**R** BIOMANUFACTURING SOLUTIONS **TO TRANSFORM HEALTHCARE PRECISION IN THE** BIOTHERAPEUTICS SECTOR



**Rapid iterative design of tandem-core virus-like** particles using Escherichia coli-based cell-free protein synthesis

Wednesday 6 April 2022, 09:15-09:45

**Dr Beatrice Melinek EngD CEng MIChemE** N. Colant, J. Teneb, S. Frank, S. Goldrick, W. Rosenberg, D. Bracewell



Celebrating 60 years of international









University



www.ucl.ac.uk/biochemeng/hub Twitter: @FutureHealthHub

# **Content:** CFS as a platform screening process



Cell-free synthesis and the FTHM Hub



Rational strategies for improving reaction performance



Use as a screening platform: a case study

- Why is CFS special as a process?
- The Hub Vision

- How to start using CFS quickly
- How to get the most from your CFS reaction
- How to have enough protein for analysis
- Application of CFS as a screening tool to improve construct design







Imperial College London



## **Cell-free synthesis: cell-based versus cell-free production 1**







Imperial College London

> Loughborough University







6-10 weeks for mammalian cells

#### Multiple, complex machinery







Created in biorender

## **Cell-free synthesis: cell-based versus cell-free production 2**







Imperial College London

Loughborough University



University of Manchester



#### Complicated to model and control

High degree of variability

Reduced set of reactions still active Increased predictability based on Critical Process Parameters (CPPs)

Improved reproducibility

Ease of containment and/or reduced intervention

Improved control of product quality

## **Cell-free synthesis: cell-based versus cell-free production 3**





Low up-front investment, but high ongoing costs (fresh reagents needed).





Imperial College London

> Loughborough University

MANCHESTER 1824 In University of Manchester





Well understood and characterised.

In development from a 'black-box'.

# **Cell-free synthesis:** The Hub Vision

**CFPS** as a production platform for rapid & distributed manufacture of proteins.

Distributed manufacturing of drug for increased drug stratification, can be enabled by **CFPS**.



Available online at www.sciencedirect.com

ScienceDirect

Cell free protein synthesis: a viable option for stratified

Olotu W .Ogonah<sup>1</sup>, Karen M Polizzi<sup>2</sup> and Daniel G Bracewell<sup>1</sup>



CrossMark



University of Nottingham



**BIOPROCESS** TECHNICAL

medicines manufacturing?

# Toward a Roadmap for Cell-Free Synthesis in Bioprocessing

Beatrice Melinek, Noelle Colant, Christos Stamatis, Christopher Lennon, Suzanne S. Farid, Karen Polizzi, Mark Carver, and Daniel G. Bracewell



# Runner Up: Upstream





Engineering and Physical Sciences Persearch Council

**≜UCL** 

Imperial College

## **Cell-free synthesis:** Features of a great screening platform

Rapid screening of protein candidate constructs, can be enabled by CFPS



- Time consuming
- ✤ Complex
- ✤ Variable



- A simple set-up can be used, which is:
  - Easy to automate allowing high-throughput;
  - Simple to operate by people with a range of expertise
- Increased predictability based on critical process parameters (CPPs), so you can quickly establish a workable yield;
- Improved reproducibility, so you can be confident the differences come from you construct design changes;
- Rapid reactions complete within hours
- Components can be made in bulk and stored frozen or lyophilised









#### **Cell-free synthesis: Step 1 - Improving titres**



TARG

#### **Experimental Method:** Cell-free Protein Synthesis





#### **Setup Strategy: Factors to consider**









Imperial College London

CFPS

REACTION

Loughborough University



University of Nottingham





#### **Setup Strategy:** Factors to consider



#### Graphs of Product Concentration (µg/mL)







#### Plasmid Concentration (mM) Amount of extract (% v/v)Temperature (°C)





Reaction Length (hrs)

800

600

400

200

WARWICK

TARGE



# **Setup Strategy: Conclusions**

Cell-free titres low relative to cell-based, so improvements needed

'Standard conditions' are not universal

Simple 3-step Algorithm for titre improvement

Can be completed in as little as 48 hours

Requires no expertise in cell-free

Comparable results to in-depth titre optimisation studies







Imperial College London









#### 



# **Case Study:** Application of CFPS to screening









Imperial College London

Loughborough University

MANCHESTER 1824





# **Case Study:** Impact on titres in context

A TARGE

# **Cell-Free Synthesis: Conclusions Titre Improvement**

Applying a simple 3-step algorithm the titre for:

- **GFP** was improved by 38%
- and for HepB Core VLP by 190%

Minimum cell-free expertise is required

The process is rapid (48 hrs), but is an essential first step to use of cellfree protein synthesis for construct screening







Imperial College London





# **Cell-Free Synthesis: Conclusions Construct Screening**

We used the 3-step algorithm to optimise HepB Core VLP titres

The same conditions were applied to a derivative of the HepB Core VLP, with influenza antigens

Achievements:

Demonstrate large and complex protein produced in cell-free

Substantial improvement in rate (1 week for 8 constructs -> 1 day for 100s of constructs)







Imperial College London

> Loughborough University

> > ANCHESTE

University of Nottingham

# **Cell-Free Synthesis: Screening Future Directions**

Quality by Design: consistent extract production and/or reactions

Analytics: automating high-throughput preparation and analysis

Cell-Free to Cell-based: demonstrating consistency of results from this screening and results in cell-based, to allow for subsequent cell-based manufacture.

Cell-Free pDNA production: Further increase in production & prototyping rate







Imperial College London

Loughborough

University of Nottingham

## Acknowledgements



Noelle Colant



Jaime Teneb



Stefanie Frank









William Rosenberg Daniel G. Bracewell

|                                                                                                                                                                                                                                                                                                                                                                        |                           | Funded                 | _                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------------------------|
| Received: 25 February 2020<br>DOI: 10.1002/btpr.3062                                                                                                                                                                                                                                                                                                                   | D Revised: 14 July 2020 A | Accepted: 30 July 2020 |                           |
| RESEARCHART                                                                                                                                                                                                                                                                                                                                                            | ICLE                      |                        | BIOTECHNOLOGY<br>PROGRESS |
| A rational approach to improving titer in <i>Escherichia coli</i> -based cell-free protein synthesis reactions<br>Noelle Colant <sup>1</sup> <sup>©</sup>   Beatrice Melinek <sup>1</sup>   Jaime Teneb <sup>1</sup>   Stephen Goldrick <sup>1</sup>  <br>William Rosenberg <sup>2</sup>   Stefanie Frank <sup>1</sup>   Daniel G. Bracewell <sup>1</sup> <sup>©</sup> |                           |                        |                           |
| vaccii                                                                                                                                                                                                                                                                                                                                                                 | nes                       |                        | MDPI                      |
| Article<br>Escherichia Coli-Based Cell-Free Protein Synthesis for Iterative<br>Design of Tandem-Core Virus-Like Particles                                                                                                                                                                                                                                              |                           |                        |                           |
| Noelle Colant <sup>1</sup> , Beatrice Melinek <sup>1</sup> , Stefanie Frank <sup>1</sup> , William Rosenberg <sup>2</sup> and Daniel G. Bracewell <sup>1,*</sup>                                                                                                                                                                                                       |                           |                        |                           |
|                                                                                                                                                                                                                                                                                                                                                                        |                           | Therest                |                           |







Imperial College London

Loughborough

MANCHESTER





IDPI

