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Crash data are often highly dispersed; it may also include a large amount of zero 

observations or have a long tail. The traditional Negative Binomial (NB) model cannot model these 

data properly. To overcome this issue, the Negative Binomial-Lindley (NB-L) model has been 

proposed as an alternative to the NB to analyze data with these characteristics. Research studies 

have shown that the NB-L model provides a superior performance compared to the NB when data 

include numerous zero observations or have a long tail. In addition, crash data are often collected 

from sites with different spatial or temporal characteristics. Therefore, it is not unusual to assume 

that crash data are drawn from multiple subpopulations. Finite mixture models are powerful tools 

that can be used to account for underlying subpopulations and capture the population 

heterogeneity. This thesis first documented the derivations and characteristics of the Finite mixture 

NB-L model (FMNB-L) to analyze data generated from heterogeneous subpopulations with many 

zero observations and a long tail. The application of the model was demonstrated with a simulation 

study to identify subpopulations. Then the FMNB-L model was used to analyze Texas four-lane 

freeway crashes. These data had unique characteristics; it was highly dispersed, had many 

locations with very large number of crashes, as well as significant number of locations with zero 



 

crash. Multiple goodness-of-fit metrics were used to compare the FMNB-L model with the NB, 

NB-L, and the finite mixture NB models. The FMNB-L identified two subpopulations in datasets. 

The results showed a significantly better fit by the FMNB-L compared to other analyzed models.  

In addition, the differences in various temporal and spatial factors result in variations of 

model coefficients among different groups of observations. A grouped random parameters model 

is a strategy to account for such unobserved heterogeneity. In this thesis, the derivations and 

applications of a grouped random parameters negative binomial-Lindley model (G-RPNB-L) to 

account for the unobserved heterogeneity in crash data with many zero observations was proposed. 

First, a simulation study was designed to illustrate the proposed model. The simulation study 

showed the ability of the proposed model to correctly estimate the coefficients. Then, an empirical 

dataset in Maine was used to show the application of the proposed model. It was found that the 

impact of weather variables denoting “Days with precipitation greater than 1.0 inch”, and “Days 

with temperature less than 32°F” varied across Maine counties. The proposed model was also 

compared with the NB, NB-L, and grouped random-parameters NB (G-RPNB) models using 

different goodness-of-fit metrics. The proposed G-RPNB-L model showed a superior fit compared 

to the other models.  
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CHAPTER 1 

INTRODUCTION 

Every year millions of people are killed and injured in traffic crashes. Traffic crashes also cause 

huge monetary losses by damaging public and private properties. World Health Organization 

(WHO) (2018) reported that 1.35 million people are killed every year across the world because of 

traffic crashes. Traffic crashes have been ranked as the eighth-leading cause of death by WHO. 

According to the National Highway Traffic Safety Administration (NHTSA), there were 38,824 

deaths on U.S. roads in 2020. The number of people injured on U.S. roads was 2,282,015 and the 

number of non-fatal crashes on U.S. roads was 5,215,071 (Stewart, 2022). This loss of human life 

in traffic crashes has irreparable consequences not only for the victims’ families but also for the 

entire world.  

Statistical models play a crucial role in predicting the frequency and severity of crashes 

and improving traffic safety (Lord & Mannering, 2010; Savolainen et al., 2011; Mannering & 

Bhat, 2014; Mannering et al., 2016). Statistical analysis builds a relationship between a response 

variable (usually number of crashes) and independent variables (e.g., traffic volume, geometric 

characteristics of the roadway, human factors, and weather variations). Some of these explanatory 

variables positively impact the crashes, whereas some of them have negative impacts. Collecting 

the explanatory variables is an extensive, expensive, and time-consuming task. Therefore, some 

unobserved factors influencing the occurrence of a crash cannot be collected or may remain 

unexplained. For example, consider gender as an observed explanatory variable in crash frequency 

analysis. Variations across the same gender, such as height, weight, bone structures or drinking 

behaviors can induce unobserved variations for this observed variable (Mannering et al, 2016). 
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But these unobserved variables cannot be collected. In addition, crash data often include unique 

characteristics such as a large number of zero responses, or a long tail. Typical models such as the 

Negative Binomial (NB) cannot address these issues. To overcome these limitations, recently, 

researchers proposed several new statistical models such as the Negative Binomial-Lindley model. 

This thesis proposes two new models to simultaneously account for the issue of unobserved 

heterogeneity and the number of zero responses.  

This thesis first proposed a Finite Mixture of Negative Binomial-Lindley (FMNB-L) model 

to analyze crash data with heterogeneous populations. This flexible modeling approach can address 

subpopulations heterogeneity in crash data. It can also account for datasets with a large amount of 

zero crash observations or heavy tails. Then, this thesis proposed a Grouped Random Parameters 

NB-L (G-RPNB-L) model for addressing unobserved heterogeneity in crash data. This random-

parameters modeling approach allows parameters to vary across groups of observations. Similar 

to the first proposed model, this model can also account for datasets that contain a large number 

of zero observations. This model can also account for unobserved heterogeneity in crash data due 

to variations across different groups (e.g., regions) for the impact of different explanatory 

variables. 

1.1. Research Problem 

The negative binomial (NB) model is the most frequently used model in analyzing crash data (Lord 

and Mannering, 2010; Mannering and Bhat, 2014). But this model is not without limitations. For 

example, it cannot address the presence of a large number of zero crash observations or heavy tails 

in crash datasets (Zou et al., 2015; Shirazi et al., 2016a). Researchers have developed several 

models over the last few years by using the mixture of NB and other distributions to account for 

such datasets (Geedipally et al., 2012; Vangala et al., 2015; Shirazi et al., 2016a; Khodadadi et al., 
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2022a). Different extensions of NB-L have been proposed by researchers such as Random 

Parameters NB-L (RPNB-L) (Rusli et al., 2018; Shaon et al., 2018; Tang et al., 2020; Behara et 

al., 2021) and Empirical Bayes NB-L (Khodadadi et al., 2022b) because of its popularity in dealing 

with highly dispersed datasets containing a large number of zeros. 

Unobserved heterogeneity is another unique characteristic of crash data and researchers 

need to address this issue (Mannering & Bhat, 2014; Mannering et al., 2016). Unobserved 

heterogeneity may exist in crash data because of the presence of latent subpopulations. These latent 

variations in crash data can be caused by different spatial, environmental, or temporal factors. 

Finite mixture models provide flexibility in accounting for heterogeneous subpopulations in crash 

data. Researchers have used finite mixture models in the past to account for heterogeneity in crash 

data due to latent subpopulations (Frühwirth-Schnatter, 2006; Park & Lord, 2009; Park et al., 2010; 

Xiong & Mannering, 2013; Zou et al., 2013). But these studies did not account for subpopulations 

heterogeneity in crash data with a large amount of zero observations or heavy tails. Considering 

this issue, this research introduced a finite mixture of NB-L model to account for heterogeneous 

subpopulations in crash data with excess zeros. 

Unobserved heterogeneity in crash data can also be caused by regional variations due to 

the impacts of different explanatory variables. Different regions may have variations in traffic, 

geometric, human behavior, and weather characteristics. These variations may have different 

impacts on crashes across different regions. Grouped random parameters approach has been used 

by several researchers in crash frequency and crash severity studies (Cai et al., 2018; Fountas et 

al., 2018a; Fountas et al., 2018b; Li Jia et al., 2018; Fanyu et al., 2021).This approach allows 

parameters to vary across groups of observations. In addition, as noted earlier, crash data may 

contain a large amount of zero observations for different regions or subgroups. Keeping this in 
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mind, this research proposed a grouped random parameters NB-L (G-RPNB-L) model to address 

unobserved heterogeneity due to variations across regions in crash data with a large number of 

zero observations. 

1.2. Thesis Objectives 

The primary goal of this thesis is to generalize the NB-L model to address the subpopulations 

heterogeneity in crash data. To attain this purpose, the following objectives are followed: 

First, the derivations and characteristics of the finite mixture of NB-L (FMNB-L) model 

are documented. A simulation study is demonstrated to evaluate the performance of the proposed 

model to identify latent subpopulations for different simulated scenarios (i.e., sample mean and 

different percentages of zero observations). The model performance is illustrated using three 

empirical datasets of Texas 4-lane freeways and compared with NB, NB-L, and FMNB models 

based on goodness-of-fit (GOF) measures. 

Second, the characteristics and formulations of the grouped random parameters NB-L 

model are discussed. A simulation study is designed to illustrate the performance of the model in 

addressing unobserved heterogeneity due to variations across groups (e.g., regions, towns) for 

various scenarios with different percentages of zeros across groups. An empirical dataset of rural 

Interstates in Maine is used to demonstrate the performance of the model in addressing unobserved 

heterogeneity due to regional variations in crash data and compared with NB, NB-L, and G-RPNB 

models based on goodness-of-fit (GOF) measures. 
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1.3. Thesis Outline 

The outline of this thesis is as follows:  

Chapter 2 provides a systematic literature review of finite mixture models and grouped 

random parameter models in addressing unobserved heterogeneity in crash frequency and crash 

severity analysis. 

Chapter 3 documents the FMNB-L model developed to identify latent subpopulations in 

crash data that contain a large amount of zero observations using a simulation study and three 

empirical datasets. 

Chapter 4 documents the grouped random parameters NB-L model developed to account 

for unobserved heterogeneity in crash data while addressing the issue of excess zeros using a 

simulation study and one empirical dataset.  

Chapter 5 presents the conclusions of the research and provides recommendations for 

future study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

The goal of this research is to generalize negative binomial-Lindley (NB-L) to address 

subpopulations heterogeneity in crash data. This chapter is structured around a discussion of peer-

reviewed articles on unobserved heterogeneity, finite mixture models, and grouped random 

parameters model. Crash data often exhibit overdispersion. Another important issue that needs to 

be addressed is unobserved heterogeneity (Mannering & Bhat, 2014; Mannering et al., 2016). 

These topics are covered at the start of this chapter. Following that, the use of finite mixture models 

to account for subpopulations heterogeneity is described. Unobserved heterogeneity in crash data 

can also be addressed using the grouped random parameters models. Several articles on this 

approach have been reviewed and discussed in this chapter. 

2.2. Unobserved Heterogeneity and Data With Many Zeros 

Crash data often contains a large number of zeros or has a heavy tail (Zou et al., 2015; Shirazi et 

al., 2016a). The widely used negative binomial (NB) model cannot address the modeling 

limitations associated with datasets containing a large number of zeros or heavy tails. Several 

researchers have tried to deal with this issue by proposing different statistical models such as zero-

inflated models (Shankar et al., 1997, 2003), negative binomial-Lindley (NB-L) model (Geedipally 

et al., 2012), negative binomial-generalized exponential (NB-GE) model (Vangala et al., 2015), 

negative binomial-Dirichlet process (NB-DP) model (Shirazi et al., 2016a), random parameters 

NB-L (RPNB-L) model (Rusli et al., 2018; Shaon et al., 2018). The NB-L model has exhibited 
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superior performance compared to the NB model in capturing over-dispersed data with heavy tails 

or excess zero observations.  

Unobserved heterogeneity is caused by unobservable factors in crash data which results in 

inconsistent parameter estimations and erroneous interpretations of explanatory variables 

(Mannering & Bhat, 2014; Mannering et al., 2016). Crash data consists of various traffic, 

geometric, human behavior, and weather characteristics, which may have correlations between 

them. For instance, statistical analysis may consider traffic and weather conditions as explanatory 

variables when interpreting parameters, but there may be some association with human behavior 

as well. This unobserved correlation may affect model interpretation. Researchers have proposed 

random parameters multinomial logit model (Behnood & Mannering, 2015), finite mixture models 

(Park & Lord, 2009; Park et al., 2010; Zou et al., 2013, 2018), and latent-class models with random 

parameters within class (Xiong & Mannering, 2013) to account for unobserved heterogeneity in 

crash data. 

2.3. Finite Mixture Models 

According to Frühwirth-Schnatter, finite mixture models have a wide range of applications in 

various fields such as biology, genetics, medicine, and marketing (Frühwirth-Schnatter, 2006). 

They provide flexibility in modeling by accounting for latent subpopulations in heterogeneous 

data. The finite mixture modeling technique has been widely used in traffic safety studies (Park & 

Lord, 2009; Park et al., 2010; Eluru et al., 2012; Y. Xie et al., 2012; Xiong & Mannering, 2013; 

Zou et al., 2013; Behnood et al., 2014). Crash data are often collected from different spatial and 

temporal attributes. Finite mixture models are powerful tools for addressing unobserved 

heterogeneity in crash data because of the population heterogeneity caused by these attributes. 

These models account for hidden sub-groups in crash data. 
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Park & Lord (2009) demonstrated the application of the finite mixture modeling approach 

in identifying latent subpopulations in crash data. Crash data are collected from different 

geographic, environmental, and geometric attributes, which may create heterogeneous 

subpopulations in crash data. The proposed Finite Mixtures of Poisson (FMP) and Finite Mixtures 

of NB (FMNB) models accounted for unobserved heterogeneity in crash data due to the existence 

of latent subpopulations. The standard NB model cannot account for heterogeneous 

subpopulations, which may result in erroneous coefficients and overdispersion parameter 

estimation. This modeling approach allowed subpopulations or components to have varying 

regression coefficients and overdispersion parameters compared to traditional models. Also, this 

approach provided flexibility in distributional assumptions on the mixing variables.  

The aforementioned study provided useful insight into capturing the unobserved 

heterogeneity because of the presence of heterogeneous subpopulations in crash data. But it did 

not account for the performance of the model in crash data analysis for a wide range of sample 

sizes and sample mean values. Park et al. (2010) extended the scope of their previous study by 

examining the bias properties of the posterior mean and median of the dispersion parameters in 

the two components FMNB-2 regression models. A simulation study was designed based on small 

mean (�̅� < 1), moderate mean (1 < �̅� < 5), and high mean (�̅� > 5) having a wide range of sample 

sizes. The posterior median using the non-informative prior exhibited better bias properties 

compared to the posterior mean for small sample sizes and small to moderate sample means. 

However, when sample sizes were larger, the posterior median exhibited an upward bias similar 

to the posterior mean. The bias in the estimates decreased when a weakly informative prior was 

employed for the posterior mean and median. This study recommended sample size range, suitable 

priors, and summary statistics for crash data analysis based on bias properties. 
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The prior works described above considered fixed weight parameter in formulating two 

components finite mixture of NB regression models. Zou et al. (2013) investigated the application 

of two components finite mixture of NB models with varying weight parameter for crash data 

analysis. The finite mixture of Poisson regression models cannot handle extra variations within 

components, which makes parameter interpretation unreliable. As a result, this study was 

conducted by comparing the model performance of two components finite mixture of NB models 

with fixed weight parameter (FMNB-2) and two components finite mixture of NB models with 

varying weight parameter (GFMNB-2). The GFMNB-2 models produced a better statistical fit and 

aided in the classification of high and low-risk crash sites. This model was also capable of 

capturing the overdispersion present in crash data. As a result, GFMNB-2 outperformed FMNB-2 

in terms of capturing unobserved heterogeneity and overdispersion in crash data. 

Zou et al. (2018) used finite mixture of NB models to calculate empirical Bayes (EB) in 

the highway safety analysis. The empirical Bayes method is widely used for hotspot identification 

and before-after studies in highway safety analysis. The traditional NB model is widely used for 

capturing overdispersion in crash data and is commonly used in the EB method. Zou et al. (2017) 

employed the GFMNB-2 model with varying weight parameter in their study for site rankings 

using EB estimates. The proposed model addressed unobserved heterogeneity in crash data due to 

the presence of heterogeneous population and improved crash predictions. 

Finite mixture or latent class modeling approach has been widely used in crash severity 

analysis. Eluru et al. (2012) employed a latent class modeling approach to analyze crash severities 

at highway-railway grade crossings and identified various key factors influencing injury severities. 

Xie et al. (2012) investigated single-vehicle crash severities on rural roads using a latent class logit 

(LCL) model. This modeling approach allowed the coefficients of explanatory variables to vary 
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for different injury outcomes. This aided in understanding the impacts of various explanatory 

variables in crash severities. Behnood et al. (2014) examined the impacts of age, gender, and 

alcohol consumption on crash severities using a latent class multinomial logit modeling technique. 

This model accounted for heterogeneous effects across the subpopulations in this study. Xiong & 

Mannering (2013) implemented a finite mixture random parameters approach to study the 

heterogeneous effects of guardian supervision on crash severities. Thus, finite mixture models are 

widely used in both crash frequency and crash severity studies to account for latent subpopulations 

in crash data. 

2.4. Grouped Random Parameters Models 

Grouped random parameters models allow the mean and variance of the coefficients to vary across 

observations or groups (Mannering et al., 2016; Meng et al., 2017; Sarwar et al., 2017). The 

concept of modeling unobserved heterogeneity in crash data with Grouped Random Parameters is 

a powerful tool. This technique has been used in several crash frequency investigations (Cai et al., 

2018; Fountas et al., 2018a; Heydari et al., 2018; Li Jia et al., 2018). Developing a reliable and 

efficient model for the analysis of crash occurrence on segments and intersections is necessary 

because they constitute a major part of the road network. To avoid omitted variable bias and 

inconsistent parameter estimations, appropriate explanatory variables must be used (Lord & 

Mannering, 2010; Mannering et al., 2016). 

The influence of zonal factors on crash data modeling at segments and intersections was 

investigated by Cai et al. (2018). A grouped random parameters multivariate spatial model was 

implemented to account for zonal effects and unobserved heterogeneity in crash data modeling at 

segments and intersections. The addition of zonal characteristics like traffic characteristics (e.g., 

daily vehicle miles driven, percentage of heavy vehicles) and socio-demographic data (e.g., 
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population, median household income) enhanced model estimation significantly. This study 

analyzed a crash dataset from Central Florida, which included 24.7 percent intersection-related 

crashes and 75.3 percent segment-related crashes. Integration of zonal factors (e.g., daily vehicle 

miles traveled, percentage of heavy vehicles, population, median family income) at segments and 

intersections also contributed to addressing unobserved heterogeneity in crash data and resulted in 

more robust parameter estimations. This modeling approach also looked at the heterogeneous and 

spatial correlations of zonal impacts on crash occurrences at segments and intersections and 

identified significant heterogeneous correlations. 

Heydari et al. (2018) employed another Grouped Random Parameters approach to deal 

with the complex crash mechanisms at highway-railway grade crossings. Unobserved 

heterogeneity may exist in grade crossing crash data, resulting in erroneous parameter estimates. 

This study implemented a heteroskedastic grouped random parameters Poisson lognormal model 

with heterogeneity in mean and variance. This hierarchical Bayesian modeling approach allowed 

for the comparison of different geographic regions in terms of grade crossing safety. Unobserved 

heterogeneity was captured by modeling heterogeneity in the mean and variance of grouped 

random parameters as a function of explanatory variables. The study found the dispersion of crash 

frequencies was greater in urban areas than in rural areas because the variance is 0.134 times higher 

for urban areas.  

Fountas et al. (2018a) developed a dynamic correlated grouped random parameters binary 

logit model to study the mixed effects of both non-time varying and time-varying explanatory 

variables on crashes and capture unobserved heterogeneity in crash data. This model used an 

unrestricted covariance matrix approach to estimate grouped random parameters, which allowed 

for parameter correlations as well as accounted for unobserved heterogeneity. The marginal effects 
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of stationary explanatory variables such as segment length and median width revealed that an 

increase in these variables resulted in an increase in the likelihood of crashes by 0.0183 and 0.0002, 

respectively. The marginal effect of dynamic explanatory variables such as the relative humidity 

indicator in t-30 minutes showed that an increase in this variable resulted in an increase in the 

likelihood of crashes by 0.0357. 

Another crash frequency study incorporating Grouped Random Parameters approach was 

implemented by Li Jia et al. (2018). This study investigated the relationship between the Level of 

Safety (LOS) and traffic safety at signalized intersections by considering temporal attributes and 

different types of crashes. A grouped random parameters negative binomial model was proposed 

to study the LOS-safety relationship for total crashes, and a bivariate grouped random parameters 

negative binomial model was proposed for rear-end and left-turn crashes. The relationship varied 

across times for different types of crashes.  

Grouped Random Parameters modeling approach has been implemented in crash severity 

analysis too. Fountas et al. (2018b) developed a correlated random parameters ordered probit 

model to analyze crash severity. This model accounted for unobserved heterogeneity and also 

addressed interactions among observed or unobserved characteristics. Fanyu et al. (2021) studied 

the effect of the presence of trucks of different classes on non-truck-related crashes by developing 

a correlated grouped random parameters binary logit model. This approach accounted for 

unobserved heterogeneity at both the observation level and space-time level. In addition to crash 

frequency and severity investigations, the Grouped Random Parameters technique has been used 

to analyze perceived and observed aggressive driving behavior (Sarwar et al., 2017) and pedestrian 

safety studies (Pantangi et al., 2021).  
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2.5. Chapter Summary 

The nature of crashes, which are often acquired from different temporal and spatial attributes, may 

produce unobserved heterogeneity in crash data. Unobserved heterogeneity needs to be addressed 

in both crash frequency and crash severity studies (Mannering & Bhat, 2014; Mannering et al., 

2016). The presence of latent subpopulations may cause unobserved heterogeneity in crash data. 

Finite mixture models provide a flexible modeling approach to address subpopulations 

heterogeneity in crash data. Different traffic (e.g., traffic volume, speed, driver behavior), 

geometric (e.g., skid number, lane width, curve presence), and weather (e.g., rainfall, snowfall, 

visibility, temperature) characteristics have different impacts on crashes and these effects may vary 

across different regions. As a result, unobserved heterogeneity may exist in crash data due to 

variations across regions too. Grouped Random Parameters modeling approach has become 

popular nowadays because it allows parameters to vary across groups of observations. It also 

allows accounting for zonal factors on crash occurrences. This chapter discussed various peer-

reviewed articles to have a better understanding of these topics. 

 

 

 

 

  



14 

 

CHAPTER 3 

FINITE MIXTURE NEGATIVE BINOMIAL-LINDLEY 

3.1. Introduction  

Statistical models play a crucial role in improving safety. Over the last decade, research studies 

have proposed various statistical models to analyze crash data (Lord & Mannering, 2010; 

Mannering & Bhat, 2014; Mannering et al., 2016; Lord et al., 2021). These models attempt to 

address unique characteristics in crash data that are not typically found in other research fields. As 

such, crash data are often highly dispersed and characterized by many zero observations or a long 

(or heavy) tail (Zou et al., 2015; Shirazi et al., 2016a). Several researchers have proposed models 

to analyze these data. Initially, zero-inflated models were introduced to account for excess zero 

observations. However, zero-inflated models have important limitations. Research studies have 

documented multiple limitations of these models (Lord et al., 2005; Lord et al., 2007; Lord et al., 

2021), such as the strict dual state process or a state with a long-term mean that is equal to zero. 

Recently, using the mixture of NB and other distributions has received significant attention from 

researchers to account for such data characteristics  (Geedipally et al., 2012; Vangala et al., 2015; 

Shirazi et al., 2016a; Khodadadi et al., 2022a). Negative binomial-Lindley (NB-L) is one of the 

most popular models in this line of modeling. The NB-L distribution was first introduced by 

Zamani & Ismail (2010). Lord & Geedipally (2011) later demonstrated its application to model 

crash data with many zero observations. Previous research studies also developed NB-L 

generalized linear model (GLM) (Geedipally et al., 2012), Random Parameters NB-L (RPNB-L) 

(Rusli et al., 2018; Shaon et al., 2018; Tang et al., 2020; Behara et al., 2021) and Empirical Bayes 

NB- (Khodadadi et al., 2022b), and showed its superior performance compared to the NB.  
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Addressing unobserved heterogeneity is another important challenge in modeling 

(Mannering et al., 2016). Crash data are often collected from groups with various geographical, 

environmental, behavioral, or other spatial or temporal attributes. The simple NB model cannot 

account for population heterogeneity in modeling when data comes from heterogeneous sources. 

Finite mixture models (Frühwirth-Schnatter, 2006; Park & Lord, 2009; Park et al., 2010; Xiong & 

Mannering, 2013; Zou et al., 2013) are a class of models that address the heterogeneity in 

population by accounting for latent subpopulations (or groups or classes) in the data. For example, 

one subpopulation may include data with high mean and variations, but another with low mean 

and variations. Park & Lord (2009) demonstrated the application of the finite mixture negative 

binomial GLM (FMNB GLM) in modeling heterogeneous crash data drawn from different 

subpopulations and documented its superior performance to the simple NB model using several 

datasets and multiple goodness-of-fit (GOFs) statistics.  

This chapter documents the derivations and applications of the finite mixture NB-L GLM 

(FMNB-L GLM) in modeling crash data with many zero observations and a long tail. This research 

was motivated by two concepts or ideas. The first idea can be explained by taking a closer look at 

the structure of the NB-L and FMNB models and the flexibility they provide in modeling. The 

NB-L GLM provides additional flexibility in modeling by mixing the NB with the Lindley 

distribution. This additional flexibility allows the model to account for excess zero observations 

or a long tail (Shirazi et al., 2016a). The FMNB models also provide very flexible models by 

accounting for subpopulations in the data. We are deriving the FMNB-L model to benefit from the 

strength of both strategies. It is hypothesized that the FMNB-L will provide significantly flexible 

models that account for both heterogeneity in population and numerous zero observations. 

Secondly, the research was inspired by taking a closer look at zero-inflated models. Zero-inflated 
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models assume a dual state, with two distinctive components, one with a mean that is always zero 

(Lord et al., 2005; Hilbe, 2011). As noted above, zero-inflated models have been criticized for 

having a stage with a long-term mean of zero, which is theoretically impossible for numerous cases 

or scenarios (see, e.g., Lord et al., 2005; Allison, 2012; H. Xie et al., 2013; Fisher et al., 2017; 

Lord et al., 2019; Lord et al. 2021). Finite mixture models, however, assume that each observation 

can belong to all subpopulations with certain probabilities where none of the subpopulations has a 

long-term mean equal to zero. Using the FMNB-L model, we can account for the excess number 

of zero observations without assuming a subgroup with a long-term mean of zero.  

 In this chapter, first, we document the characteristics of the FMNB-L model. Then, we 

document the results of a simulation study to evaluate the performance of the FMNB-L model in 

identifying subpopulations for data with different characteristics (i.e., the population mean and the 

percentage of zero observations). In the end, we demonstrate the performance of the FMNB-L 

model using three empirical datasets and compare the results with the NB, NB-L, and FMNB 

models based on multiple GOF measures. 

3.2. Background 

Before documenting the derivations and characteristics of the FMNB-L model, let us first briefly 

review the NB, NB-L, and FMNB GLMs.  The NB is the most common model used to analyze 

over-dispersed crash count data (Lord and Mannering, 2010; Mannering and Bhat, 2014). The 

probability mass function (pdf) of the negative binomial distribution is defined using the following 

equation (Hilbe, 2011): 

NB(μi, φ) ≡ P(yi |μi, φ) =
Γ(yi + φ)

Γ(yi + 1) × Γ(φ)
(

μi

μi +  φ
)

yi

(
φ

μi +  φ
)

φ

;  φ and μi > 0        (1) 
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Where yi is the crash observation at site i, and  Γ(. ) is the gamma function. The parameters μi and 

φ respectively denote the mean response of observations at site i, and the inverse dispersion 

parameter. Often, it is assumed that the mean response of the observations has a log-linear 

relationship with regression coefficients (denoted by βs) and a set of m-dimensional covariates 

(denoted by X) as follows: 

ln(μi|β0, β1, … βm ) = β0 +  ∑ βjXij

m

j=1

 (2)              

The NB-L model is a mixture of the NB and Lindley distribution and can be written as 

follows (Geedipally et al., 2012): 

NB-L (μi, φ, θ) ≡ P(Y = yi| μi, φ, θ) =  ∫ NB(yi| εiμi, φ)Lindley(εi|θ) dεi               (3) 

Note that the Lindley distribution can be written as a mixture of the following two gamma 

distributions (Zamani & Ismail, 2010): 

εi|θ ~
1

1 + θ
 gamma(2, θ) +

θ

1 + θ
 gamma(1, θ)            (4) 

This expression is equal to the following hierarchical representation: 

εi|zi, θ  ~ gamma(1 + zi, θ)  (5-1) 

zi|θ ~ Bernoulli ( 
1

1 + θ
)  (5-2) 

Hence, the NB-L model can be presented as the following hierarchical representation (Zamani & 

Ismail, 2010): 

yi| εiμi, φ ~ NB(εiμi, φ) (6-1) 

εi|zi, θ  ~ gamma(1 + zi, θ) (6-2) 

zi|θ ~ Bernoulli ( 
1

1 + θ
) (6-3) 
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ln(μi|β0, β1, … βm) = β0 + ∑ βjXij

m

j=1

 (6-4) 

The expectation and variance of the variable yi~NB-L(μi, φ, θ) is given as follows (Geedipally et 

al., 2012): 

E(yi|μi, θ) = μi ×
θ + 2

θ(θ + 1)
           (7-1) 

var(yi|μi, φ, θ) = μi ×
θ + 2

θ(θ + 1)
+ (μi

2 ×
1 + φ

φ
) ×

2(θ + 3)

θ2(θ + 1)
− (μi ×

θ + 2

θ(θ + 1)
)

2

     (7-2) 

The NB-L model provides greater flexibility to account for excess zero observations or data 

characterized by a long tail or large skewness (Shirazi et al., 2016a , Shirazi et al., 2017a).  

Finite mixture models are another class of models that provide flexibility in modeling 

especially when data are originated from heterogeneous populations (Park & Lord, 2009; Park et 

al., 2014; Zou et al., 2018). In finite mixture models, each observation belongs to the finite mixture 

of distributions with certain probabilities. The general form of finite mixture models with K 

components is defined in Eq. (8) as follows [note that vectors are shown in bold fonts]:  

p(yi|𝚯) =  ∑ wkfk(yi|𝚯𝐤)

K

k=1

             (8-1) 

∑ wk = 1

K

k=1

             (8-2) 

where wk  and fk(. |𝚯𝐤) represent the mixing weight, and the distribution of the k-th component 

respectively. The vector 𝚯𝐤 indicates the parameters of the k-th distribution. The mean and 

variance of finite mixture models (based on the above general form) are given as follows (Park & 

Lord, 2009): 
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E(yi|𝚯) = ∑ wkE(yi|𝚯𝐤)

K

k=1

             (9-1) 

var(yi|𝚯) = ∑(E2(yi|𝚯𝐤) + var(yi|𝚯𝐤)

K

k=1

− E2(yi|𝚯)             (9-2) 

Given the definition in Eq. (8), the general form of the finite mixture of negative binomial (FMNB) 

model with k components, and parameters 𝛍𝐢 = {μi1, μi2 ,…, μik}, 𝐰 ={w1 , w2 , ,…, wk}, and 

𝛗={φ1 , φ2 , ,…, φk} is defined in Eq. (10) (Park & Lord, 2009): 

p(yi|𝐰, 𝛍𝐢, 𝛗) =   ∑ wkNB(μik, φk)

K

k=1

              

                           = ∑ wk

K

k=1

[
Γ(yi + φk)

Γ(yi + 1)Γ(φk)
(

φk

μik + φk
)

φk

(
μik

μik + φk
)

yi

] 

            

           (10) 

The mean and variance of the FMNB model is given as follows: 

E(yi|𝐰, 𝛍𝐢) = ∑ wkμik

K

k=1

             (11-1) 

var(yi|𝐰, 𝛍𝐢, 𝛗) = ∑ (wkμik + μik
2 (

1 + φk

φk
))

K

k=1

− E2(yi|𝚯)             (11-2) 

Where μk and φk show the mean and inverse dispersion parameter of the k-th NB component. 

3.3. Finite Mixture Negative Binomial-Lindley   

This section describes the characteristics of the FMNB-L GLM. Let us assume the model includes 

K latent NB-L subpopulations. Therefore, the FMNB-L model with k components and the vector 
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of parameters denoted by 𝛍𝐢 = {μi1, μi2 ,…, μik}, 𝐰 ={w1 , w2 ,…, wk}, 𝛗 ={φ1 , φ2 ,…, φk} 

and 𝛉 ={θ1 , θ2 ,…, θk} is defined by the following closed form:  

p(yi|𝐰, 𝛍𝐢, 𝛗, 𝛉) =   ∑ wkNBL(μik, φk, θk)

K

k=1

              

                               = ∑ wk

K

k=1

∫ NB(y| εikμik, φk)Lindley(εik|θk) dεik 

         

    (12) 

Eq. (12) can also be rewritten as follows: 

p(yi|𝐰, 𝛍𝐢, 𝛗, 𝛉) =   ∑ wkNB(εikμik, φk)

K

k=1

;  εik~Lindley(θk)            (13) 

Given Eq. (7) and Eq. (11), the mean and the variance of the FMNB-L model can be written as 

follows: 

E(yi|𝐰, 𝛍𝐢, 𝛗, 𝛉) = ∑ wk (μik ×
θk + 2

θk(θk + 1)
)

K

k=1

 

           

(14-1) 

var(yi|𝐰, 𝛍𝐢, 𝛗, 𝛉) = ∑ (wkμik

θk + 2

θk(θk + 1)
+ μik

2 (
1 + φk

φk
) (

2(θk + 3)

θk
2(θk + 1)

))

K

k=1

− E2(yi|𝐰, 𝛍𝐢, 𝛗, 𝛉) (14-2) 

Given the hierarchical representation of the NB-L model described in Eq. (6), we can write Eq. 

(13) in the following hierarchical Bayesian representation: 

yi| εik, μik, φk ~ ∑ wkNB(εikμik, φk)K
k=1  (15-1) 

εik|zik , θk  ~ gamma(1 + zik, θk) (15-2) 
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zik|θk ~ Bernoulli ( 
1

1 + θk
) 

(15-3) 

ln(μik|β0k, β1k, … βmk) = β0k +  ∑ βjkXij

m

j=1

 (15-4) 

 

   The Markov Chain Monte Carlo (MCMC) simulation can be used to estimate the 

parameters of the hierarchical model described in Eq. (15).  In addition, given that all distributions 

in Eq. (15) have standard distributions if suitable prior distributions are used, Eq. (15) can be 

implemented in statistical software programs such as WinBUGS (Spiegelhalter et al., 2003) for 

MCMC analysis.  

 Eq. (15) presented a FMNB-L model with intercept terms (β0k); however, as noted in 

previous studies (Geedipally et al., 2012; Shirazi et al., 2016a), there are strong correlations 

between the intercept (β0k) and the site frailty terms (εk). To overcome this issue, it is 

recommended to either use an informative prior for εk that ensures E(εk) =1 or drop the intercept 

initially from the model, and then once the model converged, approximately estimate the intercept 

using the following equation.    

β0k =  E (log(E(εk))) =  E (log (
θk + 2

θk(θk + 1)
))            (16) 

Eq. (16) can easily be estimated using MCMC. For this purpose, the value of log (
θk+2

θk(θk+1)
) needs 

to be recorded in each iteration of MCMC. After the completion of MCMC, an average is taken 

over all simulated samples. The average values will be presented as the intercepts. We used the 

later approach in our analysis.  
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It is worth pointing out that the MCMC outputs can be used to determine the association 

probabilities of subpopulations for each observation. For this purpose, it is more convenient to 

revise Eq. (15) using a subpopulation allocation parameter for each site “i" denoted by δi (Ohlssen 

et al., 2007). Let us assume a categorical distribution with probabilities of wk on  δi. Then, Eq. 

(15) is revised as follows: 

yi| εik, μik, φk , (δi = k) ~ NB(εikμik, φk) (17-1) 

εik|zik , θk, (δi = k)  ~ gamma(1 + zik, θk) (17-2) 

zik|θk, (δi = k)  ~ Bernoulli ( 
1

1 + θk
) 

(17-3) 

ln(μik|β0k, β1k, … βmk, (δi = k) ) = β0k +  ∑ βjkXij

m

j=1

 (17-4) 

If we run the MCMC for N iterations. The association probability of subpopulation k for the i-th 

observation (pik) is derived as: 

pik =
(∑ Ii,n(δi = k)N

n=1 )

N
 (18) 

Where, for each i-th observation, the indicator parameter  Ii,n(δi = k) denotes a sample from the 

posterior of association probabilities at iteration 𝑛 of MCMC, which is equal to one if δi = k, and 

zero otherwise. In the next section, we document the results of a simulation study to evaluate the 

performance of the FMNB-L model to estimate the coefficients of subpopulations given a range 

of mean and percentage of zero observations. 
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3.4. Simulation Analysis 

As noted earlier, we proposed the FMNB-L GLM to identify latent subpopulations in data 

characterized by many zero observations or a long tail.  In this section, the results of a simulation 

study to evaluate the performance of the FMNB-L model in estimating the coefficients of 

subpopulations are presented and discussed for a range of scenarios. For this purpose, we simulated 

data for a range of characteristics (i.e., different crash means and percentages of zero responses), 

and then used the FMNB-L to find the subpopulations. This section is divided into two parts. The 

first part documents the simulation protocol used in this study to simulate data for different 

scenarios (or different characteristics, to be exact). The second part illustrates the results of 

applying the simulation protocol. 

3.4.1. Simulation Protocol 

Simulation has been used by various studies to demonstrate an idea, draw conclusions about the 

advantages and limitations of a methodology, or provide guidelines (Lord, 2006; Shirazi et al., 

2016b; Shirazi et al., 2017b; Shirazi et al., 2021). Simulation is a powerful method due to its ability 

to create controlled scenarios when known input variables are available. We use simulation to 

understand the FMNB-L strength in identifying the mixing components for a range of sample mean 

and zero responses. We designed a simulation study similar to the Park et al. (2010) work. Without 

loss of generality, we considered a two component FMNB-L model with mixing weights of 0.5 

(w1 = w2 = 0.5). For simplicity, we assumed a common inverse dispersion parameter (φ) for the 

two components. We first simulated two covariates (X1 and X2) from a normal distribution with a 

mean of zero and variance of 1. Then, given two sets of coefficients (i.e., β11, β21 and β12, β22), 

we constructed the subpopulations means (μi1, μi2) using Eq. (2). We then simulated two sets of 

unobserved site frailty terms (εi1, εi2) from two different Lindley distributions. We controlled over 
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the range of mean and percentage of zeros by modifying the values of Lindley parameters (θ1, θ2). 

Then, observations were simulated from a mixture of two negative binomial distributions as 

follows: 

𝑦𝑖~ ∑ wkNB(εikμik, φ)

2

k=1

 (19) 

To accomplish the latest step, we randomly sampled crash observations from the mixture model 

in Eq. (19) with a probability of wk using a categorical distribution.  

The detailed steps of the simulation protocol are described below: 

Step 1. Initializations. 

1.1. Set the regression coefficients for the two subpopulations. β11 and β21 represent the two 

coefficients of the first component, and β12 and β22 the coefficients of the two 

coefficients of the second component. 

1.2. Set the value of Lindley parameters (θ1 and θ2) for the two subpopulations.  

1.3. Set the value for the inverse dispersion parameter (φ). 

Step 2. Simulate covariates and find the mean. 

2.1 Simulate 10,000 draws for variables Xi1 and Xi2 from a standard normal distributions as 

follows: 

 Xi1~ N(0, 1);     i = 1, … , 10,000 

Xi2~ N(0, 1);    i = 1, … , 10,000 

2.2. Calculate the mean of components (or subpopulations) using the following equations: 

µi1 = exp(β11 Xi1 + β12 Xi2) 

µi2 = exp(β12 Xi1 + β22 Xi2) 
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Step 3. Simulate site-specific frailty terms (ε1 and ε2) 

3.1. Simulate 10,000 site-specific frailty terms for component 1 (𝜀1) and component 2 (𝜀2 ) 

from Lindley distributions with parameters θ1and θ2 respectively. 

  εi1~Lindley(θ1);             i = 1, … , 10,000 

εi2~Lindley(θ2);            i = 1, … , 10,000 

Step 4. Simulate crash observations. 

4.1 Simulate crash observations (yi) from a mixture of two negative binomial distributions as 

follows: 

yi ~ ∑ wkNB(εikμik, φ)

2

k=1

 

where w1=w2 = 0.5.  

Step 5. Fit the Model. 

5.1. Use the FMNB-L model (Eq. 15) to fit the model and estimate the coefficients. 

3.4.2. Simulation Results 

We ran the simulation protocol for a range of data that include scenarios with low mean (�̅� < 1), 

moderate mean (1 < �̅� < 2), and high mean (�̅� > 5). In addition, we controlled the percentages 

of zeros by simulating datasets that include approximately 60%, 70%, and 80% of zero 

observations. An additional dataset containing approximately 90% of zero observations was also 

considered for the low mean (�̅� < 1) category. For other mean categories, having more than 80% 

zero observations is nearly impossible; hence, they were not considered in simulation analysis. 

Although data with high mean (�̅� > 5) and 70% or 80% zero observations are rarely observed in 
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real crash data, we considered them in the analysis for the sake of simulation completeness. Table 

1 the mean and percentage of zeros for simulated datasets. As shown in this table, the mean and 

percentages of zeros were recorded for both subpopulations and the population. We ensured that 

there are distinct subpopulations in simulated datasets. Therefore, often, the simulated data include 

one component with a smaller mean, and another with a larger mean, or components with different 

percentages of zeros. 

Table 1: Summary Statistics of Simulated Data 

Data Mean 

Zeros in Data ~ 60% ~ 70% ~ 80% ~ 90% 

Components Mean Zeros Mean Zeros Mean Zeros Mean Zeros 

Low 

(�̅� < 𝟏) 

Combined 0.9 61% 0.8 69% 0.4 80% 0.2 90% 

Component 1 1.2 51% 0.6 75% 0.3 86% 0.2 87% 

Component 2 0.5 70% 0.9 64% 0.5 73% 0.1 93% 

Moderate 

(𝟏 < �̅� < 𝟐) 

Combined 1.7 60% 1.8 70% 1.2 79%   

Component 1 0.5 77% 0.3 84% 1.0 82%   

Component 2 2.9 42% 3.1 57% 1.4 76%   

High 

(�̅� > 𝟓) 

Combined 8.3 59% 7.1 70% 5.3 79%   

Component 1 0.2 87% 1.3 81% 13.0 79%   

Component 2 19.0 31% 12.0 58% 0.5 80%   
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We considered both extreme cases related to having data with numerous zero observations 

(80% or 90%) as well as data with a long tail in our analysis. The former was considered by 

simulating data with low mean (y̅ < 1) and high percentages of zero (e.g., ~80% or ~90%). The 

latter was considered in the simulation study by considering data with high mean (y̅ > 5)  with 

two clear and distinct components, one component with small mean and high percentages of zeros 

and the other with very high mean and small percentages of zeros. This consideration is clearly 

observed in the case of a population with high mean (y̅ > 5) and 60% zero observations. For this 

scenario, we simulated two subpopulations, one with a mean of 0.2 and 87% zero observations 

and the other with a mean of 19.0 and about 31% zero observations. 

We implemented the model in WinBUGS (Spiegelhalter et al., 2003). Priors were specified 

to estimate the unknown parameters. Priors for regression coefficients (𝛽s), inverse dispersion 

parameter (φ), and weighs (w) were assumed to have a normal, gamma, and uniform distributions 

respectively. We also considered a uniform prior on 1/(1 + θ) parameter.  To overcome limitations 

related to the correlations between the site frailty terms and intercepts, we dropped the intercepts 

from the model first. But after MCMC convergence, we calculated the intercepts using Eq. (16). 

We conducted the MCMC analysis for 3 chains and 30,000 iterations. The first 5,000 samples 

were considered as burn-in samples and excluded from the analysis. The remaining 25,000 samples 

were used for estimating the posterior means and standard deviations. We used the thinning 

method to ensure the generated samples are random. For this purpose, only every 10-th sample 

was kept. Reviewing the convergence, auto correlation, kernel density, and tracing plots, the 

results showed excellent convergence and mixing for MCMC for all parameters in all simulation 

scenarios. No label switching or multi-modality was found in the posterior distribution which 

shows the stability of the model.  
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Table 2: Modeling Results for the Simulated Data 

Percentage 

of  

Zeros 

Parameters 

Low Mean 

(�̅� < 𝟏) 

Moderate Mean 

(𝟏 < �̅� < 𝟐) 

High Mean 

(�̅� > 𝟓) 

True 

Value 

Estimated1 

Values 

True 

Value 

Estimated 

Values 

True 

Value 

Estimated 

Values 

~ 60% Component 

1 

β1 -0.5 -0.534 (0.035) 1 0.981 (0.054) 0.5 0.454 (0.059) 

β2 -0.5 -0.506 (0.038) 1 0.949 (0.054) 1 0.919 (0.062) 

𝛉𝟏 1.5 1.574 (0.056) 6 5.812 (0.469) 11 9.900 (0.836) 

𝐖𝟏 0.5 0.521 (0.027) 0.5 0.509 (0.012) 0.5 0.492 (0.009) 

Component 

2 

β1 0.5 0.445 (0.057) -0.5 -0.511 (0.031) 1.5 1.521 (0.021) 

β2 0.5 0.508 (0.058) -1 -0.990 (0.033) -1 -1.010 (0.021) 

𝛉𝟐 3 2.885 (0.209) 1 0.955 (0.028) 0.5 0.499 (0.010) 

𝐖𝟐 0.5 0.479 (0.027) 0.5 0.491 (0.012) 0.5 0.508 (0.009) 

                          ϕ 5 5.612 (1.205) 5 4.327 (0.810) 5 5.340 (0.777) 

~ 70% Component 

1 
β1 -1 -0.981 (0.056) -0.5 -0.567 (0.058) -1 -0.936 (0.048) 

β2 1 1.008 (0.049) 1 1.130 (0.072) 2 1.997 (0.057) 

𝛉𝟏 5 4.842 (0.353) 8 8.748 (0.906) 11 10.660 (0.858) 

𝐖𝟏 0.5 0.489 (0.015) 0.5 0.471 (0.012) 0.5 0.506 (0.009) 

Component 

2 
β1 1 0.954 (0.039) 1 1.036 (0.029) 2 1.962 (0.034) 

β2 -0.5 -0.498 (0.034) -1.5 -1.527 (0.036) -1.5 -1.478 (0.033) 

𝛉𝟐 2.5 2.545 (0.101) 2 2.145 (0.079) 2.5 2.421 (0.098) 

𝐖𝟐 0.5 0.489 (0.015) 0.5 0.529 (0.012) 0.5 0.494 (0.009) 

                          ϕ 5 5.395 (1.206) 5 5.002 (1.057) 5 5.139 (0.926) 

~ 80% Component 

1 

β1 -1.5 -1.443 (0.093) -1 -0.928 (0.047) 3 2.942 (0.065) 

β2 0.5 0.598 (0.053) 2 1.974 (0.058) 1.5 1.434 (0.053) 

𝛉𝟏 12.5 11.810 (1.808) 14 13.370 (1.131) 20 19.070 (1.946) 

𝐖𝟏 0.5 0.508 (0.020) 0.5 0.509 (0.012) 0.5 0.517 (0.022) 

Component 

2 

β1 0.5 0.498 (0.063) 1.5 1.496 (0.044) 1.5 1.558 (0.054) 

β2 -0.5 -0.561 (0.043) -1.5 -1.478 (0.047) -0.5 -0.403 (0.052) 

𝛉𝟐 3.5 3.690 (0.221) 8 7.572 (0.516) 8 7.714 (0.528) 

𝐖𝟐 0.5 0.492 (0.020) 0.5 0.491 (0.012) 0.5 0.483 (0.022) 

                         ϕ 5 5.155 (1.535) 5 5.742 (1.643) 5 4.226 (1.011) 

~ 90% Component 

1 

β1 -0.5 -0.509 (0.055) -2 - - - 

β2 1 0.991 (0.061) - - - - 

𝛉𝟏 10 9.466 (0.909) - - - - 

𝐖𝟏 0.5 0.501 (0.037) - - - - 

Component 

2 

β1 1 0.940 (0.103) - - - - 

β2 -0.5 -0.614 (0.101) - - - - 

𝛉𝟐 25 27.010 (5.365) - - - - 

𝐖𝟐 0.5 0.499 (0.037) - - - - 

                         ϕ 5 5.452 (3.498) - - - - 
1Standard deviation is shown in parenthesis. 
2Datasets cannot adequately be simulated when both samples means, and percentages of zeros are large 
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Table 2 summarizes the modeling results for the simulated datasets. The estimated 

parameters from the fitted FMNB-L model were compared with the true parameters. For all 

simulation scenarios, both estimated and true values are very close. Also, the estimated values did 

not include any zero in the 95% confidence interval which indicated the values to be statistically 

significant. As shown in Table 2, The FMNB-L model estimated the subpopulations for two 

extreme cases of having numerous zero observations (e.g., �̅� < 1 and 80% of zero observations or  

�̅� < 1 and 90% of zero observations) and has a long tail (e.g., �̅� > 5 and ~60% zero observations) 

with good accuracy. Note that small deviations from the true value are unavoidable given that there 

are almost always some similarities between subpopulations; as subpopulations become more and 

more distinct, better estimations are expected. In addition, as noted in previous studies (Lord, 2006; 

Lord & Miranda-Moreno, 2008), the estimation of the inverse dispersion parameter (φ) for the 

NB distribution is often biased especially for data characterized by a small sample mean. Although 

the φ has a different interpretation in NB-L or FMNB-L models compared to NB or FMNB due 

to the existence of Lindley terms, similar inaccuracy in estimation is expected in our simulation 

study as well.   

3.5. Application to Empirical Data   

We used an empirical dataset (separated by severity levels) with a long tail (and different crash 

means, variances, and percentages of zero responses) to demonstrate the application of the FMNB-

L to model real crash data and compare the results with other competitive models (i.e.: NB, NB-

L, and FMNB). This section is divided into two parts. The first part describes the characteristics 

of datasets used in this study while the second part presents the modeling results. 
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Table 3: Characteristics of Texas Four-Lane Freeway Data 

Variables Min Max Avg. S.D. 

Multi-Vehicle Fatal Injury Crashes (5 years) 0 135 3.07 7.59 

Multi-Vehicle Property Damage Only Crashes (5 years) 0 343 6.94 16.72 

Number of Multi-Vehicle Crashes (5 years) 0 478 10.01 23.80 

Annual average daily traffic in 5 years (AADT) 1,651 267,131 43,935 27,353 

Segment length (in miles) (L) 0.001 5.192 0.304 0.454 

 

3.5.1. Data Description 

For this research, we used the multi-vehicle property damage only (PDO) and fatal-injury (FI) 

crash data collected in 5 years on 4,192 segments of Texas four-lane freeways. This dataset has 

unique characteristics that are not found in other typical crash datasets. Crash data are highly 

dispersed and include segments with very large number of crashes while still a significant number 

of segments did not experience any crashes. Table 3 indicates the summary statistics of the data. 

We divided the data into three datasets (i.e., multi-vehicle FI crashes, multi-vehicle PDO crashes, 

and Total PDO and FI multi-vehicle crashes) to evaluate the performance of FMNB-L for a range 

of crash mean, dispersion, the maximum number of crashes, and percentage of zero observations. 

The FI crash dataset has a mean of 3.07, and standard deviation of 7.59. It includes many segments 

with large number of crashes (note the maximum number of 135 crash); yet it includes about 50% 

of zero observations. The PDO crash dataset has a mean of 6.94 and standard deviation of 16.72. 

This dataset also includes many segments with very large number of crashes (note the maximum 

number of 343 crash) while still around 39% of segments did not include any crash. Finally, we 

considered the combined FI and PDO (i.e., Total) multi-vehicle crashes for the analysis. The total 

FI and PDO crash dataset has a mean of 10.01, standard deviation of 23.80. In addition, the dataset 

includes many segments with very large number of crashes (note the maximum number of 478 
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crash) while still around 33% of segments did not include any crash. The original data only 

included segment length and traffic flow as variables; considering only these variables simplifies 

delineating the boundary between potential classes or components for the purpose of this work. 

Given that all models in the results section are estimated using the same data, the omitted variable 

bias would not be an issue. We used segment length as an offset and Annual Average Daily Traffic 

(AADT) as a variable in the model. The segment length varied from 0.001 to 5.192 miles, with an 

average of 0.304 miles. The AADT data varied from 1,651 to 267,131 with an average of 43,935.  

3.5.2. Modeling Results 

This section presents the results of application of the FMNB-L to the Texas four-lane datasets 

described in the previous section. As discussed in greater details below, we selected two 

components for FMNB-L model due to the existence of the Lindley terms. We also compared the 

results with the NB, NB-L, and two-components FMNB models. As noted earlier, we used only 

AADT as a variable. Segment length was considered as an offset. So, we assumed that the mean 

response of crashes increases linearly as the segment length increases. We used the method 

explained earlier to overcome the correlation between the intercept and site frailty terms. We 

dropped the intercept initially from the model. After convergence, we calculated the intercept using 

Eq. (16). We implemented the models in WinBUGS (Spiegelhalter et al., 2003) and used MCMC 

for parameter estimations. We ran the MCMC for 3 chains and 30,000 iterations. Similar to the 

simulation analysis, all models converged well. No label switching or bimodality was observed in 

the MCMC. After the MCMC, we treated the first 5,000 samples as burn-in and discarded them 

from posterior estimations. We also used thinning and only considered every 10-th sample in 

posterior estimations. We used four GOF metrics to evaluate the fit and select the best model. 

These measures include Log-likelihood (LL), Deviance Information Criterion (DIC) (Geedipally 
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et al., 2014), Widely Applicable Information Criterion (WAIC), and Leave-One-Out Cross-

Validation Information Criterion (LOOIC) (Vehtari et al., 2017; Ahmed et al., 2020; Khodadadi 

et al., 2021). While the log-likelihood metric does not consider complexity in its estimation and 

often favors a model with a complex structure, the other three metrics consider complexity in their 

estimations. Hence, given that the complexities of the NB, NB-L, FMNB, and FMNB-L are not 

the same, they are more reliable metrics for model comparison in this study.   

Tables 4-6 respectively show the modeling results for multi-vehicle FI and PDO and Total 

multi-vehicle crashes. All estimated AADT coefficients and model parameters are significant at 

95% confidence interval. However, there are clear distinctions between the estimated coefficients 

by different models. Both FMNB and FMNB-L found two subpopulations in the data. It is worth 

pointing out that, although we assumed only two components in this example, without loss of 

generality of both FMNB and FMNB-L, finite mixture models can include more than 2 

components in modeling. However, due to the Lindley terms in FMNB-L models, it is expected 

that unlike FMNB, more components are not needed to classify data. By the same token, note that 

large estimation for inverse dispersion parameters is also expected for NB-Lindley models, as a 

significant portion of dispersion in these models is captured by Lindley terms. 
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Table 4: Modeling Results for Texas Four-Lane Freeway Multi-Vehicle FI Crashes 

Parameters 
NB NB-L FMNB-2 FMNB-L-2 

Mean (S.D.) Mean (S.D.) Mean (S.D.) Mean (S.D.) 

Intercept (β0) 

Component 1 
-13.87 

(0.430) 

-14.03 

(0.470) 

-16.21 

(0.595) 

-15.23 

(0.638) 

Component 2 - - 
-10.22 

(1.242) 

-9.536 

(2.464) 

Ln (AADT) (β1) 
Component 1 1.516 (0.040) 1.533 (0.044) 1.702 (0.054) 1.625 (0.058) 

Component 2 - - 1.279 (0.116) 1.244 (0.239) 

Inverse Over Dispersion (ϕ) 
Component 1 1.068 (0.045) 4.668 (0.715) 1.951 (0.178) 30.53 (12.65) 

Component 2 - - 1.101 (0.366) 3.696 (3.788) 

Lindley Parameter (θ) 
Component 1 - 1.754 (0.040) - 2.135 (0.084) 

Component 2 - - - 0.510 (0.120) 

Component Weight (W) 
Component 1 - - 0.846 (0.043) 0.923 (0.030) 

Component 2 - - 0.154 (0.043) 0.077 (0.030) 

Log-Likelihood -6852.7 -5104.3 -6061.8 -4405.01 

DIC 13714.6 12611.5 13596.5 12130.0 

WAIC 13712.9 12756.5 13369.7 12037.6 

LOOIC 13712.9 13211.0 13416.7 12727.1 

1Bold values indicate a better fit. 

Table 5: Modeling Results for Texas Four-Lane Freeway Multi-Vehicle PDO Crashes 

Parameters 
NB NB-L FMNB-2 FMNB-L-2 

Mean (S.D.) Mean (S.D.) Mean (S.D.) Mean (S.D.) 

Intercept (β0) 
Component 1 -12.46 (0.393) -12.81 (0.418) -14.73 (0.481) -14.2 (0.496) 

Component 2 - - -9.379 (1.157) -8.872 (1.602) 

Ln (AADT) (β1) 
Component 1 1.469 (0.037) 1.503 (0.039) 1.640 (0.044) 1.601 (0.046) 

Component 2 - - 1.291 (0.108) 1.273 (0.152) 

Inverse Over Dispersion (ϕ) 
Component 1 0.860 (0.028) 2.291 (0.171) 1.726 (0.130) 20.05 (9.437) 

Component 2 - - 0.778 (0.133) 1.800 (0.888) 

Lindley Parameter (θ) 
Component 1 - 0.809 (0.017) - 1.098 (0.038) 

Component 2 - - - 0.211 (0.037) 

Component Weight (W) 

Component 1 - - 0.827 (0.031) 0.897 (0.025) 

Component 2 - - 0.173 (0.031) 0.104 (0.025) 

Log-Likelihood -9382.5 -7669.1 -8396.0 -6180.01 

DIC 18774.9 17321.8 18108.0 16020.0 

WAIC 18773.6 17765.8 18064.9 16154.0 

LOOIC 18773.7 18112.9 18140.1 17038.1 

1Bold values indicate a better fit. 
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Table 6: Modeling Results for Texas Four-Lane Freeway Total Multi-Vehicle Crashes 

Parameters 
NB NB-L FMNB-2 FMNB-L-2 

Mean (S.D.) Mean (S.D.) Mean (S.D.) Mean (S.D.) 

Intercept (β0) 
Component 1 -12.15 (0.368) -12.50 (0.385) -14.23 (0.436) -13.78 (0.462) 

Component 2 - - -9.55 (1.167) -9.17 (1.558) 

Ln (AADT) (β1) 
Component 1 1.476 (0.035) 1.509 (0.036) 1.631 (0.040) 1.597 (0.042) 

Component 2 - - 1.347 (0.111) 1.339 (0.150) 

Inverse Over Dispersion (ϕ) 
Component 1 0.888 (0.027) 2.276 (0.156) 1.689 (0.108) 21.34  (10.37) 

Component 2 - - 0.740 (0.122) 1.658 (0.756) 

Lindley Parameter (θ) 
Component 1 - 0.583 (0.012) - 0.796 (0.027) 

Component 2 - - - 0.146 (0.025) 

Component Weight (W) 

Component 1 - - 0.842 (0.026) 0.895 (0.023) 

Component 2 - - 0.158 (0.026) 0.105 (0.023) 

Log-Likelihood -10584.7 -8782.1 -9560.3 -7126.11 

DIC 21170.6 19555.9 20479.4 17747.9 

WAIC 21177.9 20102.1 20391.9 18209.8 

LOOIC 21177.9 20453.3 20464.4 19179.4 

1Bold values indicate a better fit.  

For all estimated models, we calculated the log-likelihood, DIC, WAIC and LOOIC 

metrics for model selection. The FMNB-L has the best log-likelihood. The NB-L, FMNB and NB 

are ranked after FMNB-L, respectively. As noted earlier, the log-likelihood metric does not 

consider complexity in modeling. In terms of complexity, FMNB-L is the most complex model, 

with NB-L and FMNB coming right after that. The NB model has the least complexity among the 

four. Therefore, it is not unexpected to observe that the FMNB-L has the best log-likelihood. We 

reported log-likelihood just for information purposes. However, it is important to compare models 

using measures that consider complexity. We used three measures to address this issue. First, we 

considered DIC. The DIC is widely used for comparing models in Bayesian Statistics or crash data 

modeling (Geedipally et al., 2014). DIC is derived using the following equations: 

DIC = D(Θ)̅̅ ̅̅ ̅̅ ̅ + ρD 

ρD = D(Θ)̅̅ ̅̅ ̅̅ ̅- D(Θ̅) 
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where Θ and Θ̅ respectively denote model parameters, and posterior estimations of parameters. 

D(Θ̅) = −2LL(Θ̅)  is the deviance calculated using the posterior estimates, D(Θ)̅̅ ̅̅ ̅̅ ̅ = E(−2LL(Θ)) 

is expectation of deviance, and LL(.) is log-likelihood. Models with less D(Θ)̅̅ ̅̅ ̅̅ ̅ show a better fit. 

However, the ρD term is used as a penalty term to advocate for models with less complexity.  

As shown in Tables 4-6, the FMNB-L shows a clear superiority over other models in terms 

of DIC values. For the FI crash dataset (with mean=3.07, S.D.=7.59, max crash=135, and 

percentage of zeros=50%), the DIC value for FMNB-L model is 12130 which is ranked the best. 

The NB-L (with DIC= 12611.5), FMNB (with DIC=13596.5), and NB (with DIC=13714.6) 

models are ranked in sequence after the FMNB-L model. For the PDO crash dataset (with 

mean=6.94, S.D.=16.72, max crash=343, and percentage of zeros=39%), the DIC value for 

FMNB-L model is 16020 which is ranked as the best model with a clear superiority. The NB-L 

(with DIC=17321.8), FMNB (with DIC=18108), and NB (with DIC=18774.9) models are ranked 

in sequence after the FMNB-L model. Lastly, for the Total (PDO+FI) multi-vehicle dataset (with 

mean=10.01, S.D.= 23.80, max crash=478, and percentage of zeros=33%), the FMNB-L model 

with a DIC of 17747.9 is ranked as the best model with significantly better DIC. For this dataset, 

the NB-L (with DIC=19555.9), FMNB (with DIC=20479.4), and NB (with DIC=21170.6) models 

are ranked in sequence after the FMNB-L model. 

One notable observation is that the NB-L model also shows a better fit compared to the 

FMNB model. However, although the NB-L fits the data better than the FMNB, the results clearly 

show that two subpopulations exist. Hence, if we consider the concept of “goodness-of-logic” as 

a selection criterion (Shirazi et al., 2017a; Shirazi & Lord, 2019; Lord et al., 2021), the FMNB 

should be selected over the NB-L. In other words, we know that data are drawn from a 

heterogeneous population given that two classes of subpopulations are identified by the FMNB 
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and FMNB-L models; hence, given the “goodness of logic” concept, we should only consider finite 

mixture models (i.e., FMNB-L and FMNB) for model comparisons.     

We also used two new GOF statistics (WAIC and LOOIC) to evaluate the proposed 

models. Both measures consider the model complexity in their estimations as well. Vehtari et al. 

(2017) noted that these measures are more reliable that the DIC. In fact, WAIC and LOOIC can 

be considered an improvement over the DIC metric. For example, one limitation of the DIC is 

producing negative outcomes for the number of parameters in some situations. WAIC overcomes 

this limitation. As noted in (Geedipally et al., 2014), the DIC is also sensitive to parametrizations. 

WAIC, on the other hand, is invariant to parametrizations. LOOIC is a robust version of the WAIC; 

it works better for models with weak prior information. The detailed steps for derivations and 

calculations of the WAIC and LOOIC can be found in the work of Vehtari et al. (2017). 

The results show the same trends as observed for the DIC measure. The FMNB-L model 

consistently shows the best fit among the four models. For the Multi-vehicle FI crash dataset, the 

values of the WAIC and LOOIC measures for the FMNB-L mode are 12037.6 and 12727.1 

respectively. In sequence, after the FMNB-L model, the NB-L (with WAIC=12756.5, and 

LOOIC=13211.0), FMNB (with WAIC=13369.7 and LOOIC=13416.7), and NB (with 

WAIC=13712.9 and LOOIC=13712.9) models show the best goodness of fit. For the Multi-vehicle 

PDO crashes, the values of WAIC and LOOIC are 16154.0 and 17038.1 respectively. The NB-L 

(with WAIC=17765.8 and LOOIC=18122.9) and FMNB (with WAIC=18064.9 and 

LOOIC=18140.1) and NB (with WAIC=18773.6 and LOOIC=18773.7) are ranked after FMNB-

L in sequence. Lastly, for the Total (PDO+FI) multi-vehicle crash dataset, the WAIC of 18209.8 

and LOOIC of 19179.4 selected the FMNB-L as the best model. The NB-L (with WAIC=20102.1 
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and LOOIC=20453.2), FMNB (with WAIC=20391.9 and LOOIC=20464.4), and NB (with 

WAIC=21177.9 and LOOIC=2177.9) models were ranked after FMNB-L subsequently.  

As noted earlier, it is possible to find the association probabilities of each component for 

each observation in the dataset, using the MCMC information. We used the procedure described 

in Eq. (17) and Eq. (18) to find the association probabilities. Table 7 shows the association 

probabilities for the 15 sites with the highest number of crashes for the three datasets analyzed in 

this section. For example, in the multi-vehicle FI crash model, site 3 belongs to components 1 and 

2 with 91.8% and 8.2% probabilities respectively.  As another example, in the multi-vehicle PDO 

crashes model, site 13 with 147 Multi-Vehicle PDO crashes belongs to component 1 with 27.6%, 

and component 2 with 72.4% probability.   

Table 7: Probabilities of Components for 15 Observations with Highest Number of Total 

Multi-Vehicles Crashes for the FMNB-L Model 

Data 
Models 

Multi-Vehicle FI  Multi-Vehicle PDO  Total Multi-Vehicle  

Site 

Number 

of 

Crashes 

Components 

Probability 
Number 

of 

Crashes 

Components 

Probability 
Number 

of 

Crashes 

Components 

Probability 

𝒑𝟏 𝒑𝟐 𝒑𝟏 𝒑𝟐 𝒑𝟏 𝒑𝟐 

1 135 29.2% 70.8% 343 7.4% 92.6% 478 7.6% 92.4% 

2 102 91.2% 8.8% 181 91.4% 8.6% 283 90.2% 9.8% 

3 77 91.8% 8.2% 202 84.6% 15.4% 279 88.2% 11.8% 

4 68 92.6% 7.4% 200 85.1% 14.9% 268 87.1% 12.9% 

5 90 0.9% 99.1% 170 1.2% 98.8% 260 0.6% 99.4% 

6 70 96.0% 4.0% 159 94.4% 5.6% 229 94.4% 5.6% 

7 43 94.4% 5.6% 179 87.1% 12.9% 222 89.6% 10.4% 

8 47 92.0% 8.0% 164 83.4% 16.6% 211 85.5% 14.5% 

9 65 94.0% 6.0% 138 93.4% 6.6% 203 94.6% 5.4% 

10 84 87.9% 12.1% 119 91.9% 8.1% 203 89.2% 10.8% 

11 92 90.6% 9.4% 103 93.6% 6.4% 195 91.5% 8.5% 

12 67 93.9% 6.1% 125 93.0% 7.0% 192 93.0% 7.0% 

13 36 85.1% 14.9% 147 27.6% 72.4% 183 42.3% 57.7% 

14 76 95.0% 5.0% 100 94.2% 5.8% 176 95.4% 4.6% 

15 46 95.8% 4.2% 129 93.6% 6.4% 175 94.3% 5.7% 
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Recently the Random Parameters Negative Binomial-Lindley (RPNB-L) model has also 

been proposed to account for unobserved heterogeneity and many zero observations (Rusli et al., 

2018; Shaon et al., 2018). We decided to compare this model with the finite mixture model 

proposed in this study. Table 8 shows the modeling results for the RPNB-L and the FMNB-L 

(previously documented in Tables 4-6). As noted above, given that the modeling results indicated 

two subpopulations in data, FMNB and FMNB-L are recommended to be used instead of the single 

component NB, NB-L, or RPNB-L models regardless of the GOF measures. This supports the 

discussions found in Miaou & Lord (2003), Shirazi et al. (2017a), Shirazi & Lord (2019), and Lord 

et al., (2021) that the selection of the models should also be based on the data generation process. 

However, as shown in Table 8, the FMNB-L model shows a better statistical performance 

compared to the RPNB-L as well. 

Table 8: Comparison between the FMNB-L and RPNB-L 

Parameters Component 

Models 

Multi-Vehicle FI Multi-Vehicle PDO Total Multi-Vehicle 

FMNB-L RPNB-L FMNB-L RPNB-L FMNB-L RPNB-L 

Mean of Parameters 

Intercept (β0) 

Component 1 
-15.23 

(0.638)1 

-13.97 

(0.486) 

-14.2 

(0.496) 

-12.8 

(0.431) 

-13.78 

(0.462) 

-12.61 

(0.397) 

Component 2 
-9.536 

(2.464) 
- 

-8.872 

(1.602) 
- 

-9.17 

(1.558) 
- 

Ln (AADT) (β1) 

Component 1 
1.625 

(0.058) 

1.527 

(0.045) 

1.601 

(0.046) 

1.501 

(0.040)_ 

1.597 

(0.042) 

1.519 

(0.037) 

Component 2 
1.244 

(0.239) 
- 

1.273 

(0.152) 
- 

1.339 

(0.150) 
- 

Standard Deviation of Random Parameters 

Ln (AADT) (β1) 
Component 1 - 

0.238 

(0.064) 
- 

0.247 

(0.045) 
- 

0.258 

(0.070) 

Component 2 - - - - - - 

Goodness of Fits 

Log-Likelihood -4405.02 -5076.3 -6180.0 -7620.6 -7126.1 -8718.5 

DIC 12130.0 12513.8 16020.0 17278.7 17747.9 19523.1 

WAIC 12037.6 12714.3 16154.0 17724.5 18209.8 20056.6 

LOOIC 12727.1 13194.2 17038.1 18090.7 19179.4 20436.3 
1The number in parenthesis is the standard deviation (S.D.) of the estimate.  
2Bold values indicate a better fit. 
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As a closing note to this section, it is worth pointing out that we analyzed 5 years of 

aggregated data. If disaggregated data (e.g., yearly or monthly observations) were used in 

modeling, greater unobserved heterogeneity could exist in the dataset. This larger unobserved 

heterogeneity could affect the mixture probabilities or number of latent classes in finite mixture 

models. In addition, the disaggregated dataset could also include larger number of zero 

observations; the excess number of zeros could better be modeled with the FMNB-L than with the 

FMNB. 

3.6. Summary and Conclusions 

Crash data are often drawn from heterogeneous locations, with different populations, 

environments, and geographic patterns. Furthermore, crash data may also include many zero 

observations or have a long tail. The typical statistical models (e.g., the NB model) cannot model 

these data properly. In this research, we proposed the finite mixture NB-L model to account for 

unobserved heterogeneity due to latent subpopulations in data with many zero observations or long 

tails. We designed and used a simulation analysis to evaluate the performance of the FMNB-L 

model in identifying subpopulations under different ranges of sample means and zero percentages. 

The results show that the FMNB-L can reasonably identify the subpopulations and account for 

large percentages of zero observations. We also used the FMNB-L to model crash data for three 

datasets collected for four-lane freeways in Texas (all characterized by high dispersion and a long 

tail) and compared the results with other models (i.e., NB, NB-L, and FMNB). We used the DIC, 

WAIC, and LOOIC as model selection metrics to compare the GOF of the models. All these 

metrics consider the complexity of models in their estimations. The GOF statistics show that the 

FMNB-L model fits the data significantly better than the NB, NB-L, and FMNB models. As, 

discussed in previous work (Miaou & Lord, 2003; Shirazi et al., 2017a; Shirazi & Lord, 2019), 
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GOF should not be the sole factor in selecting a model. In the datasets used for this work, there is 

also clear evidence that subpopulations exist. Overall, the modeling results show the robustness of 

the proposed model in addressing the issues of subpopulation heterogeneity and excess number of 

zero observations in crash data analysis. To simplify the application analysis, we used flow-only 

datasets to demonstrate the application of the model. Hence, further research is recommended to 

explore the FMNB-L model with more independent variables. In addition, future research should 

explore the application of the FMNB-L model with varying weight parameters, or explore the 

performance of the model in simulated scenarios with different skewness, or different numbers of 

independent variables in each component.   
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CHAPTER 4 

GROUPED RANDOM PARAMETERS NEGATIVE BINOMIAL-LINDLEY 

4.1. Introduction 

According to World Health Organization (WHO) (2018), the worldwide death toll due to 

traffic crashes has reached 1.35 million people per year, equating to 3,700 deaths every day. Traffic 

crashes have risen from ninth to the eighth position on the list of the world’s top leading causes of 

death according to statistical data. Over the previous century, around 3.8 million Americans have 

died in traffic crashes. The National Highway Traffic Safety Administration (NHTSA) reported 

that 38,824 people were killed in traffic crashes in the United States in 2020 (Stewart, 2022). Maine 

Department of Transportation (MaineDOT) (2020) stated that there had been 28,746 reported 

traffic crashes in Maine in 2020, with 150 of those being fatal. This devastating cause of death has 

claimed the lives of people all over the world. As a result, the improvement of traffic safety has 

become a major concern for transportation safety analysts all over the world. Predicting crashes 

and identifying the key explanatory variables behind these crashes are of utmost importance to 

improve highway safety. Researchers have spent a significant amount of time in the past 

developing robust statistical models to analyze crash data (Lord & Mannering, 2010;  Savolainen 

et al., 2011; Mannering & Bhat, 2014; Mannering et al., 2016). These statistical models can be 

used to estimate the number of crashes, identify crash contributing factors, or locate high-risk crash 

locations.  

Overdispersion (i.e., variance greater than mean) is a common feature often found in crash 

data. The negative binomial (NB) model is the most popular model to address overdispersion in 

crash data (Lord & Mannering, 2010). Data with many zero observations is another characteristic 
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found in crash data. When crash datasets contain a large amount of zero observations, the NB 

model cannot be estimated properly. To overcome this limitation, a mixture of the NB with other 

distributions has been proposed by several studies to provide flexibility in capturing the large 

number of zero observations in crash data (Shirazi et al., 2016a). The NB-Lindley (NB-L) 

generalized linear model (Geedipally et al., 2012) is one of the most popular models in this 

category. Recently a few more advanced variations of this model have also been proposed and 

found superior to the NB model for datasets containing excess zero observations (Shaon et al., 

2018; Rusli et al., 2018; Tang et al., 2020; Behara et al., 2021; Islam et al., 2022; Khodadadi et al., 

2022a; Khodadadi et al., 2022b).   

Unobserved heterogeneity may also exist in the data or model, especially due to variations 

in temporal and spatial characteristics among groups of observations. As a result, the explanatory 

variables may not have the same effect on all segments or regions in the network. In fact, the effect 

of various variables such as skid number (for pavement friction), driver behavior, climate, surface 

condition, and weather characteristics may vary substantially across different groups of 

observations (e.g., regions). For example, the impact of weather factors such as rainfall or snow, 

as one of the key contributing factors in lane departure crashes, can vary significantly from one 

location to another due to variations in terrain, climate, or other location characteristics. 

Researchers have found that weather variables such as rainfall, precipitation, fog, visibility, wind 

speed, snow, temperature, etc. have mixed effects on crash occurrence (Qiu & Nixon, 2008; El-

Basyouny et al., 2014; Theofilatos & Yannis, 2014; Zhao et al., 2019; Sawtelle et al., 2022). Some 

of these variables positively interact with crashes, whereas some of them have negative 

interactions with crashes and the effect is not similar even in two nearby regions or locations in 

the network. Several researchers have proposed Grouped Random Parameters models to address 
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the unobserved heterogeneity due to spatial or temporal variations in different groups of 

observations in data (Cai et al., 2018; Heydari et al., 2018), for example, across different regions 

of a state. These models showed better capabilities to account for unobserved heterogeneity and 

consequently better estimation of the model coefficients.  

Several studies used the grouped random parameters model to analyze crash frequency. As 

such, Cai et al. (2018) proposed a grouped random parameters multivariate spatial model to study 

the observed zonal effects and unobserved heterogeneity at the zonal level on crash count data. 

This study considered traffic data and socio-demographic information as zonal factors, which have 

significant effects on crashes. Heydari et al. (2018) introduced a Grouped Random Parameters 

approach to benchmark different geographic regions based on crash frequency. This study 

implemented a heteroskedastic grouped random parameters Poisson lognormal model with 

heterogeneity in mean and variance to address unobserved heterogeneity and provided important 

guidelines to grade crossing safety analysis in Canada. Another crash frequency study 

incorporating Grouped Random Parameters approach was implemented by Li et al. (2018). This 

study proposed a grouped random parameters negative binomial model to study the relationship 

between the level of service (LOS) and traffic safety. They also developed a bivariate grouped 

random parameters negative binomial model to analyze rear-end and left-turn crashes. In another 

study, Fountas et al. (2018a) implemented a dynamic correlated grouped random parameters 

binary logit model to study the mixed effects of both non-time varying and time-varying 

explanatory variables and address unobserved heterogeneity in crash data.  

Grouped Random parameters modeling approach has also been implemented in crash 

severity analysis. As such, the effect of the presence of trucks of different classes on non-truck-

related crash severity was studied by Fanyu et al. (2021). This study proposed a correlated grouped 
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random parameters binary logit model to account for unobserved heterogeneity at both observation 

level and space-time level. This study accounted for temporal instability because driver’s behavior, 

risk perceptions, weather conditions, vehicle technology, and socio-economic conditions vary with 

time. Fountas et al. (2018b) implemented a correlated random parameters ordered probit model to 

address unobserved heterogeneity and account for interaction among observed or unobserved 

characteristics. Grouped Random parameters approach has also been implemented to study 

aggressive driver behavior by Sarwar et al. (2017). This study implemented a grouped random 

parameters bivariate probit model to investigate perceived and observed aggressive driving 

behavior based on surveys and driving simulation experiments. This study also addressed cross-

equation error correlation among the dependent variables, panel effects, and other unobserved 

factors that may vary systematically across the participants. Grouped Random parameters 

approach has been used in Pedestrian safety studies too (Pantangi et al., 2021). Pedestrians are one 

of the most vulnerable road users. Pedestrian-involved accidents lead to fatal accidents most of the 

time compared to other motorist-involved accidents. High Visibility Crosswalks (HVC) play a 

vital role in improving pedestrian safety. The study was designed to evaluate the efficacy of HVCs 

in improving pedestrian safety and evaluate their potential to modify driving behavior. 

This research was motivated to overcome two modeling limitations in crash data analysis, 

first addressing data with many zero observations, and second, accounting for unobserved 

heterogeneity in crash data across group of observations, using the grouped RP paradigm. In this 

chapter, we propose the derivations and characteristics of the grouped random parameters negative 

binomial-Lindley (G-RPNB-L) model, to account for unobserved heterogeneity in groups of 

observations in crash data while addressing the issue of excess zero observations. The model is 

first illustrated using a simulation study. Then, the application of the model is demonstrated using 
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an empirical dataset collected on rural Interstates in Maine. This dataset includes over 90% of 

zeros. Weather in Maine varies significantly from region to region, county to county, and even 

within towns, mainly due to vast variations in terrain or climate in Maine. Using data collected in 

Maine, we illustrated the variations in the effect of monthly weather variations on crashes in 

different counties in Maine. The proposed model was compared with the NB, the grouped random 

parameters NB (G-RPNB), and the NB-L models based on different Goodness-of-Fit (GOF) 

metrics, and results were discussed. The next section briefly documents the characteristics of the 

NB and Grouped Random Parameters NB models.  

4.2. Grouped Random Parameters Negative Binomial 

This research documents the derivations of the grouped random parameters negative binomial-

Lindley (G-RPNB-L), and its characteristics to model crash data. To better explain the formulation 

process, however, let us start with a brief discussion on the formulations of the typical NB and the 

grouped RPNB models. The NB model is a widely used model to address overdispersion in crash 

data. The NB generalized linear model (NB-GLM) is defined as follows (Hilbe, 2011; Cameron 

& Trivedi, 2013): 

yi| μi, φ ~ NB (μi, φ) ≡
Γ(yi + φ)

Γ(yi + 1) × Γ(φ)
(

μi

μi +  φ
)

yi

(1 −
μi

μi +  φ
)

φ

;  φ > 0, μi > 0 (20-1) 

ln(μi|β0, β1, … , βM) =  β0 + ∑ βjXij

M

j=1

 (20-2) 

Where φ denotes the inverse overdispersion parameter, and μi denotes the long-term mean for the 

i-th site; Eq. (20-2) defines the natural log of the long-term mean as a linear function of “M” 

covariates (denoted by 𝑋), and coefficients (denoted by 𝛽). 
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The NB model, however, does not account for unobserved heterogeneity adequately 

(Anastasopoulos & Mannering, 2009; Mannering et al., 2016; Behnood & Mannering, 2017; 

Zamenian et al., 2017; Shaon et al., 2018). Random Parameters (RP) models are a class of models 

that account for unobserved heterogeneity by allowing parameters to vary from one observation to 

another. The random parameters negative binomial (RPNB) model is one of the typical models 

proposed by researchers to address unobserved heterogeneity. This model allows the coefficients 

of the NB model to vary among different observations. The grouped RP models (G-RP) are a 

special case of RP models where the model coefficients vary from one group of observations to 

another (e.g., from one region in the network to another) (Mannering et al., 2016; Meng et al., 

2017; Sarwar et al., 2017). Let us assume the model includes 𝑀 covariates with fixed parameters 

(denoted by 𝑋) and 𝑀′ covariates with varying parameters that change from one group of 

observations to another (denoted by Z). Likewise, let us assume “K” groups of observations in 

data. In addition, let the symbol k(i) denotes the group of observations that the i-th site is 

associated with (e.g., the i-th segment is part of the k-th region). The G-RPNB model, with an 

intercept that also varies among groups of observations, can be formulated as the following 

hierarchical Bayesian model:  

yi| μi, φ ~ NB (μi, φ) (21-1) 

ln(μi|β1, … , βM, ϒ0,k(i), ϒ1,k(i), … , ϒM′,k(i)) = ϒ0,k(i) + ∑ βjXij

M

j=1

+  ∑ ϒj,k(i)Zij

M′

j=1

 (21-2) 

ϒ0,k(i)| μ0, σ0 ~ N(μ0, σ0) (21-3) 

ϒj,k(i)| μj, σj ~ N(μj, σj);  ∀j ∈ {1, … , M′} and ∀k ∈ {1, … , K}  (21-4) 
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where, 

βj = The fixed coefficient for the j-th fixed-parameters covariate. 

Xij = The value of the j-th fixed-parameters covariate at the i-th site.  

ϒ0,k(i) = The grouped random intercept for the k-th group of observations. 

ϒj,k(i) = The grouped random coefficient for the k-th group of the j-th covariate. 

Zij = The value of the j-th random-parameters covariate at the i-th site.  

μ0 = The intercept mean.  

σ0 = The intercept standard deviation. 

μj = The mean of random parameters for the j-th random-parameters covariate. 

σj = The standard deviation of random parameters for the j-th random-parameters 

covariate. 

4.3. Grouped Random Parameters Negative Binomial-Lindley 

In this section, the derivations and characteristics of the grouped random parameters Negative 

Binomial- Lindley model is documented. Let us first introduce the NB-L model. The NB-L model 

is written as the following mixture model (Geedipally et al., 2012): 

NB-L(μi, φ, θ)  ≡ P(Y = yi| μi, φ, θ) =  ∫ NB(yi| εiμi, φ)Lindley(εi|θ) dεi (22) 

The above mixture model can be revised as a hierarchical Bayesian model. Note that the Lindley 

distribution with parameter “θ” can be written as the following hierarchical structure: 
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εi|zi, θ  ~ gamma(1 + zi, θ) (23-1) 

zi|θ ~ Bernoulli ( 
1

1 + θ
) (23-2) 

Therefore, the multi-level hierarchical representation of the NB-L model can be given as follows 

(Geedipally et al., 2012): 

yi| εiμi, φ ~ NB (εiμi, φ) (24-1) 

εi|zi, θ  ~ gamma(1 + zi, θ) (24-2) 

zi|θ ~ Bernoulli ( 
1

1 + θ
) (24-3) 

ln(μi|β0, β1, … , βM) = β0 +  ∑ βjXij

M

j=1

 (24-4) 

Researchers have shown that the NB-L model provides additional flexibility to address the 

issue of the excess number of zero responses. However, the coefficients of the covariates may vary 

from one group of observations to another, due to unobserved heterogeneity, as described above. 

In addition, the Lindley term may also vary among groups of observations. For example, different 

regions may include different percentages of zero observations. Hence, different Lindley terms 

might also be needed, to account for the number of zeros in different regions, instead of one unique 

or universal term. Keeping that in mind, the G-RPNB-L model with varying coefficients and 

Lindley terms across groups of observations can be defined as the following hierarchical model. 

yi| εiμi, φ ~ NB (εiμi, φ) (25-1) 

εi|zk(i), θk(i)  ~ gamma(1 + zk(i),  θk(i)) (25-2) 
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zk(i)|θk(i) ~ Bernoulli ( 
1

1 + θk(i)
) (25-3) 

ln(μi|β1, … , βM, γ0,k(i), γ1,k(i), … , γM′,k(i)) = γ0,k(i) +  ∑ βjXij

M

j=1

+  ∑ γj,k(i)Zij

M′

j=1

 (25-4) 

ϒ0,k(i)| μ0, σ0 ~ N(μ0, σ0) (25-5) 

ϒj,k(i)| μj, σj ~ N(μj, σj); ∀j ∈ {1, … , M′} and ∀k ∈ {1, … , K} (25-6) 

where, 

βj = The fixed coefficient for the j-th fixed-parameters covariate. 

Xij = The value of the j-th fixed-parameters covariate at the i-th site.  

ϒ0,k(i) = The grouped random intercept for the k-th group of observations. 

ϒj,k(i) = The grouped random coefficient for the k-th group of the j-th covariate. 

Zij = The value of the j-th random-parameters covariate at the i-th site.  

μ0 = The intercept mean.  

σ0 = The intercept standard deviation. 

μ j = The mean of random parameters for the j-th random-parameters covariate. 

σj = The standard deviation of random parameters for the j-th random-parameters 

covariate. 

θk(i)= The Lindley parameter for the k-th group of observations. 
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Let us assume a normal prior on fixed parameters coefficients (β), a gamma prior on inverse 

dispersion parameter (φ), and a uniform prior on parameters 1/1+θk(i). In addition, let us assume 

a normal prior on μ0 and μj and a gamma prior on 1/ σ0 and 1/ σj. Then, the above hierarchical 

Bayesian model can be implemented in WinBUGS (Spiegelhalter et al., 2003) for inference of 

parameters using the Monte Carlo Markov Chain (MCMC) approach. 

As a closing note to this section, it is worth noting that in the above formulation, there are 

correlations between the grouped random intercepts (γ0,k(i)) and the Lindley terms (ε𝑖) which 

could result in poor MCMC convergence or mixing. However, there are two ways to overcome 

this limitation. First, it is possible to use informative priors on Lindley terms in a way that ensures 

E(ε𝑖) = 1 (Geedipally et al., 2012; Shaon et al., 2018). Second, it is also possible to drop the 

intercepts from the model and then calculate the grouped intercepts from Lindley terms after 

convergence using Eq. (26) (Shirazi et al., 2016a; Islam et al., 2022).    

ϒ0,k(i) = E (log (E(εi,k))) =  E (log (
θk  + 2

θk (θk  + 1)
)) (26) 

Therefore, ϒ0,k(i) can be calculated using the MCMC samples at no additional computational 

expenses. For this purpose, a sample is also drawn from the posterior of the log (
θk +2

θk (θk +1)
) in each 

MCMC iteration. The average of these samples, then, can be reported as the group intercept.   

4.4. Simulation Study 

This section documents a simulation study to evaluate the accuracy of the proposed G-RPNB-L 

model in estimating the grouped random parameters. This section is divided into two parts. The 
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first section describes the simulation protocol to generate scenarios. The second section illustrates 

the results of the simulation study. 

4.4.1. Simulation Protocol 

Several studies have used simulation to demonstrate the applicability of a theory, document the 

strength or weaknesses of a model, or provide recommendations and guidelines (Lord, 2006; 

Shirazi et al., 2016b; Shirazi et al., 2017a; Shirazi et al., 2021; Bhowmik et al., 2021; Islam et al., 

2022; Khodadadi et al., 2022a). We designed a simulation study to evaluate the performance of 

the proposed model in estimating grouped random parameters for data with excess zero 

observations. We simulated several scenarios with different percentages of zero observations 

ranging from 50% to 90%. Without loss of generality, we assumed three groups of observations in 

our study, each also with different percentages of zero observations. Let us assume the simulated 

dataset includes 9,000 records. We first simulated two fixed-parameters covariates (X1 and X2), 

and two random-parameters covariates (Z1 and Z2) from standard normal distributions with a mean 

of zero and standard deviation of one. Let us assume β1 and β2 are the regression coefficients for 

the fixed-parameters covariates. Likewise, let us assume γ1,1, γ1,2, and γ1,3 are the grouped random 

coefficients for random-parameters covariate denoted as Z1, and γ2,1, γ2,2, and γ2,3 are the grouped 

random coefficients for the random-parameters covariate denoted as Z2. The Lindley terms 

(εi) were also simulated from three Lindley distributions with parameters of θ1, θ2, and θ3 

representing the three groups of observations (e.g., regions) in the data. Then, the sample mean 

(μi) was calculated using Eq. (25-4), and data were simulated from the NB distribution using Eq. 

(25-1). Finally, the simulated data were used to fit the model and estimate the coefficients. The 

estimated coefficients were compared with their true value. The step-by-step instruction of the 

simulation protocol is described in the following: 
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Step 1. Initializations. 

1.1. Set the value of β1 and β2 to represent the coefficients of the first and second fixed-

parameters covariates.  

1.2. Set the value of γ1,1, γ1,2, and γ1,3 to represent the random coefficients for the first 

grouped random-parameters covariate, and γ2,1, γ2,2, and γ2,3 to represent the random 

coefficients for the second grouped random-parameters covariate. 

1.3. Set three Lindley parameters θ1, θ2, and θ3 to represent three groups of observations.  

1.4. Set the value of inverse dispersion parameter (φ). 

Step 2. Simulate Covariates. 

2.1. Simulate the fixed-parameters covariates (Xi1, Xi2) from standard normal distributions 

as follows (with 9,000 samples): 

Xi1~ N(0, 1);     i = 1, … , 9000 

Xi2~ N(0, 1);     i = 1, … , 9000 

2.2. Simulate the random-parameters covariates (Zi1, Zi2) from standard normal distributions 

as follows (with 9,000 samples): 

Zi1~ N(0, 1);     i = 1, … , 9000  

Zi2~ N(0, 1);     i = 1, … , 9000 

Let the first 3,000 samples from Zi1, and Zi2 belong to the first group, the second 3,000 

samples belong to the second group and the third 3,000 samples belong to the third group 

of observations in the data.  
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Step 3. Simulate the Lindley terms and calculate the mean. 

 3.1. Simulate the Lindley terms for three groups of observations from Lindley distributions 

with parameters θ1, θ2, and θ3 as follows: 

εi1~Lindley(θ1);            i = 1, … , 3000 

      εi2~Lindley(θ2);            i = 3001, … , 6000 

      εi3~Lindley(θ3);            i = 6001, … , 9000 

3.2. Calculate the mean from the regression coefficients and simulated covariates using the 

following equations: 

µi1 = exp(β1 Xi1 + β2 Xi2 + γ1,1  Zi1 + γ2,1  Zi2);      i = 1, … , 3000 

µi2 = exp(β1 Xi1 + β2 Xi2 + γ1,2  Zi1 + γ2,2  Zi2);                                    i = 3001, … , 6000 

µi3 = exp(β1 Xi1 + β2 Xi2 + γ1,3  Zi1 + γ2,3  Zi2);      i = 6001, … , 9000 

Step 4. Simulate Crash observations. 

4.1. Simulate 3,000 observations for each group of observations from the NB distributions 

as follows: 

yi1~NB(εi1μi1, φ);              i = 1, … , 3000 

yi2~NB(εi2μi2, φ);              i = 3001, … , 6000 

yi3~NB(εi3μi3, φ);              i = 6001, … , 9000 

       4.2. Combine the simulated data to create a population dataset with 9,000 records.  
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Step 5. Fit the Model. 

5.1. Use the G-RPNB-L model (Eq. 25) to fit the model to the simulated dataset and estimate 

the coefficients. 

4.4.2. Simulation Results 

This section illustrates the results of the simulation study. As noted earlier, we designed the 

simulation for a range of data with different percentages of zero observations. We controlled over 

the regression coefficients, and Lindley parameters to ensure simulating highly dispersed datasets 

with approximately 50%, 60%, 70%, 80%, and 90% of zero observations. We also tried to ensure 

that different regions constituted different percentages of zero observations. Table 9 indicates the 

characteristics of the simulated dataset.  

The mean and standard deviation of the simulated datasets varied from 0.3 to 6.4 and from 

2.3 to 37.1 respectively. To ensure simulating scenarios where the percentage of zeros varies across 

different groups of observations, we controlled the percentage of zeros across the three groups of 

observations. As shown in Table 9, the dataset with approximately 50% zero observations 

respectively had 29%, 56%, and 69% zero observations in groups 1-3. For the dataset with 60% 

of zero observations, the three groups had 44%, 60%, and 74% of zero observations respectively. 

The dataset with approximately 70% zero observations respectively had 57%, 72%, and 81% zero 

observations in groups 1-3. In the case of 80% of zero responses, groups 1 to 3 had 73%, 79%, and 

85% zero responses respectively. For the dataset with 90% of zero responses, groups 1 to 3 had 

88%, 87%, and 93% zeros respectively. The values of the regression coefficients and inverse 

dispersion parameter used in each simulation scenario are shown in Table 9, denoted as “true” 

values. 
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Table 9: Characteristics of Simulated Data 

Total Percentage 

of Zeros 
Mean 

Standard 

Deviation 

Percentage of Zeros in Groups 

Group 1 Group 2 Group 3 

~ 50% 6.4 37.1 29% 56% 69% 

~ 60% 3.2 15.3 44% 60% 74% 

~ 70% 1.5 8.5 57% 72% 81% 

~ 80% 0.7 3.6 73% 79% 87% 

~ 90% 0.3 2.3 88% 87% 93% 

We implemented the G-RPNB-L model in WinBUGS software (Spiegelhalter et al., 2003) 

and estimated the coefficients using the MCMC approach. To ensure proper convergence, we 

considered 30,000 MCMC iterations with 3 chains. The results of the first 5,000 posterior samples 

were considered as burn-in samples and discarded from the analysis. We used various diagnostic 

tools to evaluate the MCMC; all metrics showed excellent convergence for the model. However, 

to ensure adequate mixing in the MCMC experiment, and remove any autocorrelation between 

simulated samples, we only considered every 10-th sample in the analysis (i.e., we considered a 

thinning of 10). We then estimated the posterior mean of the parameters using the remaining 

samples. Table 10 shows the modeling results for the simulated datasets. As shown in this table, 

all estimated parameters were significant at 95% confidence level and close to the true value. Most 

importantly, both group coefficients as well as Lindley parameters (θ1, θ2, and θ3) were estimated 

with high precision using the G-RPNB-L model. 
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Table 10: Modeling Results for the Simulated Data 

Parameters 

Percentage of Zeros 

~ 50% ~ 60% ~70% ~ 80% ~ 90% 

True 

Value 

Est. 

Value1 

True 

Value 

Est. 

Value 

True 

Value 

Est. 

Value 

True 

Value 

Est. 

Value 

True 

Value 

Est. 

Value 

Fixed Parameters 

β1 -0.5 
-0.495 

(0.015)2 -0.5 
-0.490 

(0.018) 
-0.5 

-0.511 

(0.020) 
-0.5 

-0.466 

(0.025) 
-0.5 

-0.461 

(0.033) 

β2 1 
1.006 

(0.016) 
1 

1.004 

(0.018) 
1 

1.004 

(0.021) 
1 

0.980 

(0.026) 
1 

1.036 

(0.035) 

Grouped Random Parameters 

𝛄𝟏 

Group 1 0.5 
0.496 

(0.020) 
0.5 

0.519 

(0.025) 
0.5 

0.501 

(0.029) 
0.5 

0.469 

(0.038) 
0.5 

0.604 

(0.056) 

Group 2 1 
0.942 

(0.029) 
1 

1.003 

(0.032) 
1 

0.973 

(0.038) 
1 

1.003 

(0.044) 
1 

1.002 

(0.057) 

Group 3 1.5 
1.516 

(0.038) 
1.5 

1.490 

(0.042) 
1.5 

1.440 

(0.049) 
1.5 

1.508 

(0.053) 
1.5 

1.531 

(0.079) 

𝛄𝟐 

Group 1 1 
1.005 

(0.022) 
1 

1.017 

(0.025) 
1 1.027 

(0.031) 
1 

0.994 

(0.039) 
1 0.976 

(0.059) 

Group 2 1.5 
1.409 

(0.033) 
1.5 

1.500 

(0.036) 
1.5 

1.499 

(0.043) 
1.5 

1.368 

(0.048) 
1.5 

1.455 

(0.058) 

Group 3 0.5 
0.507 

(0.034) 
0.5 

0.456 

(0.039) 
0.5 

0.465 

(0.043) 
0.5 

0.475 

(0.048) 
0.5 

0.509 

(0.072) 

𝛉 

Group 1 0.5 
0.505 

(0.010) 
1 

1.018 

(0.023) 
2 

2.026 

(0.058) 
5 

4.835 

(0.199) 
18 

16.900 

(1.238) 

Group 2 2 
1.980 

(0.058) 
2.5 

2.548 

(0.085) 
6 

6.093 

(0.283) 
10 

9.639 

(0.579) 
25 

24.460 

(2.117) 

Group 3 4 
3.931 

(0.151) 
6 

6.031 

(0.280) 
10 

9.835 

(0.562) 
15 

14.590 

(0.996) 
45 

45.680 

(5.320) 

Inverse Over dispersion Parameter 

φ 10 
11.460 

(2.679) 
10 

10.170 

(2.375) 
10 

11.230 

(3.953) 
10 

11.960 

(5.576) 
10 

11.110 

(6.220) 
1Estimated value.  
2Standard deviation of the estimate is shown in parenthesis
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4.5. Application to Empirical Data   

This section illustrates the application of the proposed G-RPNB-L model. This section consists of 

two parts. The first part describes the characteristics of the empirical dataset used in this study. 

The second part documents the application of the model and compares the results with NB, G-

RPNB, and NB-L models. 

4.5.1. Data Description 

We used lane departure crashes data of rural Interstates in Maine from the years 2015 to 2019 

during the winter months of November to April (when often considered the winter period in Maine) 

to demonstrate the application of the proposed model and compare the results with existing models. 

Lane departure crashes are the leading type of crash in Maine, comprising over 70% of fatal 

crashes on Maine roadways (Sawtelle et al., 2022). The rural Interstates in Maine pass through 

eight counties in the state, Androscoggin, Aroostook, Cumberland, Kennebec, Penobscot, 

Sagadahoc, Somerset, and York. Table 11 presents the summary statistics of the traffic and 

geometric characteristics of rural Interstates in Maine.  

The dataset contains information about 1236 roadway segments. This dataset includes 

monthly AADT, speed, shoulder width, presence of curve, and segment length. All rural Interstates 

segments in the data have a lane width of 12 feet. Shoulder width varies from 12 to 20 feet. The 

speed limit varies from 50 to 75 mph. This dataset has a very low mean of 0.1 and a standard 

deviation of 0.27 and includes 94.5% of zero crash observations. The number of zero observations 

in different counties also varies from 90% to 97%. The space scale (with short lengths) cannot be 

changed, since the characteristics of the adjacent segments were different. Aggregating data over 

a time scale will also lead to the loss of information (Shirazi et al., 2021; Lord et al., 2021). Hence, 
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as discussed in Lord & Geedipally (2018), the use of alternative models, such as the NB-L and its 

variations, is justified. 

Table 11: Characteristics of Rural Interstates Roadways in Maine 

Variables Min Max Avg. S.D. 

Number of crashes 0 5 0.1 0.27 

Speed limit (in mph) 50 75 69.2 4.47 

Shoulder width (in feet) 12 20 14.3 0.85 

Presence of curve (1 if present, 0 if absent) 0 1 0.29 0.45 

Segment length (in miles) 0.01 4.9 0.5 0.61 

Monthly average daily traffic 

(MADT) 

November 229 40,366 12,386.9 9,050.2 

December 200 36,659 11,428.3 8,512.4 

January 178 33,467 10,181.4 7,550.1 

February 185 33,261 9,981.1 7,234.1 

March 188 35,526 10,675.7 7,827.1 

April 210 38,224 11,823.9 8,710.1 

 

Table 12: Mean and Standard Deviation of Weather Variables for Maine Counties 

1The weather variables used to demonstrate the model. 
2Standard deviation is shown in parenthesis.  

Weather Variables 
Winter Months 

Nov Dec Jan Feb Mar Apr 

Days with precipitation > 1.0 inch 1 7.75 

(3.27)2 

8.42 

(2.26) 

7.09 

(2.32) 

7.43 

(1.62) 

5.99 

(2.15) 

8.74 

(2.56) 

Days with precipitation > 0.1 inch 
12.16 

(3.15) 

12.76 

(2.89) 

10.91 

(2.64) 

12.20 

(1.78) 

10.57 

(2.33) 

14.27 

(3.51) 

Days with temperature < 32°F 1 2.88 

(3.25) 

13.37 

(5.56) 

18.01 

(5.33) 

14.95 

(6.44) 

8.11 

(3.93) 

0.69 

(0.83) 

Days with snowfall > 1.0 inch 
1.62 

(2.03) 

4.49 

(2.03) 

5.09 

(2.25) 

6.08 

(2.11) 

3.20 

(1.82) 

1.42 

(1.01) 

Average monthly temperature (°F) 
34.90 

(6.34) 

25.24 

(5.44) 

19.86 

(4.71) 

20.41 

(7.35) 

28.22 

(4.15) 

41.32 

(2.46) 

Maximum monthly temperature (°F) 
44.44 

(4.37) 

34.05 

(4.88) 

29.42 

(3.84) 

31.19 

(6.70) 

38.01 

(3.35) 

51.54 

(2.47) 

Minimum monthly temperature (°F) 
26.39 

(5.08) 

16.42 

(6.21) 

10.30 

(5.77) 

9.64 

(8.23) 

18.45 

(5.37) 

31.08 

(2.99) 

Total monthly precipitation (inch) 
4.15 

(1.99) 

4.47 

(1.11) 

4.18 

(1.22) 

3.40 

(1.19) 

2.75 

(0.97) 

4.20 

(1.33) 
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We combined the above data with monthly weather data collected at a weather station 

located in each county during the same period. While Maine experiences adverse weather 

conditions during the winter months of November to April, the weather variables often vary from 

county to county, and even from town to town, mainly due to vast variations in terrain and 

geography. We hypothesize that the impact of the weather variables on crashes could also be 

different from one region (or county) to another. We will use the G-RPNB-L to explore this 

hypothesis. Table 12 shows the summary statistics of the weather variables considered in this study 

(Sawtelle et al., 2022). Given that weather variables are generally correlated, they cannot all be 

included in the model simultaneously. After careful consideration, and test of significance, we 

chose two weather variables for the analysis. These variables are “Days with precipitation greater 

than 1.0 inch”, and “Days with temperature less than 32°F”. For the variable denoting the “Days 

with precipitation greater than 1.0 inch”, the lowest average value is 5.99, which happened in 

March, and the highest average value is 8.74 which happened in April. For the “Days with 

temperatures less than 32°F” variable, the lowest mean is 0.69 which occurred in April, and the 

highest mean is 18.01 which occurred in January. 

4.5.2. Modeling Results 

This section presents the application of the G-RPNB-L model to the empirical dataset 

explained in the previous section. The results were also compared with the NB, NB-L, and G-

RPNB models. To examine the goodness of fit (GOF), we used three commonly used criteria, 

Deviance Information Criterion (DIC), Widely Applicable Information Criterion (WAIC), and 

Leave-One-Out Cross-Validation Information Criterion (LOOIC) (Geedipally et al., 2014; Vehtari 

et al., 2017; Khodadadi et al., 2021; Islam et al., 2022). As noted earlier, the segment length was 

considered as an offset in our study. Without loss of generality, we considered the MADT, shoulder 
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width, speed limit, and the presence of the curve as fixed-parameters variables, and the two weather 

variables as grouped random-parameters variables in the model. This is mainly because we were 

interested to examine the impact of different weather variables across different counties.  

We implemented the models in WinBUGS and used Bayesian inference and MCMC to 

estimate the parameters of the model (Spiegelhalter et al., 2003). As discussed earlier, to remove 

the correlation between the intercepts and the Lindley terms, we dropped the intercepts from the 

model, and calculated the intercepts based on Lindley terms using Eq. (26). We ran 30,000 MCMC 

iterations in WinBUGS with 3 chains. We discarded the first 5,000 samples as burn-in samples 

and estimated parameters from the remaining 25,000 posterior samples. To ensure removing any 

autocorrelation between simulated samples, we considered every 10-th sample from the posterior 

to compute the posterior mean of the parameters. The MCMC results showed excellent 

convergence and mixing. The density plots also showed clear unimodality for all the parameters. 

Table 13 shows the modeling results. As shown in this table, the coefficients of all the traffic and 

geometric variables were significant at 95% confidence level. The variables MADT, speed limit, 

and presence of the curve had positive interactions with crashes, which indicated an increase in 

these variables resulted in a higher number of crashes. Shoulder width had a negative effect on 

crashes; this means that an increase in shoulder width results in the reduction of lane departure 

crashes. Although with different coefficient values, these variables are also significant in other 

models.  
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Table 13: Modeling Results of Rural Interstates Data in Maine 

Parameters 

NB G-RPNB NB-L G-RPNB-L 

Mean S.D.1 Mean S.D. Mean S.D. Mean S.D. 

Mean of Parameters 

Intercept -9.193 1.284 -10.070 1.477 -9.163 1.321 -10.350 1.476 

Ln (MADT) 0.668 0.047 0.800 0.060 0.667 0.049 0.812 0.063 

Speed Limit 0.035 0.009 0.026 0.011 0.035 0.009 0.028 0.012 

Shoulder Width -0.168 0.055 -0.161 0.057 -0.167 0.055 -0.152 0.058 

Presence of Curve (1 if 

present, 0 if absent) 
0.275 0.053 0.240 0.054 0.275 0.055 0.243 0.056 

Days with precipitation > 

1.0 inch 
0.061 0.009 0.0762 0.073 0.061 0.009 0.0762 0.075 

Days with temperature < 

32°F 
0.043 0.003 0.0432 0.070 0.044 0.003 0.0442 0.070 

Standard Deviation of Random Parameters 

Days with precipitation > 

1.0 inch 
- - 0.197 0.061 - - 0.198 0.063 

Days with temperature < 

32°F 
- - 0.187 0.058 - - 0.188 0.060 

Inverse Over dispersion (φ) 1.461 0.246 1.752 0.331 21.050 10.490 24.480 11.160 

Model Performance 

DIC 15236.4 15101.1 14605.9 14491.33 

WAIC 15236.8 15101.7 14964.9 14831.53 

LOOIC 15236.8 15101.8 15169.6 15038.63 

1Standard deviation.  
2Italic font shows insignificant at 95% confidence level. 
3Bold values indicate a better fit. 
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Table 14: Regional Estimates and Standard Deviations of the G-RPNB and G-RPNB-L 

Models for Weather Variables 

1Standard deviations are shown in parenthesis.  
2Italic font shows insignificant at 95% confidence level. 

As noted earlier, we treated the two weather variables in the dataset as grouped random-

parameters variables, each stratified at the county level. Although unlike the simpler models (i.e., 

NB and NB-L), the results of the G-RPNB-L model showed that these two variables were not 

significant at 95% confidence interval, the standard deviations of the random parameters are 

significant. This means that these variables are still important and impact lane departure crashes 

and should be kept in the model. A closer look at these two variables shows that both variables are 

in fact significant for several counties in Maine. Table 14 shows the coefficient of these variables 

for each county in Maine. As shown in Table 14, the variable denoting “Days with precipitation 

greater than 1.0 inch” was significant at 95% confidence level for all counties in Maine, except for 

Androscoggin and Kennebec counties. In other words, although the mean of the random 

Maine 

counties 

Lindley 

Parameter 
Intercept 

Weather Variables 

Days with 

precipitation  

> 1.0 inch 

Days with 

temperature 

 < 32°F 

G- 

RPNB-L 

G- 

RPNB 

G- 

RPNB-L 

G- 

RPNB 

G- 

RPNB-L 

G- 

RPNB 

G- 

RPNB-L 

Androscoggin 
29.06 

(3.543) 

-9.003 

(1.446)1 

-9.319 

(1.497)1 

-0.0092 

(0.040) 

-0.0092 

(0.040) 

0.0232 

(0.015) 

0.0222 

(0.014) 

Aroostook 
39.41 

(6.304) 

-10.920 

(1.505) 

-11.220 

(1.540) 

0.169 

(0.044) 

0.165 

(0.044) 

0.051 

(0.012) 

0.050 

(0.012) 

Cumberland 
35.98 

(2.514) 

-9.870 

(1.451) 

-10.240 

(1.501) 

0.058 

(0.018) 

0.057 

(0.019) 

0.041 

(0.007) 

0.042 

(0.007) 

Kennebec 
35.91 

(2.349) 

-9.735 

(1.452) 

-10.100 

(1.497) 

0.0332 

(0.023) 

0.0332 

(0.023) 

0.046 

(0.008) 

0.047 

(0.008) 

Penobscot 
26.20 

(1.333) 

-9.813 

(1.452) 

-10.190 

(1.500) 

0.082 

(0.019) 

0.082 

(0.020) 

0.051 

(0.005) 

0.051 

(0.005) 

Sagadahoc 
72.82 

(9.309) 

-10.780 

(1.505) 

-11.270 

(1.551) 

0.081 

(0.036) 

0.088 

(0.037) 

0.049 

(0.016) 

0.051 

(0.017) 

Somerset 
19.88 

(1.595) 

-9.901 

(1.453) 

-10.180 

(1.512) 

0.117 

(0.032) 

0.112 

(0.033) 

0.057 

(0.010) 

0.056 

(0.010) 

York 
47.68 

(3.768) 

-10.280 

(1.460) 

-10.670 

(1.508) 

0.083 

(0.021) 

0.084 

(0.021) 

0.035 

(0.007) 

0.036 

(0.008) 
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parameters for this variable was insignificant at 95% confidence level, the regional variation is 

significant; there are significant variations regarding the impact of this variable across different 

counties in Maine. For the variable denoting the “Days with temperature less than 32°F”, the 

estimated coefficients for all counties, except Androscoggin County, were significant at 95% 

confidence level. For this variable, also, the parameter mean was insignificant at 95% confidence 

level. But the standard deviation of the random parameters was significant at 95% confidence 

level. In other words, although this variable is insignificant for one county, it is significant for the 

rest, but with different values. Furthermore, as expected, both of these variables had a positive 

interaction with crashes, which is similar to the findings from previous studies (Qiu & Nixon, 

2008; El-Basyouny et al., 2014). 

In the simple NB-L model, a single Lindley term is considered in the model to address the 

issue of excess zero observations. As noted earlier, this may not be an ideal strategy due to the 

differences in the number of zero observations in different regions or unobserved heterogeneity. 

In the G-RPNB-L model, instead, a random Lindley term is considered for each group of 

observations (here, each county). Therefore, the model can better address the issue of the number 

of zeros or unobserved heterogeneity, and subsequently, result in a better fit. Figure 1 shows the 

value of the Lindley parameter (θ) for each group of observations (here, counties). As shown in 

this figure, the value of the Lindley parameter substantially varies from one county to another. In 

particular, the value of this parameter varies from 19.88 (for Somerset County) to 72.82 (for 

Sagadahoc County). Allowing the Lindley parameter to vary among groups of observations allows 

the G-RPNB-L model to better account for variations in the number of zeros or address the 

unobserved heterogeneity in different counties.  
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Figure 2 shows variations of the coefficient of the variable denoting the “Days with 

precipitation greater than 1 inch” across different counties in Maine. The results show that the 

effect of this variable is the highest for Aroostook County. Aroostook County is in the northern 

region of Maine, which is less developed than the southern regions of Maine. These results 

presumably could be due to low traffic volume, less frequent winter maintenance, older roads, high 

speeds, and more adverse pavement conditions, in this region compared to southern Maine. As a 

result, adverse weather such as precipitation has a higher impact on crashes in this county 

compared to others. The impact of this variable was found to be the lowest for Cumberland County. 

Cumberland County is in the southwest region of Maine. The precipitation in this county is 

generally lower than in other counties (located on the east coast) which may lead to fewer crashes 

compared to other counties.  

Figure 3 shows the coefficients of the variable denoting the “Days with temperature less 

than 32°F” for different counties in Maine. The impact of this variable on lane departure crashes 

also varies across different counties. The impact of this variable is highest for Somerset County. 

This county is also located in the northern region of Maine; hence, it experiences a colder climate 

compared to other counties. In addition, most of the mountains in Maine are in this county resulting 

in a more mountainous terrain compared to other counties. Presumably, low temperature and 

mountainous terrain led to a higher coefficient for this county.  
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Figure 1: Variations of Lindley parameters across different Maine counties. 
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Figure 2: Variations of the coefficients of the “Days with precipitation greater than 1.0-inch” variable across different Maine 

counties. 
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Figure 3: Variations of the coefficients of the “Days with temperature less than 32°F” variable across different Maine counties.
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We used three goodness-of-fit metrics to compare the models. DIC is a popular goodness-

of-fit metric to compare models with different complexities in Bayesian statistics (Geedipally et 

al., 2014); We recorded DIC for NB, NB-L, G-RPNB, and G-RPNB-L models. Based on DIC, the 

G-RPNB-L model had a superior fit with the DIC of 14491.3. The NB-L model had the second-

best fit with a DIC of 14605.9; the G-RPNB was third with a DIC of 15101.1, and the NB was 

fourth in the order with a DIC of 15236.4. DIC however is sensitive to parameterizations 

(Geedipally et al., 2014). Therefore, we also used two more robust goodness-of-fit metrics known 

as WAIC and LOOIC (Vehtari et al., 2017). These two metrics also consider model complexity in 

their assessment metrics. Several researchers have used WAIC and LOOIC metrics for model 

comparison (Ahmed et al., 2020; Khodadadi et al., 2021; Mertens et al., 2021; Khodadadi et al.,  

2022b). For the WAIC metric, the G-RPNB-L exhibited the best fit with the WAIC of 14831.5. 

The NB-L with WAIC of 14964.9, G-RPNB with WAIC of 15101.7, and NB with WAIC of 

15236.8 were ranked after the G-RPNB-L model. Using the LOOIC metric, the G-RPNB-L 

(LOOIC=15038.6) was the best model following the G-RPNB (LOOIC=15101.8), NB-L 

(LOOIC=15169.6), and NB (LOOIC=15236.8).  

As a closing note to this section, it is worth pointing out that the NB-L model also had 

better goodness of fit (DIC and WAIC) compared to the G-RPNB, possibly due to excess zero 

observations in the data. Note that the dataset had more than 90% of zero observations. Several 

previous studies also showed that the NB-L model performs well when datasets are abundant with 

zero crash observations. However, the G-RPNB model can account for unobserved heterogeneity. 

Particularly, if the analyst is interested in a better understanding of the variations among different 

groups of observations (here, counties), the G-RPNB is preferred to the NB-L model, although the 
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NB-L may have a better fit. This concept is referred to as “goodness-of-logic” as illustrated in the 

work of Miaou & Lord (2003), Shirazi et al. (2017b), and Shirazi & Lord (2019). 

4.6. Summary and Conclusions 

Most often crash data are highly dispersed. Crash data may also contain a large amount of zero 

observations. The NB-L model can provide additional flexibility to the NB model to address the 

issue of the excess number of zero observations. The effect of different explanatory variables may 

also vary across different groups of observations, such as counties, regions, or cities, due to 

unobserved heterogeneity. In addition, different subgroups or regions may also have different 

percentages of zeros. To overcome these limitations, in this chapter, we proposed and documented 

the derivations and characteristics of the grouped random parameters negative binomial-Lindley 

(G-RPNB-L) model to address the regional heterogeneity in crash datasets with an excess number 

of zeros. We illustrated the feasibility of the model with a simulation study. The simulation study 

examined several scenarios with different percentages of zero observations. Then, we showed the 

application of the proposed model using an empirical dataset. We explored the effect of weather 

variations on crashes across different counties of Maine. This dataset had a large amount of zero 

crash observations. Our results showed that the coefficient of the weather variables varied across 

different counties. We also compared the proposed G-RPNB-L model with NB, NB-L, and G-

RPNB models. We used three goodness-of-fit metrics for model comparison. The goodness-of-fit 

statistics showed the superiority of the G-RPNB-L model over the NB, NB-L, and G-RPNB 

models. 
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CHAPTER 5 

SUMMARY AND RECOMMENDATIONS 

This chapter summarizes the results and discussions of the two proposed models described in this 

thesis and provides recommendations for future research. This chapter is divided into two sections. 

The summary of the findings of the FMNB-L and G-RPNB-L models is discussed in the first 

section. The second section recommends the scope for future research. 

5.1. Summary 

Chapter 3 documented the derivations and characteristics of the finite mixture NB-L GLM to 

analyze crash data. This model was developed to account for unobserved heterogeneity due to 

latent subpopulations in data with many zero observations or long tails. The performance of the 

FMNB-L model in identifying subpopulations was evaluated using a simulated study with various 

sample means and zero percentages. The simulation results suggested that the FMNB-L can 

accurately identify subpopulations and account for a large percentage of zero observations. The 

application of the FMNB-L model in the empirical analysis was demonstrated using three highly 

dispersed and long-tailed datasets collected from Texas 4-lane Freeways. Then the results from 

the FMNB-L model were compared with NB, NB-L, and FMNB models based on several model 

selection metrics such as DIC, WAIC, and LOOIC. These goodness-of-fit metrics were used 

because they considered the complexity of models in their estimations. The FMNB-L model fitted 

the data significantly better than other models, according to the GOF statistics. The presence of 

subpopulations in these datasets was evident from the analysis.  

Chapter 4 documented the derivations and characteristics of the grouped random 

parameters NB-L to analyze crash data. This model was developed to account for unobserved 
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heterogeneity due to variations across groups in crash data with many zero observations. A 

simulation study with varying zero percentages was used to assess the grouped random parameters 

NB-L model’s performance in detecting variations across groups of observations. These simulated 

groups had different percentages of zero observations too. In the simulated scenarios, the proposed 

model efficiently addressed unobserved heterogeneity due to variations across groups. Then the 

proposed model was applied to an empirical dataset of rural Interstates in Maine that contained a 

large amount of zero observations across different regions. The G-RPNB-L model accounted for 

unobserved heterogeneity in the data due to the variations in the impacts of different weather 

characteristics across different regions. Then the model performance was compared with NB, NB-

L, and G-RPNB models for various GOF metrics such as DIC, WAIC, and LOOIC. The proposed 

model was found superior to fit the data based on these GOF statistics. 

5.2. Recommendations 

The following recommendations are proposed based on the outcomes of this research. These 

recommendations include both methodological and practical aspects. 

5.2.1. Methodological Recommendations 

When datasets with a large amount of zero crash observations or heavy tails are suspected to 

include heterogeneous subpopulations, the finite mixture NB-L model should be used instead of 

NB or NB-L to identify latent subpopulations. There are a few suggestions for future study that 

should be considered. The application of FMNB-L model with varying weight parameters should 

be investigated further in the future. Future research on the finite mixture of random parameters 

NB-L is also recommended in crash data analysis. 
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When datasets with a large amount of zero crash observations across different groups (e.g., 

regions, towns) are suspected to have unobserved heterogeneity due to variations across groups, 

the grouped random parameters NB-L model should be employed instead of NB or NB-L to 

address unobserved heterogeneity. The effect of temporal attributes should be explored in future 

studies for grouped random parameters NB-L modeling approach.  

5.2.2. Practical Recommendations 

Apart from crash prediction, finite mixture NB-L models can be used for hotspot identifications. 

The applications of finite mixture NB-L models in empirical Bayes (EB) estimations for hotspot 

identifications and before-after studies can be explored in the future. Also, sample size guidelines 

for different sample means should be investigated in the future. 

Skid number has a significant effect on crashes. Skid number can also vary across different 

regions. The impact of skid number on crashes should be investigated. Grouped random 

parameters NB-L model can be applied to datasets containing varying skid number across regions 

to capture unobserved heterogeneity due to variations across regions. 
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