenesis dataset generated by our collaborators is anal-

ysed [113]. Functional analysis by the tool identified the TGF-beta signalling pathway oc-

curring during several time points. Further in silico analysis finds hsa-miR-199b-5p to be

the second most positively changing miRNA within the TGF-beta signalling pathway; only

hsa-miR-140-5p, which was mentioned is subsection 1.1.5, had a greater positive change

over the time course. In contrast to hsa-miR-140-5p, hsa-miR-199b-5p’s regulation of

chondrogenesis is relatively unknown, and only one recent paper reports on this [122].

During the in silico investigation, CAV1 was identified as a mRNA target for hsa-miR-

199b-5p and a hsa-miR-199b-5p homologue, hsa-miR-199a-5p. These miRNA-mRNA

interactions became the foundation of an extensive literature search, GRN construction

and kinetic modelling project which is continued in Ch4.

GRNs are created to explain how miR-199a-5p and miR-199b-5p may be regulating chon-

drogenesis via CAV1. This highlighted a well researched chondrogenesis signalling path-

way, which is the RHoA/ROCK1 pathway. TGFB3 and CAV1 are upstream of RHoA/ROCK1

and chondrogenic biomarkers are downstream. A GRN was constructed to display the

story of how miR-199a/b-5p may regulate chondrogenesis. Validation data from collabo-

rators in the Young lab identified inhibition of hsa-miR-199b-5p, lead to anti-chondrogenic

changes. A kinetic model was created to capture the complexities of this system and make

predictions such as: the indirect affect on hsa-miR-140-5p and how hsa-miR-199a-5p in-

hibition will affect the modelled system. This work has lead to further experimental and

modelling work which is mentioned in Ch6.
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Detecting predisposition to Juvenile onset HD

I used ML to identify a set of genes within the context of juvenile onset Huntington’s dis-

ease (JHD). The longitudinal miRNA-mRNA dataset used had mice that were sacraficed

as different ages: 2M (month), 6M and 10M [114, 115]. To predict predisposition, the older

mice (6M and 10M) underwent DE analysis to identify common SDEGs (significantly dif-

ferentially expressed genes). Selected genes are used as the features for learning. Older

mouse samples are treated as the training dataset and younger mouse samples (2M) are

treated as the testing dataset. 15 different classifiers are used on the tested on the train-

ing and testing datasets. Logistic regression performed the best, and the resulting model

detects WT samples with 100% accuracy, and the HD samples with 74% accuracy, thus

further work is needed. Ch5 presents this work and Ch6 discusses further work that will

be completed after the PhD.
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CHAPTER 2

TIMIRGEN R PACKAGE

2.1 Background

This PhD focuses on using data science approaches to investigate longitudinal miRNA-

mRNA expression datasets. From the literature/ tool search presented in Figure 2.1/ Table

2.1, no current bioinformatic tool is available to analyse longitudinal miRNA-mRNA expres-

sion datasets. To fill this niche, the TimiRGeN R package was developed to integrate, per-

form functional analysis and to generate small networks from longitudinal miRNA-mRNA

expression datasets. This tool was inspired by many of the tools reviewed in Ch1, how-

ever it utilises many unique features which makes it a more versatile tool. In this section

I will detail the key features of TimiRGeN which makes it a useful new tool for the com-

putational biology community. Within my own research, this tool was used as a means to

bridge large longitudinal miRNA-mRNA datasets and hypothesis generation, aid in GRN

construction and longitudinal data analysis.

2.1.1 Comparison of miRNA-mRNA integration and analysis tools

The proceeding methods described above are individually useful on their own, but have

potential to be even more powerful if they are used in combination with one another. As

a part of this PhD I will investigate computational methods to design GRNs from big data
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bioinformatics approaches. These techniques could contribute to one another. Big data

bioinformatics provides global analysis of a large amount of data but has poor power when

it comes to hypothesis generation and specificity. Whereas, GRNs have great specificity

as they can represent small biological systems. Classical GRN construction is primarily

literature driven. Large datasets, provided a more objective means for GRN construc-

tion. However, there is a major bottle-neck to overcome, which is how to reduce the sheer

volume of data from large datasets to generate hypothesis which can be represented by

GRNs. To add onto this complexity, in this PhD I will specifically be working with longitudi-

nal miRNA-mRNA datasets.

We require a tool which can reduce the volume of data from found in longitudinal miRNA-

mRNA datasets so GRNs can be more easily constructed. It would also be desirable for

a tool which can use curated signalling pathways because mechanistic information from

these is useful when constructing GRNs. This is as many signalling pathways (e.g. KEGG,

Wikipathways) utilise literature and experimental work when constructing pathways [123,

124]. To establish which tools are available miRNA-mRNA integration and data reduction,

a total of eleven tools are reviewed. These tools can be catagorised by their sources,

which are: Bioconductor, SourceForge, web-based and locally installed software.

Bioconductor

Bioconductor is the largest repository of R packages for biological data exploration [125].

A tool which is accepted and maintained in Bioconductor is one which must contribute

to the field of computational biology. For this reason, Bioconductor has very strict cri-

teria for package induction. Several tools within this repository have been made to help

researchers better understand miRNA-mRNA expression data sets, however none of the

miRNA-mRNA integration tools which I tested could effectively analyse longitudinal datasets.

For example, miRIntegrator is a tool which can reduce the sheer volume of data, to the

point where GRN generation is feasible, however it cannot analyse longitudinal datasets,

only works with human data and many of its network generation abilities have been poorly

maintained [126]. An inability to analyse longitudinal datasets is a common aspect of
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other notable packages, such as anamiR [127]. This package generates a large matrix

of miRNA-mRNA interactions and identifies which interactions occur in up to ten different

miRNA-mRNA interactions databases. While this is a useful idea for exploration, using

many databases like this has limitations. Different prediction databases use different meth-

ods to determine miRNA-mRNA interactions: seed sequence - 3’ UTR complementary

binding (TargetScan, miRDB ), whole miRNA - 3’ UTR complimentary binding (miRanda),

thermodynamics (PicTar, DIANA) or hybrid methods (RNAhybrid) [79, 83, 128, 129, 130,

131]. Reviews comparing these different methods concluded that seed sequence - 3’ UTR

complementary binding approaches lead to the most true positives and the least number

of false positives [132, 133]. Furthermore, many of these databases are not regularly up-

dated. Unfortunately, anamiR also suffers from lack of regular maintenance and most of

its features are currently not working.

Newer methods such as spiderMiR can reduce data to start generating hypothesis, but it

does not cater to longitudinal datasets and its ability to utilise existing signalling networks

is limited [134]. Considering the increase in the amount of longitudinal multiomic datasets

being generated, it was surprising that Bioconductor did not yet have a tool to support this

type of data. This motivated me to look outside of Bioconductor.

SourceForge

SourceForge is an open source program development platform which has miRNA based

analysis tools. miRComb can integrate and analyse miRNA-mRNA expression data [135].

Similar to anamiR, it utilises multiple miRNA-mRNA prediction databases which use differ-

ent prediction approaches. miRComb can generate a large matrix of miRNA-mRNA inter-

actions and mine out commonly found interactions. This is a useful technique, however it

is slow because miRComb assumes every miRNA can target every mRNA. miRComb had

some capability to analyse longitudinal datasets, however it only uses the start and end

time points, ignoring all intermediate time points, making its longitudinal analysis limiting.

Despite some promise, miRComb is also not regularly maintained, and is not possible to

use at the moment because of multiple bugs. Another tool for miRNA research on Source-

Forge is sigterms [136]. This tool identifies miRNA-mRNA interactions which may occur
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between genes of interest and multiple databases (TargetScan, miRanda and PicTar).

Unlike many other tools, sigterms distinguishes between databases which utilise different

prediction algorithms. Unfortunately neither tool could analyse and integrate longitudinal

miRNA-mRNA datasets.

Web-based

There are many web-based miRNA-mRNA integration and analysis tools, such as miRNet,

miRTarVis+, ToppmiR and MAGIA2 [137, 138, 139, 140]. All of these tools have extensive

visualisation properties, however there are two main issues with them. Firstly, they do

not handle longitudinal datasets, and secondly, most of these tools do not reduce the data

enough to start formalising GRNs. A notable exception is MAGIA2, it uses a novel machine

learning approach to produce small networks, from which GRN construction could be

possible. However, the limitation of using MAGIA2 for GRN construction is the lack of

signalling pathway information it produces. To truly understand how a miRNA is influencing

a target, downstream and upstream information is essential. Many web-based tools lack

this information so none could be used to analyse our data for GRN construction.

Locally installed

Finally, some miRNA-mRNA integration tools can be locally installed. This includes DREM2,

a java-based tool which identifies when miRNA-mRNA interactions are likely to be taking

place along a longitudinal multiomic dataset [141]. Whilst this tool does handle longitu-

dinal multiomic data, the output is lacking for hypothesis formalisation and GRN design.

There is limited information on how the miRNAs may be affecting upstream/ downstream

processes of their mRNA targets, and there are no network generation options. The

last tool reviewed here is called miARMa-seq. This is a complete miRNA-mRNA expres-

sion dataset pre-processing, normalising and functional analysis pipeline [142]. This is a

unique tool which could be useful, however, it does not support longitudinal analysis. Like

many tools in this review, it can identify miRNA-mRNA interactions and perform functional

analysis, but because it does not utilise signalling pathways or provide network outputs.

So miARMa-seq cannot indicate how the miRNA-mRNA interactions may be influencing
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the mechanistic pathways; making it hard to grasp what the miRNA-mRNA interactions

are doing. Also, like many other tools, miARMa-seq does not reduce the sheer volume of

data, making it difficult to begin GRN construction.

Figure 2.1: Current miRNA-mRNA integration tools. Mind map showing many of the

current miRNA-mRNA integration tools. These tools were sorted as Bioconductor, Web-

base, Installation and SourceForge tools. Each tool have some positive (blue) and nega-

tive (red) aspects labelled to them.
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Tool name Availability Time Funct analysis Reduction Updated

anamiR [127] Bioconductor 5 3:Kegg,Reactome,+ 3 2018

DREM2 [141] Installation 3 3:GO 5 2020

MAGIA2 [140] Web-based 5 3:DAVID 3 2012

miARMa-seq [142] Installation 3 3:GO,Kegg 5 2019

miRComb [135] SourceForge 3 3:GO,Kegg 3 2020

miRIntegrator [126] Bioconductor 5 3:Kegg,Reactome 3 2016

miRNet [137] Web-based 5 3:GO,Kegg 5 2021

miRTarVis+ [138] Web-based 5 5 3 2020

Sigterms [136] SourceForge 5 3 : GO 3 2009

SpidermiR [134] Bioconductor 5 5 3 2020

ToppMiR [139] Web-based 5 3:GO 3 2021

Table 2.1: Comparison of miRNA-mRNA integration and analysis tools. Several tools

are R packages from Bioconductor or SourceForge, and others are either web-based or

can be locally installed. Some can handle longitudinal data. Functional (Funct) analysis is

often performed with GO, Kegg, Reactome, DAVID or others (+) and some of the tools are

able to reduce the volume of data. The final column on this table shows the year of when

each tool was last updated.

In conclusion, there are many miRNA-mRNA integration tools from a variety of different

sources (Figure 2.1, Table 2.1). However, computational biology requires more sophisti-

cated tools for increasingly more complex datasets. Now I introduce TimiRGeN. A novel

R/ Bioconductor package, developed and maintained by myself which fills this analytical

gap.

Target audience

This tool is aimed at experienced users of R and Bioconductor [125]. This tool is espe-

cially useful for researchers with longitudinal miRNA-mRNA datasets, however parts of

the tool can also be used on static datasets. The tool has been presented in several inter-
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national workshops and conferences, both orally and as poster presentations. Links to all

presentations can be found in Appendix B.

2.2 Results

2.2.1 Features of TimiRGeN

Input Specifics

TimiRGeN is a flexible tool which is best used after DE analysis. It caters to a range of

longitudinal DE outputs. Spies et al (2019) systematically contrasted multiple longitudinal

DE methods, and concluded fewer false positives are found from a time course dataset

with < 8 time points when using a pairwise DE method and fewer false positives are found

from a dataset with >= 8 time points when using specific time series DE tools such as

MaSigPro and splineTC [116, 143, 144].

DE is the principle processing step prior to TimiRGeN analysis. This makes the tool some-

what universal in its analysis, because no matter how the data is sourced (i.e. microarray,

RNAseq, single cell Seq or dropSeq) or processed (i.e. DESeq2, limma, edgeR), DE has

several standard outputs [145, 146, 147]. DE will produce confidence scores e.g. ad-

justed P value, P value, FDR, z-score, ect, and magnitude scores e.g. log2FC. If users

wish to use a pairwise DE approach, they should extract one of both result types (confi-

dence and magnitude) for each gene, from each DE analysis. Each gene should ideally be

significantly differentially expressed in at least one of the DE analyses. However, TimiR-

GeN does have filtration options in-case non-significantly differentially expressed genes

are within the input data. Users should also use a sensible common denominator. For

example, the FA induced kidney injury dataset is analysed using pairwise DE [109, 110].

This dataset is an irregularly measure 14 day (D) time course with a zero time point, and

the DE analyses performed were: D1/D0, D2/D0, D3/D0, D7/D0, D14/D0. Finally, all time

points for the miRNAs and mRNAs should be the same. Again in the FA dataset, there

was a D28 time point for the miRNAs, but this time point was not usable as input for TimiR-

GeN because the mRNA data did not have measurements for D28 [109, 110].
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If users have longer datasets they may wish to use a variety of other options for DE, includ-

ing: established longitudinal analysis tools such as MaSigPro or SplineTC. Furthermore,

users can use more popular tools such as DESeq2 which has a time series analysis

method which uses the LRT (Likelihood ratio test) method to test all time points at the

same time [143, 144, 145, 148]. The issue here is that each of these methods have differ-

ent outputs, and fixing TimiRGeN to be able to process a few of these would make the tool

inflexible. Thus, the burden of processing the input data from non-pairwise DE analysis

methods to be ”TimiRGeN-friendly” falls on the users. Once non-pairwise DE has been

performed, users should filter out non-significantly differentially expressed genes from av-

eraged counts or expression levels. From here, the filtered counts/ expression levels can

be used as input for TimiRGeN. Again, the time points for the miRNAs and mRNAs need

to be the same. Overall, TimiRGeN can handle data from non-pairwise DE methods, just

as well from pairwise DE methods, though use of non-pairwise DE requires some alterna-

tive methods for data wrangling and this is explained in detail in subsection 2.2.5 where a

breast cancer dataset with nine time points is analysed [111].

Overall, DE methods produce different outputs, so automating DE-TimiRGeN would be

inflexible. Leaving the input to users means more flexibility, but also means users would

need bioinformatics experience. To further add on flexibility, the tool works on data from

microarrays and RNAseq, and can analyse datasets from multiple vertebrate model or-

ganisms, including humans, mouse, rat and zebrafish.

Analysis approaches

Unlike many other miRNA-mRNA integration and analysis tools, TimiRGeN gives users

the option to analyse their miRNA and mRNA data combined or separately. The combined

approach is by-far more useful. Knowledge of miRNA activity within signalling pathways

is limited so miRNA specific functional analysis is limited. Though, the incorporation of

miRNAs within WikiPathways is growing, and there are regular updates. In time, miRNA

specific functional analysis may become easier. Furthermore, since miRNA or mRNA data

can be analysed individually, a user can analyse non-multiomic datasets with TimiRGeN.
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Functional analysis repositories

Functional analysis is a common objective of big data analysis. It is used to identify bio-

logical processes, signalling pathways, conditions and phenotypes which are statistically

over-expressed within a set of genes. Common sources for functional analysis are GO

terms, KEGG pathways and Reactome pathways [123, 149, 150]. However, TimiRGeN

takes advantage of Wikipathways [124]. This is a community based repository of signalling

and mechanistic pathways from a broad range of species. Wikipathways is a growing re-

source, which is updated on a monthly basis, and as pointed out previously, there are

a growing number of miRNA related/ incorporating pathways found within Wikipathways

[124]. The additional advantage of using Wikipathways is the cross-platform capabilities

of Wikipathways, PathVisio and Cytoscape. This feature proved useful during the de-

velopment of TimiRGeN. The disadvantage of only using WikiPathways is that we may be

missing important signalling pathways that are present in other repositories such as KEGG

and Reactome [123, 150]. One option is to use OmniPath instead, which is a collection of

all mechanistic pathways [151]. Though this will mean forfeiting the cross-platform capa-

bilities between Wikipathways and Pathvisio. Another disadvantage is that our functional

analysis is reliant on publicly curated databases, which may be biased towards certain

biological niches.

Gene IDs

In order to make the most of the cross-platform capabilities of Wikipathways, specific

gene ID codes are needed. Most Wikipathways (not all) are curated with either en-

trezgene IDs or ensembl gene IDs. As such, TimiRGeN allows users to retrieve either

entrezgene IDs or ensembl gene IDs for the miRNAs and mRNAs for further analysis.

However, the complex nomenclature system of miRNAs makes these annotation types

inefficient for miRNA annotation. Neither annotation type is sensitive to strand specificity

so -3p or -5p miRNA strands are annotated with the same IDs. As such, TimiRGeN

generates adjusted entrezgene IDs and ensembl gene IDs so mature transcripts can be

treated as individual RNAs, even if they are transcribed from the same gene. For exam-

ple, hsa-miR-140-3p and hsa-miR-140-5p share the entrezgene ID of 406932 and en-

sembl gene ID of ENSG00000208017. TimiRGeN will create altered IDs: 406932.1 and
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ENSG00000208017.1 for hsa-miR-140-3p and 406932.2 and ENSG00000208017.2 for

hsa-miR-140-5p. These adjusted IDs will only be used during plotting and exporting data

so will not interfere with functional analysis or database mining.

Data filtration approaches by TimiRGeN

All miRNA-mRNA integration and analysis tools attempt to filter big multiomic datasets,

and TimiRGeN uses three different levels of filtration: confidence levels, pathways of in-

terest and by miRNA-mRNA interactions. Reducing the volume of data not only allows for

easier hypothesis generation, but also makes analysis less computationally intensive and

faster.

Filtering by confidence levels

If pairwise DE was used as input, the users data will include genes that are differentially

expressed in at least one pairwise contrast. If the combined analysis mode (miRNAs and

mRNAs analysed together), genes are ordered into nested dataframes within lists based

on time point. Here each gene at each time point can be filtered for significance inde-

pendent of each other time point. If the separated analysis mode (miRNAs and mRNAs

analysed separately) is being used, then each miRNA or mRNA can be filtered for sig-

nificance independent of each other time point and each gene type (miRNA or mRNA).

This type of filtering relies on the inclusion of a confidence level from DE e.g. adjusted P

values. If users use non pairwise based DE, then this step should be performed before

importing data into TimiRGeN.

Filtering by pathways of interest

TimiRGeN offers two distinct methods for functional analysis, both using the rWikiPath-

ways API to identify pathways of interest [124]. The first uses overrepresentation analysis

(ORA). The number of genes found at each time point (after filtering by confidence levels)

and each species specific Wikipathway are contrasted. The Fisher exact method gen-

erates P values, which can then inform which pathways are most enriched at each time
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point. If separated analysis is performed, the miRNAs and mRNAs at each time point

will be assessed individually. It is common not to find many enriched pathways with the

miRNAs only, for reasons explained before.

Alternatively, there is a temporal cluster analysis approach which uses Mfuzz [152]. Dur-

ing use of the combined analysis mode, fuzzy clusters are created based on the common

genes found between the species specific Wikipathways and different time points (after

filtering by confidence levels). This analysis can identify temporal patterns. If separated

analysis is performed, the miRNAs and mRNAs need to be assessed individually.

These methods will highlight several pathways of interest which can be further explored

for miRNA-mRNA interactions which may be regulating the selected pathways, within the

context of the biological niche.

Input data from non-pairwise DE can also be explored using pathway enrichment or fuzzy

clustering. With this type of input, the entire set of genes can be analysed via ORA to find

pathways which are enriched for the whole time course. Also, genes from non-pairwise

DE can also be analysed with fuzzy clustering. Then genes which correlate well to the

clusters can undergo pathway enrichment to identify which pathways are most enriched

within each cluster.

Filtering by miRNA-mRNA interactions

Once a pathway of interest is identified, genes found both in the pathway and input mRNA

data are filtered. Every miRNA is assumed to have the potential of interacting with the

filtered mRNAs. Correlations are calculated between every potential miRNA-mRNA inter-

action. The default correlation method is Pearson, but Kendall and Spearman are also

options. These correlations are created using longitudinal changes in a DE results type

which represents magnitude e.g. log2FC or averaged counts/expression. TimiRGeN cre-

ates a large correlation matrix, including miRNAs, mRNAs, IDs and correlations. In addi-

tion to this, up to three miRNA-mRNA target databases be mined from and added to the

matrix as columns. miRNA-mRNA interactions being present or not present in a database
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is represented by the addition of a 1 or a 0 respectively. TimiRGeN only uses TargetScan,

miRDB and miRTarBase (rationale explained later in this subsection), so potential miRNA-

mRNA interactions can be scored between 0-3 [72, 79, 83].

Users can utilise the features of the matrix to filter for miRNA-mRNA interactions with

more confidence. The number of target databases which interactions are found in and

correlations can be mined to filter out low confidence interactions. The resulting filtered

miRNA-mRNA interactions can be used to proceed onto network generation. Overall, with

these filtering options, potentially hundreds-of-thousands of potential miRNA-mRNA inter-

actions are reduced to a more manageable amount, and users have several parameters

which they can adjust to make the filtration steps more stringent or relaxed. This level of

data reduction is rare among miRNA-mRNA integration tools.

miRNA-mRNA target databases

The TimiRGeN R package will generate a large matrix of potential miRNA-mRNA inter-

actions, and these must be filtered for predicted interactions. From the vast range of

algorithms available, I selected two predictive target databases: TargetScan and miRDB

[79, 83]. Both algorithms used used seed site - 3’ UTR complementary binding and fil-

tered for interactions with high evolutionary conservation (see subsection 1.1.4). However,

they have some differences, TargetScan has strict requirements for acceptable seed sites

of miRNAs. Seed sites have to follow a k-mer logic rule. True seed site - 3’UTR inter-

actions have to be either an 8mer (target sequence matches positions 2-8 of the miRNA

followed by an adenine), 7mer-1A (target sequence matches positions 2-7 of the miRNA

followed by an adenine) or 7mer-m8 (target sequence matches positions 2-8). There are

also some rulings for 6mer class miRNA-mRNA interactions e.g. exact seed site match,

but 6mer interactions are classed as poorly conserved. In contrast, miRDB is less restric-

tive as it only asks for a 2-8 nucleotide seed site sequence match. TargetScan also looks

into AU content and seed site positions. miRDB also takes into account accessibility and

free energy in their SVM model. Overall these two algorithms have some overlap in their

approach. Seed site - 3’ UTR was kept in mind during researching potential databases to

use in TimiRGeN, because comparative studies found them to identify to least number of
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false positives [132, 133]

In addition to two TargetScan and miRDB, I included miRTarBase to provide functionally

identified miRNA-mRNA interactions [72]. I removed interactions which were captured

with ”weak” evidence e.g. next generation sequencing, so only keeping the results of

more robust techniques e.g. PAR-clip, luciferase assay ect. In contrast to the prediction

databases, functional databases are much smaller. The assumption is that these three

databases can be used to filter the large miRNA-mRNA correlation matrices created by

TimiRGeN for interactions which users can have a higher confidence in.

Network generation

TimiRGeN has three options for network generation: 1) plot the filtered miRNA-mRNA

interactions in R using igraph, 2) export filtered interactions to PathVisio, 3) export inter-

actions to Cytoscape by using the RCy3 package [120, 153, 154]. This open-ended style

is unique among the miRNA-mRNA integration software presented in Table 2.1.

Generating networks can identify miRNA-mRNA interactions of interest and direct users

to more interesting pathways. However, if too many miRNA-mRNA interactions have been

mined from the correlation matrix, visualisation in R will be difficult. Exporting to Cy-

toscape can be better. Version 3.7 of Cytoscape or newer must be already opened, and

the cytoscapeping() function needs be used to establish connection between R and Cy-

toscape [121, 154]. The mined interactions will be sent to Cytoscape by using the cy-

toMake function of TimiRGeN. From here, a user will have better visualisation and access

to Cytoscape apps.

Another limitation of internal R network generation is that the networks will not contain the

upstream and downstream signalling information from the pathway of interest. Exporting

network data to Pathvisio can resolve this [120]. At the moment, importing the data into

PathVisio is not automated, but TimiRGeN can streamline this process. The makeMapp

function will generate a file which lists the miRNAs predicted to influence the pathway of

interest. All the mined miRNAs can be imported into PathVisio using the mapp app and
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selecting the mapp file. The imported miRNAs must be moved manually, to interact with

their predicted targets. The makeDynamic function will generate a file which contains

chronological miRNA and mRNA DE values which represent magnitude of change e.g.

log2FC. This file can be imported into PathVisio to colour code the changes over time

in the pathway of interest. With this, the longitudinal changes in a miRNA integrated

pathway of interest can be visualised. This type of visualisation is excellent for bottom-up

GRN building (see section 2.2). A PathVisio guide has been created and is linked to in

Appendix C.

Hierarchical clustering

Genes participating in the miRNA-mRNA interactions predicted by TimiRGeN can be clus-

tered in a hierarchical manner. A dendrogram and an associated heatmap can be gener-

ated to display trends within the genes of interest. Individual genes within the clusters can

also be plotted along a smooth spline.

miRNA-mRNA pair analysis

TimiRGeN has several metrics to analyse predicted miRNA-mRNA interacting pairs. These

metrics mainly rely on correlation and regression methods which are widely used in lon-

gitudinal dataset analysis [155]. One such metric is cross-correlation analysis. This

measures similarities between two time series, in this case the longitudinal changes in

a miRNA and a mRNA. This method can also identify delays and periodicity if the time

series is of sufficient length. Furthermore, it can be used as a metric to further filter

of miRNA-mRNA interactions as one would expect a miRNA which negatively regulates

a mRNA to have highly dissimilar temporal trends, which can be identified with cross-

correlation [156, 157].

Two distinct regression methods can also be used to assess miRNA-mRNA pairs. Firstly

a predictive regression analysis is performed between miRNA-mRNA interactions. A sin-

gle gene (mRNA or miRNA) is selected and any combination of its predicted interacting

partners are used to predict the expression of the selected gene over the time course.
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This is a useful tool when a single mRNA is being targetted by multiple miRNAs or when

a miRNA targets multiple mRNAs. The R2 value and P value are plotted, and it is possible

to infer synergy, competition or dominance between miRNA-mRNA interactions. However,

further specifics between multiple miRNA-mRNA interactions are unavailable.

A simple regression analysis can also be performed between a single miRNA and mRNA.

Here the regression coefficient is used to calculate odds-ratio (OR) and 95% CI (confi-

dence intervals). The odd-ratio identifies the likelihood of one time course influencing the

behaviour of another time course. Within the context of TimiRGeN, the OR score reflects

the likelihood of a miRNA influencing a mRNA over a time course. The CI display a range

where there is a 95% likelihood of the mean of the data being within the CI range, and the

smaller the CI range, the greater the likelihood [158, 159].

2.2.2 Bioconductor

TimiRGeN has been accepted as a Bioconductor package, as of release version 3.12.

This means the package was found to meet the strict criteria of becoming part of Bio-

conductor. Tools here are anticipated to be relevant for biological research, and the code

which the package was written in was seen to be of a high standard. It took a total of 9

months (January - September) for the package to be accepted, during which time, under

review process, hundreds of changes were made to the package. Several datasets have

been analysed with the package and GRNs have been generated from hypotheses which

TimiRGeN helped to find. Some are explained below to provide examples of analysing

longitudinal datasets with the TimiRGeN R package. Links for reproducibility and installa-

tion code are found in Appendix C.
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2.2.3 Pipeline of TimiRGeN
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Figure 2.2: Skeleton of the TimiRGeN R Package. This pipeline is based on the com-

bined method of TimiRGeN and it uses the FA dataset as a working example, thus it is

based on RNAseq data and miRNAseq data which was undergone pairwise DE. The FA

miRNA-mRNA data are input and filtered for SDEGs for each time point. Two method

of functional analysis are available. A) time dependent pathway enrichment to identify

enriched pathways at each time point. The enriched pathways are ranked in descending
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order of adjusted P values. Only results from D1 and D14 are shown. Or B) temporal clus-

tering which highlights global trends of pathways over the time course and clusters these

trends. Two clusters are shown here. Each line represents a pathway and colour repre-

sents the fitness score a pathway has with a cluster. Ranking from lowest to highest are:

purple, yellow, orange, red. After a pathway is selected for further analysis, miRNA-mRNA

interactions within the selected pathway can be predicted by filtering for miRNA-mRNA in-

teracting pairs using databases and correlation. C) Filtered miRNA-mRNA interactions

can be viewed in R. Nodes are pink (miRNAs) or blue (mRNAs) and edges are colour

coded by correlation over time. D) Behaviour of genes within the miRNA-mRNA interac-

tion network can be viewed across the length of the time course and genes which pass

a given threshold (greater than 1.5 within this example) are highlighted. E) Genes can

also be clustered hierarchically for trend identification. F) Expression changes within the

clusters also can be plotted and these line plots include a grey line ( representing data

points) and a red line (smooth spline over the data points). G) A selected miRNA-mRNA

pair (e.g. mmu-miR-181c-5p and Plau) can be analysed with cross-correlation analysis.

H) The selected miRNA (blue) and mRNA (red) can be displayed over the time course.

The data can be scaled and interpolated over a spline and the correlation is displayed. I)

Analysis with regression type methods can be performed on a selected mRNA or miRNA.

Plau is selected here as an example. Its expression over time is predicted based on the

selected miRNAs that are predicted to target it. In this example mmu-miR-181c-5p is se-

lected to predict the time course trend of Plau. Log2FC values of Plau are displayed as

red dots and the predicted Log2FC values of Plau is displayed as a dashed blue line. R2

and P value are calculated and shown. J) Regression can also be performed between a

single miRNA-mRNA pair. The OR between the two time series (miRNA and mRNA) can

be calculated, along with the 95% CI. Correlation, P value, R2 OR and CI are rounded to

two decimal places. Network data can be exported to Cytoscape or PathVisio.

2.2.4 Combined miRNA-mRNA analysis with TimiRGeN

Here I present output of the TimiRGeN R package using a Kidney injury dataset.
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Kidney injury dataset and data processing

To test the TimiRGeN R package, a ”gold standard” longitudinal miRNA-mRNA had to

be used. The ideal dataset would have a minimum of three repeats per time point, and

have miRNA and mRNA expression data taken at the same time points. There were a

number of datasets that could have been used, and I settled on a mouse kidney injury

dataset stored in a GEO repository. mRNA data was downloaded from GSE65267 and

miRNA data was downloaded from GSE61328 [109, 110]. This dataset was suitable as

the miRNA and mRNA time points matched, three biological repeats were taken at each

time point, the time course consisted of six time points including a zero time point and the

topic of kidney fibrosis was of interest in our research group.

FA induced kidney injury can be detected by miRNAs

FA injection is a method of simulating a chemically induced reversible acute kidney injury in

model organisms such as mice [110]. In humans, acute kidney injury has a high mortality

rate as around half of patients die [160]. The injury event triggers cell death which can

cause loss of renal function. If the injury is mild the damage is reversible, but if serious,

kidney injury can lead to decreased excretory release and contribute to clinical diagnoses

such as CKD (chronic kidney disease) and renal failure [161]. A number of phenotypes

can be characterised as hallmarks of CKD, including fibrosis, cell lysis and a heightened

immune response. miRNA-mRNA interactions could be playing a role in contributing to

CKD-like conditions. miR-21a-5p has been found in urine in CKD patients so it has been

identified as a non-invasive biomarker, and this gene was highly upregulated over the time

course of the data [162]. However miR-21-5p has also been identified as a non-invasive

biomarker in several other conditions such as gastric cancer, bladder cancer, prostate

cancer and lupus [163, 164, 165]. Thus, further investigation to find a panel of miRNAs

which can be used to specify kidney injury would be a valuable asset to non-invasive

biomarker research and personalised medicine. A further aid to this aim would be to

generate GRNs to overlay multiomic data and present hypothesis for in vitro drug testing.

In this subsection two GRNs have been generated to help explain the regulatory affects

miRNAs have during FA induced reversible acute kidney injury.
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Figure 2.3: Overrepresentation analysis bar plots created for each time point. Path-

ways are ordered based on adjusted P values which are measured using the BH method.

The darker the shading the higher the P value score. Barplots for D1, D2, D3, D7 and D14

are shown here. Plots have been displayed in a left to right chronological order.
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IGF1 may act as a miRNA sponge

The FA miRNA and mRNA data were put through the combined method of analysis in

TimiRGeN. Pathway enrichment found several signalling pathways which were consis-

tently enriched throughout the time course. The Lung Fibrosis pathway (WP3632) was

enriched at days: 3, 7 and 14, meaning it was a later acting pathway. As mentioned ear-

lier, one of the weaknesses of using Wikipathways is that our functional analysis is bias

towards curator input. As such, we would have expected a kidney related pathway to be

enriched, but no such pathway existed at the time of the analysis. Thus, the Lung Fibrosis

pathway is used with the assumption that the systems within this pathway are also found

in kidney fibrosis.

Potential miRNA-mRNA interactions which regulate the Lung Fibrosis pathway were fil-

trated based on the following conditions: miRNA-mRNA interaction must have a Pearson

correlation of less than -0.5 and must be found in at least two of the three target databases.

20 miRNA-mRNA interactions remained. Through further investigation with the TimiRGeN

R package (detailed below), IGF1 was found to as a potential miRNA sponge because our

analysis predicted it to interact with nine miRNAs (Figure 2.4).
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Figure 2.4: igraph network displaying miRNA-mRNA interactions found after filtra-

tion. mRNAs are blue and miRNAs are pink. Correlations (Pearson) inform the colour of

the edges.

The miRNA-mRNA interactions could also be exported into Cytoscape for the option of

using Cytoscape apps for further analysis. Figure 2.5 shows how the miRNA-mRNA inter-

action network looks in Cytoscape.
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Figure 2.5: Network data from TimiRGeN has been imported to Cytoscape.

Instead, the results from Figure 2.4 were imported into PathVisio, along with dynamic

information. This was in order to construct a miRNA integrated dynamic Lung Fibrosis

pathway. A network like this can help in understanding the regulatory affects a miRNA may

have on a signalling pathway. Moreover, this also allowed us to see how multiple miRNAs

fit into a signalling pathway. Such as display is ideal for bottom-up GRN development.
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Figure 2.6: Network data imported into PathVisio. Each gene contains five segments,

representing the five log2FC values from each time point in chronological order. Positive

fold changes are red, negative fold changes are blue and little-no changes are white.

Grey boxes are genes not found in the input data. miRNAs and dynamic information from

TimiRGeN were added. Several sections of the original Lung Fibrosis Wikipathway were

removed to make this display clearer.

Figure 2.4-2.6 highlighted the number of miRNAs interacting with IGF1. The Lung Fibro-

sis pathway in Figure 2.6 showed TGFB signalling is regulated by IGF1 and TNF and so
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miRNA-mRNA interactions involving these genes were chosen for bottom-up GRN con-

struction. The GRN in Figure 2.7 formalises the hypothesis that FA indirectly modulates

multiple miRNAs which contribute to reducing expression of anti-fibrotic gene Tnf and

increasing expression of pro-fibrotic Tgfb and Igf1. TimiRGeN analysis predicts mmu-

miR-27a-3p targets Tnfa1, an antagonist of collagen promoting protein TGFB. Interest-

ingly, TimiRGeN also predicts Igf1 is a miRNA sponge for multiple miRNAs including miR-

NAs from the let-7 family (mmu-let-7c-5p, mmu-let-7e-5p, mmu-let-7g-5p), miR29 family

(mmu-mmu-miR-29a-3p, mmu-miR-29c-3p), and other miRNAs: mmu-miR-18a-5p, mmu-

miR-26b-5p, mmu-miR-365-3p and mmu-miR-98-5p.

  Figure 2.7: GRN which displays Igf1 as a miRNA sponge.

The GRN presented above indicates Igf1 is a miRNA sponge. Some of the predicted

miRNA-Igf1 interactions have been reported (miR-18a , miR-26b, miR-98 and miR-365)

[166, 167, 168, 169]. let-7c-5p has also been reported to target Igf1, and TimiRGeN

predicted that other let-7 family genes including mmu-let-7e-5p and mmu-let-7g-5p also

target Igf1 [170]. Since let-7 family genes share most of their seed sequence, it increases

the likelihood of other let-7 genes also targeting Igf1 [171]. Finally, miR29 family members
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have been predicted to target Igf1, and research indicates that Igf1 can act as a ceRNA

(competing endogenous RNA) for miR-29 family members [172]. ceRNAs are RNAs which

regulate other RNAs by regulating miRNAs. Meaning, miRNAs sponged by Igf1 are less

able to regulate other target genes, leading to the target genes being upregulated [173].

It is unknown why Igf1 may be a miRNA sponge, but Igf1 is known to induce collagen

production, which contributes to kidney fibrosis and CKD [174]. Exploration into the role

of Igf1 as a miRNA sponge in kidney injury conditions could be beneficial for therapeutics

for CKD.

The GRN above has multiple assumptions for example direct/indirect negative regulation

of the miRNAs targeting IGF1 by FA. In this case, the assumption was made because all

of the miRNAs which targetted Igf1 were decreasing over the time course, except mmu-

let-7e-5p and mmu-let-7g-5p which peak around day 3 and then drop down in expression.

Although, this assumption may be incorrect, the GRN can still be used as a Null hypothe-

sis for further experimental or computational analysis.

The genes found to be involved in Figure 2.4 can be explored over the 14 day time course.

In Figure 2.8, the genes which are higher or lower than a user defined threshold can

be highlighted. This can help to establish which genes are most changing over the time

course. The data is scaled, so even low expression level genes (which many miRNAs are)

can be contrasted without being marginalised.

One interesting contrast is the difference between the important genes identified in the

source paper and the genes presented above [110]. These are different, because the

source paper relied DE and ranking to identify interesting miRNAs, and while DE is a

good metric, the TimiRGeN R package focuses on miRNA-mRNA interactions and time

based changes, making it more specific.
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Figure 2.8: Scaled gene behaviour over the kidney injury time course. The time

course shows several miRNAs and mRNAs which pass the threshold of 1.5 after scaling.

miRNA-mRNA pair analysis and cluster analysis methods

The genes within the network were also be explored using hierarchical clustering to iden-

tify any trends. No obvious trends or clusters came up. The genes involved in the twenty

miRNA-mRNA interactions broadly fell into one of three clusters. These clusters are visu-

alised by a heatmap or a dendrogram. These clusters can then be split into cluster specific

line plots (Figure 2.9).
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Figure 2.9: Hierarchical clustering of miRNAs and mRNAs found after filtration.

Genes found to be involved in miRNA-mRNA interactions within the pathway of interest

can be hierarchically clustered. A) A heatmap can be generated along with a B) com-

panion dendrogram. Following this, a number of clusters can be defined by the user. C)

Cluster based line plots can be displayed for each gene, per cluster.

Moving on, individual miRNA-mRNA pairs can also be explored and analysed using a suite

of longitudinal pair analysis tools. To select a miRNA-mRNA pair to analyse, a heatmap

(Figure 2.10) can be generated, and is ordered based on correlation scores between

miRNA-mRNA pairs.
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Figure 2.10: Heatmap displaying miRNA-mRNA interacting pairs. The heatmap is

colour coded with a red-white-blue gradient. Red shaded interactions have a negative

correlation, blue shaded interactions have a positive correlation and white shaded inter-

actions have weak correlations. The heatmap indicates mmu-miR-181c-5p-Plau is the

most negatively regulated interaction. All pairs have a correlation of at least -0.5, thus no

white/blue shadings are seen.

The intention of this heatmap is to make selecting a miRNA-mRNA pair to further inves-

tigate simpler for users. As an example, the most negatively regulated interaction (mmu-

miR-181c-5p-Plau) is used to display longitudinal miRNA-mRNA pair analysis methods

from theTimiRGeN R packaged .
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Figure 2.11: miRNA-mRNA pair analysis metrics in the TimiRGeN R Package. The

most negatively correlated pair was selected, so this all plots here analyse Plau and mmu-

miR-181c-5p. A) Line plot showing the miRNA and mRNA from a selected pair. This spe-

cific display is from interpolating the data over a smooth spline, and scaling log2FC values

of the genes. The Pearson correlation is pasted as the sub-heading. B) A cross-correlation

plot measuring the similarity between Plau and mmu-miR-181c-5p. It seems the two time

courses are highly dissimilar due to the upwards and symmetrical sloping seen at the lags.

This also indicates that the pair has an interesting dynamic. Interpolation was not used to

make this plot. C) Simple regression between Plau and mmu-miR-181c-5p. OR and 95%

CI are rounded to two decimal places. OR measures the likelihood of one time course

effecting the other time course. An OR of 0.5 indicates there is a negative effect. CI gives

a range (grey borders) where there is a 95% confidence that the mean of the data is within

the range. An abline is also drawn. D) Regression plot showing predicted over measured

data. Prediction by regression shows the time course of Plau levels predicted by mmu-

miR-181c-5p levels (blue dashed line). This is in contrast to the measured Plau levels (red

dots). R2 and P value rounded to two decimal places are pasted as sub-headings.
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2.2.5 GRN creation from Temporal clustering

The Lung Fibrosis pathway was found via time dependant pathway enrichment of the

mouse kidney injury dataset (Figure 2.2A, Figure 2.3). TimiRGeN also offers a temporal

clustering method to identify pathways of interest (Figure 2.2B). Temporal clustering is

made possible by utilising the Mfuzz package [175].

This method compares the change in number of genes found to be significantly differ-

entially expressed at each time point and each pathway. Soft clusters are used. Each

pathway is given a membership score for each cluster (0-1), and the total score for each

pathway will equal 1. Based on this score, fitness can be inferred, i.e. the higher a pathway

scores with a cluster, the higher the fitness to the cluster. The colour of the lines reflects

the degree of fitness a pathway has to a cluster; in order from the highest: red, orange,

yellow, purple (Figure 2.12).

Cluster 1 was interesting because pathways with a high membership score to cluster 1

may be alternating in activity between days 3 and 7. Further investigation into pathways

that fitted well into cluster 1 found the Inflammatory Response Pathway (IRP) (WP458).
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Figure 2.12: Global analysis of miRNA-mRNA dataset using 12 clusters. Fuzzy clus-

ters have been used to cluster pathways based on temporal behaviours. The x-axis of

each plot are time points and the y-axis are the standardized (between -1.0 and 1.0) num-

ber of genes shared by pathways and the input data. Pathways (lines) are colour coded,

and from highest to lowest the colours are: red, orange, yellow and purple. The colours

represent how well a pathway fits with a temporal behavior of a cluster.

Fourteen miRNA-mRNA interactions were found in the IRP after filtering for miRNA-mRNA

interactions which were found in at least two miRNA target databases and had a Pearson

correlation lower that -0.5. Most of the miRNA-mRNA interactions involved collagen pro-

moting genes, which are known to be important factors in fibrosis progression, and fibrosis

is a characteristic of kidney injury [176]. These miRNA-mRNA interactions were displayed

in PathVisio to identify how the miRNAs regulate the IRP system. The resulting hypothe-

ses were formalised into a GRN for collagen synthesis during kidney injury (Figure 2.16).
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Figure 2.13: Network showing miRNA-mRNA interactions found after filtering. Made

from all potential miRNA-mRNA interactions found in the Immune Response Pathway after

filtration steps. All interactions in the plot have a Pearson correlation between -0.53 and

-0.99. The colour of the edges represents the correlation and from highest to lowest the

edges are coloured: green, grey, red. This image was edited to increase its visual quality.

The collagen synthesis GRN is induced by FA, which in-turn results in a fibrotic response.

Here immune cell and structural repair gene activity leads to an increased rate of struc-

tural collagen production [177, 178]. Transcriptional activation of genes such as Col1a1,

Col1a2 and Col3a1 contribute to structural extracellular fibers. This increases the rigidity

of the surrounding tissue, leading to a loss of elasticity, which will negatively impact kidney

function [176]. Each of the mentioned collagens increases over the 14 day time course

and several of the predicted miRNAs decrease over the time course [109, 110].

The TimiRGeN R package predicted miR29 family miRNAs miR-29a-3p and miR-29c-3p
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target each of the three structural collagen genes. Literature supports the miR29 fam-

ily members regulating Col1a1 and Col3a1, and on-top of this increasing miR29 family

levels reduces fibrosis [179, 180, 181]. TimiRGeN predictions also identified mmu-miR-

29a-5p and mmu-miR-29c-5p to regulate Col1a2, which has not been researched in renal

systems. TimiRGeN also predicts Let7 family members regulated structural collagens af-

ter kidney injury. Specifically, let-7g-5p and let-7c-5p were predicted target Col1a2 and

Col3a1 mRNAs. let-7d directly targets Col3a1 [182]. Let7 members share most of their

seed sequence, which further justifies the hypothesis of mmu-let-7c-5p and mmu-let-7g-5p

targeting Col3a1 mRNA [171].

Results also identify mmu-miR-26b-5p, mmu-miR-92-3p and mmu-miR-363-3p to target

Col1a2 mRNA. Only miR-26b had been experimentally validation of targetting Col1a2

[183]. I believe that mmu-miR-92a-3p and mmu-miR-363-3p may be novel targets of

Col1a2, under kidney injury conditions. This collagen synthesis GRN can be a resource

for researchers investigating the regulation of structural collagens during kidney injury con-

ditions. It can also lead to potential insights into non-coding RNA based therapies for CKD.
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Figure 2.14: GRN of miRNAs regulating collagen production. miRNA-mRNA interac-

tions found from the TimiRGeN package. Hypotheses about how the genes interact have

been formalised into a GRN.
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Figure 2.15: Line plots showing the genes (miRNAs and mRNAs) found after filtra-

tion. A) time series line plot which highlights genes which have a scaled value which

surpasses 1 in at least on time point and B) time series line plot which highlights genes

which have a scaled value which is lower than 0 in at least one time point.
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Figure 2.16: Dendrogram and line plots from clusters 1 and 2 of the dendrogram.

Hierarchical clustering identifies two clusters, one which the collagen genes preside and

one which contains most of the predicted miRNAs which target the collagens. A1) shows

genes from cluster 2 and A2) shows genes from cluster 1. B) A dendrogram shows the

distances of these genes.

Further exploration with TimiRGeN shows that Col1a1 and Col3a1 mRNAs are upregu-

lated and several of the predicted miRNA partners are downregulated, possibly indicating

that during the process of kidney fibrosis, the miRNAs are negatively regulated. Further-

more, hierarchical clustering shows the collagens and most of the predicted miRNAs form

two separate clusters. A notable exception is mmu-miR-92-3p which is clustered with the

collagens.
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2.2.6 Alternate analysis methods with TimiRGeN

In subsection 2.3.4, I have discussed the use of this tool on a RNAseq based dataset

which has had pairwise DE performed on it. Here I expand on the versatility of TimiRGeN

by discussing how it can be used for: microarray datasets, non-pairwise DE input data

and multivariate datasets. Again, all code linked to in Appendix C.

Analysis of microarray datasets

TimiRGeN works just as well with microarray datasets, as with RNAseq datasets. Users

may wish to use a more specific set of genes as the background when performing over-

representation analysis. For example, all known genes found within a cell or all probes

in a microarray. The latter is an important factor when analysing microarray datasets

for a more accurate analysis. As an example of this, a microarray hypoxia dataset was

analysed with the TimiRGeN R package [112]. Probes were downloaded from platforms

GPL6884 and GPL8227 and gene IDs extracted to create a list of genes for enrichment

analysis. Separate miRNA-mRNA analysis mode was used, so each gene type (miRNA

and mRNA) from each time point were analysed independently from each other gene type

and time point. miRNAs are poorly annotated and often pathway enrichment with only

miRNAs finds few pathways. The time points for the hypoxia dataset were: 0, 16, 32 and

48 hours after hypoxic conditions. Pairwise DE was performed using the 0 time point as

the denominator. No enrichments were found at 16 hours. Results for 32 and 48 hours

can be found in the github repository.

Averaged count/expression as input

All previous examples used pairwise DE because they are from shorter datasets. However

for longer time series, alternative DE methods may be more appropriate such as using a

cubic spline. There are many suitable time course DE tools e.g. MaSigPro or the LRT

method in DESeq2 [143, 145]. From these examples, a single log2FC and adjusted P

value is given to each gene, so the standard input for TimiRGeN will not work. Instead,

users will need to filter significantly differentially expressed genes from averaged count or
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expression data, and use this as the input for TimiRGeN analysis. Generally, the functions

are the same when using averaged count/ expression data from SDEGs or pairwise DE

results (log2FC and adjusted P values) as the input, however the former input type has

alternate options for selecting a pathway to investigate miRNA-mRNA interactions (Figure

2.17).
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Figure 2.17: Alternative TimiRGeN pipeline for non-pairwise DE. Prior to using TimiR-

GeN, after a non-pairwise DE analysis is performed, the SDEGs will need to be filtered

from averaged expression data. Following this, functional analysis can continue with

TimiRGeN A) all genes can be functionally analysed with ORA to find pathways which

are enriched over the whole time course or B) genes can be clustered first using fuzzy

clustering, and then functionally analysed with ORA. After fuzzy clustering, genes can be

filtered by their association with the clusters. The threshold of this association is user

defined.
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Multivariate datasets with multiple time series

More complex datasets will include multiple time series with multiple interventions. Such

complexity can be explored with TimiRGeN by analysing each time series separately and

then contrasting the miRNA-mRNA interactions found in each case. For this to work,

the same pathway must be examined. As an example a second mouse kidney injury

dataset was analysed. This dataset was generated from UUO, which is a surgical pro-

cedure involving the ureter connecting a kidney and the bladder being cut or blocked

[184, 185]. This dataset was downloaded from GEO repositories GSE118340 (miRNA)

and GSE118339 (mRNA). UUO data was processed the same way as the FA dataset.

The Lung Fibrosis pathway was explored with both the FA and the UUO kidney injury

longitudinal miRNA-mRNA datasets.
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Figure 2.18: Expanded TimiRGeN pipeline for multivariate datasets. The FA and
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UUO kidney injury datasets are contrasted using longitudinal pair analysis methods, within

the context of the Lung Fibrosis pathway. Filtered miRNA-mRNA interactions from the

FA dataset had a negative correlation of at least < -0.5 and were found in at least two

databases. Filtered miRNA-mRNA interactions from the UUO dataset had a negative

correlation of at least < -0.98 and were found in at least two databases. miRNA-mRNA

interacting pair heatmaps show that the mmu-miR-29a-3p-Igf1 interaction was found as

the 8th and 9th most negatively regulated pair (according to Pearson correlation) in the FA

and UUO datasets, respectively. Contrasting the longitudinal regression and correlation

plots, shows the miRNA-mRNA interacting pair had a greater R2, a lower Pearson corre-

lation, and lower P value in the UUO dataset. Regression analysis shows the odds-ratio

was higher in the FA dataset, also the CI range was larger in the FA dataset.

mmu-miR-29a-3p-Igf1 was found to be negatively correlated in both the FA and UUO

datasets, so it is likely this interaction has a connection with kidney injury. It seems from

the regression and correlation statistics that the pair has a greater role in UUO kidney

injury, however there are only three time points in the UUO dataset. This may mean that

the statistics are over-estimations, so therefore we can only predict mmu-miR-29a-3p-Igf1

interaction may regulate the Lung Fibrosis pathway in both datasets, but cannot accurately

assess whether the FA or UUO induced kidney injury models have the greater influence

from the mmu-miR-29a-3p-Igf1 interaction.

2.2.7 Publication

The TimiRGeN R package and associated results from the analysis were published in

Bioinformatics in May 2021 as an open access original paper [117].
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2.3 Methods

In this section I will describe in detail the necessary steps taken to produce a Bioconductor

quality R package. I will also explain each of the functions within the TimiRGeN R pack-

age. Most of what is described in this section is from R and Bioconductor documentation

[186, 187]. I also detail how the FA and UUO data were processed.

2.3.1 Data processing

FA was injected into the left kidney of mice. The specimens left kidneys were surgically

removed and flash-frozen prior to, or 1, 2, 3, 7, 14 D after the FA injection. The kidneys

had miRNA and mRNA measurements taken. No cell type was specified in the materials

or supplementary materials so it is assumed a mix of multiple cells are used, and this

was a tissue level study. The miRNA time course extended to D28, however the mRNA

study did not, so the D28 data was not used. Data was downloaded with the fastq-dump

function from SRA-toolkit [188]. Both miRNA and miRNA data were checked for quality

using FASTQC [189]. The miRNA data had unneeded adapter sequencers which were re-

moved with cutadapt [190]. For miRNA alignment the Mus musculus.GRCm38.cdna.all.fa

transcriptome was indexed by Bowtie and for mRNA alignment, Salmon index was used

[191, 192, 193]. miRNA read quantification was performed with miRDeep2 and mRNA

quantification was performed with Salmon [194]. Reads were imported into R using tx-

import and pairwise DE was performed using limma. The zero time point was used as

the common denominator during DE. UUO data was analysed in the same way as the FA

data.

2.3.2 Package creation

TimiRGeN was created using Roxygen2, an R template generator which is recommended

to use when creating new packages. Roxygen2 automatically generates several files

which are essential for an R package, and in this subsection I will briefly describe these

different files, and some Bioconductor specifics. The package was created using R 4.0.2

and BiocManager 3.11.
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The total amount of data contained withing a zipped package folder must be lower than 5

mb. Also, the total amount of time allowed for a package to build without vignettes must be

less than 10 minutes. Exceeding these thresholds will results in Bioconductor warnings.

This will also mean the package may need to be split into multiple smaller packages. At

the time of writing the TimiRGeN R package, version 1.3.03 is 4.3 mb in size and took

roughly 6 minutes to build the package without its vignette.

package tree

TimiRGeN 

R 

data 

inst 

man 

tests 

vignettes 

DESCRIPTION 

NAMESPACE 

NEWS 

README.md 

extdata 
Author 

testthat 
testthat.R 

TimiRGeN_tutorial.Rmd 

Figures 

Functions 

datasets 

documentations 

unit tests 

Figure 2.19: Summary of the file structure needed for a Bioconductor tool. This tree

diagram depicts the order of folders and files which made the TimiRGeN R package.

One of the learning curves involved in creating a new R/Bioconductor package is file

structure. It requires many specific features to pass builds and checks. Figure 2.19 shows
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the structure of the package accepted by Bioconductor. The folders and individual .R, .rda

or .Rd files. Each part will be explained below.

data

The data folder includes ten .rda files which the end user may want to use. Including six

example longitudinal miRNA-mRNA datasets which help by providing templates of how

the input data should look like. The datasets comprise of samples from the: 1) FA fibrosis

dataset as the main example file (miRNA), 2) FA fibrosis dataset (mRNA), 3) the UUO fi-

brosis dataset to show users how to perform multivariate analysis (miRNA and mRNA data

were kept together), 4) the hypoxic breast cancer dataset to show how a human dataset

can be analysed and as an example for microarray based datasets (miRNA, 5) hypoxia

dataset (mRNA), 6) another breast cancer dataset used as an example for non-pairwise

DE samples (miRNA and mRNA data were kept together) [109, 110, 111, 112, 184].

These example datasets were a subset of the original datasets, and this helps exam-

ples run faster and speed up the vignette building process. Reducing dataset size also

helped to make the tool smaller.

The other four .rda files help run functions which requires downloading information, which

does not always work during Bioconductor vignette building. To simplify this, much of the

data that would be downloaded during the vignette building process are stored in the data

folder instead. Datasets which are not essential for the end user to see (not used in the

examples) are stores in the /Ints/extdata folder. A complementary Rd. file is stored in the

man folder for each of the ten dataset here. Users can read descriptions of the man files

to find which dataset are most appropriate to help their analysis.

DESCRIPTION

The DESCRIPTION file holds some of the most important information in an R package.

I have included the code for DESCRIPTION file of TimiRGeN v1.3.03 below, and will de-

scribe the relevance of each section.
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“‘

Package: TimiRGeN

Type: Package

Title: Time sensitive microRNA -mRNA integration , analysis and

network generation tool

Version: 1.3.03

Authors@R: person(given = "Krutik", family = "Patel",

role = c("aut", "cre"),

email = "K.Patel5@newcastle.ac.uk")

Description: TimiRGeN (Time Incorporated miR -mRNA Generation of

Networks) is a novel R package which functionally

analyses and integrates time course miRNA -mRNA

differential expression data. This tool can generate

small networks within R or export results into

cytoscape or pathvisio for more detailed network

construction and hypothesis generation. This tool

is created for researchers that wish to dive deep

into time series multi -omic datasets. TimiRGeN

goes further than many other tools in terms of data

reduction. Here , potentially hundreds -of -thousands

of potential miRNA -mRNA interactions can be whittled

down into a handful of high confidence miRNA -mRNA

interactions affecting a signalling pathway , across

a time course.

License: GPL -3

Encoding: UTF -8

LazyData: true

RoxygenNote: 7.1.1

Depends: R (>= 4.0.2) ,

Mfuzz ,

MultiAssayExperiment

Imports: biomaRt ,
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clusterProfiler ,

dplyr (>= 0.8.4) ,

FreqProf ,

gtools (>= 3.8.1) ,

gplots ,

ggdendro ,

gghighlight ,

ggplot2 ,

graphics ,

grDevices ,

igraph (>= 1.2.4.2) ,

RCy3 ,

readxl ,

reshape2 ,

rWikiPathways ,

scales ,

stats ,

tidyr (>= 1.0.2) ,

stringr (>= 1.4.0)

Suggests:

BiocManager ,

kableExtra ,

knitr (>= 1.27),

org.Hs.eg.db,

org.Mm.eg.db,

testthat ,

rmarkdown

VignetteBuilder:

knitr

biocViews:

Clustering ,

miRNA ,

Network ,
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Pathways ,

Software ,

TimeCourse ,

Visualization

URL: https://github.com/Krutik6/TimiRGeN/

BugReports: https://github.com/Krutik6/TimiRGeN/issues

“‘

The Package, Type of package, Title, Authors and Description sections are self explana-

tory. The Version is important for updating the package in Bioconductor. Bioconductor

updates must follow special bump X.Y.Z rules. Currently, the package is version 1.3.03,

for a successful version bump the Z must be increased by an increment of one, so 1.3.04.

Anything else, would not work. License being GPL-3 means that TimiRGeN is a free to

download and modify. Encoding is the character coding type used, which is the standard

UTF-8. LazyData being true means that datasets will be downloaded only after they are

called, so datasets attached to the package will not take up memory when they are not in

use. RoxygenNote is the version of Roxygen used in development. Other sections of note

are the VigneteBuilder which indicates the method of vignette building and biocViews,

which is a list of Bioconductor key words. This list will categorize this package to help

potential users find it.

The DESCRIPTION file also allocates other packages needed for TimiRGeN to function.

These packages will be divided between Depends, Imports and Suggests. Packages and

software in the Depends section are essential for TimiRGeN to function and are down-

loaded and loaded onto the search path when TimiRGeN is loaded, i.e. there is no need

to call for their libraries. Here the R version is present, so users will need R 4.0.2 (or

newer) to install TimiRGeN. TimiRGeN is also dependant on Mfuzz because one of the

Mfuzz dependencies, e1071 must be on the search path for Mfuzz functions to work

[152, 195]. The simplest solution to get e1071 on the search path was to place Mfuzz in

the Depends section, and thus e1071 is indirectly kept in the search path of TimiRGeN.

MultiAssayExperiment is also in this section because most functions use this package, so
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it would not make sense to need to call for MultiAssayExperiment when using TimiRGeN

[196]. Packages in the Imports area will also be downloaded when TimiRGeN is down-

loaded but not automatically be put on the search path. This is because these packages

are needed for some of the function in TimiRGeN, but not all. So these packages are

only called when the functions required to use them are called. When functions which use

packages in the imports list are called, either the attached package is loaded, or specific

functions from the attached package are loaded, depending on the way the specific func-

tions are coded. This makes the TimiRGeN package smaller and take less space. This

also makes some functions work faster, as they may only require a specific function from

a package on the Imports list. Finally, packages in the Suggests section are not loaded

when when TimiRGeN is called. Packages here are not essential for TimiRGeN to func-

tion e.g. if a user is interested in analysing Homo sapiens data, they would not need to

download org.Mm.eg.db. This would be a waste of time and space. Users will have to

download and call for packages in the suggests list themselves.

inst

The inst folder contains extra material which may help the package but the contents are

not essential for the package to run. It holds an extdata folder. In here 7 .rda files are

found. These are not essential for the end user to see. These only serve to speed up

the vignette building process. Having these datasets here, rather than in the data folder,

means no .Rd files (contents of the man folder) need to created, and so the package

building process is faster and less memory is used. Finally, an author file and a CITATION

file are found here. The CITATION file is written in a bib code style.

man

The man file contains documentation of the functions from the R folder and the datasets

from the data folder. When TimiRGeN is loaded, a user can use the help panel to gain

more knowledge about certain functions or datasets. The help pages will be from the .Rd

files stored in the man folder. The .Rd files are automatically generated by Roxygen2 from

the functions and datasets. Functions with a @noRd annotation will not generate an .Rd
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file.

NAMESPACE

An automatically generated Roxygen2 file containing all the TimiRGeN functions, func-

tions required from attached packages, attached packages and datasets in the data folder,

and all of these are exported with TimiRGeN. At the time of writing, a total of 58 symbols

are exported - including 10 datasets and 48 functions; making TimiRGeN a large package.

NEWS

This is a regularly updated document which states the data and version change, and bullet

points the changes associated with each new version.

R

The R folder contains all the functions in the TimiRGeN package as .R files. A total of

55 functions are in the TimiRGeN package, 7 of which are internal functions and not

exported in the NAMESPACE file and .Rd files are not generated for these 7 functions.

Each function follows a similar Roxygen skeleton.

“‘

#’ @title

#’ @description

#’ @param

#’ @return

#’ @export

#’ @importFrom

#’ @import

#’ @usage

#’ @examples

Function

“‘
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Functions not exported to the end user will have the @noRd attribute instead of the @ex-

port attribute.

“‘

#’ @noRd

“‘

The @title and @description are self explanatory. @param will describe the function pa-

rameter, and every parameter has to be defined with a new @param section. @return

will describe the output of the function and @export will add the function to the NAMES-

PACE. @importFrom states if functions from another package are required for the function

to work. Imported functions from other packaged are called as so ”package::function”.

Some functions use @import to load the whole package for use in a function. @usage

describes how the function can be used, so when describing @usage, all parameters

must be present in the same order they are called for in the function. @examples shows

a working example of the function. Some demanding functions have their @examples

sped up by importing a dataset from the data folder. Some functions have @examples

blank because they are too time consuming. In a Bioconductor package, at least 80% of

functions need to have working examples presented. The Function is presented in full at

the end of the .R file.

README.md

A markdown file which gives a short description about the package, and can be seen as

the introduction to the package. This will function as the main text to go on the front of the

package’s associated github website (https://github.com/Krutik6/TimiRGeN/).

tests

This folder contains an .R file which calls for the testthat package to run all the unit tests

found in the tests/testthat folder [197]. The testthat folder contains R scripts and .rda files

to unit test functions. A total of 127 tests are performed on this package to make sure
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most of the functions are working. Not every function is tested this way due to size and

time constraints, but many of the central functions are tested.

vignettes

This folder hold the TimiRGeN tutorial.Rmd file which is the package vignette. This holds

a number of working examples and in depth explanations on many of the nuances of the

package which would be difficult to understand without the working examples. Alongside

the .Rmd file are 15 png files which help showcase the output of the package.

2.3.3 Functions

I will list all the functions of the TimiRGeN R package in alphabetical order, and briefly de-

scribe them, the intended output and the rationale of each functions. The full code for the

functions can be found in the R folder in the github repository https://github.com/Krutik6/

TimiRGeN/R, which is linked to in Appendix C. Some functions will specify if there are

differences between combined (c mode) or separated (s mode) of miRNA-mRNA data

analysis. Other functions will only be needed for non-pairwise DE. Internal functions are

also included because internal functions help other functions work.

addIds

addIds maps retrieved entrezgene or ensembl gene IDs from a getIds function to dataframes

containing significantly differentially expressed genes. addIds will work on a nested dataframes

(c mode of analysis) or on a list of nested dataframes (s mode of analysis).

addPrexif

addPrexif is a necessary function for s mode of analysis. This function will add a user

defined prefix to each column name of the input files. With this, downstream functions will

be able to differentiate between the miRNA and mRNA data, and analyse them separately.

clusterPrep

clusterPrep is an internal function which prepares data for hierarchical clustering. This
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function uses reshape2::melt to prepare data for plotting [198].

clusterCheck

clusterCheck creates a PCA plot by wrapping around the Mfuzz::overlap function [152].

This will compare the distances between cluster created by the createClusters function.

With this, users can see if they have created too many, or too few clusters. This function

uses the grDevices::dev.new() function to give the option of plotting in a new window [199].

clusterList

clusterList is a function designed to be used when analysing longitudinal miRNA-mRNA

datasets analysed with non-pairwise DE approaches. clusterList will transform clusters

created by the createClusters2 function into lists based on genes associated to each clus-

ter. Genes association with clusters are determined by the fitCluster parameter in the

function. Users can define their own threshold (0-1). The default fitCluster threshold is

0.5.

combineGenes

combineGenes is a necessary function for the c mode of analysis. The miRNA and

mRNA data will be combined into one dataframe. Both datasets must have the same

column names. To make sure a chronological order is maintained in the column names,

gtools::mixedsort() is used [200].

corrTable

corrTable is an internal function which helps the mirMrnaInt function create a miRNA-

mRNA correlation matrix. It uses the R stats package to generate correlations between

each miRNA and mRNA inputed into the mirMrnaInt function. Pearson correlation is the

default method but Kendall and Spearman are available options.

createClusters

createClusters uses time course data to generate temporal fuzzy clusters. If s analysis is

performed, the prefixes defined in the addPrexif function can be used to analyse the sig-
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nificantly differentially expressed miRNA or mRNA data; one at a time and individually. Or

if c analysis is performed, all the significant differentially expressed genes are used at the

same time. The input of this function is a percentage matrix which indicates the percent-

age of genes in each WikiPathway at each time point, and this percent matrix is generated

by the percentMatrix function. The following functions are used: Mfuzz::filter.std , stan-

dardise, mestimate, mfuzz to convert the percentages into standardised values between

0 and 1 [152]. The changes in the number of genes in each WikiPathway over the time

course are used to determine different temporal patterns. These patterns are divided into

k clusters. k is selected by the user.

A priori filtration step to reduce the number of pathways which do not show significant vari-

ance in the number of genes across the time course is taken. The extent of the removal

can be controlled by the user, and this can be visualised with a standard deviation plot.

Remaining pathways have their details downloaded by using rWikiPathways::getPathway-

Info [124].

As described in Futschik et al (2005), there are some important factors involved in cal-

culating soft clusters [201]. Firstly, the overall equation for c-means soft clustering is the

equation below.

Msc =


Uij ε RN.c | Uij ε[0, 1]∀i, j

|
∑c j = 1 Uij = 1∀i

| 0 <
∑N i = 1 Uij < N∀j



Here each ith term is a pathway and each jth term is a cluster. Uij is the membership

score of a pathway has for a cluster. N denotes the number of objects within the analysis,

c is the number of soft clusters and ε[0, 1] forces Uij to be equal a value between 1 and 0.

This information helps to identify the soft partitions between clusters (Msc).

Several parameters are calculated to support c-means fuzzy clustering. Jm is calculated
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to weigh distance of data (pathways) xi to the center of a cluster cj. This function takes

into account the membership values of the data point (xi).

Jm =
∑

i

∑
j(Uij)m||xi− cj||2A

m is a parameter calculated by a quadratic equation between distances of data objects.

A is also related to this quadratic equation [201]. Jm is used to determine m, which holds

power in determining the influence of data points (xi) during clustering (calculating Msc).

If the data is very noisy, m will be a large value, and this will lead to poorly clustered (poten-

tial outliers/ noise) to having small Uij values, and thus the data point (pathway) is having

a smaller affect on cluster partitioning (Msc). This makes Jm calculation a necessary

noise-reduction step. Filtration of pathways/ genes with low variance will likely positively

impact the objective function of Jm.

createClusters2

createClusters2 will create temporal clusters for input data which has not come from pair-

wise DE. This input data should be averaged count/ expression data across a time course.

During plotting, unlike with createClusters, each line will represent a gene, rather than a

pathway. In contrast with createClusters, each ith term is a gene and Uij is the member-

ship score a gene has for a cluster.

cytoMake

cytoMake exports filtered miRNA-mRNA interactions from R, into Cytoscape. For this to

work, Cytoscape version 3.7 or later must be open, and RCy3::cytoscapePing() must be

used first [154]. In this function, RCy3::createNetworkFromDataFrames, setVisualStyle,

layoutNetwork are used.

dataMiningMatrix

dataMiningMatrix adds databases as columns to the correlation matrix made by the mirM-

ranInt function. In these columns, 1’s represent miRNA-mRNA interactions being found
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in a database, and 0’s represent interactions not being found in a database. Score sum-

maries are also added. This function can work with up to three databases (TargetScan,

miRDB and miRTarBase), and can work even if some databases are not successfully

downloaded.

diffExpressRes

diffExpressRes extracts annotation IDs (ensembl or entrez) and a single type of DE result

which is uniformly available for each sample, preferably one which represents magnitude

of change e.g. log2FC. This function must be performed for miRNA and mRNA data sep-

arately.

dloadGmt

dloadGmt downloads species specific wikipathway information, including: entrezgene

IDs, pathway descriptions and pathway IDs. This function uses: clusterProfiler::read.gmt,

rWikiPathways::downloadPathwayArchive, tidyr::separate and dplyr::select [124, 202, 203,

204]. If the most recent species specific gmt file is not downloadable, a recent (within 8

months) version of the file will be downloaded instead. At the time of writing, the march

2021 versions are used as backups.

dloadMirdb

dloadMirdb downloads most recent version of miRDB data (version 6.0), for a specific

species [79]. The downloaded file will be formatted to be usable by dataMiningMatrix.

dloadMirtarbase

dloadMirtarbase loads the most recent version of miRTarBase data (version 8.0), for a

specific species [72]. Formatted dloadMirtarbase data is already loaded within TimiRGeN

because its download server is very slow and unstable. miRNA-mRNA interactions which

are labelled as ”weak” evidence have been removed.

dloadTargetscan

dloadTargetscan downloads the most recent version of TargetScan data (version 7.2), for
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a specific species [83]. The downloaded file will be formatted to be usable by dataMining-

Matrix.

eNames

If using c mode of analysis eNames will generate a list of significantly differentially ex-

pressed gene IDs found at each time point. Or if using s mode of analysis, eNames will

generate a list separated by gene type (miRNA or mRNA), and these will subsequently

contain lists of significantly differentially expressed gene IDs found at each time point.

enrichWiki

enrichWiki uses an ORA method. This uses hyper-geometric tests to identify enriched

WikiPathways for each time point. This method uses the enricher function from cluster-

Profiler [202]. For s analysis, this function will find enriched pathways for the miRNA and

mRNAs separately. The equation below has been taken from a website created by the

author of clusterProfiler, Guangchuang Yu [205].

p = 1−
k−1∑
i=0

(
M
i

)(
N−M
n−i

)(
N
n

)

Putting this equation into context of TimiRGeN, this function relies on a universe of unique

background genes N. The default N are unique gene IDs found in all WikiPathways. With

this in mind, the default question is which WikiPathways are most enriched based on the

input data? A user could also define their own N. This is useful for a more stringent test,

or if the input data is from a microarray dataset, the user may want to change the universe

to consist of only genes probed for on the specific microarray platform. M represents the

genes within N that are annotated in an individual WikiPathway. The number of SDEGs

within a given time point is n, and k represents genes found within n, that are annotated

in a specific WikiPathway (M). Each WikiPathway will be analysed individually. Following

this, plots can be generated using the quickBar function to display genes with the lowest

adjusted P values based on ORA.
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genesList

genesList creates nested lists out of dataframes. Either nested lists based on time points

(c analysis) or nested lists based on gene type which are then further nested based

on time points (s analysis). This function used gtools::mixedsort to organise data and

stringr::str extract to separate the prefixes during s analysis [206, 207].

getIdsMir

getIdsMir will retrieve entrezgene IDs and ensembl gene IDs for miRNA data. It also

produces adjusted gene IDs for both ID types. This can help to distinguish miRNAs that

share a common ID when exporting data or when generating networks. clusterProfiler::bitr

is used and the function currently works on many vertebrate model organisms including

human, mouse, rat and zebra fish [202].

getIdsMrna

getIdsMrna will retrieve entrezgene IDs and ensembl gene IDs for mRNA data. Here,

biomaRt::useEnsembl and biomaRt::getBM are attempted in the first instance [208]. If

connection to biomaRt is unavailable, then clusterProfiler::bitr is used instead [202]. Gen-

erally, biomaRt will lead to a greater number of annotations for mRNAs, but the connection

to the server can often fail due to server issues. This function also allows users to attempt

different biomaRt server mirrors. Connection success/ failure to biomaRt is reported to

users.

getP

getP calculates P values from linear models generated by the quickTCPred function. This

is an internal function. The P value will be pasted onto plots to show significance of

miRNA-mRNA interactions after predictive regression analysis. The f-distribution test is

calculated in R by the stats:pf function and it uses the following parameters from a linear

regression model: value, degree of freedoms of the numerator, degree of freedoms for the

denominator to calculate the p-value.

Ho = u1 = u2
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The null hypothesis of the f-distribution test is that there is no different between the sam-

ples (mRNA (u1) and miRNA (u2)). The f-distribution test calculates the likelihood of the

f-statistic found from linear regression to be correct.

gmtEnsembl

gmtEnsembl converts the entrezgene IDs from the dloatGmt function into ensembl gene

IDs by using clusterProfiler::bitr [202]. Most WikiPathways are annotated with either en-

trezgene IDs or ensembl gene IDs. With this, both are available for downstream analysis.

If a selected Wikipathway is imported into PathVisio for further analysis, a compatible an-

notation type is needed.

hClustPrep

hClustPrep is an internal function which further helps to separate data into hierarchical

clusters. This function is used in synergy with the clusterPrep function. ”maximum” is the

default distancing method and ”ward.D” is the default hierarchical clustering method.

linearRegr

linearRegr is to be used after the multiReg function. linearRegr will generate linear mod-

els between the selected gene of interest, and any number/ combination of the genes

predicted binding partners. Unlike most other functions, linearRegr will not generate a

MAE object because users may wish to create and test multiple models.

makeDynamic

makeDynamic generates a file which contains information to import dynamic visuals into

PathVisio. This includes gene names (miRNA and mRNA) and dynamic information in

a chronological order. The dynamic information is a result type from DE; the most ap-

propriate is log2FC, but normalised expression can also be used. This file also includes

gene IDs. Either entrezgene or ensembl. It is recommended to also include the adjusted

miRNA IDs in case the predicted miRNA-mRNA interactions contain miRNAs with shared

genomic IDs. Finally, a system code is included for each gene entry. This is a specific ID

label used in PathVisio [124]. This will be ’L’ for entrezgene IDs or ’En’ for ensembl gene
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IDs. Users check the ID types used to annotate the selected pathway of interest. Missing

annotation IDs may have to be manually entered.

makeMapp

makeMapp generates a file which can be imported into PathVisio using the Mapp builder

app [124]. Doing so will import all the filtered miRNAs, associated adjusted IDs and a sys-

tem code (’L’ or ’En’). Once imported, the user will have to manually match the miRNAs

and their targets on PathVisio. Missing annotation IDs may have to be manually entered.

makeNet

makeNet converts filtered miRNA-mRNA interactions into an igraph format using

igraph::graph from data frame; from which an internal R network can be visualised [153].

matrixFilter

matrixFilter filters miRNA-mRNA interactions from a large correlation matrix. The filtration

options for users are :

• Negative correlations only?

• Maximum correlation allowed? (-1 to 1)

• Predictive databases only? (TargetScan and miRDB only)

• Minimum databases which an interaction has been found in? (0-3)

micrornaFull

micrornaFull is an internal function which is used by getIdsMir to standardise miRNA

names for compatibility with clusterProfiler [202].

mirMrnaInt

mirMrnaInt uses the corrTable internal function to create a correlation matrix between

miRNAs and mRNAs (found in common between input data and pathway of interest).

Correlations are created by taking into account, chronological changes in magnitude over
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time. log2fc is an appropriate input for correlations, but averaged count/ expression can

also be used, especially if users use non-pairwise DE methods.

multiReg

multiReg extracts and formats data for the linearRegr function. A selected gene (mRNA

or miRNA) and its predicted binding partners are exported into a new matrix.

nonUnique

nonUnique in an internal function which uses the R stats package (stats::ave) to create

the adjusted IDs for the getIdsMir function.

pickPair

pickPair is an internal function used in numerous plotting functions where a single miRNA-

mRNA pair needs to be selected for analysis.

quickBar

quickBar generates a bar plot from the outcome of ORA via the enrichWiki function. This

function uses ggplot2::ggplot [209, 210]. The x axis will show number of genes, and y axis

shows WikiPathways. The plots are colour coded to represent adjusted Pvalues. Size of

plots and number of outputted pathways can also be altered by the user.

quickCrossCorr

quickCrossCorr will perform cross-correlation analysis on two time series (a miRNA and

a mRNA). Cross-correlation uses stats:ccr and scales::rescale. Interpolation and scaling

are possible. quickMap is recommended to be used first as this will order miRNA-mRNA

pairs by descending correlation, and thus make selection of pairs easier.

Cross-correlation is a normalised version of the cross-covariance equation. Here two time

series (xt and yt) represent the time courses of an interacting miRNA-mRNA pair. T

samples is used to delay xt. Ux and Uy are the means of their respective time series, and

their are N samples of each time series.
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rxy(T ) =
1

N−1

∑
(xt − T − Ux)(yt − Uy)

In the cross-correlation function, Oxx and Oyy are the variance of the respective time se-

ries.

rxy(T ) =
Oxy(T )√

Oxx(0)Oyy(0)

This equation can be further reduced to only show the variance between the two time

series. This information is from chapter 7 of the Signal Processing Course [211].

rxy(0) =
Oxy

OxOy

quickDMap

quickDMap will generate a heatmap which is compatible with quickDendro output. The

heatmap is colour coded to represent magnitude of change over time. grDevices::color-

RampPalette is used to display genes values.

quickDendro

quickDendro will create a dendrogram from the filtered miRNAs and mRNAs. This func-

tion uses ggdendro::ggdendrogram to form the dendrogram.

quickFuzz

quickFuzz visualizes clusters created by createClusters or createClusters2. Using Mfuzz::

mfuzz.plot2, fuzzy cluster plots are generated [152]. These clusters display different tem-

poral behaviours based on the changes of the number of genes in common between the

SDEGs, per time point and the WikiPathways. Intensity of colour represents the levels of

fit a pathway has to the temporal behaviour, from highest to lowest: red, orange, yellow,

purple. Colours of the plots can be altered. If input from createClusters2 is used each line

is a gene instead of a pathway. Also, if s mode of analysis is used mRNAs and miRNAs
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can be visualised one at a time.

quickHClust

quickHClust will create line plots for each gene found in the selected cluster. These plots

will have a grey line representing data points and a red smooth spline overlaying the data

points. This function uses stats::cutree, dplyr::inner join, dplyr::filter, ggplot2::geom line,

ggplot2::geom smooth and ggplot2::facet wrap [204, 210].

quickMap

quickMap will create a heatmap of the miRNA-mRNA pairs filtered with the matrixFilter

function. The pairs will be ordered and numbered based on descending correlation scores.

quickNet

quickNet plots filtered miRNA-mRNA interactions which have been formatted into an

igraph friendly format by makeNet. Pink nodes are miRNAs and blue nodes are mRNAs,

and edges are colour coded based on the correlation between the miRNA-mRNA interac-

tions. This function uses igraph::V, igraph::E, grDevices::colorRampPalette and functions

from R base package graphics, including: graphics::par, graphics::plot, graphics::legend

[199, 212].

quickPathwayTC

quickPathwayTC displays all genes filtered from the matrixFilter function. Each gene is

plotted along the time course, and gene expression values are scaled. Users can define

a threshold and genes which are higher or lower than the threshold at any time point are

highlighted with gghighlight [213].

quickReg

quickReg displays regression analysis between a selected miRNA and mRNA that are

predicted to interact. OR and 95% CI are pasted as subheadings. The following R stats

functions are used here: stats::confint.default and stats::coef.
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OR measures an exposure (i.e. miRNA behaviour) and an outcome (i.e. mRNA be-

haviour). If OR = 1 then there is no association, if OR > 1 then there is a positive

association and if OR < 1 there is a weak association. An OR < 1 may also indicate a

negative relationship, which is what we expect with true miRNA-mRNA interactions. This

technique has been performed before for time matched miRNA-mRNA time series analy-

sis in Jayaswal et al (2009), and this idea is used here [158].

There are four components needed to calculate an OR and CI.

• a = no change in miRNA and no change in mRNA

• b = change in miRNA and no change in mRNA

• c = no change in miRNA and change in mRNA

• d = change in miRNA and change in mRNA

OR = a.d
b.c

CI = exp(log(OR) + /− Zα
2
.
√

1
a
+ 1

b
+ 1

c
+ 1

d

Zα = critical value parameter which is calculated by the regression model.

quickTC

quickTC creates a plot displaying a single miRNA-mRNA pair over the time course. This

is a line plot, which can be interpolated and scaled. The correlation score will be pasted

as a subheading. FreqProf::approxm is used here.

quickTCPred

quickTCPred predicts the regression between data of a selected gene (miRNA or mRNA).

The genes predicted values are based on binding partners which were selected during

creation of a linear regression model by the linearRegr function. A mRNA being targetted
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by multiple miRNAs or a single miRNA targetting multiple mRNAs can be explored here.

R2 values and P values are pasted as subheadings.

reduceWiki

reduceWiki is best used once a pathway of interest has been selected, either by time

course enrichment analysis or temporal cluster analysis. reduceWiki will retrieve all the

genes associated with the pathway of interest.

returnCluster

returnCluster will retrieve information about any cluster of interest from createClusters.

Users can specify the threshold of fitness score to be used as a barometer for retrieval of

pathways. Fewer pathways will be retrieved if the fitness score threshold is very high. The

default is 0.5, and users can define their own threshold between 0 and 1.

savePlots

savePlots stores results from enrichWiki in the working directory. A plot will be made for

each time point (c mode of analysis) or for each gene type, and time point (s mode of

analysis). Plots can be saved as png, jpeg, svg or tiff images.

significantVals

significantVals looks through the list of nested data frames (c analysis) or list of lists of

nested dataframes (s analysis) made by the genesList function to remove genes which

are not deemed ”significantly differentially expressed”. It is advised to include a DE result

which represents confidence, and that should be used here, along with a user defined sig-

nificance threshold. Each nested data frame (time point) will be analysed independently

of other time points. This function should be skipped if using data from a non-pairwise

based DE method.

startObject

startObject will make a MultiAssayExperiment (MAE) to store the input miRNA and mRNA

data [196]. MAEs are the standard objects within TimiRGeN. Most dataframes and ma-
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trices are stored as assays, lists are stored as metadata and S4 objects are stored as

experiments [196]. This allows for cleaner global enviroments.

turnPercent

turnPercent creates a percentage matrix out of the matrix created by wikiMatrix. The final

row (total gene number) is used for normalisation. This makes a more valid input for cre-

ateClusters or createClusters2.

wikiList

wikiList downloads current version of species specific wikipathway information. Unlike

dloadGmt, WikiPathways data is downloaded as a large list, and each listed pathway

is attached to a list of characters, which represent gene IDs associated to the pathway.

This function uses rWikiPathways::listPathways to download the pathways and rWikiPath-

ways::getXrefList to get the gene IDs [124].

wikiMatrix

wikiMatrix uses lists from wikiList and eNames to generate a matrix which identifies, how

many genes are in common between the SDEGs found in each time point, and the path-

ways. Columns are pathways, and rows are time points, and a final row is added, which

represents the total number of genes in each pathway.

wikiMrna

wikiMrna finds genes in common between the WikiPathway of interest and input mRNAs.

2.4 Summary

Overall I have created a novel R/ Bioconductor package to integrate, analyse and gener-

ate small detailed networks of miRNA-mRNA interactions from big longitudinal multiomic

datasets. This package was successfully accepted onto the Bioconductor repository. Be-

ing a Bioconductor tool provides several benefits. Firstly, it means I will receive regular

updates on how my tool performs on multiple operating systems (windows, mac and linux)

and I will learn if there are potential bugs to be fixed by email. Also, there is a prestige
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attached to Bioconductor packages, as such it will be more readily trusted by users. Fur-

thermore, there is a strong community of developers who can help if issues arise, not to

mention the Bioconductor core team consists of many talented individuals who can pro-

vide aid and advice if needed. So far this package has had hundreds of downloaded since

its acceptance. This tool was the basis of a first author original paper which was published

in Bioinformatics journal [117].
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CHAPTER 3

CHONDROGENESIS DATA ANALYSIS TO

FIND MIRNA-MRNA INTERACTIONS

3.1 Background

My PhD was funded by the Dunhill Medical Trust as a collaboration between Newcas-

tle (David Young) and East Anglia (Ian Clark). One of the focuses of the grant was to

identify miRNA regulators of developing cartilage. My contributions to this aim would be:

a) use a previously generated longitudinal miRNA-mRNA expression dataset to identify

miRNA-mRNA interactions for further investigation, b) generate GRNs and kinetic models

based on validation data and c) use the kinetic model to make predictions and to organise

complex miRNA-mRNA interactions in silico.

3.1.1 Cartilage

Muscles move fluidly because the ends of bones are attached to a particular type of extra-

cellular matrix known as cartilage (specifically Hyaline cartilage). Cartilage is a complex

mesh of collagenous and protein-saccharide constructs created and maintained by chon-

drocytes; unique cells which are sparsely scattered throughout the cartilaginous extracel-

lular matrix (ECM) [214, 215, 216]. Along-side chondrocytes, cartilage consists of wa-
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ter, inorganic ions, proteoglycans, glycoproteins, glycosaminoglycans (GAGs). In Hyaline

cartilage, these components help to create an elastic, compressible and shock absorb-

ing tissue that has important roles in limb formation, skeletogenesis and maintenance of

health and function in numerous body parts [215, 216, 217]. Hyaline cartilage and can be

found in ribs, the trachea and at the articular ends of long bones; the latter is more specif-

ically called articular cartilage [218, 219]. Articular cartilage is a connective tissue which

is smooth and lubricated and it allows for frictionless conformal changes and compression

for stress bearing for the surrounding bones. Articular cartilage is able to compress and

distribute stress across the tissue, which protects the underlying bone from damage [220].

Bio-mechanics of articular cartilage is complex and relies on many factors to contribute to

the function of cartilage, such as a high hydrostatic pressure which is achieved by having

a 70-80% water content. During load bearing events, liquid in the cartilage is pushed out

slowly, giving way to the more rigid dry sections of the cartilage which is resilient to com-

pression, and after the event, water comes back into the cartilage, restoring its elastic and

fluid qualities. Many of these properties can be attributed to important anabolic cartilagi-

nous proteins such as COL2A1 and ACAN.

COL2A1 creates large tough collagen fibers which keeps the chondrocytes in place within

the cartilage and provides resilience [221]. Each collagen fiber consists of three col-

lagen protein wrapped in a tight tri-mer conformation that is maintained by cross-links

[222, 223, 224, 225]. Non-collagen groups can link together different collagen fibers to

create and even more denser and resilient ECM, such a COMP, decoring, lumican and

fibromodulin [226].

ACAN is a protein-saccharide construct, specifically a proteoglycan. ACAN molecules can

absorb and dissipate impact from external stresses on synovial joints. An ACAN molecule

is made up of 3 main domains (G1, G2, G3) and in between G2 and G3 many GAGs

(keratin sulfate and chondroitin sulphate chains) are covalently bound to ACAN to create

negatively charged structures which attract positively charged H ions of water molecules.

The G1 domain of ACAN proteoglycans are attached to hyaluronate which creates rows
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of ACAN proteoglycans which can work together to create a resilient structure [227, 227,

228].

Cartilage related diseases

Cartilage is aneural and avascular, and these characteristics means the chondrocytes

must largely maintain themselves, and the cartilaginous ECM by controlling catabolic and

anabolic procedures within the cartilage for remodelling and homeostasis. During the age-

ing process the cartilage degrades, and this is most commonly seen after 40 years of age

in humans. This condition is known as osteoarthritis (OA) and it can vary in severity. Pa-

tients with mild symptoms may be able to get by with habitual changes but those with more

severe symptoms may require pain relief drugs or joint replacement surgery [229]. OA is

a primary cause of pain and disability for many individuals. Several factors can directly

or indirectly impact the progress and severity of OA including: gender, obesity, diabetes,

heart disease, injury, occupation and genetics. This makes OA a complex condition, not

to mention that different joints in the same individual may be effected by OA at different

severities. However, statistics do support ageing to be the primary contributing factor, for

example in the United States, over a third of all over 65s have OA, which has been pre-

dicted to contribute annually to 3.4 to 13.2 billion dollars in direct and 10.3 billion dollars

in indirect costs from OA [230, 231, 232, 233]. Western countries have carried out most

epidemiological studies of OA so the global picture is unclear, however it is estimated that

around 0.6% of all disability-adjusted life-years (DALYs) and roughly 10% of all muscu-

loskeletal conditions are a result of some form of OA [234].

During OA the catabolic processes outweigh the anabolic ones, leading to a progressive

loss of articular cartilage. Molecular changes during the early stages of OA includes the

progressive loss of ACAN and COL2A1. Also, OA chondrocytes increase expression of

catabolic proteins such as matrix metalloproteinase proteins (MMPs), e.g. MMP1, MMP8,

and MMP13 which enzymatically degrade proteins like COL2A1. Also the a disintegrin

and metalloproteinases attached to type 1 thrombospondin motifs (ADAMTS) family of

proteins also increase in expression e.g. ADAMTS5 which degrades ACAN. The increase

in ECM catabolic proteins is what causes the erosion of the cartilagenous ECM.
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3.1.2 Chondrogenesis

Chondrocytes develop in a process called chondrogenesis. Fibroblast like mesenchymal

stem cell (MSCs) condense and undergo a multi-step process where chondroprogenitor

cell differentiate into rounded chondrocytes [235, 236]. This is an important process for

limb bud development, skeletogenesis and for cartilage development [235].

The master regulator of chondrogenesis is SOX9. Its transcription is initiated by TGFB

signalling and SOX9 promotes expression of COL2A1 and ACAN [113? ]. Mutations in

SOX9 are known to cause Campomelic Dysplasia, Acampomelic Campomelic Dysplasia

and Pierre Robin Sequence, the foremost is a severe skeletal malformities and the latter

two are milder skeletal deformities [237, 238, 239]. SOX9 is expressed early in chondro-

genesis and accumulates to higher levels during the process. Partner proteins help SOX9

to function and enhance chondrogenesis such as FOXC, FOXP and FOXF [240, 241].

Other proteins such as SOX5 and SOX6 increase SOX9s ability to bind to target DNA and

function as a transcription factor. Without the SOX-trio, pro-chondrogenic signal would be

insufficient to trigger differentiation [242, 243]. Other transcription effectors like RUNX1

and GLI also enhance transcription of pro-chondrogenic genes [244, 245]. Another func-

tion of SOX9 is to keep antagonistic transcription factors such as RUNX2 and WNT sig-

nalling factors at lower levels to maintain chondrogenic gene expression. This will slow

chondrocytes from differentiating further [246, 247].

SOX9 protein undergoes post translational modifications to perform its functions as master

regulator of chondrogenesi. This includes phosphorylation at amino acids Serine (S)64

and S181. Phosphorylation occurs by Cyclic AMP dependent protein kinase A (cAMP-

PKA) and ROCK1 [248, 249]. SUMOylation also affects SOX9 and can occur after phos-

phorylation [250]. Several other proteins are known to affect SOX9 stability, localisation

and effectiveness such as SIRT1 increasing SOX9 activity by deactylation of NfKB, an

antagonist of SOX9 activity [251].

SOX9 gene expression is tightly regulated by multiple pathways (Figure 3.1). For example

the SMAD pathways which is controlled by TGFB induces SOX9 gene expression [252].
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Hypoxia inducing factor HIF1a promotes SOX9 gene expression by transactivation and

promoter binding [253]. Other pathways which induce SOX9 activity include HEDGE-

HOG, BMP and FGF. On the other hand, pathways which repress SOX9 gene expression

includes WNT and NOTCH signalling [254, 255, 256]. Interestingly certain pathways can

have multiple affects on SOX9 expression, for example TGFB signalling also promotes

RHoA and its effector ROCK1, which is thought to inhibit SOX9 gene expression [257].

Figure 3.1: Pathways that regulate SOX9 expression. Mind map shows some of the

pathways that induce (light blue) or reduce (orange) SOX9 expression.

Hypertrophic chondrocytes

Articular chondrocytes stay in a quiescent state. Here, they do not undergo proliferation

and maintain a consistent expression profile to provide the cartilaginous ECM with home-

ostasis. However, the expression profile of chondrocytes change, diverting them to a less

stable and more cartilage degenerative phenotype. This process is known as hypertrophy

[258]. Hypertrophic changes are hallmarks in developing OA. Understanding the gene
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expression changes from normal chondrogenesis and hypertophic chondrocytes will lead

to better a better understanding of of OA [254, 259]. It should also be mentioned, hyper-

trophy is a normal and important process in bone growth.

Hypertrophic chondrocytes can be classified by the changes in molecular activity. Cells

undergoing this process have reduced gene expression of pro-chondrogenesis markers

such as COL2A1, ACAN, SOX9, SOX5, SOX6 mRNAs, and in contrast pro-hypertrophic

markers increase, such as MMP10, MMP1, ADAMTS5, COL10A1, TNFa mRNAs [221,

260, 261, 262, 263]. Notably, many bone promoting transcription factors are promoted in

hypertrophic chondrocytes, such as RUNX2, VEGFA, HDAC4 and BMP2 [261, 264, 265,

266]. Other regulatory factors such a non-coding RNAs also change in expression during

chondrogenesis, hypertrophy and OA [267].

microRNAs regulate chondrogenesis

There are many miRNAs that promote or deter chondrogenesis. In mammalian models,

knock out (KO) DICER mutations lead to severe malfunctions in limb formation during

embryogenesis; indicating miRNAs do regulate chondrogenesis. Also KO DICER lead to

abnormalities in a growth plate and subsequent endochondral ossification during skeleto-

genesis [268, 269]. Many miRNAs are involved in the regulation of metabolic pathways

which promote chondrogenesis, such as miR-140-5p. Its function is necessary for chon-

drogenesis, and maintaining cartilage. Miyuki et al (2010) found that miR-140-5p KO mice

had skeletal defects and showed signs of early on-set OA [91].
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Figure 3.2: Target genes and affects on chondrogenesis. Mind map shows target

mRNAs which are regulated by miR-140-5p. Dotted lines indicate predicted activity and

solid lines represent reported activity. <—means activation and |—means inhibition. | −

−− means predicted inhibition, without evidence in the literature.

To highlight the complexity involved in understanding the role a miRNA, I will briefly de-

scribe some of the functions of miR-140-5p in the context of chondrogenesis. miR-140-5p

has been shown to target ADAMTS5 for degradation and is predicted to target MMP13.

Both are catabolic ECM genes that are highly active during OA conditions and directly con-

tribute to the decay of articular cartilage [91, 106, 270]. miR-140-5p also targets HDAC4,

a deacetyl transfase gene which has been shown to have some involvement in OA devel-

opment [271, 272]. Furthermore, miR-140-5p targets genes which promote hypertrophy,

such as BMP2 [273]. Furthermore, understanding the regulation of miRNAs by transcrip-

tion factors is just as complicated, and SOX9 is a good example for this. Though several

important miR-140-5p targets are highlighted in this section, in reality dozens of mRNAs

regulated by miR-140-5p and many of these likely regulate chondrogenesis/ hypertrophy.

SOX9 regulates and is regulated by multiple miRNAs during chondrogenesis. This in-

cludes SOX9 being directly responsible for the transcriptional activation of miR-140-5p

[274]. SOX9 has also been found to transcriptionally repress the activity of some miR-
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NAs such as miR-29a; an antagonist of NFkB and collagen activity (see subsection 2.2.4)

[180, 275, 276]. On the other hand many miRNAs target SOX9 mRNA for repression.

miR-101 targets SOX9 mRNA, and miR-101 downregulation decreases activity of IL-1B

induced degradation of COL2A1 and ACAN [277]. miR-145-5p also targets SOX9 mRNA.

During chondrogenesis, miR-145-5p levels decrease, and during hypertrophy miR-145-5p

levels increase. Making miR-145-5p a potential drug target to prolong cartilage health

[278].SOX9 is also modulated by miRNAs before chondrogenesis. SOX9 found in MSCs

is targetted for degradation by miR-459-3p [279].

Other pro-chondrogenesis genes are also effected by miRNAs, such as miR-194 target-

ting SOX5 mRNA. miR-194 is downregulated during chondrogenesis but is upregulated

during OA-like conditions. The reduction of SOX5 activity in these OA-like conditions can

contribute to a reduction in the abundance of newly formed anabolic ECM genes. Other

miRNAs have been reported to target anti-chondrogenesic genes, such as: miR-320-

c targetting ADAMTS5, miR-125b targetting ADAMTS4 and miR-27c targetting MMP13

[280, 281, 282]. These miRNAs are potential drug targets for intervention in OA.

Understanding miRNAs will help in understanding conditions like OA

A major goal of musculoskeletal research is to generate new chondrocytes from MSCs.

The new chondrocytes can generate cartilage for the patients, and may be a novel treat-

ment for OA. Another, aim is to identify drug targets for pain relief which could lead to

increased joint function in OA patients. These tasks require a great amount of under-

standing the process of chondrogenesis, including the transcriptional regulation of impor-

tant genes such as SOX9 by miRNAs. Investigations into the intricate affects miRNAs

have during chondrogenesis can provide guidance for which miRNAs/ genes to target for

therapy. However, identification of the specific miRNAs is made difficult because a single

miRNA can regulate many genes and a single gene can be regulated by multiple miRNAs.

This is exemplified in mir-ome studies which have found over 18,000 and over 34,000

miRNA-mRNA interactions in HEK293 and hepatoma cells respectively [87, 283]. To add

to the complexity the function of a single miRNA can be vastly different in different tis-

sues e.g. miR-140-5p has alternate targets within brain e.g ADAM10 [284]. Investigations
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into how miRNAs affect chondrogenesis can be made more efficient if computational work

accompanies experimental work.

3.1.3 In silico analysis of chondrogenesis

Chondrogenesis is a complex system and to gain novel knowledge from it several compu-

tational and systems biology approaches are used. This involved analysing a longitudinal

miRNA-mRNA dataset with the TimiRGeN R package and analysing network output in

PathVisio to identify interesting miRNA-mRNA interactions to further study.

Chondrogenesis dataset

I received a longitudinal miRNA-mRNA microarray based dataset from my collaborators

in the Young group in Newcastle [113]. This data was gathered from human bone marrow

MSCs of seven adult donors aged between 18 and 25 years old. Cells were expanded in a

monolayer culture using a MSC growth medium. Chondrogenic culture was used to resus-

pend the MSCs, and the culture was replaced every 2-3 days, until 14 days. This culture

contained several reagents for chondrogenic differentiation including 10 ng/ml of TGFB3,

100 mg/ml of sodium pyruvate, 100 nM of dexamethasone, among other reagents, which

are fully described in Barter et al (2015) [285]. Total RNA and miRNA were extracted.

Illumina whole-genome expression array HT-12 V4 profiled the total RNA samples and

Exiqon miRCURY LNAmicroRNA Array was used to profile miRNA samples. Array tech-

nologies measured mRNA and miRNA expression along different time points. mRNA data

was measured as quadruple at D0 and D14 of chondrogenesis and at singular at inter-

mediate time points: D1, D3, D6 and D7 of chondrogenesis. miRNA expression data

was measured as duplicates at each of the time points. The miRNA and mRNA datasets

were normalised and pairwise DE was performed with limma [146]. The zero time point

was contrasted against all other time points for pairwise analysis. log2FC and adjusted P

value results from each time base DE analyses were taken forward for further investigation

with TimiRGeN. The experiments performed by my collaborators worked, as seen by cer-

tain chondrogenic genes being highly enriched throughout the time course e.g. COL2A1,

SOX9, ACAN, hsa-miR-140-5p and hsa-miR-140-3p.
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3.2 Results

3.2.1 Processing and DE analysis on the chondrogenesis dataset

Raw mRNA data and miRNA data were normalised using the lumi and EximiR packages

respectively [286, 287]. Normalised samples were visualised by PCA plots to see their

spread (Figure 3.3).

Using limma functions: makeContrast, constasts.fit, eBayes topTable (BH method) genes

which had an adjusted P value of < 0.05 were classed as SDEGs. Using the zero time

point data as the denominator, SDEGs were filtered for each time point. In a chronological

order (D1, D3, D7, D10, D14) 3293, 4430, 6049, 4915, 7800 SDEGs were found in the

mRNA data. A total of 11562 unique SDEGs were among all of the analyses. Log2FC

and adjusted P values were extracted from each time point for the 11562 SDEGs, even

if at a particular time point a gene was not a SDEG. I.e. gene X could be classed as a

SDEG at only D1 and be filtered for, and gene Y could be classed as a SDEG at every

time point, and be filtered for in the same way as gene X. The same procedure was used

for the miRNA data and found 48, 127, 210, 210, 217 SDEGs for each time point. A total

of 314 unique miRNA SDEGs were found. Log2FCs and adjusted P values for these 314

miRNAs were extracted from each of the DE analyses. The mRNAs (11562) and miRNAs

(314) were into TimiRGeN as dataframes. Results from mRNA and miRNA DE are shown

by volcano plots (Figures 3.4-3.5). miRNAs were generally not as highly expressed or

highly differentially expressed as mRNAs, so in contrast the the mRNA volcano plot, fewer

miRNAs were highlighted.
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Figure 3.3: PCA and boxplots showing normalised miRNA and mRNA samples.

miRNA and mRNA samples from the chondrogenesis dataset were analysed by PCAs

to show the distance between samples, A) for mRNAs and B) for miRNAs. Boxplots also

show the effect of normalisation on the data, C) for mRNAs and D) for miRNAs. Samples:

D0, D1, D3, D6, D10, D14 are respectively colour coded as: red, blue green, pink, orange,

purple.
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Figure 3.4: Volcano plots showing DE mRNAs at each time point. Up (red), down

(blue) and non-significantly DE (black) genes across five pairwise analyses, each using

the zero time point as the denominator. The cut-offs for genes to be highlighted in these

volcano plots are: less than -0.5 log2FC (blue), more than +0.5 log2FC (red), and an

adjusted P value of less than 0.05. Results from the DE analyses: D1/D0, D3/D0, D6/D0,

D10/D0 and D14/D0 are shown.
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Figure 3.5: Volcano plots showing DE miRNAs at each time point. Up (red), down

(blue) and non-significantly DE (black) genes across five pairwise analyses, each using

the zero time point as the denominator. The cut-offs for genes to be highlighted in these

volcano plots are: less than -0.5 log2FC (blue), more than +0.5 log2FC (red), and an

adjusted P value of less than 0.5. Results from the DE analyses: D1/D0, D3/D0, D6/D0,

D10/D0 and D14/D0 are shown.
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3.2.2 TimiRGeN analysis of the chondrogenesis dataset

  

Figure 3.6: Chondrogenesis dataset analysed by pathway enrichment using TimiR-

GeN . Barplots shows enrichment for each time point. In order; D1, D3, D6, D10 and D14

of chondrogenesis. The lighted the shading, the lower the confidence (adjusted P values).
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The chondrogenesis data was analysed using the combined mode of the TimiRGeN R

package. SDEGs were organized in a way so that each gene is listed with the time points

where the genes had an adjusted P value of < 0.05 (see subsection 2.3.2). Time point

based pathway enrichment found several pathways which were consistently upregulated

during the time course, including VEGFA-VEGFR2 Signalling Pathway, TGF-beta Signal-

ing Pathway, Endochondral Ossification and Apidogenesis (Figure 3.6).

I decided to further investigate the TGF-beta Signaling Pathway because TGFB3 was

one of the inputs for chondrogenic differentiation. Analysis with the R package found

a total of 88 potential miRNA-mRNA interactions were found to regulate the TGF-beta

Signaling Pathway over the 14 day time course. These interactions were found by filtering

for interactions that had been mined in at least two of the three databases (see subsection

2.1.2). Correlation was not used for filtering because it was a long time course and the

averaged correlations could have masked early/ late occurring miRNA-mRNA interactions.

Scaled time course plotting revealed the three most positively changing miRNAs to be,

in order: hsa-miR-140-5p, hsa-miR-199b-5p and miR-455-5p (Figure 3.7). Barter et al

(2015) identified all three to be of interest and focused on hsa-miR-140 and hsa-miR-

455 [113]. Due to the volume of data that needed to be plotted, Cytoscape was used

to display all the miRNA-mRNA interactions filtered from the TimiRGeN R package and

further network analysis was performed in PathVisio (Figures 3.8-3.9).
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Figure 3.7: Most positively changing filtered genes. Filtered genes from the TGF-

beta Signalling Pathway were scaled and those which passed the threshold of 1.5 at any

point of the 14 day time course are highlighted. This found (in order of highest to lowest)

hsa-miR-140-5p, hsa-miR-199b-5p, hsa-miR-455-5p and MEF2C to be the most positively

changing genes in terms of magnitude.
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Figure 3.8: miRNA-mRNA interactions exported to Cytoscape.
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Further investigation in PathVisio

The miRNA and dynamic data information was exported out of R and overlaid onto the

TGF-beta Signaling Pathway within PathVisio. This created a dynamic miRNA-integrated

signalling pathway, which showed how the miRNAs could be influencing the TGF-beta

Signaling Pathway during chondrogenesis. Several miRNA-mRNA interaction were of in-

terest, however based on the results from Figure 3.7, hsa-miR-199b-5p was the focus be-

cause it was a highly positively changing miRNA and novel in chondrogenesis research.

miR-199b-5p had four predicted mRNA interactions from the TBF-beta Signalling Path-

way: BTRC, CAV1, ETS1 and JUNB, though none had particularly interesting correlations

with hsa-miR-199b-5p. I used SkeletalVis, a portal with many skeletal research related

transcriptional datasets that have been analysed by DE, to investigate each of these po-

tential hsa-miR-199b-5p targets [288]. Out of the four genes, I found CAV1 to be the most

consistently negatively differentially expressed gene in chondrogenesis studies. Thus,

miR-199b-5p-CAV1 was selected to be the central interacting pair for further computation

work. hsa-miR-199a-5p was also identified for further study because it is a homologue of

hsa-miR-199b-5p, so it was likely to have the same targets during chondrogenesis, and

may even have a more active role because hsa-miR-199a-5p was more highly expressed

than hsa-miR-199b-5p, though hsa-miR-199b-5p had a greater magnitude of change over

the time course. Directly downstream of CAV1 was RHoA. Output from TimiRGeN also

predicted hsa-miR-361-5p and hsa-miR-485-3p to target RHoA.

Analysis with SkeletalVis

SkeletalVis was used to identify if BTRC, CAV1, ETS1 and JUNB are significantly down-

regulated during chondrogenesis, specifically during time course MSC differentiation stud-

ies or time matched chondrocytes-MSC studies [288]. Table 3.1 shows the results of the

analysis. SkeletalVis contained two suitable studies which can be found from GSE109503

and GSE18394 [289, 290]. The first study was a 28 day human MSC to chondrocyte dif-

ferentiation, though the DE performed was not zero denominator pairwise, and rather was

stepwise. The other study was a 28 day cow chondrocytes-MSC contrast study, with time

matched MSCs and chondrocytes for comparisons.
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Study Context BTRC CAV1 ETS1 JUNB

GSE109503 D1MSC/D0MSC -0.11 -0.99 1.24 0.42

GSE109503 D3MSC/D1MSC 0.06 -0.221 0.01 -0.3

GSE109503 D7MSC/D3MSC 0.15 -1 -0.84 0.15

GSE109503 D14MSC/D7MSC 0.02 -0.323 0.13 0.09

GSE109503 D21MSC/D7MSC 0.14 0.04 0.31 0.53

GSE109503 D21MSC/D14MSC 0.11 0.366 0.17 0.43

GSE18394 D28chon/D0MSC 0.45 -0.207 -1.61 0.11

GSE18394 D28chon/D28MSC 0.34 0.365 -0.97 0.68

GSE18394 D28MSC/D0MSC 0.10 0.57 -0.64 -0.57

Table 3.1: Log2FC values of miR-199b-5p targets from other MSC studies. Step-

wise or time-matched DE analyses of two other time course chondrogenesis studies from

SkeletalVis. The log2FC values for each gene (BTRC, CAV1, ETS1, JUNB) is given

across the analyses.

Contrasts shown in Table 3.1 indicated CAV1 to be the most consistently downregulated

of the four predicted miR-199b-5p targets.
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Log2FC

Figure 3.9: miRNA integrated dynamic TGF-beta Signalling Pathway. The TGF-beta
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Signalling Pathway was analysed in PathVisio. Dynamic data (log2FC) values of the 14D

time course are added in a chronological order, and a colour code from -5 to +5 shows

how each gene in the pathway changed over the time course. miRNAs were added, and

their interactions with predicted mRNA targets were drawn by red |—. Black squares were

drawn around sections of the image to show sections used for bottom-up GRN construc-

tion.

The miRNA data was checked to see if the miRNAs had a high expression level. Table 3.2

displays the miRNAs. It can be seen that hsa-miR-361-5p changed marginally during the

course of chondrogenesis and hsa-miR-485-5p was consistently lowly expressed. hsa-

miR-199a-5p was highly expressed and hsa-miR-199b-5p increased greatly. So out of the

four miRNAs of interest, hsa-miR-199a-5p and hsa-miR-199b-5p were the most likely to

be contributing to chondrogenesis.

miRNA D0 D1 D3 D6 D10 D14

hsa-miR-199a-5p 10.54 11.17 11.38 11.58 11.70 11.88

hsa-miR-199b-5p 5.42 6.33 8.26 9.18 9.06 9.45

hsa-miR-361-5p 6.96 7.18 7.21 7.62 7.65 7.73

hsa-miR-485-3p 4.93 5.14 5.00 5.68 5.56 5.25

Table 3.2: Target miRNA expression levels. Normalised expression levels from mi-

croarray analysis show how each of the candidate miRNAs are expressed over the time

course. These miRNAs may target CAV1 mRNA or RHoA mRNA. These are relative

numbers because they come form array technologies. These miRNAs were found from

TimiRGeN-PathVisio exploration.

Looking at the mRNA targets (Table 3.3), RHoA did not show as much variance dur-

ing chondrogenesis as CAV1. CAV1 decreased in the early stages of chondrogenesis,

and then increased to reach a steady state at D6. This implies CAV1 may have anti-

chondrogenic contributions during the early phase of chondrogenesis and may be required

for homeostasis during the later phase. Therefore, predicted miRNA regulators of CAV1,
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hsa-miR-199a-5p and hsa-miR-199b-5p may be pro-chondrogenic in function as they in-

crease over the whole time course, though this is only speculation without validatory work.

A possible early regulation by the miRNA targets may also explain why hsa-miR-199b-5p-

CAV1 and hsa-miR-199a-5p-CAV1 had uninteresting correlations over the time course.

mRNA D0 D1 D3 D6 D10 D14

CAV1 13.21 9.83 9.89 11.68 11.19 11.21

RHoA 12.89 12.76 12.56 12.29 12.11 12.22

Table 3.3: Target mRNA expression levels. Normalised expression levels from microar-

ray analysis show how each of the candidate mRNAs which could be targeted by miR-

NAs (hsa-miR-199a-5p, hsa-miR-199b-5p, hsa-mir-361-5p, hsa-miR-485-3p) for regula-

tion during chondrogenesis that were found from TimiRGeN - PathVisio exploration.

miR-199a-5p was found to directly target CAV1 in the context of lung fibrosis, lung in-

flammation and apidogenesis [291, 292, 293]. miR-199b-5p was also reported to directly

target CAV1, however it seems miR-199a-5p/ miR-199b-5p-CAV1 are novel interactions

in the context of chondrogenesis [294]. miR-361-5p and miR-485-3p have not been re-

ported to directly target RHoA. Given this information, a miR-199a/b-5p-CAV1 centred

chondrogenesis kinetic model may be of interest. However, the mechanism which under-

pins TGFB regulation of CAV1 activity during chondrogenesis must be established. For

this the RHoA/ROCK1 signalling pathway seemed a logical starting point because it is

downstream of CAV1 activity in the Wikipathway explored and the RhoA/ROCK1 system

is documented well.

3.2.3 Sequence analysis of the miRNA-mRNA interactions

miRNA-mRNA interactions: miR-199b-5p-CAV1, miR-199a-5p-CAV1, miR-361-5p-RHoA,

miR-485-3p-RhoA were further analysed by sequences specificity between the miRNA

seed sites and the 3’UTRs of the mRNA targets.
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miR-199a-5p’s sequence is CCCAGUGUUCAGACUACCUGUUC and its seed site is

UGUGACC. It is predicted to bind to one sequence on the 3’UTR of CAV1, which is at nt

positions 1573-1579, which is ACACUGG.

miR-199b-5p shares a similar sequence to miR-199a-5p, with 2 mis-matched, but the

same seed site. The sequence is CCCAGUGUUUAGACUAUCUGUUC and it’s seed

site is

UGUGACC. It also bind to positions 1573-1579 of the 3’ UTR of CAV1.

miR-361-5p’s sequence is UUAUCAGAAUCUCCAGGGGUAC and its seed site is AGACUAU .

miR-361-5p has one potential binding region on the 3’UTR of RHoA which is at nt posi-

tions 930-937, which is UCUGAUA.

miR-485-3p’s sequence is GUCAUACACGGCUCUCCUCUCU and its seed site is ACAUACU .

miR-485-3p has one potential binding region on the 3’UTR of RHoA which is at nt positions

250-256, which is UGUAUGA.

3.3 Methods

3.3.1 Processing and analysis

The microarray data was normalised with the lumi R package. The VST (Variance Stabi-

lizing Transform) method was used from normalisation. VST used bead level expression

to calculate normalising weights [286]. Gene names were identified using the lumiHu-

manAll.db package [295]. Normalised data underwent standard processing with the limma

R package to obtain pairwise DE for each time point. The denominator was always the 0

time point. This was carried out for the mRNA and miRNA data. Since the intermediate

time points of the mRNA dataset were at n = 1, one-tailed T-tests were performed by the

limma package, rather than a two-tailed T-test. This may have resulted in some biased,

towards to 0 time point/ denominator, as this was at n = 4. The miRNA data was imported

into R and Cy3-Cy5 channels were analysed using the limma and EximiR was used to

perform spike-in normalisation [146, 287]. This was used because spike-in probes were
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detected in the raw data. DE for the miRNA data was also performed using limma, and

the 0 time point was used as the common denominator for all analyses.

Results from DE were used as the input for standard analysis with the TimiRGeN R pack-

age. The combined mode of analysis found the TGF-beta Signalling Pathway to be of

interest. Time course analysis identified hsa-miR-199b-5p to be the second most highly

positively changing miRNA during chondrogenesis. CAV1 was highlighted as a target of

interest because it was significantly down regulated in several chondrogenesis studies

found in SkeletalVis [288].

3.3.2 Pathway analysis with PathVisio

A MAPP txt file containing miRNA information and a dynamics csv file containing log2FC

values of all the genes from the input data were generated. PathVisio v3.3.0 and several

apps were used to create Figure 3.9. The WikiPathways app was used to load the TGF-

beta Signalling Pathway onto PathVisio. Next missing entezgene IDs from the MAPP file

and dynamics file were filled in using information from NCBI. Using the MAPP app, the

miRNAs were loaded into PathVisio along with their entrezgene ID annotations. Then the

dynamics file was added into PathVisio as a dataset. Now the log2FCs for each gene

found in the input data and the Wikipathway of interest could be visualised. PathVisio al-

lows for multiple data points to be visualised for each gene, which was a useful method to

see how gene expression changed over time. Several miRNAs with missing entrezgene

IDs had to be manually inserted into the MAPP and dynamics file. The adjusted miRNA

entrezgene IDs were used to stop multiple miRNAs from sharing the same IDs. This would

have caused bugs in the visualisation as some miRNAs would have been allocated multi-

ple sets of log2FC values.

3.4 Summary

I applied the TimiRGeN R package to a chondrogenesis based longitudinal miRNA-mRNA

expression dataset. Results from the analysis identified the TGF-beta Signalling Path-
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way to be enriched in several time points during chondrogenesis, and that hsa-miR-

199b-5p was a potential pro-chondrogenic regulatory miRNA. CAV1 was found as a po-

tential mRNA target of hsa-miR-199b-5p, and this was supported by in silico investigations

with SkeletalVis and literature. hsa-miR-199a-5p was also found to be of interest because

it is a homologue of hsa-miR-199b-5p.

Further pathway analysis in PathVisio identified RHoA/ROCK1 signalling is downstream

of TGFB induced CAV1. TimiRGeN also predicted hsa-miR-361-5p and hsa-miR-483-3p

to target RHoA mRNA. Following on from these results, it may be interesting to gener-

ate a miRNA based chondrogenic kinetic model which may involve the following interac-

tions: miR-199a-5p-CAV1, miR-199b-5p-CAV1, miR-361-5p-RHoA, miR-483-3p-RHoA.

Though, miR-361-5p-RHoA and miR-483-3p-RHoA were questionable because their dy-

namics over the time course were respectively, unvarying and low-level. Overall, through

the use of the TimiRGeN R package four novel miRNA-mRNA interactions have been

found which may regulate chondrogenesis and also serve as the basis for building a ki-

netic model. miR-199b-5p-CAV1 was of particular interest for model building and in vitro

experiments which are shown in Ch4.
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CHAPTER 4

MULTI-MIRNA CHONDROGENESIS

MODEL

4.1 Background

To identify how miR-199b-5p influences chondrogenesis via CAV1, I investigated RHoA/ROCK1

activity during chondrogenesis. RHoA/ROCK1 signalling is downstream of CAV1 in the

TGFB signalling pathway. Interestingly, CAV1 phosphorylation at Tyrosine (Y)14 has been

reported to activate RHoA [296, 297, 298]. Other parts of the TGFB induced RHoA/ROCK1

system have been investigated in this section to establish how the miRNA is affecting

chondrogenesis, though much of this information is from non-chondrogenesis research,

and so I assume the TGFB-RhoA/ROCK1 system is ubiquitous across cell types.

4.1.1 Biology of RHoA/ ROCK1 signalling

RHoA is a member of the Rho family of small GTPases, and contributes towards chon-

drogenic maturity and cytoskeletal remodelling. RHoA is activated when it changes into

its GTP bound form, from its GDP bound form. Active RHoA phosphorylates protein ki-

nases to affect gene expression [299, 300]. ROCK1 is an effector protein of RHoA, and

it phosphorylates downstream kinases to alter gene expression or actin stability. For ex-
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ample, RHoA/ROCK1 signalling induces LIM KINASE which then phosphorylates actin

depolymerising protein COFILIN, leading to actin stability [301, 302]. Within the context of

chondrocytes, RHoA promotes a fibroblast-like cell shape, whereas normal chondrocytes

are more rounded. Overexpression of RHoA in chondrocytes inhibits early chondrogen-

esis and hypertrophy, but ROCK1 has a complex relationship with SOX9 which warrants

further investigation [303].

RHoA/ROCK1 regulates SOX9 activity

Inhibition of ROCK1 by inhibitor Y27632 leads to an increase in SOX9 mRNA [257, 304].

The increase was measured in three different populations of chondrocytes:

• Monolayer of primary cell culture chondrocytes.

• Monolayer of ATDC5 cells.

• 3D micromass culture from limb buds of 11.5 day mouse embryos.

It was reported that ROCK1 negatively regulates SOX9 mRNA, and the mechanism pro-

posed was that ROCK1 phosphorylates an unknown transcription factor. This theory is

strengthened by a luciferase assay showing a portion of the SOX9 promoter region be-

coming activated during ROCK1 inhibition [257]. Furthermore, inhibition of RHoA by drug

Cy3 also lead to an increase in SOX9 levels in ATDC5 monolayer and HAC cells from

patient knee cartilage [257, 305].

However, a later study based in synovium derived MSCs, concluded ROCK1 inhibition by

Y27632 leads to a decrease in TGFB1 induced SOX9 mRNA [306].

More confusing is the effect of RHoA/ROCK1 inhibition on chondrogenic markers other

than SOX9 mRNA. In monolayer primary cells and ATDC5 cells, inhibition of ROCK1 leads

to an increase in L-SOX5, SOX6, ACAN and COL2A1 and overexpression of RHoA lead

to a decrease in those four genes [304]. Whereas in the 3D micromass culture, inhibi-

tion of ROCK1 lead to a decrease in L-SOX5, SOX6, ACAN and COL2A1 and the latter

two genes also had reduced gene expression when ROCK1 was inhibited under TGFB1
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stimulated SMSC cells, which were cultured as a monolayer [304, 306]. These results are

summarised in Table 4.1.

Study Culture type Experiment SOX9 COL2A1 ACAN L-SOX5 SOX6

Woods(2005) 3D micromass ↓ ROCK1 ↑ NA NA NA NA

Woods(2005) ATDC5 monolayer ↑ RHoA ↓ ↓ NA NA NA

Woods(2006) ATDC5 monolayer ↑ RHoA ↓ ↓ ↓ ↓ ↓

Woods(2006) ATDC5 monolayer ↓ ROCK1 ↑ ↑ ↑ ↑ ↑

Woods(2006) PC monolayer ↓ ROCK1 ↑ ↑ ↑ NA NA

Woods(2006) 3D micromass ↓ ROCK1 ↑ ↓ ↓ ↓ ↓

Kumar(2009) PC monolayer ↓ RHoA ↑ ↑ ↑ ↑ ↑

Xu(2012) SMSC monolayer ↓ RHoA ↓ ↓ ↓ NA NA

Xu(2012) SMSC monolayer ↓ ROCK1 ↓ ↓ ↓ NA NA

Table 4.1: Chondrogenesis biomarkers measured in RHoA/ROCK1 studies. Results

from four studies, including five different chondrocyte cell lines. Decrease/ ↓ or increase/

↑ of RHoA or ROCK1 lead to an increase or decrease in SOX9, COL2A1, ACAN, L-SOX5

or SOX6 mRNAs. NA is given if a biomarker was not measured during a study.

A number of possible explanations to these contradicting results have been proposed, in-

cluding cell culture differences and metabolic links between RHoA/ROCK1 signalling and

chondrogenesis biomarkers.

4.1.2 Differences in cell culture methods

One plausible reason could be differences between micromass and monolayer cultures

[304].

Differences between culture types: monolayer vs micromass

2D monolayers and 3D micromass culture were generated using different methods and

129



this could lead to expression differences. This idea was discussed in Woods and Brier

(2006) and also in Tew and Hardingham (2006), where they identified differences between

chondrogenesis in monolayer and micromass cultures [304, 305]. Though, Xu et al (2012)

showed that chondrogenic markers ACAN and COL2A1 decrease in TGFB1 stimulated

SMSCs monolayer culture [306]. Indicating the differences seen in these studies could

have resulted from other causes.

Differences between culture types: Culture purity

A further culture issue could also be attributed to cell culture purity levels, meaning some

cultures may have high purity as we’d only expect one cell type in their population, whereas

other cultures may have a mixed population of cells, and thus have a lower purity. Primary

chondrocytes are very pure, ATDC5 cell cultures are also very pure as they are a cell-line

and micromass cell cultures are usually a mixed culture. This could have contributed to

the contradictory results [304]. The rat SMSCs monolayer culture culture was also a pure

cell line [306].

4.1.3 RHoA/ROCK1 regulation of Chondrogenesis

Other than differences between cellular cultures, the gene expression differences could

have arisen from the complex relationship between ROCK1 and SOX9.

Difference in regulation: L-SOX5 and SOX6 contribute to SOX9 activity

L-SOX5 and SOX6 are essential for cartilage formation and double KO of these genes are

lethal in mice [242]. L-SOX5 and SOX6 can heterodimerise and then bind with SOX9 to

form a SOX-trio complex. SOX9s ability to bind to DNA increases in this conformation and

has been shown to increase transactivity in regulating COL2A1, ACAN and miR-140-5p

which are important markers for chondrogenesis and maintenance of articular cartilage

[274, 307, 308]. ROCK1 inhibition in micromass culture lead to decreases in L-SOX5 and

SOX6 mRNA which could have then contributed to a lowered ability of SOX9 to bind to

COL2A1 and ACAN promoters [304]. L-SOX5 and SOX6 activity certainly has an impact
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of SOX9 activity, though this was not seen in the ATDC5 monolayer.

Actin polymerisation reduces SOX9 activity

RHoA/ROCK1 activity stabilizes actin polymerisation and this has been linked to reduc-

ing gene expression of chondrogenic markers including: SOX9, L-SOX5, SOX6, COL2A1

and ACAN mRNAs in primary caudal sternal (middle of chest) chondrocyte and micro-

mass cells from chicken embryos [309]. Pharmacological interventions to mimic the ef-

fects of RHoA/ROCK1 modulation of actin polymerisation were conducted by Woods and

Brier (2006) who increased actin polymerisation with Jasplankinolide in micromass cul-

ture, which lead to an increase in L-SOX5 and SOX6 [304]. However, experiments from

Woods et al (2005) showed that both a reduction of actin polymerisation with Cytochalisin

D and an increase in actin polymerisation with Jasplankinolide in micromass culture lead

to an increase in SOX9 [257]. Thus, actin polymerisation affects SOX9 activity during

chondrogenesis but the results makes judging the effects of actin polymerisation on SOX9

activity difficult. Also, it is likely culture type (2D vs 3D) had an impact in these results.

Study Culture type Experiment SOX9 COL2A1 ACAN L-SOX5 SOX6

Woods(2005) 3D micromass stabilisation ↑ ↑ ↑ NA NA

Woods(2005) 3D micromass inhibition ↑ ↑ ↑ NA NA

Woods(2006) 3D micromass stabilisation ↑ ↑ ↑ ↑ ↑

Woods(2006) 3D micromass inhibition ↓ ↓ ↓ ↓ ↓

Woods(2006) PC monolayer stabilisation ↓ ↑ ↑ NA NA

Woods(2006) PC monolayer inhibition ↑ ↑ ↑ NA NA

Kumar(2009) PC monolayer stabilisation ↓ NA NA NA NA

Table 4.2: Chondrogenic biomarkers measured after alterations in actin stability

Results from three studies, including two different chondrocyte cell lines. decrease/ ↓ or

increase/ ↑ of actin stability leads to an increase or decrease in SOX9, COL2A1, ACAN,

L-SOX5 or SOX6 mRNAs. NA is given if a biomarker was not measured during a study.

Interestingly, Haudenschild et al (2010) found that SOX9 phosphorylation by ROCK1
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was independent of RHoA/ROCK1 actin remodelling. Co-transfection of LIM KINASE,

an actin remodelling protein which is phosphorylated by ROCK1, in SW135 micromass

cells showed no significant difference in pSOX9 abundance [302, 310]. Since pSOX9 is

required for chondrogenic signal, this means actin polymerisation may only affect SOX9

expression, and not affect expression of COL2A1 or ACAN.

ROCK1 phosphorylates SOX9

cAMP-PKA phosphorylates SOX9 at S64 and S181, which increased nuclear localisation

and is needed for the nuclear import of SOX9 via the importin B-mediated pathway [248,

311, 312]. cGMP-PKII also phosphorylates SOX9 at S181 but this attenuates SOX9 DNA

binding properties which may promote hypertrophy during endochondral ossification [313].

ROCK1 is known to directly phosphorylate SOX9 at S181 and inhibition of ROCK1 by

Y27632 delays peak pSOX9 levels by 2 days, during chondrogenesis [304, 309, 310].

Haudenschild et al (2010) showed ROCK1-mediated pSOX9-181 had increased nuclear

localisation, but this diminished with the addition of Y27632 in SW1353 micromass cells.

They also identified that ROCK1-SOX9 phosphorylation was part of TGFB signalling and

dynamic compression response pathways [310].

ROCK1 transactivates SOX9 by phosphorylating SMAD2/SMAD3

TGFB is a necessary external stimuli for chondrogenesis because it activates SOX9 tran-

scription via SMAD2/3 signalling; as such TGFB commonly used as a reagent to in-

duce chondrogenic differentiation from MSCs [113, 306, 314]. RHoA/ROCK1 signalling

has been found to phosphorylate SMAD3 which then promotes SOX9 transactivation

[310, 315]. To add to this, Xu et al (2012) found with qPCR experiments, ROCK1 inhi-

bition by Y27632 lead to a decrease in TGFB1 induced pSMAD2 and pSMAD3 in SMSC

monolayer [306].

ROCK1 negatively regulates SOX9 mRNA

It should also be noted again that SOX9 mRNA levels increase in most experiments after
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RHoA/ROCK1 inhibition. The exception was the SMSC monolayer experiments. The

assumption behind this increase in SOX9, is that here is an unknown SOX9 transcriptional

repressor which ROCK1 activates [257, 304, 305, 306].

TGFB signalling induces miRNAs which may regulate RHoA/ROCK1

miRNAs which regulate the TGFB-RHoA/ROCK1 system have not been well studied and

investigating their role can increase our knowledge of TGFB-SOX9 signalling during chon-

drogenesis. Results from TimiRGeN analysis predicted RHoA to be targeted by hsa-miR-

361-5p and hsa-miR-485-3p. hsa-miR-485-3p expression was increasing over the time

course, but was relatively low compared to the other miRNAs. Whilst hsa-miR-361-5p

expression was stable during the chondrogenesis time course and relatively higher than

hsa-miR-485-3p’s expression levels (Table 3.2 and Table 3.3). RHoA gene expression

is gradually decreased along chondrogenesis which was expected because it had been

identified as a gene which halts chondrogenic maturity [304]. These miRNAs may regu-

late RHoA during chondrogenesis and thus may have some influence on SOX9 activity.

Also, other proteins, upstream of RHoA/ROCK1 may be regulated by miRNAs. The TGFB

signalling pathway identified CAV1 as one such protein, which when phosphorylated medi-

ates RHoA-GDP to RHoA-GTP conversion. CAV1 mRNA also decreased over chondroge-

nesis and TimiRGeN analysis predicts that CAV1 mRNA is targeted by hsa-miR-199a-5p

and hsa-miR-199b-5p, and both miRNAs increased in expression levels over the chondro-

genesis time course (Table 3.2 and Table 3.3). Interestingly, CAV1 expression has been

researched in the context of chondrogenesis and osteogenesis [316, 317].

Which potential ROCK1-SOX9 mechanisms will be modelled

The complex relationship between ROCK1 and SOX9 would benefit from a kinetic model

as a means to capture the mechanisms and make predictions on how RHoA/ROCK1 ac-

tivity regulates chondrogenesis biomarkers. The size of this model was determined by

the level of validation data generated for the model, so not all of the regulatory effects

were explored. The selected mechanisms were used to construct a GRN, which was then
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modelled. The regulatory mechanisms which were explored by the model were as fol-

lows: ROCK1 phosphorylates SOX9, ROCK1 positively regulates SOX9 by phosphorylat-

ing SMAD2 and SMAD3, ROCK1 negatively regulates SOX9 via an unknown transcription

factor, and miRNAs that are predicted to regulate the TGFB-SOX9 system.

Several of the aforementioned regulatory differences could not be included in the model

for several reasons. Firstly, the culture differences could not have been tested in lab, and

also would be difficult to dissect with a kinetic model. Actin stability was an interesting

question but Haudenschild et al (2010), concluded actin regulation by LIM KINASE con-

tributed no significant affect on pSOX9 levels, and this influenced me not to pursue this

line of inquiry in a model. L-SOX5 and SOX6 regulation were also an interesting factor,

but many of the studies did not report on L-SOX5 and SOX6, in contrast the other chon-

drogenic biomarkers (COL2A1, ACAN, SOX9) were more well documented in this system

(Table 4.1 and 4.2), and so there was more knowledge to draw for these genes. Finally,

I did not include hsa-miR-361-5p and hsa-miR-485-3p in the model because validatory

results for hsa-miR-361-5p (see subsection 4.2.2) indicated it did not greatly affect RHoA

mRNA and hsa-miR-485-3p was assumed to have a marginal affect because it had low

expression.

4.2 Results

4.2.1 Gene regulatory networks

A GRN is a blueprint for a kinetic model and a resource to design wet-lab experiments.

Here two GRNs are presented. Firstly, a whole GRN which shows all the mechanisms

which we wish to explore with a kinetic model. However, what can be modelled is based

on the validatory experiments performed (discussed later in this section). A second GRN

shows the mechanisms which were modelled. Components of the whole GRN are de-

scribed below. Both were made using CellDesigner [318]. Below I also detail the evidence

which supports the topology of the GRNs.
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I assumed the mRNA levels to be a proxy to total gene activity (mRNA, protein and

phospho-protein), because most of our data was RNA based.
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Figure 4.1: Whole multi-miRNA chondrogenesis model. This GRN was the foundation

of what was modelled, however also contained other species which were not modelled

because of data constraints.
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Figure 4.2: Modelled multi-miRNA chondrogenesis model. This GRN contains what

was modelled in COPASI. Species in the model can be parameterized on all the needed

data (green), parametrized based on inferred data (blue), which means we had partial

data for that species (e.g. only having mRNA level data (e.g. CAV1) or inferring behaviour

based on similar genes (e.g. miR-199a-5p)), or there is no supporting data associated to

the species for parameterization (grey).
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Several species had to be removed from the whole chondrogenesis model because our

validation data did not cover them. This includes RHoA/ROCK1. SOX9 is the exception

because ROCK1 and TGFB have alternative regulative affects on SOX9 mRNA, SOX9

protein and SOX9 phospho-protein. Throughout this model, we assume CAV1 activity is

a proxy for RHoA/ROCK1 activity. This assumption helped to speed up the model.

TGFB-SRC kinase

Chondrogenesis begins by stimulation of a number of reagents described in section 3.3,

including of TGFB (TGFB3). SRC kinase, a tyrosine kinase from the TGF-beta Signalling

Pathway, auto-phosphorylates on Y416 in the presence of TGFB. Interestingly inhibition of

SRC kinase by inhibitor SU6656 lead to no RHoA-GTP (active RHoA) formation and inhi-

bition of TGFB also lead to no RHoA-GTP formation [297, 319]. SRC kinase decreased in

expression level during chondrogenesis, and this is seen in the microarray data produced

by our collaborators (Table 4.3) [113]. Also it has been found that SRC kinase inhibits

early chondrogenesis, so its downregulation is unsurprising [320].

Gene D1 D3 D6 D10 D14

SRC 0.19 -0.16 -0.76 -0.64 -0.46

Table 4.3: SRC expression change over chondrogenesis. Log2FC results from the

microarray dataset shows a decrease in the levels of SRC during chondrogenesis.

SRC kinase - CAV1

TGFB induced SRC kinase phosphorylates CAV1 at Y14 [297]. CAV1 is overexpressed in

OA conditions so it may have some regulatory functions during chondrogenesis [321].

CAV1 - RHoA

CAV1 activates RHoA-GTP from RHoA-GDP. Mutation Y14A on CAV1 lead to a decrease
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in RHoA-GTP. This is because the Y14A mutated CAV1 protein could not be phospho-

rylated by SRC kinase [297]. Therefore, there is a direct link between TGFB and RHoA

activity, via CAV1 and SRC, which has been reported regulate activity RHoA/ROCK1 sig-

nalling in cancer and cardiovascular studies [296, 297, 298]. CAV1 is also important during

chondrogenesis in chicken limb development [316].

CAV1 - miR-199a/b-5p

CAV1 mRNA is a validated target of miR-199a-5p and has been recorded as a target

in several biological niches including tissue injury, lung inflammation and apidogenesis

[291, 292, 293]. miR-199b-5p has been less well studied than its homologue, but it is

likely that it targets the same mRNAs due to their similar sequences. miR-199b-5p has

been recorded to target CAV1 but never during chondrogenesis [294, 322].

RHoA - ROCK1

ROCK1 is an effector protein of RHoA. RHoA/ROCK1 signalling has been reported to

inhibit hypertrophy. RHoA/ROCK1 are also active prior to chondrogenesis starting and

decrease in activity over the course of chondrogenesis [304, 323].

ROCK1 - SOX9

As described in subsection 4.1.3, ROCK1 phosphorylates SOX9, induces SOX9 mRNA

via phosphorylation of SMAD2/SMAD3 and negatively regulates SOX9 mRNA by activat-

ing an unknown repressor.

SOX9 - pSOX9

SOX9 is phosohorylated at to make pSOX9. pSOX9 is needed for nuclear localisation and

transcription factor activity [248, 312].
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pSOX9 - miR-140-5p, Acan mRNA, Col2a1 mRNA

As discussed in subsection 3.1.2, activated SOX9 transcriptionally activates chondrogenic

biomarkers: miR-140-5p, ACAN mRNA, COL2A1 mRNA.

miR-140-5p, Acan mRNA, Col2a1 mRNA - GAG

Again as discussed in subsection 3.1.2, GAGs are attached to ACAN molecules to form

necessary structures in the Cartilage, so reduction in ACAN would lead to a fall in GAGs.

Some GAGs may also be attached to collagen structures, however COL2A1’s contribution

is indirect, as COL2A1 is needed to maintain healthy cartilage, and thus is needed to

maintain GAG levels. Finally, miR-140-5p also has an indirect influence on GAG levels as

it negatively regulates antagonistic proteins of ACAN and COL2A1.

GAG - Chondrogenesis

I am using GAG levels as a proxy for chondrogenesis in this model, i.e. higher the GAG,

the further along the process of chondrogenesis the model is in. This was the only phe-

notypic level data received, and it was a quantitative measure of chondrogenesis.

4.2.2 Validatory Data from collaborators

Experimental data was generated to test if hsa-miR-199b-5p regulates chondrogenesis.

Data in this section is from qRT-PCR experiments performed by Dr. Matt Barter in David

Young’s research group in Newcastle University. Here, hairpins (hp) were used to reduce

the levels of miR-199b-5p (hpmiR-199), miR-361-5p (hpmiR-361) or as a control (hpCon).

Hairpins were added at day 0 and the gene expression of chondrogenic biomarkers (Fig-

ure 4.3) or predicted miRNA targets (Figure 4.4-4.5) were measured at days 0, 1, 3 and

7.

139



hsa-miR-199b-5p regulates chondrogenesis
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Figure 4.3: Chondrogenesis biomarker levels after miRNA inhibition. A) COL2A1

expression levels significantly decreased after during hsa-miR-199b-5p inhibition at each

time point after day 0. qRT-PCR results for day 0 were undetectable for COL2A1 mRNA.

B) ACAN expression levels significantly decreased at days 0, 1, and 3 after hsa-miR-

199b-5p inhibition. C) SOX9 expression levels significantly decreased at days 1 and 3

after hsa-miR-199b-5p inhibition. D) dimethyl blue staining showed GAG levels signifi-

cantly decreased after hsa-miR-199b-5p inhibition at day 7. Error bars were calculated by

standard deviation between 2-3 replicates. Significance was calculated by T-tests between

the control and inhibitions. * = <0.05, ** = < 0.0001, *** = < 0.00001.

Chondrogenic biomarkers COL2A1, ACAN and SOX9 mRNAs were measured after inhi-
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bition of hsa-miR-199b-5p or hsa-miR-361-5p during Days 0, 1, 3 and 7 of chondrogenesis

(Figure 4.3). GAG levels are also measured at day 7. hsa-miR-199b-5p was identified to

be a pro-chondrogenic regulator. Significant decreases seen in SOX9 levels may have

contributed to decreasing levels of COL2A1 and ACAN levels. The decrease in ACAN

would likely lead to the significant decrease in GAG levels. hsa-miR-361-5p did not show

any significant affect on any chondrogenic biomarker, so it is likely not an important regu-

lator of chondrogenesis. For this reason hsa-miR-361-5p was not added to the GRNs.

CAV1 is upregulated after hsa-miR-199b-5p inhibition and RHoA is unaffected by

hsa-miR-361-5p

CAV1, HES1 and JAG1 levels were measured at 0, 1, 3 and 7 days after hsa-miR-199a-5p

or hsa-miR-361-5p inhibition. CAV1 was tested due to being a predicted target from TimiR-

GeN. HES1 and JAG1 were tested due to being known targets of miR-199b-5p (Figure

4.4) [122, 324]. Similarly, RhoA was a predicted target of hsa-miR-361-5p, while TWIST1

and VEGFA were known targets of miR-361-5p (Figure 4.5) [325, 326]. Based on results

in this subsection, CAV1 may be a genuine target of hsa-miR-199b-5p. Results also indi-

cated that hsa-miR-361-5p was not affecting RHoA and may not have had any significant

effect during chondrogenesis. Interestingly, hsa-miR-199b-5p may have some affect on

RHoA. Other genes such as HES1 and VEGFA may also have been genuine targets of

hsa-miR-199a-5p and hsa-miR-361-5p, though HES1 expression was also upregulated

by hsa-miR-361-5p inhibition. JAG1 did not seem to be a hsa-miR-199b-5p target during

chondrogenesis, though JAG1 was reported as a miR-199b-5p target [122]. However,

JAG1 may be a target of hsa-miR-361-5p. Lastly, TWIST1 may be a target of hsa-miR-

199b-5p and hsa-miR-361-5p during chondrogenesis. TWIST1 has been identified as a

true target miR-361-5p, but it showed a greater response to hsa-miR-199b-5p inhibition. It

should be noted, qPCR does not prove that hsa-miR-199b-5p targets CAV1, it only proves

that during hsa-miR-199b-5p inhibition CAV1 levels increased.
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Figure 4.4: Predicted miR-199b-5p targets after miRNA inhibition. A) CAV1 was sig-

nificantly upregulated after hsa-miR-199b-5p inhibition at days 1 and 3. B) HES1 mRNA

was significantly upregulated at day 1 after hsa-miR-361-5p inhibition and at days 3 and

7 after hsa-miR-199a-5p inhibition. C) JAG1 mRNA was significantly dowregulated after

hsa-miR-199b-5p inhibition and upregulated after hsa-miR-361-5p inhibition at day 1. Er-

ror bars were calculated by standard deviation between 2-3 replicates. Significance was

calculated by T-tests between the control and inhibitions. * = < 0.05, ** = < 0.0001, *** =

< 0.00001.
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Figure 4.5: Predicted miR-361-5p targets after miRNA inhibition A) After hsa-miR-

199b-5p inhibition RHoA was significantly downregulated at day 1 and upregulated at day

7. B) VEGFA was significantly upregulated at day 3 after hsa-miR-361-5p inhibition. C)

TWIST1 was significantly upregulated at days 3 and 7 after hsa-miR-199b-5p inhibition

and at day 3 after hsa-miR-361-5p inhibition. Standard deviation of 2-3 replicates Error

bars were calculated by standard deviation between 2-3 replicates. Significance was cal-

culated by T-tests between the control and inhibitions. * = < 0.05, ** = < 0.0001, *** = <

0.00001.
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Though some of these results were significant, it may also be that hsa-miR-199b-5p and

hsa-miR-361-5p are having indirect regulatory affects on these genes. More specific tests,

such as luciferase assays, should be carried out to truly confirm that these are direct

miRNA-mRNA interactions [5]. That being said, these results are certainly enough to

begin kinetic modelling.

4.2.3 Kinetic Modelling

The GRN shown in Figure 4.2 was modelled using COPASI [119]. Results from this mod-

elling software were exported into R for plotting. After searching on Biomodels, the repos-

itory for reproducible kinetic models, it seems that the model generated in the PhD is the

first multi-miRNA chondrogenesis model which has validated data associated with it [327].

Model Calibration

Microarray data from Barter et al (2015) was used as the calibration data. This is used

as a basis to simulate objects within the kinetic model during normal chondrogenesis over

the 14 day time course [113]. Overall the model gets the correct trends for all species.

Some dynamics are missed in CAV1 and miR-199a-5p, however the general trends are

match (Figure 4.6).
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H

Figure 4.6: Calibrated output from multi-miRNA chondrogenesis model. Eight plots

showing model objects from the microarray dataset (red) and simulations from the model

(blue). Figure 4.6 H) shows a dotted blue line and one red dot (based on Figure 4.3D)

because the experimental data was based on one time point.

Model Validation

Validation data from the qPCR results (Figures 4.3-4.4) was used as a barometer for how

the model should be simulating under miR-199b-5p inhibition conditions. The model cap-

tures the inhibited behaviours well. Early ACAN and COL2A1 simulations (day 1) do not

reach the same nadir as the validation data. The inclusion of the ’OtherTargets’ black box
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helped to capture these dynamics. The ’OtherTargets’ blackbox also supports the theory

that miR-199b-5p targets other mRNAs which negatively regulate chondrogenesis. Also,

the dynamics of the chondrogenesis targets and the ’OtherTargets’ blackbox helped to

predict the other miR-199b-5p targets would peak earlier than day three. This was be-

cause CAV1 peaked at day 3, and in contrast the chondrogenesis biomarkers all share

their nadir at day 1. Indicating other miR-199b-5p targets were earlier acting than CAV1.

After day 7, the system was assumed to be going back to normal chondrogenic levels and

the inhibition drug was predicted to have worn off around day 5.5. This was an assump-

tion, however it was assumed to be after day 3 and before day 7, because by day 7 the

chondrogenesis biomarkers begin to start matching their calibration levels. After day 7, all

species were assumed to begin establishing a steady state. Another assumption was that

the miRNAs were recycled in the system. It was possible to model the miRNA-mRNA in-

teractions including several steps: miRNA-mRNA interaction complex formations, miRNA-

mRNA binding and dissociation and miRNA degradation with the target mRNA. However,

because our data was based over days, such fast reactions (which may span seconds-

hours) would not be useful.

The following figures use the phrase ’Activity’ to describe the behaviours of the mRNAs,

because the transcript level measurements and simulations are being used as a proxy

for gene activity. The other option was to use mRNAs as a proxy for proteins, but this

would have been more complicated, as many of the proteins in this system undergo post-

translational modifications e.g. phosphorylation. Using mRNAs as a proxy for overall gene

activity was the simpler option.
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Figure 4.7: Validation output from the multi-miRNA chondrogenesis model. CAV1,

SOX9, ACAN and COL2A1 validation data (red) from Figure 4.3A-C and 4.4A contrasted

against model simulation data during miR-199b-5p inhibition (blue). Simulations after day

7 are predicted based on the calibration data shown in Figure 4.6.

Predicting miR-199a-5p inhibition

miR-199a-5p inhibition simulations were predicted based on the assumption that miR-199a-5p

would be performing the same function as miR-199b-5p, and also miR-199a-5p would

have a slightly greater effect than miR-199b-5p. This assumption is based on there being

a greater amount of miR-199a-5p found in the microarray dataset (Table 3.2). Based

on this assumption, miR-199a-5p inhibition leads to a greater and earlier increase in

CAV1 and ’OtherTargets’, when compared to miR-199b-5p inhibition. Furthermore, SOX9,

ACAN and COL2A1 simulations had greater nadirs during miR-199a-5p inhibition. During

miR-199a-5p inhibition, the ACAN and COL2A1 gene activity was closer to the validation

data from figure 4.8. However, this also meant SOX9 mRNA levels had a far greater down-

regulation than what was found from the qRT-PCR experiments.
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Figure 4.8: Predicting affect of miR-199a-5p inhibition. CAV1, SOX9, ACAN and

COL2A1 activity were simulated after miR-199a-5p inhibition. These simulations (blue)

are contrasted against the validation data shown in Figure 4.3A-C and 4.4A (red).

miR-199a-5p inhibition simulations were shown against miR-199b-5p inhibition results to

show how the model predicts the effects of miR-199a-5p inhibition.

Further predictions from the model

miR-140-5p and GAG levels were predicted after miR-199a-5p and miR-199b-5p inhibition

(Figure 4.9). For miR-140-5p and GAG levels, miR-199a-5p inhibition leads to a slightly

greater drop. miR-140-5p was arguably the most important miRNA during chondrogene-

sis. It is promoted by SOX9 activity, thus when SOX9 decreases, miR-140-5p decreases.

miR-140-5p activity will also promote GAG because miR-140-5p will degrade catabolic

ECM genes such as ADAMTS5. GAG levels were measured to drop down by 60% on day

7 of chondrogenesis and this is simulated in Figure 4.9B. This simulation also allows us to

predict GAG levels before and after day 7.
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Figure 4.9: Predicting miR-140-5p and GAG levels after miR-199a/b-5p inhibi-

tion. Predictions of miR-140-5p and GAG activity during miR-199b-5p (dark blue) and

miR-199a-5p (light blue) inhibition during the 14 day time course. Lines are dotted be-

cause miR-140-5p simulations are based only on calibration data and GAG simulation are

only based on validation data during the 7 day time point (Figure 4.3D).

4.3 Methods

GRN construction

Upon further reading, GRNs were constructed in CellDesigner [318]. After several at-

tempts the GRN shown in figure 4.2 was modelled in COPASI [119].

Kinetic Modelling

The model was calibrated using a mixture of parameter estimation and manual adjust-

ments via sliders. Manual adjustments were needed due to the modelling software CO-

PASI, not allowing multiple experiments (Caliberation and Validation) to work effectively

simultaneously. Parameter estimation was mainly used for the model calibration. When

using parameter estimation, particle swarm was used as the global algorithm and this was

supplemented with Hookes-Jeeves, a local algorithm [119, 328, 329]. These algorithms

aim to find the global minima for each species, by exploring the parameters [330]. The

global algorithm functioned to find areas were the global minima may be, and the local

algorithm used the end-point of the global algorithm to continue the analysis [331].
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Most of the initial conditions and parameters were found using the microarray dataset from

our collaborators [113]. Species which did not have any associated data had their initial

conditions/ parameters assumed based on known behaviour from literature.

Data from qRT-PCR (Figure 4.3-4.4) had to be normalised to the microarray data to be

used in the model. qRT-PCR results were calculated using the ∆∆CT formula [332]. qRT-

PCR results was generated from three biological samples so the mean value and mean

standard deviation were calculated for each sample. T-tests were performed between the

controls and KDs to measure significance. To convert the qRT-PCR results to numbers

which can be contrasted against the microarray results the following formula was used for

each gene.

MEAN((Ig/Cg) ∗MRg) (4.1)

• I = Inhibition value

• C = control value

• MR = microarray value

• g = given gene

Modelling was performed under the assumption that at day 0 the MR = 1. This way

the calibration and validation data would have the same initial starting value (Table 4.4).

This type of normalisation is necessary when parameterising a kinetic model with multiple

datasets. T-tests were not carried out during day 0 because I worked under the assump-

tion that at day 0, the inhibition and control data should be the same because an ODE

based model requires the initial conditions of all species to be the same. If alternate initial

conditions were used for the species, it would cause bugs when performing parameter

estimation.

The model comprised of 16 species, 42 reactions and 4 events. Most species and reac-

tions were within a single compartment (chondrocyte) and the model used d/mmol as its

unit. GAG was stored in the ECM compartment. Both compartments = 1 and in a sense,
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do not contribute to the model.

Table 4.4 shows some large disparities e.g. TGFB3 = 10000 and ACAN = 6.2571. Up-

stream species are kept at high concentrations to make the model initiate faster, and the

alternative was to increase the size of the parameters. Note, naming conventions are

dropped in the model, and for ease, species names were used instead.
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Initial conditions

Species Initial conditions

ACAN 6.2571

CAV1 13.2114

COL2A1 6.40998058

GAG 1

HP199b 0 (1 during event)

HP199a 0 (1 during event)

SOX9mRNA 8.76

SOX9Protein 1

MIR140 5p 6.55829

MIR199a 5p 10.5401

MIR199b 5p 5.42346

TGFB3 10000

SOX9PhosphoProtein 0

SRC 1000

Table 4.4: Initial conditions from the multi-miRNA chondrogenesis model.

4.3.1 ODEs

This is an ODE based kinetic model. Each species has specific inputs and outputs which

control their behaviours over time. In each equation the term ch = chondrocytecompartment,

and for GAG, ecm = ECMcompartment. All parameters have been rounded up to three

decimal places. miR199b amount and miR199a amount are global quantities used to al-

ter the miRNAs expression levels during events.

ACAN

d[ACAN ].ch

dt
=

+ch.(100.[Sox9PhosphoProtein]

1+ 1
[Sox9PhosphoProtein]

)

−ch.(4.263.[ACAN ])

 (4.2)
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CAV1

d[CAV 1].ch

dt
=



+ch. 152.229.9625.57.[SRC]
3.(0.416+[SRC])+9625.57.(0.1+[SRC])

−ch. 12.892.[CAV 1]

0.0972+[CAV 1]+0.0971.
[MIR199a5p]

0.1318

.[MIR199a5p]

−ch. 18.746.[CAV 1]

0.0996+[CAV 1]+0.0996.
[MIR199b5p]

0.057

.[MIR199b5p]

−ch.(0.267528.[CAV 1])


(4.3)

COL2A1

d[COL2A1].ch

dt
=

+ch.(94.624.[Sox9PhosphoProtein]

1+ 1
[Sox9PhosphoProtein]

)

−ch.(3.005.[COL2A1])

 (4.4)

GAG

d[GAG].ecm

dt
=


+ecm.(0.179.[COL2A1]

1+89.324
/[COL2A1])

+ecm.(4.70977.[ACAN ]
1+1

/[ACAN ])

+ecm.(3.97.[MIR1405p]
1+5

/[MIR1405p])

 (4.5)

MIR140 5p

d[MIR1405p].ch

dt
=

+ch.(6.085.[Sox9PhosphoPortein])

−ch.(0.376.[MIR1405p])

 (4.6)

MIR199b 5p

d[MIR199b5p].ch

dt
=


+ch.(

8.013.
[TGFB3]
0.0152]

1+
[TGFB3]
0.0152

.miR199b amount)

−ch.(0.90175.[MIR199b5p])

−ch.(1.004.[miR−199a−5p]
0.124

.[HP199a])

 (4.7)
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MIR199a 5p

d[MIR199a5p].ch

dt
=


+ch.(

100.41.
[TGFB3]
104.984]

1+
[TGFB3]
104.984

.miR199b amount)

−ch.(8.678.[MIR199a5p])

−ch.(1.009.[miR−199a−5p]
0.0178

.[HP199a])

 (4.8)

OtherTargets

d[OtherTargets].ch

dt
=



+ch.( 1354.23.1554.29.[OtherTargetsRegulators]
0.008.(0.198+[OtherTargetRegulators])+1554.29.(0.009+[OtherTargetsRegulators])

)

−ch.( 100.728.[OtherTargets]

0.1+[OtherTargets]+0.1.
[MIR199a5p]

0.103

)

−ch.( 121.391.[OtherTargets]

0.095+[OtherTargets]+0.095.
[MIR199b5p]

0.105

)

−ch.(0.097.[OtherTargets])


(4.9)

OtherTargetsRegulators

d[OtherTargetsRegulators].ch

dt
=

 +ch.(0.099)

−ch.(8.652.[OtherTargetsRegulators])

 (4.10)

SRC
d[SRC].ch

dt
=

+ch.(TGFB3
100

.0.117)

−ch.(1.407.[SRC])

 (4.11)

SOX9mRNA

d[SOX9mRNA].ch

dt
=



+ch.(604.499.[SOX9mRNA])

+ch.(2.1577.[CAV 1])

+ch.(1.551.[TGFB3])

+ch.(8.44.[MIR1405p])

−ch.([SOX9mRNA].11.921.[OtherTargets])

−ch.([SOX9mRNA].59.112.[CAV 1])


(4.12)
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SOX9Protein

d[SOX9Protein].ch

dt
=

+ch.(6.085.[SOX9mRNA])

−ch.(0.376.[MIR1405p])

 (4.13)

SOX9PhosphoProtein

d[SOX9PhosphoProtein].ch

dt
=

+ch.(6.085.[SOX9mRNA])

−ch.(0.376.[MIR1405p])

 (4.14)

TGFB3
d[TGFB3].ch

dt
=

 +ch.(1.848)

−ch.(0.00475.[TGFB3])

 (4.15)

Events

Four events are used to simulate miR-199a-5p and miR-199b-5p inhibition. If triggered,

HP199a activity and HP199a inactivity lead to HP199a = 1 until time reaches 5.5 days,

at which point HP199a = 0. Likewise, if triggered, HP199b activity and HP199b inactivity

lead to HP199b = 1 until time reaches 5.5 days, at which point HP199b = 0. HP199a and

HP199b will reduce their target miRNA by 90% until day 5.5. The effectiveness of the

miR-199b-5p inhibition was not measured, and this was a weakness in our model. I as-

sume the inhibition of miR-199b-5p was effective, given the changes seen in chondrogenic

biomarkers and CAV1 levels (Figure 4.3-.4.4). HP199a and HP199b are global quantities

which are fixed at 1. As global quantities they do not have inputs or outputs.

4.3.2 Functions

Several functions were used to capture the behaviour of the model species throughout

chondrogenesis. Some functions were created for the model. All reactions were irre-

versible. Model specific terms are used here. A modifier/ M is a species which will affect
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a substrate or parameter, but is not itself changed during the reaction. A substrate/ S is a

species which is reduced during a reactions. A product/ P is a species which is produced

from a reaction. A parameter (V, v, kn (n = #), Kms, Kac, Kms, ki) is a number which will

act as a weight on a M or an S. Parameters are the targets to change when using sliders

or parameter estimation to fit a kinetic model.

Constant Flux

v (4.16)

v = parameter.

Constant Flux was used when importing TGFB3 and OtherTargetsRegulator into the model.

Declining input 1
V.k1.M

Kms.(Kas+M) + k1.(Kac+M)
(4.17)

V = parameter, k1 = parameter, M = modifier, Kms = parameter, Kas = parameter, Kac =

parameter.

Declining input 1 was used when inputting OtherTargets(P) from OtherTargetsRegula-

tor(M) and CAV1(P) from SRC(M). During these reactions the M will be declining to a

low steady state at a fast rate, and the products (OtherTargets and CAV1) will decline at a

slower rate until they reach a lower steady state.

HP modification 1
k1.S

k2
.M (4.18)

k1 = parameter, S = substrate, M = modifier, k2 = parameter.

HP modification 1 was used to set the amount of downregulation HP199a(M) and HP199b(M)

have on their respective miRNAs(S). When events are not triggered, these functions do
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nothing because M = 0. During events this function will be active because M = 1.

Fast input 1
V.M

1 + k1
M

(4.19)

V = parameter, M = modifier, k1 = parameter.

Fast input 1 was used when inputting ACAN(P) and COL2A1(P) from SOX9Phospho-

Protein(M). This was also used when inputting GAG(P) from ACAN(M), COL2A1(M) and

MIR140 5p(M). This was a fast reaction so the inputted species will follow the trend set by

the modified.

Fast Input 2

k1.M (4.20)

k1 = parameter, M = modifier.

Fast Input 2 was used when a product (MIR140 5p, SOX9mRNA, SOX9Protein) was re-

quired at speed comparable with mass action. However, unlike mass action this function

uses an M instead of an S. Fast Input 2 worked faster than Fast Input 1 [118].

Mass Action

S.k1 (4.21)

S = substrate, k1 = parameter.

Mass Action was the most common function this model, being used 16 times. It was used

to output species, except for miRNA based output [118].
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miRNA induced output 1
V.S

Km+ S + (Km. M
K1

)
(4.22)

V = parameter, S = substrate, M = modifier, Km = parameter, Ki = parameter.

miRNA induced output 1 was used when outputting an S (CAV1 or OtherTargets) and a

miRNA (MIR199b 5p or MIR199a 5p) was an M.

miRNA input 1
V. M

shalve

1 + M
shalve

.GQ (4.23)

V = parameter, M = modifier, shalve = parameter, GQ = parameter.

miRNA input 1 was used when inputting MIR199a 5p or MIR199b 5p. This function was

a modified hill cooperative function as it used an M instead of an S [333]. This function

also used GQ as a multiplier. During events the GQ parameter (HP199a or HP199b) was

modulated to simulate miR-199a-5p or miR-199b-5p inhibition.

Mixed activation
V.S.M

Kms.(Kas+M) + S.(Kac+M)
(4.24)

V = parameter, S = substrate, M = modifier. Kms = parameter, Kac = parameter.

Mixed activation was used when SOX9Protein(S) became SOX9PhosphoProtein via CAV1(M)

[334]. SOX9Protein was needed as the base of this reaction and CAV1 activity was

needed as the proxy catalyst (ROCK1 is the true catalyst but was not present in the model
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due to data limitations).

SOX9mRNA output from targets 1

(S.k1).M (4.25)

S = substrate, k1 = parameter, M = modifier.

SOX9mRNA output from targets 1 was used when outputting SOX9mRNA(S) from MIR199a 5p

or MIR199b 5p targets (CAV1 or OtherTargets)(M). This was a slower reaction as to not

cause large levels of SOX9mRNA downregulation during non-event triggered simulations.

4.4 Summary

Chondrogenesis is a complex process which is regulated by miRNAs. Further study of this

process using a systems and computational approach helped to identify hsa-miR-199a-5p

and hsa-miR-199b-5p as potential pro-chondrogenic regulators and their novel target

CAV1 which is predicted to be an anti-chondrogenic gene. Experimental data provided

some validation towards miR-199a-5p-CAV1 and miR-199b-5p-CAV1 as regulatory inter-

actions during chondrogenesis. However, it seems clear the miRNAs have other targets

which caused a larger and earlier anti-chondrogenic effect. Kinetic modelling allowed us to

simulate the system with a ”black-box” which represented the alternative miR-199a/b-5p

targets. This is the first validated multi-miRNA chondrogenesis model and allows us to

simulate the effects of miR-199b-5p inhibition during chondrogenesis. The model can

also predict the effects of miR-199a-5p inhibition which leads to a greater CAV1 spike

and thus a greater anti-chondrogenic effect. Furthermore the model can predict GAG and

miR-140-5p levels upon miR-199a-5p or miR-199b-5p inhibition. The decrease seen in

GAG levels indicated a loss of cartilage function.
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CHAPTER 5

PREDISPOSITION MODEL FOR

JUVENILE ONSET HUNTINGTON’S

DISEASE

5.1 Background

ML is becoming an entirely unique field of computational biology because its usage has

great prospects for better understanding biological processes and complex disorders such

as neurological diseases [335]. ML can detect patterns from large datasets. The concept

and full usage of this approach will not be discussed here because this would distract

from my research. Instead these reviews highlight the power of ML in biological research

[335, 336, 337].

Using ML to identify miRNAs of interest

Within the miRNA research community ML has mostly been used to predict miRNA-mRNA

targets. This has proven very useful and ML based algorithms have enhanced the power

of many prediction tools such as miRDB with uses an SVM (support vector machine)
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model and TargetScan which uses a rules based model [79, 83]. However, there is also

the potential of using ML to identify miRNAs as biomarkers. In subsection 1.1.5, I de-

scribed how useful miRNAs could be as non-invasive biomarkers, so I will not labour this

point here.

To showcase how ML can help to identify interesting miRNAs as biomarkers within com-

plex diseases I searched for a large longitudinal miRNA-mRNA expression dataset in

GEO. I found a large juvenile onset Huntington’s disease (JHD) dataset from this repos-

itory - GSE65776. This contained data from mouse cortex, striatum and liver. The as-

sociated publications identified the striatum to be the most effected by HD, followed by

the cortex and no significant effects were seen in liver samples. I downloaded the cortex

dataset because it was the most complete [114, 115]. To identify a suitable ML strategy

appropriate for the dataset, it was analysed by differential expression using DESeq2 and

then analysed with TimiRGeN.

5.1.1 Background biology of HD and juvenile onset

HD is a chronic neurodegenerative disorder characterised by the progressive loss of neu-

rons. Patients with HD show signs of loss of motor skills and memory, along with reduced

capability of maintaining normal living conditions without aid [338]. Brain scans of HD

patients reveal a loss of neurons in the striatum and cortex. Cortical thinning is thought to

be an earlier pathological event [339].

HD is a rare condition, affecting 10.6-13.7 individuals per 100,000 in Western populations.

Prevalence of the disease is significantly lower in east Asian and black populations [340].

HD is caused by a CAG codon expansion in exon 1 of the HTT gene. HD is an autoso-

mal dominant disease so only one mutant allele is enough to lead to disease phenotypes.

There is currently no cure and patient mortality is 100%. In terms of molecular changes

which lead to this disease; a CAG expansion leads the HTT gene expressing a mutant

HTT (mHTT) mRNA isoform with an extended 3ÚTR. The mHTT mRNA isoform will tran-

scribe a truncated mHTT protein with a long glutamine (poly-Q) chain. mHTT has been

recorded to display alternate phenotypes to wild type HTT (wtHTT) . The specific mutation
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is termed a poly-Q expansion and the specific mutation of an individual can be measured

by genotyping the number Q repeats on the HTT gene. mHTT protein promotes neuro-

toxicity, and mortality from HD results from decay of white and grey matter [338].

CAG repeat numbers are assessed during genetic screens to identify the likelihood of the

disease being present in an individual. Often individuals with 20 of fewer CAG repeats

will have no onset, though some papers have reported the normal range to extend to

27 CAG repeats [114, 341]. An intermediate range of penetrance of 27-35 CAG repeats

has largely been accepted by the literature, and full HD penetrance in individuals with

>39 CAG repeats [341, 342]. Phenotypes usually develop during the middle aged years

(30 to 50 years). However, another class of CAG repeats can lead to juvenile onset HD

(<25 years old). Here the CAG repeats are >60, though there is some debate on the

threshold [343]. As with normal onset HD, JHD is more prevalent in Caucasian groups

[344]. Specific reports identify 12.3 per 10,0000 individuals in the UK and 9.3 per 10,0000

in Germany [345, 346]. Interestingly, CAG repeat length only accounts as one of several

factors when it comes to the severity of HD. Twin studies found altered severity, indication

epigenetic or environmental factors also play a role in HD onset and severity [347].

Molecular changes from mHTT expression

The wtHTT protein is ubiquitously expressed, and in striatal and cortical neurons it can be

seen in the cytoplasm [348]. It is a 3̃50 kDa sized protein with many HEAT binding regions.

These motifs are vital for protein-protein interactions. HEAT motifs are used in scaffold-

ing roles [349]. The wtHTT protein also has a nuclear export sequence and the poly-Q

expansion mutation often causes impaired function of this sequence. mHTT proteins can

become unable to leave the nucleus and aggregates inside the nucleus [350]. As a scaf-

folding protein, HTT binds with B-tubulin, microtubules, dynein/ dynactin. The ability to

bind with B-tubulin and microtubules also means HTT has extensive functions as a cellular

trafficking protein [351, 352]. The HTT protein also has transcriptomic regulatory effects.

For example, HTT binds to and sequesters the transcription factor repressor element-1

transcription factor (REST), which is a negative regulator of brain-derived neurotrophic

factor BNDF. BDNF promotes neuron survival. mHTT has reduced capacity to sequester
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REST, and therefore, BDNF downregulation increases in HD patients [353, 354].

mHTT protein is thought to contribute to a diseased state via several altered mechanisms.

This includes: the poly-Q expansion leading to protein cleavages which aggregate and

may sequester essential proteins leading to toxicity, altered transcriptional expression of

genes like BDNF, altered protein trafficking, and also altered mRNA and miRNA expres-

sion [355].

miRNA interest in HD

Expression studies of HD have found altered miRNA expression. This is not surprising

because of the range of functions the HTT protein has. Also, mHTT has been shown to

alter transcription factor activity e.g. REST and BDNF, and the altered activity of these

transcription factors could lead to altered miRNA expression in HD patients. Several miR-

NAs have been detected as SDEGs from bioinformatics studies. For example, miR-9 and

miR-9* have been found to be downregulated in early HD cortical samples and may cor-

relate negatively with HD severity [356]. miR-124 has been seen upregulated and down-

regulated in HD patients, making its function in HD unclear. It should also be noted that

miR-9, miR-9* and miR-124 target REST and coREST (RCOR1) mRNAs for downregu-

lation [356, 357]. RCOR1 is a protein partner of REST, and also functions as a repressor

protein and a mediator of REST function [358].

5.1.2 Preliminary data analysis

168 individual mice were sacrificed and their cortex were harvested. RNAseq and miR-

NAseq was performed on each cortex, thus 336 sequencing experiments were carried

out [114, 115]. The mouse samples could be broken down into gender (male, female), Q

mutation (WT, Q20(WT), Q80, Q92, Q111, Q140, Q175) and age (2M (month), 6M, 10M)

of sacrifice (Table 5.1). The Q20 mutated mice were positive controls and can be used to

check the viability of the WT, as there should be few-no SDEGs found between WT and

Q20.
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Some samples were removed because they were identified as outliers based on PCA plots

(not shown). Also, it should be noted that the 6M data was distinct from the 2M and 10M

data because it had a far greater number of differentially expressed genes than expected.

The authors of the publication did not report an abnormally high number of SDEGs from

their cortex samples, but did report this from the liver samples, and (to a lesser extent),

their striatum samples. I believe the 6M data may have experienced a batch effect and

the authors of the publication used ComBat, a batch correction method from the sva Bio-

conductor tool, to re-center the data [114, 359]. Though the authors state they only used

ComBat to reduce noise from gender differences, but as the code is not available online, I

could not check how batch correction was performed. 6M data was kept in the analyses as

this assessment may have just been my speculation and also TimiRGeN analysis required

at least three time points to function. It is my intention to repeat the analysis presented in

this chapter without the 6M data.
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Q-mutation Gender 2 month 6 month 10 month

mRNA miR mRNA miR mRNA miR

WT(Q20) M 4 4 4 4 4 4

Q20 M 4 4 3 4 4 4

Q80 M 5 5 4 4 4 4

Q92 M 4 4 4 4 4 4

Q111 M 4 4 4 4 4 4

Q140 M 4 4 4 4 4 4

Q175 M 4 4 4 4 4 4

WT(Q20) F 4 4 4 4 4 4

Q20 F 4 4 4 4 5 4

Q80 F 3 3 4 4 3 4

Q92 F 4 4 4 4 4 4

Q111 F 4 4 4 4 4 4

Q140 F 4 4 4 4 4 4

Q175 F 4 4 4 4 4 4

Table 5.1: Spread of HD expression dataset. The samples can be divided by age,

gender and Q mutation for miRNA and mRNA samples. Most conditions had four samples,

and a few had three or five.

Circulating miRNAs are potential biomarkers for JHD

The fact that miRNAs have been detected as changing in the cortex of HD patients

opens the possibility of finding circulating overexpressed miRNAs in blood plasma or cere-

brospinal fluid (CSF) which could act as biomarkers for HD [360]. This would be especially

interesting if these miRNAs could be used to detect predisposition to JHD. Circulating miR-

NAs have been investigated in the blood plasma and CSF of HD patients [361, 362]. hsa-

miR-34b has been identified as a promising plasma stable biomarker [361]. However, as in

the case of the renal diseases discussed in subsection 1.1.5, accurate diagnostics require

multiple circulating miRNAs. This is important, as other neurodegenerative diseases such

as Parkinson’s and Alzheimer’s may also lead to over-expression of circulating miRNAs
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in blood plasma and the CSF [360, 363]. The dataset analysed in this project is from the

cortex, so any miRNAs found here may only be cortex specific. It would also be interesting

to see miRNAs that are changing in the striatum.

5.2 Results

To establish a successful means of attempt at applying ML to identify biomarkers for JHD,

I first explored the data to find a suitable and straightforward question which could be

answered by ML. This data centric A.I approach is promoted by Stanford Lecturer and ML

practitioner Andrew Ng [364]. DESeq2 and TimiRGeN were utilised to identify a suitable

narrative for ML [117, 145]. The analysis found age to be the best variable to assess

and also found gender and severity of Qvalue mutation to be less important variables.

From this I decided to use ML to classify samples as WT or HD. To make this an early

predisposition project, the 6M and 10M data were used for model training and the 2M

data was used as an independent test dataset. Feature engineering and feature selection

methods were also used to find suitable genes to train on. Multiple classifiers were used

to train and test different models. Logistic regression performed the best, so was used to

create a confusion matrix and ROC/AUC curve to show how well the model performed.

5.2.1 Data exploration with DE and TimiRGeN

Age (2M, 6M, 10M), gender (M, F) and Qvalue (WT, Q20, Q80, Q92, Q111, Q140, Q175)

mutation were the three variables in this dataset. Different samples in this section are

denoted using this formula xM yG zQ / xM yG WT, where x represents age, y represents

gender and z represents QValue mutation. miRNA and mRNA data were explored initially

with DE and then in some cases with TimiRGeN. Outliers removed from the analysis were

removed from both the miRNA and mRNA datasets, this was to keep a consistent number

of samples during ML, as blank values/ zeros are not ideal for training.

Qvalues

With only Qvalues changing at each instance, each xM yG zQ was contrasted with their

corresponding xM yG WT with pairwise DE. For miRNA and mRNA data alike, very few
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SDEGs were found from the 2M and 10M analyses. miRNA data found between 0-

3 SDEGs and mRNA data found between 0-16 SDEGs. The 6M analyses often had

over 3000 SDEGs (<0.05 adjusted Pvalue value). Even 6M M Q20/6M M WT and

6M F Q20/6M F WT respectively found 1597 and 2542 SDEGs. Q20 mice were a con-

trol and genetically the same as the WT mice, so there was clearly an issue with the 6M

data. This analysis was not carried forward to TimiRGeN because only a few SDEGs were

found in the 2M and 10M analysis.

Gender

To explore differences in JDH between genders a similar analysis was performed as

above. With gender being the only changing variable. Each xM M zQ was contrasted with

their corresponding xM F zQ for pairwise DE. This analysis was performed by Bethany

Harley, a project student who I co-supervised. Based on the previous analysis, the WT

and Q20 data were treated as the same sample, because no SDEGs were found between

the WT and Q20 samples, which was expected (except in the 6M data) [114, 115]. Like

with the Qvalue analysis, few miRNAs and mRNAs were found to be SDEGs (except in

the 6M data). Results from DE were taken forward for TimiRGeN analysis. Few pathways

were found to be enriched. The only trend seen was an enrichment in cholesterol synthe-

sis related pathways, though this was only seen in a few Qvalues. Cholesterol synthesis

is important in production of the myelin sheaths which are known to degrade in several

neurodegenerative diseases and the loss of myelin sheaths along axons contributes to

nuerotoxicity [365, 366].
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Figure 5.1: Pathways found from analysing gender based SDEGs with TimiRGeN.

SDEGs from gender based DE are analysed with TimiRGeN and the associated pathways

are shown here. Pathways include: Cholesterol Biosynthesis, Cholesterol Metabolism,

Oxidative Stress and Redox Pathways, Notch Signalling Pathway and Fatty Acid Beta

Oxidation. Enriched pathways were found towards the lower scale of Qvalue mutations.

Data for this image was taken from Bethany Harley’s UG project.

Age

Qvalues and gender were not found to be very interesting variables. So when exploring

age as a variable of interest, males and females were combined into a single class, and

Qvalues were sorted into HD or WT conditions. Q20 and WT samples were classed as

WT. Therefore, now each class could be summerised by xM HD or xM WT. 2M, 6M and

10M SDEGs respectively numbers as 22, 127, 83 for mRNAs and 1, 105, 6 for miRNAs.

This data was not further analysed with TimiRGeN because, as the previous analysis with

the gender based differences showed, not enough SDEGs are found for proper analysis

with pathway enrichment.
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Early detection of JHD

From the data analysis it was clear that age was the most important factor. Gender and

Qvalues most likely contributed small amounts of variance between samples. Combin-

ing genders and classifying Qvalues into WT (WT and Q20) and HD (Q80, Q92, Q111,

Q140, Q175) lead to far more repeats in the following classes: 2M WT (15), 6M WT (15),

10M WT (15), 2M HD (39), 6M HD (39), 10M HD (40); which was useful for model train-

ing. One interesting question would be to see if SDEGs (P adjusted value is lower than

0.05) found in both 6M and 10M mice could be used to identify if 2M mice were predis-

posed for HD or were WT. This is because the 6M and 10M JHD onset mice should show

signs of HD and the 2M mice would not be showing symptoms at the time of sacrifice.

Furthermore, using genes from both 6M and 10M data increases confidence of the genes

being put forward for ML analysis being biologically important to HD, because again, I am

skeptical on the validity of the 6M data.

31 SDEGs from both 6M and 10M data were identified from the mRNA and miRNA data:

Anln, Asrgl1, Atraid, Bhlhe41, Car2, Cd209c, Chdh, Cldn14, Fads1, Gdf10, Gm21168,

Gm5067, Gm6089, Hey1, Il17rb, Il33, Nrf1, Nudt4, P4ha3, Plpp3, Plxnb3, Rrs1, Slc45a3

,Teddm2, Tlcd1, Tmc3, Tmem40, Wnt10b, mmu-miR-135b-5p, mmu-miR-212-3p, mmu-

miR-221-3p. These genes were used as the independent features for training models.

Normalised expression values from these genes were extracted from the 2M data (test

set) and the 6M and 10M data (train set). The 31 genes were not checked if they were

SDEGs in the 2M data as this would lead to bias. The dependent feature was named

Sample and this contained the string ’HD’ or ’WT’ for each sample. scikit-learn/Python3

were used for ML analysis [367, 368].

5.2.2 Early detection of JHD using ML

Remove highly correlating features

Data exploration is required before testing ML models because removing highly correlated

features from the training data reduces risk of over-fitting. Removing lowly correlated

features could also be helpful, but these were not found because of the feature engineering

approach used DE. A Spearman correlation heatmap was created from the training data
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(Figure 5.2). If two or more features correlated at a rate of =< 0.8 or >= −0.8, only one

of the features was kept. Il33, Gm6089, mmu-miR-212-3p and Plpp3 were removed from

the training and test datasets, thus 27 genes were used for classifier testing.

Figure 5.2: Heatmap showing correlations between the features and the Samples.

Samples (HD or WT) were correlated with each feature. The 31 features were also cor-

related with each other to determine if features had similar patterns. Blue shaded boxes

are negatively correlated and red shaded boxes are positively correlated. Spearman was

used as the method.

SMOTE

Training and testing datasets respectively contained 78 HD and 30 WT samples and 39

HD and 15 WT samples. Many classifiers will bias towards the larger condition. SMOTE

from the imblearn package was used to generate synthetic data based on the WT samples

[369]. However, if cross-validation was used on synthetic data, it would no longer serve as

a real world example, and lead to data leakage. For this reason SMOTE was used inside

a cross-validation pipeline called SKFold. MinMax scaling was also added to this pipeline,
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but scaling was performed before SMOTE because scaling synthetic data may have also

lead to bias [370].

Comparing classifiers

The SMOTE/scaling pipeline was applied to test several popular classifiers. 5 shuffled

cross-validations were performed to train each classifier. Mean results were calculated

to compare how well each classifier performed [368]. Fifteen different classifiers were

contrasted with the the training and validation data. The classifiers used were:

1. KNeighborsClassifier(n neighbors=5, algorithm=’auto’, weights=’distance’)

2. SVC(kernel=”linear”, C=0.5)

3. SVC(kernel=”poly”, degree=3, C=0.025)

4. SVC(kernel=”rbf”, C=0.025, gamma=2)

5. GaussianProcessClassifier(1.0 * RBF(1.0))

6. GradientBoostingClassifier(n estimators=100, learning rate=0.001)

7. DecisionTreeClassifier(max depth=3)

8. ExtraTreesClassifier(n estimators=10, min samples split=5)

9. RandomForestClassifier(max depth=3, n estimators=100)

10. MLPClassifier(alpha=0.001, max iter=10000, solver=’sgd’)

11. AdaBoostClassifier(n estimators=100, learning rate=5)

12. GaussianNB()

13. QuadraticDiscriminantAnalysis()

14. SGDClassifier(loss=”hinge”, penalty=”l2”)

15. LogisticRegression()
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A

B

Figure 5.3: Classier performance when applied to training and validation data. Mean

results from fifteen classifiers on the A) training data (6M and 10M) and B) the testing data

(2M).
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Results for the performance of each classifier is shown in Figure 5.3. Apart from Ad-

aBoost, all of the classifiers trained above 90%, some even training at 100%, including:

Nearest Neighbors, Gaussian Process and Extra Trees. However, few managed to pre-

dict the correct samples in the test dataset above 80%, and this included Linear SVM,

Neural Net, Naive Bayes and LogisticRegression, the lattermost achieved the highest pre-

diction at 87%. This clearly shows our models tend to under-fit.

Logistic Regression performance

Scaling, SMOTE and model training with Logistic Regression were wrapped around ran-

domly shuffled stratified 5-fold cross-validation. Mean statistics were calculated to con-

struct a confusion matrix and a ROC/AUC plot (Figure 5.4).

A B

Figure 5.4: Results from from Logistic Regression model. A) Normalised confusion

matrix contrasting true HD and WT labels. B) ROC/AUC curve comparing the true positive

rate and the false positive rate.

The results above answer the question: how well can we determine the HD samples from

the WT samples. The confusion matrix shows 100% accuracy when predicting WT sam-

ples, however it struggles to distinguish some HD samples. 74% of the HD samples were

predicted correctly, while 26% were predicted incorrectly. The ROC/AUC plot (Figure 5.4B)

shows a 87.1% accuracy when trying to detect label HD samples.
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In this model, HD samples correctly labelled as HD are true positives, HD samples incor-

rectly labelled as WT are false positives, WT samples correctly labelled as WT are true

negatives and WT samples incorrectly labelled as HD are false negatives. The Y axis of

the ROC/AUC curve is the true positive rate which is calculated by the following equation.

TruePositives

TruePositives+ FalseNegatives
(5.1)

The x-axis is calculated by 1− Specificity which is equal to the false positive rate.

FalsePositives

FalsePositives+ TrueNegatives
(5.2)

Overall this means the ML model characterised HD samples well, however the model has

room for improvement. As it stands, this model would not be suitable for publication as

mischaracterisation of a serious illness by < 13% (according to the ROC curve) means the

model may not be useful for further research.

5.3 Methods

Data processing

miRNA and mRNA data from GSE65776 were downloaded using SRA-toolkit [188, 368].

Mus musculus.GRCm38.cdna.all.fa was used by Bowtie to create index files for the mouse

transcriptome. miRDeep2 was then used to quantify mature mmu-miR strands from the

miRNA data and the mature reads could be read into R [194]. FASTQC was used to to

identify sequencing quality [189]. No adapter sequences were identified. Salmon was

used to process the mRNA data and the sequence quality was acceptable [193]. In R,

tximport was used to import the mRNA data [371]. Once in R, DESeq2 was used to

perform pairwise DE on the miRNA and mRNA data separately, and this identified SDEGs
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based on age, gender and Qvalue [145]. The combined mode of TimiRGeN was used

when looking for time course patterns from SDEGs found from gender based DE analysis

[117]. Based on the data exploration, WT and Q20 samples were classed as WT samples,

and all other samples were classed as HD samples. 31 SDEGs were identified from DE

between WT and HD samples in both the 6M and 10M data. Normalised data for 31 genes

are extracted from the 2M data to create a test set and the 6M and 10M data to create a

train set.

Machine Learning with scikit-learn

Using Python 3.6 the scikit-learn (sklearn) library, classification of HD and WT samples

was performed [367, 368]. SDEGs from the 6M and 10M data were used for training and

these same genes were used for testing. The training data was checked using a Spear-

man correlation based heatmap. Four features/ genes were removed because they had

high correlation with other features/genes. 5-fold Stratified cross-validation was performed

to split the training data into five parts, four of the parts would be used for training and one

part would be used for testing. This would be repeated five times, and each time random

data points were used. In each fold, data was scaled and then synthetic data points were

made for the WT samples using SMOTE from the imblearn package [369]. This leads

to an equal number of HD and WT samples, reducing classifier bias towards the more

popular condition. Fifteen classifiers were contrasted and Logistic Regression performed

the best so a normalised confusion matrix and a ROC/AUC curve was made with this

classifier.

5.4 Summary

During this project I carried our preliminary work towards identifying potential miRNA

biomarkers for JHD. ML is a very versatile and powerful tool. I created a model using

Logistic regression which identified 2M HD samples at a perfect rate. However, this model

only identified 74% of 2M HD samples as HD. This may be a product of the 6M data being

effected by a batch effect. I intend to repeat this work without the 6M data and contrast the

differences seen. Longitudinal miRNA-mRNA expression datasets as large, or larger than
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the JHD data investigated here may be generated more often in the future. ML techniques

should be theoretically and practically understood to investigate these datasets. Here I

created a ML project to investigate how to utilise ML techniques on Longitudinal miRNA-

mRNA expression datasets.
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CHAPTER 6

GENERAL DISCUSSION

As stressed several times in this thesis, analysis of longitudinal multiomic datasets is diffi-

cult because many current tools cannot handle longitudinal datasets. Thus, novel methods

of analysing such complex expression datasets must be established for the research com-

munity. During this PhD, I have utilised three computational techniques to investigate longi-

tudinal miRNA-mRNA expression datasets, which are: the development and application of

the TimiRGeN R package, creation of a multi-miRNA kinetic model which I used to explore

how miR-199b-5p may regulate chondrogenesis and also to predict how miR-199a-5p reg-

ulated chondrogenesis, and I employed ML techniques to identify features the for predis-

position of JHD [117]. These methods are explored through this thesis and I have shown

their use with a range of complex time series datasets. This includes data from kidney

injury, chondrogenesis, breast cancer and HD research [109, 110, 111, 112, 113]. In this

discussion chapter I will outline the positive and negative aspects of each of the results

chapters, describe further work not included in this thesis and highlight how each chapter

contributes to biological research.

6.1 Ch2 - TimiRGeN R package

The TimiRGeN R package was developed as an effort to identify miRNA-mRNA inter-

actions of interest from large multiomic datasets that have been measured along a time
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course. It was also an effort to further extract information after DE analysis. DE is a useful

tool, however at times it serves as a ranking metric. Biology is fluid and dynamic, and

ranking metrics like DE do not grasp complex biological activity. Thus, I created TimiR-

GeN to act as a downstream analysis tool which can be used to supplement DE analysis

of longitudinal miRNA-mRNA datasets [117]. It became the basis of an original paper in

Bioinformatics and was accepted onto Bioconductor. The tool fills an analytical niche be-

tween DE analysis and hypothesis generation when analysing longitudinal miRNA-mRNA

datasets. Furthermore the tool can accommodate a variety of inputs which was rare

among miRNA based Bioconductor tools (see subsection 2.1). TimiRGeN can be used:

after non-pairwise or pairwise DE techniques, for microarray or RNAseq datasets, for only

miRNA or mRNA data, on static datasets, on a range of higher eukaryotic species (cow,

dog, human, mouse and rat have been tested) and for analysis of miRNA-mRNA data

combined or separately. This provides users with flexibility when designing their bioin-

formatic pipelines. This is a tool which I would like to invest time in maintain (if future

employment allows) and there are several areas in which the tool can be improved.

Wider range of species

One of the most common questions asked about the package during conferences (see

Appendix B) was if tool usage would be expanded to cater for a wider range of species.

Common requests included plant species like Arabidopsis thaliana and lesser eukaryotes

such as Saccharomyces cerevisiae. I plan to see how feasible this level of inclusion would

be. Though this may not be a straight-forward task as adding plant/ micro-organism anno-

tations. miRNAs function differently in plants e.g. miRNAs have a greater catalytic function

in plants as the plant miRISC complex’s are known to directly cleave their target mRNAs,

in contrast mammalian miRISC complex’s are more commonly known to use decapping

to trigger mRNA decay (see subsection 1.1.2). Plant and mammalian miRNAs also have

differences in biogenesis procedures, shape of their pre-miRNAs and plant miRNAs are

known to bind with target sites in the open reading frame of plant mRNAs, while mam-

malian miRNAs almost exclusively target regions in the 3’ UTR of target mRNAs [372].
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Cytoscape focused updates

Another comment I had during a conference was that I am not making the most of the

potential Cytoscape has to offer for GRN development. This is true as I focused on R -

PathVisio cross-platform access for GRN design, and I hope to explore further potential

cross-talk between R - Cytoscape. Cytoscape is a very widely used tool and increasing

attention here may also increase interest in TimiRGeN [121].

Improve automation to PathVisio

Currently R - PathVisio automation is limited. I have attempted using the Rpathvisio API

with little success [373]. Once TimiRGeN is more established, I plan on contacting the

maintainers of PathVisio and ask if they plan on developing automation between R and

PathVisio. I have asked questions on this topic on the PathVisio/ Wikipathway forum, but

I did not get any response.

Continually check for bugs and update the package appropriately

In the Bioconductor repository, I have included a link to an issues page which is associ-

ated to the TimiRGeN github site, for users to report bugs or issues. I plan to continue

monitoring the package for bugs and to work with the community of users to make sure

this package is usable for many years to come. Every 6-8 months Bioconductor enters a

new development cycle, which is compatible with the newest developmental version of R.

This can lead to code changes and thus lead to bugs to fix.

The TimiRGeN package is the cornerstone of this PhD and analysis with this tool has

guided work in the other chapters too. Though, while this tool has great capacity to guide

in silico work, and like most hypothesis generation tools, it works best in tangent with val-

idatory data.

I also want to mention, methods subsection 2.3.1. Package creation was difficult, and un-

fortunately no one in my immediate group had experience with developing in Bioconductor

before. Sources on Bioconductor specific package development were very limited. Few
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pages on their website were useful. Comments from stack overflow and the other forums

were also unhelpful because Bioconductor had specific requirements e.g. the vignettes

should not be built in the submitted package, and the an extdata file should be in the

inst folder, vignette code should not try to download from the internet, ect. Furthermore,

many of the Bioconductor package specifics are distinct form the CRAN guidelines, which

made finding suitable resources of knowledge even more limited. A straight forward guide

for package creation would have been appreciated by me (a novice developer), and so I

created subsection 2.3.1, as a potential resource for other novice developers. I believe this

subsection of the thesis to be a particularly important contribution from this PhD thesis,

and I plan on making this subsection available as a blog or short article in the near future.

I will also contact the Bioconductor core team to flag this as a potential resource for them,

because I do know they are interested in contributions from the developers community.

6.2 Ch3 and Ch4 - Chondrogenesis data analysis and

creation of a Multi-miRNA chondrogenesis model

Results from Ch3 and Ch4 lead to the construction of a chondrogenesis based multi-

miRNA kinetic model. This model captured the inherit complexity of a segment of TGFB

induced chondrogenesis and may help researchers in further experimental design. This

model contains multiple miRNAs (miR-199a-5p, miR-199b-5p and miR-140-5p) and was

centred around validatory data for a novel miRNA-mRNA pair (miR-199b-5p-CAV1). The

model presented also allowed for predictions to be made on how the system reacts dur-

ing miR-199a-5p inhibition and predicts changes in miR-140-5p and GAG levels dur-

ing miR-199a-5p or miR-199b-5p inhibition. Overall, this model has helped to establish

miR-199b-5p-CAV1 mRNA regulation as a possible regulatory interaction during chondro-

genesis.

Ideally the validation data should be generated to test model predictions from a kinetic

model calibrated on a comprehensive dataset. In practice this approach often proves

difficult to implement, and qualitative strategies are employed. The more validatory data

given to a model, the better the model can function to make predictions and capture the
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inherit complexities of a signalling pathway. Our collaborators provided high quality data,

and based on the amount received, several assumptions were made:

• miRNAs do not form complexes with target mRNAs. I.e. no miRISC-mRNA com-

plexes will form. The rationale for this was the data the model was based on spans

over days, so quicker reactions which may take seconds-hours would not be useful

in this model.

• miRNAs are not degraded with their target mRNAs, and miRNA levels are not mod-

ulated by their mRNA targets at all.

• miR-199a-5p and miR-199b-5p double inhibition will lead to a very large affect on

chondrogenesis, specifically a large increase in CAV1 and a large decrease in chon-

drogenic biomarkers. I believe the model does not handle the double inhibition well.

It is too extreme and unlikely.

• GAG levels were increasing over the time course, and seemed to plateau from

around day 10. This may be inaccurate, but we only had GAG level information

from day 7.

• during miR-199b-5p inhibition GAG levels decreased to 40% on day 7 based on

results from Figure 4.3D.

• TGFB3 levels decreased at a steady rate during the 14 day time course.

• miRNA inhibition lasted for 5.5 days, after this time the drug effects wore off. This

may be inaccurate, but I justified this because during miR-199b-5p inhibition, by day

7 the chondrogenic biomarkers began aligning to their calibration levels (Figure 4.7).

• Other miRNA target genes regulated chondrogenesis earlier and at a greater rate

than CAV1 mRNA. This was because CAV1 mRNA levels peaked at day 3 after

hsa-miR-199b-5p inhibition and ACAN, COL2A1 and SOX9 mRNA levels had their

greatest nadir at day 1 after hsa-miR-199b-5p inhibition.

• The OtherTargets ”blackbox” represented all other mRNA targets other than CAV1.
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Other miR-199a/b-5p targets

Within the model presented in Ch4, the OtherTargets species represented other miR-199a/b-5p

targets (except CAV1 mRNA). The nature of miRNA-mRNA interactions are complex and

there could be several other miR-199a/b-5p targets which may regulate chondrogenesis.

It is clear from the validatory data, alternative targets regulated chondrogenesis during or

prior to day 1 of chondrogenesis (Figure 4.3A-C, Figure 4.4A). The positive results seen

on Figure 4.3 prompted my collaborators to generate miR-199a-5p and miR-199b-5p inhi-

bition RNAseq data measured at D0 and D1 after miR-199a-5p or miR-199b-5p inhibition

to identify other target genes.

RNAseq - miR-199a/b-5p inhibition

Analysis of the RNAseq data found CAV1 along with several other potential miR-199a/b-5p

targets. The three targets with the lowest adjusted P values which were positively mod-

ulated during miR-199a/b-5p inhibition, in order were: FZD6, ITGA3 and CAV1. Further

qPCR analysis did show FZD6 and ITGA3 to be upregulated during miR-199a-5p and

miR-199b-5p inhibition. Upon a literature search I found FZD6 and ITGA3 to have been

anti-chondrogenic in function, but their roles within signalling pathways during chondro-

genic regulation were not as well explored as the CAV1-RHoA/ROCK1 system [297, 374,

375]. SkeletaVis was used to check if FZD6, ITGA3 and CAV1 were all consistently neg-

atively regulated in other chondrogenesis studies, and results seemed consistent with

the RNAseq analysis [288]. It is likely that FZD6 and ITGA3 are involved in Wnt sig-

nalling and/or fibronectin generation. There is also some evidence that indicates FZD6

and CAV1 have some indirect interplay via RHoA activity during fibrillogenesis (genera-

tion of fibronectin within cells) [297, 376, 377]. I have created an updated model which

incorporated FZD6 and ITGA3.

This work was not shown in this thesis for three reasons:

1. Most importantly, I did not wish for this thesis to become encumbered with experi-

mental work from my collaborators. This could lead to my own methods receiving

less attention, and could also lead to this thesis not accurately reflecting my own
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contributions to these projects.

2. The core theme of the thesis was the demonstration and exploration of multiple com-

putational methodologies for the analysis of longitudinal miRNA-mRNA expression

datasets. The RNAseq data generated by my collaborators had two time points, so

would not count as a longitudinal miRNA-mRNA expression dataset. So I believed

allocating a new chapter to discuss the RNAseq results would detract from the core

message of the thesis.

3. Generation of GRNs and kinetic models from longitudinal miRNA-mRNA expression

datasets was covered by Ch4, so adding more GRNs and another kinetic model may

not have added any innovative content.

Further work

We intend to publish the updated model, along with the RNAseq data, RNAseq analysis

and qRT-PCR validation data. I also intend to upload the updated model onto biomodels.

It is an aim of reproducible modelling to have models at the center of experimental design,

and the model generated during this PhD may help as a resource for experimental design

by other chondrogenesis/ OA research groups in the future.

6.3 Ch5 - Machine Learning

Ch5 presented a ML project which I designed. Here a large longitudinal miRNA-mRNA

expression dataset is explored using DE, TimiRGeN and ML. The JHD dataset analysed

was the largest that I found, and consisted of 336 individual sequencing experiments. I co-

supervised an UG student Bethany Harley. She contrasted JHD samples by gender and

her work was the basis for Figure 5.1. Age was found to be the most important variable in

the dataset, so this was further explored using ML. This project was an early predisposi-

tion approach. SDEGs found in both 6M and 10M data were treated as the training data,

and the same SDEGs from the 2M data were treated as the testing data. Thus, we tried

to identify a set of miRNAs and mRNAs which indicated predisposition to JHD, which cur-

rently has no biomarkers other than an extreme CAG-codon expansion in the HTT gene
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which could be identified through screening.

I created a Logistic Regression model which identified WT samples with 100% accuracy,

but the HD samples were only accurately identified for 74% of the samples (Figure 5.4A).

Also, the ROC/AUC curve (Figure 5.4B) scored 87.1%. Further work must be done, how-

ever, this is a positive start. I have suspicions about the 6M data and it may be interesting

to repeat this work without the 6M data, though this would significantly decrease our train-

able samples.

Further work

The aim of the early predisposition project was to identify genes which can be used to

train a model that can predict HD or WT samples. Over a quarter of the HD samples were

being misplaced, so perhaps other methods of feature identification should be used e.g.

feature selection techniques.

The miRNAs found in the early detection and age separated ML models could be ratified

by examining overexpressed miRNAs in HD patient fluid samples (blood plasma or CSF.)

I plan to download and analyse data from several public datasets to ratify the miRNAs

which were presented as biomarkers for JHD.
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CHAPTER 7

CONCLUSIONS AND BIBLIOGRAPHY

Longitudinal miRNA-mRNA expression datasets is a popular resource for biological inves-

tigation. A great range of insight can be gained from such complex datasets, however

only if computational biologists have techniques and tools sophisticated enough to anal-

yse longitudinal miRNA-mRNA datasets. In this PhD I have shown the use of three distinct

techniques: the TimiRGeN R package which uses a big data/ bioinformatics approach to

integrate, analyse and generate networks from longitudinal miRNA-mRNA datasets, a

mutli-miRNA chondrogenesis model which uses principles from systems biology to estab-

lish how miR-199b-5p regulates chondrogenesis, and a ML approach which uses a large

dataset to create an early predisposition model for JHD.

I developed the TimiRGeN R/Bioconductor package. This is the core achievement of the

PhD because, not only was it accepted onto Bioconductor, but also it became the foun-

dation for a first author original paper in Bioinformatics [117]. It is my hope that this tool

helps other researchers find direction when analysing longitudinal miRNA-mRNA expres-

sion datasets. Also, I was invited to talk at Bioc2021, so this tool has been recognised by

the Bioconductor community.

I constructed GRNs and a multi-miRNA chondrogenesis kinetic model from output of

TimiRGeN. This model is centered around the novel interaction between miR-199b-5p
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and CAV1 mRNA. In collaboration with experimentalists, this model was validated and

made several predictions, including predicting how miR-199a-5p may be regulating chon-

drogenesis. I will work on publishing this work to showcase how bioinformatics, kinetic

modelling and wet-lab was used in combination to identify miR-199a/b-5p as novel regu-

lators of chondrogenesis.

I designed an early predisposition ML project using a large JHD dataset. With help from

project students, we have made a positive start by creating a logistic regression model

with 100% accuracy at detecting WT samples, but more work is needed, as the HD de-

tection rate is poor. I aim to publish this work to show how ML could be used to analyse

large longitudinal miRNA-mRNA expression datasets.

Overall, I have utilised multiple computational methods to analyse several longitudinal

miRNA-mRNA datasets during the last four years. I believe this PhD has contributed to the

miRNA/ non-coding research community, especially in terms of the TimiRGeN R package,

which has been downloaded by over 300 individual IP addresses since acceptance into

Bioconductor. Using the TimiRGeN R package I identified hsa-miR-199b-5p to be an

interesting novel miRNA in chondrogenesis. In collaboration with experimentalists from the

Young group at Newcastle University, we have used techniques from systems biology to

create a validated multi-miRNA chondrogenesis kinetic model. The GRNs and modelling

helped in experimental design and results revealed hsa-miR-199b-5p to be an important

pro-chondrogenic regulator. This work proves the usefulness of the TimiRGeN R package

in hypothesis generation and also provides an example of how systems biology can help to

make sense of the complex nature of miRNA-mRNA interactions. Finally, I have developed

a ML model to determine if samples are WT or HD. This model is trained on 6M and 10M

data and tested on 2M data, making an early predisposition to JHD detection model.
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CHAPTER 8

APPENDIX

8.1 Appendix - A. Publications

One high-impact publication so far. Two further publications are aimed to be submitted by

the end of 2021.
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Abstract

Motivation: The analysis of longitudinal datasets and construction of gene regulatory networks provide
a valuable means to disentangle the complexity of microRNA-mRNA interactions. However, there are no
computational tools that can integrate, conduct functional analysis and generate detailed networks from
longitudinal microRNA-mRNA datasets.
Results: We present TimiRGeN, an R package that uses time point based differential expression results to
identify miRNA-mRNA interactions influencing signalling pathways of interest. miRNA-mRNA interactions
can be visualised in R or exported to PathVisio or Cytoscape. The output can be used for hypothesis
generation and directing in vitro or further in silico work such as gene regulatory network construction.
Availability and implementation: TimiRGeN is available for download on Bioconductor
(https://bioconductor.org/packages/TimiRGeN) and requires R v4.0.2 or newer and BiocManager
v3.12 or newer.
Contact: k.patel5@ncl.ac.uk, daryl.shanley@ncl.ac.uk
Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction
microRNAs (miRNAs) are single-stranded functional RNAs, around 16-
22 nucleotides long which target specific mRNAs for degradation or
translational repression; thus affecting protein levels (Selbach et al., 2008).
Targeting is achieved by complementary binding between the 3'UTR of
the target mRNA and a 7-8 nucleotide sequence found on the 5'UTR
of the miRNA, known as the seed sequence (Bartel., 2004). There is
increased clinical interest in miRNAs for several reasons: 1) miRNAs can
be tested in animal models to understand human diseases and conditions.
An example is miR-140-5p which is up-regulated during chondrogenesis
and down-regulated during osteoarthritis (Barter et al., 2015; Miyaki et al.,
2010). 2) miRNAs can be secreted via exosomes into surrounding blood,
extracellular matrix and urine (Leidinger et al., 2013; Chaturvedi et al.,
2015; Chen et al., 2017). Their presence in body fluids provides valuable
non-invasive biomarkers to assess the state of difficult to access tissues
such as tumours, brain and bone. 3) Lastly, miRNAs have potential

as therapeutic agents as they modulate expression of specific mRNAs
(Schwarzenbach et al., 2014).

However, in the laboratory, miRNAs are difficult to study, primarily
because a single miRNA can regulate many mRNAs and a single mRNA
can be regulated by multiple miRNAs. miRNA-mRNA interactome
studies report over 18,000 interactions in HEK293 cells and over 34,000
interactions in human hepatoma cells (Helwak et al., 2013; Moore et al.,
2015). A complementary strategy is to use a computational approach. The
analysis of longitudinal miRNA-mRNA expression data, construction of
Gene Regulatory Networks (GRNs) and subsequent dynamic modelling,
is a particularly useful means to gain a better understanding of miRNA-
mRNA interactions (Qin et al., 2015; Proctor et al., 2017; Ooi et al., 2018).
GRNs are useful tools for integrating mutli-omic data on mechanistic
schematics. Yet, currently there is no computational tool that can handle
longitudinal miRNA-mRNA datasets and reduce the volume of data to an
extent where GRN construction is possible, and this is presented in Table
1.

© The Author 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Table 1. miRNA-mRNA integration tools

Tool name Availability Time Funct analysis Reduction Updated

anamiR Bioc 5 3:Kegg,React,+ 3 2018
DREM2 Install 3 3:GO 5 2020
MAGIA2 Online 5 3:DAVID 3 2012
miARMa-seq Install 3 3:GO,Kegg 5 2019
miRComb SF 3 3:GO,Kegg 3 2020
miRIntegrator Bioc 5 3:Kegg,React 3 2016
miRNet Online 5 3:GO,Kegg 5 2021
miRTarVis+ Online 5 5 3 2020
Sigterms SF 5 3:GO 3 2009
SpidermiR Bioc 5 5 3 2020
ToppMiR Online 5 3:GO 3 2021

Table 1. Comparison of miRNA-mRNA integration tools: Many tools
are R packages that can be downloaded from Bioc (Bioconductor) or SF
(SourceForge). Other tools can be installed locally or are online. Few are
capable of handling time series datasets. Several tools can perform funct
(functional) analysis, usually using GO, Kegg, React (Reactome), DAVID
or others (+) and a few tools can reduce the volume of data. Finally, this
table also shows when each tool was last updated.

Many existing tools (Table 1) have particular strengths, but none
satisfy the criteria necessary to bridge longitudinal multi-omic data and
GRN creation. anamiR, miRIntegrator, MAGIA2, Sigterms and SpidermiR
have substantial miRNA-mRNA integration capabilities but cannot handle
longitudinal datasets (Wang et al., 2019; Diaz et al., 2017; Bisognin
et al., 2012; Creighton et al., 2008; Cava et al., 2017). Web-based tools
such as miRNet, miRTarVis+ and ToppmiR have excellent visualisation
capabilities but also cannot analyse longitudinal datasets (Fan and Xia.,
2018; L’Yi et al., 2017; Wu et al., 2014). DREM2 and miARMa-seq handle
longitudinal datasets, but do not reduce the volume of data enough for
GRN generation (Schulz et al., 2012; Andrés et al., 2016). miRComb can
use longitudinal data to generate miRNA-mRNA interactions networks,
but the networks lack detail on upstream or downstream information,
making the output insufficient for GRN generation (Vila-Casadesús et al.,
2016). Furthermore, several tools have not been actively maintained so
their usability may be diminished.

There is clearly a need for a tool that can integrate, functionally
analyse and generate detailed networks from longitudinal miRNA-
mRNA datasets, which can then be used to identify GRNs. Here, we
present the R/ Bioconductor package TimiRGeN, which uses differential
expression (DE) data as input to generate small miRNA-mRNA interaction
networks. Results from TimiRGeN can be exported to Cytoscape or
PathVisio for further bioinformatic analysis (Smoot et al., 2011; Kutmon
et al., 2015). The TimiRGeN package thereby provides a much-needed
means to generate hypotheses from longitudinal multi-omic datasets. To
demonstrate the capabilities of the package several datasets were analysed
(see methods), including a comprehensive RNAseq time series miRNA-
mRNA folic acid (FA) induced mouse kidney injury dataset (Fig.1)
(Craciun et al., 2016; Pellegrini et al., 2016).

2 Methods
FA data from GSE61328 (miRNA) and GSE65267 (mRNA) were
downloaded using the fastqc-dump function from SRA toolkit and fastq files
were checked with FastQC (Leinonen et al., 2010; Andrews et al., 2010).
Cutadapt removed adapter sequences from miRNA fastq files, and then
the trimmed fastq files were processed with mir2deep (mapper, quantifier
and miRDeep2 functions) to produce mature miRNA data which could be

imported into R (Martin et al., 2011; Friedlander et al., 2012). Salmon
quant aligned and quantified the mRNA fastq files, and tximport imported
the output of Salmon into R (Patro et al., 2017; Soneson et al., 2015). Mouse
transcriptome GRCm38.cdna.all was indexed for miRNA processing with
Bowtie build and mRNA processing with Salmon index (Langmead et al.,
2010; Cunningham et al., 2019). In R, limma was used for DE analysis.
(Ritchie et al., 2015). The makeContrasts function performed time point
based DE. The zero time point was contrasted against each subsequent
time point (1, 2, 3, 7 and 14 days after folic acid injection). Results were
analysed with the TimiRGeN R package. For the FA kidney injury dataset,
the combined mode of analysis found the "Lung fibrosis" WikiPathway
(WP3632) to be consistently enriched during days 3, 7 and 14 of the time
course. The "Lung fibrosis" pathway was analysed for potential miRNA-
mRNA interactions. Twenty interactions were kept because they were
found in at least two databases and had Pearson correlations lower than
-0.5. Results were exported to create a dynamic miRNA integrated Lung
fibrosis signalling pathway in PathVisio. CellDesigner was then used to
create a SBML formatted GRN (Funahashi et al., 2008). A second mouse
kidney injury dataset generated by Unilateral Ureter Obstruction (UUO)
was downloaded from GSE118340 (miRNA) and GSE118339 (mRNA)
(Pavkovic et al., 2017). UUO and FA datasets were processed and analysed
using the same methods. A ten time point longitudinal miRNA-mRNA
breast cancer dataset was downloaded and processed as is described in
the supplementary data. This dataset underwent two separate analysis
with TimiRGeN. Once where DESeq2 was used for pairwise DE and a
second time where DESeq2 performed whole timecourse DE with the
LRT method (Baran-Gale et al., 2016; Love et al., 2014). A microarray
hypoxia dataset was downloaded from GSE47534 and also put through
TimiRGeN analysis (Camps et al., 2014). The lumi and AgiMicroRna
packages were used for processing and limma for pairwise DE (Du et al.,
2008; López-Romero et al., 2011). Microarray platforms GPL6884 and
GPL8227 were downloaded and gene IDs extracted to create a list of probes
for enrichment analysis. Scripts and data for reproducibility are linked to
in the supplementary data.

3 Results

3.1 Time point and microRNA specific analysis

Pairwise miRNA and mRNA DE data (Log2FC and adjusted P values)
from each time point can be used as input for TimiRGeN. The tool works
on RNAseq and microarray data, and it has two modes of analysis. The
combined mode analyses miRNA and mRNA data from the same time
point together, and here each gene from a time point can be filtered
for significance independent of all other time points. The separate mode
analyses miRNA and mRNA data independent of each other. Separate
mode analysis allows for a miRNA or mRNA from a time point to be
filtered for significance independent of all other time points and gene
types (miRNA or mRNA). TimiRGeN uses WikiPathways for functional
analysis, and most are curated by either entrez gene IDs or ensemble gene
IDs so TimiRGeN provides both for the user. Neither of these annotation
types can distinguish between -3p or -5p miRNAs, thus TimiRGeN also
provides adjusted IDs, in case a miRNA-mRNA interaction network is
generated with both the -3p and -5p versions of a miRNA.

3.2 Filtering data with time based functional analysis

TimiRGeN offers two functional analysis methods: time dependent
pathway enrichment and temporal pathway clustering analysis. Both use
the rWikiPathways package an API for the WikiPathways database to find
signalling pathways of interest (Slenter et al., 2018).
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Fig. 1. Pipeline of the TimiRGeN R package: The FA miRNA-mRNA data are input and filtered for significantly expressed genes for each time point. From here, one of two methods
can be used to find WikiPathways of interest. A) time dependent pathway enrichment to find enriched pathways at each time point. The enriched pathways are ranked in descending order
of adjusted P values on bar plots. Results from day1 and day 14 are shown. Or B) temporal clustering where global trends of the pathways over time are clustered. Two clusters are shown
here. Each line is a pathway and the colour represents how well a pathway fits into a cluster. Ranking from highest to lowest are: red, orange, yellow. miRNA-mRNA interactions within
a selected signalling pathway can be predicted by filtration of miRNA-mRNA pairs using databases and correlation. C) Filtered miRNA-mRNA pairs can be viewed in R. Nodes are pink
for miRNAs or blue for mRNAs and edges are colour coded by correlation over time. D) Behaviour of genes within the miRNA-mRNA interaction network can be viewed across the time
course and genes which pass a threshold (>1.5 in this example) are highlighted. E) The genes can also be hierarchically clustered to identify trends. F) Expression changes within the clusters
can be plotted. These line plots include a grey line (data points) and a red line (smooth spline). G) A selected miRNA-mRNA pair (mmu-miR-181c-5p and Plau) can be analysed using
cross-correlation analysis. H) The selected mRNA (red) and miRNA (blue) can also be displayed over the time course. The data is scaled and interpolated over a spline and the correlation
is displayed. I) Regression analysis can be performed on a selected miRNA or mRNA. Plau was selected, so its expression over time is predicted based on the chosen miRNAs that target it.
In this example mmu-miR-181c-5p is selected to predict the behaviour of Plau. Expression values of Plau are displayed as red dots and the predicted expression of Plau is displayed as a
dashed blue line. R2 and Pvalue are shown. J) Regression can also be performed between a miRNA-mRNA pair. The OR (odds-ratio) between the two time series can be calculated, along
with the 95% CI (confidence intervals). Correlation, R2 , Pvalue, OR and CI are rounded to 2 decimal places. Network data can be exported to PathVisio (S Fig.1) or Cytoscape (S Fig.2).

  

Key

Fig. 2. miRNAs influencing anti-fibrosis factor Tnfa and pro-fibrosis factor Igf1: This
GRN shows how folic acid may be down-regulating let-7c-5p, let-7e-5p, let-7g-5p, miR-
18a-5p, miR-26b-5p, miR-29a-3p, miR-29c-3p, miR-365-3p and miR-98-5p, which are all
predicted to target pro-fibrosis factor Igf1. Also this GRN indicates how FA may up-regulate
miR-27a-3p, which is predicted to target anti-fibrosis factor Tnfa. Reduction of Tnfa will
increasing levels of pro-fibrosis factor Tgfb.
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3.2.1 Time dependent pathway enrichment method
Overrepresentation analysis from clusterProfiler is applied to time series
data (Yu et al., 2012). Hypergeometric tests are performed to contrast the
number of genes found in common between each time point (after filtering
for significantly differentially expressed genes) and each species specific
WikiPathway. This produces a list of enriched pathways for each time
point (Fig.1A). Alternatively, if the separate mode of analysis is applied,
enrichment analysis is performed for each time point per gene type. The
background/ universe used to perform overrepresentation analysis can be
adjusted by the user e.g. probes in a microarray or all known genes within
a cell type.

3.2.2 Temporal pathway clustering method
Temporal pathway clustering (Fig.1B) utilises Mfuzz (Kumar et al., 2007).
Supervised soft clusters are created based on temporal patterns which
stem from the number of genes found in each time point (after filtering
for significance) and each species specific WikiPathway. This will show
global trends within the dataset. Pathways are assigned fitness scores for
each cluster, from 0-1, and these can be filtered to find highly correlating
pathways in clusters of interest. If the separate mode is used, temporal
pathway clustering is performed for each gene type individually.

3.3 Filter miRNA-mRNA interactions from a signalling
pathway of interest

After a signalling pathway has been selected for further analysis, the
TimiRGeN pipeline will extract each mRNA that is found in common
between the selected pathway and the input mRNA data. Each of these
mRNAs are assumed to be potential targets of every miRNA in the
input data. This results in a miRNA-mRNA interaction matrix which
can be used to filter out miRNA-mRNA interactions that are not likely
to occur by using correlations and miRNA-mRNA interaction databases
TargetScans, miRDB and miRTarBase (Agarwal et al., 2015; Chen et al.,
2020; Huang et al., 2020). Correlations are calculated between changes
over time (Log2fc or average expression) between a given miRNA and
a given mRNA. The default method is Pearson, but users can also
select between Spearman or Kendall. Since miRNAs negatively regulate
mRNAs, highly negative correlation values from miRNA-mRNA pairs
could be used to identify miRNA-mRNA interactions that are likely
regulate the selected pathway. Users can define a correlation threshold to
filter for miRNA-mRNA interactions. The default setting for maximum
correlation is -0.5. Three miRNA target databases are also usable
to filter for miRNA-mRNA interactions. This includes two predictive
target databases (TargetScans and miRDB) and one functional database
(miRTarBase) which has had all functional support labelled as "weak"
removed. Predictive databases TargetScans and miRDB were selected
because, although they have differences in their prediction methods,
they share usage of 3’UTR-seed site complementarity and seed site
conservation to predict miRNA-mRNA interactions (Peterson et al., 2014).
Comparisons between different miRNA-mRNA prediction methods find
that 3’UTR-seed site complementarity identify the most true positive
miRNA-mRNA interactions (Mazière et al., 2007; Zhang and Verbeek.,
2010). Interactions found or not found in the three databases will be
represented as 1 or 0 respectively. Users have the option to choose which
combination of databases they wish to mine information from and they
can choose the number of databases which an interaction needs to be
mined from to be filtered. The default setting for the minimum number
of databases needed to filter a miRNA-mRNA interaction is 1. Once
correlation and databases have been used to filter for miRNA-mRNA
interactions which may be affecting the signalling pathway of interest, they
can be displayed in an internal R network (Fig.1C). Resulting genes found
in the miRNA-mRNA interaction network can be viewed over the time

course. Here genes that pass a user defined threshold can be highlighted
(Fig.1D). The genes can also be sorted into hierarchical clusters shown by
a dendrogram, from which clusters can be plotted to show the behaviour of
the genes (Fig.1E-F). A heatmap which is compatible with the dendrogram
can also be generated (S Fig.3).

3.4 Longitudinal miRNA-mRNA pair analysis

The TimiRGeN R package has a suite of longitudinal analysis approaches
for analysing predicted miRNA-mRNA interacting pairs. This includes
several correlation and regression based methods which are commonly
used to analyse longitudinal datasets (Ding and Bar-Joseph., 2020). Cross-
correlation analysis is a useful method to determine similarity between
two time series (Fig.1G). If the time series is of sufficient length, the
metric could be used to identify delays and further filter for miRNA-
mRNA interacting pairs with interesting dynamics (Jung et al., 2011;
Lakshmipathy et al., 2007). miRNA-mRNA pairs can also be plotted in a
time series line plot. This plot can be scaled and interpolated over a spline
(Fig.1H). Two types of regression analysis can also be performed. Firstly,
a linear model is generated from a selected gene (mRNA or miRNA)
and any number of its predicted binding partners. The combination of
miRNA-mRNA interactions are left for the user to define. The longitudinal
behaviour of the selected gene is predicted based on the binding partners
used in the linear model. The predicted simulation and the gene data
are plotted along with the R2 value and Pvalue (Fig.1I). This type of
regression prediction is useful in cases where a mRNA is targetted by
multiple miRNAs or if a miRNA targets multiple mRNAs. Next, a linear
model can be created from a single miRNA-mRNA pair. The odds-ratio
is calculated from the regression coefficient. This measures the likelihood
of one gene influencing the behaviour of another gene and has previously
been used as a metric to determine miRNA-mRNA relationships (Jayaswal
et al., 2009). 95% confidence intervals are calculated which give a range
where there is a 95% certainty of the mean of the data being within the range
(Fig.1J) (Szumilas., 2010). Selecting a miRNA-mRNA pair to investigate
can be made easier by plotting a heatmap which orders the interacting pairs
by descending correlation (S Fig.4). Statistics generated from correlation
and regression analyses may be over-estimations if too few time points are
found within the input data. Thus the tool will error if fewer than three
time points are detected and warnings are issued if fewer than five time
points are detected.

3.5 Output of the TimiRGeN package and exportation of
data from R

TimiRGeN is an open-ended tool that exports to networking softwares
PathVisio and Cytoscape for further in silico analysis. The TimiRGeN R
package produces two data files for upload onto PathVisio. A file which
includes a single result type, e.g. Log2FC, from each time point and
gene IDs. This can be uploaded into PathVisio to show how the genes
in a signalling pathway of interest change over the time course. Also a
file which contains all filtered miRNAs can be uploaded into PathVisio.
The second file requires the user to install the MAPPbuilder app in
PathVisio (Kutmon et al., 2015). With this, changes over time in a miRNA
integrated signalling network of interest can be visualised to show how the
miRNAs may be influencing the signalling pathway. This type of display is
ideal for bottom-up GRN construction (S Fig.1). Filtered miRNA-mRNA
interactions can also be exported to Cytoscape for improved visualisation
and alternative analysis via Cytoscape apps (Smoot et al., 2011). The
enhanced graphics of Cytoscape are especially useful to visualise large
numbers of miRNA-mRNA interactions (S Fig.2).
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3.6 Data from non pairwise DE

The FA kidney injury dataset had pairwise DE performed using the
zero time point as the denominator. This type of pairwise analysis is
recommended for time series datasets with <8 time points, however longer
time series datasets may be more suitable for DE without using the pairwise
approach e.g. over a cubic spline, masigpro or the LRT method with
DESeq2 (Conesa et al., 2006; Spies et al., 2019). In these cases, users are
recommended to filter out significantly differentially expressed genes from
averaged count or expression data, and to use this as input for TimiRGeN.
Pathway enrichment can be used to identify the most enriched pathways
from the whole time course or temporal clustering can first cluster genes
based on temporal behaviour. From here, genes can be sorted based on
clusters, and then pathway enrichment can be used to identify enriched
pathways from each temporal cluster. An alternative pipeline is shown in
S Fig.5 and this is explained in section 5 of the vignette.

3.7 Datasets with multiple interventions

More complex datasets may include interventions other than time. In these
cases, TimiRGeN should be used for each individual time series and then
the results can be contrasted between different interventions. This requires
the same signalling pathway to explored in each time series. As an example,
the "Lung fibrosis" pathway was analysed in the FA and UUO datasets. A
pipeline is shown in S Fig.6 and section 6 of the vignette provides detail
for this.

3.8 Hypothesis generation with TimiRGeN

To demonstrate the tools ability to generate biologically relevant
hypotheses, the FA mouse kidney injury dataset was analysed with
TimiRGeN (Fig.1). Findings from the analysis were used to hypothesise
how of FA can induce fibrosis. A GRN was constructed to formalise
the hypotheses (Fig.2). Investigation of these results can be used to
ratify the miRNA-mRNA interactions predicted by TimiRGeN and make a
stronger case for experimental validation. FA injection is known to cause
acute injury conditions in the kidneys, resulting in a reversible chronic
kidney disease (CKD) like condition (Craciun et al., 2016; Pellegrini
et al., 2016). During the 14 day time course, a number of different
processes occur, such as inflammatory response, scar tissue forming,
wound healing, cytokine activity (Leask and Abraham., 2004). TimiRGeN
analysis highlights several of these processes and GRNs were generated
to represent how miRNAs may be influencing fibrosis factors (Fig.2) and
scar tissue forming by collagen synthesis (S Fig.7-S Fig.10). The GRN
presented in Fig.2 indicates that Igf1 acts as a miRNA sponge. Many
of the presented miRNA-Igf1 interactions have been reported, including
miR-18a, miR-26b, miR-98 and miR-365 (Liu et al., 2017, 2016; Hu et al.,
2013; Sun et al., 2019). let-7c-5p has been reported to target Igf1, and
TimiRGeN predicted other let-7 family genes let-7e-5p and let-7g-5p also
target Igf1 (Liu et al., 2018). Finally, miR29 family members are predicted
to target Igf1, and research indicates that Igf1 is a miR-29 family sponge
(Gao et al., 2016). It is unknown why Igf1 may be a miRNA sponge, but
Igf1 is known to induce collagen production, which contributes to kidney
fibrosis and CKD (Hung et al., 2013). Exploration of Igf1 as a miRNA
sponge in kidney injury conditions could be beneficial for therapeutics for
CKD. Overall, this case study highlights that the TimiRGeN R package can
be used to identify biologically relevant miRNA-mRNA interactions from
potentially tens-of-thousands of possible miRNA-mRNA interactions. The
ability to reduce the volume of big multi-omic data is an important feature
of TimiRGeN and one which could lead to making miRNA research easier
and faster for users. Further analysis on a breast cancer dataset is also
found in the supplementary data (S Fig.11-S Fig.16).

4 Conclusion
As recognised in Bar-Jones et al (2012), generation of more complicated
transcriptomic datasets will continue, so computational biologists will
need more sophisticated and up-to-date software to analyse these datasets
(Bar-Joseph et al., 2012). Here, we have presented a novel R/Bioconductor
package which aims to help researchers find direction when working with
large longitudinal multi-omic datasets. Overall, we believe this is a useful
new tool which could become a part of miRNA-mRNA data analysis
pipelines.

Supplementary data
Supplementary data contains additional work. 1) Extra figures not shown
in Fig.1. 2) Alternative pipelines for non pairwise DE analysis and
multivariate datasets. 3) Alternative analysis of the FA kidney injury
dataset. 4) A complete workflow for a breast cancer study. Including
identification of a suitable dataset, processing and performing analysis
with TimiRGeN to generate a GRN which identifies miRNAs that influence
TGF-beta driven tumour fibrosis. 5) Links to TimiRGeN R scripts for
reproducibility, vignette and a download link are also found in this file.
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8.2 Appendix - B. Poster presentations

All presentations have been uploaded onto this github repository https://github.com/Kru-

tik6/

Thesis Data Scripts/tree/main/PhD presentations. They can be found by adding the web-

site extension which is in the Link column of Table 8.1.

Event Link

Systems Biology: Making Sense of Complexity /London 2018.pdf

ICSB2018 /Lyon 2018.pdf

EpiGenOA2018 /Dublin 2018.pdf

ICSB2019 /Okinawa 2019.pdf

BSU meeting /Newcastle(BSU) 2020.pdf

ISGSB2020 /SouthAfrica 2020.pdf

A&G theme meeting /Newcastle(A%26G).pdf

Journal Club /Newcastle(JournalClub) 2021.pdf

Bioc2021 /US 2021.pdf

Table 8.1: List of presentation performed as conferences or workshops. Through the

last four years I have delivered three poster presentations at conferences/ workshops and

four oral presentations, and this included being invited as a speaker at Bioc2021. I have

also delivered an oral presentation at our group journal club.
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8.3 Appendix - C. Scripts and data

Most code and data needed to reproduce work presented in this Thesis is readily available

from https://github.com/Krutik6/Thesis Data Scripts/tree/main/Data. Some data has not

been made accessible because it has been generated by collaborators and they have

selected not to make the data public. Also, the validation data has not been made available

because we seek to publish this work.

Ch2

Code and data needed to reproduce work presented in Ch2 is stored in

https://github.com/Krutik6/TimiRGeN/issues/1. A README file explains the contents of

this repository. The TimiRGeN R package is found in https://github.com/Krutik6/TimiR-

GeN. It can be installed in R using the following commands:

> library(devtools)

> install github(”Krutik6/TimiRGeN”)

or using BioCManager

> BiocManager::install(”TimiRGeN”)

The vignette for the package is linked in the Bioconductor repository - http://www.biocon-

ductor .org/packages/devel/bioc/vignettes/TimiRGeN/inst/doc/TimiRGeN tutorial.html

Ch3

https://github.com/Krutik6/Thesis Data Scripts/tree/main/Data Ch3 contains four folders:

DE, pathvisio, Preprocessing and TimiRGeN. Raw and normalised data have not been

uploaded in this repository, as my collaborators did not publish their raw/normalised data

[113]. Preprocessing and DE folders contain scripts for miRNA and mRNA data. Pairwise

DE input for analysis with TimiRGeN has been made available and a script for this can be

found in the corresponding folder. Some TimiRGeN output is available in the pathvisio file.

This is used to create dynamic signalling pathways.
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Ch4

https://github.com/Krutik6/Thesis Data Scripts/tree/main/Data Ch4 contains two folder are

found: Modelling and Rplotting. The former contains the COPASI kinetic model, along with

all information about species, reactions, functions and ODEs and experiment files 1 and 2.

Experiment file 1 is used for parameter estimating to the calibration data. Experiment file 2

is not used to parameter estimation, but rather as a barometer to see how the behaviours

should change during miR-199b-5p inhibition. Rplotting contains a script and COPASI

output files to create plots.

Ch5

https://github.com/Krutik6/Thesis Data Scripts/tree/main/Data Ch5 contains data and code

used in this section is available. Age, gender and Qvalue files contain data and scripts for

DE analysis, and this also contains the QC work e.g. PCA plots. Raw and Normalized

counts for all 336 sequencing experiments are stored here. Feature engineering work and

ML work is found here in the respective folders. Preprocessing folder contains material

used to miRNAseq and RNAseq processing.
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