Towards a platform process for the manufacture of
glycoconjugate vaccines for pneumococcal disease
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Background Materials and Methods
« Streptococcus pneumoniae is one of the leading causes of invasive bacterial disease in

children resulting in pneumonia and meningitis. Table 2: Summary of fermentation protocols used in bioreactors.
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Figure 1: Overview of the chemical conjugation
method of glycoconjugate vaccine production.

Fed-batch fermentation in defined medium

Impact of pg/B location and a different acceptor protein
 Develop a fed-batch fermentation protocol in a defined medium. - .
* Investigate the impact of IPTG concentration and MnCl, supplementation on glycoconjugate oA glycoconjugate productlon
production in fed-batch fermentations using Strain 1 (Table 1, 2).
« Construct three new strains which either express PgIB on a plasmid or have a different

A 100 < 80 _ _
acceptor protein present (Figure 5).
. ’ L e « Compare the performance of the strains in terms of biomass and glycoconjugate production
[ N oo | o in fed-batch fermentations with defined medium.
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Figure 3: Fermentation traces for fed-batch fermentations. (A) Figure 4: Immunoblot (A) and densitometry analysis (B) of endpoint o Viahermaw E“’
. g . c . - . PiuA glycoconjugate
fermentation trace for a condition with 30 g/L glycerol in the batch samples taken from various fed-batch protocols 28 h post-induction. All gycoronte .
phase and (B) a fermentation trace for 100 g/L glycerol in the batch samples were OD600 matched. Dens.itor.netry analysis was.performed Figure 5: Schematic of glycoconjugate producing strains tested L S SRl N S S
phase. Arrow indicates point of DOT spike, start of feed of 800 g/L on glycoconjugate bands. The boxes indicate the bands which were (Table 1). By G Trrrmellet 42 & densiiammeing smelat (5 of cmdmeit samles
glycerol at a rate of 1.6 mL/L/h and point of induction with 1mM included in this analysis. )

taken from fed-batch fermentations 28 h post-induction. All samples were
OD600 matched. Densitometry analysis was performed on glycoconjugate
bands.

ﬂptimisation of fermentation conditions using DoE Conclusions

e Investigate the effect of pre-induction growth rate, post-induction temperature and post-
induction feed rate on cell biomass and glycoconjugate production using Strain 3.

IPTG and supplementation with 4mM MnCl..

e First study to demonstrate production of a serotype 4 pneumococcal

oo, glycoconjugate using PGCT in fed-batch fermentation with defined medium.
o 2 e The choice of acceptor protein has a considerable impact on glycoconjugate
2 | .
g 501 roduction.
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. i ol e Optimisation of fermentation process variables can further increase cell
. | ; Ty o - biomass yield and glycoconjugate production.

Figure 8: Scaled densitometry signal for glycoconjugate.
Bars in green are runs which had a signal higher than the

Figure 7: Schematic of central composite design outlining the factors and levels fed-batch benchmark (FFB) sample

chosen and the responses that were measured. In total 18 different conditions
including 4 centre points were run (Table 2).

* DOE study has improved cell biomass yield

C.. /\ at harvest between 3-7.3 fold compared to
|

a fed-batch benchmark condition. /
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Figure 9: Response surface model plots for OD600 (A), Dry cell weight (B) and have a statistically significant impact on
scaled densitometry signal (C). biomass at harvest and scaled \ /
densitometry signal.
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