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Abstract

This project was driven by an interest in mathematics, visualization, and the budding

field of virtual reality. The project aimed to create virtual reality software to allow users to

interact and play with three-dimensional representations of four-dimensional objects. The chosen

representation was a perspective projection. Much like three-dimensional shapes cast

two-dimensional shadows, four-dimensional shapes cast three-dimensional shadows. Users of the

software developed in this project could interact and experiment with these three-dimensional

shadows using hand controlled inputs. The hypothesis put forward is that virtual reality is

currently the best medium to teach three-dimensional and four-dimensional geometry.
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Introduction

A few things separate mathematics and works of fiction, and the largest thing that

separates the two is presentation. Exploring an alternative world brings joy through learning, not

only about the imagined, but the real. In a fantastical setting we begin to understand our own

world. Mathematical spaces with fundamentally different logic generate fascinating stories.

Flatland by Edwin Abbott is the most classic example that merges the two, employing geometry

and dimensionality for social satire. However, mathematics has always had a more difficult

onramp to explaining and sharing these fictions with the general public. The mental task of

visualizing these logical fantasies is not easy. This difficulty of conceptualization has been

lessened by new technologies, which have brought new mediums and therefore new

presentations. Recent works of mathematical fiction have appeared in the form of video games.

The game Hyperbolica takes place three-dimensionally in hyperbolic space and for a short stint

in spherical space, both totally non-euclidean. The game Manifold Garden, as its name suggests,

arises in a manifold, and to be specific: a series of fourth-dimensional toruses. Even the very

popular game Portal plays in the realm of mathematics. It is very much a game of physics, but it

is also a game about giving the player the ability to locally break euclidean’s geometry, and its

main dilemma lies in the player being able to conceptualize this new power. These games

challenge players not just to reimagine what's possible, like in magical worlds, but to reimagine

how to do even the most basic of things. Players rebuild their mental formations about how

things work from the ground up.

I have been interested in the visualization and conceptualization of higher dimensional

spaces since childhood. Growing up I watched videos of the strange and alien pulsations of
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higher dimensional shapes. This and my comprehensive introduction to M.C. Escher at a young

age left me fascinated by the spatially impossible. I grappled with the art of visualization, and the

question naturally arose: can you truly know a fourth-dimensional cube? Is the human capable of

conceiving fourth-dimensional spaces and shapes so innately and internally that they could

interact and manipulate those shapes as easily as they do with three-dimensional shapes? We are

certainly familiar with the dimension directly below us, two-dimensional space, as we can

imagine an infinitely flat plane with ease, so why not the dimension right above us? Are we

psychologically barred from ever being able to fully understand, only being able to conceive bits

and pieces at time, or are we able to put all those pieces together into a whole?

I am not a psychologist, and my interest and skill does not extend to spacial phycological

research. Aligned with this fact, my hypothesis is not whether or not we are capable of complete

fourth-dimensional conception. Rather, my hypothesis is that the way to answer that question is

with Virtual Reality [VR]. More specifically, my hypothesis is that certain mathematical lessons

can be taught best using VR. VR is a new medium, it is totally unique from mediums that came

before it. It is comparable to video games, movies, and theater. But it must be respected as its

own medium because of the remarkable differences between it and its predecessors. In that light,

it is worthwhile to ask the question: what is VR best used for? Not just what is made more fun

and exciting, but what new things are made easier and possible.

Lessons in geometry, particularly lessons in three-dimensional and higher seem ripe for

improvement through VR. The reason for this is the required levels of stacking abstractions to

teach geometry. Whenever we teach something, we must abstract it into a concept, and then

abstract it into a medium of communication. Any teacher will know the limitations of verbal
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communication. Visuals, especially in geometry, can often be more effective. However, the

visual medium of choice in classrooms, for very practical reasons, is the black/white-board. The

problem in teaching three-dimensional geometry through that medium is that the board is two

dimensional. If one wishes to communicate depth on a board, one must come up with and then

describe an abstract representation of depth. This extra layer of abstraction, on top of the two

already present (concept and medium), muddles things. One should not underestimate the

confusing power of stacking abstractions. The field of philosophy spends much of its energy in

large part managing and evaluating which abstractions are best fit to describe reality/experience,

because of how useful and difficult it is to stack abstractions. Any attempt to draw on a board a

fourth-dimensional cube just using vertices and edges will immediately reveal the unsatisfactory

nature of the medium. In contrast, the medium of VR is naturally three-dimensional. No

additional abstractions for three-dimensional geometric communication are needed. The

sensation of depth bridges the gap. One will note that communicating three-dimensional

geometry on a board is not that difficult, and can be managed with practice. The question is

begged then; if boards can communicate one dimension higher without much fuss, can VR do the

same?

VR has interested me as a new medium for human expression. My interest in VR exceeds

far past games, and is dwarfed under the shadow of the true stakes of VR. I’m interested in the

possibility and risks of building a world that is coextensive with digital reality. My expectations

for VR are, although high, not excessive. I do not believe VR will replace physical reality, that it

will not become the new axle that our world spins around. Augmented reality on the other hand

does hint, and perhaps threaten, at that sort of future. Because of the connection between the
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development of VR and augmented reality, I believe it important that VR be developed with

ethics in mind. I know augmented reality technologies are beyond my scope at the time of this

project, as they are too early in development for me to be of much use. My time for now is better

spent experimenting with VR, and so that is the path I chose.

The marketing of VR headsets positions VR to be limitless. Put them on anywhere.

Transport yourself to any space. Become fully immersed. VR wishes to completely emulate

reality, and then go further. This escapism is an appeal to the possibilities outside the bounds of

the physical world, circulated for the benefit of selling VR. In this imagining of VR, “freedom is

highly valued, but rather than creatively engaging with the contingent limits of freedom, [virtual

environments] propose we surround ourselves with freedom as a commodity we produce as if

gods” (Hillis, 1999, p. xxxiii). This fantasy of freedom, of escaping from reality, requires

detaching from physicality, of leaving, maybe forever, the physical world behind. This escapism

is a falsehood, propelled to sell VR units. VR, like any other medium, has its limitations and

weaknesses that cannot be made up for by more usage of the medium. In particular, the software

developed in my project points to the limits of VR’s self proposed pure freedom. By giving the

VR user a new freedom, interacting with the three-dimensional shadows of fourth-dimensional

shapes, the user will also encounter insurmountable limitations. We cannot ever inhabit

four-dimensional spaces in VR, and so that is a freedom that cannot exist for us. But we can

experience parts of it at a time, just not its totality. We can, in a very literal sense, only gain

glimpses of this higher mathematical world. We become aware of our limitations through the

freedom to see what's impossible.
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In this project, I built software for the Quest 2, a VR headset, in which users can interact

and play with three-dimensional objects and their two-dimensional shadows, as well as play with

three-dimensional shadows of fourth-dimensional objects. The focus of this project was the

construction of software. Therefore, the purpose of this paper is to give an in-depth explanation

of how all of the software was built, and why it was developed that way. It is my hope that this

paper will act as a useful guide for future projects using Unity and building for VR.
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Literature Review

What follows is a philosophically driven exploration of the VR field. This research

eventually led me to my project's focus. I was particularly interested in the notions being built

about VR. How we interact with and conceptualize VR is important because it guides how we

develop hardware and software for VR as we move into the future. And as we move into the

future, it's of utmost importance that we empower individuals to take control and shape VR to

their own needs. The terminology used for this subject has morphed over the years, leaving

definitions and verbal standards murky. Word choice is complex, because any consistent use of

vocabulary in this proposal would be making a claim about how ‘real’ VR is. For the purposes of

this review, the word reality will never be used without a specific descriptor, in an attempt to take

the fewest sides. Digital reality will refer to spaces and experiences provided through VR

headsets. Virtual is intentionally avoided here, but when it is used, it's used as a label for the

technologies that create immersive digital spaces and experiences, but it does not itself refer to

those spaces and experiences. Physical reality will refer to experiences found while not using

virtual reality technology.

Space and Reality

A tension exists within the literature of the virtual, an ongoing debate on the ‘realness’ of

VR. Two questions hang above those who develop theories and methods for the new technology;

How much is physical space a consideration in creating digital realities? Is digital reality

considered real? The hardware and software matches this shifting paradigm, with the separation

between physical and digital being bridged (Saker, 2020) (Alkemade 2017) (Augmented Reality

Based Framework 2021) (Fernandes 2016).
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The belief that VR is free from the physical and is ‘virtual’ is a widely held public

understanding of VR (Hillis 1999) (Boellstorff 2015), and is mirrored in the literature (Choe,

2019)(Agić, 2020)(Fagernäs, 2021). Asserted is that there is a physical world, and that VR is

separate from that reality (Choe, 2019)(Agić 2020)(Fagernäs, 2021). This separation allows

development of improving new software, but puts a lower priority on the development of

hardware.

The second belief is of VR as a method to represent, improve, or serve the physical world

rather than creating a real world within itself (Interaction Design for Multi-User Virtual Reality

Systems, 2021)(Augmented Reality Based Framework, 2021)(Alkemade, 2017)(Fernandes,

2016). The applied field of digital reality, often interested in military, industry, and factory

production, sees VR as distinctly physical, but virtual rather than ‘real’ (Alkemade,

2017)(Interaction Design for Multi-User Virtual Reality Systems, 2021)(Augmented Reality

Based Framework, 2021). This approach often challenges and improves VR hardware and its

design, but runs the risk of creating uninventive software when extending reality instead of

reinventing it.

The third and final common view understands VR as a valid reality and inherently

physical. Often touted by psychologists, philosophers, and anthropologists, academics of this

persuasion argue that VR is just another form reality takes, no less real or authentic than physical

reality (Banakou, 2021)(Boellstorff, 2015)(Saker, 2020)(Fagernäs, 2021). This perspective

produces wild new software, but can fall short by creating software that isn’t particularly

applicable to everyday physical reality (Saker, 2020)(Fernandes, 2016).
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Immersion and Presence

Echoed through papers is the pursuit of the ethereal ‘presence’, the user's feeling of

‘being there’ (Saker, 2020)(Choe, 2019)(Interaction Design for Multi-User Virtual Reality

Systems, 2021)(Agić, 2020)(Fernandes, 2016)(Fagernäs, 2021). Immersion is something

different, the quality of technology to mirror physical experience. Higher fidelity, faster frames,

these are things that increase immersion (Saker, 2020)(Fernandes, 2016). But the content of the

experience itself, the perhaps undefinable quality of realness, these constitute presence (Saker,

2020)(Fagernäs, 2021)(Agić, 2020).

After exceeding a lower bound, increasing fidelity doesn’t improve immersion by much.

After VR reaches 6 degrees of freedom (the term for the technology that allows a user to rotate

and move their body however they like), there are no more degrees of freedom to be met (Saker,

2020). But reducing fidelity below that lower bound drastically negatively affects immersion.

Presence on the other hand, requires work and iteration to achieve (Fernandes, 2016)(Fagernäs,

2021). It is improved through what might seem like minor perceptual obstacles that users

encounter. Those trying to create presences rely on UI that feel easy, natural, and intuitive

(Augmented Reality Based Framework, 2021)(Fernandes, 2016)(Interaction Design for

Multi-User Virtual Reality Systems, 2021).

User Input Methods

A common type of experiment in the field aims to measure the efficiency, accuracy, and

user reviews of different VR user input methods (Choe, 2019)(Alkemade, 2017)(Interaction

Design for Multi-User Virtual Reality Systems, 2021). This approach assumes a self contained,

limited approach to UI, in which the goal of experimentation is to find the best generalized input
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method. Choe (2019) measured two main methods of user input while using VR headsets. Each

method used the gaze of the user as the cursor, but one required the user to click a button to

confirm where they were looking as their input, while the other selected what the user was

looking at as their input after a few seconds of looking at one spot. The study then compared the

methods and found that the button method was faster but less precise. In Alkemade (2017), the

time required to complete tasks in a mock computer aided design software was measured, with a

combination of two different input methods and two output methods. The first combination was

traditional mouse and computer screen, the second was hand tracking technology and a computer

screen, the third was hand tracking with VR. The paper found that the hand tracking and

computer screen combination performed much worse than the other two, while traditional

methods versus hand tracking plus VR performed essentially the same. Approaches to the

development of VR UI like these allows comparisons of different input methods. Attempts to

determine which input technology is best are methodologies that believe there should or will be a

limited few technologies by which users will interact with VR. However, this approach is not the

full picture because it assumes efficiency and accuracy are the metrics to measure by, when there

are other possible metrics possible, such as expressivity, creativity, or comfortability (Fernandes,

2016)(Agić 2020, Fagernäs, 2021).

UI in VR is obsessed with visual stimuli, and physical movement (Alkemade,

2017)(Choe, 2019)(Agić 2020)(Fernandes, 2016). This focus makes sense for the medium, but

leaves other elements out of consideration, like smell, or touch, or even sound (Hillis, 1999).

However, participants of studies will bring up these elements themselves, which leads to research

talking about the elements, without explicitly testing them (Alkemade, 2017)(Fernandes, 2016).
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Conclusion

This research gives insight into the conceptual stakes of VR. What is reality, and what

limitations do we bring by defining that reality? The level of immersion and presence of VR is

determined in part by the UI of VR. A higher quality of immersion and presence shapes how we

consider the reality of VR. By providing VR experiences that challenge a user’s fundamental

assumptions about reality, we can give those users a place to start questioning the inner workings

of how they perceive reality, and therefore can engage and place VR in their conception of

reality where it is most useful to them.
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Technical Background

Quest VR:

VR can mean many things. Often, when talking about VR, people mean a HMD, or head

mounted display. VR HMDs have three branches of their hardware. The computation/rendering,

the display, and the tracking. Computation includes standard computer processors as well as

specialized built in algorithms to convert tracking data into spatial locations, and rendering

(turning computer memory into data ready for display). Computation can either happen out of

the headset requiring the headset be tethered to the computer by a data cable, or untethered from

a computer, having the processing in the headset which lowers the maximum computational

power of the headset but increases the movement freedom of the user. The Oculus Quest 2 has a

Adreno 650 graphics card built in, which is an untethered VR solution.

The display includes any hardware element of VR that takes rendered data and turns it

into sensory experiences for humans. This does not just include visual screens, but in the case of

the Quest 2 also sound. The visual displays of HMDs are highly specialized, often with two

screens, one for each eye. However the Quest 2 has one larger screen that is separated visually by

the two lenses within the head mount. The sound system of the Quest 2 includes two small

speakers that rest half an inch from each ear.

Tracking includes any hardware that gathers data about what a user is doing physically.

The fidelity of tracking is measured in degrees of freedom. A degree of freedom is a motion of

the user that the system can keep track of. This includes moving forward and back, left and right,
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up and down, and the rotations: pitch, yaw, and roll. The Quest 2 has six degrees of freedom. The

Quest 2 has three types of sensors:

“Linear acceleration and rotational velocity data from [inertial measurement

units] (IMUs) in the headset and controllers are integrated to track the orientation

and position of [the headset and controllers] with low latency. Image data from

cameras in the headset helps generate a 3D map of the room, pinpointing

landmarks like the corners of furniture or the patterns on your floor. These

landmarks are observed repeatedly, which enables [Quest’s hardware and

software] to compensate for drift (a common challenge with IMUs, where even

tiny measurement discrepancies build up over time, resulting in inaccurate

location tracking). Infrared light emitting diodes (LEDs) in the controllers are

detected by the headset cameras, letting the system bound the controller position

drift caused by integrating multiple IMUs”  (Hesh, 2019).

Basics of linear algebra:

My project requires me to manipulate points and data in two-dimensions, three

dimensions, and four dimensions. One of the most common ways of creating and manipulating

points in spaces is using tools of linear algebra. A reason I chose linear algebra is because of how

easy it is to convert algorithms for manipulating points in one space to an algorithm

manipulating points in a higher dimensional space. Of interest for this project in linear algebra

are vectors and matrices. Vectors can be used to denote specific points in a coordinate space, and

can be represented as an array of numbers. A coordinate space has an origin, and a vector for



13

each dimension of the space. These basis vectors can be thought of as the axis of space. In

three-dimensional space these would be the x, y and z axis.

For example, a representation of a point in three-dimension space is as such:

Where the first number is the x coordinate, the second is the y coordinate, and the final is the z

coordinate of the point. If we want to represent a fourth dimensional point, we simply add an

extra column to our vector:

This is now a fourth dimension point, the first number being the newly added w coordinate.

Vectors can have values added, subtracted, multiplied, and divided from them.

Vectors can be added and subtracted from each other. To do so, just combine each pair of

coordinates appropriately.

A vector in coordinate space can be thought of as a point, but it can also be visualized as an

arrow pointing from the origin of that space to the given point. That arrow has direction and

magnitude (or length). When we add two vectors together, vectors a and b, you can think of

starting at the origin, placing a’s arrow there. Then, we follow a to the point it points to, which

we will call pa. We place vector b on pa, and follow it to its point, pb. Adding and subtracting
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vectors can represent translating a point through space. This allows us to go between using a

vector to represent a point, and using a vector to represent a translation transformation.

Matrices are the second half of this toolkit, and are incredibly useful in representing

transformations. These transformations come in the form of matrix multiplication. By combining

matrices through multiplication, we can represent a point as a vector and a transformation as a

matrix. The result is the point after the transformation. I used matrices to perform rotational

transformations. Matrices are rectangular arrays of numbers, and are represented thusly:

_

To transform vectors via matrices, we first need to know how to combine matrices via

multiplication. And to know how to multiply matrices, we must learn how to find dot products.

Matrix multiplication can be thought of using a series of dot products. A dot product takes two

equally sized lists of numbers, and combines them into a single number. The dot product of two

three dimensional vectors is found like so:

_

A dot product then, is pairing numbers from the list of numbers, multiplying each of those pairs,

and then adding all those multiplied numbers together. Note that in matrix multiplication, vectors

can be treated like a matrix with either only one row or one column. So this dot-product example

is actually an example of multiplying a 1x3 matrix by a 3x1 matrix, and the product is a 1x1
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matrix. Notice also that the first matrix uses its row to find a dot product, and the second matrix

uses its column. This is actually a rule of matrix multiplication, and follows into larger matrices:

We can see that the row 0 column 0 of the product matrix is made by finding the dot product of

row 0 of the first matrix with column 0 of the second matrix. Row 0 column 1 of the product

matrix is made by finding the dot product of row 0 of the first matrix with column 1 of the

second matrix. This pattern continues for any size matrix multiplication. Note that because of the

fact that the first matrix uses its rows when multiplying, and the second matrix uses its columns,

matrix multiplication is not commutative. That is to say, the order of multiplication with matrices

matters. If we were to swap the order of multiplication in the example directly above, we would

get a 3x3 product matrix, rather than a 2x2. For this reason, to multiply matrices together the first

matrix must have as many columns as the second matrix has rows. The produced matrix will

have the same number of columns as the first matrix, and as many rows as the second matrix.

Multiplying a vector by a matrix represents taking a point, the vector, and putting it

through some transformation, the matrix. In this way matrices come to represent transformation.

My project uses a limited number of transformations, the first of which are rotations, represented

by rotational matrices.
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Rotation matrices

For every possible rotation in a space, there is a matrix that represents it. The 3

three-dimensional rotational matrices look as follows:

Where 𝜃 is the angle of transformation desired. A rotation is moving a point on a plane such that

it maintains a constant distance from some given center point. The three basic planes of

three-dimensional space are the xy plane, the yz plane, and the xz plane. Multiplying a vector by

one of these matrices rotates the point on that plane, maintaining constant distance from the

origin. If we want to rotate a point, p, around a different center point (other than the origin) a

combination of translations and rotation is required. Let's call this new center point c. First,

subtract c from p. This is equivalent to translating both p and c such that c lies on the origin.

Then multiply p by the rotation matrix, rotating it around the origin. Finally, add c back to p. We

can now rotate any point around any center point.

However, there are an infinite number of planes one could construct intersecting the

origin, which means there are also an infinite number of possible rotations around the origin. We

can construct any of these rotations by multiplying the three rotation matrices together, and then

inputting the three 𝜃 values using a independent value for each. This plus our translation trick
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above means we can rotate any point in three-dimensional space around any other point by any

rotation we wish.

Projection matrices

The other type of matrix transformation I used was projection matrix. A projection matrix

takes a point in one space and transforms it into a point in a different space. I projected the

vertices of my three-dimensional shapes onto a two-dimensional plane, the ground, to create

‘shadows’. I created two projection types, isometric and perspective. Perspective projection is

the main focus of my project. My perspective projection uses a point light source and a plane, in

this case the ground. Any point in three-dimensional space below the light and above the plane

gets mapped onto the plane, based on the light and the points location. This resembles closely

how shadows act. Like rotations matrices, projection matrices always assume the center of the

projection, in this case the light source, is at the origin. To address this, the same sort of

translation, matrix transformation, and then reverse translation algorithm is needed. I won’t show

the projection matrix here because explaining it is a bit complex and outside the scope of this

project. However there is a very nice mathematical simplification of the translation-projection-

reverse translation which I will show here. Given a light source at [x1, y1, z1], a point at [x, y, z],

and assuming the plane to project to is the basic xz plane that intersects the origin, the vector

[xp, yp, zp] is the point [x, y, z] after a perspective projection:
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xp = x1 - ((x - x1) / ((y - y1)/y1))

yp = 0

zp = z1 - ((z - z1) / ((y - y1)/y1))

My other projection, isometric, is incredibly simple. Given a vector [x, y, z], the isometric

projection of that vector onto the basic xz plane that intersects the origin is the vector [x, 0, z].

This is equivalent to my above perspective projection if the light point had a y value of infinity.

Mathematics of higher dimensional spaces:

Dimensions are a quality of mathematical spaces. A dimension is a direction an object in

space could be translated without changing its coordinates in any other dimension. Better put, the

dimension of a space is the minimum number of coordinates needed to specify a point in that

space. In standard Euclidean spaces, this works out to mean the maximum number of

co-orthogonal lines one can put in the space. A one-dimensional space is a line, in which objects

are points or collections of points on that line. They can be translated along that line. Adding a

direction of movement perpendicular to the one-dimensional space creates a two-dimensional

infinite plane. Adding another orthogonal direction creates a three-dimensional space, an infinite

cube. We can continue adding orthogonal directions above three. This is difficult to picture, but

if you let go of visualizing it and stick to the logical descriptions and implications, higher

dimensional spaces are surprisingly easy to work with. The math and logic is not the confusing

part, it’s the conceptualization and application.

For example, what does a fourth dimensional object look like? That's a hard question to

answer visually. But if we instead focus on mathematical definitions, we get a working logical

model that skips the need for visualization. A point is the simplest geometrical object we can
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work with. A point is zero-dimensional. Two points define, or bound, a line, which is

one-dimensional. Three or more lines bound a polygon (a triangle is the simplest case), which is

two-dimensional. Four or more polygons bound a polyhedron (a tetrahedron), which is

three-dimensional. So what bounds a four-dimensional object? What is the face, or outermost

surface?  Five or more polyhedrons of course. Again, this is hard to visualize, but the logic was

simple, and continues in this way through every higher dimension. We will return to the

visualization later in my project.

In three-dimensional space, there are three basic translations. A basic translation moves

an object along the vector of one of the space's basic vectors, or axes. In four dimensional space,

there are four axes, so there are four basic translations. In three-dimensional space, there are

three basic rotations, as we covered earlier. Recall that a rotation needs a plane, and a plane can

be defined by two vectors. A basic plane is defined by two axes. In three-dimensional space,

there are three possible combinations of two of the three axes. In four-dimensional space, there

are six possible combinations of two of the four axes. This means in four-dimensional space,

there are six basic rotations around the origin. I won’t cover the transformation matrices here, I

will cover them later, and they can be found in my code.

The perspective projection of a three-dimensional object into two-dimensional space

looks like a shadow, or a two dimensional object because it has width and length, but no height.

The perspective projection of a four-dimensional object into three-dimensional space looks like a

three-dimensional object.
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Unity:

Unity is a game development software, and is one of the most widely used pieces of

software of its kind. Unity is responsible for speeding up development times by organizing and

maintaining game data hierarchies, providing large C# libraries for game making, compiling and

rendering scenes, and building projects to multiple platforms. It also has many tools to build

software for different platforms, and has a very high degree of customizability. It has two main

modes of development, two-dimensional software and three-dimensional software. My project

used the 3D development platform, and so I will only be covering that, although many things that

are true of 3D Unity are also true of 2D Unity.

Pieces of software built in Unity are broken up into scenes. Each scene can be filled with

objects. These objects can be things that appear visually in the software, like grass, or can be

rules that the software is effected by, like a day night cycle, can be a combination of both, like a

ball that can be thrown and bounces off of other things, or can be an empty placeholder. These

different objects are organized in the hierarchy window. Each object can have children objects,

hence the name hierarchy window. These objects can have multiple children, although an object

can only have one parent object. This allows users to search for objects via code very quickly,

and makes Unity’s built in methods easy to use.

Each object has a list of components shown in the inspector window. This is where things

like controls over its appearance, as well as its behavior would appear. Each object has a

transform component, which is its location, rotation, and scale in the world. These attributes of

the transform are stored as three Vector3’s, an object type built into unity that represents

three-dimensional vectors. The rotations of objects are actually stored as quaternions, but can be
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obtained as Euler angles, which can be represented as a three-dimensional vector. Transform

component contains an object's parent and its children. A transform might not matter for an

object like a day night cycle controller, but for most objects it is quite useful. Another common

type of component is a mesh. This is a series of triangles that can be rendered to create shapes in

three-dimensional space. A material is another kind of component that determines those

triangles' appearance, as in their color, interaction with light sources, and any textures. Rigidbody

components apply forces, such as gravity to objects. Colliders allow objects to physically

interact, such as bumping into each other, or for determining when objects ‘overlap’. The final

most common type of component is a Script. This is a piece of code, which I write in C#, that the

object inherits. A script can do almost anything you can think of, including recreating the

properties of other types of components. Scripts can affect objects they are not components of,

but it is best practice to have scripts only affect their own object, and the object's children.

Components can be added to objects, and turned off and on, called disabling and enabling, for

testing purposes.

Due to the object hierarchy-component structure of Unity, it is a very object oriented

platform. Objects contain code, and as such, it is most often efficient to have objects with

properties that do things, rather than systems that create objects and then manipulate them. This

can mean that procedural generation, creating data algorithmically, in Unity can be a bit

confusing at first, as procedural generation is easier to conceptualize in the structure of

functional programming. This posed a challenge to me in my coding. Although three-

dimensional object to two-dimensional projection was easy to translate into object oriented

programming, four-dimensional to three-dimensional is not as object oriented. This is due to the
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fact that Unity cannot create four-dimensional objects, and as such, the representations of

four-dimensional objects had to sit somewhere between an object and a function.

Another important part of Unity is the Project window. This contains the assets a

developer has created or downloaded. These assets can be used again and again inside the scene.

Examples of common assets are materials and scripts. Instead of customizing each object’s

material individually, it is much faster to create a material in the Project window, and then drag

and drop that material onto each object that should look the same. Scripts are also held in the

Project window. This way, a developer doesn’t have to copy and paste code from one object into

another, but instead can write the script once, and then add it to each object that should inherit

those properties. The Project window is also where downloaded assets, called packages, are

accessible. These assets might not be used over and over again, but instead can add extra

functionality to a Unity project, and the Project window is the way a developer can look through

the scripts included in packages.

Unity renders the scene currently being worked on in the scene view and the game view

windows. The game view window shows the software through the perspective of the camera

object in the scene. This is useful for testing to make sure users' experiences will be as intended.

The scene view shows the software through any view the developer wishes, like an extra camera

that has no bearing on the software. This is useful for creating and positioning objects, dragging

and dropping assets, as well as testing from a more birds eye view.

Scripts in Unity can be written in a number of languages, the most common of which is

C#. Unity provides a large specialized library for use in scenes called the Unity Engine. All

Unity C# scripts derive from the MonoBehavior class. From these we have access to the two



23

most common specialized methods in Unity. Monobehaviour.Start is called when a script is

enabled on an object. Enabling happens upon adding a script to an object.

Monobehaviour.Update() is called every frame, making it the source of all in-game events. Note

that while editing before playing, Update is called continuously, making testing very easy. When

the play button is pressed, all Scripts are reloaded, meaning all Start functions are called. This

means that pressing play starts the developers software off fresh each time, even though in

editing many things might have been changed in the scene.

Open XR:

Open XR is an open source package for Unity that connects Unity with VR, allowing

projects to be run and rendered on headsets. The XR Interaction Toolkit changes the input

method of Unity projects to the controls of VR headset, allowing for motion tracking and

controller inputs to be used in game. Together, they make developing software for multiple

different VR brands at the same time possible. I’m not going to go in depth on my explanation

here because of the ever evolving nature of Open XR. It is very likely that any detailed account

of how Open XR works I could make, would in the near future be outdated. The basics that will

likely remain the same are this: upon downloading Open XR properly and adjusting your Unity’s

project setting correctly, you can run your project on a number of different VR HMDs with full

motion tracking. Open XR comes with a number of helpful additional components to allow

developers to quickly create grabbable objects and teleportation among other things. XR

Interaction Toolkit allows developers to access headset and controller positions, as well as

customize controller inputs. Open XR is still in development, and connecting VR headsets to
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computers and to Unity is not easy, even with Open XR. It is however made a possibility, for

without Open XR, it would likely have been infeasible for me to attempt this project.
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Methods

Design Process:

The first things I needed to develop were three-dimensional objects and their

two-dimensional projections. The reason for this is that programming four-dimensional objects is

difficult. The code for four-dimensional objects is not substantially more complex than

three-dimensional ones, but the testing is so much more difficult. This is because

four-dimensional objects cannot be seen, and so cannot be tested in their native mathematical

spaces. All that can be rendered are projections or slices of them. Starting with four-dimensional

objects and their three-dimensional projections would be like trying to develop

three-dimensional objects and their shadows without being allowed to look at and visually test

your three-dimensional objects.

The benefit of linear algebra is that to mathematically move from a lower dimension to

the next higher one, all that is needed is to add an extra row and/or column to your vectors and

matrices. A bit more work is needed when coding the transition to a higher dimension, but the

amount of work is still quite small. Copying and pasting made up the majority of my work in the

transition. Coding three dimensional shapes and their two dimensional projections in Unity took

me a semester of work because of the complexity of managing the shape and its shadow. This

might seem like a lot, but recall that all the coding I was doing was really in preparation for a

higher dimension. Everything was as modular as I could conceptualize it (I was still learning

Unity as I went, and so a higher degree of modularity is still quite possible). The time spent

developing the software in a general manner paid off, I was able to code the four-dimensional

objects and their three-dimensional shadows in only two days. This method section will follow
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the same pattern, explaining the code for three-dimensional to two dimensional projection first,

and then expanding to the four-dimensional code.

Matrices:

To implement linear algebra in C#, we must first build a matrix class to handle matrix

multiplication and manipulation:

public class Matrix

{

public static Vector3 matmul(Vector3[] r, Vector3 v3)

public static Vector3[] matmul(Vector3 v3, Vector3[] r)

public static Vector3[] matmul(Vector3[] a, Vector3[] b)

}

We overloaded a matrix multiplication method, matmul(), which takes two matrices, multiplies

them and returns the product. Matrices are not represented by a special type of object, but instead

are arrays of Vector3s. The Vector3 class is included in the Unity library, and represents

three-dimensional vectors. They take three floating point numbers to construct, which

correspond to x, y, and z. This shortcut is allowable since all matrix multiplication we are going

to be working with for now are with these simple vectors, or matrices with columns of length 3.

Later we will introduce fourth-dimensional vectors and matrices. The Matrix class is able to

multiply, in the order shown above, a 3x3 matrix by a three-dimensional vector, a

three-dimensional vector by a 3x3 matrix, and a 3x3 matrix by a 3x3 matrix.

Next we implement rotation matrices. All three rotation matrices are combined into one

single rotation method:
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public static Vector3[] rotate3d(float xa, float ya, float za)

The three inputs are the basic rotation angles on the yz plane, xz plane, and xy plane. This

method uses the rotation matrices from the technical background. However, rotate3d() does not

create three rotation matrices and then multiplies them together. Instead, the matrices are already

multiplied together, only needing the angle values to complete the matrix. This buys a small

amount of processing speed, increasing efficiency. Finally we need to combine points with our

rotation matrix::

public static Vector3 rotate_point(Vector3 p, Vector3[] rotate)

{ return matmul(rotate, p); }

rotate_point takes a point and a rotation matrix, and returns the rotated point. It's just a prettier

version of matmul, which makes later code easier to read.

Three-Dimensional Shape Construction and Memory:

With these methods complete, we can now start building and interacting with

three-dimensional shapes in a Unity scene. We’ll use a cube as the example, since that is the

easiest to build due to its very simple coordinates. The completed cube looks like this:

Complex shapes in the software are constructed out of spheres as the vertices and cylinders as

the edges. It's important that the components of this cube are organized correctly so that the code
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written for it is efficient and understandable, and also so that positioning in the world is easy. I

organized my objects as such:

Here we see a portion of the hierarchy window. At the very top is the current scene, which holds

all the assets and objects. Below that is the Cube object, which is empty, and has the Skeleton as

a child. An empty object is an object with just a transform component and may also have scripts.

An object being empty does not mean that object has no children. The Skeleton is also an empty

object. The Skeleton has the children objects Points and Edges. Points and Edges are empty

objects which hold the spheres and cylinders seen in the above picture. Having the Cube parent

be separate from the skeleton parent is important. The Cube object will eventually also have a

Projection child object, which will hold the shadow. Organizing like this means that the Cube

holds both its three-dimensional parts as well as its two-dimensional parts, but that we are also

able to computationally distinguish between objects that are part of the three-dimensional

skeleton, and the objects that are part of its shadow.

Each game object has a transform component. The transform holds a Vector3 called

position, which determines its location in the scene. An object with no parent object has an origin

based vector (scenes are not objects, and so are not parent objects, even though they appear in

the hierarchy window). Remember that vectors are actually arrows with an angle and a

magnitude, or length. An origin based vector’s arrow starts at the origin and extends outward.
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However, the location vector of an object with a parent works differently. An object with a parent

is called a child object. A child object’s location vector starts at the location of its parent object

and extends outwards. It works this way so that when you move a parent object, all its children

objects move too:

The position of Cube’s transform is not important for now. However, Skeleton’s

transform position is, because we will treat the center of Skeleton as the center point of all

translations and rotations of our three-dimensional shape. Therefore, when building our shape,

we will make sure Skeleton's position vector is (0, 0, 0), i.e. at the world’s origin. Then, we will

create the vertices of the cube as if the cube was centered at the origin:
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Now the skeleton object can be moved anywhere and the points will follow correctly. For now

we are not going to put cylinders in the Edges object because the edges are going to use a whole

different system to rotate.

We’ll build a Shape3D script to be attached to the Cube object. The Shape3D script will

manage the rotation transformation of the Cube as well as later the projection of the

three-dimensional object into two-dimensions. Shape3D manages its memory carefully using

load(), Vector3 center, Vector3[] vertices, and Vertex_Store(). load() retrieves data about all

relevant objects in the scene, and stores them as global variables in Shape3D. load() only needs

to be called once, as the variables it loads are all pointers that point to data that does change.

center represents the center point of our shape. The array vertices[] will be used to store a copy

of the shape’s sphere positions, but as if the shape was centered at the origin. Storing the points

at the origin has the benefit of not having to do the full translate, rotate, translate pattern. Instead

we can just rotate and then translate by the center vector. The other benefit is that we have a

static version of the shape to rely on, that we can derive rotations from without changing,

lowering the chance of multiple rotations leading to problems. Vertex_Store() is a public method

that updates vertices[] to the current state of our shape’s spheres, but again, as if the shape was

centered at the origin. Shape3D’s Start() function will look as such:

load_objects();

center = skeleton.position;

vertices = new Vector3[points.childCount];

Vertex_Store();

points is the transform of the Points game object. Our script now always starts with all the

gameobjects it needs, and an extra copy of our shape’s points to manipulate.
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Three-Dimensional Shape Transformations:

The two types of transformations that will be usable in the software will be translations

and rotations. We’ll implement translations first:

public void Translate(Vector3 translation)

{

center = translation;

for (int i = 0; i < points.childCount; i++)

{

Transform sphere = points.GetChild(i);

sphere.position = vertices[i] + center;

}

}

A host of terminology must be explained here: points is a global transform generated by the

load() function. It is the transform of the Points game object, which holds all the spheres.

points.childCount returns the number of children points has, ie. the number of spheres

contained in Points. points.GetChild(i) returns the transform of the i’th sphere contained in

Points. Finally, .position is the Vector3 of the transform that holds an object's position.

Translate() changes the center of our shape, and then iterates through all the spheres and

updates their position by adding the stored Vector3 from vertices[] to the new center.
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The method Rotate() in Shape3D we implement will be very similar, adding extra steps to rotate

our points by a matrix:

public void Rotate(float xRotation, float yRotation, float zRotation)

{

Vector3[] rotation = Matrix.rotate3d(xRotation, yRotation, zRotation);

for (int i = 0; i < points.childCount; i++)

{

Transform sphere = points.GetChild(i);

sphere.position = Matrix.rotate_point(vertices[i], rotation) + center;

}

}

Rotate() iterates through all the points of an object, and rotates each one, given three rotation

angles. Remember that the vectors in vertices[] are centered around the origin, so after finding

the rotated vertice, we need to translate that point by the vector of center.

Notice that both Translate() and Rotate() use vertices[] to transform from, so calling

either multiple times in a row will not add transformations together. To do that, one must call

these transformations, and then Vertex_Store(). After calling Vertex_Store(), following

transformations will be additive. This fine control of the shape’s memory will become useful

later when we add user inputs.

Three-Dimensional Edge Updating:

Our shape’s vertices can be created, stored, modified, and updated, but it lacks edges. We

need to position cylinders such that they connect all of our spheres in a way that represents the

shape we want to represent. Shape3D contains a public integer array called temp_edges[] that

can be edited from the inspector. temp_edges[] holds the adjacency list for the points of the

Cube. It retains the data of which spheres in Cube should be connected by a cylinder. The array
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is structured in pairs of indices, for example temp_edges[0] and temp_edges[1] are the indices of

two points in the Cube that are adjacent. The integer value of temp_edges[x] refers to a child

object of Points, using Points.GetChild(temp_edges[x]). The edge that should be connecting

points can be gotten with Edges.GetChild(i), while the indices of the two points are contained

in temp_edges[i * 2] and temp_edges[i * 2 + 1]. Although an array of tuples would have been

cleaner, I chose an array of integers because it was easiest to use in the Unity inspector window

to build the objects.

The system for rotating the Cube’s spheres and rotating the cylinders must be different

because of how linear algebra intersects with Unity’s transform components. When rotating a

vertice with rotate_point(), the sphere that visually represents one of the Cube’s vertices is

moved, but the sphere itself is not actually rotated. If the sphere was colored black on the top and

white on bottom, after rotate() was called, the sphere would be in a different place, and the

Cube would have seemed to rotate, but the sphere itself would still be black on top and white on

bottom. This might seem a strange way to represent complex three-dimensional objects, but this

is all in preparation for fourth-dimensional shapes. There are easier and faster ways to code

three-dimensional shapes, their transformations, and their shadows, but those same easy ways do

not exist for higher dimensions.

To orient our edges correctly, we need to scale, rotate, and position our cylinders based

on the pair of points they connect. In Matrix, we will implement a method called update_edge():

public static void update_edge(Transform point1, Transform point2,

Transform edge)

{

Vector3 point1v = point1.position;
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Vector3 point2v = point2.position;

edge.localScale = new Vector3(edge.localScale.x,

(Vector3.Distance(point1v, point2v) / 2f) * (1f / edge.parent.parent.localScale.x),

edge.localScale.z);

edge.position = point2v;

edge.LookAt(point1);

edge.Rotate(90f, 0, 0);

edge.position = (point1v + point2v) / 2f;

}

Given a pair of spheres and a cylinder, Matrix.update_edge() scales, rotates, and positions the

cylinder to connect the two spheres. The scaling lengthens or shortens the height of the cylinder

without changing its diameter. This scaling is unnecessary for three-dimensional objects, but it

will become important for four-dimensional objects. In Unity, a cylinder’s center point is

halfway between its two circular faces, in the middle of its diameter. One can calculate the two

points which sit on each of a cylinder’s circular faces in the center of those circles. However,

using that to determine a rotation is incredibly complex because of the limited forms rotations

can be entered into Unity. The function transform.LookAt(transform) is used in update_edge()

to rotate the cylinder correctly. LookAt() rotates an object around its center to face another

object. Because it rotates around an object's center, the cylinder must first be moved to one of the

sphere’s locations. Then LookAt() can be called in respect to the other sphere’s location.

Afterwards, rotating the cylinder ninety degrees in the x axis is required because of what Unity

considers a cylinder ‘facing’ a point. Finally, update_edge() moves the cylinder to the midpoint

between the two spheres. After the three steps of scaling, rotating, and positioning, the cylinder

will connect the two spheres in the scene.
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We'll build a public method in Shape3D called Update_Edges() that will position all our

edges correctly. Update_Edges() will iterate through all the cylinders in our Cube, using

temp_edges[] to find the points to connect to, and update_edge() to orient the cylinder. We’ll

add Update_Edges() to the end of Translate() and Rotate() so that after we transform a shape

the edges connect the new points.

Three-Dimensional Vertice Perspective Projection:

With three-dimensional shapes and their transformations in place, we can now implement

perspective projections. We’ll use the same approach we used before, calculating the vertices of

our desired two-dimensional shape mathematically, and then later implementing edges using

temp_edges[] and logic derived from our vertice’s positions. A perspective projection requires a

light source, so in our scene we’ll add a small sphere object, name it My Light (Light is a special

term in Unity so we want to specify this one is ours.), and move it up above our Cube. Well add a

white plane back into our scene to act as the floor. We’ll build a rudimentary projection method

in Matrix:

public static float[] y_3d_2d(Vector3 l, Vector3 p)

{

float den = (p.y - l.y) / l.y;

float new_x = l.x - ((p.x - l.x) / den);

float new_z = l.z - ((p.z - l.z) / den);

return new float[] {new_x, new_z};

}

This computation is derived from the textbook Interactive Computer Graphics (Angel, 250).

Given the position of our light, l, and the position of the point we want to project, p, y_3d_2d()

returns an array that has the x and z coordinates of the point after projection. We can assume the
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y value of the point after projection will always be 0, so there’s no need to return it in this

function. These equations were taken from Interactive Computer Graphics (Angel, 250)

We’ll now create our shadow points in our Unity scene. Cube gains a child called

Projection. Projection will contain the children Points and Edges, much like Skeleton. Well fill

Projection>Points with an equal number of flat circles as Skeleton>Points has. The Hierarchy

window will look like this:

And our scene will now look like this:

Here we see the light floating above the cube, and the shadow circles stacked ontop of eachother

sitting below the cube. Important to note is that My Light, as well as the spheres and cylinders in

the skeleton are set to cast and receive no shadows. All objects in Unity automatically cast
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shadows onto other objects, and display shadows that would be cast on them. This project’s

software is building its own system to cast shadows, and as such, we want to disable Unity’s

pre-built shadow renderer. Now we will write in Shape3D a function to move our shadow

vertices based on the position of our three-dimensional vertices and the light’s position:

void Shadow_Update()

{

for (int i = 0; i < points.childCount; i++)

{

Transform sphere = points.GetChild(i);

Transform shadow = shadow_points.GetChild(i);

float[] sv = Matrix.y_3d_2d(my_light, sphere.position);

shadow.position = new Vector3(sv[0], 0.001f, sv[2]);

}

}

shadow_points is a new transform added to the load() function. It is the transform component of

the Projection>Points object. Notice that the y position of the shadow is set to 0.001 instead of 0.

This is because we need the shadow to be just above our plane so that they don’t intersect and

render improperly. We’ll call Shadow_Update() at the end of Translate() and Rotate(). Our

scene can now look like this:
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We're going to add some scaling so that spheres with a taller y value have shadows that are

larger, and spheres with shorter y values have smaller shadows. This will simulate how real

shadows act, but without stretching the shadows into ovals, and with a maximum and minimum

size. To do this, we need to calculate the lowest sphere of the Cube and the highest sphere of the

Cube. In Shape3D, minmaxp() will set two global variables, minp and maxp as the smallest and

largest y values among all spheres in Cube. minmaxp() will be called at the beginning of

Shadow_Update(). We’ll modify y_3d_2d() to take a minimum value and a maximum value.

We’ll calculate the scaling as such:

float scaling = Mathf.Clamp((p.y - min_y) / (max_y - min_y), 0f, 1f);

and we’ll return new float[] {new_x, scaling, new_z}. In Shadow_Update(), we'll change the scale

of the shadow circle based on the scaling returned by y_3d_2d(). We're going to use this min-max

scaling system for extra features later.

The shadow simulating code leads to a few bugs; if My Light is below one of the

vertices, what happens? The shadow of the vertice appears on the plane in a completely wrong

place. If My Light is below a sphere, we don’t want that sphere to show up on the plane, because

the light is supposed to be shining down onto the plane. Additionally, what happens if one of

Cube’s spheres is moved below the plane? The final edge case is what happens if My Light is

moved below the plane? To account for all of these, some additional if-statements are written

into y_3d_2d(). The end behavior is that if a sphere is above My Light or below the plane, its

scaling is set to -1. Shadow_Update() handles a scaling of -1 to mean place the shadow below the

plane, hiding it from view. If My Light is placed below the plane, y_3d_2d returns new float[]
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{p.x, 0.5f, p.z}. All points then will keep their x and z, and all of them will be scaled halfway.

This is isometric projection, in which a point's y value does not matter.

Perspective Projection: Isometric Projection:

Three-Dimensional Edge Projection:

Now we’ll add in the shadows of the edges. We’ll fill Projection>Edges with plane

objects, which are two dimensional rectangles that can be scaled and rotated as needed. In

Matrix, the method update_shadow_edge() works very similarly to update_edge(). The scaling is

slightly different, and no additional rotation is needed after using LookAt(), but everything else is

the same. Given two circles and a plane, update_shadow_edge() will scale, rotate, and position

the plane such that it connects the two given circles. In Shape3D, Shadow_Update() will loop

through each plane in Projection>Edges, and using temp_edges[], call update_shadow_edge(),

orienting each plane.
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Because of how update_shadow_edge() works, planes connecting to a circle which is below the

plane will also be placed below the plane. This means that when a sphere is above My Light, ie.

its shadow below the plane, all edges connecting to it will not have their shadows visible to a

user.

Coloring the Shadows:

Two-dimensional shadows are not complex to look at. Our brains are hardwired to process,

interpret, and abstract them. However, three-dimensional shadows of four dimensional objects

are not so easy to look at. To help aid in this, my project colors its shadows to exploit additional

functions of sight. The final product of this colorization looks as such:
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Shadow vertices are colored based on their corresponding sphere’s y value. The larger the

original y value, the more red the shadow’s point will be. The lower the original y value, the

more blue the shadow’s point will be. The value of these colors are in respect to the highest and

lowest vertices in the three-dimensional shape. If the shape is moved up and down, that won’t

change any of the shadow’s colors. Only rotating the shape will change that.

To implement this, we will need a more robust rendering pipeline than the one that Unity

comes pre-built with. A rendering pipeline is what takes the information in a scene and turns it

into visuals on a computer screen. My software makes use of Unity’s Universal Rendering

Pipeline [URP]. The reason for using this more complex pipeline is because it allows us to

dynamically generate gradients of color, which we will need to color the shadow’s edges. URP

can be downloaded as a package in Unity’s package manager, and Unity has a built-in tool to

convert our old materials to ones URP can render.

In Shadow_Update(), well add two extra lines inside the for loop that updates the shadow

points:

var shadowrend = (shadow.gameObject).GetComponent<Renderer>();

shadowrend.material.SetColor("_BaseColor",

new Color(sv[1], 0f, 1f - sv[1], 0.8f));

This retrieves the renderer of our shadow point, and then in the next line sets the color of the

point’s material. The color is set in RGBA, or red green blue alpha values. We use the scaling

value from our y_3d_2d() method to determine our red and blue value, leaving green at 0. The

alpha value of the shadow points is 0.8, which makes the circle slightly transparent. Creating

gradients on the shadow edges between the points is more complex. We’ll add the following

lines into the for loop that updates all the shadow edges:
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Mesh mesh = shadow_edges.GetChild(i).gameObject.

GetComponent<MeshFilter>().mesh;

Vector3[] vertices = mesh.vertices;

Color[] colors = new Color[vertices.Length];

var p1c = shadow_points.GetChild(temp_edges[i * 2]).

GetComponent<Renderer>().material.color;

var p2c = shadow_points.GetChild(temp_edges[i * 2 + 1]).

GetComponent<Renderer>().material.color;

float minz = vertices[0].z;

float maxz = vertices[vertices.Length - 1].z;

for (int j = 0; j < vertices.Length; j++)

{

colors[j] = Color.Lerp(p2c, p1c,

(vertices[j].z-minz)/(maxz-minz));

}

mesh.colors = colors;

The first line creates a new Mesh object called mesh. A mesh is what Unity renders. It is a

collection of two-dimensional triangles in three-dimensional space. These triangles can be

colored, textured, and made to react to light and shadows in different ways. The mesh created

here will become the mesh of the cylinder. The second line creates an array of mesh’s vertices,

the points of all of the mesh’s triangles. For each vertex in the mesh, we're going to calculate a

color, so the third line creates an array of colors, with the same number of indices as the mesh

has vertices. The fourth and fifth line retrieve the color of the two circles that the edge connects.

We're now ready to calculate the colors in array Color. For each vertex, we are going to

interpolate a color between the second point’s color and the first point’s color, based on the z

value of the vertex. Interpolate means to create new values between two other values, where the

new value would fall on the continuous line between the two values. We use the z value to

interpolate because Matrix.update_edge() scales and rotates the edges such that each rectangle’s
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local z is the axis which connects one point to another. We calculate a number between 0 and 1,

inclusive, based on the vertex’s z value and use that to interpolate. Color.Lerp(Color a, Color

b, float t) returns an a color interpolated from the fraction t between color a and color b. If t

= 0.5, then the returned color is halfway between a and b. A t value of 0 returns the first color,

while a t value of 1 returns the second color.

Finally, we set the color array of our mesh equal to the new color array we just filled.

However, this is not enough to make the edges appear as gradients. We need to make a new

shader. A shader calculates the amount of light, dark, and color to render. Part of URP is its

Shader Graph asset. Shader Graph is a node based system to create custom shaders. I will not

explain shader graph in depth because I did not have to use it in depth. After creating a new

shader called 3Dedge, we'll open it and add a new vertex color node and connect that vertex

color node to the shader’s Base Color fragment:

We’ll create a new material for the shadow edges, and we'll set the shader of that material to be

our 3Dedge shader:
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With all these pieces in place, the color value of our mesh’s vertices will be sent to the shader,

which our edges are using, resulting in gradient edges.

Fourth-Dimensional Matrix:

Implementing four-dimensional shapes and their three-dimensional shadows is relatively

easy given all the code built for three-dimensional shapes and their two-dimensional shadows.

The following is a list of the additional methods in the Matrix class that will be needed, and brief

explanations.

Additional matmul() methods are needed to multiply a 4x4 matrix by a

fourth-dimensional vector, as well as a 4x4 matrix by another 4x4 matrix. Six new methods are

needed to generate the six possible basic rotation matrices (each of which rotate on a basic plane

in four-dimensional space). No combined rotation matrix method is included, due to the high

complexity of hand coding out six 4x4 matrices multiplied together. Additional versions of

rotate_point() are built to take a fourth-dimensional point and a four-dimensional rotation

matrix. Finally, w_4d_3d() is implemented, which closely resembles y_3d_2d(). The main

difference is that w_4d_3d() uses max and min values calculated using the w coordinates of

points, and calculates a y value for the shadow.
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Fourth-Dimensional Shapes:

The Shape4D class also closely mirrors Shape3D. The most noticeable difference is the

storage of the original fourth-dimensional vertex coordinate. Unity does not have a

fourth-dimensional space to place objects in, so all fourth-dimensional objects we wish to project

must be stored purely as data. Shape4D has two Vector4 arrays; save_points[] and points[].

save_points[] acts like vertices[] in Shape3D, it stores a version of our fourth-dimensional

vertices as if the shape was centered around the origin, x:0, y:0, z:0, w:0. points[] acts like the

in-scene shape does for three-dimensional shapes, holding the position of the shape’s vertices

around a center vector, which does not have to be the origin. Update_Edges() and

Shadow_Update() use points[] to calculate, while Translate() and Rotate() use save_points[].

Other noticeable differences are Shape4D.load(), which loads a few less game objects than

Shape3D.load() because points[] acts as the four-dimensional shape, and we don’t need to

manage four-dimensional edges the user will never see. Another difference is that

Shape4D.Update_Edges() updates the three-dimensional shadow’s edges, not the

four-dimensional digital object’s shadow. The three-dimensional shadow of a four-dimensional

cube in my software appears like so:
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My Light:

A small amount of code is needed to manage the light source of the perspective

projections. My Light has a script component called MyLight, which has a public float called w. w

is used to pretend that My Light’s position is a Vector4 rather than a Vector3.

In MyLight Update(), if the position of My Light changes, we loop through every shape

in 3D Shapes and every shape in 4D Shapes, calling their shadow functions so that  their

shadows change as the light moves.

Finally, My Light has an XR Grab Interactable component added to it. This allows a user

to grab the light by pointing at it with their controller and pressing the grip button. The light then

moves with their controller until they let it go, and allows it to extend the light out from

themselves in a straight line.

User Inputs:

Because of the strangeness of interacting with four-dimensional objects, and the

specificity of how unser interaction works in this software, Open XR was not used for the user’s

interactions with three-dimensional objects or four dimensional objects. Instead, a custom script

called Controller is used. Two small capsule objects were added to the scene, called Left Capsule

and Right Capsule, and Controller is added as a component to both. Controller has a private

ActionBasedController named controller. The ActionBasedController object is inherited from

the XR Interaction Toolkit, and is the game object of the Quest 2 controllers.

The Update() method of Controller sets the position and rotation of the capsule to be the

same as the controller’s position and rotation. This means in the software, the user has a

capsule at the location of both of their hands. Update() also manages the logic of the possible
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inputs of the software, the trigger button, grab button, and primary buttons of both controllers.

Both the grab button and the trigger button have three methods in the controller related to their

use: a beginning of input method, a continuous input method, and an end of input method. The

trigger button has the Grab(), Grabbing(), and Release() functions. The grab button has the

Select(), Selecting(), and Unselect() functions. Update() does not allow the trigger input and

grab input from one controller to be used at the same time, so a user may only successfully use

one of those buttons at a time. The primary buttons of both controllers follow a similar pattern,

with if statements to check which controller the Controller script is attached to.

Grab() and Select() iterate through the three-dimensional shapes and four-dimensional

shapes active in the scene, although Select() does not iterate through the three-dimensional

shapes. Each shape’s center is compared to the position of the controller. The first shape to be

found that is close enough to the controller is set as Controller's global transform:

grabbed_shape/selected_shape. For three-dimensional shapes, ‘close enough’ is calculated by

multiplying the public range float of Controller, the scale of the shape, and a new public float

added to Shape3D called grab_range. For fourth-dimensional shapes, a new method in Shape4D

is added called boundingbox(). That method returns the minimum and maximum x, y, and z of

all of the shadow spheres. These coordinates can be used to calculate a rectangular prism that

fully encloses the shadow. If the controller is within that prism, the shadow is considered

grabbed. At successfully grabbing or selecting an object, Grab() and Select() change the color

of the capsule to blue or green respectively, while if no shape is found in range, the capsule is

colored red. Grab() and Select() store the position, position_offset from the shape’s center,

and starting_rotation of the controller at the frame their corresponding button is pressed. After



48

Grab() or Select() is called, Update() ensures that Grabbing() or Selecting() is called every

frame after, and that Grab() or Select() is not called again until the button is released.

Grabbing() calls the shape’s Translate() and Rotate() function, based on the

Controller's position, difference in position and difference in rotation from when the grab or

select button was first pressed. Grabbing() translates three-dimensional shapes and

four-dimensional shapes to wherever the controller is plus a position_offset vector so that

when a user grabs a shape, it does not snap to the controller’s location. This position_offset

vector is rotated every frame based on the difference between the starting_rotation and current

rotation of the controller, which makes rotating feel more natural. Grabbing() rotates a

three-dimensional shape based on this rotational difference. Grabbing() rotates four-dimensional

objects in three of the six four-dimensional rotations. The three rotations it rotates on are the

three in which the w coordinate of the points do not change. These three rotations appear very

similarly to the three basic rotations of three-dimensional space.

Selecting() can only interact with the three-dimensional shadows of four-dimensional

objects. Selecting() rotates the selected fourth-dimensional object in the remaining three basic

rotations in fourth-dimensional space. However, it does use the controller’s rotation to calculate

these rotations. Instead, it uses the controller’s difference between its starting_position and its

current position. This works visually because each of the final three fourth-dimensional rotations

resemble a strange curling like-motion, each moving along the three different axes of

three-dimensional space. This curling motion, most understandable with a fourth-dimensional

cube, is like if you took a torus, and twisted it so the inside edge that makes up its ‘donut hole’

became its outermost edge, and vice-versa:
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Moving the controller along the three axes then rotates these imaginary donuts in all three

directions at once. Finally, Release() and Unselect() set the color of the controller to white, and

set many of the variable’s used for previous logic back to null.

The primary buttons use similar logic to the trigger and grab buttons. The primary button

on the right hand changes the user from being able to see and interact with three-dimensional

shapes to four, or vice-versa. The left controller’s primary button completely resets the scene,

moving all objects and data back to their original states.



50

Results

Overall, the software works as intended. I was surprised by the engagement testers found

with the project, and the general eagerness of people who had heard of my project to try it. There

definitely exists an interest in mathematical entertainment. The software itself also surprised me

in how natural it felt to use, especially the fourth dimensional rotations. However, although

intuitive, the abstract meaning of the three-dimensional shadows of four-dimensional shapes

does not seem to bridge the gap as far as I had hoped. The program does not build a deep

intuition of these higher dimensional shapes, although it certainly engages and educates about the

subject, even if in the traditionally conceptually abstract way.
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Discussion

Hardware:

Connecting VR headsets to computers is not easy to learn. To reasonably test my

software on the Quest 2, I needed in a few seconds to be able to run a new version of the

software on my headset. This requires the tethered connection, the alternative being building a

version of the project to an online location to then download onto the headset. The time that

would take would add up quickly, greatly slowing down development and killing and creative

momentum. The main reason for the complexity of connecting a headset to a computer is the

lack of standardization, learning resources, and consistency. Once learned, the process is not too

difficult, but even decoding the terminology was a learning process on its own.

The computer hardware side caused its own difficulties. During the project, I had to

purchase a new laptop, in part because my older laptop’s graphics card was not of high enough

quality. However, my new laptop could not connect to my HMD. My laptop actually has two

different graphics cards, one of which was basic and much weaker than the modern graphics card

I had bought my laptop for. The HMD was attempting to use this weaker graphics card, and so

could not run. The roundabout solution was to disable the weaker driver. This didn’t at first

work. However after a 30 minute frustration break, upon returning to my computer the HMD

was suddenly connected with my computer again. The randomness and un-explainability of this

fix points to the fickle and uncertain nature that VR currently rests in. This project turned out to

be a lot more ‘I.T.’ work than originally expected.
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Software:

Open XR and XR Interaction Toolkit lacks clear API documentation with understandable

examples. The API documentation is comprehensive and detailed, but its organization is not easy

to parse and lacks approachable human explanation like that of the Unity API documentation. A

good number of online tutorials are made by developers, but they soon become out of date,

slowly culling the total number of useful references.

This project required me to learn a lot of new subjects at once. It was difficult to properly

plan the structure of my code, because I lacked the full knowledge of what I was coding towards,

and how the different required systems of my project would best interact. As a result of this, I

had to refactor large sections of my code four or so times. This was not too difficult in itself, but

it did soak up time. For example, an unfortunate fact about C# and Unity is that neither has a

matrix library. I was able to find some C# matrix libraries online, but they were difficult to work

with, as their API documentation was written poorly or just outdated, and the effort needed to get

them to work seemed greater than the effort of just developing my own small matrix library for

the few operations I needed. So after trying two libraries and failing, I refactored my code into

my own matrix class.

Future Development:

Testing my software has been promising. Engagement with the project is overall positive.

The software generally keeps a user's attention for ten minutes at a time. Improvements could be

made. A problem that exists is the user inputs of rotations. My matrix multiplication system to

generate rotations works perfectly well, and when called in code to update a shape’s rotation,

appears visually pleasing and understandable. However, generating rotations from user
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movement inputs requires converting the hand held controller’s rotations into matrix

multiplication. The rotations of these controllers are accessible as quaternions or euler angles.

My code plugs these euler angles directly into the rotation matrix angle inputs. This solution is

not mathematically sound, and the interpolation of the rotations has large gaps at certain angles,

and is chaotic at other angles. A conversion from quaternions or euler angles to rotation matrices

is needed. I found I did not have the time to learn and implement this, and that this was rarely

brought up as a complaint by those who tested my software. However, the strangeness of the

rotation interaction limits a user’s potential for understanding what is happening when they rotate

a fourth-dimensional shape.

A menu and tutorial would also benefit the program greatly. Menus help users navigate

the application and understand its purpose. A tutorial is desperately needed if this project is to be

ever used outside the context of demonstrations. In its current state, my verbal explanations are

what ferry users into understanding what they are interacting with. An appreciation of the tools

the software gives is hard to reach without a conceptual background. In that light, a text or audio

tutorial, along with possibly some short puzzles in which users must match a fourth-dimensional

shape’s shadow to a target shadow would help users more deeply engage, value, and understand

their experience.

More user inputs to manipulate shapes would allow users to explore the fourth-dimension

in ever greater freedom. The ability to translate a fourth-dimensional shape or the light source

along the w axis would help illuminate the shadow-like nature of the three-dimensional

projections of four-dimensional objects. The ability to scale shapes would allow more users to
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comfortably interface. And a more robust resetting system, with an undo button and light reset

would help orient many users.

The most interesting expansion I can think of for this project is the addition of user

created shapes. It is certainly possible for a user to set the position of new vertices and then

connect edges from a new vertex to other vertices. To do so in four dimensions requires the user

to also set the w coordinate of their vertex, likely using the thumb stick on a controller. This

functionality gives an entirely new window into higher dimension, to the extent that I'm unsure if

any other medium or piece of software has done something like it before. I believe the potential

for users to gain a sense of how higher dimensions works would greatly increase with this

feature.

Conclusion:

My software works well with verbal instruction to guide users. Geometric education in

VR looks to have potential, with the promise of those learning directing their own education

through playfulness rather than rigid instruction. However, this project has not provided clear

intuition into how four-dimensional spaces work, but rather an approachable starting place.
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Appendix

‘Jesse Explains’ by Marty Graham:
https://vimeo.com/705986547
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