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With the intent to investigate the relationship between concrete physical properties and non-

destructive evaluation techniques (NDE), several experiments were performed. Specimens were made 

at varying geometries using a range of different concrete mixes under several different curing 

conditions. These specimens were subjected to a combination of electrical resistivity and ultrasonic 

wave propagation measurements. One part of this study investigated determining the orientation of 

steel fibers using electrical resistivity. This resulted in the fabrication of a four-probe square device with 

the potential capabilities of determining fiber orientation. The other part of this research applied 

ultrasonic wave propagation via through-transmission along with electrical resistivity via the uniaxial 

method. The results from this uncovered an exponential relationship between the pulse wave velocity 

and formation factor for saturated specimens. With the formation factor’s relationship to strength and 

microstructural properties, this relationship may lead to predicting strength and pore structure using 

relationships to a simple ultrasonic property. 



iii 

DEDICATION

I dedicate this work to my brother, Trace. 



iv 
 

ACKNOWLEDGEMENTS 

I would like to begin by thanking my advisor, Dr. Eric Landis, for his invaluable guidance over 

these past few years. My graduate studies here at the University of Maine will be an experience I will 

never forget. 

Next, I would like express my gratitude for the other members of my thesis committee, Dr. Keith 

Berube from the University of Maine and Dr. Stephanie Wood from the U.S. Army Engineering Research 

and Development Center, who took the time to review my thesis and act on my examination committee. 

I’d like to acknowledge the assistance I received from the other graduate students throughout 

this project, including Aidan Carlson, Parinaz Belalpour Dastjerdi, JJ Holstein, Alyssa Libby, Amir Haddad 

Kolour, and Mairead Thistle. From small advice to assistance with specimens themselves, your 

contributions are greatly appreciated. I’d also like to thank all of the professors I had throughout my 

undergrad and graduate studies courses. 

I would also like to thank all the people whose friendship made my duration here at the 

University of Maine all the more enjoyable: Stephanie Carito, Trevor Chaput, Lauren Cusson, Sean 

Decker, Jilleon Farrell, Jens Hansen, Benjamin Homes, Sarah Labbe, Llewellyn Searing, Timothy Simien, 

and Elliot Stinchfield.  

Finally, I’d like to thank my family for their undying and unconditional love, support and 

encouragement over my time at the University of Maine. My appreciation has no bounds. 

  



v 

TABLE OF CONTENTS 

DEDICATION ................................................................................................................................................. iii 

ACKNOWLEDGEMENTS ................................................................................................................................ iv 

LIST OF FIGURES .......................................................................................................................................... viii 

Chapter 

1.  INTRODUCTION ..................................................................................................................................... 1 

2.  LITERATURE REVIEW ............................................................................................................................. 4 

2.1. Electrical Resistivity ..................................................................................................................... 4 

2.1.2. Direct Current vs Alternating Current............................................................................ 6 

2.1.3.  Electrical Impedance Spectroscopy .............................................................................. 8 

2.1.4. Further Background on Alternating Current Methods ................................................ 10 

2.1.5. Alternating Current Methods ...................................................................................... 15 

2.1.6. Factors Affecting Measurements................................................................................. 18 

2.1.7. Past Attempts to Isolate Variables .............................................................................. 21 

2.2. Ultrasonic Wave Propagation ................................................................................................... 24 

2.2.1. Ultrasonic Wave Propagation in Concrete .................................................................. 24 

2.2.2. Principles of Ultrasonic Testing ................................................................................... 28 

2.2.3. Attenuation .................................................................................................................. 31 

2.2.4. Ultrasonic Testing Methods ......................................................................................... 34 

3.  Methods, Data Analysis, and Results by Experiment .......................................................................... 36 

3.1. Experiment 1: Fiber Orientation ............................................................................................... 36 

3.1.1. Methodology ............................................................................................................... 36 

3.1.2.  Specimen Manufacturing and Curing ......................................................................... 39 

3.1.3. Procedure .................................................................................................................... 42 



vi 
 

3.1.4. Data analysis and Results............................................................................................. 43 

3.1.5. Conclusion .................................................................................................................... 45 

3.1.6. Plans for Improvement ................................................................................................ 45 

3.2. Experiment 2: Multi Method Setup .......................................................................................... 47 

3.2.1. Methodology ............................................................................................................... 47 

3.2.2.  Specimen Manufacturing and Curing ......................................................................... 48 

3.2.3. Procedure .................................................................................................................... 51 

3.2.4. Data analysis ................................................................................................................ 55 

3.2.5. Results .......................................................................................................................... 59 

3.2.6. Conclusion .................................................................................................................... 67 

3.2.7. Plans for Improvement ................................................................................................ 68 

3.3. Experiment 3: Multi Method Setup .......................................................................................... 69 

3.3.1. Methodology ............................................................................................................... 69 

3.3.2.  Specimen Manufacturing and Curing ......................................................................... 70 

3.3.3. Procedure .................................................................................................................... 71 

3.3.4. Data analysis and Results............................................................................................. 71 

3.3.5. Conclusion .................................................................................................................... 80 

3.3.6. Plans for Improvement ................................................................................................ 80 

3.4. Experiment 4: Fiber Orientation ............................................................................................... 82 

3.4.1. Methodology ............................................................................................................... 82 

3.4.2.  Specimen Manufacturing and Procedure ................................................................... 82 

3.4.3. Data analysis and Results............................................................................................. 84 

3.4.4. Conclusion .................................................................................................................... 88 

3.4.5. Plans for Improvement ................................................................................................ 88 



vii 

4.  CONCLUSION ....................................................................................................................................... 90 

BIBLIOGRAPHY ............................................................................................................................................ 91 

APPENDIX: Matlab Codes ............................................................................................................................ 99 

BIOGRAPHY OF THE AUTHOR.................................................................................................................... 102  



viii 
 

LIST OF FIGURES 

Figure 2.1. Rate of heat evolution during hydration of tricalcium silicate ................................. 5 

Figure 2.2. Types of polarization that occur due to direct current excitation ............................ 7 

Figure 2.3. The theoretical (left) and measured (right) Nyquist plot                                                                           

from AC impedance spectroscopy ............................................................................ 9 

Figure 2.4. Typical EIS equipment setup for two-point (left) and                                                                        

four-point (right) measurements .............................................................................. 9 

Figure 2.5. Graphical representation of the relationship between                                                                     

Impedance, Resistance, and Reactance .................................................................. 11 

Figure 2.6. Microstructure parameters (a) pore solution resistivity                                                                               

(b) porosity and (c) connectivity ............................................................................. 13 

Figure 2.7. Depiction of effective length Le, vs the length of the specimen L .......................... 14 

Figure 2.8. Visual representation of constrictivity .................................................................... 15 

Figure 2.9. Electrical resistivity techniques: (a) uniaxial method                                                                                                     

and (b) four-point (Wenner probe) method ........................................................... 16 

Figure 2.10. Rotation method for fiber orientation determination ............................................ 18 

Figure 2.11. Influence of specimen temperature on measured resistivity ................................. 19 

Figure 2.12. Values of cell constant K for adjusted resistivity .................................................... 20 

Figure 2.13. Length scale of substances within cementitious materials .................................... 25 

Figure 2.14. Depiction of longitudinal wave (top) and shear wave (bottom) ............................. 30 

Figure 2.15. Depiction of the law of refraction ........................................................................... 31 

Figure 2.16.    Effect of beamspreading based on diameter to wavelength ratio ……………………… 32 

Figure 2.17. Isotropic scattering (left) and anisotropic scattering (right) ................................... 33 

Figure 2.18. Drawings of common ultrasonic testing techniques .............................................. 35 



ix 

Figure 3.1. Visual representation of a resistivity axis ............................................................... 37 

Figure 3.2. Global fiber orientation on a concrete plate .......................................................... 38 

Figure 3.3. Mix proportions for high performance concrete .................................................... 39 

Figure 3.4. The BakeMax planetary mixer setup for mixing UHPC ........................................... 41 

Figure 3.5. A wooden mold (left) and a sample specimen with circle markings (right) ........... 42 

Figure 3.6. Resistivity vs orientation plots for both specimens ................................................ 44 

Figure 3.7. Resistivity vs orientation plots overlaid onto plate specimen ................................ 44 

Figure 3.8. Image of the four-probe square device .................................................................. 46 

Figure 3.9. Concrete mix proportions by mass, with 3% air entrainment ................................ 48 

Figure 3.10. Mixer used for creating concrete specimens .......................................................... 49 

Figure 3.11. Setup for RCON2 bulk resistivity meter .................................................................. 52 

Figure 3.12. Drawing of ultrasonic wave propagation setup ...................................................... 54 

Figure 3.13. Mix input and output for VCCTL.............................................................................. 56 

Figure 3.14. Sample ultrasonic wave plot after signal averaging ............................................... 57 

Figure 3.15. Example for diffusion equation curve fit................................................................. 59 

Figure 3.16. Plot markers for experiment two ............................................................................ 60 

Figure 3.17. Formation factor vs curing age ............................................................................... 60 

Figure 3.18. Compressive strength vs formation factor ............................................................. 61 

Figure 3.19. Ultrasonic pulse velocity vs curing age ................................................................... 62 

Figure 3.20. Ultrasonic pulse velocity vs compressive strength ................................................. 63 

Figure 3.21. Total attenuation vs curing age (left) and vs compressive strength (right) ............ 64 

Figure 3.22. Intrinsic attenuation coefficients vs curing and compressive strength .................. 65 

Figure 3.23. Formation factor vs ultrasonic pulse velocity for saturated specimens ................. 66 

Figure 3.24. Formation factor vs ultrasonic pulse velocity for air dried and sealed ................... 67 



x 
 

Figure 3.25. Degree of saturation vs time ................................................................................... 72 

Figure 3.26. Formation factor vs time for normal strength concrete mixes............................... 73 

Figure 3.27. Pulse wave velocity vs curing age ........................................................................... 74 

Figure 3.28. Properties of attenuation vs curing age .................................................................. 75 

Figure 3.29. Formation factor vs ultrasonic pulse velocity for normal strength concrete ......... 76 

Figure 3.30. Formation factor vs ultrasonic pulse velocity for high performance concrete ...... 77 

Figure 3.31. Ultrasonic pulse velocity vs degree of saturation ................................................... 78 

Figure 3.32. Intrinsic attenuation vs degree of saturation ......................................................... 79 

Figure 3.33. Diffusivity and dissipation coefficients vs degree of saturation ............................. 80 

Figure 3.34. Four-probe square device manufactured for experiment four .............................. 83 

Figure 3.35. Resistivity vs orientation plots overlaid onto concrete specimen .......................... 85 

Figure 3.36. Visual analysis of local and global fiber orientation ............................................... 86 

Figure 3.37. Visual analysis of local and global fiber orientation from Lataste et al. ................. 86 

 

 

 

  



1 

CHAPTER 1  

INTRODUCTION 

Throughout the past two decades, there has been increasingly more interest and resources 

designated to the non-destructive evaluation of concrete and other cementitious materials. Non-

destructive evaluation refers to the assessment of chemical and physical properties of a material that is 

non-intrusive, that is, it does not affect the state of the material. The ability to analyze materials is vital 

to the monitoring of existing structures, and holds value in determining where funds should be 

allocated. While removing pieces of existing structures and performing tests to determine the status of 

the material is effective, this practice would also cause further deterioration of the structure. 

Consequently, the problem has been posed: How can concrete be effectively and efficiently monitored 

and evaluated through non-destructive means? In attempts to create a solution to this question, several 

non-destructive evaluation techniques have been employed with the intent to estimate the 

characteristics of concrete. These methods include: ground penetrating radar (GPR), x-ray, infrared 

tomography, and acoustic emissions amongst others. GPR measures reflected electromagnetic waves, x-

ray methods take advantage of the energy absorption of radiation waves, infrared tomography uses 

heat maps of specimens for evaluation, and acoustic emissions focuses on the emitted waves of a 

material undergoing stress. Often, the pitfalls of these techniques are the inapplicability in the field, cost 

effectiveness, or inability to gather the necessary information through a single technique. As a result, 

this thesis attempts to combine the abilities of two different forms of non-destructive evaluation in 

order to gather more information on cementitious materials. The first technique, electrical resistivity, 

has become a popular technique due to the simplicity, relatively low cost, rapid testing, and little to no 

necessary specimen preparation. The second technique, ultrasonic wave propagation, requires a bit 

more setup, but can be evaluated at different levels of complexity in order to gather all of the possible 

information. 
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The electrical resistivity of concrete describes concrete’s capability to withstand the flow of ions 

when subjected to an electrical field. Resistivity is the inverse of conductivity, both conceptually and 

analytically, which is concrete’s ability to catalyze the flow of ions through its pores (Layssi 2015). 

Alternatively, electrical resistivity can be depicted as two components: the ionic conductivity of free 

evaporable water, and conduction through unreacted cement particles and gel-water (Tang, 2016). In 

recent years, standards have been introduced for resistivity of concrete in the forms of ASTM C1760-12 

(withdrawn) and ASTM C1876-19 along with AASHTO TP 95-11 (ASTM 2012, Tang 2016, ASTM 2019). 

Despite the introduction of standards from ASTM and AASHTO, there is still a gap between knowledge in 

the field and industry practice. For this thesis, electrical resistivity has been selected as a tool to 

evaluate concrete due to its nature of application through concrete, having the potential to provide 

information on transport properties and permeability (Layssi 2015, Tang 2016).  

Ultrasonic wave propagation involves recording information on mechanical waves sent through 

a specimen of interest. The term ultrasonic refers to sending these waves at a frequency higher than the 

audible limit of humans, which is approximately 20 kHz (Hassefras 2019). For materials that are 

relatively homogeneous and isotropic, ultrasonic wave propagation can be simple and straightforward, 

but for materials that are heterogeneous and anisotropic such as concrete, things can become more 

complicated by the introduction of the various forms of attenuation. Attenuation refers to the loss of 

energy that occurs in various forms as an acoustic wave is propagated through a material. The interest in 

ultrasonic wave propagation stems from the interpretation of this energy loss and the information it can 

theoretically provide on materials and their current state, including damage, flaws, etc. Ultrasonic wave 

propagation has been chosen as a tool for this thesis due to the potential information it can provide on 

the microstructural properties of concrete.  
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The purpose of this thesis is to further answer the question of, can concrete be more effectively 

assessed in a non-destructive manner by combining the results from multiple non-destructive evaluation 

techniques? In order to do so, this thesis proposes combining the two aforementioned non-destructive 

evaluation techniques. This thesis is structured by beginning with a literature review and background on 

the two non-destructive evaluation techniques. This is followed by a chronological presentation of the 

four experiments performed in pursuit of an answer to the previously stated hypothesis. After this, a 

summary and conclusion will be given attesting to the implications of the findings from this thesis. 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter will cover the two non-destructive methods utilized during the experiments to be 

discussed in chapter 3. The background, methodology, and previous research are what gave the 

inspiration and rationale for these experiments to be conducted.  

2.1 Electrical Resistivity 

 Electrical resistivity of concrete is tool that can be used in various scenarios, including rapid 

chloride intrusion, setting time, early age characteristics, fiber orientation and compressive strength 

amongst others (Farooq 2009, Sanish 2013, Azarsa 2017). As previously mentioned, electrical resistivity 

is a product of the pore solution within concrete. Initially, the pore solution in concrete begins as the 

water within the mix, but as the water and cement react, ions are released into the solution. Primarily, 

these ions will consist of calcium (Ca2+), hydroxide (OH-), potassium (K+), sodium (Na+), and sulfate (SO4
2-) 

(Spragg 2013, Sharisha 2017). The proportion of these ions present in the pore solution is contingent on 

the cement mix used, the amount of water in the mix, and the extent to which curing has occurred. In 

general, the hydration of cement in concrete can be broken down into five periods: initial hydrolysis, 

induction, acceleration, deceleration, and diffusion (Farooq 2009, Landis 2017). Initial hydrolysis (also 

known as pre-induction) occurs first when calcium (Ca2+) and hydroxide (OH-) ions from the surface of 

the cement are introduced into the solution. This period typically lasts tens of minutes and does not 

form any hydration products, but does setup the solution for reaction products. Following this period is 

induction, which is characterized by a buildup of calcium and hydroxide ions along with the slow 

precipitation of semi-crystalline calcium-silicate-hydrate (C-S-H) and low heat release. The heat release 

during hydration is depicted in Figure 2.1. The third period is acceleration, which is marked by the 

formation of solid C-S-H and calcium hydroxide (CH). The acceleration period also includes a decrease in 

porosity and availability of water. Additionally, there is an increase in heat which peaks at the beginning 
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of the fourth phase, deceleration. Deceleration is defined by a decreased rate of hydration product 

formation, due to the reduced porosity and availability of water due to the CH and C-S-H formed. Finally, 

is diffusion, which is a continuation of deceleration, in which there is a slow growth of CH and C-S-H as 

long as there is existing unreacted concrete and water. Throughout the hydration of concrete, the 

concentration of calcium and sulfate ions decrease in the solution while the concentration of sodium, 

potassium, and hydroxide ions increase, which is important pertaining to the electrical conductivity of a 

concrete solution (Farooq 2009, Landis 2017). As previously mentioned, the difference in these 

proportions are a result of cement composition, water availability, and level of curing that has occurred. 

Along with the ion composition in the solution of the concrete, another important factor in the electrical 

resistivity of concrete is permeability.  Permeability is a parameter that encompasses the complex pore 

structure in cementitious materials. As pores in concrete vary in shape and size, they can be categorized 

into several different groups: pores located in the hydrated cement paste (capillary pores, gel pores, air 

voids), pores in aggregates, pores between the interfacial transition zone of the aggregates and cement 

binder, and internal discontinuous pores cause by temperature and humidity changes.  (Tang 2016).  

Figure 2.1: Rate of heat evolution during hydration of tricalcium silicate (Landis 2017) 
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2.1.2 Direct Current vs Alternating Current 

 Now that electrical resistivity of cementitious materials has been introduced, some background 

will be presented on electrical resistivity. First, direct current (DC) vs alternating current (AC). Direct 

current methods are the simpler of the two methods, but have several drawbacks that can make DC 

methods unsuitable for concrete measurements. In general, direct current methods emit an electrical 

current from an artificial source in order to create an electrical potential field through the specimen of 

interest (Seidel 2007). This is often done using electrodes on both sides of the specimen along with 

another pair of electrodes that measure the electrical potential difference across the specimen. In short, 

a known voltage is applied and the measured current can be used to determine the resistance using 

Ohm’s Law (Rajabipour 2006). 

𝑍 =  
𝑉

𝐼
 

Where Z is the impedance in Ohms, V is voltage in volts, and I is the current in amperes.  

 The drawbacks of DC methods are the likely culprit for the lack of literature for these methods 

on concrete. The greatest disadvantage of DC methods is the issue of polarization that is caused by 

constant DC excitation in concrete specimens. Concrete is a porous material, and depending on the 

saturation of specimen, may exhibit capacitance properties, that is, it can hold an electric charge. Due to 

the nature of DC methods, substantial polarization effects can occur on the boundaries between the 

electrodes and concrete surfaces along with the interface between the pore solution and the solids 

surrounding the pores (Rajabipour 2005, Layssi 2015, Tang 2016). In total, there are five types of 

polarization that can occur with DC methods, including: dipole polarization or alignment of electrical 

dipoles along the direction of the electrical field, atomic polarization or altering the distance between 

opposite charged atoms, electronic polarization or movement between the electron cloud and nucleus, 

interfacial polarization or buildup of electrical charge at interfaces, and double layer polarization at an 
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interface. These forms of polarization are best visualized in Figure 2.2. The other major drawback to 

direct current methods, is that high voltages (around 60 volts) are often necessary in order to negate 

noise on readings, which can emit heat generation which could potentially alter the microstructure of 

the specimen (Rajabipour 2005, ASTM 2019).  

Due to the limitations of direct current methods, alternating current methods are 

recommended for determining properties of concrete. Alternating currents can be applied at lower 

voltages (in the tens to hundreds of millivolts compared to tens of volts) which minimizes the concern of 

microstructure alteration due to heat transfer (Rajabipour 2006). Additionally, alternating currents avoid 

the issue of polarization since the polarization of the electrodes is shifted with the direction of the 

current, and the electrical properties of the concrete matrix are not influenced (Woo 2004, Solgaard 

2012, Layssi 2015, Tang 2016). 

Figure 2.2: Types of polarization that occur due to direct current excitation (Rajabipour 2005) 
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2.1.3 Electrical Impedance Spectroscopy 

 For a multi-phase material such as concrete, the electrical properties are an accumulation of the 

different materials, the volume ratio between the materials, and the formation of the microstructure 

(Macdonald 1987, Rajabipour 2006). At a single frequency of alternating current, different phases of a 

material vary in relaxation time, that is, time to equilibrium for each phase is different. Due to this 

nature of electrical response, a single phase of a material may find resonance and dominate the 

response at a given frequency (Rajabipour 2006). This knowledge can be utilized by taking 

measurements across a spectrum of frequencies to gather more information about the microstructure. 

This method, electrical impedance spectroscopy (EIS), also referred to as alternating current impedance 

spectroscopy (ACIS), is an alternating current method which works with both the real and imaginary 

impedances (Rajabipour 2004, Rajabipour 2006, Tang 2016, Hu 2019).  This is typically expressed in the 

form of a Nyquist plot, which has the two impedances on the horizontal and vertical axes, and typically 

includes two arcs, one corresponding to low frequency (in the mHz-kHz range), and one for high 

frequency (in the kHz-MHz range) (Rajabipour 2004, Rajabipour 2006). The low frequency arc displays 

information about the bulk-electrode interface properties, and the high frequency arc displays 

information regarding the bulk properties of the concrete. Typically, plots will look similar to that 

depicted in Figure 2.3, and can provide information on properties such as chloride ion permeability, 

freeze-thaw, creep, fiber dispersion and steel corrosion resistance (Woo 2004, Ravikumar 2013, Zhu 

2017, Hu 2019). In terms of equipment, a typical setup for electrical impedance spectroscopy may look 

similar to those depicted in Figure 2.4.  
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Figure 2.3: The theoretical (left) and measured (right) Nyquist plot from AC impedance spectroscopy 

(Ravikumar 2013, Zhu 2017). 

Figure 2.4: Typical EIS equipment setup for two-point (left) and four-point (right) measurements. 

(Rajabipour 2006) 
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2.1.4 Further Background on Alternating Current Methods 

There are several forms of application for alternating current methods used to determine 

physical properties of concrete (Layssi 2015, Azarsa 2017). As previously mentioned, the concept of 

impedance is used for electrical resistivity methods. This property, impedance, is denoted by the term Z, 

and can represented as a complex number.  

𝑍 = 𝑍 + 𝑗𝑍′′ 

This complex number is split into two properties, the real portion, the resistance Z’ or R, and the 

imaginary portion, the reactance Z’’ or X (Layssi 2015).  Alternatively, the impedance is often denoted as 

the absolute value of the impedance, |Z| and a phase angle, ø. By plotting these two terms, the 

resistance will be on the x-axis and the reactance will be on the y-axis as depicted in Figure 2.5 (Layssi 

2015, Shirisha 2019).  The resistance is the property of interest here, and can be found through the 

relation below. 

𝑅 = |𝑍| ∙ cos (∅) 

Often, the phase angle is small, thus when this is true, 

cos(∅) ≈ 1, 𝑍 ≈ 𝑅 

And Ohm’s law can be transformed into, (Rajabipour 2006, Layssi 2015, Shirisha 2019) 

𝑅 =  
𝑉

𝐼
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Figure 2.5: Graphical representation of the relationship between Impedance, Resistance, and Reactance 

(Layssi 2015)  

The resistance is a property that is dependent on the geometry of the specimen, thus the term 

resistivity ρ, is introduced to generalize the electrical properties of a specimen by the following relation: 

𝜌 = 𝑘 ∙ 𝑅 

where k is a geometric constant that is dependent on the geometry of the specimen or the method 

being used (Rajabipour 2006, Spragg 2013, Layssi 2015, Shirisha 2019). The geometric constant k will be 

discussed more when introducing applications for alternating current methods in section 2.1.5. The 

importance of the resistivity term will be revealed shortly; first some microstructural properties must be 

introduced.  

The resistivity, amongst other physical properties, is strongly influenced by two microstructural 

parameters, the connectivity and porosity. Connectivity is a value that portrays the interconnectedness 

of the pores within a pore system, while the porosity represents the ratio of pore volume to the volume 
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of the entire specimen (Spragg 2013, Shirisha 2019). Both parameters are independent of the specimen 

geometry, but due to the confusion caused by the similarities between the two, they are also combined 

by taking the multiplicative inverse of their product, which is denoted as the formation factor (Weiss 

2013, Layssi 2015, Shirisha 2019). This relation is shown in the equation below.  

𝐹 =  
1

𝛽ɸ
 

Where F is the formation factor, ɸ is the porosity, and 𝛽 is the connectivity. 

 The formation factor is included in the Nernst-Einstein relationship, which relates diffusion 

constants and the resistivity values of the specimen and the pore solution of the specimen. This 

relationship goes as follows: 

𝐷

𝐷
= 𝐹 =

𝜌

𝜌
 

Where 𝜌 is the effective or total electrical resistivity, 𝜌  is the resistivity of the pore solution, 𝐷  is the 

self-diffusion coefficient which describes how different ions make their way through dilute solutions, 

and D is the bulk diffusion coefficient (Weiss 2013, Layssi 2015, Shirisha 2018). Several studies have 

been performed showing that the formation factor is strongly correlated with microstructural 

properties, hence the interest in this value (Spragg 2013, Sallehi 2018, Weiss 2018). Figure 2.6 gives a 

visual depiction of the pore resistivity, porosity, and connectivity.  
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Figure 2.6: Microstructure parameters (a) pore solution resistivity (b) porosity and (c) connectivity 
(Spragg 2013) 

Another potential value of interest for resistivity measurements, is the determination of the 

tortuosity. The tortuosity term refers to the ratio of the length between the two probes being used, or 

length of the specimen, and the distance traveled through the specimen to get from one end to the 

other. This ratio can be represented by the equation below and this term is depicted in figure 2.7 

(Shirisha 2019).   

Ʌ =  
𝐿

𝐿

Where Ʌ is the tortuosity, L is the length of the specimen, and Le is the effective length, or length of the 

path traveled from one end of the specimen to the other.  
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Figure 2.7: Depiction of effective length Le, vs the length of the specimen L (Sharisha 2019) 

Often, in order to relate the tortuosity to the formation factor, another term, the tortuosity factor, is 

introduced, which can be determined by the equation below (Sharisha 2019). 

𝑇 =  (
𝐿

𝐿
)  

Where Tm is the tortuosity factor. The tortuosity factor can then be related to formation factor as 

follows: 

𝑇 =  ∅ ∙ 𝐹 

To this point in time, there is no known technique or measurement method that can estimate this 

factor, hence the introduction of this relation. Another form of tortuosity is the geometric tortuosity 

factor, which is simply the square of tortuosity, 

𝜏 =  Ʌ  

 This value is used in relation to the formation factor as follows:  

𝐹 =  
𝜏

ɸ 𝛿
 

and  
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ɸ  =  ɸ  +  ɸ  

 where ɸ  is the total porosity, ɸ  is the capillary porosity,  ɸ  is the porosity of the C-S-H gel pores, 

and 𝛿 is constrictivity (Sharisha 2019). The constrictivity is a parameter that characterizes the 

bottlenecking of the continuous pore system within a material, which is visually depicted in Figure 2.8. 

This parameter can be calculated by solving the below for constrictivity. 

𝛿 =  
𝜏

ɸ ∙ 𝐹

Figure 2.8: Visual representation of constrictivity (Sharisha 2019) 

2.1.5 Alternating Current Methods 

There are two primary AC methods used to determine physical properties of concrete, both 

depicted in Figure 2.9. The first of which is the uniaxial method. The uniaxial method, or bulk electric 

resistivity test, is the simplest of the options. This method is performed by placing two parallel metal 

plates with sponges on opposite sides of a concrete specimen. The sponges are used to create a proper 

electrical connection. An alternating current is then run through the concrete specimen and the change 

in potential is taken. The frequency range for this method is 0.1 kHz to 10 kHz. For this method, the 

geometric factor k is determined as  

𝑘 =
𝐴

𝐿



16 
 

 where A is the cross-sectional area of the specimen, and L is the length of the specimen. This method is 

often used for measuring chloride intrusion in concrete. The benefits of this method are that the 

method is very fast and simple. The downfalls of this method are that information can only be gathered 

on an existing structure if there are specimens poured from the same mix, or a chunk of the structure is 

taken out to make measurements on, which would make the test no longer a non-destructive 

evaluation. If specimens are poured from the same mix as the existing structure, they likely will not have 

endured the same environmental effects, which may alter the response (Rajabipour 2006, Spragg 2013, 

Layssi 2015, Azarsa 2017, Sharisha 2019). 

The second method is the four-point method. In the four-point method, or Wenner probe 

method, the apparatus aligns four equally spaced probes in an array. An alternating current is applied by 

the two outside probes while the two inside probes measure the potential, with acceptable frequencies 

ranging from 0.01 to 10 kHz. The geometric factor k is determined as  

𝑘 =  𝛾𝑎 

Where 𝛾 is 2π for most geometries and a is the spacing between probes (Rajabipour 2006, Spragg 2013,  

Layssi 2015, Azarsa 2017, Sharisha 2019). 

 

Figure 2.9: Electrical resistivity techniques: (a) uniaxial method; and (b) four-point (Wenner probe) 
method (Layssi 2015) 
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It should be noted that the depth of penetration for this is typically considered to be about half of the 

distance between the probes. The benefit of this method includes the ability to take measurements on 

any specimen given the specimen dimensions exceed that of the distance between the outside probes. 

The potential downside to this method is that several readings may be needed to get an accurate 

estimate of the total resistivity of a specimen since this method takes measurements within a local area 

(Rajabipour 2006, Lataste 2008, Spragg 2013, Layssi 2015, Azarsa 2017, Sharisha 2019).  

An emerging technique is one that is used in determining the orientation of steel fibers within 

concrete. The interest in determining fiber orientation in concrete is that the distribution and 

orientation of these fibers are known to have considerable impact on the mechanical properties of the 

material as a whole (Lataste 2008, Barnett 2009, Solgaard 2013, Martinie 2013). Lataste et al. propose 

determining a high or low resistivity axis (Lataste 2008). Since the conductivity of steel is several 

magnitudes higher than that of concrete, this axis represents the line of lowest or highest orientation of 

fibers, as the presence of fibers along an axis will significantly reduce the measured resistivity (Lataste 

2008, Barnett 2009).  It should be noted that the low resistivity axis represents the axis with a high 

alignment of fibers, and the high resistivity axis represents the axis with a low alignment of fibers, since 

metals are very conductive relative to concrete, and resistivity is the inverse of conductivity. This axis is 

determined by using a modified four-point method, with the probes oriented in a square formation, and 

rotating the center of the probe at angle increments, as depicted in Figure 2.10. In doing so, the 

resistivity can be determined at each point, and the magnitude of the measurement at each angle will 

represent how much fibers are aligned along the axis that is being measured (Lataste 2003, Lataste 

2008, Barnett 2009, Martinie 2013). Using the following relationship, the anisotropy can be found for a 

given area on a specimen:  

log(𝐴 ) = log (
𝜌

𝜌 ) 
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 where 𝜌  and 𝜌  are the resistivity in perpendicular directions. The value of 𝐴  expresses the anisotropy 

of the fibers, with a value of 0 representing complete isotropy 

 

Figure 2.10: Rotation method for fiber orientation determination (Lataste 2008) 

2.1.6 Factors Affecting Measurements  

There are several variables that are important to consider and control when taking electrical 

resistivity measurements. The first variable to consider is temperature. Changes in temperature can 

alter the ion mobility within a specimen, and as the temperature increases, the measured resistivity will 

decrease (Polder 2001, Rajabipour 2006, Spragg 2013, Solgaard 2013, Azarsa 2017). As previously 

mentioned, resistivity is a measurement of the ability of a material to withstand the flow of ions, so 

temperature’s ability to alter ion mobility will have a great effect on resistivity measurements. In 

general, a change in a single degree Celsius, will alter the measured resistance by 3% in wet specimens 

and 5% in dry specimens (Polder 2001, Layssi 2015, Azarsa 2017). A visual representation of the effect of 

temperature on measurements can be seen in Figure 2.11. This figure shows that about a 30oC change in 

testing temperature can double the electrical resistivity.  
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Figure 2.11: Influence of specimen temperature on measured resistivity (Spragg 2013) 

 Another important variable to consider is moisture content of the degree of saturation. The 

amount of moisture within concrete will determine the availability of fluid within the pore network of a 

specimen. This allows for increased ion mobility, and thus an increase in the degree of saturation will 

result in a decrease in resistivity. Based on a study by Larsen et al, a change in moisture content by 11% 

can triple the measured resistivity, and a 22% change can increase the measured resistivity six fold 

(Larsen 2006, Azarsa 2017). Due to the sensitivity of this variable, Weiss has introduced the concept of 

including a saturation factor defined by Archie’s law. This relationship is typically expressed by the 

following: 

𝑓(𝑆) = 𝑆  

where S is the saturation and m is archie’s constant, which typically ranges between 3 and 5 for 

concrete, and is determined experimentally (Weiss 2013). This saturation factor ranges from 0 to 1, with 

1 being at full saturation. This relationship is then used to normalize measured values of resistivity for 

moisture by the relationship: 
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𝐹 =
𝜌

𝜌
𝑓(𝑆) 

Another variable that affects resistivity measurements is one that has been briefly discussed, specimen 

geometry. As shown in section 2.1.5, the geometric constant k is dependent on the testing method and 

also dependent on the geometry of the specimen. For the four probe method, the geometric constant 

was given as 2π multiplied by the spacing of the probes. This is not entirely accurate for all geometries. 

A study by Morris et. Al. (1996) introduced a cell constant that should be introduced for uncommon 

cylinder dimensions, slightly altering the geometric coefficient. This cell constant is incorporated as 

follows: 

𝜌 =  
𝜌

𝐾
 

Where 𝜌  is the resistivity adjusted for the specimen dimensions, 𝜌  is the calculated resistivity, or 

resistivity displayed by industrial equipment, and K is the cell constant that adjusts display resistivity. 

The values of K can be seen in the plots of figure 2.12.  

 

Figure 2.12: Values of cell constant K for adjusted resistivity (Morris 1996) 
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2.1.7 Past Attempts to Isolate Variables 

In this study, the use of a multi method system will be implemented with the intent to gather 

more information by correlating the two methods applied to the same sets of specimens. Studies in the 

past have attempted to isolate variables in order to make predictions on the characteristics of concrete, 

dating back to the 1920s when electrical resistivity was used to estimate the setting time of cement 

paste (Shimizu 1928). These studies have had varying levels of success, which is what gives credence to 

the attempt to do so here, but with the application of the multi-method system concept, which may 

open the door to gathering more information on concrete while exhausting less resources than what 

would otherwise be required.  

There are already existing standards for using electrical resistivity to estimate rapid chloride 

intrusion in concrete using the bulk resistivity method (ASTM 2019).  Weiss investigated the relationship 

between the formation factor and the rapid chloride penetration test, proposing that formation factor 

replace the test due to mathematical equivalence (Weiss 2016, Weiss 2018). Weiss also estimated the 

time before repairs due to corrosion to concrete based on the formation factor of the concrete (Weiss 

2017, Weiss 2018).  

Many studies have investigated the development of electrical resistivity and conductivity as 

concrete and cementitious materials age (Hansson 1983, Li 2007, Sant 2010, Weiss 2013, Sanish 2013, 

Sharisha 2017). These studies found a steep increase in resistivity initially, which then plateaus similar to 

the compressive strength of concrete as age of concrete increases. 

Other studies investigated the relationship between resistivity and porosity. Sanish et al. 

estimated the early age porosity of cement-based materials using electrical conductivity via Archie’s 

Law, Generalized Effective Media and the Bruggeman-Hanay Model (Sanish 2013). Zaccardi et al. and 
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Sant el al. investigated the relationship between porosity and resistivity values (Sant 2010, Zaccardi 

2014).  

Sallehi et al. summarized the past attempts to predict the formation factor using porosity, 

Maxwell proposed a relationship between these two values in 1904 as:  

𝐹 =  
3 −  ɸ

2ɸ
 

Slawinski proposed a relationship for solid soil particles in 1926 as: 

𝐹 =  
(1.3219 − 0.3219ɸ)

ɸ
 

Archie’s law was applied for this relationship in 1942 as: 

𝐹 =  ɸ  

Where m is Archie’s constant and typically ranges between 3 and 5 for cementitious materials. This 

equation was then modified by Atkins and Smith to include a coefficient representing the geometric 

tortuosity of porous materials as 

𝐹 =  Aɸ  

where A is the geometric tortuosity coefficient (Maxwell 1904, Slawinski 1926, Archie 1942, Atkins 1961, 

Sallehi 2018).  

 Another variable that has been investigated in regards to resistivity is moisture. Weiss et. al. 

(2013) introduced the saturation function as previously mentioned. Henkenseifken et. al. (2009) 

compared the electrical resistivity of cement mortar to water-cement ratio, which found that the 
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greatest change in resistivity occurred at the lowest water-cement ratio and the change is resistivity is 

relatively small at greater water-cement ratios (Spragg 2013). 

Overall, all these studies are what garner the confidence to isolate variables in this thesis. 
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2.2 Ultrasonic Wave Propagation  

Ultrasonic wave propagation is a non-intrusive, non-destructive evaluation technique that has 

been applied to a variety of materials since the 1900’s. Early on, some of the greatest successes of 

ultrasonic wave propagation resided in metals. Studies such as Bratina et al. (1962) and Joshi et al. 

(1972) assessed the damage to metal that had undergone fatigue damage by measuring the attenuation 

of longitudinal waves. Attenuation is a characteristic of a material that refers to the energy loss by an 

ultrasonic wave when the wave is sent through it. This will be discussed more in depth later in this 

chapter. In such studies, the most abundant mechanisms of degradation were in the form of micro 

cracks and non-linear deformation, which concrete structures experience as well. Additionally, more 

success using attenuation was found, in the manner of determining the pore size distribution of 

polycrystalline materials in some metals (Papadakis 1968). Theoretical background on determining flaws 

in metals through the use of ultrasonic wave propagation can be found through many studies such as 

the one performed by Roney (1950). For general background on ultrasonic wave propagation in solids, 

the reader is referred to the reading by Kolsky (1963). Further studies of ultrasonic wave propagation 

have been performed to the likes of measuring the multiple scattering of linear waves in composite 

materials which allowed for the determination of fiber interaction and average strain (Yang 1994).   

2.2.1 Ultrasonic Wave Propagation in Concrete 

In comparison to the early success of ultrasonics in metals, advances in the evaluation of 

concrete through ultrasonics methods have been much fewer. This lack of success stems from the 

challenge of defining microstructural properties for a material with its components randomly scattered 

throughout.  On a large scale, in the range of meters, concrete can be considered homogeneous, but on 

the microscopic scale, the range of air voids, aggregates, and reaction products within the cement 

matrix can make characterization a troubling task. The length scale of different materials within 

cementitious mixtures are depicted in figure 2.13.  
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Many studies have attempted to define physical and microstructural properties of concrete 

through the means of ultrasonic measurements.  To begin, an understanding of the effect of each of the 

particles within concrete, in addition to the cracks of varying sizes and abnormalities, along with their 

interactions, are vital to the utilization of these techniques. Some older studies have attempted to 

analyze concrete using ultrasonic attenuation and dispersion. Suaris et al. (1985) performed 

compression tests on concrete specimens with a ring attached to hold a transducer around the 

circumference of a concrete cylinder. The results of this study found a significant change in the 

amplitude of waveforms and a miniscule change in ultrasonic wave velocity. This demonstrated the 

potential for using ultrasonic attenuation to measure damage in concrete specimens that are 

undergoing cyclic loading cycles. Landis et al. studied the effect of aggregates on the scattering of 

longitudinal waves.  

Figure 2.13: Length Scale of Substances within Cementitious Materials (Punarai 2006) 

This research found a link between the characteristics of attenuation and the inhomogeneity of the 

concrete (Landis 1995). More recent studies have continued the trend of attempting to determine the 

relationship between characteristics of attenuation, and microstructural properties of materials, such as 

strength and porosity. Abdullah and Sichani performed a study on the relationship of attenuation 
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coefficients and different properties of cement and plaster. The results of this study found that varying 

types of cement and water cement ratios affected the values of attenuation (Abdullah 2009).  

Popovics et al. performed a test using one sided measurements to measure the velocity of 

longitudinal waves and Raleigh waves, which found that one sided methods could find comparable 

results to that of through transmission methods (Popovics 1998). Yamen et al. compared the differences 

between the direct and indirect methods in finding ultrasonic pulse velocity. In doing so, this study 

found that the error between the two methods for determining the ultrasonic pulse velocity was about 

2% (Yaman 2001). The conclusion from this is that the two methods can be interchangeable for such 

purposes, and the decision regarding which method to use should be based on other factors. 

Kewalramani et al. introduced artificial neural networks for analysis of ultrasonic data in concrete. This 

study investigated the relationship between the compressive strength of concrete and ultrasonic pulse 

velocity. This study found that the ultrasonic pulse velocity could predict the strength of concrete with 

an error of less than 25% for most values (Kewalramani 2006).  Aggelis et al. combined ultrasonic pulse 

velocity with acoustic emissions. The acoustic emissions method is one that utilizes sound waves to 

determine cracks and other flaws. This study found that the combination of the two worked very well in 

conjunction. The ultrasonic pulse velocity was effective in finding existing cracks within specimens, while 

acoustic emissions was useful for finding the smaller, more active cracks during loading (Aggelis 2009). 

Laskar et al. performed a study on the effect of flaws on ultrasonic pulse velocity. This study found that 

ultrasonic pulse velocity was significantly affected by flaws. This being said, the effect of flaws a depth of 

300 mm from the surface had negligible effects (Laskar 2020).  Gebretsadik et al. (2021) studied the 

effect of steel fibers on ultrasonic pulse velocity. This study found that the ultrasonic pulse velocity 

increased up to a fiber content of 2%, and then would decrease thereafter. All of these studies are 

relevant to this thesis as this thesis will also focus on the ultrasonic pulse velocity as one of the 

characteristic values from ultrasonic measurements.  
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Shah et al. (2000) studied the effect of strength on ultrasonic measurements. In this study, it 

was found that signal transmission is much more sensitive to changes in strength, while pulse velocity 

was changed much less. The study finds that a 25% reduction in the Young’s modulus results in only a 

3% change in ultrasonic pulse velocity, while the signal transmission was affected by 31%, and as this 

reduction continues, so does the disparity. This study also assessed the effects of microcracks on these 

values. Isleyici (2005) studied the effect of surface roughness on ultrasonic measurements. This study 

found that as the surface roughness increased, the transmitted sound pressure decreased. This was an 

expected outcome due to the energy loss of scattering. This study also found that lower frequency 

transducers were less affected by the surface roughness compared to higher frequency transducer. 

Along with this, the conclusions of this research suggest utilizing at least two different measurement 

frequencies in order to correct for the error caused by surface roughness.  Aggelis et al. (2007) 

performed a study with the intent of evaluating the effectiveness of large crack maintenance on bridges. 

This was done by evaluating the transit time of Raleigh wave and longitudinal waves before and after 

the crack was filled with epoxy or any other fill. This study found a significant reduction in transit time 

for the two waves after the fill was placed, indicating that the entire void was filled and effective. Zamen 

(2000) analyzed crack growth using fractal analysis of ultrasonic waves as a means of damage 

assessment. This study analyzed data in phase-space rather than the frequency domain, which 

prevented the loss of data by working in the frequency domain. Lootens et al. (2020) utilized the 

reflection method for measuring the strength of concrete over time during quasi static compression 

tests. This study took advantage of the ultrasonic equipment’s ability to constantly measure with proper 

setup. The conclusion of this study was that the reflection method is viable for normal concrete, but 

further study would have to be done to determine the efficacy of this method for high performance 

concrete. Alnuaimi et al. (2021) also monitored concrete, but monitored the curing of concrete, using 

linear and nonlinear methods. This study found that both linear and nonlinear methods are viable 
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methods for monitoring the curing of concrete. All of these studies are important to this thesis, from 

considering the effect of strength on ultrasonic measurements, to effects of surface roughness, and 

monitoring of concrete using ultrasonic measurements. 

Many studies have investigated the ultrasonic spectral energy density and the ability to fit this 

curve to coefficients of attenuation. Weaver (1998) studied the spectral energy density in aluminum 

foam. This study concluded that values were reasonable given the limited knowledge of the theoretical 

background at the time. Since then, Anugonda (2001) studied scattering in concrete, Becker et al. (2003) 

introduced glass bead aggregates to further influence scattering, Punurai et al. (2007) studied the 

diffuse ultrasound, and Deroo et al. (2009) studied diffuse ultrasound for damage assessment. All the 

aforementioned research serve as the basis for the two studies that this thesis mimics most for the 

ultrasonic testing. These studies, Hassefras, (2019) and Landis et al, (2020) compare diffuse ultrasound 

and X-ray CT. The principles of ultrasound used in these studies are laid out in the next section. 

2.2.2 Principles of Ultrasonic Testing 

Ultrasonic testing using mechanical waves, juxtapose to the electromagnetic waves that X-ray 

techniques utilize (Krautkramer 1968). These waves consist of oscillations of discrete particles that 

propagate along a direction.  These waves are governed by three equations of motions in isotropic 

elastic solids, one for each of the three principle axes. These three equations can be manipulated to 

produce the wave equation, which is the equation shown below (Kolsky 1963). 

𝜌
𝜕 ∆

𝜕𝑡
= (𝜆 + 2𝜇)∇ ∆ 

Where ρ is the material density, ∆ is the dilatation, or sum of the strains along each axis, λ is Lame’s 

constant, 𝜇 is the rigidity modulus, and ∇  is the Laplacian operation. Through this equation, it is found 
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for extended elastic mediums that for waves with no rotation, the waves will travel with velocity c1, and 

waves with no dilatation travel at velocity c2 as defined by the equations below (Kolsky 1963). 

𝑐 = [
𝜆 + 2𝜇

𝜌
]

𝑐 =  (𝜇/𝜌)

The first type of wave is known as a irrotational wave, more commonly known as a dilatation wave, or a 

P-wave. The second type of wave is known as a equivoluminal wave, more commonly known as a

distortion or S-wave. These two types of waves are the only two types of wave to exist for isotropic 

solids that are unbounded. For the case of mediums bounded on a surface, Raleigh waves may 

propagate. Raleigh wave effects decrease significantly with depth, and have the characteristics of 

propagating at a notably lower velocity (Kolsky 1963). There are two primary forms of propagation in 

waves. The first is longitudinal waves, which oscillate the same direction as the direction of propagation. 

The second type of propagation include transverse waves or shear waves, which oscillate perpendicular 

to the direction of propagation, as depicted in figure 2.14.  

Figure 2.14: Depiction of longitudinal wave (top) and shear wave (bottom) (Krautkramer 1968) 
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 Knowledge of the different types of waves are important to understanding the causes of energy 

loss in mediums such as concrete. The law of refraction is an important concept to understand for 

scattering within heterogeneous materials. When a wave meets an interface, it meets at an angle of 

incidence, often transcribed as 𝛼 . This event results in a reflected wave and a refracted or transmitted 

wave. The angle at which these waves travel relative to the boundary are governed by the general law of 

refraction as shown below. Further explanation of this concept is depicted in Figure 2.15.  

sin 𝛼

sin 𝛼
=  

𝑐

𝑐
 

Where I and II denote the two waves involved in either a reflection or refraction scenario, 𝛼 correspond 

to the angle of incidence, reflection, or refraction, and c is the acoustic velocity (Kolsky 1962, 

Krautkramer 1968). Often, both reflection and refraction will occur in these situations, with the 

exception of these circumstances occurring at critical angles, although critical angles are not germane to 

this thesis as they are a special case of the law of refraction. 

 

Figure 2.15: Depiction of the law of refraction (Krautkramer 1968) 
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2.2.3 Attenuation 

As previously mentioned, attenuation is a measurement of energy loss for mechanical waves, or 

the decay rate of the total energy as a wave propagates through a material. Attenuation is often caused 

by inhomogeneity within a medium, thus for a material such as concrete, attenuation can be important 

to a higher level of understanding of concrete microstructure using ultrasonic measurements. Thus, 

research such as this study attempt to further understand the relationship between these characteristics 

of attenuation and microstructural properties of concrete. In general, attenuation can be categorized 

into two separate classes, intrinsic attenuation, and extrinsic attenuation.  

The most prominent form of extrinsic attenuation is beamspreading. Beamspreading refers to 

phenomenon that occurs in transducers of finite size. Transducers emit a wave field when activated, and 

depending on the ratio of the diameter of the transducer to the wavelength of the mechanical waves 

being propagated, a radiation pattern may cause a strongly divergent wave field. The approximate 

pressure wave in a wave field at point x is defined by the relation below. 

𝑝(𝑥) =  𝑝  ∙
𝜋𝑑

4 ∙ 𝑥 ∙ 𝜆

Where 𝑝  is the initial pressure produced by the transducer. This equation shows that increasing the 

diameter to wavelength ratio results in a higher pressure. The equation below represents the pressure 

wave reduction due to beamspreading (Punurai 2006): 

𝑝(𝑥) = 2𝑝 ∙  sin (𝜋
𝑑

𝜆
0.25 +

𝑥

𝑑
−  

𝑥

𝑑
) 

where d is the diameter. As shown in this equation, the diameter to wavelength ratio greatly affects the 

pressure reduction due to beamspreading (Punurai 2006). This equation can be better understood using 

Figure 2.16 which depicts how the divergence of the wave field are dependent on the relationship 
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between the diameter and wavelength. As shown in this figure, there is a significant reduction in the 

divergence of the beam by tripling the diameter to wavelength ratio (Punurai 2006).  This all being said, 

the extrinsic attenuation is independent of the material and its properties, making it of less significance 

for this study.  

 For intrinsic attenuation, there are two primary mechanisms in play, absorption and scattering. 

Absorption characterizes dissipation of energy in mechanical waves.  For linear elastic materials, the 

energy that would be dissipated can be stored without loss, as the material is elastic. This being said, 

concrete is often categorized as a viscoelastic material due to its varying phases.  

 

Figure 2.16: Effect of beamspreading based on diameter to wavelength ratio 
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As a result, the relationship between stress and strain become dependent on time, causing the 

hysteresis effect (Punurai 2006). In short, the strain is not able to keep up with the alteration in stress 

throughout the specimen, which causes friction between the strain regions. This friction creates 

temperature gradients, and such energy attributing to temperature gradients results in permanent 

energy loss.  

Scattering is an effect that occurs at boundaries between materials of differing elastic 

properties, and refers to the dispersion of ultrasonic waves within a medium. This form of attenuation is 

important in concrete, due to the distributed phases throughout the material (aggregates, cement, 

water, voids, etc.). Scattering can present itself at any inhomogeneity within a medium, and for low 

spatial densities, the loss due to a single scatter event is independent of that of others. The loss due to a 

single scatter event can be quantified by what is known as the single scattering theory (Roth 1993, 

Punurai 2006). Thus, the effect produced from single scattering events is the summation of the 

individual single scattering events. Although, waves may experience multiple scattering events, 

especially in a medium such as concrete, which introduces the multiple scattering effect, making the 

evaluation of scattering significantly more complicated (Punurai 2006, Hassefras 2019).  For these 

theories, scattering is assumed to be isotropic, meaning the waves scatter equally in every direction, 

rather than anisotropic. The difference between these two are depicted in Figure 2.17. 

Figure 2.17: Isotropic scattering (left) and anisotropic scattering (right) 



34 
 

2.2.4 Ultrasonic Testing Methods 

 There are three primary testing methods for ultrasonic wave propagation. While there are other 

less common test methods such as noncontact methods (Ongpeng 2018) and wave reflection method 

(Lootens 2020), this section will go over the more prominent testing methods: direct transmission, 

indirect transmission, and semi-direct transmission method (Laskar 2020). All three methods utilize two 

transducers in a pitch-catch arrangement as shown in Figure 2.18. 

 The direct transmission method aligns the ends of the two transducers on parallel sides of the 

specimen. This method sends the ultrasonic waves directly from the transmitting transducer to the 

receiving transducer. The indirect transmission method applies the transmitting and receiving 

transducers to the same side of the specimen, which is useful in the field when only one side of the 

specimen is available. The indirect method can also be applied by angling the transmitting transducer. 

The semi-direct transmission method involves setting up the two transducers on adjacent sides of the 

specimen. For all three methods, the length defined as L for the ultrasonic pulse velocity is simply the 

distance between the heads of the transducers, as defined in Figure 2.18.  
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Figure 2.18: Schematic of Common Ultrasonic Testing Techniques 
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CHAPTER 3   

METHODS, DATA ANALYSIS, AND RESULTS BY EXPERIMENT  

This chapter will go through each separate experiment in this thesis, starting with the 

methodology and background that gives credence to performing the experiment, followed by the 

specimen preparation, equipment used, results, discussion, and a reflection on the problems that 

occurred with some insight as to how to improve on the experiments for future research. 

3.1 Experiment 1: Fiber Orientation 

3.1.1 Methodology 

The first experiment began in February 2021. The methodology of this test was similar to that 

described in section 2.1.5, but due to the available equipment at the time, a Wenner probe was used 

oppose to the four-probe square array which is the recommended configuration. This methodology 

follows that of Lataste et al. and Barnett et al. and will be further described below (Lataste 2008, Barnett 

2010). The hypothesis for this test was that for specimens without steel fibers, there would be no 

apparent resistivity axis, as there was not steel fibers to greatly influence the resistivity along an axis, so 

there would only be minor differences due to the anisotropic and heterogeneous nature of concrete. 

For specimens with fibers, there would be local resistivity axis along the flow of the concrete when the 

concrete was poured.  

 The methodology for using electrical resistivity to determine fiber orientation in concrete 

involves taking several measurements at individual points on the specimen, but at varying orientations. 

As proposed by the aforementioned studies, one means of doing so is to take several points on the 

surface of the specimen, then rotate the measurement device about this point, taking measurements at 

22.5o increments until a complete rotation about the center point is complete. After doing so, plotting 

the value of the resistivity in polar coordinates, with the angle corresponding to which it was taken at, 
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can allow for the visualization of a resistivity axis. Such a resistivity circle may look similar to that seen in 

Figure 3.1.  

Figure 3.1: Visual Representation of a Resistivity Axis (Lataste 2010) 

The importance of the resistivity axis, is that this axis represents the direction for which there is 

the smallest density of fibers oriented parallel to that direction. This is known due to the difference in 

resistivity between concrete and steel fibers (Barnett 2008, Lataste 2010, Martinie 2013). Intuitively, 

metals are typically quite conductive materials, while concrete is not a conductive material. 

Alternatively, concrete is a material that records high values of resistivity, while steel records low values 

of resistivity. Knowing this, the presence of steel fibers within concrete will affect the measured values 

of resistivity (Martinie 2013). If the steel fibers within a concrete specimen are oriented along the axis 

for which measurements are being taken, then the effects of the steel fibers will be great. In such a case, 

the apparent resistivity will be much less than that of concrete without steel fibers embedded. 

Alternatively, if the orientation of the steel fibers is perpendicular to the axis that the current is being 

injected into, then the measured resistivity will be similar to that of concrete without fibers. Thus, 

plotting this will reveal the axis for which the resistivity is highest and lowest, or where the fiber 

orientation density is lowest and highest. By doing this at multiple spots on the surface of a concrete 
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specimen, the local orientation of fibers at each point can be made, and a general idea of global fiber 

orientation can be obtained.  A visual representation of this can be seen in Figure 3.2. 

 

Figure 3.2: Global fiber orientation on a concrete plate (Lataste 2010) 

 This method of measuring at incremental orientations allows for the calculation of anisotropy. 

Anisotropy is a measurement of how equally dispersed the fibers are within a concrete specimen. 

Isotropy would be achieved if all fibers and physical properties of the concrete were dispersed equally in 

all directions, which would equate to a value around 0.5 for anisotropy based on different models 

(Martinie 2011, Martinie 2013). For a heterogeneous material such as concrete, along with fibers 

embedded within the concrete, this is an extremely unlikely event. Thus anisotropy is measured in order 

to get an idea of the fiber dispersion locally, and then globally by means of a collective set of local 

anisotropies. Martinie proposed that anisotropy is measured as the ratio of conductivities along 

perpendicular axes, as shown in the equation below: 

log 𝐴𝑛 =  log
𝜎

𝜎
 

Where 𝐴𝑛  is the anisotropy at the ith point, 𝜎  and 𝜎  are perpendicular conductivities of the ith axis 

(Martinie 2013). 
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3.1.2 Specimen Manufacturing and Curing 

For the choice of mix, ultra-high performance concrete (UHPC) was used. The exact mix 

proportion used is tabled in Figure 3.3. The procedure for creating the specimens started by equipping 

the proper safety equipment, which included closed end shoes, long sleeve clothes, and an N95 mask to 

filtrate the silica particles. Additionally, the dusk collector was turned on to further decrease the 

likelihood of inhaling silica particles. Then, one of the homemade wooden molds was placed inside a 

large trash bag. The dimensions of the molds and the use of the large trash bag will be discussed later in 

this chapter.  Next, the components of the mix were weighed on an electrical balance. To do so, buckets 

were placed on the electrical scale and tared, then the component would be added until reaching the 

desired mass. The bucket would then be placed under a dusk collector. The water and ADVA 198 were 

weighed last to avoid the effect of evaporation which could have caused there to be a loss of mass for 

the water component of the mix.  

Mix Component Mix Proportion Mass (lb) Mass (g) 
Portland Lime Cement 1 7.240 3284.1 
Silica Fume 0.176 1.274 578.0 
Silica Sand 1.234 8.935 4052.6 
ADVA 198 0.032 0.232 105.1 
Water 0.234 1.694 768.5 
Steel Fibers 0.007 0.051 23.0 
Total 2.683 19.426 8811.3 

Figure 3.3: Mix proportions for high performance concrete 

For mixing, a large BakeMax BMPM012 12-quart planetary mixer device was used. First, the dry 

ingredients of the mix were poured into the mixing bowl in the order of silica fume, Portland lime 

cement, then silica sand. After the components were added, the mixing bowl was then attached firmly 

to the mixer, and the flat beater was attached. The mixing bowl was then elevated using the crank such 

that the flat beater almost touched the bottom of the mixing bowl. For heavier loads, wooden boards 

were placed under the mixing bowl in order to support the mixer apparatus in holding the mixing bowl 
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up while mixing. This setup can be seen in Figure 3.4. Then, the planetary mixer was turned on low until 

the dry components were sufficiently blended. The mixer should be put on low for mixing the dry 

components as the increased kinetic energy at higher mixing settings can cause the dry components to 

spill out of the mixing bowl. Next, the water and ADVA 198 were mixed together in a separate container. 

Then, approximately half of this mix was added to the dry components and mixed in the large mixing 

bowl. At this time, the mixing setting was increase to give the mixer more power for blending the mix 

components. Following this, the water and ADVA 198 mixture was slowly added to the mixing bowl 

while mixing, until the mix began to “kick over.” The term ‘kick over” describes the moment when the 

UHPC mix begins to flow into a liquid-like material. This typically requires approximately 80-85% of the 

water and ADVA 198 mixture based on the proportions in Figure 3.3. At this time, if fibers were included 

in the mix design, they were added to the mixer. For this experiment, one specimen was made with 

fibers and one was made without fibers due to the availability of the mix components. Shortly after this, 

the mixer was turned off and the mixing bowl was removed from the mixer apparatus. The mixing bowl 

was then poured into the wooden mold, and the location(s) from which the mix was poured was marked 

on the plastic bag on the wooden mold. Then, the mold was placed into the wet room. The following 

day, the mold was removed from the wet room and hit on the bottom side with a hammer until the 

concrete specimen fell out of the mold. The specimen was then marked where the concrete had been 

poured from. The specimen was then placed in the wet room until measurements were taken.  
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Figure 3.4: The BakeMax planetary mixer setup for mixing HPC 

The inner dimensions of the mold were selected to be 12”x12”x1.5” for the concrete panels. The 

thickness of 1.5” was chosen to allow for adequate depth of penetration for electric currents. For the 

Resipod surface resistivity device that was already in stock, the distance between probes was about 1.5” 

inches, and the depth of penetration for surface resistivity probes is generally considered to be half to 

the entire distance between probes (Lataste 2008). Since the forms were made from wood, using form 

oil would likely require the disassembly of the entire mold for each use to get the specimen out of the 

mold. Alternatively, by placing the mold inside a large plastic trash bag, the concrete does not form a 

strong connection to the plastic bag and can be removed from the mold without disassembly.  
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3.1.3 Procedure 

As described in section 3.1.1, for each specimen, measurements were taken at several locations 

at degree increments. An example of what this looks like is displayed in Figure 3.5. The measurements 

from this experiment were performed the day after the specimens were cast. To begin this procedure, 

the locations to take measurements at were marked on each specimen. This was first done by making a 

circle around the measurement point using a compass and pencil. Then, using a protractor, the angle 

increments were marked on the circle using a marker. Following this, a container was filled with water 

to a few inches in depth. Due to availability, a Proceq Resipod wenner probe device was used. The 

probes of this device were submerged into the container of water in order to fill the reserves before use. 

Filling the reserves with water allow for a more sufficient electrical connection (Proceq 2017). Following 

this, measurements were taken along the four circles shown in Figure 3.5 at each angle increment using 

the Resipod device. Measurements were recorded in a lab notebook for each angle.  

 

Figure 3.5: A wooden mold (left) and a sample specimen with circle markings (right) 
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3.1.4 Data Analysis and Results 

The data analysis was performed on the experimental data following the procedure from 

section 3.1.3. This analysis was done using Microsoft Excel. First, this data was converted from polar to 

Cartesian coordinates, and plotted for each circle. This is done simply using the following relations: 

𝑥 = 𝑟 ∙ 𝑐𝑜𝑠∅ 

And… 

𝑦 = 𝑟 ∙ 𝑠𝑖𝑛∅ 

An example of what one of these plots would look like can be seen in Figure 3.6. The plot on the 

left is from a specimen without fibers, and the plot on the right is from a specimen with steel fibers. 

Theoretically, the plot without fibers makes sense, due to the lack of steel fibers, there should be no 

apparent resistivity axis and the resistivity should be similar along every orientation. For the specimen 

with steel fibers, since the concrete was poured into a single corner of the mold, it would be anticipated 

that there would be a resistivity emanating from that corner from which the concrete was poured. 

Based on Figure 3.1 from section 3.1.1, there would appear to be no dominating or clear resistivity axis 

yet again. To add more context, the four resistivity circles for the specimen with steel fibers are overlaid 

onto the specimen in Figure 3.7.  This figure indicates that there is no apparent global resistivity axis that 

can be determined based on the data from this procedure. In the figure, the red star designates the 

corner from which the UHPC mix was poured from, and one would anticipate that the fibers would align 

along the direction of the flow until the edges where the wall effect may take place (Lataste 2008, 

Bennet 2010). The wall effect is a boundary condition that will cause fibers to align parallel to a surface 

of the mold as the mix approaches the boundaries of the mold itself. This effect was avoided by taking 

measurements closer to the center of the specimen, as this effect typically only occurs on the edges of 
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the specimen where the walls of the mold existed during pouring. Regardless, it is evident that the 

results for this experiment are inconclusive. 

 

Figure 3.6: Resistivity vs orientation plots for specimens without fibers (left) and with steel fibers (right) 

 

Figure 3.7: Resistivity vs orientation plots overlaid onto plate specimen 
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3.1.5 Conclusions 

The hypothesis for this experiment was that there would be resistivity axes for specimens with 

fibers, and there wouldn’t be any for specimens without fibers. Based on figures presented, the 

hypothesis for the specimens without fibers was reinforced, but the hypothesis for specimens with steel 

fibers was not. There are several possible reasons for why the results from this test were found to be 

inconclusive, one of which could be that the fibers were dispersed in a fairly isotropic manner. This 

would be unlikely, especially due to the fact that the fibers were all poured from the same location in 

the mold. Alternatively, as suggested by Lataste et al. (2008), the Wenner probe may have too much 

interference and polarization for these measurements due to the linear array of probes. Thus, the 

implementation of a square formation of the probes may be more suitable for such experiments. 

3.1.6 Plans for improvement 

As discussed in section 3.1.5., the most logical plan for improvement upon this experiment 

would be to choose a new apparatus to take measurements with. Due to the success of Lataste et al. 

(2003, 2008), it would seem that the four-probe square device would be the most logical means of 

determining the fiber orientation within the plate specimens. The device used in these studies appears 

to be a Megger DET5/4D earth tester, as shown in Figure 3.8. At the time of this study, this model was 

discontinued and considered obsolete, so the plan for improvement was to obtain a newer model of this 

device and manufacture a four-probe square device. 
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Figure 3.8: Image of the four-probe square device (Lataste 2003) 
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3.2 Experiment 2: Multi Method Setup 

3.2.1 Methodology 

 The second experiment of this thesis took place in September 2021. The methodology of this 

section combines the non-destructive evaluation techniques of electrical resistivity and ultrasonic wave 

propagation. The purpose of doing this is based in the belief that a single non-destructive evaluation 

technique is not sufficient enough to extract all of the desired information out of a specimen. The 

concept of using a multi method system is not a novel concept in the evaluation of concrete, as several 

studies have investigate concrete in this manner with varying success. (Zhang 2007, Rivard 2009, Vesely 

2014, Vesely 2015, Mazloom 2017). 

For electrical resistivity, the uniaxial method was used. As discussed in section 2.1.5, the uniaxial 

method involves placing specimens between two metal electrode plates, and measuring the resistance 

through the specimen. This method was selected due to its easy application for the specimen 

dimensions chosen, along with the availability of existing equipment.  The primary property of interest 

for these measurements was the formation factor of the concrete. As previously discussed, the 

formation factor is a property combining microstructural properties of concrete, and is representative of 

the state of the pore system within a specimen. The means by which the formation factor was 

determined will be thoroughly explained in section 3.2.3. 

For ultrasonic wave propagation, the direct transmission method was used. As discussed in 

section 2.2.4, this method involves setting up transducers on parallel sides of the specimen, with one 

transducer outputting ultrasonic waves (the transmitting transducer), and the other transducer 

receiving the ultrasonic waves after they have passed through the specimen (the receiving transducer). 

The properties of interest for this method were ultrasonic pulse velocity, attenuation coefficient, the 



48 
 

diffusivity coefficient, and the disspation coefficient. The means by which these properties were 

determined will be explained in section 3.2.3. 

 The hypothesis of this experiment, was that by combining these two non-destructive evaluation 

techniques on specimens of varying curing age and water content, that a relationship between the two 

methods could be found that would allow for the determination of more information on the properties 

of the material being tested.  

3.2.2 Specimen Manufacturing and Curing  

In order to achieve the proposed hypothesis, concrete mixes of varying water-to-cement ratios 

were used. To cover the wide range of water-to-cement ratios used for common concrete mixes, water-

to-cement ratios of 40%, 50%, and 60% were used for these specimens.  The proportions of each 

component for the different concrete mixes were determined using the procedure outline by Landis 

(Landis 2017). These proportions can be found in the table below.   

Mix Component Proportion: 40% W/C Proportion: 50% W/C Proportion: 60% W/C 

Water 0.082 0.083 0.083 

Cement 0.206 0.165 0.138 

Course Aggregate 0.444 0.447 0.449 

Fine Aggregate 0.269 0.305 0.330 

Figure 3.9: Concrete mix proportions by mass, with 3% air entrainment. 

For the mixing procedure, the specifications laid out in ASTM C192 were followed. First, form oil 

was applied to the inside of the molds, and the hole on the bottom of the molds was taped over. For this 

experiment, 4”x 8” cylinder molds were selected. Next, the mix components were weighed out 

individually using empty buckets and a scale. Mix components were weighed out in grams. For mixing, a 

large concrete mixer from Multiquip was used, as shown in Figure 3.10.  First, the course aggregate was 
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added to the mixer. Following this, approximately 30% of the water component was added and the 

mixer was turned on. After the mixer was turned on, the rest of the mix components were added to the 

mixer in the order of fine aggregate, cement, and the remaining water component. The mixer was left 

on for the next three minutes, then turned off for three minutes. During the rest period, concrete was 

scraped off the inside of the mixer using a large aluminum utility scoop to free up some of the mix that 

was stuck to the mixer, and maintain the proper mix proportions. Following the rest period, the mixer 

was turned on for another two minutes, and then the mix was poured into a large plastic bin. The bin 

was then moved next the vibration table. The mix was then poured into the cylinder molds in three lifts. 

After each lift, the cylinders were placed on the vibration table and the table was turned on briefly. 

Following the third lift, the molds were moved into the wet room. In total, there were five specimens for 

each mix. 

Figure 3.10: Mixer used for creating concrete specimens 
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The next day, the molds were removed from the wet room and the tape was removed from the 

bottom of the molds. Then, pressurized air was used on the hole in the bottom of the molds to facilitate 

pushing the concrete specimen out of the mold. The specimens were then marked based on their mix 

and curing conditions. The naming for the concrete cylinders were determined based on the following 

pattern, first the water-to-cement ratio as a percent (40, 50, 60), followed by the curing condition (A for 

air dried, B for lime bath, and S for sealed), and finished with the specimen number for this group (01 or 

02).   

As previously stated, the curing conditions for the specimens fell into three groups, air dried, 

lime bath, and sealed. The air dried specimens were stored in Boardman hall room 120, the sealed 

specimens were wrapped with plastic wrap, and the lime bath specimens were placed in an enclosed 

lime bath located in the concrete lab in the basement of Boardman hall.  The purpose of using these 

different curing conditions was to take measurements on specimens under a variety of water contents. 

The specimens kept in the lime bath would be the specimens with the highest degree of saturation, as 

they were constantly submerged in water, the sealed specimens maintain approximately the same 

water content that they had when they were first set, and the air dried specimens would lose water 

content over time.  
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3.2.3  Procedure 

For the procedure, resistivity and ultrasonic measurements were taken on each specimen daily 

for 28 days, with the exception of a few days due to unexpected circumstances. Mass was also recorded 

for each specimen daily.  For this process, the specimens would be tested by curing condition to reduce 

the time outside of their curing. For the sealed specimens, the plastic wrap had to be removed and new 

plastic wrap had to be applied. Each group of specimen would be placed in a cart to move from the 

curing location, to the resistivity setup, and the ultrasonic wave propagation setup.  It is recommended 

that a paper towel is placed under the concrete specimens to prevent dusk, pebbles, etc. from sticking 

to the bottom of wet specimen, as to prevent interference in measurements.  

For resistivity, the RCON2 Concrete Bulk Resistivity Device was used. To use this device, a 

contact sponge was placed on top of the bottom metal electrode plate. For each measurement, the 

specimen was placed on top of the contact sponge, then another contact sponge was placed on top of 

the specimen, followed by the top electrode plate. Then, the four threaded rods attached to the bottom 

plate were slotted into the top plate, and the knobs for each rod were twisted until the connection was 

firm. The connection cables were then connected to the electrode plates, and the measurement device. 

The measurement device was then plugged into an outlet and turned on. This setup is shown in Figure 

3.11.  Following this, measurements were recorded in a lab notebook. It should be noted, this 

measurement device produces readings in impedance and a corresponding phase angle, and so long as 

the phase angle was low (less than 5o), the impedance was considered to be the resistance based on the 

small angle approximation. As explained in section 2.1.4, the resistance is equal to impedance multiplied 

by the cosine of the phase angle. Finally, after measurements were taken on each specimen, the 

apparatus was disassembled and the contact sponges were submerged in water.  



52 
 

 

Figure 3.11: Setup for RCON2 bulk resistivity meter 

For ultrasonic wave propagation, several parts were used for the measurement system. This 

system is depicted in Figure 3.12. For this setup, a high voltage pulser, two transducers, a data 

acquisition device (DAQ), and a laptop were used. The high voltage pulser used was a Panametrics 

Model 5058PR, the two transducers were 150 kHz transducers made by Proceq, and the data acquisition 

device was a National Instruments USB-6361. In this system, the high voltage pulser was set to 

maximum voltage, and a frequency of 20 kHz. From the pulser, two cables were run, one to the 

transmitting transducer from the transmitting output, and the other was run directly to the data 

acquisition device from the sync-out output on the pulser. When pulses are sent, the output is sent at a 

high voltage through the transmitting transducer, and sent at a much lower voltage to the data 

acquisition device, the importance of this will be explained shortly. Ultrasonic transducers are 

piezoelectric, meaning that they contain a crystal such that, when a strain is applied, a charge is emitted. 
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The reverse is also true, when the voltage is applied to the transducer, a strain is produced. The crystal 

within the transducers converts the electrical charge into a wave at 150 kHz. Thus, when charge is run to 

the transducer from the pulser, the ultrasonic wave is emitted. This wave travels through the specimen 

being measured, and the receiving transducer gathers the information from the wave after it has 

traveled through the specimen. The receiving transducer relays this charge to the data acquisition 

device, which sends the information to the laptop. The laptop records the data using a program called NI 

DAQExpress, a software included with the data acquisition device. Within this software, is a limited 

version of LabVIEW called LabVIEW VI. The specifics of this code work due to running two cables from 

the pulser. The code used for data acquisition via LabVIEW needs to know when to begin recording. If 

the code begins running when the input is non-zero, then it would begin running as soon as the 

receiving transducer sent signal to the data acquisition device (disregarding the miniscule amount of 

time required for the signal to pass through the cables to the data acquisition device). If this occurs, 

then there would be no way to determine the transit time through the specimen, as the first point in the 

data would be the signal arrived through the receiving transducer. 

Figure 3.12: Drawing of ultrasonic wave propagation setup 
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In the case of this experiment, by running a cable from the sync-out output on the pulser to a 

digital input on the data acquisition device, the input from the sync out can be used as a programmable 

function input, or PFI. The sync-out also sends this signal at a low voltage, such not to overload the data 

acquisition device. This digital signal then determines when the software begins recording data, and 

thus the transit time can be determined based off of this. It should be noted that the difference 

between the time for the signal to run through the two cables is considered negligible.  When this code 

is used, the software records and saves the information for each event, for a given number of points 

before and after the event begins. In this case, for each ultrasonic measurement, fifty events would be 

recorded each time, so that signal averaging could be utilized, reducing noise. Each event contains 8000 

data points, 1000 before, 7000 after the event occurs. Considering the data is recorded at 2 MHz, these 

events are lasting a very short amount of time, which allows the ability to record 50 events per 

specimen per day to be feasible in regards to time. It should also be noted that vacuum grease was used 

a couplant for the contact between the transducers and the specimens. A thin layer of vacuum grease 

was applied and wiped off for each measurement to prevent particles interfering from specimens 

already tested, and to maintain consistency between specimens. Couplants are used to increase the 

repeatability of data (Dugmore 2002, Netshidavhini 2012) and create a better ultrasonic contact, similar 

to water used as a couplant for electrical resistivity measurements.  

At the end of 28 days, the concrete specimens were tested for compressive strength following 

ASTM C39. This was done in hopes of drawing a correlation between the compressive strength and the 

properties found from the ultrasonic and electrical resistivity measurements. 
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3.2.4 Data Analysis 

For the electrical resistivity measurements, Microsoft Excel was used for data analysis. The 

property of interest for these measurements was the formation factor. The formation factor was 

determined through the relationship below. 

𝐹 =
𝜌

𝜌

Using the recorded values of resistance, the bulk resistivity could be found through the relationship 

𝜌 = 𝑘 ∙ 𝑅 

where 

𝑘 =
𝐴

𝐿

And k is the cell constant, A is the area of the cross section, and L is the length of the specimen. The 

dimensions of the cylinders were all the same, so a constant value for the cell constant could be used. 

The other value that needed to be determined in order to find the formation factor was the pore 

resistivity. Considering that measurements were taken daily, and considering the different curing 

conditions, it would be unfeasible to extract the pore solution from each specimen daily in order to 

determine values for this property to correspond with each bulk resistivity value. As a result, the Virtual 

Cement and Concrete Testing Laboratory (VCCTL) was used for estimating this quantity. The VCCTL is 

software that allows for the creation of unique concrete mixes, and simulates values such as porosity, 

pore resistivity, etc. as shown in figure 3.13.  It should be noted that the pore resistivity in the VCCTL is 

output in Siemens per meter. Siemens are the multiplicative inverse of ohms, thus a conversion must be 

made so that the units of the bulk resistivity and pore resistivity are the same when determining the 

formation factor. 
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Figure 3.13: Mix input and output for VCCTL 

 For the ultrasonic data, more sophisticated data analysis had to be employed, so Matlab was 

used for the data analysis. The data output from the NI DAQExpress software is formatted into a 

Microsoft Excel file, so the first steps were to transfer these files over to Matlab and perform data 

averaging for each measurement. An example of what one of these plots looks like after data analysis 

can be seen in Figure 3.14.  

The ultrasonic pulse velocity was one property of interest. This value is determined by the 

relationship below. 

𝑣 =  
𝐿

𝑡
 

Where v is the ultrasonic pulse velocity, L is the distance between the transducers, and t is the transit 

time.  The transit time was determined by finding the first break in the curve, or onset of the curve, and 

subtracting that time from when the wave was sent. 
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Figure 3.14: Sample ultrasonic wave plot after signal averaging 

The next property of interest is the total attenuation. The total attenuation was calculated 

following the procedure prescribed by Philippidis (2004), which was later used by both Ju et al (2017) 

and Hassefras (2019). For this procedure, a reading was taken with the two transducers face to face, 

with no specimen in between. This reading would act as the data for determining the initial amplitude. 

This would then be compared to the data for measurements taken through the specimens. For each 

data set, a fast fourier transform was performed. The maximum value for the initial amplitude data set 

in the frequency domain would be denoted as Ao, and the maximum value in the frequency domain for 

other data sets would be denoted as Ax. The total attenuation of the specimen for the data can be found 

using the relationship below (Philippidis 2004). 

𝛼 =  −
20

𝐿
log (

𝐴

𝐴
) 

a
m

p
lit

u
d

e
 [v

o
lts

]



58 
 

Where L is the distance traveled between the two transducers. The advantage of this method is that the 

effects of the coupling is negated, as both readings include the same coupling conditions, which negates 

the factor of extrinsic attenuation. The resulting value signifies the intrinsic attenuation, which is the 

portion of the attenuation that characterizes the material, as discussed in section 2.2.3 (Philippidis 

2004).   

 Next, there are the values of the diffusivity and dissipation. These two values are representative 

of the two major components of intrinsic attenuation, absorption and scattering, respectively. These 

two values are determined by means of the diffusion approximation. Outlined by Becker et al. (2003), 

the diffusion approximation determines a value for the spectral energy density for a given ultrasonic 

signal in the time-domain. This is done by dividing this time-signal into overlapping time windows, in this 

case 90% was used. A Hamming window is then applied to the individual time windows in order to 

remove artificial lobes and smooth the edges. Next, the fast fourier transform is taken of each time 

window, and the output of this transform is squared. The outcome of this is called the power spectrum. 

The power spectrum is then integrated over a certain frequency bandwidth centered around the 

measuring frequency, which would be 150 kHz for this experiment, producing an approximation of the 

spectral energy density. This is considered an approximation of the spectral energy density, as it differs 

from the true spectral energy density based on a factor emanating from the coupling conditions and 

transducer efficacy (Becker 2003). The diffusivity and dissipation coefficients are then determined by a 

fitting of the diffusion equation, shown below. 

𝐸(𝑟, 𝑡, 𝑓) =  
𝑃

2√𝐷𝜋𝑡
𝑒 ( )⁄ 𝑒  

Where E(r,t,f) is the spectral energy density, r is the length of the specimen, t is the time, f is the 

frequency, Po is the power spectrum, D is the diffusivity coefficient, and 𝜎 is the dissipation coefficient. 
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This equation was fitted using a non-linear least squares regression. An example of one of these curve 

fits can be seen in figure 3.15, which is similar to that found in literature (Hassefras 2019).   

Figure 3.15: Example for diffusion equation curve fit 

3.2.5  Results 

For this experiment, there were many variables to evaluate across, including curing age, water-

to-cement ratio, along with properties compared amongst each other including formation factor, 

ultrasonic pulse velocity, attenuation, diffusivity, and dissipation. This section will summarize the 

findings across these axes.  Throughout this section, there will be several plots including multiple data 

sets. To differentiate between the data, cylinders with 40% water content had blue markers, cylinders 

with 50% water content had red markers, and cylinders with 60% water content had black markers. 

Cylinders that were air dried had a plus sign as a marker, cylinders that were saturated in lime water had 

ln
(E

)
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a circular marker, and sealed specimens had an x as a marker. This is more clearly defined in the table 

below. 

 

Figure 3.16: Plot markers for experiment two 

First, the values of formation factor were compared with curing age, shown in Figure 3.17. To 

begin with, since the specimens that were sealed and air dried were not fully saturated, they would 

need a saturation function to adjust for the fact that they are not fully saturated for the determination 

of formation factor, as discussed in chapter 2.1.6. The inability to determine a saturation function stems 

from not knowing the mass of the specimens at the oven dry state. That all being said, the important 

thing to take away from this plot is that the formation factor has a tendency to increase as the curing 

age increases, and is relatively similar for each water-to-cement ratio.  

 

Figure 3.17: Formation factor vs curing age 
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The formation factor on the 28th day was then compared to the compressive strength 

determined on the 28th day. Since compressive strength tests are destructive, these tests were only 

performed once, and the formation factor on this day would be the most applicable comparison 

between the peak load and the formation factor. The plot of this relationship is shown in Figure 3.18. As 

shown in this figure, the cylinders made from mixes with lower water-to-cement ratios have higher 

compressive strength, as anticipated. For their respective curing conditions, these specimens also tend 

to have higher formation factors, although this relationship is not perfect, which may be due to the lack 

of a saturation function.  

Figure 3.18: Compressive strength vs formation factor 
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 Next, the ultrasonic pulse velocity was compared with curing age, shown in figure 3.19. This 

relationship is clear, at the early concrete age, the increase in ultrasonic pulse velocity is high, but 

quickly plateaus after about 10 days. The results show that the ultrasonic pulse velocity is higher for 

specimens that have higher degrees of saturation, and mixes with lower water-to-cement ratios. The 

significance of this plot is the relationship between the ultrasonic pulse velocity based on the mix 

proportions, as it appears the mixes that performed with higher compressive strength display higher 

ultrasonic pulse velocities, with variances due to the curing conditions. The curing conditions that result 

in a higher degree of saturation appear to produce a slightly greater ultrasonic pulse velocity based on 

the other specimens of the same mix.  

 

Figure 3.19: Ultrasonic pulse velocity vs curing age 
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Based on the relationship previously discussed, the next course of action was to investigate the 

relationship between the ultrasonic pulse velocity and the compressive strength more directly. Thus, 

similar to the formation factor, the ultrasonic pulse velocity recorded on the 28th day was compared 

with the compressive strength determined on the 28th day. This relationship is shown in Figure 3.20. This 

figure shows a positive correlation between the ultrasonic pulse velocity and compressive strength, and 

this correlation seems to be even stronger when focused on the data for the individual curing 

conditions.  

Figure 3.20: Ultrasonic pulse velocity vs compressive strength 
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 Next, the total intrinsic attenuation coefficient was compared with curing age and compressive 

strength, as shown in Figure 3.21.  Looking at the curing age comparison plot, for some specimens the 

attenuation peaks at the beginning, dips in the middle, then increases afterwards, such as the saturated 

specimens, while other specimens are scattered across the plot with no apparent trend. Overall, there 

appears to be a slight decrease in total attenuation as the curing age increases, although the data is 

fairly scattered and has a wide margin.  For the comparison with compressive strength, the 

measurements from the 28th day were used again. For this comparison, there appears to be a negative 

correlation between the two variables. There appears to be a correlation between the attenuation 

coefficient and the compressive strength than the attenuation coefficient and the curing age. When 

these two figures are joined in unison, the relationship between intrinsic attenuation and compressive 

strength seems to increase, as there is a decrease in attenuation as the curing age increases, and an 

increase in compressive strength as the attenuation decreases. These two relationships align as the 

strength of concrete tends to increase as the curing age increases. 

 

Figure 3.21: Total attenuation vs curing age (left) and vs compressive strength (right) 
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Next, the relationship between the two intrinsic attenuation coefficients, diffusivity and 

dissipation were compared with the curing age and compressive strength. For all four of the 

relationships, there does not appear to be any relationship at all, as data is scattered all around the plot 

with little correlation, as shown in Figure 3.22. The belief for the lack of correlation between the plots 

was that the contact conditions while testing were not ideal due to the roughness of the ends of the 

concrete cylinders. 

Figure 3.22: Intrinsic attenuation coefficients vs curing and compressive strength 
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Next, the relationship between the formation factor and ultrasonic pulse velocity was 

investigated. This is best displayed by curing conditions, with the first being the saturated specimens, as 

shown in Figure 3.23. Based on this plot, there appears to be an exponential relationship between the 

ultrasonic pulse velocity and the formation factor. This is significant due to the previously shown 

relationship between the ultrasonic pulse velocity and strength. The formation factor is a property that 

is representative of the concrete microstructure, so by correlating the two, there is the potential to 

obtain information on the compressive strength of the concrete, along with its microstructural 

properties, through a single property. Additionally, the ultrasonic pulse velocity is a property which can 

be quick and easy to calculate.  

 

Figure 3.23: Formation factor vs ultrasonic pulse velocity for saturated specimens 
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Next, the relationship between the formation factor and ultrasonic pulse velocity for the sealed 

and air dried curing conditions are presented, shown in Figure 3.24. Again, while these formation factors 

are not adjusted for the saturation, there is still an apparent exponential relationship between the 

ultrasonic pulse velocity and formation factor. 

Figure 3.24: Formation factor vs ultrasonic pulse velocity for air dried and sealed specimens 

3.2.6 Conclusion 

The hypothesis for this experiment was that by combining the two non-destructive evaluation 

techniques, for a variety of specimens, that a relationship could be found between the two methods 

such that more information on the material could be found. This hypothesis was achieved based on the 

relationship found between the formation factor and ultrasonic pulse velocity.  The significance of this 

relationship is derived from the simplicity of the ultrasonic pulse velocity. Since the ultrasonic pulse 

velocity shows some relationship with compressive strength, as shown in Figure 3.23, and the formation 

factor characterizes the microstructure for a given material, this relationship creates the potential for 

determining both compressive strength along with microstructural properties using a single 

measurement.  Additionally, the ultrasonic pulse velocity is a quick and simple calculation, making it 

feasible for field applications for industrial practices.  
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3.2.7 Plans for Improvement 

To improve upon this procedure, the saturation factor needed to be known for each specimen. 

In order to have the true value of formation factor without the need for an adjustment factor via a 

saturation function, all specimens should be saturated. This would help further investigate the 

relationship between the formation factor and ultrasonic pulse velocity by having more specimens. 

Another improvement that could be made to this procedure would be to flatten the ends of the 

specimens in order to remove the possibility that the uneven ends altered ultrasonic measurements. 

During the measurement process, it was difficult to obtain data on some specimens due to the uneven 

specimen ends, and flattening these ends would allow for more consistent and accurate measurements.  
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3.3 Experiment 3: Multi Method Setup 

3.3.1 Methodology 

The third experiment took place in January and February 2022. This experiment attempted to 

build off the first multi-method experiment. Based on the conclusion of the second experiment, this 

experiment was planned in order to maintain each specimen at full saturation, while also investigating 

the effect of moisture on ultrasonic measurements. In order to do so, the concrete specimens were 

dried. Following the drying of the concrete, the concrete was rehydrated and measured incrementally to 

investigate the effect that moisture has on ultrasonic measurements. In terms of drying, several 

methods can be applied, as investigated by Zhang et al. (2011), Galan et al. (2016) and Zhang et al. 

(2019). These methods include oven drying, microwave drying, dry ice method, percolate drying, and 

vacuum drying. 

Oven drying is the most common method in concrete. This is typically performed at 60oC or 

105oC, although temperatures between can also be used. The advantage of oven drying methods is that 

it is simple and effective at removing evaporable water (Zhang 2011). The downside of oven drying 

methods is that the process of drying can remove the evaporable water from ettringite and C-S-H 

formations, along with damaging the pore structure of the element (Galle 2001). Microwave drying is a 

method that can provide significant time savings through the use of electromagnetic radiation. The 

pitfall of the microwave method is that the microstructure of the sample can be significantly altered by 

the build-up of vapor pressure within the pores due to the rapid temperature changes in the pore liquid 

(Zhang 2011).  Dry ice methods utilize the combination of solid carbon dioxide along with alcohol in 

concert with a vacuum pump and dry ice. This method is effective at removing unreacted water within 

the pore system. The downside of this method is the rate of water removal is relatively slow, but this 

method is otherwise considered the best drying method in concrete and cementitious materials (Zhang 

2011). Percolate drying is a specific technique which involves placing the specimen on drying magnesium 
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perchlorate hydrates. The vacuum drying method is performed at low pressure, and is found to be less 

effective at removing unreacted water than oven drying methods, while also causing significant damage 

to the pore structure (Zhang 2011). 

 In terms of measurement practices for resistivity and ultrasonic wave propagation, the 

methodology of this experiment mimics that of the first multi-method experiment. The hypothesis for 

this experiment was that the relationship between formation factor and ultrasonic pulse velocity could 

be further cemented by including a greater number of specimens, and that a relationship could be found 

between the degree of saturation and ultrasonic measurements. 

3.3.2  Specimen Manufacturing and Curing 

Similar to experiment two, concrete mixes were selected to be representative of a wide variety 

of concrete mixes used in industry practices. In addition to the three mixes that were used in the first 

multi-method experiment, the high performance concrete mix from the fiber orientation experiment 

was also used. This was done in order to determine if the relationship between fiber orientation and 

ultrasonic pulse velocity can be extended to high performance mixes.  

Similar to experiment two, the cylinders were made in accordance with ASTM C192. The process 

outlined in section 3.2.2 was followed for making these specimens as well, with the only difference 

being the creation of the high performance mix. The high performance mix was made following the 

process described in section 3.1.2, although these mixes were also poured in lifts and vibrated using the 

vibration table. The day after mixing, the concrete specimens were removed from the specimen molds. 

After removal, the specimens were cut with a wet saw in order to achieve flat specimen ends. About an 

inch was removed from each end of the concrete specimens, resulting in specimens of six inches in 

length. For the days proceeding, the specimens were cured in a lime bath located in the wet room in the 
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basement of Boardman hall.  The lime bath was created using the ratio of 2 grams of calcium hydroxide 

per liter of water.  

The largest change in the specimen curing occurred on the 30th day. On the 30th day, the 

specimens were placed in conventional ovens. The specimens were dried at 105oC for several days, up 

until the change in mass for each specimen was less than 0.1% per day. Following this, the specimens 

were returned to the lime bath to rehydrate. 

3.3.3 Procedure 

The procedure for experiment three copies that of experiment two in regards to the resistivity 

and ultrasonic measurements. The uniaxial method and through transmission method were both used, 

utilizing water and vacuum grease as couplants, respectively. The only differentiations from experiment 

two stem from the rehydrating of the specimens after oven drying. The mass of each specimen was 

recorded before and after drying. The specimens were removed at increasing time increments during 

saturation, recording mass and taking ultrasonic measurements. The goal of recording data and 

increasing time increments was to take measurements at spaced degrees of saturation. The mass gain of 

the specimens decreased over time, requiring larger time increments for similar increases in degree of 

saturation.  

3.3.4 Data Analysis and Results 

The data analysis of experiment three was similar to that of experiment two. The only additional 

data analysis was determining the degree of saturation. For this calculation, the mass recorded before 

drying was considered the saturated mass, and the mass recorded immediately after drying was 

consider the oven dried mass. Based on this, the degree of saturation was determined using the 

relationship below. 
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𝑆 =  
𝑀 − 𝑀

𝑀 − 𝑀
 

Where S is the saturation, Msamp is the mass of the specimen for a given measurement, Mdry is the oven 

dry mass, and Msat is the saturated mass. Similar to the results section from experiment two, the results 

in plots are differentiated by colors. The colors for the concrete mixes are the same, with the addition of 

the high performance concrete mix which is marked by the color green. The saturation of the concrete 

specimens is summarized in figure 3.25.  It should be noted that the degree of saturation for the high 

performance concrete samples did not get above 0.7, while the normal concrete mixes all reached about 

0.9.  

 

Figure 3.25: Degree of saturation vs time 
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As done with the second experiment, the relationship between calculated values was compared 

with time. Since oven drying and saturation were performed, compressive strength testing could not be 

done in accordance with ASTM standards, no compressive strength data is available for this experiment. 

First, the formation factor was compared over time, shown in Figure 3.26. The formation factors for the 

high performance mixes were not included in this plot as they are an order of magnitude higher than the 

other values, and follow a similar curve.  The curve of this plot follow a similar curve as that of the curve 

from the previous experiment. 

Figure 3.26: Formation factor vs time for normal strength concrete mixes 
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Next, the ultrasonic pulse velocity was compared with time, as shown in Figure 3.27. This plot is 

similar to the plot from the previous experiment, but with the addition of the high performance mix. In 

the previous experiment, it was discussed that the higher strength mixes had higher pulse wave velocity, 

and this claim seems to be extended for high performance mixes as well, as the high performance mix 

specimens had the highest pulse wave velocities. Again, no compressive strength data is available to 

directly compare these two properties, but there appears to be a relationship between the two, as 

discussed in the results of the previous experiment. 

 

 

Figure 3.27: Pulse wave velocity vs curing age 
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appears to be a correlation, as the curing age increases, the attenuation coefficient tends to decrease. 

This appears to be divided by concrete mix as well. For the other two plots, there appears to be no 

correlation between the coefficients from the diffusion approximation and the curing age. This is shown 

in Figure 3.28. 

Figure 3.28: Properties of attenuation vs curing age 
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Next, the formation factor was compared to the ultrasonic pulse velocity. The plots were 

separated into two plots, the first of which includes the specimens made from normal strength 

concrete, as shown in Figure 3.29, and the second plot included the specimens made from the high 

performance concrete mix, shown in Figure 3.30. These two plots both continue to show the 

exponential relationship between formation factor and ultrasonic pulse velocity. This being said, it 

should be noted that the increase in ultrasonic pulse velocity is small relative to the increase in 

formation factor between the two sets of data. The ultrasonic pulse velocities differ by less than 5%, 

while the formation factor increases by over 10 fold.  

 

Figure 3.29: Formation factor vs ultrasonic pulse velocity for normal strength concrete 
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Figure 3.30: Formation factor vs ultrasonic pulse velocity for high performance concrete 
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The rehydration results were then investigated. Due to the resistance being too high on some 

samples, only the ultrasonic data could be properly recorded using the bulk resistivity test device 

utilized in this study. Accordingly, the ultrasonic pulse velocity will be compared with degree of 

saturation, as shown in Figure 3.31. There doesn’t appear to be any trend amongst the high 

performance concrete, but the ultrasonic pulse velocity of the normal concrete mixes seems to decrease 

up to about 0.5 degree of saturation, then proceeds to increase afterwards.  

 

Figure 3.31: Ultrasonic pulse velocity vs degree of saturation 
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Next, the attenuation coefficient was compared with degree of saturation. As seen in Figure 

3.32, the attenuation coefficient tends to increase as the degree of saturation increases. For the 

individual water-to-cement ratios, there does not seem to be much correlation in these regards, as the 

different mixes are scattered throughout the upwards trend. For the high performance concrete, there 

appears to be very little correlation.  

Figure 3.32: Intrinsic attenuation vs degree of saturation 
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Now, the relationship between the diffusivity and dissipation coefficients will be presented. 

These two plots are shown in figure 3.33. Yet again, there does not appear to be any trend of correlation 

amongst the two attenuation coefficients. 

  

Figure 3.33: Diffusivity and dissipation coefficients vs degree of saturation 

3.3.5  Conclusions 

The hypothesis of this experiment was that the exponential relationship between the formation 

factor and ultrasonic wave velocity could be further cemented by running tests with more specimens. 

This hypothesis was confirmed through this experiment as the exponential relationship between these 

two properties was displayed for several more sets of specimens. As described in the conclusion of 

experiment two, the importance of this relationship is that this relationship creates the potential for 

predicting a significant amount of information about the state of concrete based off a single quick and 

easy measurement, the ultrasonic pulse velocity.  

3.3.6 Suggestions for Future Research 

The potential applications of the results of this experiment could be very significant for the non-

destructive evaluation of concrete structures in the field. For future research, it would be important to 
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be able to predict the formation factor and compressive strength based solely on the ultrasonic pulse 

velocity. A double blind study could be run, where ultrasonic pulse data is recorded, then it is predicted 

which data sets represent the given specimens. In addition to this, using the ultrasonic pulse data to 

project the compressive strength and formation factor would be vital in the potential application in the 

field use as previously proposed.  



82 
 

3.4 Experiment 4: Fiber Orientation 

3.4.1 Methodology 

The fourth experiment took place in April 2022. This experiment was conducted in an attempt to 

build off of the first experiment, which attempted to determine the orientation of steel fibers in a high 

performance concrete panel. Recalling section 3.1, it was concluded that the Wenner probe used may 

not have been suitable for determining the fiber orientation in the concrete panel. In addition to this, it 

was concluded that the best course of action may be to adopt the setup used in previous literature 

(Lataste 2003, Lataste 2008, Barnett 2009, Martinie 2013). This setup required using a four-point probe, 

but rather than aligning the probes in an array, positioning the probes in a square formation, with two 

adjacent probes injecting current, and the opposing two probes measuring electrical potential (Lataste 

2008).  The purpose of this formation of probes was to further reduce the effects of interference and 

polarization. 

As was the objective in the first experiment, the goal of this experiment was to determine the 

orientation of fibers dispersed within a concrete specimen. The hypothesis of this experiment was that 

the orientation of fibers could be determined by taking circular measurements about points on a 

concrete specimen, and using the recorded values of resistivity at each angle, one would be able to 

determine local resistivity axes and when plotted about their location on the respective specimen, a 

global resistivity axis could be determined. This hypothesis mimics that of experiment one, just utilizing 

different equipment. 

3.4.2 Specimen Preparation and Procedure 

Due to lack of available equipment, new equipment had to be purchased in order to achieve a 

four-probe square array configuration. In the aforementioned mentioned studies, the Megger DET5/4D 

earth tester device was used. By the time of this thesis, this product had been replaced by newer models 
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and was considered obsolete. As a result, the Megger DET4TC2 was purchased to be used for the 

purpose of recreating the four-probe square device. Similar to the model DET5/4D, the DET4TC2 is a 4-

terminal soil resistivity meter. In order to create the square setup, a square wooden block was cut out, 

then slots for the probes were drilled out using a power drill at a distance of two inches apart, as shown 

in Figure 3.34. The probes for the square probe configuration were then slotted through the holes in the 

wooden block. Following this, pieces of sponge were cut out and attached to the end of the probe tips in 

order to ensure a good electrical contact for measurements. Due to time constraints along with an 

attempt to build off of the first experiment, the same concrete specimens were utilized in this 

experiment as were used in the first experiment.  

Figure 3.34: Four-probe square device manufactured for experiment four 
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 For the procedure, locations were marked on the specimens for determining fiber orientation. 

The sponges attached to the end of the probes on the four-probe square array were then wetted with 

water.  The Megger DET4TC2 was then turned on and put into 4-terminal mode.  Similar to experiment 

one, measurements were then taken in 22.5o increments for 16 measurements at each location. It 

should be noted that the 22.5o increments have no theoretical significance, but are simply a balance 

between accuracy and time (Lataste 2008, Barnett 2010, Martinie 2013), as this procedure intends to be 

reasonable for field use.  In addition to this, theoretically, the resistivity along an axis should be the 

same regardless of which side the current is injected and received from, so measurements that are 180o 

apart should be the same (Lataste 2008).  Despite this, all 16 measurements were taken in this 

experiment at each location for the sake of setting up this method and for creating an easier 

visualization of local resistivity axes.  

3.4.3 Data Analysis and Results 

The data analysis for this experiment followed the methodology prescribed by section 3.1.3. The 

analysis for the data from this experiment was again evaluated through the use of Microsoft Excel. The 

analysis portion of this experiment follows that of experiment one. In short, the data recorded using the 

four-probe square array is plotted in polar coordinates for each location that measurements were taken. 

Using this visualization, the determination of a resistivity axis can be made for each measurement circle. 

For this experiment, the specimens were significantly older than in experiment one. As a result, the 

resistivity of the high performance concrete was significantly greater. Consequently, the resistance of 

the concrete panel without fibers was too high to get a reading using the Megger DET4TC2, so all data 

came from one high performance concrete panel with fibers.  
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Figure 3.35:  Resistivity vs orientation plots overlaid onto concrete specimen 

The results from this experiment show some progress relative to the first fiber orientation 

experiment. In this experiment, there appear to be defined resistivity axes at each measurement 

location. Figure 3.35 summarizes these findings by overlaying the resistivity circles over the specimen 

used. Looking at the plot, the fibers appear to be orientating along the flow of the concrete based on the 

location that the concrete was poured from. This is depicted more clearly in Figure 3.36. This is contrary 

to the results of previous studies utilizing this technique. Previous studies utilizing this method show 

that the fibers orient perpendicular to the direction of flow (Lataste 2008), as shown in Figure 3.37.  

Thus, there are multiple possibilities regarding why the results from this experiment contrast that of 

existing literature. 
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Figure 3.36: Visual analysis of local and global fiber orientation 

 

Figure 3.37: Visual analysis of local and global fiber orientation from Lataste et al. (2008) 
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The first possibility regarding why the results of this experiment differ from those in literature, is 

that these results may be the product of experimental error. The ratio between the resistivity along an 

axis that is indicated to have a high fiber alignment and one with low fiber alignment in this experiment 

is between two and five. Studies found within literature show that this ratio should be orders of 

magnitude larger, which aligns with the theoretical as the resistivity of concrete and steel are on orders 

of magnitude difference. As previously stated, if a reading is taken along an axis for which fibers are 

strongly oriented, the resistivity would be similar to that of steel, and other axes for which fibers are not 

strongly oriented, the resistivity would be similar to that of concrete without fibers. Since the resistivity 

axes are oriented perpendicular to what would be expected, it is possible that these resistivity axes are 

not due to fibers, but rather just experimental error and variability of the concrete. For such an 

occurrence, the effect of fibers would have to be minimal, so the orientation of the fibers would have to 

be near isotropic, or the density of fibers would have to be low in the locations where measurements 

were taken. These both seem unlikely considering the percent of fibers was 3% by mass and reference 

studies have similar fiber content for ultra-high performance concrete (Martinie 2013). Overall, the 

solution to this error would be to work on making the existing device better by creating a better 

electrical connection between the probes and the specimen surface, and create more specimens with 

higher fiber content to negate the potential that there weren’t enough fibers within the specimens to 

have a large impact on resistivity measurements. 

Another possible explanation could be that the fibers are aligned as they are shown in the 

results, though this would be unlikely given the location of that the concrete was poured from. While 

the concrete mix was poured in a relatively viscous state, it seems unlikely that there would be enough 

resistance to prevent the steel fibers from orienting similar to that of previous studies. Similar to the 

first possible explanation, the solution to this possible error would be to perform more experiments on 

more specimens to determine what problem exists with the current procedure.  
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3.4.4 Conclusion 

The hypothesis of this experiment was that, using the procedure previously outline, resistivity 

axes would be found so that the orientation of fibers could be found locally and then globally. This 

hypothesis was partially fulfilled, as resistivity axes were found, although based on existing studies, it 

appears that these resistivity axes may not have been accurate. The found resistivity axes were 

perpendicular to that of what would be expected based on past research. In total, progress was made 

with the advancement from the Wenner probe device to the four-probe square device. While the 

desired outcome was not achieved, the upgrade from completely inconclusive data to results showing 

differentiation in resistivity at incremental orientations may lead to a device and procedure with the 

capacity to accurately determine the local and global fiber resistivity. 

3.4.5 Reflection and Suggestions for Future Research 

The ultimate purpose of the fiber orientation experiments was to determine a methodology and 

procedure that would create the ability to determine the fiber orientation of steel fibers within a 

concrete specimen. This goal was partially achieved with the manufacturing of the four-probe square 

device. The design of this device followed that of the equipment used in successful studies (Lataste 

2003, Lataste 2008, Barnett 2010, Martinie 2013), but was not as effective in the experiments 

performed for this thesis. For future research, the existing device should be improved for better 

electrical contact, which would begin with the sponges attached to the probe tips. Additionally, more 

specimens should be used, both with normal concrete mixes and high performance mixes, with different 

fibers (steel, nylon, etc.). This would create a better understanding of the strengths and weaknesses of 

this method and lead to less variability due to the increase number of specimens. It would also give the 

opportunity to investigate the potential of identifying other types of fibers. Fibers such as steel are very 

conductive, making this method viable, but determining whether or not this method would work for less 

conductive fibers such as nylons, would be of interest. The determination of the impact of other 



89 

concrete components such as course aggregates may be important to the implementation of this 

method in industry practices.  
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CHAPTER 4  

CONCLUSION 

The purpose of this thesis was to further investigate the question of can concrete be more 

effectively assessed in a non-destructive manner by combining the results from multiple non-destructive 

evaluation techniques. The answer to this question was pursued by performing four experiments, with 

the first two acting as preliminary studies to the two latter experiments. The first and last studies 

focused on determining the orientation of steel fibers in concrete plates. These studies led to the 

development of the four-probe square device, which has the potential to determine the orientation of 

fibers within a concrete plate. The other two studies focused on the application of a multi method 

system, combining both electrical resistivity and ultrasonic pulse velocity. These studies further verified 

the existence of a relationship between ultrasonic pulse velocity and curing age along with compressive 

strength. In addition to these relationships, this study uncovered a relationship between the ultrasonic 

pulse velocity and formation factor. In this way, the purpose of this thesis was partially achieved as the 

combination of these two methods produced a relationship that has the potential for determining more 

information about the characteristics of the concrete through the calculation of a single property. As 

shown in this thesis, the ultrasonic pulse velocity has a relationship with compressive strength, and the 

formation factor characterizes the microstructure of concrete. Consequently, there is the potential for 

employing a device that has the capability of predicting compressive strength and properties of the 

concrete microstructure using a quick and easy measurement.  

There were several potential improvements that could have been made to the experiments 

performed during this thesis. First, the results from the fiber orientation studies would be significantly 

more convincing if there were a larger data set. In experiment four, there were two concrete plates, one 

of which did not have fibers, and had too high of a resistance, so no measurements could be taken on 

this plate. Thus the data for experiment four only contained a single specimen, which could also have 
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been the results of insufficient contact between the probe and the specimen, so improvements could be 

made there as well. For the multi-method studies, the first study included compressive strength, and the 

second study included degree of saturation. It would be useful to formulate a procedure in which both 

compressive strength and degree of saturation can be determined along with the other measurement, 

especially if the compressive strength is known for more than one point in time. Additionally, if 

resaturation is going to be done similar the experiment three, then measurements should be taken on 

resistivity as soon as possible. From these two experiments, it was learned that creating a smooth 

surface to record measurements on is very advantageous, as it allows for more consistent 

measurements. Another improvement that could be made to this study would be determining a better 

means of calculating the diffusivity and dissipation constants for ultrasonic attenuation. The diffusion 

approximation produced very inconclusive results in this thesis, which may be due to the analysis done 

to calculate such constants. In the end, the results of this thesis revealed a relationship that could have 

major implications in the application of non-destructive evaluation techniques for field inspections.  



92 
 

REFERENCES 

Abdullah, A., & Sichani, E. F. “Experimental study of attenuation coefficient of ultrasonic waves in 
concrete and plaster.” The International Journal of Advanced Manufacturing Technology, 44(5), 421-427. 
2009. 
 
Aggelis, D. G., & Shiotani, T. Repair evaluation of concrete cracks using surface and through-transmission 
wave measurements.” Cement and Concrete Composites, 29(9), 700-711. 2007. 
 
Aggelis, D. G., Shiotani, T., Momoki, S., & Hirama, A. “Acoustic emission and ultrasound for damage 
characterization of concrete elements.” ACI Materials Journal, 106(6), 509.2009. 
 
Alnuaimi, H. N., Sasmal, S., Amjad, U., Nikvar-Hassani, A., Zhang, L., & Kundu, T. “Monitoring concrete 
curing by linear and nonlinear ultrasonic methods.” ACI Materials Journal, 118(3), 61-69. 2021. 
 
Anugonda, P., Wiehn, J. S., & Turner, J. A. “Diffusion of ultrasound in concrete.” Ultrasonics, 39(6), 429-
435. 2001. 
 
Archie, G. E. “The electrical resistivity log as an aid in determining some reservoir 
characteristics.” Transactions of the AIME, 146(01), 54-62. 1942. 
  
ASTM, “Standard test method for pulse velocity through concrete.” ASTM International, West 
Conshohocken, PA. 2009. 
 
ASTM, “Standard test method for bulk electrical conductivity of hardened concrete,” ASTM C1760-12, 
ASTM International, 2012. 
 
ASTM, “Standard test method for electrical indication of concrete’s ability to resist chloride ion 
penetration.” C1202–18. 2012. 
 
ASTM, “Standard test method for compressive strength of cylindrical concrete specimens.” ASTM 
international. 2014. 
 
American Society for Testing and Materials. “Standard practice for making and curing concrete test 
specimens in the field.” ASTM International. 2016. 
 
ASTM, “Bulk electrical resistivity or bulk conductivity concrete,” ASTM C1876-19, ASTM International, 
2019.            
 
Atkins, E. R., & Smith, G. H. “The significance of particle shape in formation resistivity factor-porosity 
relationships.” Journal of Petroleum Technology, 13(03), 285-291. 1961. 
 
Azarsa, P., & Gupta, R. “Electrical resistivity of concrete for durability evaluation: a review.” Advances in 
Materials Science and Engineering, 2017. 
 



93 

Barnett, S. J., Lataste, J. F., Parry, T., Millard, S. G., & Soutsos, M. N. “Assessment of fibre orientation in 
ultra high performance fibre reinforced concrete and its effect on flexural strength.” Materials and 
Structures, 43(7), 1009-1023. 2010. 

Becker, J., Jacobs, L. J., & Qu, J. “Characterization of cement-based materials using diffuse 
ultrasound.” Journal of engineering mechanics, 129(12), 1478-1484. 2003. 

Bratina, W.J., and Mills, D. “Study of fatigue in metals using ultrasonic technique.” Canadian 
Metallurgical Quarterly, 1:83–97, 1962. 

Deroo, F., Kim, J. Y., Qu, J., Sabra, K., & Jacobs, L. J. “Detection of damage in concrete using diffuse 
ultrasound.” The Journal of the Acoustical Society of America, 127(6), 3315-3318. 2010. 

Dugmore, K., Jonson, D., & Walker, M. “A comparison of signal consistency of common ultrasonic 
couplants used in the inspection of composite structures.” Composite structures, 58(4), 601-603. 2002. 

Eik, M., Lohmus, K., Tigasson, M., Listak, M., Puttonen, J., & Herrmann, H. “DC-conductivity testing 
combined with photometry for measuring fibre orientations in SFRC.” Journal of Materials 
Science, 48(10), 3745-3759. 2013. 

Farooq, M., Park, S. G., Song, Y. S., & Kim, J. H. “Mortar characterization using electrical resistivity 
method.” Geophysics and Geophysical Exploration, 12(2), 215-220. 2009. 

Galan, I., Beltagui, H., García-Maté, M., Glasser, F. P., & Imbabi, M. S. “Impact of drying on pore 
structures in ettringite-rich cements.” Cement and Concrete Research, 84, 85-94. 2016. 

Gebretsadik, B., Jdidirendi, K., Farhangi, V., & Karakouzian, M. “Application of Ultrasonic Measurements 
for the Evaluation of Steel Fiber Reinforced Concrete.” Engineering, Technology & Applied Science 
Research, 11(1), 6662. 2021. 

Hansson, I. L. H., & Hansson, C. M. “Electrical resistivity measurements of Portland cement based 
materials.” Cement and Concrete Research, 13(5), 675-683. 1983. 

Hassefras, E, “Concrete Microstructure Characterization Using Ultrasound.” (Master’s thesis, Delft 
University of Technology). 2019. 

Henkensiefken, R., Castro, J., Bentz, D., Nantung, T., & Weiss, J. “Water absorption in internally cured 
mortar made with water-filled lightweight aggregate.” Cement and Concrete Research, 39(10), 883-892. 
2009. 

Hu, Xiang, et al. "A review on microstructural characterization of cement-based materials by AC 
impedance spectroscopy." Cement and Concrete Composites 100: 1-14. 2019. 

İşleyici, U. “Effect of surface roughness on ultrasonic testing” (Master's thesis, Middle East Technical 
University). 2005. 



94 
 

 
Joshi, N. R., & Green Jr, R. E. “Ultrasonic detection of fatigue damage.” Engineering Fracture 
Mechanics, 4(3), 577-583. 1972. 
  
Ju, T., Achenbach, J. D., Jacobs, L. J., Guimaraes, M., & Qu, J. “Ultrasonic nondestructive evaluation of 
alkali–silica reaction damage in concrete prism samples.” Materials and structures, 50(1), 1-13. 2017. 
 
Kewalramani, M. A., & Gupta, R. “Concrete compressive strength prediction using ultrasonic pulse 
velocity through artificial neural networks.” Automation in Construction, 15(3), 374-379. 2006. 
 
Kolsky, H. “Stress waves in solids” (Vol. 1098). Courier Corporation. 1963. 
 
Krautkrämer, J., & Krautkrämer, H. “Ultrasonic testing of materials.” Springer Science & Business Media. 
2013. 
 
Landis, E. N., & Shah, S. P. “Frequency-dependent stress wave attenuation in cement-based 
materials.” Journal of Engineering Mechanics, 121(6), 737-743. 1995. 
 
Landis, E. “Materials: Lecture Notes in Civil Engineering,” 2017. 
 
Landis, E. N., Hassefras, E., Oesch, T. S., & Niederleithinger, E. “Relating ultrasonic signals to concrete 
microstructure using X-ray computed tomography.” Construction and Building Materials, 268, 121124. 
2021. 
 
Larsen, C. K. Sellevold, E. J. Ostvik, J. M. Vennesland, O. “Electrical resistivity of concrete-Part II: 
influence of moisture content and temperature,” in Proceedings of the 2nd International RILEM 
Symposium on Advances in Concrete through Science and Engineering, 2006. 
 
Laskar, A. A., Ghosh, P., & Arifin, M. K. “Effect of flaws and its depth on ultrasonic pulse velocity of 
concrete results under different method of ultrasonic wave transmission through concrete medium.” 
2020. 
 
Lataste, J. F., Sirieix, C., Breysse, D., & Frappa, M. ”Improvement of electrical resistivity measurement for 
non destructive evaluation of concrete.” In PRO 29: 2nd International RILEM Workshop on Life Prediction 
and Aging Management of Concrete Structures (p. 93). RILEM Publications. 2003. 
 
Lataste, J. F., Behloul, M., & Breysse, D. “Characterisation of fibres distribution in a steel fibre reinforced 
concrete with electrical resistivity measurements.” Ndt & E International, 41(8), 638-647. 2008. 
 
Layssi, H., Ghods, P., Alizadeh, A. R., & Salehi, M. “Electrical resistivity of concrete.” Concrete 
International, 37(5), 41-46. 2015. 
 
Li, Z., Xiao, L., & Wei, X. “Determination of concrete setting time using electrical resistivity 
measurement.” Journal of materials in civil engineering, 19(5), 423-427. 2007. 
 



95 

Lootens, D., Schumacher, M., Liard, M., Jones, S. Z., Bentz, D. P., Ricci, S., & Meacci, V. “Continuous 
strength measurements of cement pastes and concretes by the ultrasonic wave reflection 
method.” Construction and Building Materials, 242, 117902. 2020. 

Macdonald, J. R., and Johnson, W. B., “Fundamentals of Impedance Spectroscopy,” in: “Impedance 
Spectroscopy; Emphasizing Solid Materials and Systems,” ed. J. R. Macdonald, John Wiley and Sons, New 
York. 1987. 

Martinie, L., & Roussel, N. “Simple tools for fiber orientation prediction in industrial practice.” Cement 
and Concrete research, 41(10), 993-1000. 2011. 

Martinie, L., Lataste, J. F., & Roussel, N. “Fiber orientation during casting of UHPFRC: electrical resistivity 
measurements, image analysis and numerical simulations.” Materials and Structures, 48(4), 947-957. 
2015. 

Mazloom, M., Allahabadi, A., & Karamloo, M. “Effect of silica fume and polyepoxide-based polymer on 
electrical resistivity, mechanical properties, and ultrasonic response of SCLC.” Advances in concrete 
construction, 5(6), 587. 2017. 

Maxwell, J. C. “Electricity and magnetism” (Vol. 2). New York: Dover. 1954. 

Mehta P.K, Monteiro P. J, “Concrete: microstructure, properties, and materials,” McGraw-Hill, New York, 
NY, USA, 2nd Edition, 2001. 

Mindess S, Young, J. F, & Darwin D, “Concrete,” Pearson, Upper Saddle River, NJ, USA, 2nd Edition, 2003. 

Morris, W., Moreno, E. I., & Sagüés, A. A. “Practical evaluation of resistivity of concrete in test cylinders 
using a Wenner array probe.” Cement and concrete research, 26(12), 1779-1787. 1996. 

Netshidavhini, N., & Mabuza, R. B. “Effects of various couplants on carbon steel and aluminium 
materials using ultrasonic testing.” In 18th World Conference on Nondestructive Testing (pp. 16-20). 
2012. 

Ongpeng, J. M. C., Oreta, A. W. C., & Hirose, S. “Contact and noncontact ultrasonic nondestructive test in 
reinforced concrete beam." Advances in Civil Engineering, 2018. 

Papadakis, E. P. “Ultrasonic attenuation caused by scattering in polycrystalline media.” Physical 
acoustics, 4(Part B), 269-328. 1968. 

Philippidis, T. P., & Aggelis, D. G. “Experimental study of wave dispersion and attenuation in 
concrete.” Ultrasonics, 43(7), 584-595. 2004. 

Polder, R. B. “Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 
technical recommendation.” Construction and building materials, 15(2-3), 125-131. 2001. 



96 
 

Popovics, J. S., Song, W., Achenbach, J. D., Lee, J. H., & Andre, R. F. “One-sided stress wave velocity 
measurement in concrete.” Journal of Engineering Mechanics, 124(12), 1346-1353. 1998. 
 
Punurai, W. “Cement-based materials' characterization using ultrasonic attenuation.” Georgia Institute 
of Technology. 2006. 
 
Punurai, W., Jarzynski, J., Qu, J., Kurtis, K. E., & Jacobs, L. J. “Characterization of dissipation losses in 
cement paste with diffuse ultrasound.” Mechanics Research Communications, 34(3), 289-294. 2007. 
 
Rajabipour, Farshad, Jason Weiss, and Dulcy M. Abraham. "Insitu electrical conductivity measurements 
to assess moisture and ionic transport in concrete (A discussion of critical features that influence the 
measurements)." Proceedings of the International RILEM Symposium on Concrete Science and 
Engineering: A Tribute to Arnon Bentur. Rilem, Paris, France, 2004. 
  
Rajabipour, F. “In situ electrical sensing and material health monitoring of concrete structures,” Ph.D. 
Dissertation, Purdue University, West Lafayette, Indiana, 2006. 
 
Rajabipour, F., & Weiss, J. “Electrical conductivity of drying cement paste.” Materials and 
Structures, 40(10), 1143-1160. 2007. 
 
Ravikumar, Deepak, and Narayanan Neithalath. "An electrical impedance investigation into the chloride 
ion transport resistance of alkali silicate powder activated slag concretes." Cement and Concrete 
Composites 44: 58-68. 2013. 
 
Rivard, P., & Saint-Pierre, F. “Assessing alkali-silica reaction damage to concrete with non-destructive 
methods: From the lab to the field.” Construction and Building Materials, 23(2), 902-909. 2009. 
 
Roth, M., & Korn, M. “Single scattering theory versus numerical modelling in 2-D random 
media.” Geophysical Journal International, 112(1), 124-140. 1993. 
 
Sallehi, H., Ghods, P., & Isgor, O. B. “Formation factor of fresh cementitious pastes.” Cement and 
Concrete Composites, 91, 174-188. 2018. 
 
Sanish, K. B., Neithalath, N., & Santhanam, M. “Monitoring the evolution of material structure in cement 
pastes and concretes using electrical property measurements.” Construction and Building Materials, 49, 
288-297. 2013. 
 
Sant, G., Bentz, D., & Weiss, J. “Capillary porosity depercolation in cement-based materials: 
Measurement techniques and factors which influence their interpretation.” Cement and Concrete 
Research, 41(8), 854-864. 2011. 
 
Seidel, K., & Lange, G. “Direct current resistivity methods.” In Environmental geology (pp. 205-237). 
Springer, Berlin, Heidelberg. 2007. 
 
Shah, S. P., Popovics, J. S., Subramaniam, K. V., & Aldea, C. M. “New directions in concrete health 
monitoring technology.” Journal of engineering mechanics, 126(7), 754-760. 2000. 



97 

Sharisha K, “To Study the Effect of Cellulose Nano Fibrils on Cement Paste Micro Structure using 
Electrical Resistivity Measurement”  University of Maine, Orono, Maine 2017. 

Sharisha, K. “Electrical Resistivity Measurements Concepts on Hardened Cement Pastes.” University of 
Maine, Orono, Maine. 2019. 

Shimizu, Y. “An Electrical Method for Measuring the Setting Time of Portland Cement.” Mill Section of 
Concrete, Vol. 32, No. 5, pp. 111–113. 1928. 

Slawinski, A. “Conductivity of an Electrolyte Containing Dielectric Bodies.” Jour. Chem. Phys, 23, 710. 
1926. 

Solgaard, A. O. S., Geiker, M., Edvardsen, C., & Küter, A. “Observations on the electrical resistivity of 
steel fibre reinforced concrete.” Materials and structures, 47(1), 335-350. 2014. 

Spragg, R., Bu, Y., Snyder, K., Bentz, D., & Weiss, J. “Electrical testing of cement-based materials: Role of 
testing techniques, sample conditioning, and accelerated curing.” 2013. 

Spragg, R. The Rapid Assessment of Transport Properties of Cementitious Materials Using Electrical 
Methods. M.S.C.E. Purdue University, West Lafayette, Indiana, 2013. 

Spragg, R., Villani, C., Snyder, K., Bentz, D., Bullard, J. W., & Weiss, J. “Factors that influence electrical 
resistivity measurements in cementitious systems.” Transportation research record, 2342(1), 90-98. 
2013. 

Suaris, W., and Fernando, V. “Ultrasonic pulse attenuation as a measure of damage growth during cyclic 
loading of concrete.” ACI Materials Journal, 84:185– 193, 1987. 

Tang, S. W., Cai, X. H., He, Z., Zhou, W., Shao, H. Y., Li, Z. J., ... & Chen, E. “The review of pore structure 
evaluation in cementitious materials by electrical methods.” Construction and Building Materials, 117, 
273-284. 2016.

Torquato, Salvatore, and H. W. Haslach Jr. “Random heterogeneous materials: microstructure and 
macroscopic properties.” Appl. Mech. Rev. 55.4, 2002. 

Verma, S. K., Bhadauria, S. S., & Akhtar, S. “Review of nondestructive testing methods for condition 
monitoring of concrete structures.” Journal of construction engineering, 2013(2008), 1-11. 2003. 

Veselý, V., Lehner, P., Pieszka, D., & Žídek, L. “Electrical resistivity and ultrasonic measurements during 
sequential fracture test of cementitious composite.” Frattura ed Integrità Strutturale, 8(30), 263-272. 
2014. 

Veselý, V., Konečný, P., & Lehner, P. “Influence of crack propagation on electrical resistivity and 
ultrasonic characteristics of normal concrete assessed by sequential TPB fracture test.” Theoretical and 
Applied Fracture Mechanics, 80, 2-13. 2015. 



98 
 

Villagran Zaccardi, Y. A., & Di Maio, Á. A. “Electrical resistivity measurement of unsaturated concrete 
samples.” Magazine of Concrete Research, 66(10), 484-491. 2014. 
 
Weaver, R. “Ultrasonics in an aluminum foam.” Ultrasonics, 36(1-5), 435-442. 1998. 
  
Weiss, J. Snyder, K. Bullard, J. Bentz, D. “Using a saturation function to interpret the electrical 
properties of partially saturated concrete.” J Mater Civ Eng 25:1097–1106. 2013. 

Weiss, W.J., Barrett, T.J., Qiao, C., Todak, H. “Toward a specification for transport properties of concrete 
based on the formation factor of a sealed specimen.” Adv. Civ. Eng. Mater. 5(1), 179–194 2016. 
 
Weiss, W.J., Ley, T., Isgor, O.B., Van Dam, T. “Toward performance specifications for concrete durability: 
using the formation factor for corrosion and critical saturation for freeze-thaw.” Transportation 
Research Board, Washington, DC. 2017. 
 
Woo, L. Wansom, S. Ozyurt, N. Mu, B. Shah, S. Mason, T. “Characterizing fiber dispersion in cement 
composites using AC-impedance spectroscopy,” Cem. Concr. Compos. 27 (6) 627–636. 2004. 
 
Yaman, I. O., Inci, G., Yesiller, N., & Aktan, H. M. “Ultrasonic pulse velocity in concrete using direct and 
indirect transmission.” ACI Materials Journal, 98(6), 450. 2001. 
 
Yang, R. B., & Mal, A. K. “Multiple scattering of elastic waves in a fiber-reinforced composite.” Journal of 
the Mechanics and Physics of Solids, 42(12), 1945-1968. 
 
Zamen, S., & Dehghan-Niri, E. “Fractal analysis of nonlinear ultrasonic waves in phase-space domain as a 
quantitative method for damage assessment of concrete structures.” NDT & E International, 111, 
102235. 2020. 
 
Zhang, J., Qin, L., & Li, Z. “Hydration monitoring of cement-based materials with resistivity and ultrasonic 
methods.” Materials and Structures, 42(1), 15-24. 2009. 
 
Zhang, J., & Scherer, G. W. “Comparison of methods for arresting hydration of cement.” Cement and 
Concrete Research, 41(10), 1024-1036. 2011. 
 
Zhang, Z., Zhu, Y., Zhu, H., Zhang, Y., Provis, J. L., & Wang, H. “Effect of drying procedures on pore 
structure and phase evolution of alkali-activated cements.” Cement and Concrete Composites, 96, 194-
203. 2019. 
 
Zhou, R., Li, Q., Wang, J., Zhou, K., He, R., & Fu, C. “Assessment of Electrical Resistivity and Oxygen 
Diffusion Coefficient of Cementitious Materials from Microstructure Features.” Materials, 14(12), 3141. 
2021. 
 
Zhu, Yu, et al. "Electrochemical impedance spectroscopy (EIS) of hydration process and drying shrinkage 
for cement paste with W/C of 0.25 affected by high range water reducer." Construction and Building 
Materials 131: 536-541. 2017. 
 



99 

APPENDIX: MATLAB CODES 

Data Averaging: 

function [Data] = DataAveraging(x) 
readmatrix(x); 

x = ans; 
RL = length(x(1,:)); %Row Length 
CL = length(x(:,1)); %Column Length 
x = x(5:CL,:); %Data without headers 
time = x(:,1); %Time 

Data = zeros(size(CL-4,1)); %Initialization 
for i = 1:RL/2 
    Data = Data + x(:,2*i); %Adds columns with data together 
end 
Data = Data/(RL/2); %Divide by # of tests 
Data = [time Data]; 
%Plotting 
clf 
plot(Data(:,1),Data(:,2),'m') 
hold on 
xlabel('Time [sec]') 
ylabel('Voltage [V]') 
title('Averaged Signal') 
hold off 

Ultrasonic Pulse Velocity: 

function [pwv,counter] = USStart(a,x) 

x = x*0.0254; %convert to meters 
counter = 1050; 
diff = 0; 

 while abs(diff) < 0.0005 
 diff = a(2,counter+1)-a(2,counter); 
 counter = counter + 1; 
 end 

pwv = x/(a(1,counter)-0.0005); 

Attenuation Coefficient: 

function [alpha] = Attenuation(data) 
load('Base150.mat'); 
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time = Base150(1,:); 
base = Base150(2,:); 
  
%Frequency Domain 
ts = time(2)-time(1); %Sampling interval 
N = length(time); %Number of Data Points 
fn = 1/(2*ts); %Nyquist Frequency (1/sec) 
df = 1/(ts*N); %Change in frequency (1/sec-sample) 
f = (0:N-1)*df; %Frequency Vector (1/sec) 
Basefft = fft(base); %Fast Fourier Transform of base  
BaseMag = abs(Basefft); %Magnitude of Base FFT 
Datafft = fft(data); %Fast Fourier Transfrom of data 
DataMag = abs(Datafft); 
 
%Calculations 
Ao = max(BaseMag); 
Ar = max(DataMag); 
alpha = -20/(8*25.4)*log(Ar/Ao); %dB/mm 
 

Spectral Energy Density: 

function [t,E] = psd2(time,data) 
t =[]; 
E = []; 
n = 5; 
  
for i = (1+n):length(time)-n 
    t(i-n) = time(i); 
    subD = data(i-n:i+n).*hamming(2*n+1)'; 
    four = abs(fft(subD)); 
    psd = four.^2; 
    f = linspace(160000,340000,length(four)); 
    E(i-n) = trapz(f,psd); 
end 
clf 
plot(t,log(E)) 
 

Curve Fitting for Diffusion Approximation: 

function [phi] = UltrasonicRegression(t,d) 
%Solve using lsqnonlin 
for i = 1:7 
    phi(i,:) = lsqnonlin(@(p) nllsr(t',d(i,:)',p),[10;15;1]); 
end 
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function err = nllsr(t,data,a) 

r = 6*0.0254; 
rModel = a(3).*exp(-r^2./(4*a(1)*t)).*exp(-a(2)*t)./sqrt(4*a(1)*pi*t); 
err = data - rModel; 
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