

Institut de Recerca de la Sida

# Advances in Therapeutic HIV Vaccine Development

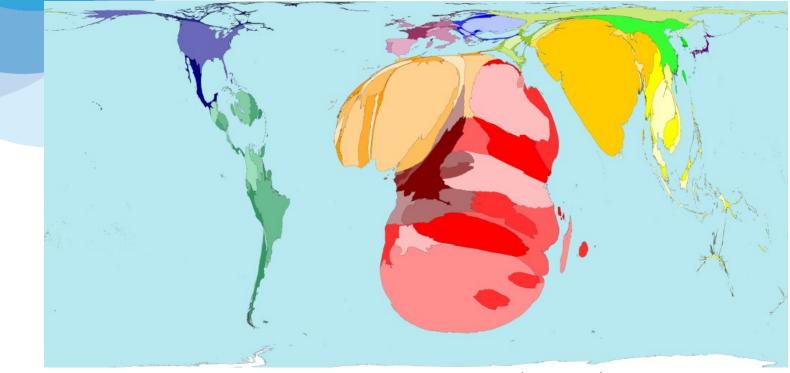
Christian Brander ICREA Senior Research Professor IrsiCaixa AIDS Research Institute AELIX Therapeutics, Barcelona

> Vaccine Technology VIII June 13<sup>th</sup> 2022 Sitges





UNIVERSITAT DE VIC UNIVERSITAT CENTRAL DE CATALUNYA




Institut de Recerca de la Sida

# Advances in Therapeutic HIV Vaccine Development

- The problem with HIV (chronicity)
- T cell vaccines for HIV cure
- Recent advances in HIV therapeutic vaccination

### The HIV pandemic is still ongoing

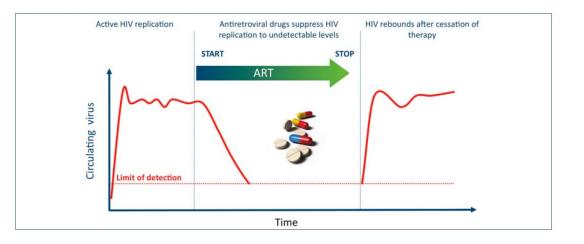


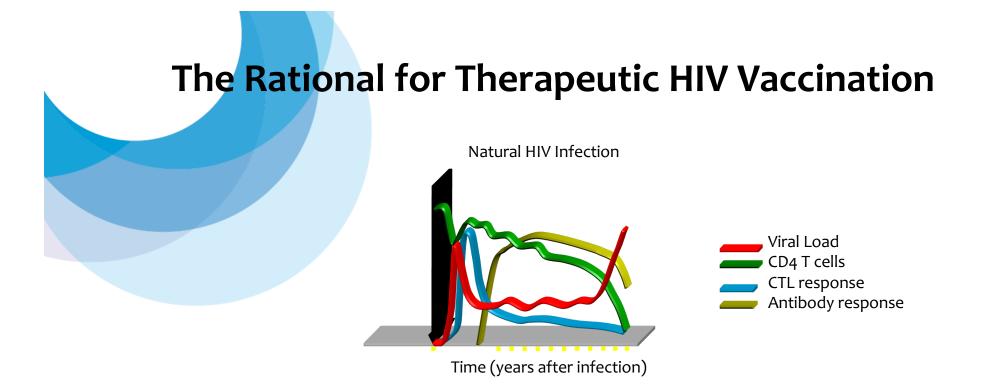
36.7 Million HIV + (PLWH)

19 million living in Africa

1.1 million deaths every year

Since HIV was first identified, 78 millions estimated infections (35 million deaths) 1 in 4 people who are HIV positive do not know their HIV status

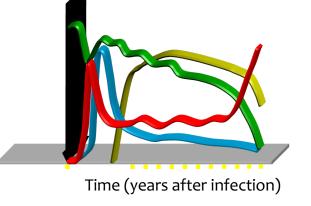


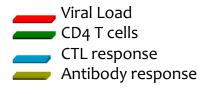




#### The many hurdles to HIV Cure and Eradication

> HIV establishes a life-long, latent reservoir shortly after acute infection

- The decay kinetics of the reservoir under Antiretroviral Treatment (ART) are too slow to eliminate the virus from the body.
- > Latently infected cells are largely invisible to the immune system
- Treatment interruptions lead to rapid rebound of viremia
- Unclear what immune responses a therapeutic vaccination should target as functional (!) immune correlates of virus control remain poorly defined

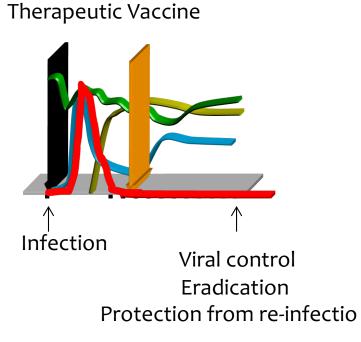



- Essentially everybody who becomes infected with HIV makes a strong immune response to the virus
- > The vast majority of PLWH show progressive HIV disease if left untreated
- Evidently then, the immune response that we measure upon natural infection does not (fully) protect from infection and HIV disease progression
- HLA-association studies, CD8 T cell depletion in SIV infected monkeys, viral evolution analyses, etc all support a role of CD8+ cytotoxic T lymphocytes in virus control

### The Rational for Therapeutic HIV Vaccination

Natural HIV Infection






Potential components of a <u>therapeutic</u> vaccine:

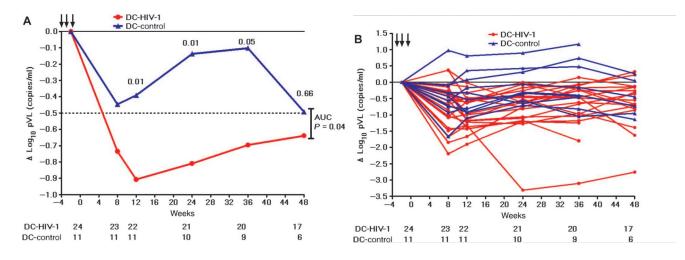
T cell response to viral proteins

- CD8 CTL "killer T cell" to kill infected cells
- CD4 T-helper cells to maintain functional CTL
- Combination approaches with nAb
- Viral reservoir activators
- Modulation of a pre-existing, ineffective immunity



### Catalan HIVACAT Vaccine Program (2008-2022)

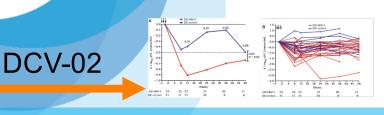
#### Therapeutic Strategies:


IL2, AUTOVAC, TIBET, 2X4 (Clotet, Ruiz, Arno,..)

- o autologous virus released by treatment interruption, cytokines
- ➤ (Kick and) kill strategies: 2008 onwards
  - O DCV-02: autologous virus on DC (Gil 2011, Garcia 2013)
  - O RISVAC-03: MVA/DSF (Mothe 2015, Rosas-Umbert 2017)
  - HIVARNA: mRNA delivered HTI (Leal, 2021)
  - O BCN01/BCN02: ChAd-MVA +Rmd (Mothe 2020, Rosas Umbert 2020)
  - AELIX-002: DNA-ChAd-MVA -HTI (Bailon 2022)
  - AELIX-003: ongoing (ChAd-MVA +TLR7)
  - BCN03: ongoing (ChAd-MVA +SOSIP)
  - HIVACAR: ongoing (conserved epitopes RNA)

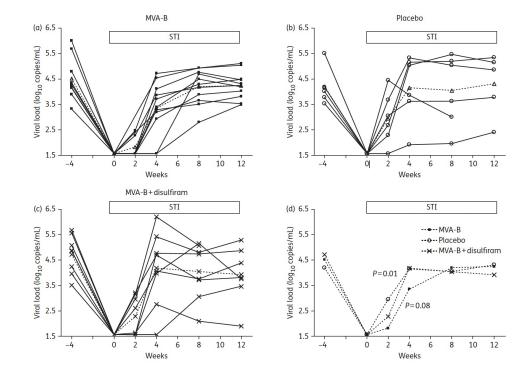
### Therapeutic HIV Vaccine Program Barcelona

#### DCV-02 (autologous virus-loaded dendritic cell vaccine)

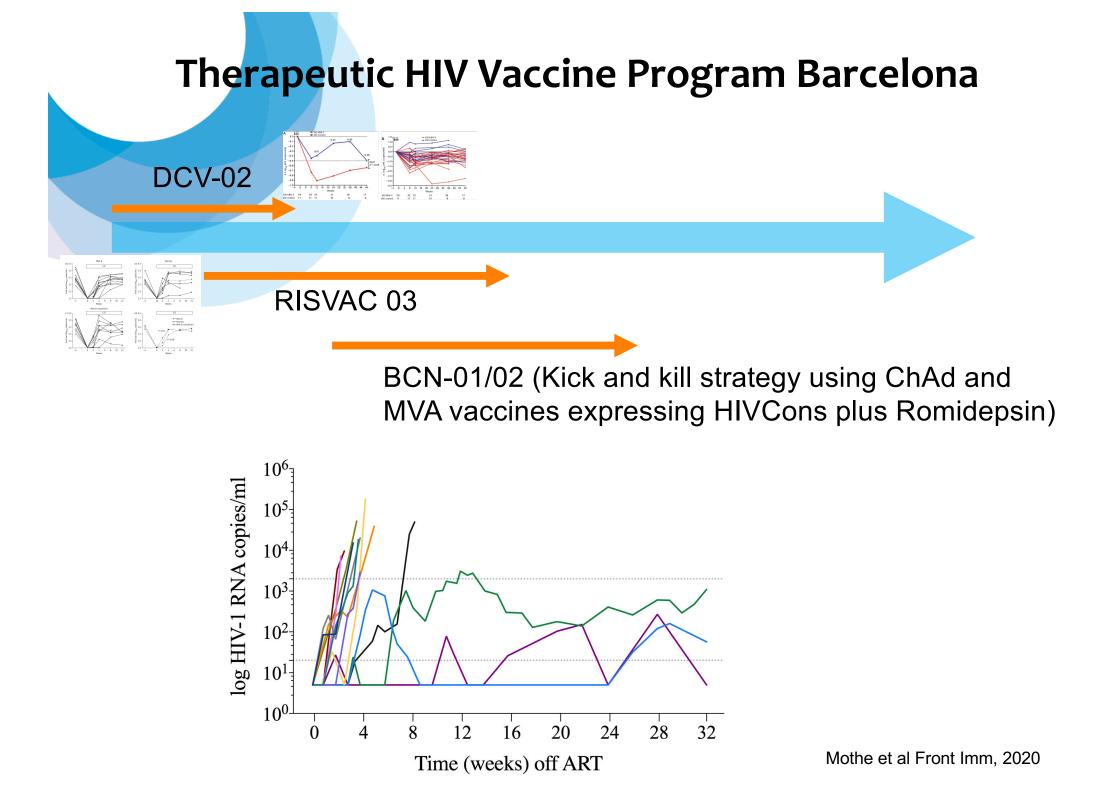

- 2008
  - Isolation of autologous virus during 1<sup>st</sup> treatment interruption, in vitro expansion, heat-inactivation, pulsed on autologous, in vitro matured dendritic cells

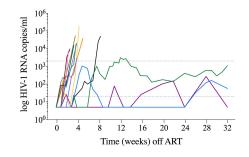


Garcia et al STM, 2013


- ➢ 55% active vs 9% placebo with >1log lower viral set point 12 and 24w after ART stop
- Aside from "complex" development process, still elevated viral loads during analytic treatment interruption (ATI), making this unsafe for the patients and their sexual partners

### The rapeutic HIV Vaccine Program Barcelona

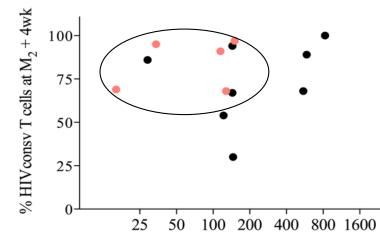




#### RISVAC 03 (kick-and kill, MVA vaccine and disulfiram LRA)

- MVA-B (but not MVA-B + DSF) vaccination showed modestly delayed viral rebound (2 weeks)
- Reduced peak viremia related to level of virus adaption to host genetics
- Proviral HIV-1 DNA (i.e. measure of reservoir size) at study entry associated with delayed HIV-1 RNA rebound and lower peak viremia

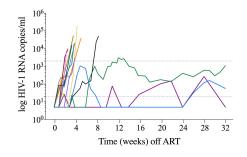


Mothe et al JAC, 2015






1) No placebo control, what is the rate of Post-Treatment-Control (PTC: 8-13%)

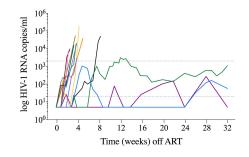

- 2) Romidepsin safe yes, but effective ?
  - minor peaks in viremia
  - transient increase in apoptotic T cells
  - reduced polyfunctional cells
  - in vitro antiviral (VIA) activity preserved

3) Reservoir possibly important, no reduction up to ATI (like RIVER, AELIX002, etc)



Mothe et al Front Imm, 2020 Rosas-Umbert Front Imm 2020

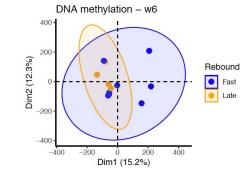
HIV-1 DNA copies/10<sup>6</sup> CD4<sup>+</sup> T cells at MAP



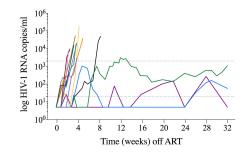

1) No placebo control, what is the rate of Post-Treatment-Control (PTC: 8-13%)

- 2) Romidepsin safe yes, but effective ?
  - minor peaks in viremia
  - transient increase in apoptotic T cells
  - reduced polyfunctional cells
  - in vitro antiviral (VIA) activity preserved
- 3) Reservoir possibly important, no reduction up to ATI (like RIVER, AELIX002, etc)
- 4) Bacteroidales/Clostridiales ratio predicts HIV-1 reservoir size and virus control

| Borgognone et al. Microbiome (2022) 10:59<br>https://doi.org/10.1186/s40168-022-01247-6                                                                                                                                                                                                                                                                                                                                                                                                                          | Microbiome                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESEARCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Open Access                                                                                                                                                                                                                                                 |
| Gut microbiome signatures<br>reservoir size and viremia c                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |
| Alessandra Borgognone <sup>1*</sup> , Marc Noguera-Julian <sup>1,2,3</sup> , Bruna C<br>Marta Ruiz-Riol <sup>1,2</sup> , Yolanda Guillén <sup>7</sup> , Mariona Parera <sup>1</sup> , Maria Ca<br>Francesc Català-Moll <sup>1</sup> , Marlon De Leon <sup>5</sup> , Samantha Knodel <sup>5,6</sup> ,<br>José M. Miró <sup>2,8</sup> , Bonaventura Clotet <sup>1,2,3,4,9,10</sup> , Javier Martinez-Pi<br>Adam Burgener <sup>5,6,12</sup> , Christian Brander <sup>1,2,3,11</sup> , Roger Paredes <sup>1,2,</sup> | sadellà <sup>1</sup> , Clara Duran <sup>1,4</sup> , Maria C. Puertas <sup>1,2</sup> ,<br>Kenzie Birse <sup>5,6</sup> , Christian Manzardo <sup>8</sup> ,<br>cado <sup>1,2,3,11</sup> , José Moltó <sup>2,9,10</sup> , Beatriz Mothe <sup>1,2,3,9,10</sup> , |

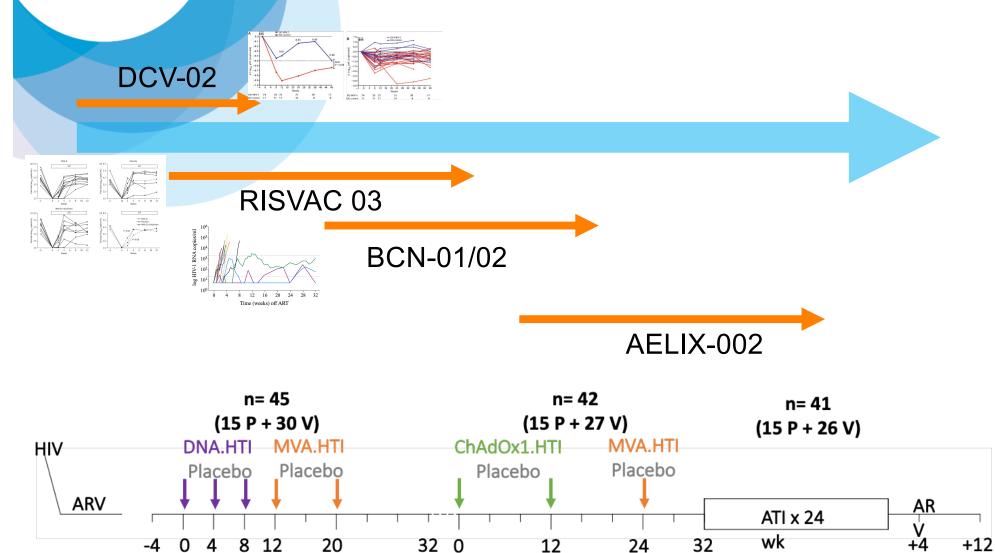

Mothe et al Front Imm, 2020 Rosas-Umbert Front Imm 2020 Borgogno MBIO, 2022 in press




1) No placebo control, what is the rate of Post-Treatment-Control (PTC: 8-13%)

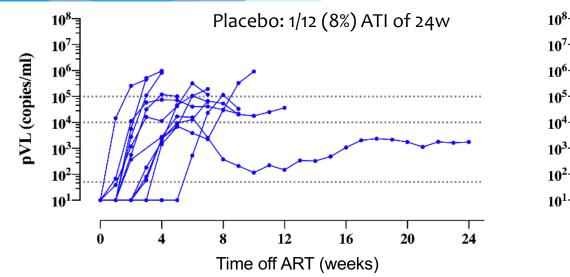
- 2) Romidepsin safe yes, but effective ?
  - minor peaks in viremia
  - transient increase in apoptotic T cells
  - reduced polyfunctional cells
  - in vitro antiviral (VIA) activity preserved
- 3) Reservoir possibly important, no reduction up to ATI (like RIVER, AELIX002, etc)
- 4) Bacteroidales/Clostridiales ratio predicts HIV-1 reservoir size and virus control
- 5) Pre-ATI (and pre-vaccination) methylation imprints associated with ATI control

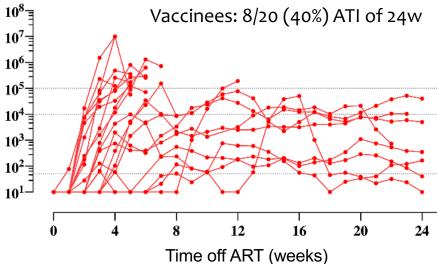





Mothe et al Front Imm, 2020 Rosas-Umbert Front Imm 2020 Borgogno MBIO, 2022 Oriol-Tordera EBioM, 2022 Oriol-Tordera Plos Path 2021

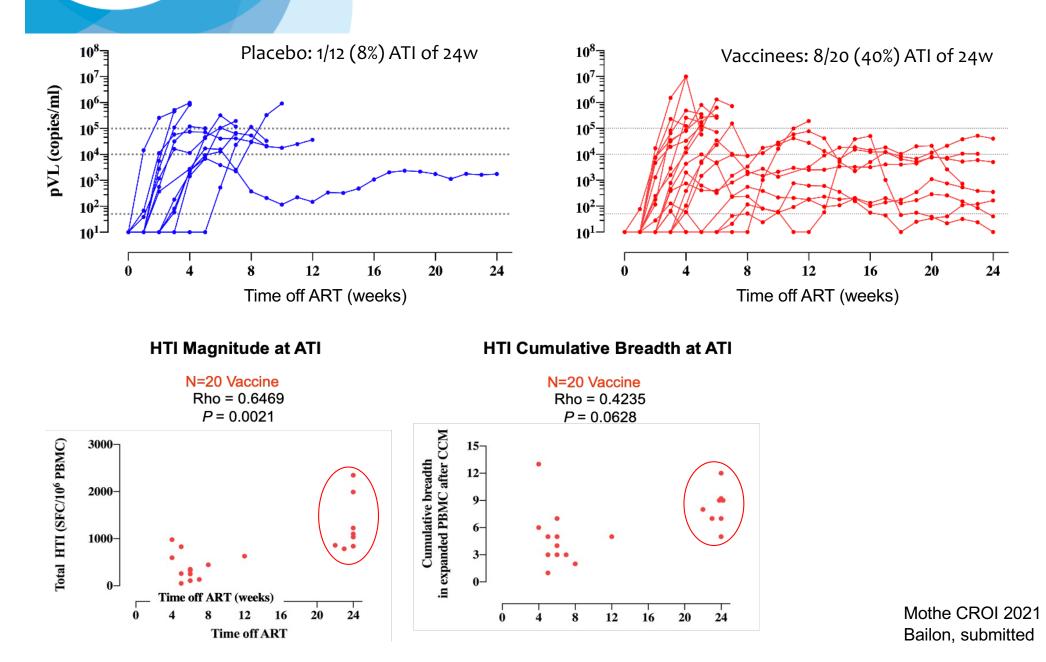



- 1) No placebo control, what is the rate of Post-Treatment-Control (PTC: 8-13%)
- 2) Romidepsin safe yes, but effective ?
  - minor peaks in viremia
  - transient increase in apoptotic T cells
  - reduced polyfunctional cells
  - in vitro antiviral (VIA) activity preserved
- 3) Reservoir possibly important, no reduction up to ATI (like RIVER, AELIX002, etc)
- 4) Bacteroidales/Clostridiales ratio predicts HIV-1 reservoir size and virus control
- 5) Pre-ATI (and pre-vaccination) methylation imprints associated with ATI control
- 6) T-cell specificity, effector function and T cell receptor (TCR) repertoire may be linked to outome (epitope-specific 10Xsc and OMNISCOPE OS-T analyses)

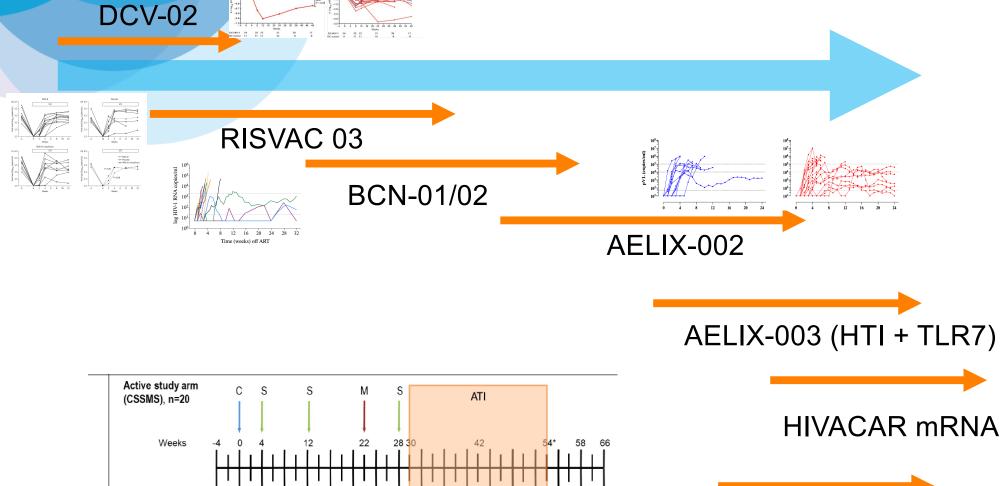

### The rapeutic HIV Vaccine Program Barcelona



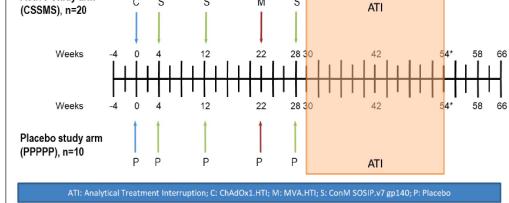
Mothe CROI 2021 Bailon, submitted


### AELIX-002: HTI vaccination mediates improved Viral Control in ATI






Mothe CROI 2021 Bailon, submitted


# AELIX-002: Time off ART is correlated with the strength of the vaccine induced HTI immunity







BCN-03 (combined T and B cell vaccination)



\*cART will be resumed at week 54 visit, or before according to criteria pre-specified in the study protocol.

### **Conclusions** - Next steps

Years of clinical trials of therapeutic HIV vaccination have yielded until recently mostly frustrating results

- Target population (early, chronic, reservoir size)
- Immunogen design (T cell specificity, viral evolution, adapted reservoir)
- Manufacturing and up-scale hurdles

Clinical trials of therapeutic HIV vaccination start showing clinically relevant efficacy signals (AELIX-002)

- Biomarkers of virus control
- Target population definition
- Modulation of pre-existing conditions (epigenetics, microbiota)
- Effective HIV cure strategies will likely require combination strategies to harness humoral and cellular immunity and to effectively tackle the latent viral reservoir
  - Latency reactivators
  - Combined T and B cell vaccination strategies (BCN03)
  - > May inform prophylactic vaccine setting

### **Acknowledgments**







Institut de Recerca de la Sida

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH



UNIVERSITAT DE VIC UNIVERSITAT CENTRAL DE CATALUNYA





checkpoint

HOMES · SEXUALITAT · SALUT

BCN



OXFORD





