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Climate change is impacting many marine species distributions, life histories, and 

behaviors, as well as their associated fisheries and overall production. This is perhaps especially 

true for the Gulf of Maine (GOM). Here, warming rates are exceeding a vast majority of the 

world’s oceans. This highly dynamic system supports myriad species, but is both economically 

recognized and culturally known for its Atlantic sea scallop (Placopecten magellanicus) and 

American lobster (Homarus americanus) fisheries. This dissertation examines the influence of 

regional climate change on these species in an effort to predict how these stocks and their fisheries 

may change in the future. For scallops, this was accomplished by examining and aging shells 

collected throughout the GOM to determine if spatial and temporal differences in growth patterns 

could be explained by regional thermal habitats and salinities. For lobster, a five-step process was 

developed. Firstly, I conducted a simulation study to evaluate the stock assessment model 

performance under possible changes in lobster molting probability, lobster molt increment size, 

and size-at-maturity as a result of changes in thermal habitat. Secondly, using two temperature 

covariates important for early survival and development, a stock-wide, thermally-explicit 



Beverton-Holt stock-recruit relationship was estimated for the GOM. This relationship served as 

the basis of a framework to be used by management to test what levels of spawning biomass are 

necessary in the current year to achieve the desired levels of recruitment in the near future. Thirdly, 

a delta-generalized linear mixed model was used to predict lobster spatial density throughout the 

GOM. This spatial density informed a stock-wide abundance index which was used to replace the 

traditionally used design-based indices in the stock assessment model. Fourthly, a stock 

forecasting model was developed that could utilize the aforementioned stock-recruit relationship 

and consequences of ignoring this thermal influence on recruitment estimations were explored. 

Lastly, a bioclimate envelope model was used to determine relationships of multiple habitat 

covariates to lobster abundance from trawl survey data before using these relationships to map and 

forecast lobster habitat in the GOM.
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CHAPTER 1: AN INTRODUCTION TO THE GULF OF MAINE AND ITS FISHERIES 

1.1 Oceanography of the Gulf of Maine 

Anthropogenic climate change has both directly and indirectly been altering the planet’s 

natural abiotic and biotic equilibria (Beardall and Raven 2003; Perry et al. 2005; Hazen et al. 2013; 

Anderson et al. 2013). Of major concern is the warming in many areas of the oceans, which are 

causing shifts in many species distributions as they seek more preferable and tolerable 

environments (Perry et al. 2005; Hazen et al. 2012; Anderson et al. 2013; Schuetz et al. 2019). 

These cascading effects are causing local extirpations (Mantyka-pringle et al. 2011), novel 

predator-prey interactions (Stebbing et al. 2002), and changes to how mankind interacts with the 

sea (Engelhard et al. 2013; Rogers et al. 2019). This undeniably provides evidence for the strong 

connection between the abiotic environment and its biotic inhabitants. The fate of many species 

across the planet are inexplicably linked with climate change. An ecosystem of particular interest 

is that of the Gulf of Maine, where the warming rates here are higher than most anywhere else in 

the oceans (Mills et al. 2013; Pershing et al. 2015). 

The Gulf of Maine region (hereafter referred to as the GOM) is the northernmost area of 

the US Northeast Continental Shelf, comprised of the Gulf of Maine proper and George’s Bank 

(Figure 1.1) and is distinguished by its high value fisheries. Historically, this ecosystem was 

exploited by European settlers who found an abundance of Atlantic cod (Gadus morhua) and other 

groundfish (Roberts 2007). Today, it is renowned for its American lobster (Homarus americanus) 

and Atlantic sea scallop (Placopecten magellanicus) fisheries. The Gulf of Maine has been a 

remarkable fishing ground for many species over the years because of the oceanography of the 

system that allows for the proliferation of many shelled and benthic marine species. 
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The Gulf of Maine is a highly dynamic environment (Durbin et al. 2003; Wanamaker et al. 

2008), but relatively cold compared to regions south of Cape Cod and Georges Bank (Figure 1.1). 

This region represents the southernmost extent of the Labrador Current, which brings cold Arctic 

waters into the Gulf of Maine at depth through the Northeast Channel between Georges Bank and 

Nova Scotia (Petrie & Drinkwater 1993; Durbin et al. 2003; Wanamaker et al. 2008) (Figure 1.1). 

This cool Labrador slope water moves into the Gulf of Maine at depth. The much warmer Gulf 

Stream brings warm water from the south and moves offshore in this region (Wanamaker et al. 

2008; Mountain 2012) (Figure 1.1). Water input from the Gulf Stream is less than that supplied 

from the Labrador Current and this imbalance has historically kept Maine waters relatively cool 

(Wanamaker et al. 2008). 

However, in recent history, the waters in this system have been warming at an alarming 

rate (Mills et al. 2013; Pershing et al. 2015), due in part by melting Arctic sea ice (Saba et al. 

2016). This melting phenomenon is releasing a lot of fresh water into the Arctic Ocean. Normally, 

this Arctic water is what the Labrador Current brings to the Gulf of Maine. However, fresh water 

is less dense than salt water and this current is now redirected and not as much is entering the Gulf 

of Maine at depth (Saba et al. 2016). This decrease in cold water from the North has allowed an 

increase in warm waters to enter the Gulf of Maine through the Gulf Stream (Saba et al. 2016). 

The hydrogeography of the Gulf of Maine in this sense is what is now allowing for this region of 

the ocean to warm at such a high rate. 

Naturally, there has been much effort in improving predictive capacity for this region. The 

strong connection of the New England culture and economy to the GOM and its fisheries are 

fueling this analysis. How will the Atlantic Sea Scallop and American lobster fisheries in the GOM 

be changed under increased global warming scenarios? 
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Figure 1.1. Bathymetric map of the Gulf of Maine showing depth in meters (m) and the supplying currents. The 

regions of the Gulf of Maine are the Western Gulf of Maine (WGOM), the Eastern Gulf of Maine (EGOM), and 

George’s Bank. The Labrador Current beings cool Arctic waters to the Gulf of Maine at depth and the Gulf Stream 

brings warm waters from the south. The ratio of these two currents to the Gulf of Maine determines the temperature 

of the area. Also labelled are the states of Maine (ME), New Hampshire (NH), Massachusetts (MA), and Connecticut 

(CT), and the province of Nova Scotia (NS).  

1.2 The Atlantic Sea Scallop and it’s Fishery in the Gulf of Maine 

The Atlantic Sea Scallop (Placopecten magellanicus; ASC) is a bivalve mollusk; having a 

calcium carbonate exoskeleton comprised of two parts connected by an adductor muscle which 

forms its shell (Chapter 2: Figure 2.1). This shell is created through a process known as 

biomineralization, whereby the animal secretes mantle proteins that harness environmental ions, 
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namely calcium carbonate, to form the outermost layer of crystalized tissue (Marin and Luquet 

2004; Hart and Chute 2009a; Hart and Chute 2009b). This process ensures the shell expands as 

the animal grows. Because of this specific growth process, the oldest material is closest to the 

hinge and the newest is at the outer edge of the shell. Because ASCs do not shed their hard parts 

as they grow like crustaceans, their shells can be used as a personalized life history transcribed in 

mineralized calcium carbonate (Hart and Chute 2009a; Hart and Chute 2009b) (see Chapter 2). 

This fact has allowed for extremely comprehensive analyses of ASC growth (Hart and Chute 

2009a; Hart and Chute 2009b), which, in combination with extensive survey efforts, has led to 

exceptionally data-rich and well informed stock assessments for the animal and a well-managed 

fishery.  

In the United States, ASCs are harvested using dredges from Cape Hatteras, North Carolina 

to Cobscook Bay, Maine (Hart and Chute 2004) and are prized for their large and tasty adductor 

muscles. Extensive and comprehensive management measures have ensured that ASCs across this 

range remain not overfished and have kept overfishing from occurring (NEFSC 2018). Moreover, 

catch of ASCs has more than doubled in the last decade over their range (NEFSC 2018). The 

Northern Gulf of Maine (NGOM) (Chapter 2: Figure 2.2), represents the northernmost extent of 

this range in the United States. Here, ASC management is segregated into two zones: state waters 

and federal waters.  

In state waters, management is done through the Maine Department of Marine Resources 

(MEDMR). In federal waters, management is conducted by the New England Fishery Management 

Council (NEFMC). In federal waters, management relies on the use of the Scallop Area 

Management Simulator (SAMS) model, whose purpose is to calculate total allowable catches 

(TACs), based on the expected abundance and landings estimates (Hart 2010). The SAMS model 
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is an effective predictive tool for the scallop fishery. Since its implementation by the NEFMC in 

1999, ASCs have not been overfished and landings have remained high (NEFSC 2018). There are 

limits to the SAMS model’s predictive capacity in areas like the NGOM, due to lack of input 

information. The SAMS model has historically been limited in Maine’s state waters because of 

the lack of information regarding growth rates of ASCs in this area.  

ASCs in the NGOM are of course also subject to the rising temperatures of the region, 

which can affect their growth rates and overall life history (Côté et al. 1993). It is thus imperative 

to develop measures to infer how these animals and, by extension, this fishery will change in the 

future. The ASC fishery in the NGOM has a huge impact on the state, both economically and 

culturally as they have been fished for in this region for over a century and are second in value 

only to lobster (Schick & Feindel 2005). 

1.3 The American Lobster and it’s Fishery in the Gulf of Maine 

The American lobster fishery on the North American East coast began over 150 years ago 

in the waters of the Cranberry Isles in Maine (Corson 2004). Fishermen began the practice of 

setting baited wooden traps on the seafloor and hauling them up regularly to collect what was 

inside (Corson 2004). The animals they targeted were American lobsters: Homarus americanus. 

This decapod crustacean has since become a staple of the GOM and a large part of the culture of 

the New England area.  

Modern day lobster fishing has similarities to its early days. The fishermen (or lobstermen) 

each set hundreds of baited steel traps on the sea floor tied to floating buoys uniquely colored for 

the fisherman and haul them regularly to collect lobsters who have wandered into the traps to seek 

food and shelter (Corson 2004). Lobster as a food source has evolved to become a sought after 

delicacy in many areas creating an incredibly large fishery throughout the stock areas of the GOM 
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and Southern New England. This demand and subsequent fishing effort increase has caused 

lobstering to become the most lucrative single-species fishery in the United States with an annual 

estimated value of over half a billion dollars (MEDMR 2016; NMFS 2018).  

Within the last few decades of this 150-year lobstering reign, there have been some large 

shifts in the fishery. What were once notable areas for lobster fishing have dwindled in output and 

areas not previously thought of as fishing grounds are now booming with these animals (ASMFC 

2015). The entire fishery dynamic has had to subsequently shift: fisherman have had to change 

how they target these animals or quit altogether. This species is experiencing shifts in their habitats 

and typical life histories and the fishery is having to adapt to keep up (ASMFC 2015; Tanaka et 

al. 2018). A driving force behind these shifts is of course climate change.  

Lobster biology and life history are directly impacted by temperature and other abiotic 

factors (Green et al. 2014; Madeira et al. 2012). This is because they are ectothermic crustaceans; 

meaning their internal body is not physiologically regulated, but rather driven by the outside 

environment (Madeira et al. 2012). This link means that lobsters as individuals and lobsters as a 

population have a strong connection with the warming GOM. Warming waters are affecting this 

species’ growth (Staples et al. 2019), natural mortality (Mills et al. 2013), and reproduction (Goode 

et al. 2019; Tanaka et al. 2019). Climate driven changes on these life history parameters are 

predicted to have significant consequences for the size-structured stock assessment process 

(Audzijonyte et al. 2016) and thus many measures are being undertaken to mitigate these impacts 

(ASMFC 2020). It is imperative to transform the stock assessment and forecasting processes to 

incorporate these effects from temperature in many aspects of the lobster stock. To aid in this 

effort, appropriate modelling and forecasting of lobster habitat is also necessary.  
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As sea temperatures are rising in the GOM, historical locations of lobster abundance are 

shifting (ASMFC 2015). Much of the GOM is becoming more suitable for lobster (Tanaka & Chen 

2016). However, as lobster habitat suitability in the GOM is increasing, lobster habitat suitability 

in Southern New England is decreasing (ASMFC 2015).  

The southernmost extent of the American lobster stock is the lower tip of New Jersey. This 

area from New Jersey to Georges Bank is the Southern New England Stock of American lobster 

(Chapter 3: Figure 3.1). Southern New England was once renowned for its lobster landings in 

much the same way the GOM was. Landings by weight in metric tons of lobster was split relatively 

equally through the 1970s (NMFS 2018). However, there has been a large shift in landings as 

American lobster populations rise in the GOM and fall in Southern New England. Landings from 

2010 to present have averaged approximately 500 to 1000 mt for Southern New England, but have 

risen substantially to 60,000 to 80,000 mt in the GOM (NMFS 2018). This decrease in Southern 

New England is thought to be due to in part to many years of low recruitment combined with a 

relatively low habitat suitability (ASMFC 2015). There is a combination of cultural fear and denial 

that this could or would ever happen to the GOM region. In order to appropriately and scientifically 

address the risk, there needs to be significant advancement in forecasting processes, both in terms 

of the lobster population and its habitat.  

Lobster in the GOM is a cultural icon and a large contributor to the New England economy. 

However, climate change is affecting this species distribution, behavior, and life history. Many 

changes in the fishery have occurred over the past few decades, with many lobstermen having to 

give up their jobs and others experiencing higher paydays than ever. Fisherman and researchers 

alike expect more change in the future, but substantial research in stock assessment, forecasting, 

and habitat modelling processes are necessary to quantify it.  
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1.4 Objectives 

Given the shifting thermal habitat of the GOM, there is a need to evaluate these changes 

on Atlantic Sea Scallops and American lobster. For scallops, a lack of growth information is 

limiting assessment effort in this region and so, in Chapter 2, a collection of shells from the GOM 

will be used to quantify spatiotemporal patterns in growth and link these patterns to the abiotics of 

the region. This will aid management and expand the modelling capacity of the SAMS to better 

estimate population dynamics and biomass estimates. For lobster, much of the stock assessment 

process is thermally static, violating the assumptions discussed in section 1.3 that this species’ life 

history is heavily impacted by temperature. Thus, it is the goal of the following chapters to use 

these climate impacts to increase modelling capacity and reliability of the stock assessment, 

forecasting, and habitat modelling processes for GOM lobster.  

Lobster growth is less understood compared to scallops and thus the same analysis cannot 

be adequately done. However, modelling capacity in the context of climate effects on growth can 

be and thus Chapter 3 details a sensitivity analysis of the stock assessment process to changes in 

growth and size-at-maturity that would come from increased warming scenarios. Chapter 4 takes 

this a step further by linking a novel spawning biomass/recruitment relationship to thermal habitat 

and using this tool as a way to inform management how to keep high levels of recruitment in the 

future, even under these increased warming scenarios. Chapter 5 uses a delta-generalized linear 

mixed effects model to estimate the effect of thermal habitat on survey abundance indices used in 

the stock assessment process and compares these to the traditionally used design-based indices. 

Chapter 6 uses the findings from the previous chapters to develop a forecasting model for 

American lobster that is thermally explicit and seasonal and shows how an environmentally 

explicit model is more reliable and accurate. Chapter 7 uses a bioclimate envelope model to map 
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and forecast lobster habitat and uses the results in a larger study to show the dangers of forecasting 

habitat in the absence of a high knowledge base of the species’ life history a priori. Finally, Chapter 

8 summarizes these findings and discusses how this information can be used to better assessment 

and forecasts of both species and additionally outlines the key next steps in the research process. 

This framework and the tools developed in this dissertation in whole and in part can be used to 

evaluate climate effects on other species life history and stock assessments.  
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CHAPTER 2: SPATIOTEMPORAL VARIABILITY IN ATLANTIC SEA SCALLOP 

(PLACOPECTEN MAGELLANICUS) GROWTH IN THE NORTHERN GULF OF 

MAINE  

2.1 Abstract  

Simulation-based assessment tools coupled with large-scale and consistent monitoring 

efforts contribute to the overall success of the Atlantic sea scallop (Placopecten magellanicus; 

ASC) fishery on the North American east coast. However, data from the Northern Gulf of Maine 

(NGOM) are usually excluded from the assessment because limited monitoring effort and an 

overall lack of information regarding the growth of ASCs in this region have led to large 

uncertainty of fine-scale dynamics. The objectives of this study are to determine if ASC growth 

varies spatially and/or temporally across the NGOM and if the variation in growth can be explained 

in part by variability in bottom temperature and bottom salinity. To achieve these objectives, ASC 

shells have been continually collected through a partnership between the University of Maine and 

Maine Department of Marine Resources since 2006. Individualistic ASC length-at-age curves are 

developed to evaluate small and large scale spatio-temporal variabilities. In comparison to ASC 

growth on Georges Bank and in Southern New England, it appears that ASCs in the NGOM are 

growing at a similar rate yet have the potential to grow to a larger size. No clear spatio-temporal 

trends in ASC growth are identified in the NGOM. However, our analysis reveals that bottom 

temperature and bottom salinity may be influencing inter-annual variabilities and contribute to 

growth rate differences seen between locations and years. This may imply changes in ASC growth 

in the future with increasing warming in the Gulf of Maine.  
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2.2 Introduction 

The Atlantic sea scallop (Placopecten magellanicus; ASC) is a historically important 

commercial bivalve on the North American east coast. In the United States, ASCs are harvested 

from Cape Hatteras, North Carolina to Cobscook Bay, Maine (Hart & Chute 2004). ASC biomass 

(in metric tons of meat) has more than doubled in the last decade over their range (NEFSC 2018) 

and ASCs are not overfished and overfishing is not occurring (NEFSC 2018). This is due largely 

to extant and detailed approaches used to manage this fishery on a large-scale level. Techniques 

have been developed that allow for population-wide simulations under different fishing scenarios 

to determine catch limits per area for consecutive years (Rheuban et al. 2018; NEFSC 2018). 

However, areas like the Northern Gulf of Maine (NGOM) are usually excluded from these 

predictive models because of lack of information regarding the growth of ASCs in these regions. 

More southern areas such as Georges Bank (GBK) and the Mid-Atlantic Bight (MAB) are high-

production fishing grounds for this species and so the bulk of knowledge concerning ASC growth 

rates has been from samples collected from these areas (Hart & Chute 2009a; Hart & Chute 2009b; 

Mann & Rudders 2019).  

A scallop is a bivalve mollusk, having two hardened calcium carbonate structures 

connected by a hinge and a large adductor muscle (Figure 2.1). Unlike exoskeletal animals that 

shed their outer layers during a molt, scallops must expand their shell as they grow (Marin & 

Luquet 2004). Because of this, they must constantly be laying down new material. This new 

material (in the form of the aforementioned calcium carbonate) is set in place on the outer edges 

of shells, resulting in ring formation much like trees (Hart & Chute 2009a; Hart & Chute 2009b). 

This growth allows for simple calculation of length-at-age curves (a.k.a. growth curves). The rings 

are formed due to seasonal changes in growth rates; with shell formation being faster in the warmer 

months and slower in the colder months (Côté et al. 1993; Harris & Stokesbury 2006; Hart & 
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Chute 2009a; Hart & Chute 2009b), forming a single ring per year of growth. This is due to the 

direct effect that environmental variables (such as temperature and salinity) have on the 

metabolism of the animals (Côté et al. 1993). Many studies have demonstrated linkages between 

the rate of ASC growth and environmental conditions such as temperature, salinity, and depth 

(MacDonald & Thompson 1985a; MacDonald & Thompson 1985b; Thouzeau et al. 1991; Harris 

& Stokesbury 2006; Hart and Chute 2009a; Chute et al. 2012), yet few studies have looked at the 

spatiotemporal variation of these effects at finer spatial scales than large marine ecosystems 

(LMEs) such as GBK and the MAB.  

Climate change is causing the NGOM ecosystem to warm at an accelerated rate compared 

with a majority of the world’s oceans; with an average-per-year increasing temperature of 0.026˚C 

(Pershing et al. 2015). Bottom temperature and bottom salinity fluctuate around yearly means as 

seasons change, but these yearly means for both variables are rising in the face of climate change 

(Pershing et al. 2015; Saba et al. 2016). This means that ASC growth has the potential to change 

as well. If it can be understood how these environmental variables affect ASC growth in the 

NGOM, it can be inferred if and how their growth will change into the future. 

Understanding spatiotemporal variation in growth is important for the management of any 

marine resource, especially those in an environment experiencing rapid environmental changes 

(Maunder & Piner 2015). Mann & Rudders (2019) stated the importance of understanding 

age/length structures to inform the current assessment model for ASCs in GBK and the MAB, 

referring to using this information to enhance the current understanding of ASC recruitment and 

mortality. Assuming incorrect growth structures can lead to large effects on stock assessment 

outcomes and incorrect management advice (Maunder & Piner 2015). Little is known about the 

NGOM LME as it pertains to ASC growth, accentuating the increased likelihood of wrongly 
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assumed growth parameters. Most information about NGOM ASC growth comes from a singular 

study by Truesdell (2014), wherein growth is analyzed across different spatial zones in the NGOM. 

In short, Truesdell (2014) concluded that NGOM scallops grow to larger sizes, yet grow slower 

than scallops in GBK and the MAB. This study, however, only addresses spatial differences in 

growth and spatial effects of environmental variables. 

The objectives of this study were to 1) Determine if ASC growth varies spatially and/or 

temporally across the four management zones in the NGOM (Figure 2.2) and 2) Determine if 

variation in ASC growth in these areas and across years can be explained in part by bottom 

temperature and bottom salinity. To achieve these objectives, von Bertallanfy growth parameters 

for multiple locations and age classes are determined using methods from Hart & Chute (2009a) 

and growth increment data is used in multiple regression analyses to determine relative influence 

of environmental factors bottom temperature and bottom salinity as well as spatial (latitude and 

longitude) and time-varying (year of growth) factors. This same process to determine 

spatiotemporal variation and influence of environmental factors can be applied to many bivalve 

species whose historical size-at-age is determinable from their shells or for fish species who have 

reliable otolith size to fish length relationships.  
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Figure 2.1. An ASC top shell (left) and bottom shell (right) with important features labelled. Growth rings are 

outlined for this three year old specimen.   

 

 

Figure 2.2. The Northern Gulf of Maine (management zone 4; grey) with management zones 1-3 colored red, blue, 

and green, respectively. Black dots represent locations where scallops were collected over the entire survey. 
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2.3 Methods 

2.3.1 Study Area 

 The NGOM management area (Figure 2.2) is the most northern extent of the United States’ 

ASC stock. This area is managed on smaller scales: namely inshore (<3 nautical miles (nm) from 

shore) and offshore (>3nm from shore). The inshore NGOM is split into three distinct management 

sections: Zone 1 (commonly referred to as the Western Gulf of Maine), Zone 2 (commonly referred 

to as the Eastern Gulf of Maine), and Zone 3 (Cobscook Bay; Figure 2.2), with each zone having 

slightly different management techniques, but the same management entity: the Maine Department 

of Marine Resources (MEDMR). The offshore NGOM (referred to here as management zone 4) is 

treated as a single large unit and is managed jointly at both state and federal levels (by MEDMR 

and the New England Fishery Management Council).  

 The NGOM is characterized as having fluctuating yearly temperatures and salinities, 

influenced by a combination of the warm and salty North-bound Gulf Stream and the colder, less 

salty South-bound Labrador Current (Durbin et al. 2003; Wanamaker et al. 2008). Additionally, 

year to year variations are also present in these variables due to changing ratios of incoming water 

masses due to climate change (Mills et al. 2013; Pershing et al. 2015), resulting in higher observed 

temperatures and salinities.  

2.3.2 Ageing & Growth Modelling 

A partnership between the University of Maine and the MEDMR has been responsible for 

collecting ASC shells from the study area since 2006 which are subsequently stored at the 

University of Maine until they are aged. Part of these shells were utilized for Truesdell’s (2014) 

analyses, but the sample size has been greatly improved in recent years with additional samples 

being collected from broader areas in the NGOM. 
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Aging of shells followed methods from Hart and Chute (2009a). Each shell is measured 

from the apex (center of the hinge; Figure 2.1) to each consecutive ring, producing a number of 

data points for each scallop as there are visible rings. The number of rings, though, is not always 

indicative of absolute age, however. The first two years of growth of an ASC are not as predictable 

or uniform as from two years onward. Because of this, the one-year growth ring or the two-year 

growth ring may be the first visible ring. Agers are taught how to infer which year the first visible 

ring corresponds to based on typical shell size-at-age, as well as which rings are actual growth 

rings, and which are false rings caused by stress (additionally, each new person introduced to the 

project partakes in a trial period to make sure their ageing technique does not produce 

measurements statistically dissimilar from previous agers). The differences between these data 

points is what is known as incremental growth. Fabens (1965) has modified the von Bertalanffy 

growth function to model this particular type of growth data. The function is as follows: 

 

 Lt+1  =  exp(−K) × Lt  +  L∞  ×  (1 –  exp(−K)) (2.1) 

 

where Lt is the length at time t, Lt+1 is the length at time t+1, L∞ is the theoretical asymptotic 

maximum size at which length approaches, and K is the Brody growth coefficient.  

 Following Hart & Chute (2009a), L∞ and K were found for each individual ASC via the 

Ford-Walford method, in which L∞ and K are found from a linear fit of all Lt and Lt+1 pairs for 

each individual with at least 3 growth rings (the same cutoff used by Hart & Chute 2009a). Once 

L∞ and K values were found for each individual, population values for each Zone (1, 2, and 3) as 

well as for offshore waters were established. Additionally, the entire NGOM population was also 

split into year classes with sufficient sample sizes (1998-2010). These results could not be obtained 
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from a regression of all data points in each group due to the possibility of large bias (Hart & Chute 

2009a). Nor could they be obtained simply from taking an average of all individual values for L∞ 

and K for the same reason. Thus, following the methods outlined by Hart & Chute (2009a),  

 

 𝑚𝑖 = exp(−𝐾𝑖) 

 

(2.2) 

 

 𝑏𝑖 = 𝐿∞,𝑖  ×  (1 − 𝑚𝑖) (2.3) 

 

representing the slope and intercept of each individual’s Lt+1 vs Lt plot respectively, were obtained 

(with Ki and L∞,i representing the K and L∞ of individual i). Additionally, m = mean(mi) and b = 

mean(bi), representing the population slope and population intercept respectively, were calculated. 

Letting αi and βi represent the deviations of each mi from m and each bi from b, respectively, the 

equations for approximating population L∞ and K values are as follows (Hart & Chute 2009a): 

 

 
L∞ ≅  

𝑏

1 − 𝑚
+

1

(1 − 𝑚)2
 ×  (

𝑏 ×  Var(𝛼𝑖)

1 − 𝑚
+ Cov(𝛼𝑖, 𝛽𝑖)) 

 

(2.4) 

 

 
K ≅ − ln(𝑚) +  

Var(𝛼𝑖)

2 × 𝑚2
 

(2.5) 

 

 

with Var(αi) and Cov(αi,βi), being the variance of αi and covariance of αi and βi, respectively. 

Additionally, the standard errors (σ) of L∞ and K were approximated as (Hart & Chute 2009a): 
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𝜎L∞

≅ 𝐿∞
2  ×  (

𝜎𝑏
2

𝑏2
+

𝜎𝑚
2

(1 − 𝑚)2
+

2 ×  𝜎𝑏  ×  𝜎𝑚  ×  𝜌

𝑏 × (1 − 𝑚)
) 

 

(2.6) 

 

 𝜎𝑘 ≅  
𝜎𝑚

𝑚
 

(2.7) 

 

 

with σL∞, σK, σb, and σm representing the standard errors of L∞, K, b, and m respectively. All 

calculations were completed using R software (version 3.4.1). All R scripts used in modelling and 

analyses can be made available upon request. 

2.3.3 Modelling Environmental Effects 

L∞ and K cannot be associated with a particular year, only a location (they are constant 

throughout an individual scallop’s life). Thus, these values cannot be matched to any time-

dependent environmental covariates. Because of these limitations, a different response variable 

had to be chosen for regression testing. The variable chosen was the change in length from one 

ring to the next: the growth over the course of a time-step in millimeters: Δmm. Because ASCs are 

sedentary after their spat stage (before 1 year old), each Δmm can be associated with a location 

(latitude and longitude), a time (year of growth), and by extension, abiotic variables associated 

with those locations and averaged over that year. The variables used in this study were bottom 

temperature (Figures 2.3 and 2.4) and bottom salinity (Figure 2.5). Additionally, because Δmm 

varies widely between age classes, separate regression tests were conducted for each, allowing for 

any age-specific environmental interactions to be explored.  

Bottom temperature and bottom salinity data were obtained from University of 

Massachusetts (UMass) Dartmouth School for Marine Science and Technology (SMAST)’s Finite 
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Volume Community Ocean Model (FVCOM). This geophysical model has been shown to have 

reliable performance in predicting bottom water parameters at fixed locations called stations, 

especially for well-stratified areas like the NGOM (Li et al. 2017). For each ASC, an average 

bottom temperature and salinity was obtained for each year of its growth. If the location of the tow 

was within ½ kilometer (km) of a FVCOM station, then the closest station was used to determine 

the abiotic conditions at the tow location. If no FVCOM station existed within ½ km radius, then 

the average of all FVCOM stations within a 1 km by 1 km grid centered on the tow location was 

used as a proxy.  

Correlation coefficient calculation and variance inflation factor (VIF) tests were used to 

determine which combinations of predictor variables could be used together to have reliable 

regression output. Correlation coefficient values outside the range of (-0.5, 0.5) for a correlation 

coefficient meant those variables could not be used in the same test due to high collinearity. VIF 

values greater than 10 represent high multi-collinearity and do not allow for those variables to be 

used together in the same regression (O’brien 2007). These methods were used in tandem: 

correlation coefficients for all combinations of two factors were calculated and then VIF tests were 

conducted on all factor combinations used in regressions. This was done as to assume high 

robustness in factor selection for regression testing.  

Three different types of regression testing were conducted on each combination of factors 

that passed the two-step process above: linear regression (LR), boosted regression trees (BRT), 

and generalized additive models (GAMs). Model selection was based on root mean squared error 

(RMSE) and Akaike information criterion (AIC).  Additionally, in an effort to further explore 

patterns in temporal trends, an additional six regression tests were run for each age class with year 

of growth as the only predictor variable only for ASCs from Cobscook Bay. The intent of these 
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six models was to see if temporal trends could be more readily determinable if spatial differences 

were ignored.  

 

Figure 2.3. Average yearly bottom temperature over the study region 1997-2013. Temperature values are in degrees 

Celsius.  
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Figure 2.4. Average bottom temperature over the study region averaged across years 1997-2013. Temperature values 

are in degrees Celsius. 

 

Figure 2.5. Average bottom salinity over the study region averaged across years 1997-2013. Salinity values are in 

parts per thousand. 
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2.4 Results 

2.4.1 Spatial Differences in Growth Parameters L∞ and K  

 Final L∞ and K spatial values with associated standard errors are presented in Tables 2.1 

and 2. L∞ was statistically different in the NGOM compared to Georges Bank (GBK) and the Mid-

Atlantic Bight (MAB) (One-way Analysis of Variance (ANOVA) test: F(2, 9030) = 654.54, p < 

0.01, Tukey’s post hoc: all p < 0.01), with an apparent increasing trend in L∞ with increasing 

latitude (Table 2.1). K was statistically different in the NGOM compared to GBK and the MAB 

(One-way ANOVA test: F(2, 9030) = 227.50, p < 0.01, Tukey’s post hoc: all p < 0.01), but no 

trend was apparent (Table 2.1). Data for GBK scallops and MAB scallops were obtained from 

Truesdell (2014) and Hart and Chute (2009a).  

Within the NGOM, L∞ was statistically different in all 4 management zones (One-way 

ANOVA test: F(3, 2643) = 146.02, p < 0.01, Tukey’s post hoc: all p < 0.01), with highest values 

in Zone 2 and lowest in Zone 3 (Table 2.2). K was statistically different across all three inshore 

zones, but Zone 4 was only statistically different from zones 1 and 3 (One-way ANOVA test: F(3, 

2643) = 67.89, p < 0.01, Tukey’s post hoc: p < 0.01 for zone parings 1&2, 1&3, 1&offshore, 2&3, 

and 3&offshore, p > 0.05 for zone pairing 2&offshore), with highest values in Zone 3 and lowest 

values in Zone 2 (Table 2.2). ASCs in Zone 1 appear to have the potential to grow to larger sizes 

than those in Zone 2, yet at a slower rate (Table 2.2). Cobscook Bay scallops (Zone 3) grow very 

rapidly, but do not reach the large sizes they do in the rest of the NGOM. Additionally, offshore 

(Zone 4) ASCs tend to grow at similar rates to scallops in Zone 1. 
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Table 2.1. Mean L∞ and K values with associated standard errors (SE) and sample sizes (n) for the Northern Gulf of 

Maine (NGOM), Georges Bank (GBK), and the Mid-Atlantic Bight (MAB).  

 
L∞(mm) K(1/yr) 

 

Area Mean SE Mean SE n 

NGOM 154.05 0.58 0.45659 0.00384 2647 

GBK 143.9 0.23 0.427 0.00172 4092 

MAB 133.3 0.28 0.508 0.00271 2294 

 

Table 2.2. Mean L∞ and K values with associated standard errors (SE) and sample sizes (n) for each of four 

management zones in the Northern Gulf of Maine.  

 
L∞(mm) K(1/yr) 

 

Zone Mean SE Mean SE n 

1 152.72 1.21 0.44656 0.00877 448 

2 173.08 2.01 0.36869 0.00985 298 

3 142.97 0.71 0.50646 0.00552 1262 

1+2+3 150.3 0.63 0.47154 0.00437 2014 

4 166.71 1.36 0.40203 0.00757 639 

1+2+3+4 154.05 0.58 0.45659 0.00384 2647 

 

2.4.2 Temporal Differences in Growth Parameters L∞ and K 

 Final L∞ and K temporal values with associated standard errors are presented in Table 2.3. 

L∞ was statistically different in most year classes than others, but with no discernable trend over 

the time series (One-way ANOVA test: F(12, 647) = 742.18, p < 0.01, Tukey’s post hoc results 

presented in Table 2.4). K was statistically different in some year classes than others, but with no 

discernable trend over the time series (One-way ANOVA test: F(12, 647) = 978.4075, p < 0.01, 

Tukey’s post hoc results presented in Table 2.5).  

 

 



24 
 

Table 2.3. Mean L∞ and K values with associated standard errors (SE) and sample sizes (n) for year classes of Atlantic 

sea scallops from 1998 to 2010.  

 
L∞(mm) 

 

K(1/yr) 
 

Year Class Mean SE Mean SE n 

2011 - - - - 2 

2010 135.73 2.47 0.61338 0.03821 50 

2009 132.73 2.01 0.59659 0.03372 36 

2008 149.09 3.68 0.345 0.02594 19 

2007 179.43 9.00 0.35026 0.04863 14 

2006 155.47 1.75 0.47155 0.0144 111 

2005 157.76 2.27 0.38128 0.01262 128 

2004 169.36 3.48 0.30349 0.01446 80 

2003 155.37 2.54 0.34145 0.01804 59 

2002 154.02 3.41 0.27901 0.01909 22 

2001 150.17 3.84 0.37391 0.04103 11 

2000 140.1 2.23 0.49285 0.02046 79 

1999 153.38 3.95 0.36228 0.0204 34 

1998 166.09 5.83 0.35855 0.04746 17 

1997 - - - - 3 

All 154.05 0.58 0.45659 0.00384 2647 
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Table 2.4. Tukey’s Post Hoc test results for One-way ANOVA test of L∞ in year classes 1998 through 2010 (F(12, 647) = 742.18, p < 0.01). p values are presented 

right of black boxes and a “*” left of black boxes denotes statistical significance with α = 0.05.  

 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 

2010  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2009 *  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2008 * *  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 

2007 * * *  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2006 * * * *  <0.01 <0.01 1.00 0.69 <0.01 <0.01 0.03 <0.01 

2005 * * * * *  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2004 * * * * * *  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2003 * * * *  * *  0.85 <0.01 <0.01 0.11 <0.01 

2002 * * * *  * *   0.03 <0.01 1.00 <0.01 

2001 * *  * * * * * *  <0.01 0.11 <0.01 

2000 * * * * * * * * * *  <0.01 <0.01 

1999 * * * * * * *    *  <0.01 

1998 * * * * * * * * * * * *  

  

Table 2.5. Tukey’s Post Hoc test results for One-way ANOVA test of K in year classes 1998 through 2010 (F(12, 647) = 978.41, p < 0.01). p values are presented 

right of black boxes and a “*” left of black boxes denotes statistical significance with α = 0.05.  

 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 

2010  0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2009 *  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2008 * *  1.00 <0.01 <0.01 <0.01 1.00 <0.01 0.05 <0.01 0.29 0.86 

2007 * *   <0.01 <0.01 <0.01 0.99 <0.01 0.34 <0.01 0.91 1.00 

2006 * * * *  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2005 * * * * *  <0.01 <0.01 <0.01 1.00 <0.01 <0.01 0.01 

2004 * * * * * *  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2003 * *   * * *  <0.01 <0.01 <0.01 <0.01 0.25 

2002 * * * * * * * *  <0.01 <0.01 <0.01 <0.01 

2001 * * *  *  * * *  <0.01 0.96 0.88 

2000 * * * * * * * * * *  <0.01 <0.01 

1999 * *   * * * * *  *  1.00 

1998 * *   * * *  *  *   
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2.4.3 Regression Model Selection 

Correlation coefficients and VIF values (Tables 2.6 and 2.7, respectively) allowed for 14 

unique combinations of predictor variables. LR could not capture the appropriate trends in the data 

available. Due to very poor fit, this regression type was rejected. BRT and GAM both well 

outperformed LR, with BRT usually having lower RMSE (Table 2.9) and AIC values (Table 2.13) 

when compared to GAM (Table 2.8 for RMSE and Table 2.12 for AIC). However, GAMs allowed 

for the additional testing of spatial interaction terms more efficiently. Due to a general agreement 

in trends between BRT and GAM output, results from both types of regression testing are 

presented. Conclusions are made from both types of models.  

Nineteen BRTs were run for each of six ASC age classes (Tables 2.9, 2.11, and 2.13): 

totaling 114 regression outputs. Twenty-two GAMs were run for each of six age classes (Table 

2.8, 2.10, and 2.12): totaling 132 regression outputs. This discrepancy again is the testing of spatial 

interactions on single variables. An additional six GAMs were used to explore temporal trends in 

Cobscook Bay (see section 2.3). Neither GAMs nor BRTs are inherently and universally better 

than the other and model performance and fit depends on the data set (Martínez-Rincón et al. 

2012). This accentuates the importance of testing multiple methodologies for modelling different 

data sets.  
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Table 2.6. A correlation matrix of all predictor variables used in this study. Values denote the correlation coefficients 

of those predictor variable pairings. Any variable pair corresponding to a correlation coefficient outside the range of 

(-0.5, 0.5) were not used together in this study. Two pairings were outside this range: Latitude with Longitude and 

Latitude with Salinity. These combinations could not be used in the same regression analysis. Lat = Latitude, Lon = 

Longitude, Temp = Temperature, Sal = Salinity, Year = Year of Growth, ∆mm = change in scallop shell size from 

one year to the next: shown here only to determine the direction and strength of relationships with each predictor 

variable in regression testing.  

 Year Lat Lon Temp Sal ∆mm 

Year - -0.16 -0.11 -0.24 0.12 -0.19 

Lat -0.16 - 0.95 0.19 -0.53 0.13 

Lon -0.11 0.95 - 0.13 -0.37 0.11 

Temp -0.24 0.19 0.13 - -0.11 0.19 

Sal 0.12 -0.53 -0.37 -0.11 - -0.03 

∆mm -0.19 0.13 0.11 0.19 -0.03 - 

 

Table 2.7. Variance inflation factors (VIF) of fourteen different combinations (rows) of abiotic variables used in the 

generalized additive models. Blank cells represent the absence of that variable in the combination. No VIF test was 

done on single parameter models or models with location interaction terms.  

 Abiotic Factors 

Year of Growth Latitude  

 

Longitude Temperature  Salinity 

1 1.07 - - 1.07 1.02 

2 - - - 1.01 1.01 

3 1.06 - - 1.06 - 

4 1.01 - - - 1.01 

5 1.07 1.05 - 1.09 - 

6 1.03 1.03 - - - 

7 - 1.04 - 1.04 - 

8 1.07 - 1.18 1.07 1.17 

9 - - 1.17 1.02 1.17 

10 1.07 - 1.02 1.07 - 

11 1.02 - 1.17 - 1.17 

12 1.01 - 1.01 - - 

13 - - 1.02 1.02 - 

14 - - 1.16 - 1.16 
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Table 2.8. Root-mean-squared-error (RMSE) values of different generalized additive models for combinations of 

abiotic variables and age class. Lat = Latitude, Lon = Longitude, Temp = Temperature, Sal = Salinity, Year = Year of 

Growth. Models surrounded with ‘I()’ are treated as a single interaction term.  

 Age Class 

0-2 2-3 3-4 4-5 5-6 6-7 

Lat 9.30 8.28 5.80 4.89 4.38 3.69 

Lon 9.21 8.16 5.75 4.92 4.32 3.52 

Year/Temp/Sal 8.71 8.02 5.61 4.70 4.18 3.49 

Temp/Sal 9.03 8.13 5.61 4.77 4.21 3.56 

Year/Temp 9.10 8.25 5.69 4.94 4.30 3.67 

Year/Sal 8.76 8.07 5.66 4.78 4.21 3.58 

Year 9.18 8.39 5.77 5.00 4.31 3.80 

Temp 9.58 8.46 5.69 5.04 4.42 3.85 

Sal 9.23 8.19 5.80 4.88 4.23 3.64 

Year/Temp/Lat 8.72 7.98 5.61 4.68 4.22 3.60 

Year/Lat 8.77 8.10 5.69 4.76 4.29 3.62 

Temp/Lat 9.13 8.14 5.61 4.74 4.35 3.65 

Year/Temp/Sal/Lon 8.39 7.86 5.47 4.61 4.08 3.42 

Temp/Sal/Lon 8.72 7.88 5.48 4.64 4.17 3.56 

Year/Temp/Lon 8.66 7.93 5.57 4.75 4.21 3.47 

Year/Sal/Lon 8.44 7.88 5.57 4.67 4.14 3.56 

Year/Lon 8.64 7.99 5.69 4.76 4.27 3.49 

Temp/Lon 9.06 7.99 5.57 4.76 4.25 3.50 

Sal/Lon 8.92 7.98 5.64 4.73 4.18 3.49 

I(Year/Lat/Lon) 8.44 7.76 5.53 4.73 4.34 3.40 

I(Temp/Lat/Lon) 8.71 7.76 5.57 4.74 4.31 3.37 

I(Sal/Lat/Lon) 8.71 7.69 5.55 4.69 4.11 3.40 
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Table 2.9. Root-mean-squared-error (RMSE) values of different boosted regression trees for combinations of abiotic 

variables and age class. Lat = Latitude, Lon = Longitude, Temp = Temperature, Sal = Salinity, Year = Year of Growth. 

 Age Class 

0-2 2-3 3-4 4-5 5-6 6-7 

Lat 9.03 8.21 5.54 4.77 4.31 3.58 

Lon 8.85 8.16 5.52 4.88 4.41 3.66 

Year/Temp/Sal 8.74 7.96 5.50 4.72 4.30 3.68 

Temp/Sal 8.95 7.99 5.52 4.71 4.26 3.69 

Year/Temp 9.01 8.17 5.62 4.90 4.41 3.68 

Year/Sal 8.85 8.05 5.59 4.75 4.31 3.63 

Year 9.22 8.47 5.74 5.01 4.37 3.77 

Temp 9.35 8.22 5.64 4.93 4.37 3.86 

Sal 9.10 8.09 5.60 4.79 4.29 3.64 

Year/Temp/Lat 8.65 8.06 5.45 4.67 4.34 3.63 

Year/Lat 8.71 8.12 5.50 4.73 4.39 3.57 

Temp/Lat 8.98 8.14 5.50 4.69 4.34 3.62 

Year/Temp/Sal/Lon 8.48 7.81 5.38 4.58 4.30 3.62 

Temp/Sal/Lon 8.65 7.87 5.40 4.59 4.25 3.57 

Year/Temp/Lon 8.52 8.07 5.43 4.70 4.37 3.69 

Year/Sal/Lon 8.52 7.84 5.41 4.65 4.23 3.59 

Year/Lon 8.58 8.08 5.50 4.77 4.42 3.69 

Temp/Lon 8.77 8.04 5.42 4.70 4.37 3.69 

Sal/Lon 8.74 7.88 5.46 4.71 4.26 3.65 

 

 

 

 

 

 

 

 

 

 



30 
 

Table 2.10. Deviance explained (DE) of different generalized additive models for combinations of abiotic variables 

and age class. Lat = Latitude, Lon = Longitude, Temp = Temperature, Sal = Salinity, Year = Year of Growth. Models 

surrounded with ‘I()’ are treated as a single interaction term. Highest DE for each are class are bolded.  

 Age Class 

0-2 2-3 3-4 4-5 5-6 6-7 

Lat 9.18 7.70 2.90 14.90 4.16 12.23 

Lon 10.82 10.38 4.53 13.86 6.62 20.00 

Year/Temp/Sal 20.41 13.41 9.25 21.34 12.89 21.38 

Temp/Sal 14.29 11.04 9.26 19.07 11.30 18.00 

Year/Temp 13.12 8.36 6.72 13.05 7.72 13.01 

Year/Sal 19.49 12.49 7.66 18.79 11.47 17.45 

Year 11.46 5.26 3.86 10.99 7.11 6.95 

Temp 3.62 3.64 6.61 9.59 2.20 4.18 

Sal 10.57 9.78 3.05 15.35 10.73 14.58 

Year/Temp/Lat 20.20 14.29 9.28 22.17 11.19 16.17 

Year/Lat 19.25 11.80 6.79 19.32 8.09 15.38 

Temp/Lat 12.43 10.97 9.19 20.10 5.55 14.10 

Year/Temp/Sal/Lon 26.06 16.91 13.58 24.28 16.84 24.47 

Temp/Sal/Lon 20.07 16.37 13.51 23.22 13.23 18.17 

Year/Temp/Lon 21.17 15.48 10.58 19.74 11.42 22.05 

Year/Sal/Lon 25.26 16.37 10.38 22.50 14.21 18.06 

Year/Lon 21.55 14.03 6.70 19.28 8.84 21.22 

Temp/Lon 13.78 14.14 10.54 19.46 9.69 20.78 

Sal/Lon 16.51 14.42 8.41 20.32 12.89 21.41 

I(Year/Lat/Lon) 25.16 19.08 11.89 20.55 5.77 25.26 

I(Temp/Lat/Lon) 20.42 19.06 10.40 19.99 7.05 26.77 

I(Sal/Lat/Lon) 20.30 20.35 11.08 21.57 15.64 25.32 
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Table 2.11. Deviance explained (DE) of different boosted regression trees for combinations of abiotic variables and 

age class. Lat = Latitude, Lon = Longitude, Temp = Temperature, Sal = Salinity, Year = Year of Growth. Highest DE 

for each are class are bolded. 

 Age Class 

0-2 2-3 3-4 4-5 5-6 6-7 

Lat 23.09 23.80 17.03 24.05 4.44 18.19 

Lon 23.50 23.06 17.82 23.68 5.85 22.67 

Year/Temp/Sal 31.89 28.64 24.92 30.28 12.37 24.17 

Temp/Sal 28.93 27.89 25.10 27.84 12.56 19.55 

Year/Temp 23.88 20.56 19.14 24.53 9.99 8.20 

Year/Sal 27.83 25.31 21.31 25.94 10.34 19.31 

Year 11.80 4.65 3.93 11.28 7.24 10.22 

Temp 20.16 19.69 19.50 24.00 3.09 8.90 

Sal 23.46 24.09 20.49 24.03 10.17 16.70 

Year/Temp/Lat 34.12 28.07 24.75 27.15 12.01 22.80 

Year/Lat 30.77 25.10 20.30 27.44 6.67 19.45 

Temp/Lat 29.70 28.00 24.55 27.80 7.56 16.33 

Year/Temp/Sal/Lon 36.37 32.25 26.20 32.42 15.34 25.63 

Temp/Sal/Lon 33.68 32.06 26.22 31.21 10.88 25.28 

Year/Temp/Lon 33.96 28.62 23.02 30.29 11.60 24.79 

Year/Sal/Lon 35.29 30.21 24.31 30.99 15.23 21.11 

Year/Lon 30.61 24.69 19.98 26.45 9.62 19.72 

Temp/Lon 30.22 28.69 23.97 30.21 6.20 23.30 

Sal/Lon 31.40 29.53 25.01 31.92 15.40 23.25 
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Table 2.12. Akaike information criterion (AIC) of different generalized additive models for combinations of abiotic 

variables and age class. Lat = Latitude, Lon = Longitude, Temp = Temperature, Sal = Salinity, Year = Year of Growth. 

Models surrounded with ‘I()’ are treated as a single interaction term. Lowest AIC values for each age class are bolded.  

 Age Class 

0-2 2-3 3-4 4-5 5-6 6-7 

Lat 14076 12748 10106 5234 2130 904 

Lon 14040 12695 10079 5248 2130 893 

Year/Temp/Sal 13850 12652 10017 5197 2111 891 

Temp/Sal 13980 12690 10015 5208 2110 895 

Year/Temp 14006 12752 10045 5271 2121 906 

Year/Sal 13862 12669 10042 5213 2114 894 

Year 14028 12795 10085 5278 2122 905 

Temp 14191 12823 10045 5292 2136 913 

Sal 14047 12707 10104 5234 2113 896 

Year/Temp/Lat 13860 12649 10017 5189 2115 896 

Year/Lat 13867 12684 10052 5204 2120 896 

Temp/Lat 14024 12700 10017 5196 2128 905 

Year/Temp/Sal/Lon 13730 12598 9958 5173 2108 890 

Temp/Sal/Lon 13864 12605 9957 5179 2110 897 

Year/Temp/Lon 13817 12624 9994 5204 2115 893 

Year/Sal/Lon 13735 12605 10005 5188 2109 895 

Year/Lon 13811 12638 10053 5207 2117 892 

Temp/Lon 13992 12635 9993 5205 2128 894 

Sal/Lon 13932 12629 10031 5197 2111 894 

I(Year/Lat/Lon) 13736 12550 9979 5212 2130 895 

I(Temp/Lat/Lon) 13858 12551 10006 5213 2128 894 

I(Sal/Lat/Lon) 13860 12521 9995 5196 2120 896 
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Table 2.13. Akaike information criterion (AIC) of different boosted regression trees for combinations of abiotic 

variables and age class. Lat = Latitude, Lon = Longitude, Temp = Temperature, Sal = Salinity, Year = Year of Growth. 

Lowest AIC values for each age class are bolded.  

 Age Class 

0-2 2-3 3-4 4-5 5-6 6-7 

Lat 8271 7272 5334 2659 1082 416 

Lon 8261 7290 5318 2663 1077 407 

Year/Temp/Sal 8041 7158 5179 2588 1054 408 

Temp/Sal 8121 7175 5173 2616 1052 415 

Year/Temp 8254 7349 5295 2655 1062 437 

Year/Sal 8151 7238 5251 2639 1061 416 

Year 8535 7676 5566 2794 1071 431 

Temp 8343 7367 5285 2659 1087 433 

Sal 8262 7265 5266 2659 1059 419 

Year/Temp/Lat 7977 7172 5183 2627 1056 410 

Year/Lat 8071 7243 5272 2621 1075 415 

Temp/Lat 8100 7172 5185 2617 1072 422 

Year/Temp/Sal/Lon 7912 7066 5154 2563 1044 406 

Temp/Sal/Lon 7990 7070 5151 2577 1061 405 

Year/Temp/Lon 7982 7158 5219 2588 1058 406 

Year/Sal/Lon 7943 7118 5192 2580 1042 414 

Year/Lon 8075 7253 5278 2633 1064 415 

Temp/Lon 8086 7155 5197 2587 1077 407 

Sal/Lon 8053 7134 5175 2566 1040 407 

 

2.4.4 Results of Regression Analyses  

 Deviances explained (DE) and AICs for all 114 BRTs in this study are presented in Tables 

2.11 and 2.13, respectively. Highest DEs and lowest AICs usually coincided with each other (most 

being associated with the BRT with predictor variables year of growth, temperature, salinity, and 

longitude), with the exception of age classes 3-4 and 5-6. Even so, differences were not substantial. 

DEs and AICs for all 132 GAMs in this study are presented in Tables 2.10 and 2.12, respectively. 

Highest DEs and lowest AICs usually coincided with each other (most being associated with the 
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GAM with predictor variables year of growth, temperature, salinity, and longitude), with the 

exception of age classes 2-3 and 6-7. Even so, differences were not substantial.  

DEs for BRTs were usually higher than those for GAMs. All DEs for GAMs were 

seemingly low; no DE surpassing 27%. The same was true for BRTs, with no DE surpassing 37%. 

Bottom temperature and salinity, therefore, are only capable of explaining at most 37% of the 

variance in ASC growth in the NGOM. Salinity alone explained more of the deviance in both types 

of models than temperature alone for all age classes, meaning ASCs in the NGOM appear to be 

affected more by salinity than by temperature. Concerning only the GAMs, predictor variables that 

included an interaction with location (both latitude and longitude) highly outperformed their 

counterparts; the same variable without a location interaction. This means that both temperature 

and salinity may affect ASC growth non-linearly over space and influences may vary by location. 

No clear trend was found to exist as a function of age class. The results of the correlation coefficient 

matrix (Table 2.6) seem to reveal that ∆mm has very weak positive relationships with each of the 

predictor variables except for year of growth and salinity, which both appear to be very weak 

negative relationships.  

The six regression analyses using data only from Cobscook Bay ASCs revealed results 

very similar to results pooled from the entire NGOM (Table 2.14), with the exception of the BRT 

for age class 3-4, whose DE was considerably high. In general, ignoring any spatial differences, it 

appears that year of growth alone does not sufficiently describe trends seen in scallop growth over 

time. This corroborates findings from section 3.2. It is important to note that of these analyses, 

only the first three age classes provided reliable results (Table 2.14). This was due to the often low 

number of older individuals (>4 years) found in Cobscook Bay over the time series. 
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Table 2.14. Deviance explained (DE) and Akaike information criterion (AIC) for three generalized additive models 

(GAM) and three boosted regression trees (BRT) run using only year of growth as a predictor variable per age class 

for only the Cobscook Bay region.  Low counts of Atlantic sea scallops older than 4 years in Cobscook Bay made  

results  from  age  classes  4-5,  5-6,  and  6-7  unreliable  and  are  thus  not  presented.  Lat = Latitude, Lon = 

Longitude, Temp = Temperature, Sal = Salinity, Year = Year of Growth. 

 Age Class 

 0-2 2-3 3-4 4-5 5-6 6-7 

BRT DE 10.83 4.96 14.34 - - - 

BRT AIC 6504 5823 4431 - - - 

GAM DE 15.12 5.18 4.77 - - - 

GAM AIC 10767 10090 8391 - - - 

 

2.5 Discussion 

 ASC in the NGOM appear to be growing to a larger size and growing at dissimilar rates 

when compared to populations in Georges Bank and the Mid-Atlantic Bight (Table 2.1; Truesdell 

2014; Hart & Chute 2009a). A trend in growth coefficient L∞ seems to be occurring up the Atlantic 

coast, with ASCs of the Mid-Atlantic Bight having the lowest values and ASCs of the NGOM 

having the largest (Table 2.1). This is similar to findings from Truesdell (2014), which showed 

larger L∞ values for the NGOM region. Within the NGOM, ASC growth seems to vary spatially: 

varying between management zones (Table 2.2). This is again similar to findings by Truesdell 

(2014), but this study presents higher calculations of both L∞ and K for most regions. This could 

be due to the addition of new data since 2014 mostly concentrated inshore, where higher 

coefficients were observed.  

 This study expanded on work by Truesdell (2014), calculating growth coefficients for each 

year class. With low sample sizes questioning the reliability of some year classes, it doesn’t appear 

that ASC growth parameters are changing in a predictable way. They do seem to be fluctuating 

and ANOVA tests revealed those fluctuations result in year classes that are statistically different 
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from one another. Due to the ever-changing location of MEDMR tow stations in this project over 

the time series coupled with the low sample size per year class in this analysis, this fluctuation and 

by extent the statistical differences may not be what would be observed with larger sample sizes 

over the same time series. However, when spatial data were ignored in the Cobscook Bay 

subsample regression tests (which also have the highest density of samples of any region in this 

study), there was no more considerable influence of year of growth when compared to the original 

analyses with spatially pooled data over years.  

These differences in growth over time do not match the change in the abiotic parameters 

observed in this study. Given that the regression analyses revealed that these parameters do have 

influence on ASC growth in the NGOM, it could be that pooling all data spatially does not allow 

for observation of these influences. Given that many studies have shown strong links between 

growth and temperature and salinity (Thouzeau et al. 1991; Stewart & Arnold 1994; Hart & Chute 

2004), these effects may occur at finer spatial scales than what was used in this study. This 

highlights the need for more samples in the future so that finer spatial resolutions than what was 

utilized in this study can be explored.  

 The regression tests revealed that ASCs in the NGOM appear to be influenced by both 

temperature and salinity when abiotic data are not observed as spatial averages over time. 

However, these influences are relatively weak considering the deviance explained values 

associated with the tests. This highlights an important constriction of this study: abiotic data were 

temporally averaged in order to be associated with an increment of ASC growth. Future studies 

should look at abiotic ranges, anomalies, normality of distribution, and the like to infer more fine-

scale temporal influences of these variables. Knowing this as a limitation, it can be assumed that 

the influence of temperature and salinity on ASC growth in the NGOM would be at least as strong 
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as what was observed in this study, but has the potential to be stronger if abiotic data in a form 

other than yearly averages were utilized.  

Additionally, when temperature and salinity were supplied with an interaction term of 

location, the DE rises substantially. This could mean that ASCs in different areas of the Gulf of 

Maine respond differently to similar abiotic variables. This is most likely because these variables 

are acting in this study as a proxy for other variables known to heavily influence ASC growth such 

as phytoplankton density (Macdonald & Thompson 1985a; Macdonald & Thompson 1985b; 

Macdonald et al. 1987). Phytoplankton represent ASC food supply and mollusk growth has been 

shown to be highly correlated with phytoplankton density (Pilditch & Grant 1999; Weiss et al. 

2007). Phytoplankton density is a function of temperature, salinity, and other factors (Wagner et 

al. 2001; Friedland et al. 2015). The interaction term of location could be accounting for some of 

these other location-sensitive variables in the NGOM. This could also hinder the ability to 

determine direct abiotic-growth relationships if most influence is acting through a different force 

and these highly complex abiotic-growth relationships acting through proxy would be difficult for 

regression models to calculate. This accentuates the assumption that abiotic-growth influences 

were underestimated in this study. However, this study was aware of this connection when 

selecting the original model parameters. Given that the Gulf of Maine is changing rapidly in the 

face of climate change (Pershing et al. 2015), it was important to determine any direct relationships 

that ASC growth had to the abiotics directly affected by this change: temperature and salinity. This 

is why no model selection process took place based on AIC. This study was not meant to create a 

model for ASC growth, but to use multiple models to tease apart relationships.  

Even though abiotic-growth relationships were relatively weak in this study, they were still 

present. These relationships have the potential to be affected in the coming years by climate 
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change. Warming rates for the NGOM are suggested between 0.02˚C and 0.07˚C per year 

(Pershing et al. 2015) for sea-surface temperature, with bottom temperature experiencing this same 

trend (Pershing et al. 2015; Saba et al. 2016). Average yearly bottom temperature mean for all 

sample locations in this study area in recent years (2012-2016) averaged around 7.60˚C. These 

values are below optimal growth temperatures of 10.0˚C to 15.0˚C for ASC (Thouzeau et al. 1991; 

Hart & Chute 2004), and well below the maximum temperature threshold of 21.0˚C (Hart & Chute 

2004). Bottom salinity is also expected to rise for the NGOM under climate change (Saba et al. 

2016). Average yearly bottom salinity mean for all sample locations in this study area in recent 

years (2012-2016) averaged around 31.9‰. These values are below optimal growth salinity of full 

strength seawater: ~35‰ (Stewart & Arnold 1994; Hart & Chute 2004). With temperature and 

salinity in the NGOM both rising, and because of the relationships teased apart in this study, as 

well as support from previous research on optimal growth conditions (Thouzeau et al. 1991; 

Stewart & Arnold 1994; Hart & Chute 2004), there is potential for ASCs to grow faster and/or 

larger. However, this conclusion is strictly based on direct and uniform relationships. Most studies 

focused on determining abiotic influence to ASC growth usually linking fluctuations directly to 

something like metabolic activity (Pilditch & Grant, 1999) and are done so in the lab. If 

conclusions from these studies state high influence of variables like temperature and salinity to 

growth, this may not be that accurate in a natural setting where these variables are acting both 

directly and through proxy. Because these variables are most likely acting both directly on ASC 

metabolism and indirectly through things such as food availability and can vary spatiotemporally, 

it can be difficult to infer the magnitude of the change in ASC growth given large changes in 

temperature and salinity.  
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Other ASC stock characteristics like abundance are more easily calculable from abiotic 

data through use of habitat suitability indices (HSIs). Torre et al. (2018) suggests that inshore 

habitats will become more suitable for ASCs in the NGOM as temperature and salinity rise. With 

suitable habitat predicted to rise and with a potential for increased growth, the NGOM may be able 

to support a higher intensity fishery in the future.  

There is need for more research concerning ASC life history and climate change to better 

understand their dynamics in the inshore NGOM. This study has shown the impact of abiotic 

variables on ASC growth to be weak yet present in this region. As suggested in other studies, biotic 

variables such as phytoplankton density, are posited to be more influential to ASC growth with 

abiotic variables influencing ASC growth directly and through this proxy of food availability. 

Future research should consider biotic variables as well as geospatial variables such as depth in an 

effort to better understand the NGOM ASC population dynamics.  
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CHAPTER 3: IMPLICATIONS OF CLIMATE DRIVEN CHANGES ON GROWTH AND 

SIZE-AT-MATURITY FOR GULF OF MAINE LOBSTER STOCK ASSESSMENT 

3.1 Abstract  

Crustaceans are socioeconomically and ecologically crucial globally. However, as 

ectotherms, anthropogenic climate change threatens to significantly alter key life history 

characteristics such as size-at-maturity and growth. Size-structured stock assessments are 

commonly utilized for assessing crustacean fisheries because of difficulty in aging crustaceans, 

but climate-induced changes in maturation and growth can greatly influence the performance of 

these models. We couple an individual-based model and size-structured stock assessment model 

for American lobster (Homarus americanus) to conduct a novel sensitivity analysis altering 

maturity and growth-related input parameters using bottom-up (parameters shifted independently) 

and top-down (parameters shifted jointly as influenced by climate change) approaches. The 

objective of this research is to demonstrate the importance of evaluating the sensitivity of the size-

structured stock assessment model for lobster to climate influenced shifts in maturation and 

growth-related inputs. We found the lobster stock assessment model to be resilient of relatively 

extreme shifts in biological input parameters. We then discuss the need to expand sensitivity 

analyses for size-structured stock assessments of crustaceans to evaluate the influence of climate-

driven shifts on life history input parameters for time-varying life history traits in stock assessment 

modelling and for research on quantifying the relationship of lobster life history parameters with 

the environment. 

3.2 Introduction 

Anthropogenic climate change is transforming many marine ecosystems through warming 

waters, ocean acidification, freshening, and deoxygenation (Brander 2010; Doney et al. 2012; 
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Gattuso et al. 2018; Doney et al. 2020). Perturbations to the abiotic environment, in particular to 

temperature, are especially influential on marine ectotherms because they do not physiologically 

regulate their body temperature, rather, it is driven by the environment (Madeira et al. 2012). As a 

consequence, temperature directly influences individual and population level biological processes 

of crustaceans such as metabolism, recruitment, reproduction, growth, size-at-maturity (SAM), 

and natural mortality (Madeira et al. 2012), which have significant implications for assessment 

and management of crustacean fisheries (Audzijonyte et al. 2016). Typically, data-rich crustacean 

stock assessments utilize size-structured models (Punt et al. 2013), the outputs of which can be 

influenced by environmentally driven variability in size-related life history parameters, such as 

growth and SAM. Thus, it is important to quantify how climate driven shifts in key life history 

parameters will influence crustacean stocks and manifest in assessment models for guiding future 

management decisions. 

As ectotherms, crustacean’s biology, especially growth, is directly influenced by 

temperature (Green et al. 2014; Madeira et al. 2012). A plethora of crab and lobster species have 

shown similar responses to rising temperature including increasing growth rates, decreasing 

intermolt duration, and smaller SAM (Green et al. 2014). American lobster (Homarus americanus) 

represent an ecologically and socioeconomically vital crustacean species in the Northwestern 

Atlantic Ocean (Le Bris et al. 2018), and lobster biology is directly influenced by temperature. 

Lobster, like many crustaceans, grow through a series of molts, also known as ecdysis. During 

ecdysis, the old carapace is replaced with a new, larger one (Comeau & Savoie 2001). Molting 

typically occurs annually in adult lobsters, although it can happen more than once, or be skipped 

entirely depending on the size, age, and maturity of the individual (Aiken and Waddy 1976; Aiken 

1977; Comeau & Savoie 2001). While individual lobster physiology is known to influence growth 
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processes, temperature is also a primary abiotic driver of growth changes in lobster. Research has 

demonstrated that warming waters have considerable impacts on lobster life history, especially in 

relation to growth and SAM (Aiken 1977; Le Bris et al. 2017). Rising temperatures have been 

shown to increase molting frequency and decrease molting increment: the length a lobster grows 

in a given molting event (Aiken 1977). Additionally, several studies have found that warmer 

temperatures contribute to a reduced SAM for American lobster (Little and Watson, 2003; Little 

& Watson 2005; Le Bris et al. 2017; Waller et al. 2021). Indeed, climate driven changes in these 

life history parameters can likely impact the size-structured stock assessment currently utilized for 

American lobster management (ASMFC 2020). 

Understanding the impact climate driven shifts in life history input parameters for stock 

assessment models will have on assessment outputs is critical for guiding future fisheries 

management and model development. Recent research found that incorporating temperature driven 

recruitment improved the performance of a size-structured stock assessment model for American 

lobster (Tanaka et al. 2019). When simulating the impacts of pooling multiple populations of 

southern rock lobster (Jasus edwardsii) with varying growth rates, the performance of a size-

structured stock assessment model was not reduced (Punt 2003), suggesting that accounting for 

different growth rates of assessed populations may not be consequential for estimating reference 

points. If pooling population data of lobsters had reduced model performance, it may have 

indicated a need to further consider the importance of variable growth in future assessments of the 

population. In contrast, research suggests that failing to account for the plasticity of growth in 

fisheries stock assessment models can lead to deviations of more than 30% in outputs, critically 

altering the calculation of reference points (Lorenzen 2016). Indeed, depending on the species 

biology and stock assessment model design, changes in growth will have inconsistent impacts on 
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model outputs. Typically, sensitivity analyses can evaluate whether uncertainties in model 

assumptions, input data sources, and biological parameters have an impact on reference points or 

other model outputs (Maunder & Punt 2013; Maunder & Piner 2015). However, these analyses 

usually only consider adjustments to inputs on their own, rather than in combination (Lehuta et al. 

2010; Saltelli et al. 2019), and seldom test whether models are sensitive to inputs which are based 

on life history and developed outside of the assessment model, such as growth transition matrices. 

Given the potential for dissimilar consequences of changing life history on stock assessment model 

outputs, and yet unrealized shifts in crustacean growth in the future, it is important to evaluate the 

sensitivity of size-structured stock assessment models on a case-by-case basis. 

Here, we conducted a novel sensitivity analysis of a length-structured stock assessment 

model for American lobster using an individual-based simulation model to evaluate the sensitivity 

of the stock assessment model to shifts in growth related life history input parameters. We 

conducted a series of sensitivity analyses by shifting molting probability, molt increment 

probability, and SAM. These analyses used classical bottom-up methodologies where each 

parameter was shifted independently, but also used a top-down approach where parameters were 

jointly shifted under the driving mechanism of climate change. These were both conducted so as 

to understand at what point changes of these input parameters will result in a significant change in 

reference points estimated using the length structured stock assessment model, relative to a 

historical baseline. Our overarching goal for this study is to determine what degree of impact 

climate change has upon the reliability and robustness of lobster stock assessment model output. 
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3.3 Methods 

3.3.1 Shifting Growth and Size at Maturity 

 Seasonal growth matrices in this study were calculated from an individual-based lobster 

simulator model (IBLS) first developed by Chen et al. (2005) and later expanded by Chang (2015) 

and Mazur et al. (2018). This model simulates individual lobsters from recruitment to mortality by 

sending each lobster through random Bernoulli trials representative of life history and fishery 

parameters derived from prior field research and modelling (Chen et al. 2005; Chang 2015; Mazur 

et al. 2018). This seasonal probabilistic model is used to simulate lobster fishery dynamics to 

capture complex fishery dependent and independent processes (Chen et al. 2005; Zhang et al. 

2011) and has historically been used to test the performance of the American lobster stock 

assessment model (Chen et al. 2005). The model creates individual lobster records over a given 

time series with information including sex, size bin, carapace length, maturity, and mortality 

allowing for calculation of population abundance, spawning stock biomass, and landings (Mazur 

et al. 2018).  A full explanation of this model can be found in Mazur et al. (2018).  

 The IBLS can be used to create seasonal growth matrices by simulating lobsters with total 

absence of fishery dependent and independent mortality as well as recruitment. This effectively 

means that the abundance of lobsters remains constant over the simulated time series, but the 

biomass changes exclusively because of data input for growth of the animals. At each step, a 

lobster is in 1 size bin (35 size bins from 53 mm to 223+ mm). The simulation should be run long 

enough so that every lobster should end up in the final size bin at the end of the time series. Every 

growth instance for every lobster for a given season over the entire time series is marked in a 

matrix of ‘size bin before molting event’ on the X axis and ‘size bin after molting event’ on the Y 

axis and scaled so the sum of each row is effectively 1. This creates a probabilistic growth matrix 
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where each row is a function of size change for a given lobster of that size class. This process is 

done 4 times: once for each season (January-March: Winter; April-June: Spring; July-September: 

Summer; and October-December: Fall).  

Growth input to the IBLS is a combination of 2 independent factors: molting probability 

and probability for different molt increments. Molting probability is the probability of a lobster 

molting in a particular time step dependent on the carapace length, maturation status of the 

individual, and how many seasons it has gone without molting (Figure 3.1). Molt increment 

probability is the probability of a lobster growing a certain size (1 to 20 millimeters (mm) in 1 mm 

bins) due to a molting event and is dependent on the carapace length of the individual (Figure 3.1). 

The input data for the base case of these parameters came from ASMFC (2015). 

Under climate change, lobsters are expected to molt more frequently, but grow less per 

molt (ASMFC 2015). To simulate these effects on overall growth, both molting probability (PM) 

and molt increment probability (PMI) were manipulated in the IBLS. Molting probability was 

increased by shifting left in relation to years since prior molt (Figure 3.1) and described by the 

following equations:  

 
𝑃𝑀 =

𝑦𝑎𝑠 + 𝑏

𝑘𝐶𝐿
 

(3.1) 

 
𝑦𝑎𝑠 = {

1, … , 𝑘𝐶𝐿 𝑖𝑓 𝑖𝑚𝑚𝑎𝑡𝑢𝑟𝑒
2, … , 𝑘𝐶𝐿 𝑖𝑓 𝑚𝑎𝑡𝑢𝑟𝑒

 
(3.2) 

 𝑘𝐶𝐿 = 1 + 𝑒−8.08127 + (0.076535 × 𝐶𝐿) (3.3) 

where PM is molting probability, yas is time spent (in units of the timestep of the model; in this 

case: seasons) at current size of an individual lobster, kCL is the longest time a lobster of carapace 

length CL (mm) could feasibly go before molting (NEFSC 1996; ASMFC 2000), and b is the 
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shifting parameter. Thus, b=1 would represent a shift of 1 season, increasing the overall probability 

of molting in comparison to the unshifted probability. 

Average size increase per molt was lowered by shifting molt increment probability left in 

relation to the size increase per molt (Figure 3.1) described by the equations below:  

 𝑃𝑀𝐼 = 𝑁(Δ𝐿𝐿 − 𝑏, 𝜎2) (3.4) 

 

Δ𝐿𝐿 = {

1.2236 + 0.1294 ∗ 𝐿
1.2236 + 0.1294 ∗ 95

      𝑎𝑛𝑑
𝑓𝑜𝑟 𝐿 < 95 𝑎𝑛𝑑 𝑠 = 𝑀𝑎𝑙𝑒
𝑓𝑜𝑟 𝐿 ≥ 95 𝑎𝑛𝑑 𝑠 = 𝑀𝑎𝑙𝑒

1.2288 + 0.1285 ∗ 𝐿
1.2288 + 0.1285 ∗ 82

      𝑎𝑛𝑑
𝑓𝑜𝑟 𝐿 < 82 𝑎𝑛𝑑 𝑠 = 𝐹𝑒𝑚𝑎𝑙𝑒
𝑓𝑜𝑟 𝐿 ≥ 82 𝑎𝑛𝑑 𝑠 = 𝐹𝑒𝑚𝑎𝑙𝑒

 

(3.5) 

where PMI is the probability of molting an increment length, N is the normal distribution truncated 

by upper and lower boundary probabilities of 0.975 and 0.025, respectively, with σ being equal to 

2.1 (ASMFC 2006), Δ𝐿𝐿 is the change in length (mm) given current length L (mm) and sex s, and 

b is the shifting parameter. Thus, b=1 would represent a shift of 1 mm, decreasing the overall size 

increment change during a given molt. 

To maintain some biological realism, shifts of molting probability and molt increment 

probability were paired and the corresponding growth matrices reflect possible impacts from 

climate change. Two paired shifts were conducted in this study and will be referred to throughout 

as G1 and G2. G1 was a leftward shift of molting probability by 1 year and molt increment 

probability by 1 size bin; b = 1 (Figure 3.1). G2 was a leftward shift of molting probability by 2 

seasons and molt increment probability by 2 size bins; b = 2 (Figure 3.1). 
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Probabilistic SAM (PSAM) in the IBLS is calculated from the below equation:  

 
𝑃𝑆𝐴𝑀 =

1

1 + 𝑒−0.3 × (𝐶𝐿−𝐿50)
 

(3.6) 

where PSAM is the probability of maturity of an individual lobster of a given carapace length CL 

(mm) and L50 is the predefined carapace length (mm) that corresponds to 50% maturity. L50 was 

set to 90.81 mm for the base case (ASMFC 2015). Given that lobster SAM is expected to decrease 

2.8 mm per 1°C rise in bottom temperature (Le Bris et al. 2017) and given current projections of 

bottom temperature for the Gulf of Maine rising 2°C by 2050 and 4°C by 2100 (IPCC 2019), L50 

values of 85.21 mm and 79.61 mm were additionally tested in this study.  

 The IBLS generated a total of 7 sets (4 in each set corresponding to seasons) of growth 

matrices in this study (Table 3.1). The first set (referred to throughout as the base case) was 

calculated from the original (unshifted) molt probability and molt increment probability paired 

with the original L50 value of 90.81 mm. Sets 2-5 were calculated from shifts of either growth (G1 

or G2) or L50 (85.21 or 79.61), and sets 6-7 were calculated from paired shifts of both growth and 

L50 (G1 and 85.21 or G2 and 79.21). Tests 2-5 were conducted to observe effects from specific 

parameters, whereas tests 6-7 were meant to be more biologically realistic and expected given the 

predicted relationships between climate change and these parameters. 

3.3.2 Stock Assessment and Sensitivity Analyses 

The University of Maine Lobster Stock Assessment Model (UMM) was initially developed 

by Chen et al. (2005) and expanded in ASMFC (2015) and Tanaka et al. (2019). It is a seasonal, 

sex-specific, length-structured assessment model for American lobster in the Gulf of Maine, 

Georges Bank, and Southern New England. It was designed with input from the Atlantic States 

https://www.zotero.org/google-docs/?DWK9CU
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Marine Fisheries Commission (ASMFC) with the intent of being used for future lobster stock 

assessments. The population dynamics equation of the UMM is: 

 𝑁𝑡,𝑠 = 𝑁𝑡,𝑠−1 × 𝐺𝑠 × 𝑒−𝐹𝑡,𝑠 + 𝑀𝑠 + 𝑅𝑡,𝑠 (3.7) 

where Nt,s is a vector of the number of lobster in each size bin in year t and season m, G is the 

seasonal growth transition matrix, F is the seasonal fishing mortality, M is the seasonal natural 

mortality, and R is recruitment abundance to each size bin (Chen et al. 2005). A list of all data 

input to the UMM consistent across scenarios can be found in Table 3.2. For a more detailed 

description of this model, see Chen et al. (2005) and Tanaka et al. (2019) or by contacting the Chen 

Lab at the University of Maine.  

The base case of the UMM saw the original growth matrices and SAM of 90.81 mm used 

as input data (section 3.3.1). Growth transition matrices and SAM data from the other six IBLS 

scenarios (section 3.3.1) were individually input to the UMM for a total of 7 scenarios (all growth 

matrices used can be found in the supplementary material). For each scenario, biological reference 

points (BRPs) were calculated for output reference abundance using the methods outlined by 

ASMFC (2015): the target was calculated as the 75th percentile of reference abundance over the 

time series and the threshold was calculated as the 25th percentile of reference abundance over the 

time series (ASMFC 2015). It is important to note that the reference time series for these 

calculations used by the ASMFC is 1982 to 2003, but this study used a reference period of 1984-

2003 due to data input limitations. These BRPs allowed for determination of historical fishery 

status over time, which is simply the reference abundance of a given year in relation to the 

predefined BRPs (below the 25th percentile; between the 25th and 75th percentile; above the 75th 

percentile). Using these reference points, terminal year stock status was compared between all 
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UMM runs in this study. However, all sensitivity analyses in this study were based on historical 

fishery statuses over the entire time series compared between each UMM scenario and the base 

case.  

 IBLS scenarios 6 and 7 (section 3.3.1) were designed to represent small and large future 

climate effects, respectively. These effects on growth and SAM are plausible given future climate 

projections (IPCC 2019), but it is unknown if these changes are large enough to affect stock 

assessment output on a level that would shift management practices away from what they would 

be under the base case. To this end, a sensitivity analysis was to be conducted if results from the 

UMM using IBLS scenarios 6 and 7 showed significant differences in trends over time from the 

base case. Differences were simply if stock status differed in consecutive years between the given 

scenario and the base case.  

 This analysis would add IBLS scenarios representative of smaller and smaller incremental 

shifts in growth and SAM to determine the level of sensitivity (breaking point) and use those new 

growth matrices and SAMs in the UMM. For example, if historical fishery statuses from the UMM 

using IBLS scenario 6 had no differences in relation to the base case but UMM scenarios using 

IBLS scenario 7 did, then the breaking point of sensitivity would lie somewhere between these 2 

shifts. The next step was to estimate growth matrices and a SAM for a shift representative of 

halfway between these 2 shifts. For molting probability, this was the average probability of both 

G1 and G2 for each season since last molt. For molt increment probability, this was the average 

probability of both G1 and G2 for each size increase in mm. For SAM, it was simply the average 

of 85.21 mm and 79.61 mm. BRPs and historical fishery statuses were then calculated for these 

new UMM scenarios. Retrospective patterns were also evaluated and results from these tests can 

be found in the supplementary material (Figures S3.1-S3.11). To further determine the breaking 
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point, these new UMM scenarios took the place in the above methods of either UMM scenarios 

that used IBLS scenario 6 or UMM scenarios that used IBLS scenario 7 (depending on whether 

the results of these new scenarios were significantly different from the base case), and the above 

process was repeated. This process continued until a breaking point within 1/16th of a shift was 

found.  

Two more sensitivity analyses took place focused on the effects of changing growth 

independent of SAM and changing SAM independent of growth. These followed the same 

methods as above, but for UMM scenarios that used IBLS scenarios 2-3 and UMM scenarios that 

used IBLS scenarios 4-5, respectively. The above 3 analyses can help determine the sensitivity of 

the UMM to growth, SAM, and the combination of growth and SAM, all of which can assist in 

determining the necessity of research dedicated to direct linkages of climate change to these life 

history parameters for use in lobster stock assessment. 
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Figure 3.1. Molting probability in the summer vs seasons passed with no molting (left) and cumulative molt increment 

probability vs size increase in millimeters (mm) (right) of a 130 mm carapace length lobster. Presented are lines for 

the probabilities in the base case (“Original”) as well as those that correspond to G1 (Dashed) and G2 (Dotted). 

 

Table 3.1. Individual based lobster simulator scenarios present in this study marked by the paired growth dynamic 

(Growth) and value of L50 that correspond to each scenario. 

IBLS Scenario 1 2 3 4 5 6 7 

Growth Original G1 G2 Original Original G1 G2 

L50  (mm) 90.81 90.81 90.81 85.21 79.61 85.21 79.61 
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Table 3.2. Settings and data that were consistent across scenarios in the UMM. Acronyms correspond to the Maine 

Department of Marine Resources (MEDMR), Massachusetts Division of Marine Fisheries (MADMF), New 

Hampshire Fish and Game Department (NHFGD), and NOAA Northeast Fisheries Science Center (NEFSC). 

Time Series 1984 through 2013 

Seasons 4 (Each 3 month time blocks - same as IBLS) 

Number of sexes 1 (Data averaged across male and female) 

Size range 53 to 223 mm carapace length 

Size bin length 5 mm  

Initial conditions First year size composition from survey data 

Recruitment size 53 to 73 mm 

SSB/R relationship None 

Number of commercial fleets 1 

Commercial fleet selectivity at size Double logistic  

Survey data MEDMR Ventless Trap Survey 2006-2012 

Spring MEDMR/NHFGD Inshore Bottom Trawl Survey 2001-2013 

Fall MEDMR/NHFGD Inshore Bottom Trawl Survey 2000-2013 

Spring MADMF Bottom Trawl Survey 1984-2013 

Fall MADMF Bottom Trawl Survey 1984-2013 

Spring NEFSC Bottom Trawl Survey 1984-2013 

Fall NEFSC Bottom Trawl Survey 1984-2013 

Survey selectivity at size Double logistic  

Fishing mortality rate Instantaneous  

Natural mortality rate 0.15 year-1  

 

3.4 Results 

Target and threshold BRPs for the 7 UMM scenarios can be found in Table 3.3 and all 

accompanying reference abundance plots showcasing historical fishery statuses as compared to 

the base case can be found in Figure 3.2. Terminal year stock statuses did not change across any 

of the 7 UMM runs in this study (Table 3.4). Most alterations in historical reference abundance 
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from the base-case appeared to be magnitudinal: consistent overestimations of abundance per year, 

but similar temporal trends, with slight alterations causing some discrepancies in historical fishery 

statuses. Instances of consecutive years differing from the base case are much more relevant to 

discussion as these are indicative of larger trends-based differences and not simply 1-year lags that 

seem to be the reason behind solitary differing years. These consecutive difference years appeared 

in only 1 UMM scenario: scenario 7. This scenario used a growth shift of G2 and a SAM of 79.61 

(the large climate effect scenario).  

Given that a SAM change of over 10 mm in CL did not appear to cause consecutive year 

differences in reference abundance independent of a change in growth, a sensitivity analysis was 

not conducted for this variable. Likewise, changes in growth independent of SAM did not appear 

to cause consecutive year differences. Thus, a sensitivity analysis was not conducted for growth 

independent of SAM.  

 In the biologically realistic scenarios (UMM scenarios using data from IBLS scenarios 6 

and 7), the combination of G1 and SAM of 85.21 mm had no consecutive year differences in 

historical fishery status when compared to the base case. However, the combination of G2 and 

SAM of 79.61 mm had consecutive year differences compared to the base case. Thus, the breaking 

points of sensitivity existed somewhere between a small-climate-effects scenario (G1 and SAM of 

85.21 mm) and a large-climate-effect scenario (G2 and SAM of 79.61 mm). Results from this 

sensitivity analysis done for these biologically realistic scenarios can be found in Figure 3.3. The 

final breaking point was between a growth shift of 1.4375 and 1.5000 and SAM values of 82.41 

mm and 82.76 mm. 
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Figure 3.2. Estimated reference abundance (in millions of individuals) 1984-2013 for University of Maine Model 

scenarios corresponding to those in Tables 3.1 and 3.3 (blue trend lines) compared to the base case (black trend lines). 

Shaded regions indicate years where the historical fishery status (as calculated from BRPs in Table 3.3) is different 

from that of the base case for the same year. Note the differences in vertical axes ranges between plots. 
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Figure 3.3. Estimated reference abundance (in millions of individuals) 1984-2013 for University of Maine Model 

scenarios in the growth sensitivity analysis (blue trend lines). Each row represents a consecutive scenario in the 

sensitivity analysis based on the scenario in the previous row. Shifts are represented as a proportion between a full 

shift of 1 and a full shift of 2 for both growth and SAM. All scenarios were compared to the base case (black trend 

lines). Shaded regions indicate years where the historical fishery status (as calculated from BRPs in Table 3.3) is 

different from that of the base case for the same year. Below is a diagram of the location of the breaking point of 

sensitivity within 1/16 of a shift (blue bar) in relation to the base case data. Here, unmarked vertical lines represent 

the above tests of partial shifts in the same column. Note the differences in vertical axes ranges between plots. 
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Table 3.3. Target and threshold biological reference points (in millions of individuals) for all UMM scenarios. Each 

column represents a UMM scenario that utilized growth transition matrices and SAM produced by the corresponding 

IBLS scenario (Table 3.1). 

 

BRP 

UMM Scenario 

1 2 3 4 5 6 7 

Target 976.0 823.1 1256.3 1078.1 1403.6 1067.0 2857.5 

Threshold  707.8 579.6 919.6 801.2 1074.9 788.9 2170.5 

 

Table 3.4. Terminal year stock abundance (in millions of individuals) and stock status for all UMM scenarios. Stock 

status is presented in relation to the biological reference points in Table 3.3. Each column represents a UMM scenario 

that utilized growth transition matrices and SAM produced by the corresponding IBLS scenario (Table 3.1). 

 

Terminal Year 

UMM Scenario 

1 2 3 4 5 6 7 

Abundance 1594.5 1217.9 1687.7 1769.5 2265.5 1599.5 3792.7 

Stock Status  >Target >Target >Target >Target >Target >Target >Target 

  

3.5 Discussion 

 Traditional sensitivity analyses are bottom-up: they are designed to determine how model 

output changes when specific parameters are altered (Booshehrian et al. 2012; Salciccioli et al. 

2016). This practice is very common in stock assessment procedures to determine model stability 

and quantify uncertainty (Rosenberg & Restrepo 1994; Hilborn 2001; Salciccioli et al. 2016). 

UMM scenarios in this study that used IBLS scenarios 1-5 were an example of this classic type of 

analysis. UMM scenarios in this study that used IBLS scenarios 6-7, however, represent a top-
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down approach to sensitivity analysis. Here, a larger model-free mechanism controlled how 

multiple variables changed together and would affect model results. This type of approach tries to 

answer the question of how sensitive the model is to this larger mechanism, in this case: climate 

change. Climate change will affect molting probability, molt increment probability, and SAM of 

lobster together. Thus, this type of analysis is important to determine these cumulative effects on 

model output, succeeding where traditional sensitivity analyses fail. This type of analysis is 

sometimes referred to as a global sensitivity analysis and is very rarely used in fisheries stock 

assessment (Lehuta et al. 2010; Saltelli et al. 2019; García 2020). We agree with Saltelli et al. 

(2019), that a lack of this methodology throughout the fields of environmental science and biology 

is concerning. We further postulate that both a bottom-up and top-down approach may be 

beneficial and increasingly imperative in a changing world to ensure that the stock assessment 

model is stable under ensemble changes brought by larger mechanisms.  

Sensitivity of the UMM to growth and SAM are relatively and biologically low. SAM 

values associated with breaking points in the biologically realistic scenarios are not expected to 

reach such low levels for at least 50 years (LeBris et al. 2017; IPCC 2019). The relationship of 

lobster growth to temperature and climate change are well-known (Aiken 1977; Le Bris et al. 

2017), but strict predictions cannot be so easily extrapolated and may be less appropriate (Punt et 

al. 2014). This, coupled with the fact that most information on these parameters found in laboratory 

settings may not be directly applicable to wild scenarios (Jury & Watson 2013) means that 

forecasting lobster growth and SAM is incredibly challenging. This highlights an advantage of our 

modelling framework in that strict relationships of tested parameters to the larger mechanism (e.g., 

climate change or temperature change) are not necessary. The framework does not determine 
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future changes to modelling efforts, but rather highlights the limitations of the stock assessment 

under climate change.  

For the UMM, terminal year stock status estimates, which are most relevant to lobster 

management, did not change over all scenarios in the current study, indicating the robustness of 

the UMM to changes in these life history parameters. However, the combination of shifts to growth 

and SAM did show differences in hindcasted fishery statuses. Consequently, scenarios tested in 

this study may not alter input data enough to produce different results for current management, but 

given that historical deviations were present, caution should be given to the assumptions of low 

sensitivity. Deviations of historical stock statuses were mostly magnitudinal, representing 

overestimations of lobster abundance throughout the time series, but having very similar temporal 

trends. This is due to the use of relative BRPs calculated for each scenario as opposed to static 

values over all scenarios. Lobster management, like much of fisheries management in general, is 

more concerned with trends (ASMFC 2015) instead of absolute values. This implies that large 

growth and SAM shifts can alter model results, but would not have severely impacted historical 

management. As expected, these UMM scenarios had worse fits than the base case (see 

supplementary material). This is most likely due to the model approximating biologically 

unrealistic freely estimated parameters in an attempt to fit to the data while also using the growth 

and SAM data provided (Slezak et al. 2010). These differences in fit are not relatively high, even 

for the largest shifts in this study, but work on other models should be aware of this phenomenon. 

Caution should be used by management when using this approach and careful attention should be 

paid to the freely estimated parameters of the model.  

It is important to note the combined effects of growth and SAM shifts. The largest alteration 

in comparison to the base case was when the largest effects from growth and SAM were combined. 
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However, smaller shifts seem to indicate that combined effects may not be strictly additive and 

future work should focus on the complex relationship of growth, SAM, and temperature, especially 

as it pertains to the lobster stock assessment model. Quantifying the relationships between these 

parameters and thermal habitat is a research priority (ASMFC 2015), but another priority is to 

develop modelling capacity to handle temporally dynamic life history parameters. If climate 

change affects key life history characteristics, then traditional stock assessment methodologies that 

use static values for variables such as growth, SAM, and others may be misinformed (Correa et al. 

2021). Temporally dynamic life histories in stock assessment may require quantifying 

relationships with the environment, but would ultimately increase accuracy in model results and 

precision of forecasts. Another avenue for future research would be the application of a 

management strategy evaluation (MSE) within the current framework. This addition would see the 

IBLS used as an operating model so that results from the UMM could have a “true” population to 

compare with.  

Ultimately, knowing the breaking points does not aid in management if there is a lack of 

knowledge on the life history parameters tested a priori, specifically concerning the relationship 

with each of them to thermal habitat and hypotheses as to the predicted scale of future change. 

Foremost, there is a critical need to quantify the relationship these lobster life history parameters 

have with a changing climate, a concern that management shares (ASMFC 2015). This is because 

a comparison of predicted changes to the model’s breaking points aids in determining research 

necessity. If the breaking points are higher than the predicted changes, then changes under climate 

change may not significantly impact assessments if the life history parameters (e.g., growth and 

SAM) are not updated. If the breaking points are lower than the predicted changes, then there is 

the possibility that modelling efforts with old parameters may not yield accurate results anymore 
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if the parameters are not updated and future research should be targeted at understanding those 

parameters.  

Lobster, and by extension, crustacean, physiology and life history are directly linked to the 

environment and most often are consequences of thermal habitat (Madeira et al. 2012). As climate 

change alters thermal habitat of crustaceans, stock assessment methodologies that rely on these 

life history characteristics have the potential for their input data to be out-of-date. This can be 

mitigated with persistent monitoring efforts and scientific research. However, many crustacean 

fisheries, even in well-funded areas, have limited resources for these cost-intensive research 

efforts. The framework proposed in this paper has the potential to mitigate research loads by 

prioritizing those input parameters that the specific stock assessment model is most sensitive to 

under the top-down mechanism of climate change. A complete analysis of dependent and 

independent effects from all variables together under this framework has the potential to aid in 

management practices, advance crustacean stock assessment, and steer future research projects.   
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CHAPTER 4: DEVELOPING A FRAMEWORK TO CALCULATE DYNAMIC 

REFERENCE POINTS USING A THERMALLY EXPLICIT SPAWNING BIOMASS / 

RECRUITMENT RELATIONSHIP  

4.1 Abstract  

Management of marine species often relies on biological reference points (BRPs): 

threshold and target indicators that trigger management actions. These BRPs are usually based on 

the biology of the species and rarely consider environmental effects. Under climate change, this is 

problematic as many biological/physiological relationships are assumed temporally static. This 

spurious assumption can lead to inaccurate management practices. To combat this problem, recent 

research highlights the importance of developing temporally dynamic BRPs. This paper sees the 

development of a dynamic BRP calculator to inform management of levels of spawning biomass 

necessary to sustain the desired future levels of recruitment given forecasted climate scenarios. 

We test this calculator on American lobster of the Gulf of Maine and Georges’ Bank. Results for 

lobster indicate a temperature-driven, but complex, spawning biomass/recruitment relationship.  

Increased warming scenarios appear to yield overall higher recruitment per spawning biomass and 

dynamic BRPs calculated under these scenarios reveal that smaller population levels can sustain 

management-desired recruitment levels. This study highlights the importance of developing 

dynamic BRPs for fisheries management in a changing environment.   

4.2 Introduction 

Many data-rich stock assessments rely on some assumed spawning stock biomass 

(SSB)/recruitment (R) relationship (Ricker 1954; Cury et al. 2014). This relationship is both the 

most important and the most difficult in fisheries stock assessments (Hilborn & Walters 1992). 

The concept is simple: there must exist a connection between the breeding group of a population 



62 
 

and the abundance of their offspring (Ricker 1954; Beverton & Holt 1957; Hilborn & Walters 

1992; Cury et al. 2014). With an assumed connection, R should be estimable if the SSB is known. 

Realistically, there are exogenous barriers that both complicate the relationship and inhibit 

discovery (Fogarty 1993; Cardinale & Arrhenius 2000).  

 Recently, there have been large developments towards the incorporation of environmental 

covariates in these types of relationships (Tang 1985; Subbey et al. 2014). As climate change is 

continuing to alter environments, these changing variables are likely to result in temporally 

dynamic SSB/R relationships. These complex associations can be difficult to design, interpret, and 

utilize in traditional stock assessment frameworks (Myers 1998; Subbey et al. 2014) and their 

reliability is often in question due to potentially spurious correlations (Chen & Irvine 2001). 

Nevertheless, directional change on these relationships brought about by climate change is 

continually necessitating incorporations (Subbey et al. 2014).   

 Conventional management of marine species requires biological reference points (BRPs) 

which are usually used to define what managers would like to achieve and avoid in fisheries 

management (Sissenwine & Shepard 1987; Mace 1993). These BRPs can be fishing mortality-

associated and/or abundance/biomass-associated targets for the management and thresholds that, 

when reached, trigger management action (Mace 1993; Berger 2019). BRPs are traditionally 

determined only by fish biology and usually assumed environmentally independent. As the 

environment changes, in particular unidirectional, these static thresholds are having to be 

continuously re-estimated and thus there is often substantial ambiguity in estimations (Mace 1993; 

Gabriel & Mace 1999; Fogarty & Gendron 2003). To combat this issue, recent research has been 

working towards establishing dynamic BRPs: BRPs whose components are inherently affected by 

the environment and are thus temporally dynamic (Berger 2019; O’Leary et al. 2020). As an 
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example: if a threshold BRP for fishing pressure is set to a level that would cause the stock to 

decline to 40% of its maximum spawning potential (F40%MSP), a dynamic BRP framework 

would temporally alter this value based on environment-fishing mortality relationships (i.e., a 

relationship between temperature and catchability). A static BRP framework would estimate a 

fixed value for F40%MSP, not considering exogenous variability and therefore decreasing 

reliability and confidence (Fogarty 1993; Subbey et al. 2014) in a changing environment. It is the 

goal of this research framework to develop a dynamic BRP calculator that utilizes an 

environmentally explicit Spawning Stock Biomass (SSB) and Recruitment (R) relationship with a 

wide applicability across taxa and assessments. The framework is initialized and tested on 

American lobster (Homarus americanus) in the Gulf of Maine/Georges Bank (GOM/GBK) stock 

area (Figure 4.1). 

 A reliable SSB/R relationship for American lobster in the GOM/GBK would allow for 

better R estimations and more dependable forecasts for stock dynamics. However, there are 

currently two issues constraining implementation of a SSB/R relationship in lobster stock 

assessments (ASMFC 2020). Previous research concluded that a SSB/R relationship for American 

lobster may be spatially explicit (Xue et al. 2008; Chang et al. 2015), constraining estimation in 

stock assessment models that perform on large spatial scales. This spatially-dependent relationship 

may be linked to temperatures of the region, especially those effects on larvae and juveniles (Ennis 

1986; Annis 2005). Realistically, most or all SSB/R relationships in nature are spatially varying, 

but many stock assessment models lack the capacity to consider these effects directly (Cadrin & 

Secor 2009).  

An additional problem for lobster is that there may be a disconnection between biological 

R (newborn lobster larvae) and model R (lobsters that have grown into the smallest size classes 
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used in the assessment model; lobsters that have the potential to reach the fishery’s minimum legal 

size in just one molting event) (Wahle 2003, ASMFC 2020), the latter of which is the input data 

necessary for stock assessment purposes for the species (ASMFC 2020). Any functional SSB/R 

relationship for GOM/GBK lobster must establish a connection between SSB and model R. Many 

outside forces act on lobster as they grow from biological R to model R. These include biological 

forces such as predation (Hanson 2009) and environmental forces such as temperature (Ennis 

1986; Annis 2005). The lag between biological R and model R is also not well defined, meaning 

model R of a given year has potential to have come from spawning events from multiple years in 

the past: lobsters of a certain size are not all of a certain age (Wahle et al. 1996; Chang et al. 2011; 

ASMFC 2020). This disconnection is often found in crustacean stock assessments as many of the 

models are length-based due to a general difficulty in aging many crustaceans (Chen et al. 2005; 

Chang et al. 2011; Punt et al. 2013). From this point on, unless directly specified, all mention of R 

in this study is model R. 

Knowing these problems for American lobster in the GOM/GBK stock area, it is the 

intention of this research framework to design a dynamic BRP calculator that can be used reliably 

in length-based stock assessments without deconstruction of the inherent spatially-lacking 

methodologies. For lobster, this starts with determining a stock-wide SSB/R relationship using 

multiple generalized additive models (GAMs) to estimate effects of stock-wide SSB and thermal 

habitat on R estimations. The subsequent calculator uses this relationship to provide management 

advice concerning current SSB levels so that desired R levels can be achieved in the future. The 

generality of the framework at every stage is kept high to achieve applicability across many taxa 

and assessments. 
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Figure 4.1. National Oceanic and Atmospheric Administration (NOAA) statistical areas that represent the Gulf of 

Maine/Georges Bank American lobster stock area. Statistical areas in grey have their number designation displayed. 

Additionally, the states of Maine (ME), New Hampshire (NH), and Massachusetts (MA) along with the province of 

Nova Scotia (NS) are shown. 
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4.3 Methods 

4.3.1 Spawning Biomass and Recruitment Levels 

 Spawning stock biomass (SSB) in metric tons and recruitment (R) in millions of individuals 

are both output from a seasonal, length structured assessment model for American lobster in the 

GOM/GBK stock area known as the University of Maine Lobster Stock Assessment Model 

(UMM). The UMM was developed and coded by Chen et al. (2005) in ADMB and was 

subsequently modified by Cao et al. (2017a; 2017b) and Tanaka et al. (2019). For additional details 

on the model, see Chen et al. (2005), ASMFC (2015), and Tanaka et al. (2019) or contact the Chen 

Lab at Stony Brook University. 

 Among other UMM outputs, SSB and R are calculated by the model per year over the time 

series 1984 through 2013. These values of SSB and R were chosen to be used in this study to 

increase applicability, ensuring this framework can be used with model-generated data.  

4.3.2 Determining an Appropriate SSB/R Relationship 

American lobster model R takes three to five years to reach these sizes from their larvae 

stages (McCay et al. 2003; Whale & Fogarty 2006; Mazur 2020). Thus, R values for each year 

“X” were paired with an average SSB value calculated as the average SSB from years “X-5” to 

“X-3”. Two bottom temperature parameters were initially tested for inclusion in this relationship.  

The first was LM, which represented the bottom temperature (℃) during the months of 

October through December (again, averaged from years “X-5” to “X-3” for each R), representing 

the first seasonal period after lobster settlement in the GOM/GBK area (Wahle et al. 2010). LM 

was meant to capture the thermal environment of early stage juvenile lobsters: a crucial 

developmental period that is temperature dependent (Barrett et al. 2016; ASFMC 2020) and that 
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has the highest mortality rate across post-settlement life stages (James-Pirri & Cobb 2000). Bottom 

temperature data was collected from the University of Massachusetts Dartmouth’s School of 

Marine Science and Technology’s Finite Volume Community Ocean Model (FVCOM) (Chen et 

al. 2006a), shown to be effective at predicting and mapping bottom temperature parameters in 

areas like the GOM/GBK (Li et al. 2017). These bottom temperature data were rasterized into 

uniform grids using bivariate splines and subset to specific depth gradients. In the case of LM, this 

depth gradient was less than 50 meters, which represented appropriate depths of lobster settlement 

(ASMFC 2020; Goode et al. 2019). This data was subset again to specific NOAA statistical areas 

representing the GOM/GBK lobster stock area (Figure 4.1) before a spatial mean (LM) was 

calculated for data October through December.  

The second parameter used was DM, representing the mean temperature over the period 

from biological R to model R. Because model R was assumed to come from three separate 

biological recruitment events in this study, the true mean calculated represented the temperature 

years “X-5” to “X”, “X-4” to “X”, and “X-3” to “X”. FVCOM data in this case were rasterized 

and subset to a depth gradient of less than 480 meters, representing depths where lobsters of these 

sizes can be found (Holthuis 1991; Tshundy 2003) before again being subset to the GOM/GBK 

stock area.  

Next, variance inflation factor (VIF) tests were conducted on the data to evaluate whether 

all three variables (SSB and the two environmental variables; LM and DM) could be used together 

as explanatory variables in the same model. All combinations that maximized the amount of 

variables to be used while also producing VIF values less than three (Zuur et al. 2009), were tested 

and compared. 
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Any combinations of explanatory variables tested were done using an environmentally 

explicit Ricker or Beverton-Holt equation deconstructed into a generalized additive model (GAM). 

The environmentally explicit Ricker stock-recruitment (top) and Beverton-Holt stock-recruitment 

(bottom) equations are: 

 𝑅 = 𝛼 ⋅ 𝑆𝑆𝐵 ⋅ 𝑒  −𝛽 ⋅ 𝑆𝑆𝐵 + 𝛿1𝑇1 + 𝛿2𝑇2 + ⋅⋅⋅ (4.1) 

 
𝑅 =

𝛼 ⋅  𝑆𝑆𝐵

(1 +  𝛽 ⋅  𝑆𝑆𝐵)
 ⋅  𝑒   𝛿1𝑇1 + 𝛿2𝑇2 + ⋅⋅⋅ 

(4.2) 

where R is recruitment, SSB is spawning stock biomass, T is an environmental parameter, and α, 

β, and δ are coefficients (Subbey et al. 2014). Each of these deconstructed into GAM equations 

are: 

 𝑙𝑛(
𝑅

𝑆𝑆𝐵
) ~ 𝑆𝑆𝐵 +  𝑇1  +  𝑇2  + ⋅⋅⋅ (4.3) 

 𝑙𝑛(
𝑅

𝑆𝑆𝐵
) ~ −𝑙𝑛(

1

1 + 𝑆𝑆𝐵
) + 𝑇1  +  𝑇2  + ⋅⋅⋅ (4.4) 

where ln is the natural log; Ricker is above and Beverton-Holt is below. Each of these GAMs were 

run with each combination of environmental explanatory variables allowed by the VIF tests above. 

If a variable was not significant in the model, it was removed and the respective GAM was 

modelled without it. The model with the highest deviance explained and lowest Akaike 

Information Criterion (AIC) between Ricker and Beverton-Holt and between combinations of 

explanatory variables was chosen as the best representative model.  
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4.3.3 Dynamic Reference Point Calculator 

 The dynamic reference point calculator was built in the R environment and requires three 

objects as inputs. The first is the object of class “gam”, “glm”, or “lm” that represents the thermally 

explicit SSB/R relationship. The second object is of class “data.frame” where rows represent years 

and there are columns for SSB, R, and any environmental variables used in the analysis. If using 

this model to hindcast, then the entire data frame should be filled with observed values. If 

forecasting, the SSB and R columns will be present, but empty for any future years. Any 

environmental parameters must be forecasted a priori (see section 4.3.4). The third object is a value 

that represents an R-based reference point. This reference point is interpreted as “desired future 

levels of recruitment”. For this study, this was set at the 75th percentile of R from 1984-2013.  

 The calculator then utilizes the “predict()” function in the base R environment to estimate 

R levels over the entire observed time-series range of SSB values (n values ranging from the lowest 

to highest observed values of SSB) for every row of environmental data representing a year. Every 

predicted R value has the user-chosen R-based reference point subtracted from it and those final 

values (n values per year) are positive if the value of SSB paired with that year’s associated 

environmental data yields R levels higher than the chosen reference point and are negative if it 

yields R levels lower than the chosen reference point. Plots of this data are created per year over 

the range of SSB. Lastly, values of SSB that yield the R-based reference point exactly are found 

by calculating the root linear interpolants from the plots described above. These are used to 

compute the final ranges of SSB given the environmental parameters that will yield at least the 

desired recruitment levels. Additionally, plots of recruitment per spawning stock biomass (R/SSB 

in individuals per metric ton) over the range of SSB are generated for each forecasted year.  
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4.3.4 Environmental Forecasts and Subsequent Management Advice 

To hindcast 1989 through 2013, the SSB and R values from section 3.1 were paired with 

FVCOM values from section 3.2. These values allowed for the yearly calculation of appropriate 

SSB levels to ensure the desired R levels. The usefulness of hindcasting the data is only to see how 

well the model performed (i.e. how well the predicted ranges match observed patterns) and has 

little management applicability.  

To forecast 2014 through 2018, temperature data must be forecast a priori. Kleisner et al. 

(2017) estimates an average yearly increase of GOM/GBK bottom temperature of 0.072℃/year 

over the next 80 years. This rate was used in initial analyses. Pershing et al. (2015) estimated a 

warming rate of GOM/GBK surface waters at 0.2420℃/year. This rate was used to represent an 

extreme warming scenario for GOM/GBK bottom temperature. Both rates of changes were used 

to create two separate forecasts bookending a range of future change. Thus, any mean temperature 

data 2014 on were calculated as the mean plus the yearly rate of change multiplied by the number 

of years into the future.  

4.4 Results 

4.4.1 The SSB/R Relationship 

 Yearly SSB and R data from the UMM were paired with LM and DM generated from 

FVCOM data (Table 4.1), and were all able to be used in the same GAMs due to their VIF results 

(Table 4.2). All three explanatory variables (SSB, LM, and DM) were significant in the Beverton-

Holt GAM, but only SSB and DM were significant in the Ricker. A second Ricker model was run 

(hereby referred to as the lesser Ricker) that only considered SSB and DM. Thus, three total GAMs 

were run in this study: one for all variables in the Beverton-Holt, one for all variables in the Ricker, 
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and one with only SSB and DM in the Ricker. Deviance explained (DE) and AIC values for all 

models can be found in Table 4.3.  

 Beverton-Holt had a lower AIC and a higher DE than both Ricker models (Table 4.3), 

indicating it was better suited for modelling the American lobster SSB/R relationship in the 

GOM/GBK region. Partial dependence plots for SSB, LM, and DM using the Beverton-Holt GAM 

are shown in Figure 4.2. Note that the partial dependence plot for SSB is ln(1/(1+SSB)) as is 

denoted by equation 4.4. At too high and too low SSB values, the effect is negative towards R, but 

positive at moderate ranges of SSB. LM has a positive effect at lower temperatures and a negative 

effect at higher temperatures, while DM has a positive effect at low and high temperatures and a 

negative effect at moderate temperatures. Figure 4.3 shows the combined effect of all three 

variables on R using a surface plot of interpolated observed values. At low values of LM, a wide 

range of SSB and DM can lead to desired R levels, but as LM increases, both DM and SSB must 

also increase to provide those levels of R. 

4.4.2 Hindcasts and Forecasts from the Reference Point Calculator 

 Hindcasted ranges of SSB 1984-2013 that yield desired R levels can be found in the 

supplementary material (Figure S4.2). The lower-bound and upper-bound yearly rates of change 

yielded values for LM and DM 2014-2018 (Table 4.4). These two sets allowed for two separate 

forecasts of SSB ranges to be made (Figures 4.4 and 4.5; Table 4.5). Each plot represents a year 

where the x axis is a range of SSB in mt and the y axis is the difference between the calculated R 

(over the range of SSB) and the user-chosen R-based reference point (75th percentile of R 1984-

2013; calculated as 557 million individuals), called R difference. Any range of SSB that yields a 

positive R difference value means that SSB in that range will yield at least the desired R levels. 

From a management viewpoint, SSB would have to be within ranges that yield positive R 
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difference values across years “X-5” to “X-3” in order to have R levels at least as high as those 

desired in year “X”. As an example: concerning the plot for 2018 in Figure 4.5, at a future rate of 

bottom temperature change of 0.242℃/year, management must keep SSB levels 2013-2015 on 

average to be higher than 67790.9 mt in order to achieve desired recruitment levels in 2018.  

 A higher rate on bottom temperature change actually provided larger ranges of acceptable 

SSB to yield the desired R, perhaps due to the positive effects of higher temperatures of DM. A 

rate this large may also be more realistic than the lower bound rate used, as surprisingly this rate 

occasionally had no acceptable ranges of SSB. This relationship between R and bottom 

temperature was additionally seen in the R/SSB over SSB plots (Figures 4.6 and 4.7), where the 

extreme scenario had comparatively higher R/SSB values across the range. These R/SSB plots per 

forecasted year all seem to display the same basic relationship, but are changed due to changes in 

forecasted temperature parameters. R/SSB values at low SSB are relatively high then drop before 

rising to a relative maximum at moderate ranges of SSB and then seemingly leveling off at high 

SSB values.  
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Figure 4.2. Partial dependence plots of the Beverton-Holt GAM for ln(1/(1+SSB)) (top left), LM in ℃ (top right), and 

DM in ℃ (bottom left). Dotted line represents the line of no effect. Dashed bars on the x axes denote the values of the 

input data to the GAM. 
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Figure 4.3. Surface plot of the combined effects of spawning stock biomass (SSB), LM, and DM on recruitment (R). 

Red represents areas where the combined effects from SSB, LM, and DM yield R values lower than the reference 

point (75th percentile of R 1984-2013; calculated as 557 million individuals) and green represents areas where the 

combined effects from SSB, LM, and DM yield R values higher than the reference point. For additional angles, see 

the supplementary material (Figure S4.1). All plots generated in R (version 3.5.3) with package “akima” by 

interpolating observed values of variables.  
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Figure 4.4. Forecasts 2014-2018 of acceptable ranges of spawning stock biomass (SSB) in mt of years “X-5” through 

“X-3” that yield the desired recruitment (R) levels of the given year. R difference represents the difference between 

the calculated recruitment at a given value of SSB at the associated LM and DM and the chosen R-based reference 

point; in this case, the 75th percentile of R 1984-2013. Locations where the blue line is above the dotted R difference 

= 0 line represent acceptable SSB ranges. Red lines represent where the blue line crosses the R difference = 0 line. 

Numeric ranges can be found in Table 4.5. All results presented use LM and DM values calculated using a rate of 

bottom temperature change of 0.072℃/year. 
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Figure 4.5. Forecasts 2014-2018 of acceptable ranges of spawning stock biomass (SSB) in mt of years “X-5” through 

“X-3” that yield the desired recruitment (R) levels of the given year. R difference represents the difference between 

the calculated recruitment at a given value of SSB at the associated LM and DM and the chosen R-based reference 

point; in this case, the 75th percentile of R 1984-2013. Locations where the blue line is above the dotted R difference 

= 0 line represent acceptable SSB ranges. Red lines represent where the blue line crosses the R difference = 0 line. 

Numeric ranges can be found in Table 4.5. All results presented use LM and DM values calculated using a rate of 

bottom temperature change of 0.242℃/year. 
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Figure 4.6. Forecasts 2014-2018 of recruitment per spawning stock biomass (R/SSB) in individuals per metric ton 

(mt) over the historically observed range of spawning stock biomass (SSB) in mt. LM and DM values change per 

forecasted year as described in section 4.3.4. Red lines represent the SSB size that yields the maximum R/SSB. All 

results presented use LM and DM values calculated using a rate of bottom temperature change of 0.072℃/year. 

 



78 
 

 

Figure 4.7. Forecasts 2014-2018 of recruitment per spawning stock biomass (R/SSB) in individuals per metric ton 

(mt) over the historically observed range of spawning stock biomass (SSB) in mt. LM and DM values change per 

forecasted year as described in section 4.3.4. Red lines represent the SSB size that yields the maximum R/SSB. All 

results presented use LM and DM values calculated using a rate of bottom temperature change of 0.242℃/year. 

 



79 
 

Table 4.1. Data input for relationship determination using generalized additive models. Year, recruitment of that year 

in millions of individuals (R), lagged spawning stock biomass in metric tons (SSB), Gulf of Maine/Georges Bank 

bottom temperature during the fall spawning event at depths less than 50m in ℃ (LM), and Gulf of Maine/Georges 

Bank bottom temperature during the developmental period from biological R to fisheries R at depths less than 480m 

℃ (DM). For additional explanation of parameters, see section 4.3.2. 

Year R SSB LM DM 

1989 325.254 53317.233 13.515 8.829 

1990 265.591 58825.867 13.375 8.871 

1991 277.569 61781.833 13.319 8.989 

1992 306.346 62612.333 13.339 8.952 

1993 247.488 64029.633 13.662 8.874 

1994 316.432 67033.967 13.800 8.867 

1995 345.555 71200.133 13.691 8.936 

1996 474.357 71518.967 13.420 8.880 

1997 367.745 69954.367 13.464 8.972 

1998 376.302 70943.333 13.725 8.981 

1999 475.807 75016.433 13.643 9.162 

2000 363.715 86670.433 13.525 9.271 

2001 467.347 96763.667 13.308 9.364 

2002 425.552 102677.000 13.798 9.457 

2003 338.156 103445.000 13.888 9.303 

2004 337.804 101827.000 14.032 9.092 

2005 405.071 103789.667 13.945 8.945 

2006 447.832 102742.000 13.822 8.877 

2007 557.609 99421.867 13.649 8.727 

2008 556.596 93349.000 13.453 8.843 

2009 605.486 89233.100 13.417 8.952 

2010 791.289 88130.933 13.298 9.197 
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Table 4.1. Continued. 

2011 854.597 92140.700 13.162 9.447 

2012 889.501 99846.267 13.294 9.870 

2013 858.238 110701.233 13.729 10.013 

 

Table 4.2. Variance inflation factor values for spawning stock biomass (SSB), Gulf of Maine/Georges Bank bottom 

temperature during the fall spawning event at depths less than 50m (LM), and Gulf of Maine/Georges Bank bottom 

temperature during the developmental period from biological R to fisheries R at depths less than 480m (DM). For 

additional explanation of parameters, see section 4.3.2. 

Parameter VIF Value 

SSB 1.825 

LM 1.299 

DM 1.645 

 

Table 4.3. Deviance explained (DE) and Akaike Information Criterion (AIC) of the Ricker GAM with all explanatory 

variables, the lesser Ricker with only SSB and DM explanatory variables, and the Beverton-Holt GAM with all 

explanatory variables. 

Model DE AIC 

Ricker  82.2 -13.418 

Lesser Ricker 69.3 -5.311 

Beverton-Holt 91.6 -29.724 
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Table 4.4. Forecasted Gulf of Maine/Georges Bank bottom temperature (℃) during the fall spawning event at depths 

less than 50m (LM), and Gulf of Maine/Georges Bank bottom temperature during the developmental period from 

biological R to fisheries R at depths less than 480m (DM) 2014-2018 under two regimes of minimum (0.072℃/year) 

and maximum (0.242℃/year) rates of change. 

 

 

Year 

0.072℃/year 0.242℃/year 

LM DM LM DM 

2014 14.125 10.013 14.125 10.013 

2015 14.433 10.119 14.433 10.162 

2016 14.472 10.127 14.472 10.255 

2017 14.448 10.133 14.505 10.388 

2018 14.344 10.143 14.515 10.553 

 

Table 4.5. Acceptable ranges of spawning stock biomass in metric tons during years “X-5” to “X-3” to produce at 

least the desired R levels of year “X” (column 1). Ranges are presented for both future rates of bottom temperature 

change: 0.072℃/year and 0.242℃/year. Exact range limits were calculated using root linear interpolants. Data are 

presented as “(lower limit of acceptable range, upper limit of acceptable range)” or “(lower limit of acceptable range 

+)” if there exists no upper limit in the observed historical range of SSB. Multiple ranges can exist for a given year 

and rate of change.  

Year 0.072℃/year 0.242℃/year 

2014 (73724.0, 95189.8), (103391.8+) (73750.0, 95189.8), (103391.8+) 

2015 (79670.7, 84271.1) (76310.4, 88969.5), (109520.6+) 

2016 - (73750.0, 95078.8), (103502.3+) 

2017 (79185.5, 84870.8) (70924.6+) 

2018 (74507.5, 92653.7), (105928+) (67790.9+) 
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4.5 Discussion 

4.5.1 Lobster Recruitment Relationships 

When the SSB is low, the relative R/SSB is high and there seems to be little sign of 

depensation or an Allee effect. However, the population is still too small to produce the 

management-desired levels of R. This phenomenon may be due in part to a single pre-1990 data 

point during a year of low SSB, but high R. Realistically, this lack of data points for lobster during 

low SSB events may hinder our ability to estimate biological realism in this range. As SSB 

increases, so does the R/SSB to a relative maximum: the most efficient for the species in terms of 

reproduction potential and the most effective population size to maximize fisheries catch. 

However, contrary to a traditional Beverton-Holt relationship (Beverton & Holt 1957), this effect 

becomes negative again at even higher values of SSB, seemingly indicating some sort of density-

dependence effect common with a Ricker SSB/R model (i.e., compensation) (Ricker 1954). Given 

that the Beverton-Holt model was selected as the more realistic of the two tested relationships 

coupled with the possible presence of positive effects on R at the highest SSB values (Figure 4.2), 

the relationship is seemingly more complex than either a traditional Ricker or Beverton-Holt 

model. The changing amplitudes from the partial dependence plot of SSB on R (Figure 4.2) may 

be consequences of effects from unconsidered variables. Additionally, this also seems to show that 

environmental effects are the primary drivers of this relationship and that R may vary largely at 

similar SSB values if the environment is variable.  

 The relationships of the two thermal habitat variables on R appear to be more simplistic 

(Figure 4.2). For LM, low temperatures during early post-settlement give way to larger fisheries 

R. This could be a proxy for a predator-prey relationship, where colder temperatures limit 

predatory fish-feeding by lowering their systematic need for nutrition and decreasing their overall 
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swim speed and intent to forage (Stoner 2004). The decreased predation during this highly 

vulnerable stage of lobster development (James-Pirri & Cobb 2000), may allow for larger cohorts.  

 For DM, the relationship may be similar to LM. At lower temperatures, limited predator 

feeding may promote larger R. As temperature increases, predation will increase and R will 

decrease. However, at very high temperatures, the effect on R becomes positive again. Where the 

first part of this relationship was predator-driven, the latter part may be metabolism driven. Lobster 

molting frequency is a function of environmental temperature (Aiken 1977) and growth rate is 

positively correlated with temperature (Green et al. 2014; Madeira et al. 2012). At these very high 

temperatures during development from biological R to fisheries R, lobsters may be growing so 

rapidly that their vulnerability to early life-stage predators is limited compared to lobsters that 

grow more slowly. 

 These relationships of course have uncertainty associated with them. The GOM/GBK large 

marine ecosystem has seen considerable regime shifts in recent decades (Friedland & Hare 2007; 

ASMFC 2020). With limited data over thirty years, it can be difficult to capture effects from these 

ecosystem-wide shifts. Additionally, there most likely exists spatial effects across the ecosystem 

influencing trends in these patterns. The resulting relationships discussed here are likely a 

combination of our definitions coupled with more complicated ecosystem and spatial effects. 

Lastly, bottom temperature has been shown to have effects on mature lobsters (i.e. SSB), not just 

juveniles (Tanaka & Chen 2016; Mazur et al. 2020; Hodgdon et al. 2021). These relationships 

were not apparent with the specific temperature variables used in this study (Table 4.2), indicating 

a potential for ontogenetic thermal effects on the species.  
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4.5.2 Forecasts from the Calculator 

Using bottom temperature rate of change data from Kleisner et al. (2017), acceptable 

ranges of SSB that lead to desired R levels are limited compared to extreme warming scenarios 

from Pershing et al. (2015). This is most likely due to the trend in SSB, R, and temperature over 

time. All three of these variables are estimated at higher values today than 20 years ago (ASMFC 

2020) and temperature in the GOM/GBK is predicted to keep rising (Pershing et al. 2015; Saba et 

al. 2016). These trends seem to indicate that (at least for the recent future) R has greater odds of 

being at acceptable levels with higher warming rates. This is in agreement with LeBris et al. 

(2017), who cites increasing temperatures driving recruitment for GOM/GBK lobster as a driving 

factor of the region’s recent increase in landings. Between the two projections, the extreme 

scenario seems to yield comparatively higher R/SSB ratios, indicating that increasing temperatures 

will continue to increase R in the region, even if SSB does not change.  

 These forecasts do reveal a high sensitivity based on environmental projections. This 

sensitivity is most likely a result of the SSB/R relationship for lobster being very environmentally-

driven. This may serve as a caution to using this calculator with species whose SSB/R relationships 

are environmentally driven: forecasts and subsequent management advice will be very dependent 

on the climate projections used. Hilborn and Walters (1992) and Chen and Irvine (2001) forewarn 

the use of environmental covariates in SSB/R relationships in general for this very reason- stating 

that these relationships have inherently low predictive capacity. However, this problem does not 

seem to be directly applicable to the dynamic BRP calculator, because its product is not, by 

definition, a forecast. The dynamic BRP calculator uses forecasted environmental data (generated 

a priori) to determine suitable ranges of SSB necessary to produce desired levels of future R. 
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Management need only keep current SSB levels within these ranges to effectively produce this 

future R.  

4.5.3 The Importance of Dynamic BRPs under Climate Change 

Climate change continues to alter marine ecosystems and many species’ thermal habitats 

(Perry et al. 2005; Anderson et al. 2013). Marine populations are changing, but many stock 

assessments do not currently consider environmental effects (Haltuch et al. 2009; Skern-Mauritzen 

et al. 2016), leading to false assumptions surrounding the fluid nature of stocks (Haltuch et al. 

2009; Vert-pre et al. 2013). Fixed assumptions of population dynamics may be hindering discovery 

of true/natural relationships. This study indicates that American lobster in the GOM/GBK has a 

SSB/R relationship that is heavily affected by thermal habitat: a response only apparent because 

of the rising temperatures of the region. Management of marine species must now consider these 

environmental effects and thus BRPs often need to be adapted. These dynamic BRPs can 

strengthen many management frameworks by accounting for environmental variability (Berger 

2019; O’Leary et al. 2020) and their importance is ever-growing under climate change, especially 

for those species whose SSB/R relationships are impacted by the environment.  

 The dynamic BRP calculator and associated framework presented here was built with the 

intention of being a post hoc analysis for stock assessments having a wide applicability over taxa. 

The framework can be used to establish both Ricker and Beverton-Holt SSB/R models that 

incorporate an unlimited number of environmental covariates and any amount of lag time between 

SSB and fisheries R. The calculator can be used solely with model-generated data and can be used 

to examine multiple R-based reference points. There is potential for improvement upon this model 

as there are four inherent issues: 1) forecasts are limited to historically observed ranges of SSB, 2) 

reliable results can only be achieved with an extensive knowledge of the species’ life history, 3) 
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forecasts may be heavily dependent on the environmental data used, and 4) it is difficult to 

ascertain overfitting in the relationship. Future research and development of this framework should 

combat these issues. Regardless, in its current state, this calculator has revealed interesting 

information about American lobster in the GOM/GBK region and has significant potential for use 

in developing dynamic BRPs for many stock assessments.  
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CHAPTER 5: A FRAMEWORK TO INCORPORATE ENVIRONMEMNTAL EFFECTS 

INTO STOCK ASSESSMENTS INFORMED BY FISHERY-INDEPENDENT SURVEYS: 

A CASE STUDY WITH AMERICAN LOBSTER (HOMARUS AMERICANUS) 

5.1 Abstract  

 Stock assessments for a majority of the world’s fisheries often do not explicitly consider 

the effects of environmental conditions on target species, which can raise model uncertainty and 

potentially reduce forecasting quality. Model-based abundance indices were developed using a 

delta generalized linear mixed model that incorporates environmental variability for use in stock 

assessment to understand how the incorporation of environmental variability impacts our 

understanding of population dynamics. For this study, multiple model-based abundance indices 

were developed to test the incorporation of environmental covariates in a length-structured 

assessment of the American lobster stock in the Gulf of Maine/Georges Bank on the possible 

improvement of stock assessment quality. Comparisons reveal that modelled indices with 

environmental covariates appear to be more precise than traditional indices, but model 

performance metrics and hindcasted fishery statuses revealed that these improvements to indices 

may not necessarily mean an improved assessment. Model-based abundance indices are not 

intrinsically better than design-based indices and should be tested for each species individually. 

5.2 Introduction 

Climate change has been shown to affect many commercially important marine species’ 

distributions, life histories, and overall production (Perry et al. 2005; Hazen et al. 2012; Anderson 

et al. 2013; FAO 2016; IPCC 2019). However, the effects of environmental change are often absent 

in stock assessments for many species (Haltuch et al. 2009; Skern-Mauritzen et al. 2016). This 

discount of change has the potential to incorrectly inform fisheries managers due to biological 
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reference point (BRP) calculations under false assumptions of population equilibria (Haltuch et al. 

2009; Vert-pre et al. 2013). As the global climate continues to change, the need to estimate these 

effects and determine if consideration of them is necessary in stock assessment frameworks 

becomes progressively more apparent to both researchers and fisheries managers (Hollowed et al. 

2009; Maunder & Piner 2015).  

Many stock assessment frameworks heavily rely on fishery-independent data (i.e. survey 

catch rates), which can act as indices for target species abundance (Richards & Schnute 1986; 

Chen et al. 2004; Maunder et al. 2006). These indices are meant to represent fluctuations in the 

target species’ population over both space and time. However, there exist uncertainties 

surrounding these data. Surveys may not accurately capture changes in abundance due to 

environmental drivers that affect both the distribution of the target species and the catchability of 

the survey itself (Maunder et al. 2006; Conn 2010; Shelton et al. 2014). Species density is rarely 

spatially homogeneous, but would be expected to gradually change over space due to habitat 

preferences caused in part by environmental parameters. Attempts to account for these 

environmental effects in design-based indices can result in high variability and may not represent 

true population density (Shelton et al. 2014; Thorson 2019).  

If environmental effects could be accounted for in calculation of abundance indices, then 

there exists a potential to improve their overall reliability (Thorson 2019). Additionally, if this 

process took place outside an existing stock assessment, then only model input data would need to 

be changed and no assessment reconfiguration would be necessary for implementation of the new 

modelled indices. In developing a framework to accomplish this, a spatiotemporal delta-

generalized linear mixed model (delta-GLMM) initially designed by Thorson et al. (2015) was 

applied (using the VAST package in R; Thorson and Barnett 2017; Thorson 2019). This framework, 
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hereafter referred to as the delta-GLMM, incorporates environmental covariates for both species 

density and survey catchability in abundance index calculations outside of an existing stock 

assessment model. This framework can therefore be used with any stock assessment that uses 

abundance indices. This study evaluates the implications of accounting for environmental 

variability in survey abundance indices for use in stock assessments using the Gulf of Maine 

(GOM)-Georges Bank (GBK) American lobster (Homarus americanus) fishery as a case study for 

how to account for variability in catch rates due to environmental conditions.  

The lobster fishery in the GOM/GBK (Figure 5.1) large marine ecosystem (LME) has a 

rich cultural and economic history. It is a year-round trap fishery, with the bulk of effort in the 

summer and fall seasons when the population is in shallow, near-shore waters. It currently 

represents the United States’ most valuable single species fishery, with recent average yearly worth 

estimated at around half a billion US dollars (MEDMR 2016; NMFS 2018). However, this species’ 

distribution and physiology has been shown to be affected by changing environmental conditions 

(ASMFC 2015; Boudreau et al. 2015). Changes in both recruitment and adult lobster population 

size and dynamics have been linked to changes in rising temperatures and suitable habitat (Mills 

et al. 2013; Boudreau et al. 2015; Tanaka et al. 2019). Warming trends have directly caused 

changes in migrational timing and molting events, increases in natural mortality, and increases in 

fisheries recruitment numbers (Mills et al. 2013; Boudreau et al. 2015; Staples et al. 2019; Tanaka 

et al. 2019). Additionally, lobster mobility, and by extension catchability, could potentially be 

linked to bottom temperatures as well with increasing temperatures meaning a higher catchability 

(Zhao et al. 2019). These effects could also be attributed to water column depth as American 

lobsters perform yearly migrations in the summertime to shallower waters where they are more 

active; feeding and spawning (Ennis 1973; Uzmann et al. 1977). Current stock assessment 
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methodology for this species does not consider environmental effects such as thermal habitat or 

depth (ASMFC 2015), but the Atlantic States Marine Fisheries Commission (ASMFC) recognizes 

this as a future priority (ASMFC 2015).  

This study aims to determine if consideration of dynamic bottom temperatures and water 

column depth improves estimation of abundance indices for the lobster stock in the GOM/GBK 

LME. To accomplish this, retrospective patterns and model fit will be compared between runs of 

a length-based assessment model for lobster using traditional design-based abundance indices and 

model-based abundance indices created with environmental covariates bottom temperature and 

depth. Additionally, calculations of biological reference points (BRPs) for each run will determine 

if hindcasted fishery status differs between assessment model runs. 
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Figure 5.1. Right: NOAA Statistical Areas (outlined in black) that comprise the stock management boundaries of 

American lobster of the GOM/GBK LME. Left: Survey boundaries across years and seasons for the MEDMR/NHFGD 

Inshore Bottom Trawl Survey 2001-2013 (MENH), the MADMF Bottom Trawl Survey 1984-2013 (MA), and the 

NEFSC Bottom Trawl Survey 1984-2013 (NEFSC). Also labelled are the states of Maine (ME), New Hampshire 

(NH), Massachusetts (MA), and Rhode Island (RI), and the Canadian province of Nova Scotia (NS). Maps generated 

in R using package ggplot2. Shapefile for statistical areas provided by the NEFSC. See bibliography for all data 

sources.   

5.3 Methods 

5.3.1 Delta-generalized linear mixed model (delta-GLMM) 

The delta-GLMM applied in this study (R VAST package version 3.2.2; Thorson and 

Barnett 2017; Thorson 2019) uses catch data from a single given survey with optional 

environmental covariates for density and/or catchability to derive modelled abundance indices.  

The delta-GLMM designates a user defined number ns knot locations throughout a pre-

defined bounded spatial area. Knots do not represent surveyed locations in the spatial area, 

although the density of knots throughout the spatial area is indicative of the density of survey 
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locations. The model then estimates population density at each knot in a multi-step process, with 

survey data being fit for presence-absence of the target species and then again for estimating the 

catch given that the target species is present (supplemental material; Thorson et al. 2015; Thorson 

2019). Both of these linear predictors are estimated with spatial random effects, spatio-temporal 

random effects, seasonal species density (or habitat) covariates, and catchability covariates 

(Thorson et al. 2015; Thorson 2019). Random effects are spatially smoothed using a stochastic 

partial differential equation approximation to a Matérn correlation function assumed to be both 

isotropic and two-dimensional (Thorson 2019). Predicted density at knot s in year t, d(s, t), can be 

calculated from transformed linear predictors, p1(i) and p2(i) used for estimating encounter 

probability and positive catch rates, respectively (supplemental material), and dropping 

catchability effects. This process is formulated as:  

 

𝑑(𝑠, 𝑡)  =  𝑙𝑜𝑔𝑖𝑡−1[𝛽1(𝑡𝑖)  +  ∑ 𝐿𝜔1

𝑛𝜔1

𝑓=1

(𝑓)𝜔1(𝑠𝑖, 𝑓)  +  ∑ 𝐿 1

𝑛𝜀1

𝑓=1

(𝑓)𝜀1(𝑠𝑖, 𝑓, 𝑡𝑖) 

 

 

 

 

(5.1) 

 

+ ∑ 𝛾1

𝑛𝑝

𝑝=1

(𝑡𝑖, 𝑝)𝑋(𝑠𝑖, 𝑡𝑖, 𝑝)]  × exp [𝛽2(𝑡𝑖) + ∑ 𝐿𝜔2

𝑛𝜔2

𝑓=1

(𝑓)2(𝑠𝑖, 𝑓) 

 

+ ∑ 𝐿 2

𝑛𝜀2

𝑓=1

(𝑓)𝜀2(𝑠𝑖, 𝑓, 𝑡𝑖) +  ∑ 𝛾2

𝑛𝑝

𝑝=1

(𝑡𝑖, 𝑝)𝑋(𝑠𝑖, 𝑡𝑖, 𝑝)] 

where all parameters are listed and described in Table 5.1. Additionally, an index of abundance 

for year t, It, can be calculated by integrating over space (knots): 
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𝐼𝑡  =  ∑ 𝑑(𝑠, 𝑡)

𝑛𝑠

𝑠=1

 

 

(5.2) 

Lastly, coefficients of variation for each It, CV, were calculated as: 

 𝐶𝑉 = 𝑆𝐸/𝑁  

(5.3) 

where SE is the standard error of It and N is the total number of survey instances in year t. For 

more detailed information concerning equations/calculations within the delta-GLMM, see Thorson 

et al. (2015) and Thorson (2019). A Table of all settings for the framework used in this study can 

be found in Table 5.2.  

5.3.2 The Stock Assessment Model 

 The Lobster Stock Assessment model (UMM) is a seasonal integrated length-structured 

assessment model for lobster in the GOM/GBK LME. It was initially developed and coded with 

ADMB (Chen et al. 2005; ASMFC 2015).  The program codes were later modified by Cao et al. 

(2017a; 2017b) and Tanaka et al. (2019). Due to the inability to appropriately and reliably age 

wild-caught lobster and thus lack of knowledge on age-length relationships (Wahle et al. 1996; 

Chang et al. 2011; ASMFC 2015), a length-based assessment model was deemed more appropriate 

than an age-based assessment model (Chen et al. 2005): a practice common with many crustacean 

species (Chang et al. 2011; Punt et al. 2013). The population dynamics equation this model 

employs is: 

 𝑁𝑡,𝑚 = 𝑁𝑡,𝑚−1  ×  𝑒−𝐹𝑡,𝑚 + 𝑀 × 𝐺𝑚−1 + 𝑅𝑡,𝑚 (5.4) 
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where Nt,m is a vector of the number of lobster in each of the pre-specified size bins in year t and 

season m, F is seasonal fishing mortality, M is seasonal natural mortality, G is the seasonal growth 

transition matrix (estimated a priori from an individual-based model; Mazur et al. 2018), and R is 

the recruitment to each size bin (Chen et al. 2005). In the UMM, G and M are pre-specified and R 

and F are estimated. G is averaged across both sexes: a practice commonly and historically done 

with the UMM (Tanaka et al. 2019). M is expected to be the same for both sexes and so no average 

is taken (ASMFC 2015). Additionally, spawning stock biomass (SSB) can be estimated using 

proportion female and proportion mature per-size-bin vectors. A detailed explanation of this model 

can be found in Chen et al. (2005), ASMFC (2015), and Tanaka et al. (2019). All model settings 

used for this study can be found in Table 5.3. For additional details on the UMM, contact the Chen 

Lab at the University of Maine.  

 The surveys used in the UMM are the Maine Department of Marine Resources’ (MEDMR) 

Ventless Trap Survey, the Maine/New Hampshire Inshore Bottom Trawl Survey conducted in a 

partnership between the MEDMR and the New Hampshire Fish and Game Department (NHFGD), 

the Massachusetts Division of Marine Fisheries’ (MADMF) Inshore Bottom Trawl Survey, and 

the Northeast Fisheries Science Center’s (NEFSC) Bottom Trawl Survey. Each of the last three 

surveys are split into a fall and a spring survey, for a total of seven surveys. Spring and fall periods 

are different across the surveys but are confined to the six month blocks January-June and July-

December. A list of the spatial coverages of these surveys can be found in Figure 5.1 and their 

temporal coverages can be found in Table 5.3. Citations for all data used in this study are available 

in the bibliography.  

 There is an abundance index associated with each of the seven surveys for each year. This 

abundance index is a calculation of survey catch rate over the spatial area for the survey in that 
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year and season and is meant to be a proxy for population biomass. Traditionally, this survey catch 

rate was calculated as the number of individuals caught over 53 mm carapace length divided by 

the number of unique survey instances.  

5.3.3 Abundance Index Calculations and Assessment Model Configurations 

For this study, the delta-GLMM was run on each of six surveys individually. The six 

surveys were the spring and fall MEDMR/NHFGD Inshore Bottom Trawl Surveys, the spring and 

fall MADMF Inshore Bottom Trawl Surveys, and the spring and fall NEFSC Bottom Trawl 

Surveys. 

Each of the above surveys collects bottom temperature data. Using sea surface temperature 

(SST) data from the National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very 

High Resolution Radiometer (AVHRR) (Reynolds et al. 2007; Banzon et al. 2016) alongside the 

survey data, generalized additive models (GAMs) were used to estimate the relationship between 

predictor variables latitude, longitude, month, depth, and surface temperature and the response 

variable bottom temperature. This allowed for predicted bottom temperature values based on the 

surface temperature and how this relationship changed over space and across seasons. This 

relationship was calculated for each survey area and was used to predict bottom temperature at 

each knot and survey location in the bounded spatial area of the survey. As a density covariate, 

bottom temperature was calculated over six-month time blocks to match survey time blocks and 

to maintain consistency (above). As a catchability covariate, bottom temperature was calculated 

per month to match with survey month. This was done to address potential seasonal changes in 

catchability which may not be derived from point measurements taken from the surveys. Depth 

was treated as a static variable, with identical values year to year at each knot and survey location. 

Descriptions of how each variable was used in the delta-GLMM can be found in Table 5.2. 
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There were nine delta-GLMM runs per survey, each with different combinations of density 

and catchability covariates (Table 5.2). The same covariate was not used in the delta-GLMM as 

both a density and as a catchability covariate so as to avoid model inflation due to multicollinearity 

and reduction in power. Additionally, bottom temperature and depth in this framework were tested 

for multicollinearity using a traditional variance inflation factor (VIF) test.  

Stock-wide abundance from each survey in each year was assembled and used to replace 

the design-based survey catch rate data in the UMM, totaling nine UMM model runs plus the 

original run with the design-based abundance indices (Table 5.4). The CVs historically used in the 

UMM with the design-based indices was a single value representing an average across all seven 

surveys: 0.25. This value represented the mean SE/N across all surveys across all years with equal 

weighting given to each of the surveys, regardless of their temporal coverages. In an effort to 

properly compare UMM model runs and directly compare CV data, mean CVs from the delta-

GLMM for each of the six surveys (Table 5.3) were averaged with the MEDMR Ventless Trap 

Survey 2006-2012 CV: 0.019. This totaled nine new mean CVs, one for each new UMM run.  

5.3.4 Model Run Comparisons and BRPs 

 Retrospective patterns and objective function values (OFVs) were used to compare and 

evaluate UMM model outputs. Mohn’s Rho values were calculated from seven-year peels (2006-

2013) for SSB in metric tons, R in millions of individuals, and F: 

 

𝜌𝑣  =  

∑
𝐸𝑞  − 𝐹𝑞

𝐹𝑞

𝑄
𝑞=1

𝑄
 

 

(5) 
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where ⍴v is Mohn’s Rho of variable v (SSB, R, or F), Q is the number of peels (seven), Eq is the 

terminal variable value when the UMM is run for years 1984 through 2013-q, and Fq is the variable 

value in year 2013-q when the UMM is run for years 1984 through 2013. Calculations were 

completed with package icesAdvice (version 1.4-2) in R. Lower Mohn’s Rho values represent 

lower retrospective bias, lower systematic inconsistency, and an overall more reliable calculation 

(Mohn 1999; Deroba 2014; Hurtado-Ferro et al. 2014). To capture the overall retrospective bias, 

absolute Mohn’s Rho values for SSB, R, and F of a single UMM run were summed. This value 

allowed for direct comparisons of total retrospective bias between the ten UMM runs (Table 5.4). 

OFVs were calculated as summed negative log likelihoods of (1) predicted length compositions 

from fishery-independent surveys, (2) predicted abundance from fishery-independent surveys, (3) 

predicted length compositions from commercial fleet catch, (4) predicted total commercial fleet 

catch, and (5) predicted recruitment. Lower OFVs represent models with a better fit and lower 

residuals. The model with the lowest overall retrospective bias and lowest OFV were chosen as 

the optimal model(s).  

 BRPs were then calculated for each optimal model and the design-based model. BRPs for 

the GOM/GBK American lobster stock are calculated as the seventy-fifth and twenty-fifth 

percentiles of reference abundance and exploitation rate from 1982-2003 (ASMFC 2015). For 

reference abundance, the seventy-fifth percentile acts as the target and the twenty-fifth percentile 

acts as the threshold. For exploitation rate, this is reversed. BRPs in this study were calculated 

much the same way, except the reference period was shortened to 1984-2003 due to UMM data 

input limitations. Using these BRPs, hindcasted fishery statuses were compared. 
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Table 5.1. A description of the parameters used in equations 5.1 and 5.2. Parameter definitions are from Thorson et 

al. 2019. For more information, see Thorson et al. (2015) and Thorson (2019).  

Parameter Description 

𝛽1(𝑡𝑖) Intercept for first linear predictor in time interval t  

𝛽2(𝑡𝑖) Intercept for second linear predictor in time interval t  

𝐿𝜔1(𝑓) Loadings matrix for spatial covariation for first linear predictor for factor f 

𝐿𝜔2(𝑓) Loadings matrix for spatial covariation for second linear predictor for factor f 

𝐿 1(𝑓) Loadings matrix for spatio-temporal covariation for first linear predictor for factor f 

𝐿 2(𝑓) Loadings matrix for spatio-temporal covariation for second linear predictor for factor f 

𝛾1(𝑡𝑖 , 𝑝) Impact of habitat covariate p on first linear predictor  in year t  

𝛾2(𝑡𝑖 , 𝑝) Impact of habitat covariate p on second linear predictor  in year  t  

𝜔1(𝑠𝑖 , 𝑓) Spatial factors for first linear predictor for knot s and factor f 

𝜔2(𝑠𝑖 , 𝑓) Spatial factors for second linear predictor for knot s and factor f 

𝜀1(𝑠𝑖 , 𝑓, 𝑡𝑖) Spatio-temporal factors for first linear predictor for knot s, factor f, and year t 

𝜀2(𝑠𝑖 , 𝑓, 𝑡𝑖) Spatio-temporal factors for second linear predictor for knot s, factor f, and year t 

𝑛𝜔1 Number of spatial factors for first linear predictor 

𝑛𝜔2 Number of spatial factors for second linear predictor 

𝑛 1 Number of spatio-temporal factors for first linear predictor 

𝑛 2 Number of spatio-temporal factors for second linear predictor 

𝑋(𝑠𝑖 , 𝑡𝑖, 𝑝) Covariate value for habitat covariate p in knot s and year t 

𝑛𝑝 Number of habitat covariates 
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Table 5.1 Continued.  

𝑓 Factor number 

𝑝 Habitat covariate number 

𝑡𝑖 Time interval number (year) associated with observation i 

𝑠𝑖 Spatial location number (knot) associated with observation i 

𝑖 Observation number (survey instance) 

𝑑(𝑠, 𝑡) Predicted density for knot s in year t 

𝐼𝑡 Index of abundance for year t 

𝑛𝑠 Number of knots 

 

 

 

Table 5.2. Settings and data used in the delta-GLMM for each run. All settings except ‘Density Covariates’, 

‘Catchability Covariates’, and ‘Surveys’ were kept constant throughout the runs. All combinations of four different 

‘Density Covariates’, four different ‘Catchability Covariates’, and six different ‘Surveys’ meant ninety-six delta-

GLMM runs. For a list of each component's properties, see the documentation for the R VAST package version 3.2.2 

or Thorson (2019).  

 

 

 

 

Density Covariates 

None. 

Average bottom temperature of a six-month period: January through June for all “Spring” 

surveys and July through December for all “Fall” surveys. 

Depth at knot. 

Average bottom temperature of a six-month period: January through June for all “Spring” 

surveys and July through December for all “Fall” surveys and depth at knot. 
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Table 5.2 Continued.  

 

 

 

 

Catchability 

Covariates 

None. 

Average bottom temperature of a 30 day period centered on the survey instance. 

Depth at each survey location. 

Average bottom temperature of a 30 day period centered on the survey instance and depth 

at survey location. 

 

 

 

 

 

 

 

Surveys 

Spring MEDMR/NHFGD Inshore Bottom Trawl Survey 

Fall MEDMR/NHFGD Inshore Bottom Trawl Survey 

Spring MADMF Inshore Bottom Trawl Survey 

Fall MADMF Inshore Bottom Trawl Survey 

Spring NEFSC Bottom Trawl Survey 

Fall NEFSC Bottom Trawl Survey 

Number of Knots 100 

Method Mesh 

Grid Size 25km  

FieldConfig Omega1 = 1; Epsilon1 = 1; Omega2 = 1; Epsilon2 = 1 

RhoConfig Beta1 = 0; Beta2 = 0; Epsilon1 = 0; Epsilon2 = 0 

OverdispersionCo-

nfig 

Eta1 = 0; Eta2 = 0 

Bounded spatial 

areas 

Varied by survey. 
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Table 5.3. Settings and data used in the UMM for each run. For more information, see Cao et al. (2017a; 2017b) and 

Tanaka et al. (2019).  

Years 1984 through 2013 

Seasons 4 (Each 3 month time blocks) 

Number of sexes 1 (Averaged across male and female) 

Size range 53 mm to 223 mm carapace length 

Size bins 5 mm (For a total of 34 bins) 

Initial conditions First year size composition assumed from survey data 

Recruitment size 53 mm to 73 mm 

SSB/R relationship None 

Growth Prespecified seasonal growth transition matrices averaged across both sexes; Supplement 

Number of 

commercial fleets 

1 

Commercial fleet 

selectivity at size 

Double logistic averaged across both sexes 

Survey data* MEDMR Ventless Trap Survey 2006-2012 

Spring MEDMR/NHFGD Inshore Bottom Trawl Survey 2001-2013 

Fall MEDMR/NHFGD Inshore Bottom Trawl Survey 2000-2013 

Spring MADMF Bottom Trawl Survey 1984-2013 

Fall MADMF Bottom Trawl Survey 1984-2013 

Spring NEFSC Bottom Trawl Survey 1984-2013 

Fall NEFSC Bottom Trawl Survey 1984-2013 

Survey selectivity  

at size 

Double logistic averaged across both sexes 

Fishing mortality rate Instantaneous rates averaged across both sexes 
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Table 5.3 Continued. 

Natural mortality rate 0.15 year-1 across all size groups, seasons, and sexes 

* Survey indices changed across runs according to Table 5.4. 

 

Table 5.4. The ten UMM model runs in this study outlining which covariates were used in each run. Covariates were 

calculated as described in Table 5.2.  

Run # Type of  

Indices 

Habitat  

Covariates 

Catchability  

Covariates 

1 Design-based None None 

2  

 

 

 

 

 

 

Model-based 

None None 

3 None Temperature 

4 None Depth 

5 None Temperature and Depth 

6 Temperature None 

7 Temperature Depth 

8 Depth None 

9 Depth Temperature 

10 Temperature and Depth None 

 

5.4 Results 

 Results from the six GAMs used to predict bottom temperature values for the six surveys 

used in the delta-GLMM are displayed in Table 5.5. A VIF value of 1.99 between bottom 
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temperature and depth revealed relatively low correlation and thus all nine originally proposed 

combinations of predictor variables (Table 5.5) could be reliably tested. CVs calculated for all 

UMM model runs are presented in Table 5.6. All nine model-based CVs were substantially lower 

than the design-based CV of 0.25, showing an overall decreased dispersion when using modeled 

indices. The lowest model-based CV was 0.02 for Run #s 2, 6, 7, 8, and 10. The highest model-

based CV was 0.06 for Run # 5. 

Retrospective patterns are summarized in Figure 5.2. Mohn’s Rhos for SSB and R improved 

across all nine model runs, whereas Mohn’s Rho for F was worse across all nine runs. Overall, 

two of nine model runs showed improved cumulative retrospective patterns over the design-based. 

It also appears that temperature as a density covariate produces smaller retrospective patterns over 

temperature as a catchability covariate and that the reverse is true for depth. Model fits are 

summarized in Figure 5.3. OFV remained the lowest in the stock assessment when using the 

traditional design-based indices. All other OFVs were between nine and forty-two percent larger. 

However, of the model-based OFVs, the addition of covariates over model-based with no 

covariates yielded significantly improved results: the smallest OFV being for run #5 (temperature 

and depth as catchability covariates).   

 Using absolute Mohn’s Rho summed across SSB, R, and F as the indicator to choose an 

optimal model, the model that utilized depth as a catchability covariate performed best, showing 

an overall improvement of retrospective patterns by 12.6% (0.709 compared to 0.620; Figure 5.2). 

Using OFV as the indicator to choose an optimal model, the design-based model outperformed all 

model-based ones. Therefore, only one optimal model was chosen to compare hindcasted fishery 

status to the design-based: the model that utilized depth alone as a catchability covariate. It is 
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important to note that the optimal model for retrospective patterns had an OFV that was 20.4% 

larger than the design-based OFV (81,614.6 compared to 67,777.7; Figure 5.3) 

 Hindcasted reference abundance and BRPs for both the optimal model and design-based 

model are displayed in Figure 5.4 and Table 5.7). Twenty-fifth percentiles for reference abundance 

were calculated for the optimal and design-based models to be 198.392 million individuals and 

160.347 million individuals, respectively. Seventy-fifth percentiles for reference abundance were 

calculated for the optimal and design-based models to be 260.149 million individuals and 250.865 

million individuals, respectively. For the design based model, the fishery was below the threshold 

1984-1986 and 1988-1989, between the threshold and the target 1987, 1990-1998, and 2004-2006, 

and above the target 1999-2003 and 2007-2013 (Figure 5.4). For the optimal model, the fishery 

was below the threshold 1984, 1987-1989, 2002, and 2004-2006, between the threshold and the 

target 1985-1986, 1990, 1993-1994, 1998-2001, 2003, and 2007-2008, and above the target 1991-

1992, 1995-1997, and 2009-2013 (Figure 5.4). Thus, the design-based and optimal models only 

agreed in 40% of the years. 

Hindcasted reference exploitation rates and BRPs for both the optimal model and design-

based model are displayed in Figure 5.5 and Table 5.8. Twenty-fifth percentiles for reference 

exploitation rates were calculated for the optimal and design-based models to be 0.190 and 0.190, 

respectively. Seventy-fifth percentiles for reference exploitation rates were calculated for the 

optimal and design-based models to be 0.321 and 0.213, respectively. For the design based model, 

exploitation rate was above the threshold 1984, 1991, 1994, 2000, 2002, and 2004-2013, between 

the threshold and the target 1985, 1988-1990, 1995-1997, 1999, and 2003, and below the target 

1986-1987, 1992-1993, 1998, and 2001 (Figure 5.5). For the optimal model, exploitation rate was 

above the threshold 1988, 1990-1991, 1993, 1997, and 2013, between the threshold and the target 
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1984-1987, 1989, 1992, 1994-1996, 2000, 2006, and 2012, and below the target 1998-1999, 2001-

2005, and 2007-2011 (Figure 5.5). Thus, the design-based and optimal models only agreed in 27% 

of the years. 

 

Figure 5.2. Absolute Mohn’s Rho values for each UMM run for SSB, R, and F. Mohn’s Rho values displayed on top 

or inside of their respective boxes. Absolute summed Mohn’s Rho values for each run are at the top of each column. 

The X axis denotes each UMM run as either ‘DB’ (Design-based) or as ‘A/B’, where ‘A’ represents the density 

covariates used in index calculation and ‘B’ represents the catchability covariates used. ‘X’ = None, ‘T’ = Bottom 

Temperature, ‘D’ = Depth, ‘TD’ = Temperature and Depth. 

 

 

 



106 
 

 

Figure 5.3. Differences between OFVs for each UMM run with model-based indices from OFVs of the UMM run 

with design-based indices. The design-based OFV was 67777.7. OFVs for each model-based run are displayed inside 

their respective bars. The X axis denotes each UMM run as ‘A/B’, where ‘A’ represents the density covariates used 

in index calculation and ‘B’ represents the catchability covariates used. ‘X’ = None, ‘T’ = Bottom Temperature, ‘D’ 

= Depth, ‘TD’ = Temperature and Depth. Order of indices left to right represent highest to lowest differences. All 

OFVs from UMM runs using model-based indices were higher than those using the design-based, making the design-

based the optimal model using OFV as the indicator. 
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Figure 5.4. Reference abundance 1984-2013 for the optimal model (above) and design-based model (below). BRPs 

are calculated separately for each model. Numbers are in millions of individuals. 
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Figure 5.5. Reference exploitation rate 1984-2013 for the optimal model (above) and design-based model (below). 

BRPs are calculated separately for each model.  
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Table 5.5. Deviance explained (DE), root mean squared error (RMSE), and data range (Range) of the six generalized 

additive models used to predict bottom temperature from sea surface temperature, latitude, longitude, depth, and month 

for each of the six surveys: MEDMR/NHFGD Inshore Bottom Trawl Spring Survey (MENHSP), MEDMR/NHFGD 

Inshore Bottom Trawl Fall Survey (MENHFL), MADMF Bottom Trawl Spring Survey (MASP), MADMF Bottom 

Trawl Fall Survey (MAFL), the NEFSC Bottom Trawl Spring Survey (NEFSCSP), and the NEFSC Bottom Trawl 

Fall Survey (NEFSCFL).  

 MENHSP MENHFL MASP MAFL NEFSCSP NEFSCFL 

DE (%) 77.8 77.1 84.6 87.5 75.5 81.3 

RMSE (℃) 0.60 0.80 1.19 1.74 1.21 2.00 

Range (℃) 9.40 9.20 17.20 19.00 15.47 21.27 
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Table 5.6. Mean coefficients of variation (CVs) values for each of the six surveys averaged across years from delta-

GLMM output. Run # designates the combination of covariates used in the delta-GLMM (see Table 5.4). SPMENH 

= Spring MEDMR/NHFGD Inshore Bottom Trawl Survey 2001-2013, FLMENH = Fall MEDMR/NHFGD Inshore 

Bottom Trawl Survey 2000-2013, SPMA = Spring MADMF Bottom Trawl Survey 1984-2013, FLMA = Fall 

MADMF Bottom Trawl Survey 1984-2013, SPNEFSC = Spring NEFSC Bottom Trawl Survey 1984-2013, and 

FLNEFSC = Fall NEFSC Bottom Trawl Survey 1984-2013. UMM CV is the mean CV value used in the UMM run 

that is calculated as the average of all six survey CVs and the CV of the MEDMR Ventless Trap Survey 2006-2012: 

0.019.  

 Survey  

Run # SPMENH FLMENH SPMA FLMA SPNEFSC FLNEFSC UMM CV 

1 0.322* 0.266* 0.275* 0.330* 0.259* 0.274* 0.25* 

2 0.009 0.013 0.021 0.035 0.013 0.014 0.02 

3 0.040 0.075 0.033 0.064 0.018 0.024 0.04 

4 0.098 0.016 0.024 0.033 0.014 0.014 0.03 

5 0.083 0.092 0.072 0.125 0.020 0.025 0.06 

6 0.009 0.013 0.021 0.035 0.013 0.014 0.02 

7 0.011 0.016 0.025 0.033 0.015 0.015 0.02 

8 0.009 0.013 0.021 0.035 0.013 0.014 0.02 

9 0.040 0.074 0.035 0.066 0.018 0.024 0.04 

10 0.009 0.013 0.021 0.035 0.013 0.014 0.02 

*design-based CV values 
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Table 5.7. Reference abundance per year 1984-2013 for the optimal model and design-based model. Numbers are in 

millions of individuals. 

Year Optimal Model  

Reference Abundance  

Design-based Model 

Reference Abundance  

1984 101.665 105.158 

1985 223.258 128.635 

1986 252.132 146.381 

1987 191.163 154.289 

1988 159.179 147.811 

1989 182.158 151.702 

1990 248.393 171.712 

1991 281.559 176.182 

1992 265.169 180.269 

1993 214.218 185.529 

1994 202.525 179.969 

1995 290.751 186.378 

1996 322.812 210.048 

1997 295.882 244.946 

1998 258.476 253.434 

1999 249.385 253.756 

2000 255.233 261.687 

2001 226.173 265.435 

2002 194.663 274.046 

2003 199.635 276.414 

2004 163.176 247.395 

2005 159.827 227.777 

2006 193.893 234.428 

2007 219.967 263.925 

2008 214.323 305.328 

2009 276.191 335.388 

2010 352.746 366.041 

2011 437.106 435.538 

2012 456.487 499.419 

2013 403.016 543.324 
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Table 5.8. Reference exploitation rate per year 1984-2013 for the optimal model and design-based model.  

Year Optimal Model  

Reference Exploitation Rate 

Design-based Model 

Reference Exploitation Rate 

1984 0.252 0.226 

1985 0.279 0.197 

1986 0.191 0.184 

1987 0.229 0.182 

1988 0.634 0.200 

1989 0.218 0.202 

1990 0.367 0.204 

1991 0.378 0.216 

1992 0.320 0.190 

1993 0.412 0.184 

1994 0.298 0.217 

1995 0.287 0.205 

1996 0.201 0.193 

1997 0.325 0.212 

1998 0.186 0.190 

1999 0.119 0.206 

2000 0.308 0.228 

2001 0.130 0.189 

2002 0.170 0.218 

2003 0.171 0.204 

2004 0.170 0.271 

2005 0.127 0.260 

2006 0.200 0.260 

2007 0.169 0.218 

2008 0.164 0.217 

2009 0.170 0.225 

2010 0.116 0.244 

2011 0.147 0.223 

2012 0.259 0.250 

2013 0.341 0.239 

 

5.5 Discussion 

 The modelled abundance indices all showed much lower CVs than the traditional indices. 

This accentuates the variance reduction property of the geostatistical delta-GLMM; modelled 

indices tend to be more reliable and precise compared to design-based indices when the 

population’s spatial distribution is variable (Shelton et al. 2014; Thorson et al. 2015). However, 

these indices provided relatively small improvements to retrospective bias and moderate 
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worsening of model fit for the American lobster assessment model. This could be due to survey 

design and coverage of the population, which may be sufficient enough as to capture the variability 

caused by environmental covariates that this study was explicitly estimating (Yu et al. 2013; 

Thorson et al. 2015). 

The retrospective patterns for SSB, R, and F showed the most improvement when depth 

alone was used in the delta-GLMM as a catchability covariate. The second best model (which still 

had better retrospective patterns compared to the design-based) used temperature as a density 

covariate and depth as a catchability covariate. Temperature has been shown to be an important 

indicator of lobster habitat in the GOM (Boudreau et al. 2015; Tanaka et al. 2019), which would 

account for its effect on population density. Lobsters migrate inshore during the summer months 

to spawn and feed and migrate offshore in the winter months to deeper waters (Uzmann et al. 

1977). Lobsters feed less in the winter months when they are in deeper water (Ennis 1973), and 

are thus less prompted to seek out food, having an overall lower mobility and are generally more 

sheltered (McLeese & Wilder 1958; Ennis, G. 1973; Tremblay & Smith 2002): this could be why 

depth has an effect on lobster catchability. 

 It is important to note that even though incorporation of these variables improves 

retrospective patterns in the stock assessment, this is at the cost of decreased model fit. The 

disagreement between retrospective patterns and OFVs could point to robust survey designs that 

accurately capture changes in population density when spatiotemporal changes in catchability are 

accounted for. The American lobster stock in the GOM/GBK LME is unique compared to most 

other marine stocks. They are privileged with near-full spatial coverage of multiple fishery-

independent surveys over a long time series (Chen et al. 2006b). These high-intensity sampling 

efforts seem capable of accurately tracking population changes over space and time independent 
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of explicit consideration of environmental effects. The strength of geostatistical models such as 

the delta-GLMM comes from their ability to extrapolate into low sampled areas and times using 

statistical assumptions of population densities and often using environmental covariates (Thorson 

et al. 2015). This ability appears fruitless with a well-surveyed species like American lobster, 

whose fine-scale population densities appear to be well-documented already from surveys that 

encompass both their inshore and offshore ranges (Chen et al. 2006b).   

This study cannot conclude that the implementation of abundance indices that incorporate 

environmental covariates is necessary for the GOM/GBK American lobster stock assessment, even 

though the indices themselves appear to be made more precise by the process. It is assumed that 

the consideration of environmental covariates means an improvement over current methodology, 

especially considering the variance reduction of the delta-GLMM. However, this study concludes 

that more precise modelled abundance indices may not necessarily improve stock assessment if 

the survey(s) that inform the assessment are robust enough to capture changes caused by the 

covariates. Additionally, this appears to highlight that model-based abundance indices are not a 

preferable substitute over improvements to survey methodology.  

 The overall general trends of hindcasted reference abundance between the optimal and 

design-based model were similar, but the yearly variability in the optimal model was greater, 

causing the disagreements of fishery status in many of the years (Figure 5.4). Peculiarly, 

hindcasted exploitation rates between the optimal and design-based models were significantly 

different (Figure 5.5). This is also reflected in the higher Mohn’s Rho value for F in the optimal 

model (Figure 5.2). These results highlight the need to conceptualize hindcasted “what-if” 

scenarios when comparing modelled products. If these new indices had historically always been 
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used in place of the design-based indices, there would have been drastically different changes in 

management of the fishery.  

A similar approach should be followed for any target species or any stock assessment that 

utilizes fishery-independent abundance indices as assessment input. This framework has the 

potential to improve current abundance indices while incorporating environmental covariates and 

would mean little to no impact on current stock assessment model design. Environmentally 

informed abundance indices have been shown to improve current interpretations of survey catch 

rates in abundance index calculation in other studies (Hampton et al. 1998; Wilberg et al. 2009), 

but there exists a lack of explicit incorporation of these indices in stock assessments (Haltuch et 

al. 2009; Skern-Mauritzen et al. 2016). 

As climate change affects global fisheries more and more, the need to determine its effects 

on populations becomes ever more crucial concerning assessment purposes (Hollowed et al. 2009; 

Maunder & Piner 2015). Environmental covariates can be utilized in stock assessments in areas 

other than abundance index calculation. For example, environmental covariates can be used in 

calculation of SSB/R relationships in both Ricker and Beverton-Holt models (Planque & Frédou 

1999; Subbey et al. 2014), as well as for recruitment calculations directly (Tanaka et al. 2019). 

Time-variant growth as a function of environmental covariates has also been utilized (Holsman et 

al. 2016). The need to determine the necessity of these relationships in stock assessment models is 

not negated if results from the discussed framework prove the way they did for lobster. The results 

from the lobster case study could show a robust survey methodology (well-designed and well-

monitored) that remains capable of accurately capturing population changes; not null relationships 

between lobster with temperature and depth. This is an important distinction.  
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The case study presented here with American lobster has demonstrated that well-surveyed 

species may not benefit from using geostatistical models like the delta-GLMM to track abundance, 

but actually may produce a hindrance and overall less reliable assessment model output. This 

conclusion will not be universal. Model-based abundance indices are not intrinsically better than 

design-based indices and should be tested for each species individually. Accepting modelled 

indices without appropriate testing/simulations is highly cautioned against. The necessity for 

modelled indices will shift with different species and different fisheries depending on whether 

these dynamics are already captured by other parameters and/or data in the assessment model 

indirectly. In order to appropriately determine this, a procedure similar to the framework outlined 

in this paper must be completed. This framework is one of many alternatives and remains relatively 

easy to employ in most species’ assessment frameworks.  
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CHAPTER 6: COMPARISON OF STOCHASTIC AND THERMALLY EXPLICIT 

RECRUITMENT PROJECTIONS FOR GULF OF MAINE AMERICAN LOBSTER  

6.1 Abstract  

 Whether to include environmental covariates in recruitment estimations has been debated 

for some time. Recent research suggests that life history strategy may be a deciding factor in 

determining species-specific requirements. American lobster (Homarus americanus) are an 

opportunistic species, having a relatively short pre-recruit survival window. Thus, thermal habitat 

has substantial and established effects on early development and mortality. To test whether 

inclusion of these effects in recruitment estimations leads to significant differences in stock 

forecasts, this study sees the novel implementation of a forecasting model for Gulf of Maine 

(GOM) lobster that can project future recruitment and subsequent total biomass under both 

stochastic and environmentally-explicit recruitment scenarios. Results indicate substantial 

differences in recruitment estimations, with rising thermal habitat fueling a temporally 

compounding effect that, if ignored, may lead to spurious stock assumptions and erroneous 

management measures. In contrast, when results are compared to the most recent lobster stock 

assessment, temperature alone as a covariate may overestimate recruitments. This study highlights 

the importance of testing the inclusion of environmental covariates in recruitment estimations and 

predictions. 

6.2 Introduction 

The need for environmentally explicit effects in the stock assessment process has been 

questioned and challenged for a long time (Xu et al. 2017). Foremost, a reliable process to 

determine effective relationships of environment to life history is often incredibly challenging, 

requiring large data sets (Plagányi et al. 2019). Even so, the possibility of spurious conclusions of 
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environmental impacts is often imminent (Haltuch et al. 2019), and the omission of these 

relationships has been argued for concerning species with typically gadoid life histories (Basson 

1999, Haltuch et al. 2019). In those gadoid case studies, there was often no substantial impact to 

management when recruitment was environmentally informed in the stock assessment process 

(Basson 1999). However, in species with non-gadoid life histories (like many demersal fish and 

crustaceans), the incorporation of these covariates to inform life history, especially recruitment 

processes, has had clear benefits (Xu et al. 2017, Haltuch et al. 2019). Recruitment predictions for 

yellowtail flounder were shown to have improved with the addition of environmental covariates 

(Xu et al. 2017), and Haltuch et al. (2019) argues that life history processes are a deciding factor 

concerning whether or not inclusion of environmental effects on recruitment processes in stock 

assessment and forecasting is necessary. 

Haltuch et al. (2019) postulates that species having opportunistic life history strategies and 

thus having relatively short pre-recruit survival windows, have better defined pressure of 

environmental covariates, like temperature, on recruitment processes. The incorporation of this 

force on early life histories usually can lead to better informed and more accurate recruitment 

predictions and stock forecasts (Haltuch et al. 2019). In extreme cases, lack of these environmental 

responses on recruitment processes can lead to overfishing and stock collapse (Tommasi et al. 

2016). It is thus imperative to test these effects on a case-by-case basis (Haltuch et al. 2019).  

 American lobster (Homarus americanus) of the Gulf of Maine (GOM) have a life history 

strategy conducive of a small pre-recruit survival window associated with high mortality (James-

Pirri & Cobb 2000), and are thus are a principal case study to test inclusion of environmental 

covariates on recruitment predictions. Warming waters have been directly linked with American 

lobster movements (Mills et al. 2013), growth (Staples et al. 2019), size-at-maturity (Aiken 1977; 
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Le Bris et al. 2017), mortality (Mills et al. 2013), and recruitment (Goode et al. 2019; Tanaka et 

al. 2019). Notwithstanding, lobster stock assessment has only recently begun to incorporate 

environmental effects in modelling (ASMFC 2020), but does not use temperature as a covariate to 

inform recruitment projections (ASMFC 2020).  

 Herein, we compare estimated biomass trends produced by a forecasting model for 

American lobster of the GOM with and without thermally informed recruitment dynamics to show 

the implicit risks of omission of key environmental influences in the forecasting process. 

Additionally, this represents the implementation of a novel stock forecasting model for American 

lobster in the GOM.  

6.3 Methods 

6.3.1 The Stock Assessment Model 

 The University of Maine Lobster Stock Assessment Model (UMM) is a seasonal, 

integrated, length-structured assessment model developed by Chen et al. (2005) and modified by 

ASMFC (2015). This model is used in the American lobster (Homarus americanus) stock 

assessment in the Northeast U.S.A. by the Atlantic States Marine Fisheries Commission (ASMFC 

2015, 2020). The version used here was further modified by Tanaka et al. (2019). The UMM’s 

internal population dynamics equation is: 

 𝑁𝑌,𝑆 = 𝑁𝑌,𝑆−1 × 𝐺𝑌,𝑆 × 𝑒−𝐹𝑌,𝑆 + 𝑀𝑌,𝑆 + 𝑅𝑌,𝑆 (6.1) 

where NY,S is a vector of lobster in each of 35 size bins in year Y and season S, G is the seasonal 

growth transition matrix, F is the seasonal fishing mortality value, M is the seasonal natural 

mortality value, and R is a vector of recruitment abundance to each size bin (Chen et al. 2005). 

There are a total of four seasons in the model: winter (January – March; S = 1), spring (April – 
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June; S = 2), summer (July – September; S = 3), and fall (October – December; S = 4). For more 

details of the model, see Chen et al. (2005), ASMFC (2015, 2020), Tanaka et al. (2019), or contact 

the Chen Lab at Stony Brook University. This model fits to input fishery-dependent and fishery-

independent data to produce estimates of abundance/biomass over the time series 1984-2013 in 

each of four seasons and overall size bins (53 millimeters to 223 millimeters in 5 millimeter 

increments) as well as commercial spawning biomass, fishery selectivity, and fishing mortality.  

6.3.2 The Forecasting Model 

 A lobster forecasting model was developed to work in tandem with the stock assessment 

model in section 6.2.1. This model uses terminal year abundance values from the UMM to 

iteratively produce seasonal abundance and recruitment estimates. The forecasting model’s 

population dynamics equation follows that of the stock assessment model (equation 6.1). Here, 

NY,S is estimated using a terminal value of the abundance vector from the UMM (NY,S-1). GY,S is 

replaced with GY,S-4 and MY,S is replaced with MY,S-4 from the UMM. Growth and maturity change 

over seasons, but not years and so these replacements ensure seasonal values of G and M match in 

the UMM and in the forecasts. In the forecasting model, FY,S is calculated as:  

 𝐹𝑌,𝑆 = 𝑓𝑌,𝑆 × 𝐶 (6.2) 

where C represents a vector of commercial selectivity across each of the lobster size bins estimated 

from the UMM and fY,S is a user-defined value of seasonal fishing mortality that is constant across 

years. Recall that FY,S is a vector of values over size bins, but fY,S is a single point value. RY,S can 

be estimated one of two ways in the model. Option one is a seasonal-based stochastic 

approximation around a mean and option two is a covariate-dependent prediction based on an 

environmentally dependent spawning biomass/recruitment relationship. In the model, NY,S is 
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estimated 100 times before a final average is taken and a seasonal biomass in metric tons (mt) over 

the time series (BY,S) is calculated as: 

 𝐵𝑌,𝑆 = ∑ 𝛾𝑁𝑌,𝑆
𝜃  

(6.3) 

where γ and θ are coefficients of the traditional length-weight relationship taken from the UMM. 

In this study, γ = -6.98 and θ = 2.96 (ASMFC 2015; 2020).  

6.3.3 Forecasting Model Specifications 

The UMM was run with the same model specifications as in Hodgdon et al. (2020) from 

1984 through 2013. UMM settings can be found in the supplementary material (Table S6.1). The 

UMM was only run once and the same terminal year data for NY,S-1, GY,S-4, and MY,S-4 was used in 

both forecasting model scenarios. For each scenario, the forecast model was run for a total of 20 

time steps, representing a total of five years each with four seasons from winter 2014 to fall 2018. 

In both forecasting model scenarios, fY,S in equation 6.2 was kept constant as terminal year output 

from the UMM. That is, each of the four seasons iteratively kept the same value of fY,S throughout 

the forecast in all runs of the model. This meant that any potential future effects from shifting 

fishing mortality would not affect results. Thus, the only difference in forecasting model starting 

values and the sole proprietor of any potential differences in output was the calculation of 

recruitment.  

 In scenario 1, RY,S was randomly selected about a mean representative of the terminal five 

years of recruitment from the UMM: 

 𝑅𝑌,𝑆 = 𝐷(𝑚(𝑅𝑇−4:𝑇), 𝜎2) × 𝑃 (6.4) 
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𝑃 = {

0.000
0.000

      
𝑓𝑜𝑟 𝑆 = 1
𝑓𝑜𝑟 𝑆 = 2

0.667
0.333

      
𝑓𝑜𝑟 𝑆 = 3
𝑓𝑜𝑟 𝑆 = 4

 

(6.5) 

where D is the normal distribution truncated by upper and lower boundary probabilities of 0.975 

and 0.025, respectively, with σ2 = 0.25, m(RT-4:T) is the mean recruitment of four years before the 

terminal year in the UMM (T-4) to the terminal year in the UMM (T), representing a mean of the 

final five years of recruitment calculation from the UMM, and P is the proportion of the yearly 

recruitment RY of each season S, with values changing across the four seasons as shown in equation 

6.5.  

In scenario 2, a thermally explicit spawning biomass/recruitment relationship for American 

lobster was described in Hodgdon et al. (Submitted). Hodgdon et al. (Submitted) determined a 3-5 

year lagged relationship of spawning biomass to recruitment using two environmental covariates: 

the bottom temperature (℃) during the season immediately following lobster biological 

recruitment (LM) and the bottom temperature (℃) over the period from biological recruitment to 

fisheries recruitment (DM). These parameters were meant to capture effects of thermal habitat on 

early stage mortality and developmental mortality, respectively (Hodgdon et al. Submitted). These 

covariates (LM and DM) were used on an environmentally explicit Beverton-Holt equation to link 

spawning biomass and recruitment: 

 
𝑅𝑌 =

𝛼 ⋅  𝑆𝑆𝐵𝑚(𝑌−3:𝑌−5)

(1 +  𝛽 ⋅  𝑆𝑆𝐵𝑚(𝑌−3:𝑌−5))
 ⋅  𝑒   𝛿1𝐿𝑀𝑚(𝑌−3:𝑌−5) + 𝛿2𝐷𝑀𝑚(𝑌−3:𝑌−5) 

(6.6) 

where RY is recruitment of year Y (sum of all S), SSBm(Y-3:Y-5) is the spawning stock biomass 

averaged from years Y-3 to Y-5 (representing a lagged relationship of 3 to 5 years), and α, β, δ1, 

and δ2 are coefficients (Subbey et al. 2014; Hodgdon et al. Submitted). Following the methods of 
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Hodgdon et al. (Submitted), this relationship was deconstructed into a generalized additive model 

(GAM) following the form:  

𝑙𝑛(
𝑅𝑌

𝑆𝑆𝐵𝑚(𝑌−3:𝑌−5)
) ~ −𝑙𝑛(

1

1 + 𝑆𝑆𝐵𝑚(𝑌−3:𝑌−5)
)  +  𝐿𝑀𝑚(𝑌−3:𝑌−5)  + 𝐷𝑀𝑚(𝑌−3:𝑌−5) 

(6.7) 

where ln is the natural log.  

To utilize this relationship in the forecasting model, LM and DM were calculated from 

environmental data taken from University of Massachusetts Dartmouth School for Marine Science 

and Technology’s Finite Volume Community Ocean Model (FVCOM) (Chen et al. 2006a) and 

SSB values were taken from UMM output. The GAM was constructed in R and the predict 

function in the base R environment was used to iteratively estimate recruitment in the forecasting 

model.  

6.3.4 Comparison of Forecasting Scenarios 

Scenarios 1 and 2 seasonal biomass predictions BY,S were compared using a d-bar analysis 

and a slope comparison analysis to determine differences in values and trends, respectively. For 

the d-bar analysis, the test statistic Td was calculated as: 

 
𝑇𝑑 =

𝑚(𝐵1,𝑌,𝑆 − 𝐵2,𝑌,𝑆)

𝑠𝑑(𝐵1,𝑌,𝑆 − 𝐵2,𝑌,𝑆)/√𝑌𝑆 − 1
 

(6.8) 

where m(B1,Y,S – B2,Y,S) is the mean of the paired differences between scenario 1 and 2 over all 

seasons S in all years Y (all consecutive time steps), sd(B1,Y,S – B2,Y,S) is the standard deviation of 

the paired differences between scenario 1 and scenario 2 over all seasons S in all years Y, and YS 

represents the number of total time steps in the forecast from winter 2014 to fall 2018 (YS = 20). 
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This test statistic was compared to the critical value Td,Crit(α = 0.05; df = 19) and a p-value was 

calculated to determine significance. 

 For the linear slope comparison, the test statistic TL was calculated as: 

 
𝑇𝐿 =

𝑀𝐵𝑌,𝑆,1 − 𝑀𝐵𝑌,𝑆,2

√𝑆𝐵𝑌,𝑆,1
2 − 𝑆𝐵𝑌,𝑆,2

2

 
(6.9) 

 
𝑆𝐵 =

𝑠𝑒(𝐵𝑌,𝑆)

𝑠𝑑(𝐵𝑌,𝑆)√𝑌𝑆 − 1
 

(6.10) 

where MBY,S,1 – MBY,S,2 is the difference in slopes of the seasonal biomass predictions between 

scenarios 1 and 2, se(BY,S) is the standard error of the predicted B values over the forecasted time 

series, sd(BY,S) is the standard deviation of the predicted B values over the forecasted time series, 

and YS represents the number of total time steps in the forecast from winter 2014 to fall 2018 (YS 

= 20). This test statistic was compared to the critical value TL,Crit(α = 0.05; df = 36) and a p-value 

was calculated to determine significance. 

 Additionally, if the slope comparison determined significant differences between the 

scenarios, a subsequent analysis would be run called a shrinking-window slope analysis, which 

would determine if there was a compounding effect of changing slope over time. This analysis 

would follow the same procedure as in equations 6.9 and 6.10, but for forecasted years 1 through 

4, 1 through 3, and 1 through 2. Changes in significance (p-values) in each would determine any 

compounding effects. Retrospective prediction patterns, like this shrinking-window slope analysis 

are strongly encouraged in comparison of environmentally informed forecasts (Xu et al. 2017).  
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6.3.5 Comparison to Stock Assessment  

 Recruitment data generated for both scenarios in the forecasting framework will be for 

years 2014-2018. The most recent lobster stock assessment model (ASMFC 2020) has model-

generated recruitment data for this period. Therefore, a slope comparison analysis similar to what 

was outlined in section 6.2.4 will be used to compare recruitment time series between scenarios to 

the recruitment time series from ASMFC (2020). Here, absolute values matter less, as it is known 

the relative magnitude between the two model versions (ASMFC 2020 and Tanaka et al. 2019) 

differ. Trends, however, should be similar. The recruitment data from ASMFC (2020), even 

though they are model-generated, can be thought of “true” data and hence this comparison will 

allow for both a quantification of forecasting model accuracy and a way to determine which of 

scenarios 1 and 2 are more biologically realistic.  

6.4 Results 

 American lobster (Homarus americanus) total biomass B values near the start of the 

forecasted time series were seemingly similar between scenarios, but became more spread over 

time. This difference is statistically significant as shown in Table 6.1, where Td,Crit < Td and p < α 

= 0.05. These differences appear to come from differences across years, whereas general 

population biomass patterns within a year, were very similar between scenarios.  

Both scenarios in the forecasting model produced similar seasonal patterns over the time 

series 2014-2018 (Figure 6.1). In the winter and spring seasons, there is no recruitment and no 

growth. Thus, during this time, the only forces acting on the population are fishing and natural 

mortality. Hence, during this time, population levels fall. In the summer and fall seasons, there are 

molting events and recruitment events, both adding to the biomass of the population. However, 

natural mortality still persists and fishing mortality actually rises during the height of the fishing 
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year. The amount of mortality is seemingly overcome by growth and recruitment, as during the 

winter and fall months, the population biomass rises.  

The trend over years for scenario 1 steadily declined at an average slope of MB1 = -2917.18 

mt/S, whereas the trend over years for scenario 2 steadily rose at an average slope of MB2 = 7498.59 

mt/S (Table 6.2). This difference in trends was also statistically significant, as evident in Table 6.1, 

where TL,Crit < TL and p < α = 0.05. The shrinking-window slope comparison retrospective analysis 

(Table 6.2; Figure 6.1) revealed that longer time series of forecasts led to total biomass B 

estimations that were higher in scenario 2 (Table 6.1). This is evident as the values of TL – TL,Crit 

became larger and p-values became smaller as additional years were added to the forecast. There 

was constant significant differences in slopes, however, across all forecasted time series between 

scenarios. This indicates that the omission of temperature effects on recruitment consistently leads 

to an underestimation of total lobster biomass B, but that there also exists temporal amplification 

effects, where longer time series compound this difference, most likely due to the positive 

relationship lobster recruitment has with rising temperatures (Hodgdon et al. Submitted).  

The recruitment predictions generated for both scenarios by the forecasting model were 

significantly different from those generated by ASMFC (2020) (Table 6.3). When slopes for 

scenarios 1 and 2 were rescaled to match the range of ASMFC (2020), scenario 1 had a smaller 

rescaled slope, whereas scenario 2 had a larger rescaled slope (Table 6.4). Recruitment data from 

ASMFC (2020) had more year-to-year variation in the recruitment pattern; noise generated from 

complex real-world patterns affecting recruitment beyond temperature (Figure 6.2). This may 

indicate that the addition of temperature in recruitment predictions increases the overall 

recruitment trend, but that factors other than temperature lower this trend and produce more 

variation, leading to the recruitment pattern seen in ASMFC (2020) (Figure 6.2).  
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Figure 6.1. Predicted total lobster biomass B estimates in 1000 metric tons (mt) from the forecasting model produced 

under scenario 1 (orange) and scenario 2 (blue). Seasonal estimates for each scenario (solid lines) are consistent 

between all four plots, but linear regressions for each scenario (dotted lines) vary according to the shrinking-window 

slope analysis. Each plot title denotes the terminal year of the forecast that was used to produce the accompanying 

linear regression lines. For more information, see section 6.2.4 or Table 6.2. Tick marks of year denote the start of 

that year.  
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Figure 6.2. Predicted lobster recruitment (millions) from the forecasting model produced under scenario 1 (orange) 

and scenario 2 (blue) and for the recruitment time series generated in ASMFC (2020) (green). Yearly values are solid 

lines and linear regressions are dotted lines. Note the different axes for the scenarios (left) and ASMFC (2020) (right). 
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Table 6.1. Test statistics from the d-bar analysis and slope comparisons. The d-bar analysis was done to compare 

calculated biomass B values over the time series between scenarios 1 and 2. The slope comparisons were done to 

compare linear slopes MB between scenarios 1 and 2. Slope Comparison Full was an analysis comparing the slopes 

between scenarios 1 and 2 of a linear regression of biomass B over all seasons in all years of the forecast for a total of 

20 data points. Slope Comparison 2018 did the same, but only for the first four years of the forecast (16 data points). 

Slope Comparison 2017 did the same, but only for the first three years of the forecast (12 data points). Slope 

Comparison 2016 did the same, but only for the first two years of the forecast (8 data points). In the d-bar and all 

Slope Comparison analyses, the critical values (Td,Crit and TL,Crit for the d-bar analysis and slope comparison, 

respectively) were smaller than the test statistics (Td and TL for the d-bar analysis and slope comparison, respectively), 

meaning that the values and trends between scenarios were statistically different. Significance levels are shown below 

using approximations of p-values. When terminal years were removed from the forecast in the consecutive slope 

comparison analyses, the significance lowered as the difference between TL,Crit and TL became smaller and smaller and 

the p-value became higher and higher.  

Test Test Statistic Value Statistical Significance 

d-bar Td 3.891 Yes 

Td,Crit 2.861 

p-value 0.001 

Slope Comparison Full TL 35.939 Yes 

TL,Crit 2.028 

p-value < 0.001 

Slope Comparison 

2018 

TL 29.816 Yes 

TL,Crit 2.048 

p-value < 0.001 

Slope Comparison 

2017 

TL 13.644 Yes 

TL,Crit 2.086 

p-value < 0.001 

Slope Comparison 

2016 

TL 2.211 Yes 

TL,Crit 2.179 

p-value 0.047 
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Table 6.2. Slopes MB in 1000 metric tons of biomass B per season s for both scenarios. “Full” are the slopes of a 

linear regression of biomass B over all seasons in all years of the forecast for a total of 20 data points. “To 2018” is 

the same, but only for the first four years of the forecast (16 data points). “To 2017” is the same, but only for the first 

three years of the forecast (12 data points). “To 2016” is the same, but only for the first two years of the forecast (8 

data points).  

Forecasted Time Series Scenario 1 Scenario 2 

Full -2.92 7.49 

To 2018 -4.03 5.33 

To 2017 -5.18 0.80 

To 2016 -5.78 -4.50 

 

Table 6.3. Test statistics from the slope comparison analyses between each of scenario 1 and 2 with the recruitment 

data from ASMFC (2020). In both slope comparison analyses, the critical values (TL,Crit) were smaller than the test 

statistics (TL), meaning that the trends between each scenario and ASMFC (2020) were statistically different. 

Significance levels are shown below using approximations of p-values.  

Test Test Statistic Value Statistical Significance 

Scenario 1 to  

ASMFC 2020 

TL 9.146 Yes 

TL,Crit 2.447 

p-value < 0.000 

Scenario 2 to  

ASMFC 2020 

TL 223.352 Yes 

TL,Crit 2.447 

p-value < 0.000 

 

Table 6.4. Slopes (millions/year) and rescaled slopes of forecasted recruitment from scenarios 1 and 2 compared to 

the slope of recruitment from ASMFC (2020).  

Scenario Slope Rescaled Slope 

Scenario 1 2.500 0.547 

Scenario 2 147.100 19.397 

ASMFC 2020 10.200 
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6.5 Discussion 

 Including temperature effects in the American lobster (Homarus americanus) stock 

recruitment process does significantly change forecasted biomass estimations. These differences 

seem to be the result of a temporally compounding effect that continuously underestimates 

recruitment predictions in an environmentally-independent scenario. These relative improvements 

seem to support Haltuch et al. (2019): lobster have a well-defined environmental pressure on early 

life stage development and mortality (Wahle & Steneck 1991, James-Pirri & Cobb 2000) and thus 

recruitment estimations appear to more heavily rely on environmental covariates. These results are 

also in accordance with results from Tanaka et al. (2019), which shows that environmentally-

explicit recruitment estimations in the lobster stock assessment model were higher than those 

without environmental impacts. Seasonally, trends between scenarios were similar, but the 

addition of temperature in the forecasting model seemed to off-balance the mortality/recruitment 

relation.  

In the environmentally-independent scenario (scenario 1), the combination of fishing and 

natural mortality over the year outweighs the amount of recruitment in the summer and fall months 

and so the trend of biomass over years slowly declines. However, the opposite effect is seen when 

thermal habitat is considered in the recruitment estimations. Here, the recruitment sizes are large 

enough to outweigh the loss due to fishing and natural mortality and so the population steadily 

rises over time. Additionally, from the shrinking window slope analysis, it is seen that the trend 

early in the time series was downward, but became positive over time. This is most likely due to 

the rising temperatures over years in the model, increasing recruitment estimations each year in 

consecutive forecasted years. Atypically to many case studies (Brunel & Boucher 2007), climate 

change appears to benefit the GOM lobster stock by increasing recruitment sizes.  
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This peculiar relationship is not unique to this study. Other studies of GOM lobster have 

shown similar conclusions that rising temperatures may lead to overall higher recruitment sizes 

and a larger range of suitable habitat (Goode et al. 2019, Tanaka et al. 2019). Hence, the lack of 

environmental covariates on recruitment estimations may not lead to overfishing (Tommasi et al. 

2016), but rather may be the more cautious approach for GOM lobster. Yet, the cautious approach 

is not always the superior approach concerning fisheries management (Walters 1998). One of the 

most managerially crucial findings of this study is the temporally compounding effect. In iterative 

estimations of recruitment, the rising temperatures of the GOM seem to further divide recruitment 

and total biomass estimations from the environmentally-independent scenario perpetually. The 

longer the time series of the forecast, the more dangerous it becomes to accept results from the 

environmentally-independent model. Over enough time, those estimations become less 

meaningful and increasingly spurious. In this study, the environmentally-independent forecasts are 

more conservative. However, this does not mean they are more accurate.  

Perhaps the most confounding result of the study is that both scenarios were significantly 

different from the recruitment estimated by the latest lobster stock assessment (ASMFC 2020). 

The trend of recruitment 2014-2018 from ASMFC (2020) showed an increasing trend over time 

with a lot of noise. Both scenarios in this study had less noise, but differed in their relation to these 

“true” recruitment estimates, with scenario 1 having a smaller relative slope, and scenario 2 having 

a larger relative slope. The noise in the ASMFC (2020) recruitment data alludes to more complex 

environmental relationships than what was used for forecasting in this study. Spatiotemporal 

fluctuations in predator-prey interactions, changing abiotics such as salinity at depth, and of course 

shifting fishing pressures will all impact the lobster stock (ASMFC 2015, 2020, Boudreau et al. 

2015, Hodgdon et al. 2020), but these effects were not accounted for in this study. Perhaps then, it 
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is reasonable to suggest that the combined effects from these covariates would have a negative 

impact on recruitment estimates than just temperature alone because just this solitary variable 

seemed to overestimate recruitment. Evidently, there are many variables impacting fisheries 

recruitment estimations for GOM lobster (Chang et al. 2010, Goode et al. 2019, Tanaka et al. 2019, 

Hodgdon et al. 2021). Accounting for none of these will yield relatively static stochastic 

estimations (scenario 1) which under-predict “true” recruitment values. However, due to the net 

positive effect of rising temperatures on recruitment estimations for lobster, including temperature 

alone as a predictive covariate (scenario 2) may overestimate recruitment values. This study 

therefore cannot conclude which scenario is more appropriate for management use, only that the 

most realistic forecasts for lobster recruitment lie somewhere between the two scenarios tested.  

Additional future research should target spatial relationships and the inclusion of additional 

covariates in estimations. Spawning biomass/recruitment estimations for lobster have been 

proposed to be spatially explicit (Xue et al. 2008, Chang et al. 2015), but the relationship used in 

this study is stock-wide so as to be incorporated into the stock assessment process (which is itself 

not spatially explicit). Regardless, spatially explicit forecasted recruitment estimations have the 

potential to improve prediction capacity and reveal more detailed spatiotemporal trends in the 

temperature-recruitment process. As previously stated, additional variables other than thermal 

habitat may affect recruitment estimations for GOM lobster. A framework that includes other 

environmental effects on both recruitment estimations and other aspects of the stock assessment 

and forecasting processes in combination with more complex spatiotemporal relationships have 

the potential to greatly enhance lobster assessment in the GOM.  

Inclusion of environmental covariates in recruitment estimations for GOM lobster revealed 

significant differences in forecasted stock estimations, but inclusion may overestimate true 
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recruitment patterns whereas exclusion may under-estimate true recruitment patterns. This 

conclusion highlights the need for further research on lobster-environment relationships. 

Furthermore, there is a significant need to test inclusion of environmental covariates on many 

individual species recruitment estimations (Haltuch et al. 2019), but it may be more difficult. 

American lobster are a well-studied, well-surveyed, relatively data-rich species (Chen et al. 2006b, 

ASMFC 2015, Hodgdon et al. 2020), meaning that determination of environmental covariates in 

the recruitment estimation process may be more challenging for other species with less data 

(Plaganyi et al. 2019). However, given the ever-changing world these species live in, there is a 

serious urgency to test inclusions on a case-by-case basis (Haltuch et al. 2019).  
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CHAPTER 7: CONSEQUENCES OF MODEL ASSUMPTIONS WHEN PROJECTING 

HABITAT SUITABILITY: A CAUTION OF FORECASTING UNDER 

UNCERTAINTIES 

7.1 Abstract 

 Climate change is continuing to influence spatial shifts of many marine species by causing 

changes to their respective habitats. Habitat suitability as a function of changing environmental 

parameters is a common method of mapping these changes in habitat over time. The types of 

models used for this process (e.g. bioclimate models) can be used for projecting habitat if 

appropriate forecasted environmental data are used. However, the input data for this process must 

be carefully selected as less reliable results can incite mis-management. Thus, a knowledge of the 

organism and its environment must be known a priori. This paper demonstrates that these 

assumptions about a species’ life history and the environment are critical when applying certain 

types of bioclimate models that utilize habitat suitability indices. Inappropriate assumptions can 

lead to model results that are not representative of environmental and biological realities. Using 

American lobster (Homarus americanus) of the Gulf of Maine as a case study, it is shown that the 

choice of extrapolation data, spatial scale, environmental parameters, and appropriate subsetting 

of the population based on life history are all key factors in determining appropriate biological 

realism necessary for robust bioclimate model results. 

7.2 Introduction 

With the continuing pressure of global climate change, many species have adapted by 

shifting their distributions to new habitats that provide conditions within tolerable limits 

behaviorally and physiologically (Perry et al. 2005; Hazen et al. 2012; Anderson et al. 2013; Shuetz 

et al. 2018). This adaptation has caused cascading effects like altering predator and prey 
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interactions (Stebbing et al. 2002), causing local extirpation due to habitat reduction (Mantyka-

pringle et al. 2011) and modifying fisheries and dependent communities (Engelhard et al. 2013; 

Rogers et al. 2019). The pace of climate change is not expected to abate in either the world ocean 

(Hayhoe et al. 2017) or in the context of the US Northeast Continental shelf (Saba et al. 2016), the 

study system of this analysis. Therefore, it is instructive for both current and future management 

planning to examine the predicted changes in habitat associated with ecologically and 

economically important species.  

A commonly used method for projecting species habitat is a bioclimate envelope model, 

known variously as a bioclimate model, habitat suitability index (HSI) model, or simply habitat 

model (Mbogga et al. 2010; Watling et al. 2013; Tanaka and Chen 2016; Xue et al. 2017). There 

is still much variability in these models, but this study focuses on the type of model used in Tanaka 

and Chen (2015; 2016) that relies on relationships of target species abundance to environmental 

and biological variables to calculate what are known as suitability indices (SIs). SIs represent 

ranges of suitability of a specific habitat condition (e.g., temperature) on a scale of zero 

(unsuitable) to one (optimally suitable) (McMahon 1983; Xue et al. 2017). HSIs can be estimated 

from an average of SIs of the environmental and biological variables considered (McMahon 1983; 

Xue et al. 2017). Like SIs, HSIs vary over both space and time with changing conditions and are 

on a scale of zero to one. However, HSIs differ from SIs in that they represent the total suitability 

of a given habitat (McMahon 1983; Franklin 2010). Using environmental data at the appropriate 

temporal and spatial resolution, changes of HSI over both space and time can be estimated (Tanaka 

& Chen 2016). This creates a bioclimate envelope or a distribution of suitable habitat for a given 

species (Cheung et al. 2009; Tanaka & Chen 2016). With predictable relationships over time and 

space between target species and environmental/biological conditions, bioclimate envelopes in the 
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future can be predicted from forecasted conditions (Lawler et al. 2009), which can be used to infer 

changes in species distributions.   

Within this modeling framework there are many assumptions about environmental and 

biological conditions, predictors, and life history of the target species that must be considered 

(Roloff & Kernohan 1999; Luoto et al. 2005; Huntley et al. 2010; Xue et al. 2017; Shuetz et al. 

2018). These considerations take the form of deciding the type of environmental data used, 

determining the necessary environmental covariates, appropriate spatial/temporal coverage, and 

whether results are applicable to the entire population or only specific age/length subsets. These 

decisions and assumptions should be made so as to be most representative of the natural setting: a 

biological and environmental reality that is assumed true by the researcher a priori. This is 

important as there are issues with model fitting that can lead to overly optimistic characterizations 

of model performance (i.e. model uncertainties). Unrealistic assumptions can often lead to what 

appear to be reliable and robust predictions, but are not representative of the natural setting 

(Kuparinen et al. 2012). Sacrificing biological realism for model performance can undermine 

forecasting accuracy and predictive capacity (Luoto et al. 2005), potentially leading to 

inappropriate management actions. This study focuses on how changes in these assumptions can 

influence habitat modelling and forecasting.  

The Gulf of Maine region (GOM; Figure 7.1), comprised of the Gulf of Maine and Georges 

Bank, has a highly dynamic marine climate characterized by annually fluctuating environmental 

conditions (Durbin et al. 2003; Wanamaker et al. 2008) with significantly increasing trends in 

bottom temperature and salinity in the last few decades (Mills et al. 2013; Pershing et al. 2015; 

Saba et al. 2016). The GOM also represents a hotspot of climate change with one representation 

of temperature change suggesting it is among the most rapidly warming ecosystems globally 
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(Pershing et al. 2015). Another key feature of the GOM is its eastern and western dynamics, which 

give way to differential localized oceanographic conditions (Mountain & Manning 1994; 

Townsend et al. 2014).  

This dynamic ecosystem is an essential habitat of the American lobster (Homarus 

americanus), supporting the most valuable single-species fishery in the United States (NMFS 

2018). This species is an ectothermic and eurythermic benthic crustacean native to coastal Canada 

and the United States in the North Atlantic Ocean (Spees et al. 2002). Even with its eurythermic 

physiology, climate change is partly responsible for the large decline of this species in Southern 

New England (SNE), severely depleting a once great fishery (Howell 2012; ASMFC 2015). With 

increasing temperatures in the GOM, the specter of change to the lobster population looms large 

for both fishers and the regional economy. There is recent evidence of change for the GOM lobster 

population in response to environmental conditions including effects on their seasonal movement 

timing (Mills et al. 2013), molting events (Staples et al. 2019), natural mortality (Mills et al. 2013), 

recruitment (Goode et al. 2019; Tanaka et al. 2019), and suitable habitat availability (Tanaka and 

Chen 2016; Goode et al. 2019; Friedland et al. 2020; Mazur et al. 2020).   

In this study, relationships between lobster survey catch and environmental conditions 

were used to estimate and forecast lobster habitat suitability using a bioclimate model under a 

future warming schema. Furthermore, this study employs the use of “what-if” scenarios in an 

attempt to determine how changes in assumptions concerning 1) the type of environmental data, 

2) key environmental covariates, 3) spatial coverage, and 4) subsets of the input data based on life 

history can influence bioclimate modelling and forecasting and by extension, management. 
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Figure 7.1. The Gulf of Maine with trawl survey stations of the Massachusetts Division of Marine Fisheries’ Inshore 

Bottom Trawl Survey (MA), the Maine Department of Marine Resources and New Hampshire Fish and Game 

Department’s Inshore Bottom Trawl Survey (MENH), and the NOAA Northeast Fisheries Science Center’s Bottom 

Trawl Survey (NEFSC).  
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7.3 Methods 

7.3.1 Base Case: The Bioclimate Model 

The bioclimate model used in this study was developed by Tanaka and Chen (2015; 2016). 

It can determine spatially explicit changes in habitat suitability over time from regional 

environmental conditions using relationships between lobster survey catch and environmental 

variables and extrapolating onto grids with environmental data independent of those used in 

determining the relationships.  

American lobster habitat preferences change with season, size, and sex (Chang et al. 2010; 

Tanaka et al. 2016). Size and sex-specific lobster catch data were obtained from the Maine 

Department of Marine Resources and New Hampshire Fish and Game Department’s Inshore 

Bottom Trawl Survey (MEDMR/NHFGD 2000-2006), the Massachusetts Division of Marine 

Fisheries’ Inshore Bottom Trawl Survey (MADMF 1978-2016), and NOAA’s Northeast Fisheries 

Science Center’s Bottom Trawl Survey (NEFSC 1978-2016). While these surveys cover much of 

the habitat for lobster in the GOM, it is important to note that there is not complete coverage. These 

data are not in the public domain, but interested parties may contact the Chen Lab at the University 

of Maine or the respective agencies for inquiries concerning data availability. Each of these three 

surveys has a distinct spring (April-June) and fall (September-October) component. The spatial 

coverages of these surveys used can be seen in Figure 7.1. The MADMF 1978-2016 and NEFSC 

1978-2016 surveys cover more southern regions as well, but only trawl locations in the GOM 

lobster stock area were used for subsequent analyses. Standardized survey catch data (i.e., survey 

abundance index) were separated by sex (male and female), season (spring and fall), and life stage 

(adult and juvenile). Lobsters 60 millimeters (mm) carapace length and larger were treated as 
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adults and all lobsters smaller than 60 mm were treated as juveniles. This length represents the 

minimum size-at-maturity (ASMFC 2015; 2020).  

Environmental data were obtained from the University of Massachusetts Dartmouth School 

for Marine Science and Technology’s Finite Volume Community Ocean Model (FVCOM) (Chen 

et al. 2006a; data publically available from http://fvcom.smast.umassd.edu/fvcom/). This 

geophysical model has been proven effective at estimating fine-scale environmental parameters 

for the GOM (Li et al. 2017). Bottom temperature and bottom salinity values were matched to each 

trawl location and time, referred to as a station. This was done so as to maximize the data used as 

some surveys did not record environmental data. These, along with temporally stationary 

parameters depth, latitude, and longitude, were each used to determine SIs for lobster in the GOM. 

Bottom temperature, bottom salinity, and depth represent significant influencers of lobster habitat 

and have been used in previous studies to map lobster HSI (Tanaka & Chen 2016). Latitude and 

longitude were used as proxies to potentially capture spatial effects from parameters not directly 

considered in this study.  

First, a catch-per-unit-effort (CPUE) value, treated as a nominal abundance index, was 

calculated for each combination of sex and life stage in a sampling instance: 

 
𝐶𝑃𝑈𝐸 =

𝐶𝑜𝑢𝑛𝑡

𝑊𝑖𝑑𝑡ℎ × 𝐿𝑒𝑛𝑔𝑡ℎ
 

(7.1) 

where Count is the number of lobsters caught, Width is the width of the trawl in meters, and Length 

is the distance trawled in meters. This process standardizes the index to units of “lobsters caught 

per square meter” and allows for direct comparisons between and within surveys. 

Each of the five environmental variables were delineated into twenty classes (k) across the 

range present throughout the data using Fisher's natural breaks classification method (Tanaka et 

http://fvcom.smast.umassd.edu/fvcom/
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al. 2015). SIs for each class k of environmental variable i for each combination of sex, season, and 

life stage were calculated as follows:  

 
𝑆𝐼𝑖,𝑘 =

𝐶𝑃𝑈𝐸𝑖,𝑘 − 𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛

𝐶𝑃𝑈𝐸𝑖,𝑚𝑎𝑥 − 𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛
 

(7.2) 

where CPUEi,k is the average CPUE across all trawl stations within class k of habitat variable i, 

CPUEi,min is the minimum average CPUE value across all twenty classes of habitat variable i, and 

CPUEi,max is the maximum average CPUE value across all twenty classes of habitat variable i. 

Generalized additive models (GAMs) were used to reduce bin-associated noise and create more 

realistic SI relationships. For each SIi, a GAM was run with a single predictor variable (k), 

representing factorized bins. These GAMs were then used to predict SI values (GSIi) for each bin 

k. Finally, HSI values were calculated using an arithmetic mean:  

 
𝐻𝑆𝐼 = ∑ 𝐺𝑆𝐼𝑖

𝑛

𝑖=1

 
(7.3) 

where n is the total number of GSIis. Equal weights were applied to the GSIis to follow the 

methodology in Tanaka and Chen (2015; 2016) and thus assumptions of equal importance across 

variables were made.  

7.3.2 Base Case: Input Data 

Bottom temperature and bottom salinity anomalies for the GOM were obtained from the 

ensemble projection framework known as the Coupled Model Intercomparison Project 5 (CMIP5), 

data from which is publicly available through NOAA’s Climate Change Web Portal (available 

from https://psl.noaa.gov/ipcc/ocn/). CMIP5 is an ensemble of many different climate forecasting 

models which together create climate projections used in the Intergovernmental Panel on Climate 

Change’s 5th Assessment (IPCC 2019). CMIP5 anomalies are represented as changes in bottom 

https://psl.noaa.gov/ipcc/ocn/
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temperature and salinity in the future (2050-2099) in reference to the historical climate (1956-

2005).  

Historical fine-scale GOM bottom temperature and bottom salinity fields for spring (April-

June) and fall (September-October) were obtained from FVCOM at points called stations. Values 

for each parameter for each station were temporally averaged from 1978-2005 to create the 

historical reference period used in this study. The upper bound of this reference period coincides 

with the upper bound of CMIP5 while the lower bound is representative of the earliest year of 

available FVCOM data. Depth, latitude, and longitude at each station were also obtained.  

The anomalies were then used to estimate future bottom temperature and salinity fields 

through a downscaling process known as the delta method: a commonly used and robust statistical 

approach (Hare et al. 2012; Tanaka et al. 2020) shown to reduce bias in these types of estimations 

(Navarro-Racines et al. 2020). The anomaly fields were not as fine-scale as FVCOM data (anomaly 

fields are 1.0° ✕ 1.0°), and so the anomalies were spatially interpolated using thin-plate splines to 

a grid size of 0.01° ✕ 0.01°. Interpolated anomalies were then applied to the 1978-2005 FVCOM 

fields to calculate bottom temperature and salinity for both spring and fall for the period 2072-

2099. These reference periods allowed for equivalent forecast lengths between CMIP5 and this 

study while also maximizing the amount of FVCOM data used. This process was done for 

Representative Concentration Pathway (RCP) 8.5, representing a “business-as-usual” future 

carbon emissions scenario.  

This process yielded two fields of environmental variables: one for the historical reference 

period 1978-2005 and one for the future reference period 2072-2099 under RCP 8.5. Depth, 

latitude, and longitude were held constant throughout both fields; they were assumed not to change 

with warming effects over time. Lobster HSI values for each sex, season, and life stage were then 
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calculated for each field. This was done by employing equation 7.3 at each grid point in both fields, 

where SI values were determined from the environmental parameter values at that grid point. To 

reiterate, relationships of lobster abundance to each environmental covariate are determined from 

surveys in section 7.3.1 and SI values are predicted for each grid point using these relationships 

and the given values of those covariates associated with the grid points. Each HSI field was 

mapped using ordinary Kriging and average HSI, percent HSI > 0.20, percent HSI > 0.50, and 

percent HSI > 0.80 were calculated. These bounds represent habitat that is “Fair”, “Good”, and 

“Excellent”, respectively (McMahon 1983; Tanaka et al. 2019).  

7.3.3 What-If Scenarios 

 A what-if scenario in the context of this study was an experimental simulation of the 

bioclimate model in which one aspect of the input data is altered from the base case (see sections 

7.3.1 and 7.3.2). Thus, all changes made were to the calculation of SIs and extrapolation grids, not 

to our forecasting methodologies. The intent of these scenarios was to determine changes in model 

output and to infer larger possible effects on fisheries management. There were seven what-if 

scenarios tested in this study. A quick reference guide to the scenarios is shown in Table 7.1.  

 Scenario 1: Model-Generated vs. Interpolated Environmental Data.  

Model-generated environmental data are often used in HSI models, but interpolated 

data preserve the observational nature of sampled environmental data. This becomes 

increasingly important if models that produce environmental data are less than accurate. 

The interpolated environmental data in this study were based on a procedure described in 

Friedland et al. (2019; 2020). In this procedure, a kriged interpolation of annual data was 

combined with climatological data to estimate complete bottom temperature and bottom 

salinity fields, preserving the observational nature of the data. Most of the samples were 
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collected in the spring (February- April) and fall (September-November) with 

conductivity/temperature/depth (CTD) instruments. The spatial resolution of the data was 

0.01 degrees. Interpolated bottom temperature and salinity took the place of FVCOM data 

as the extrapolation grid and were used as the historical reference period upon which 

CMIP5 data were used to estimate future climatologies. Due to observational data 

limitations, the historical reference period was shortened from 1978-2005 to 1992-2005 

and subsequent future reference periods were shortened to match (2028-2055 to 2042-

2055; 2072-2099 to 2086-2099). SIs in this scenario were calculated not from FVCOM 

data, but from observed values collected on the surveys at the time of the trawl instance. 

Thus, observational or interpolated data replaced modelled data throughout the process.  

 Scenario 2:  Full vs. Partial Spatial Coverage of Survey Data.  

Fisheries stocks can occupy multiple locations, environments, and habitats, making 

spatial scale an important factor for calculating species-environment relationships (Roloff 

& Kernohan 1999; Barry & Elith 2006; Gaillard et al. 2010). In the base case, the three 

bottom trawl surveys were used in unison: data from all three surveys were used to estimate 

SIs. In this scenario, surveys were split into inshore surveys (MEDMR/NHFGD 2000-2006 

and MADMF 1978-2016) and the offshore survey (NEFSC 1978-2016). Inshore and 

offshore surveys were used to estimate separate SIs and those SIs were then extrapolated 

to the entire stock area (e.g. inshore SIs were used to map HSIs both inshore and offshore). 

The intent of this scenario was to test whether the full range of environmental relationships 

is sufficiently captured with less spatial coverage and to examine the consequences of 

applying potentially localized relationships to a larger stock area.  

 Scenario 3:  Stock-wide vs Species-wide Suitability Indices. 
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 The base case of this study is for the GOM, which represents a unit stock area for 

American lobster (ASMFC 2015). In the US, American lobster are effectively considered 

two stocks in assessment and management: the GOM and SNE, which extends as far south 

as North Carolina. These two stocks are treated separately in the American lobster stock 

assessment due to various apparent differences in population dynamics (ASMFC 2015), 

yet they remain of the same species. This scenario calculated SIs for the species range in 

the US, but then applied those SIs to calculate HSIs for the GOM stock. To accomplish 

this, four additional bottom trawl surveys were utilized: the Rhode Island Department of 

Environmental Management’s Coastal Trawl Survey (RIDEM 1981-2016), the 

Connecticut Department of Energy and Environmental Protection’s Long Island Sound 

Trawl Survey (CTDEEP 1984-2016), the New Jersey Department of Environmental 

Protection’s Trawl Survey (NJDEP 1988-2016), and the Virginia Institute of Marine 

Science Northeast Area Monitoring and Assessment Program (NEAMAP 2007-2016). 

Following the methods in section 7.3.1, these surveys were standardized to be appropriately 

used and compared to the three surveys in the base case. Additionally, all trawl stations of 

MADMF 1978-2016 and NEFSC 1978-2016 were utilized; not just those that appeared in 

the GOM stock area, as was done in the base case (see sections 7.3.1 and 7.3.2). The intent 

of this scenario was to examine the consequences of applying species-wide habitat 

preferences to a subset of the population.  

 Scenario 4: Inclusion vs. Exclusion of Important Components of Habitat. 

One of the most common mistakes in habitat modelling is the exclusion of 

parameters that may be important in determining habitat suitability for a given species 

simply due to limited knowledge and understanding of the natural processes (Schuetz et al. 
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2018). For lobster, it is well known that temperature is a driving factor in determining 

habitat suitability (Tanaka and Chen 2016; Goode et al. 2019; Friedland et al. 2020; Mazur 

et al. 2020). For this scenario, temperature was removed from all stages of the analysis and 

only bottom salinity, depth, latitude, and longitude were used to estimate HSIs. This 

addresses the consequences of removing a variable whose importance is already well 

established to infer how HSI estimation and forecasting changes while missing key 

predictors.  

 Scenario 5: Seasonal vs. Annual Suitability Relationships.  

Species’ environmental preferences can change throughout a year with seasonal 

differences in diet, sexual activity, or other behaviors (Crance 1986; Mäki-Petäys et al. 

1997), and this has even been shown to be true for lobster (Chang et al. 2010; Tanaka et al. 

2016). In this scenario, this assumption was ignored: SIs were determined per combinations 

of sex and life stage, but not per season. Subsequently, grids of environmental variables 

used for extrapolation of HSIs were annual as well. SI data only exist April-June (spring) 

and September-October (fall) and thus it would be inappropriate to use a true annual 

extrapolation grid of environmental parameters. Instead, the grids used were an average of 

the environmental parameters in the spring and fall periods.  

 Scenario 6: Separate vs. Combined Sexes. 

Species’ environmental preferences can shift with sex if there is a high degree of 

sex-specific specialization (Van Toor et al. 2011). Previous studies have shown differences 

in sex-specific distributions for lobster (Chang et al. 2010), potentially in relation to habitat 

selection due to suitable spawning grounds (Jury et al. 1994). In this scenario, males and 

females were not treated separately in the framework. Males and females were combined 
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into a single CPUE and so SIs were only calculated for separate life stages for each season. 

The intent of this change was to evaluate model effects when sex related preferences in 

habitat are not considered.  

 Scenario 7: Separate vs. Combined Life Stages. 

Many marine species such as lobster show differential habitat preferences related 

to life stage and overall size (Pratchet et al. 2008; Chang et al. 2010). For lobster, this is 

due in part to shifts in seasonal movement patterns in relation to functional maturity (Chang 

et al. 2010). In this scenario, adults and juveniles were combined into a single life stage 

and so SIs were only calculated for separate sexes for each season. The intent of this change 

was to evaluate model effects when life stage related preferences in habitat are not 

considered.  

7.3.4 Bioclimate Model Comparative Diagnostics 

 Typical cross-validation procedures cannot be done using this type of model as there are 

no actual “observed” HSI values to calculate error metrics. Thus, an application of a relative 

difference was conducted wherein each combination of season, sex, and life stage of lobster in 

each what-if scenario and period was compared to the base-case for the same combination of 

season, sex, and life stage during the same period and a single value was calculated representing 

the difference across all grid points. In what-if scenarios where season, sex, or life stage were 

combined, results would be compared to two base cases of split data (e.g. combined seasons in 

scenario 5 were compared to base case results for spring and base case results for fall). Under this 

method, it is assumed that the base case results are the most “correct” compared to the other 

scenarios. Given that American lobster is one of the most heavily studied and surveyed fisheries 
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on the planet (Chen et al. 2006b; ASMFC 2015; Hodgdon et al. 2020), confidence in this 

assumption was relatively high. A spatially average difference metric was calculated as follows: 

 

𝑅𝑀𝑆𝐸𝑆 = √
∑ (𝐻𝑆𝐼𝑆,𝑝 −  𝐻𝑆𝐼𝐵𝐶,𝑝)2𝐺

𝑝=1

𝐺
 

(7.4) 

where RMSES is the root mean squared error of what-if scenario S (for a specific combination of 

season, sex, life stage, and period), HSIS,p is the HSI value for what-if scenario S at grid point p 

(for the same combination of season, sex, life stage, and period), HSIBC,p is the HSI value for the 

base case at grid point p (for the same combination of season, sex, life stage, and period), and G is 

the total number of grid points. Here, larger RMSE values represent larger deviations of HSI of a 

given scenario to the base case.  

 

Table 7.1. A list of all seven scenarios and how each one was altered from the base case. Note scenario 2 has two 

components. GOM: Gulf of Maine; SNE: Southern New England. 

Scenario   Alterations from the Base Case 

1 Observed (kriged) environmental data used instead of modelled (FVCOM) environmental data 

 

2 

Inshore surveys used to create SIs and extrapolate to entire GOM 

  Offshore surveys used to create SIs and extrapolate to entire GOM 

3   Additional surveys from SNE used to create SIs 

4   Removed bottom temperature from analysis 

5   Did not separate results by season 

6   Did not separate results by sex 

7   Did not separate results by life stage 
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7.4 Results 

7.4.1 Suitability Indices 

 There were large differences in SIs between seasons and nearly negligible differences 

between sexes and life stages with most environmental variables for the base case (Figure 7.2). 

Due to these results, many SI curves (and subsequent HSI maps) were nearly identical. Thus, only 

spring and fall adult female SI curves are presented in the text and all other combinations of sex 

and life stage can be found in the supplementary material. Adult females were chosen to depict 

simply because this group most closely represents the spawning stock biomass of lobsters in the 

GOM and is thus a managerially important subgroup (ASMFC 2015; 2020).  

Results from the base case suggest that lobsters prefer warmer waters in the fall as 

compared to the spring (Figure 7.2). This same relationship was present throughout all subsequent 

scenarios, except scenario 5 where seasons were combined (Figures 7.3-7.4). There were small 

differences between scenarios in the ranges of temperature used to create the suitability indices as 

well as some minor differences concerning smoothness of fit and location of peaks (Figures 7.3-

7.4).  

In the base case, lobsters also appeared to prefer saltier waters in the fall as compared to 

the spring (Figure 7.2). This relationship, however, may be affected by what appears to be a group 

of data points representing high catches of lobster at very high salinity levels causing a potentially 

unnatural spike in suitability at unreasonably high levels. This tie-up was present throughout most 

subsequent scenarios except when using offshore indices in scenario 2 and when using species-

wide indices in scenario 3 (Figures 7.3-7.4). Throughout the scenarios, salinity SI was the most 

affected and had drastic changes in scenarios 1, 2, 3, and 5 when compared to the base case (Figures 

7.3-7.4).  
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Concerning the base case again, lobsters preferred deeper waters in the fall as compared to 

the spring (Figure 7.2). In all scenarios, lobsters prefer waters shallower than 300 m, with their 

most suitable depths shifting from zero to about 150 m depending on the scenario and the season.  

Latitude SIs in the base case and across the scenarios seem to be a reflection of the fact that 

more lobsters are caught in the inshore/northern GOM than the offshore/southern GOM (and by 

extension SNE), with the greatest SI values being in the northern reaches of latitude (Figures 7.2-

7.4). Longitude SIs, however, seem to change with seasons and across scenarios more drastically 

than latitude does (Figures 7.2-7.4). The western areas appear to have higher SIs overall except 

when only the inshore areas are considered or when areas from SNE are considered (Figures 7.3-

7.4). This highlights that there appears to be a large-scale lobster abundance dynamic over the 

species range, but also a small-scale dynamic, smaller than the GOM stock area.  

7.4.2 Historical and Forecasted HSI 

The anomalies for bottom temperature and bottom salinity from CMIP5 under RCP 8.5 

together with depth and location data allowed for forecasted HSI for each combination of season, 

sex, and life stage from the historical reference period. HSI coverage statistics, representing the 

change over time of the spatial coverage of different levels of suitable habitat, are presented in 

Table 7.2 for the base case and spatial maps of these changes from the historical to the future 

period are given in Figure 7.5 for the base case. Spatial maps for all “what-if” scenarios are 

presented as differences to the spatial map of the base case to clearly portray where the scenario 

under and overestimates HSI (Figures 7.6-7.7). Following minimal differences in SI curves 

between sexes and life stages, there were trivial differences in the spatial maps. Thus, following 

the outline in section 7.4.1, spatial maps for spring and fall female adults are presented in the text 



152 
 

(Figures 7.6-7.7) and all other combinations of sex and life stage are presented in the 

supplementary material. 

 Considering the base case, inshore habitat (and Georges Bank to some extent) appeared 

more preferential than offshore habitat, with the highest HSI values found in the inshore eastern 

GOM (Figures 7.6-7.7). Additionally, spring had higher HSIs than the fall for all combinations of 

sex and life stage for both the historical reference period and the future scenario. Differences 

between sexes and between life stages appeared negligible: mimicking the relationships seen in 

the base case SI curves (Figure 7.2).  

The trends discussed previously remained largely constant from the base case through the 

remaining scenarios, with each scenario causing small intuitive changes in HSI based on variables 

considered. Additionally, RMSE values varied between all combinations of season, sex, and life 

stage as well as across all scenarios for GOM lobster in hindcasts (Table 7.3) and forecasts (Table 

7.4). Only significant deviations from the base case for each scenario will be discussed to focus on 

the most important outcomes.  

Scenario 1 had strikingly similar spatial dynamics to the base case during the historical 

period, but forecasted changes appeared more spatially homogeneous. The spatially homogenous 

forecasts yielded RMSE values that were largest through all scenarios except for juvenile males in 

the spring (Table 7.4), displaying a stark contrast in projections between envelopes that utilize 

modelled and observed environmental data. Scenario 2 inshore/offshore dynamics were not 

apparent, but there existed a stronger presence of an east-west dynamic when compared to the base 

case. RMSE values remained quite different as well when using inshore data to predict offshore 

(Tables 7.3 and 7.4). However, using offshore data to predict inshore yielded values closer to the 

base case: a phenomenon most likely due to the larger spatial coverage of the offshore versus 
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inshore surveys. The presence of more southern areas in scenario 3 seemed to cause an 

overestimation of habitat suitability in the GOM in comparison to the base case. RMSE values for 

this scenario displayed a seasonal dynamic (Tables 7.3 and 7.4), where this scenario was closer to 

realism in the spring than the fall. This may be due to closer resemblance of temperatures for the 

GOM and the southern Atlantic in the fall as opposed to the spring when GOM waters are colder. 

Not accounting for temperature underestimated GOM HSI in scenario 4, yet RMSE values 

remained relatively small across all seasons, sexes, and life stages. Ignoring season yielded 

somewhat “average” dynamics between fall and spring data, but RMSE values for scenario 5 show 

that this apparent averaging of the seasons may actually more closely resemble fall than spring. 

Ignoring sex and life stage appeared to have little effect and both scenarios (6 and 7) closely 

resembled the base case. Each of these had the lowest RMSE values as well; significantly lower 

than others in this study.  
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Figure 7.2. SIs of bottom temperature in degrees Celsius (top left), bottom salinity in parts per thousand (top right), 

depth in meters (middle left), latitude (middle right), and longitude (bottom left) to lobster of each combination of 

season, sex, and life stage. Also marked are SIs of 0.2, 0.5, and 0.8, representing values that are “Fair”, “Good”, and 

“Excellent”, respectively. Note that some lines are behind others; these “groups” seem to be for each season. Results 

are from the base case. 
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Figure 7.3. SIs for the base case and each scenario of bottom temperature in degrees Celsius (top left), bottom salinity 

in parts per thousand (top right), depth in meters with scenario 3 included (right) and without (right), latitude (middle 

right), and longitude (bottom left) to female adult lobsters in the spring. Note that scenario 4 SI curves are not presented 

as they are identical to the base case; only missing the temperature component. The base case is denoted as “BC”, and 

scenarios are listed as scenario 1 (S1), scenario 2 for inshore indices (S2i), scenario 2 for offshore indices (S2o), 

scenario 3 (S3), scenario 5 (S5), scenario 6 (S6), and scenario 7 (S7). Also marked are SIs of 0.2, 0.5, and 0.8, 

representing values that are “Fair”, “Good”, and “Excellent”, respectively.  
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Figure 7.4. SIs for the base case and each scenario of bottom temperature in degrees Celsius (top left), bottom salinity 

in parts per thousand (top right), depth in meters with scenario 3 included (right) and without (left), latitude (bottom 

left), and longitude (bottom right) to female adult lobsters in the fall. Note that scenario 4 SI curves are not presented 

as they are identical to the base case; only missing the temperature component. The base case is denoted as “BC”, and 

scenarios are listed as scenario 1 (S1), scenario 2 for inshore indices (S2i), scenario 2 for offshore indices (S2o), 

scenario 3 (S3), scenario 5 (S5), scenario 6 (S6), and scenario 7 (S7). Also marked are SIs of 0.2, 0.5, and 0.8, 

representing values that are “Fair”, “Good”, and “Excellent”, respectively.  
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Figure 7.5. Change in spatial HSI from the historical reference period (1978 - 2005) to the future period (2072 - 2099) 

under RCP 8.5 for every combination of season, sex, and life stage. Season is indicated as spring (Sp) or fall (Fa); sex 

is indicated as male (Ma) or female (Fe); life stage is indicated as adult (Ad) or juvenile (Ju). Results are from the 

base case. 
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Figure 7.6. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future period 

(Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their respective 

base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in columns 2 and 4 

are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI than the base case 

did. Red represents areas in a given scenario that were predicted to have a higher HSI than the base case did. The 

darker the respective shade, the greater the difference from the base case. Above each map is the scenario name and 

the average spatial HSI for that period and scenario. Results are for spring female adults. Note scenario 5 is combined 

seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages.  
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Figure 7.7. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future period 

(Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their respective 

base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in columns 2 and 4 

are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI than the base case 

did. Red represents areas in a given scenario that were predicted to have a higher HSI than the base case did. The 

darker the respective shade, the greater the difference from the base case. Above each map is the scenario name and 

the average spatial HSI for that period and scenario. Results are for fall female adults. Note scenario 5 is combined 

seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages.  
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Table 7.2. Summary statistics of suitable habitat for American lobster in the Gulf of Maine for two time periods: 

1978-2005 (Historical) and 2072-2099 under RCP 8.5 (Forecasted). Statistics presented are HSI spatial averages, and 

percent spatial coverages of HSI more than 0.20 (Fair), 0.50 (Good), and 0.80 (Excellent) for each combination of 

season, sex, and life stage. Season is indicated as spring (Sp) or fall (Fa); sex is indicated as male (Ma) or female (Fe); 

life stage is indicated as adult (Ad) or juvenile (Ju). Results are from the base case. 

Period Historical Forecasted 

Statistic Average Fair Good Excellent Average Fair Good Excellent 

SpMaAd 0.462 97.499 34.232 1.717 0.401 94.213 16.381 0.000 

FaMaAd 0.340 84.306 13.536 0.000 0.372 92.545 14.517 0.000 

SpFeAd 0.459 97.499 33.399 1.030 0.398 94.164 15.204 0.000 

FaFeAd 0.340 84.306 13.291 0.000 0.371 92.594 14.664 0.000 

SpMaJu 0.453 97.057 31.976 0.834 0.395 93.624 14.321 0.000 

FaMaJu 0.333 83.816 12.898 0.000 0.367 92.251 14.370 0.000 

SpFeJu 0.456 97.303 31.829 0.490 0.395 94.164 13.977 0.000 

FaFeJu 0.331 83.816 12.800 0.000 0.366 92.104 14.321 0.000 
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Table 7.3. Root-mean-squared-error (RMSE) values for each combination of season, sex, and life stage used in each 

of the seven scenarios in comparison to the base case for the hindcasted period. Season is indicated as spring (Sp) or 

fall (Fa); sex is indicated as male (Ma) or female (Fe); life stage is indicated as adult (Ad) or juvenile (Ju).Scenario 2 

has two components: inshore indices extrapolated to the GOM (2i) and offshore indices extrapolated to the GOM (2o).  

 
Scenario 

1 2i 2o 3 4 5 6 7 

SpMaAd 0.112 0.081 0.143 0.083 0.081 0.142 0.002 0.006 

FaMaAd 0.168 0.132 0.140 0.154 0.072 0.093 0.001 0.005 

SpFeAd 0.111 0.082 0.145 0.082 0.081 0.141 0.002 0.006 

FaFeAd 0.169 0.131 0.140 0.155 0.070 0.092 0.008 0.005 

SpMaJu 0.109 0.075 0.148 0.084 0.082 0.140 0.005 0.011 

FaMaJu 0.168 0.132 0.137 0.164 0.069 0.091 0.003 0.012 

SpFeJu 0.111 0.077 0.142 0.081 0.081 0.143 0.005 0.009 

FaFeJu 0.171 0.133 0.136 0.166 0.069 0.095 0.003 0.008 
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Table 7.4. Root-mean-squared-error (RMSE) values for each combination of season, sex, and life stage used in each 

of the seven scenarios in comparison to the base case for the forecasted period. Season is indicated as spring (Sp) or 

fall (Fa); sex is indicated as male (Ma) or female (Fe); life stage is indicated as adult (Ad) or juvenile (Ju).Scenario 2 

has two components: inshore indices extrapolated to the GOM (2i) and offshore indices extrapolated to the GOM (2o).  

 
Scenario 

1 2i 2o 3 4 5 6 7 

SpMaAd 0.138 0.088 0.126 0.085 0.067 0.116 0.002 0.006 

FaMaAd 0.142 0.116 0.139 0.126 0.081 0.109 0.001 0.005 

SpFeAd 0.140 0.088 0.127 0.083 0.066 0.115 0.002 0.005 

FaFeAd 0.142 0.115 0.139 0.126 0.079 0.110 0.011 0.005 

SpMaJu 0.138 0.081 0.141 0.082 0.066 0.116 0.004 0.010 

FaMaJu 0.142 0.118 0.132 0.135 0.079 0.112 0.003 0.014 

SpFeJu 0.142 0.083 0.117 0.079 0.066 0.118 0.005 0.009 

FaFeJu 0.142 0.118 0.137 0.136 0.079 0.114 0.003 0.008 

 

7.5 Discussion 

Input data used in this type of HSI modelling shapes the inherent biological and population 

assumptions that govern model predictions: the input data chosen is a consequence of the 

researcher’s assumptions (Roloff & Kernohan 1999). This study further asserts that in these types 

of situations, biological realism must be determined a priori by the researcher as there is a lack of 

reliable metrics to determine this from bioclimate model results. It is shown here that alterations 

to this assumed realism as was done in the “what-if” scenarios have potential to severely impact 

model output and thus negatively impact fisheries management decisions. Direct comparisons to 

explain this point can only be done with a stock or population that is well described with associated 

data and a large knowledgebase explaining its function. These features made American lobster in 
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the GOM an ideal testbed for the scenarios evaluated in this research framework, especially those 

that were known to be biologically unrealistic prior to testing.  

The American lobster fishery in the GOM is expected to change due to shifting 

environmental conditions. Historically, the bulk of fishing effort has been concentrated in the 

summer and fall months (Boenish & Chen 2018), targeting the lobster when they are in shallower 

waters. This may be expected to shift later into the fall as spring HSI decreases and fall HSI 

increases. This is due to lobsters’ propensity to behaviorally thermoregulate by following suitable 

thermal habitats inshore in the spring and offshore in the fall (Aiken & Waddy 1986; Crossin et 

al. 1998). Initially, the downward trends over time for HSI in the spring seemed to be consistent 

with upwards trends in the fall in this study. However, the spring forecasts show a loss of the best 

environments for lobster over time (complete loss of “excellent” habitat and halving of “good” 

habitat), whereas the fall is simply gaining new areas of “fair” habitat. Thus, overall suitability in 

the GOM is expected to decline out to 2099. This, coupled with the fact that areas with the most 

suitable habitat historically seem to be the areas most affected by a changing environment, 

illustrates a scenario similar to what happened to the lobster population and fishery in SNE where 

climate change has partially led to low recruitment and subsequent fishery collapse (Howell 2012; 

ASMFC 2015). Climate change is predicted to negatively alter the suitability of habitat for lobster 

in the GOM and this poses a threat to the future of the fishery in this region. It is important to note 

that these predictions are under a “business-as-usual” future carbon emissions scenario and that 

any efforts to ameliorate climate change compared to the RCP 8.5 scenario will likely to some 

degree mitigate these effects on GOM lobster habitat.  

 These conclusions, again, were drawn from the base case. Some of the scenarios conducted 

agreed with these results and others were drastically different. As outlined in the methods, the set 
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of input data and parameters chosen for the base case all had biological backing and supporting 

evidence from previous studies. The seven “what-if” scenarios conducted represented deviations 

from how this bioclimate model has historically been run (Tanaka & Chen 2015; 2016) and the 

results have led to four separate discussions, each of which is detailed below: 

7.5.1 Choice of Extrapolation Data 

When using kriged data, patterns in HSI seemed to vary spatially in magnitude in 

comparison to the base case. Kriged data show overall a decreased HSI and less drastic changes to 

lobster HSI in shallower waters, but more pronounced changes in deeper waters into the future. 

The same patterns of spring decreases and fall increases through time were still apparent, but the 

overall magnitudes of HSI do differ between the use of modelled and kriged data. These 

differences could have come from the decreased data point density set used to fuel scenario 1 (see 

section 7.3.3), and which subsequently could have impacted the RMSE values calculated for the 

scenario. Regardless, there does not seem to be a clear answer as to whether the use of modelled 

or kriged data is better in terms of being more biologically realistic.  

For American lobster, environmental preferences in the lab are not always observed in the 

field (Jury & Watson 2013). This, coupled with the strong similarities in SIs between the two 

scenarios, complicates the process of determining appropriate biological and environmental 

realism. Kriged data, like those used in this study and Friedland et al. (2019; 2020), preserve the 

observational nature of the data. This is a property that is arguably more environmentally realistic 

than modelled data, which by nature has uncertainties in its estimation processes, especially for 

deep-water variables (Li et al. 2017; Friedland et al. 2020). The increased spatial homogenizing of 

the forecasts using this data urges future studies to further explore the relationship of 

environmental data and habitat forecasts. Furthermore, different data sets of the same 
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environmental variables have been shown to have large impacts on the end results when modelling 

habitat, but the exact reasons for these discrepancies are not well known (Peterson & Nakazawa 

2008). Regardless, the choice of extrapolation data affects overall bioclimate results and must be 

carefully considered when modelling and forecasting HSI.  

7.5.2 The Importance of Spatial Scale 

Scenarios 2 and 3 both seemed to verify the claim that spatial scale is important. Looking 

at the SIs together from these scenarios and the base case, it seemed as though lobster preferences 

for temperature remained relatively constant, whereas preferences for salinity, depth, latitude, and 

longitude changed largely when calculated for the entire Northwest Atlantic and the GOM, as well 

as inshore and offshore areas. This is likely due to a combination of many things. For example: 

different surveys cover different areas with different ranges of environmental parameters and so 

lobsters captured in a given survey are assumed to only be subject to those ranges the survey 

operates in. This was easily seen in the differences in SIs of depth between the inshore and offshore 

GOM:  the deepest station in the inshore surveys was at ~200 m whereas the offshore surveys 

reach over 500 m.  

Different stocks of lobster may have physiologically and behaviorally different preferences 

for certain parameters due to divergences over time from little migration and interbreeding 

(ASMFC 2015; Tanaka & Chen 2015; 2016), and it appears that these divergent groups may have 

disparate population structures and environmental preferences (Stanley et al. 2018). The Atlantic 

States Marine Fisheries Commission (ASMFC) treats the GOM and SNE stocks separately in 

assessments due to this fact, and associated stock-localized recruitment (ASMFC 2015). Hence, it 

may be precarious to assume species-wide conformity to environmental parameter preferences. 



166 
 

Doing so with lobster seemed to drastically overestimate the suitability of GOM habitat because 

so much data from the less suitable SNE were used in calculation of SIs.   

Within the GOM, calculating SIs for inshore or offshore areas and extrapolating into ranges 

of environmental conditions not present in the spatial subset causes some large problems with over 

and underestimation of HSI. The bioclimate model cannot predict relationships outside the ranges 

of parameters it is given and so often assumes false correlations extending beyond the limits of the 

variables when extrapolating HSI. This highlights the need for appropriate survey coverage and 

data collection that encompasses the niches of the species (MacLeod 2010) and cautions against 

extrapolating relationships into low or unsampled areas, especially if the environmental conditions 

of the region are different (Conn et al. 2015). Lobster dynamics in inshore and offshore waters 

appear different, evident by their seasonal migrations (Aiken & Waddy 1986; Crossin et al. 1998). 

The SI curves determined for the inshore and offshore GOM are not biologically unrealistic, it is 

only their extrapolations that are inappropriate. The respective SI curves should only be applied to 

the spatial area from which the data used to generate them was collected. Otherwise, this could 

introduce severe biases (Conn et al. 2015).  

 Salinity SI in the offshore GOM seemed more biologically reasonable than for the inshore 

GOM, presenting a more understandable and smooth curve over the range. This was most likely 

due to the nature of the data and few instances of survey effort at those large salinity values. Those 

instances, however, could have had large catches of lobster, skewing the SI relationship. This 

problem is discussed in Xue et al. (2017), where survey instances of large catch can skew overall 

SIs when modelling habitat. Xue et al. (2017) shows that use of a logged response variable (lobster 

abundance) can mitigate the effects of instances like this on overall relationships. It is important 

to note that this effect of logging the response variable is a change to model structure. All scenarios 
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in this study were for changes in input data or model assumptions while holding model structure 

constant. Model structure, which can also affect uncertainty, additionally needs to be appropriately 

determined (Wiens et al. 2009; Xue et al. 2017), but remained outside the scope of this study. 

7.5.3 Inclusion and Exclusion Criteria 

It can be difficult to determine whether a parameter warrants inclusion as a covariate of 

HSI calculations using this type of bioclimate modelling, as post hoc analyses of model fitting 

metrics are not appropriate (Kuparinen et al. 2012). Temperature has been shown in this study and 

others to be an important factor of lobster habitat (Tanaka & Chen 2016; Goode et al. 2019; 

Friedland et al. 2020; Mazur et al. 2020). When removed in scenario 4, the forecasts of HSI showed 

similar trends, but to a lesser degree in the spring and similar magnitude for the fall. Perhaps 

salinity is a more important factor in the fall and temperature is a more important factor in the 

spring for GOM lobster. Regardless, this underestimates the effects of climate change on lobster 

habitat and provides a forecast that understates the importance of preparing for change. Relatively 

low RMSE values hinted at possible collinearity of the variables used: latitude, longitude, and 

season may capture most of temperature’s effects on lobster abundance. However, the model itself 

is less mechanistic without temperature. Temperature will be altered under climate change, but 

variables of latitude, longitude, and season are static parameters. Temporally dynamic and 

mechanistic variables such as temperature are important for forecasting HSI and a management 

framework that neglects effects from these types of covariates may not be prepared for changes in 

population dynamics and spatial domain that arise. Mechanistic components of habitat will likely 

lead to more biologically realistic forecasts of HSI.  

The problem of determining the appropriate environmental parameters for HSI calculations 

is a common one (Schuetz et al. 2018). Most often, a starting list of potentially important covariates 
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is derived from a combination of researcher intuition of the target species and ecosystem as well 

as simply what data are available to model (Shuetz et al. 2018). This highlights the importance of 

understanding the life history of the target organism a priori. In this stage of bioclimate modelling, 

there is no substitute for a good knowledge base of the stock. Narrowing down this starting list of 

variables to appropriately use may potentially be done through use of a boosted regression tree to 

determine partial dependence of covariates or a similar weighting scheme to determine the relative 

importance of environmental variables. This would allow for narrowing down important variables 

through testing rather than risk missing what might potentially be an important habitat factor. 

7.5.4 On Separating Life History Data 

Compared to the previous discussions on data input assumptions, the discussion of when 

and when not to separate life history data is more explicit and direct. Previous literature has shown 

differences in the suitability of lobster habitat between seasons (Chang et al. 2010; Tanaka et al. 

2016), sexes (Chang et al. 2010; Jury et al. 1994), and life stages (Chang et al. 2010). Previous 

bioclimate studies for American lobster have thus split HSI calculations accordingly (Tanaka & 

Chen 2015; 2016) and the base case in this study followed suit.  

Season had a large effect on lobster HSI in the base case. Ignoring the effects of season, as 

was done in scenario 5, proved to be very dangerous to management of the fishery. The base case 

clearly showed seasonal changes in habitat preference: a claim backed by much previous literature 

(Chang et al. 2010). When this shifting preference was ignored, it appeared that the overall 

suitability of the GOM for lobster rose over time with climate change: ignoring exceedingly 

important seasonality in environmental relationships. This is because what is preferential for 

lobsters in the spring is not always preferred in the fall and vice versa. Fall and spring trawl survey 
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data were used together to estimate false SIs. This one false assumption could lead to spurious 

confidence about the state of GOM lobster.  

This seasonal effect on lobster habitat is not something that could have been determined 

post hoc from a singular conglomerate analysis. This study asserts it is biologically unrealistic to 

assume non-seasonality in this case because of previous literature on the topic (Chang et al. 2010; 

Tanaka et al. 2016). This is a clear situation where researcher misunderstanding can lead to model 

mischaracterization and a false definition of biological realism. Expanding upon conclusions from 

May (2004), a clear understanding of model assumptions a priori is necessary as the model does 

not know more about the natural system than the researcher does. When it comes to this problem 

of separating life history data, simulations as was done in this study can help to infer what 

separations are appropriate. Comparing results from scenario 5 to the base case, it can clearly be 

seen that season has an effect on lobster HSI. The same was not necessarily true for sex and life 

stage.  

Results from scenarios 6 and 7 appear strikingly similar to each other and the base case, 

seemingly indicating that separation of GOM lobster into sexes and life stages is not necessary for 

modelling HSI. For life stage, this could simply be due to the size of lobsters caught in the trawl 

surveys, with relatively few lobsters under 50 mm carapace length. These juvenile lobsters are old 

enough and large enough to behave like adults, following similar migration patterns (Lawton & 

Lavalli 1995), just not of the minimum size at maturity necessary to classify them as adults 

(ASMFC 2015). Differences in habitat preference between sexes has been documented for the 

GOM, but it has been shown that these differences are small when compared to the effects of both 

lobster size and season (Chang et al. 2010). Additionally, differences in habitat preference between 

sexes is more observed in laboratory studies, but shown to be less present in the field (Jury & 
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Watson 2013). Splitting up lobster data by sex and life stage in this sense may not be necessary, 

but should be tested in the future when new and updated data are used. This essentially means that 

whether or not certain subgroups should be split may be a cause of the informing surveys and their 

selectivities. Regardless, the same concept should be applied to other species and stocks: when 

determining how to separate life history data, simple bioclimate model simulations can be run to 

determine necessity. Those simulations, however, of course need to be constituted by the 

researcher a priori: again necessitating a need of understanding biological realism. Future research 

should determine what specific levels of differential effects from seasonality, sexes, life stages, 

and other life history qualities enhance the need to subset when bioclimate modelling and what 

levels are too low to influence results. This information would greatly aid in statistical bioclimate 

modelling, but may also vary by species, making it difficult to generalize.  

7.5.5 Conclusions 

 The results from this study have shown that less accurate assumptions can lead to HSI 

forecasts that appear reliable, but may not be biologically realistic. Biological realism when 

calculating HSIs is not something that can be determined by the bioclimate model in most cases: 

it must be determined a priori. In scenarios where certain data were missing or not sequestered 

appropriately, there were dangers associated with interpreting model output such as overestimation 

of HSI or misleading HSI spatial dynamics. Nevertheless, forecasting HSI under biological and 

population dynamics uncertainties is highly cautioned against. However, this study acknowledges 

that in many cases, vague biological realism is accepted by the researcher due to limitations of 

data and increased model simplicity is a direct result of that. It may be necessary to perform 

bioclimate calculations with limited data, but this does not change the necessity of understanding 

biological realism a priori to aid in interpreting results with appropriate levels of caution. 
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Additionally, if too many uncertainties exist in the knowledgebase of the target population, it may 

be possible to infer some degree of biological realism from other similar species with more data 

(Araújo & Peterson 2012).  

This methodology from Tanaka and Chen (2015; 2016) is a specific type of statistical 

bioclimate modelling, but there are many methods that can be used (Heikkinen et al. 2006). Key 

limitations of this model are the inability to determine collinearity between the factors used and 

the inability to directly perform typical cross-validation procedures. Other types of bioclimate 

modelling such as generalized additive modelling (Araújo et al. 2004) or locally-weighted 

regression methods modelling (Hill et al. 2002), may not have these issues. For example, locally 

weighted regression techniques would likely be more adept at extrapolating into unsampled 

regions (Beerling et al. 1995; Heikkinen et al. 2006), and may have alleviated deviations from the 

base case seen in scenario 2 of this study. Tanaka and Chen’s (2015; 2016) model was chosen for 

this study for its ability to model and map the HSI metric and to compare results to prior studies 

on lobster. Additionally, this model’s relative simplicity compared to other models allows it to be 

widely applicable to almost all pelagic and benthic species alike. Ultimately, there are different 

methods for estimating bioclimate envelopes and choice of modelling approach has potential to 

influence habitat predictions (Heikkinen et al. 2006) and thus must be carefully selected. For a 

more comprehensive overview of this topic, see Heikkinen et al. (2006).  

GOM lobster is a very well-studied, well surveyed, and data-rich species (Chen et al. 

2006b; ASMFC 2015; Hodgdon et al. 2020). In this sense, it is different from many other 

economically important species across the oceans. This inherent knowledge of GOM lobster 

dynamics and life history provided insight into the appropriate model assumptions and input data. 

For species with a lack of biological knowledge or data availability, it can be more treacherous to 
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calculate and forecast HSIs. Biological realism would be harder to interpret and understand, 

potentially leading to inherently less than accurate information about the target species habitat and 

misleading interpretations of forecasts. Data input and their inherent assumptions when forecasting 

HSI should be as biologically realistic as possible.   
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CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS  

8.1 Maine’s Top Fisheries under Climate Change 

 Climate change is most often seen as a force that negatively affects many species’ 

distributions, life histories, behaviors, and production (Perry et al. 2005; Hazen et al. 2012; 

Anderson et al. 2013; FAO 2016; IPCC 2019). In the Gulf of Maine (GOM), climate change is 

causing warming effects exceeding the rates of most of the world’s oceans (Pershing et al. 2015). 

The negative effects of this on the GOM ecosystem should not be underplayed. However, as can 

be seen from the preceding studies of Atlantic sea scallops (Placopecten magellanicus; ASC) and 

American lobster (Homarus americanus), there are some positive effects for these GOM species 

and their fisheries.   

8.1.1 Atlantic Sea Scallops: The Future of the Stock and the Future of Research 

 Until recently, areas of the Northern GOM were not considered in runs of the scallop area 

management simulator (SAMS) model and were therefore not included in calculations of 

overfishing limits (OFL) or acceptable biological catches (ABC). However, through a combination 

of quantification of growth in the region and continued survey efforts expanding the dataset of 

samples, 2021 marked the first year that an area from the Northern GOM was included in the OFL 

and ABC calculations (NEFSC SSC 2021). This highlights not only the increasing knowledgebase 

of the species in this region, but also the growing significance and importance of the northern 

extent of this stock.  

ASCs in the region have been shown to grow to larger sizes than their more southern 

counterparts; a trend at least somewhat attributable to the regional climatology. If these trends 

continue, there may be expansion potential for the fishery in this region. This speculation, 

however, can only be appropriately assessed through rigorous future research techniques. The 
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research on ASCs in this region outlined in Chapter 2 seems to suggest a more complex 

spatiotemporal relationship between the growth patterns of these animals the regional climate. 

Further research looking at how these relationships vary over space and time is necessary as well 

as other factors influencing ASC growth, namely phytoplankton density. Forecasts of these factors 

using these relationships can help to infer the future of ASC growth and by extent, the stock and 

the fishery.  

8.1.2 American Lobster: The Future of the Stock and the Future of Research 

 American lobster in Southern New England have experienced significant population 

declines and subsequent declines in fishing effort and landings (ASMFC 2015). These diminishing 

trends have been linked in part to climate change of the region, where warming waters may have 

contributed to recruitment collapses and an overall northward migration of the stock to cooler 

waters (ASMFC 2015). Much research, including that in Chapters 3 through 7, have been aimed 

at determining whether this same trend will happen in the GOM.  

 Habitat for lobster in this region will experience declines in suitability due to rising 

temperatures and salinities, but the area will not become unsuitable. Much of the same spatial 

trends in suitability will still be apparent in the next 80 years in this region, perhaps indicating 

relatively small shifts in lobster distributions in the GOM during this time. However, habitat 

suitability is not a direct measure of species distribution. There are many other factors that could 

influence lobster distributions in the GOM beyond environmental suitability. As the climate 

warms, many species besides lobster are shifting their distributions. For example, black sea bass, 

a dominant predator of lobster in southern New England, have been moving up the Atlantic coast 

and have recently been found more consistently in areas of the GOM (McMahan et al. 2020). The 

influx of regionally novel predator species may drive future lobster distributions beyond those 
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assumed from the bioclimate model results. Further research is needed on biotic factors driving 

lobster distributions, such as predator influx and disease prevalence.  

 The relationships between lobster spawning biomass and recruitment points towards a 

future of large recruitment events due to rising temperatures. The thermally mediated recruitment 

estimations in Chapter 6 hint at this optimistic point of view. However, there will be novel factors 

influencing lobster distributions, life histories, and behaviors in the near and far futures. Epizootic 

shell disease (ESD), a bacterial infection that degrades the shell and limits lobster survival and 

reproduction (Glenn & Pugh 2006), may have higher prevalence and infection rates in warmer 

waters (Glenn & Pugh 2006). This would have led to a higher pervasiveness of ESD in southern 

New England than in the GOM, but with the possibility of increasing prevalence in GOM as the 

waters warm. Future research should further quantify infections of diseases such as ESD on the 

population and how these infections and severity may relate to regional climatologies.  

 Juxtaposing the negative effects of rising predator and disease influences, lobsters will 

most likely continue to molt more frequently, grow less per molting event, and reach size-at-

maturity (SAM) at smaller and smaller sizes as the GOM warms (ASMFC 2015; Le Bris et al. 

2017). The current fishery minimal legal size regulations are based on the knowledge that female 

lobsters should experience at least one recruitment event before reaching the legal size, thus 

contributing to the population before being caught. As SAM decreases, this would increase this 

probability, perhaps leading to overall more recruitment. However, smaller lobsters produce fewer 

eggs per reproduction event and spawn less frequently than larger individuals (Waddy & Aiken 

1991), and this may not be enough to counteract the aforementioned negative effects.  

 As can be ascertained, there is a lot of uncertainty about the future of GOM lobster, with 

some facts indicating positive effects, and others pointing towards negative effects. This highlights 
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the rising importance of quantifying relationships of lobster life history to other biotic and abiotic 

factors so that more accurate predictions about this region can be made. On top of this, agencies 

like the ASMFC and the DMR are tasked with managing this species under these uncertainties. 

Analyses like those conducted in Chapters 4 and 5 are therefore essential in determining strengths 

and weaknesses of current model usage as well as where to best aim future field studies to more 

accurately inform these stock assessments.  

 The research in Chapters 3 through 7 accentuates an optimistic point of view concerning 

the future of the lobster stock. Threats that impacted southern New England may still be far into 

the future before there are large consequences for the GOM. Habitat will decrease, albeit relatively 

slowly over time, recruitment events may increase in magnitude with warming waters, and changes 

to life history will most likely not affect modelling capacity for some time. These conclusions are 

concurrently idealistic for the fate of the GOM lobster stock, but can only be substantiated with 

future research on factors not considered thus far and direct quantifications of uncertainty.  

8.2 Concluding Statement 

  In conclusion, the results of this research framework are encouraging concerning the future 

of ASC and lobster stocks and management in the GOM ecosystem. Climate change will continue 

to impact the GOM and it is imperative to continue research efforts into assessing the future of 

these and other GOM stocks and fisheries. The models developed and outlined in this dissertation 

are not species-specific and can be used with other stocks and fisheries in the GOM and elsewhere. 

The methods outlined here have growing relevance as environments continue to warm and the 

world’s fisheries are consequently impacted.  
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APPENDIX A 

 

SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

Below are seasonal growth transition matrices calculated by IBLS scenario 1. There are four 

matrices, representing (from top to bottom), Winter (January-March), Spring (April-June), 

Summer (July-September), and Fall (October-December). Rows (X) and columns (Y) are 

representative of the size class of a lobster (53 mm to 223 mm in 5 mm bins: 34 total bins) and 

matrix values are representative of the proportion of lobsters in size bin X that will grow into size 

bin Y in a given season. Thus, all row values sum to one. 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.015595083 0.503066293 0.481338624 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.002745547 0.287301847 0.709952607 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.001963732 0.293179099 0.704857169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.070465913 0.153448148 0.73178604 0.044299899 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.154163019 0.083208898 0.670974718 0.091653365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0.208995604 0.044932928 0.592424755 0.153646714 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0.273044059 0.025060862 0.521695546 0.180199532 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.353679717 0.013727008 0.426206868 0.206386407 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0.475527977 0.011373187 0.343538206 0.16956063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0.603856826 0.008337958 0.252830189 0.134975028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0.690965894 0.006310857 0.202874251 0.099848998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0.729713216 0.005145683 0.173158437 0.091982663 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0.754511771 0.004959442 0.158198757 0.08233003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0.78320897 0.004599548 0.139807906 0.072383576 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.813014644 0.003853271 0.120500544 0.062631542 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.831979314 0.003505891 0.107913879 0.056600917 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832969652 0.00331631 0.107296459 0.056417579 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832428616 0.003449114 0.108583433 0.055538837 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832386742 0.003491099 0.107164568 0.056957592 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832282849 0.003381487 0.108811419 0.055524245 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832112943 0.003599712 0.107236299 0.057051046 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832919867 0.003359054 0.108949683 0.054771396 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.833453225 0.003125037 0.107984764 0.055436974 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.836384029 0.003457327 0.105101581 0.055057063 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.839185981 0.003217148 0.102583017 0.055013854 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.843892543 0.002943672 0.097996446 0.055167338 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.846334847 0.002577822 0.094787405 0.056299927 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.845347735 0.00219961 0.091444768 0.061007886 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.838603074 0.002046777 0.092115643 0.067234505 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.829811815 0.002028189 0.094092578 0.074067418 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.821124514 0.001953212 0.095379385 0.081542889 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.817614952 0.001571557 0.098636295 0.082177197 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.81953095 0.001557093 0.178911957 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8201507 0.1798493 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.912959381 0.005802708 0.081237911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.906908894 0.016933859 0.076157247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.930390354 0.027406499 0.042203147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.960493278 0.00642024 0.031306614 0.001779868 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.989405616 0.00285656 0.007737824 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Below are seasonal growth transition matrices calculated by IBLS scenario 2. There are four 

matrices, representing (from top to bottom), Winter (January-March), Spring (April-June), 

Summer (July-September), and Fall (October-December). Rows (X) and columns (Y) are 

representative of the size class of a lobster (53 mm to 223 mm in 5 mm bins: 34 total bins) and 

matrix values are representative of the proportion of lobsters in size bin X that will grow into size 

bin Y in a given season. Thus, all row values sum to one. 
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



199 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

  

0.049416573 0.630800667 0.319782761 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.015779093 0.489884474 0.494336433 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.008330178 0.427868232 0.56380159 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.003521651 0.372302961 0.624175388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.002022705 0.209678643 0.774240854 0.014057799 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0.008472923 0.141670615 0.780428663 0.069427799 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0.028659161 0.086327641 0.78416743 0.100845768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.106855632 0.06096395 0.694505371 0.137675046 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0.29635803 0.041295108 0.540586716 0.121760147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0.523881064 0.02743349 0.367652582 0.081032864 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0.641194148 0.021036293 0.275321158 0.0624484 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0.689229239 0.01801094 0.240556937 0.052202884 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0.714688208 0.016458924 0.218361597 0.050491271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0.734329309 0.015626702 0.204889943 0.045154047 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.776480406 0.013571717 0.171396847 0.03855103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.798890082 0.011777188 0.154924007 0.034408724 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.800701026 0.011919977 0.153839827 0.03353917 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.798517185 0.01128475 0.154380157 0.035817908 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.801103129 0.01142796 0.154091713 0.033377198 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.799124004 0.011768813 0.154473609 0.034633573 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.799649419 0.011400131 0.155119417 0.033831033 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.800556852 0.011575649 0.152943495 0.034924005 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.801229895 0.011582138 0.152793672 0.034394296 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.805021204 0.011641011 0.149457035 0.03388075 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.80812635 0.011075864 0.14525513 0.035542657 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.811385188 0.010641217 0.141331524 0.036642071 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.81036568 0.009293184 0.140278173 0.040062962 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.799203804 0.008315824 0.145062479 0.047417892 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.779316914 0.007252687 0.155830725 0.057599673 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.755985622 0.007478015 0.170293344 0.066243019 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.742135275 0.006754979 0.179015703 0.072094043 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.737699576 0.006697802 0.182795699 0.072806922 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.736037272 0.007138697 0.256824031 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.736190624 0.263809376 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.902031063 0.022700119 0.075268817 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.906906077 0.040676796 0.052417127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.932951476 0.038481756 0.028566768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.958768023 0.015103858 0.026128118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



200 
 

0 0 0 0 0.988831458 0.006140586 0.005027957 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Below are seasonal growth transition matrices calculated by IBLS scenario 3. There are four 

matrices, representing (from top to bottom), Winter (January-March), Spring (April-June), 

Summer (July-September), and Fall (October-December). Rows (X) and columns (Y) are 

representative of the size class of a lobster (53 mm to 223 mm in 5 mm bins: 34 total bins) and 

matrix values are representative of the proportion of lobsters in size bin X that will grow into size 

bin Y in a given season. Thus, all row values sum to one. 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



201 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 



202 
 

 

0.128607293 0.695558152 0.175834555 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.055471753 0.673105932 0.271422315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.029716949 0.566773492 0.403509558 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.016605461 0.515362332 0.468032207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.007325349 0.401703256 0.590971395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0.011701301 0.291682851 0.696615848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0.039120538 0.214087396 0.731534055 0.01525801 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.132376916 0.140458335 0.688108435 0.039056314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0.343622663 0.100511676 0.519434366 0.036431296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0.561218194 0.061403292 0.35203238 0.025346134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0.650518611 0.050445824 0.279453689 0.019581876 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0.679043173 0.04599573 0.255672565 0.019288532 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0.68510018 0.045232728 0.251794914 0.017872179 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0.707502556 0.043243378 0.232166158 0.017087908 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.738718646 0.038345451 0.208074996 0.014860907 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.767204408 0.034023767 0.185029543 0.013742282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.768176126 0.033175137 0.18520203 0.013446708 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.768625995 0.033622581 0.184559599 0.013191825 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.769026067 0.032785596 0.18491548 0.013272857 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.767858213 0.032916769 0.185536329 0.013688689 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.768422165 0.034440864 0.184267868 0.012869104 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.770939527 0.033029876 0.182279167 0.01375143 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.773208405 0.032942934 0.179794276 0.014054384 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.776917356 0.031405405 0.176911522 0.014765717 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.777880924 0.030325079 0.174666098 0.017127899 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.768755789 0.027220335 0.183214984 0.020808892 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.743222943 0.025565375 0.204198189 0.027013493 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.701417388 0.024416319 0.239559265 0.034607028 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.665435131 0.024745742 0.270132559 0.039686567 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.647693397 0.025864842 0.282261351 0.04418041 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.648633551 0.025438295 0.282120144 0.04380801 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.643491254 0.024984618 0.288103191 0.043420937 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.643011321 0.025197128 0.331791551 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.64266002 0.35733998 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.90171938 0.053491828 0.044788792 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.908412826 0.064843794 0.02674338 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.935216097 0.046663058 0.018120846 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.958595618 0.021657024 0.019747358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.98735498 0.011402877 0.001242143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



203 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Below are seasonal growth transition matrices calculated by IBLS scenario 4. There are four 

matrices, representing (from top to bottom), Winter (January-March), Spring (April-June), 

Summer (July-September), and Fall (October-December). Rows (X) and columns (Y) are 

representative of the size class of a lobster (53 mm to 223 mm in 5 mm bins: 34 total bins) and 

matrix values are representative of the proportion of lobsters in size bin X that will grow into size 

bin Y in a given season. Thus, all row values sum to one. 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 



204 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.015106076 0.502499167 0.482394757 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.003599359 0.288406793 0.707993848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.002144739 0.2895398 0.708315461 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.067929393 0.151328838 0.737455375 0.043286394 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.155985707 0.085936094 0.668209043 0.089869155 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0.224041912 0.042417839 0.581500803 0.152039446 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0.308542209 0.023786696 0.498265078 0.169406017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.446312626 0.012574454 0.366179548 0.174933371 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0.592911175 0.009279363 0.264897457 0.132912005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0.683037795 0.006047626 0.200803391 0.110111188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0.718680815 0.006212306 0.185243148 0.08986373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0.733872633 0.005583814 0.169269318 0.091274236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0.75383679 0.005288438 0.158340598 0.082534173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0.78322725 0.004582803 0.138409906 0.073780041 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



205 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.813841641 0.003890365 0.119134551 0.063133443 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.831628597 0.003815783 0.108955901 0.05559972 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832843767 0.003361942 0.107960804 0.055833486 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832321743 0.003293906 0.108906216 0.055478135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.83232624 0.003716261 0.107620371 0.056337127 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832014869 0.003837792 0.108462072 0.055685267 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832364759 0.003132825 0.107779654 0.056722762 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.833814159 0.003418352 0.106565416 0.056202073 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.834057076 0.00337158 0.106072374 0.05649897 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.83780644 0.003264723 0.105072831 0.053856007 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.841386841 0.00329505 0.10090852 0.054409589 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.844557644 0.002498404 0.097250368 0.055693585 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.846014031 0.002853877 0.092524817 0.058607275 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.840404861 0.002252448 0.090929304 0.066413387 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.83098842 0.001825358 0.094432657 0.072753565 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.823624264 0.001503163 0.096216128 0.078656445 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.817145463 0.001565587 0.099513604 0.081775346 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.815911414 0.001379898 0.098756388 0.0839523 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.817857075 0.001625432 0.180517492 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.819667158 0.180332842 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.894308943 0.014227642 0.091463415 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.905775259 0.01552327 0.078701471 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.931325399 0.026287903 0.042386697 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.960677575 0.006260207 0.03163726 0.001424958 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.988713318 0.002915726 0.008370956 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Below are seasonal growth transition matrices calculated by IBLS scenario 5. There are four 

matrices, representing (from top to bottom), Winter (January-March), Spring (April-June), 

Summer (July-September), and Fall (October-December). Rows (X) and columns (Y) are 

representative of the size class of a lobster (53 mm to 223 mm in 5 mm bins: 34 total bins) and 

matrix values are representative of the proportion of lobsters in size bin X that will grow into size 

bin Y in a given season. Thus, all row values sum to one. 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.014608676 0.50255513 0.482836194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.003525379 0.291659866 0.704814754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.002990814 0.290841395 0.706167791 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.076219512 0.149783635 0.728756884 0.045239969 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.186422654 0.080722147 0.645307283 0.087547916 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0.292846332 0.037897286 0.529310867 0.139945515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0.443386728 0.018196796 0.401647597 0.136768879 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.593412984 0.008656693 0.271066822 0.126863502 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0.677788932 0.007288757 0.210566515 0.104355796 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0.707218117 0.006080674 0.186140152 0.100561057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0.723126608 0.006055315 0.18057042 0.090247658 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0.733415245 0.005533723 0.169782121 0.091268911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0.75514247 0.005249777 0.158624162 0.08098359 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0.782138274 0.004287921 0.140079765 0.073494041 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.812650801 0.00391131 0.120831534 0.062606355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832159968 0.003643094 0.108273689 0.055923249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832801108 0.003525278 0.106399295 0.057274319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832568303 0.003751922 0.107846084 0.05583369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832665872 0.003289837 0.107158011 0.05688628 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.832106724 0.003493109 0.108694278 0.055705889 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.833211996 0.003273208 0.107031573 0.056483223 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.833764906 0.003496604 0.10765406 0.055084429 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.835679131 0.003374377 0.104748529 0.056197963 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.840018934 0.003058586 0.102917794 0.054004685 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.843287708 0.003371317 0.09900209 0.054338885 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.845606516 0.002844621 0.09491776 0.056631103 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.844145591 0.002324199 0.091752641 0.061777569 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.836598938 0.002100079 0.091348101 0.069952881 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.826174217 0.001704051 0.095578304 0.076543428 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.817589903 0.001659965 0.099655128 0.081095004 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.814512359 0.001449366 0.099554281 0.084483995 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.815390408 0.001677335 0.098261048 0.084671208 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.819171449 0.001315463 0.179513088 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.820096112 0.179903888 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.917695473 0.004115226 0.0781893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.90846214 0.014825284 0.076712576 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.931650596 0.026699619 0.041649785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.960500151 0.006570051 0.030973099 0.001956698 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.98985261 0.002938611 0.007208779 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Below are seasonal growth transition matrices calculated by IBLS scenario 6. There are four 

matrices, representing (from top to bottom), Winter (January-March), Spring (April-June), 

Summer (July-September), and Fall (October-December). Rows (X) and columns (Y) are 

representative of the size class of a lobster (53 mm to 223 mm in 5 mm bins: 34 total bins) and 

matrix values are representative of the proportion of lobsters in size bin X that will grow into size 

bin Y in a given season. Thus, all row values sum to one. 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



209 
 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 



210 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.049900628 0.632029865 0.318069506 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.016522423 0.489237945 0.494239631 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.009459459 0.420648649 0.569891892 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.006255741 0.370478862 0.623265397 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.012561061 0.208179643 0.764729339 0.014529957 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0.041968982 0.137612947 0.754686446 0.065731625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0.127060871 0.078687811 0.705966252 0.088285065 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.328082105 0.045444947 0.524010643 0.102462305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0.534648011 0.026936212 0.358447174 0.079968602 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0.647722272 0.02066977 0.271335603 0.060272355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0.676183112 0.01869585 0.247239239 0.057881798 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0.695381544 0.018722413 0.23488652 0.051009523 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0.714668423 0.016349671 0.218998371 0.049983535 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0.735808771 0.015813441 0.20363142 0.044746368 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.776154378 0.013325993 0.170555767 0.039963862 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.798069198 0.012064352 0.155058867 0.034807584 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.801748168 0.012171588 0.152094396 0.033985848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.798549142 0.012073748 0.153883806 0.035493304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.801270177 0.011731499 0.153870386 0.033127938 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.799464734 0.012283337 0.152784265 0.035467663 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.80129791 0.011984534 0.152081753 0.034635802 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.800733997 0.011770799 0.152214777 0.035280428 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.803129456 0.011681351 0.151348289 0.033840904 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.806859182 0.01122631 0.147819789 0.034094719 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.810879655 0.010692571 0.143220004 0.035207771 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.812422277 0.009545256 0.139700198 0.038332269 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.804468706 0.007949336 0.142325638 0.04525632 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.786912665 0.007886882 0.151471875 0.053728578 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.763469984 0.007130943 0.164929838 0.064469234 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.743411025 0.006987139 0.179439316 0.070162519 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.736450354 0.006829022 0.182107241 0.074613383 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.732041344 0.00693983 0.186637135 0.074381691 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.734403871 0.007009924 0.258586205 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.735585177 0.264414823 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.915985998 0.021586931 0.062427071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.907268975 0.039761523 0.052969502 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.934137375 0.03822821 0.027634414 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.959234414 0.015840253 0.024925333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.989001185 0.006482191 0.004516624 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



211 
 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Below are seasonal growth transition matrices calculated by IBLS scenario 7. There are four 

matrices, representing (from top to bottom), Winter (January-March), Spring (April-June), 

Summer (July-September), and Fall (October-December). Rows (X) and columns (Y) are 

representative of the size class of a lobster (53 mm to 223 mm in 5 mm bins: 34 total bins) and 

matrix values are representative of the proportion of lobsters in size bin X that will grow into size 

bin Y in a given season. Thus, all row values sum to one. 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



212 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.12207019 0.702228782 0.175701028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.058773692 0.671758127 0.26946818 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.037797864 0.564303005 0.397899132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



213 
 

0 0 0 0.035969131 0.506431048 0.457599821 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.080456419 0.377857827 0.541685754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0.214947001 0.231277913 0.553775086 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0.420529149 0.127768933 0.442256084 0.009445834 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.590173296 0.064651101 0.32736278 0.017812823 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0.657830008 0.052346465 0.270272908 0.019550619 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0.681774135 0.044735649 0.25450957 0.018980646 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0.678547361 0.046733433 0.255999626 0.018719581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0.684139594 0.045556107 0.252393957 0.017910342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0.684737676 0.046036458 0.251607088 0.017618779 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0.707618609 0.043237415 0.231653113 0.017490864 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.738390743 0.037548341 0.208569416 0.015491501 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.769128532 0.033549363 0.183597065 0.013725039 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7686245 0.033255442 0.184515558 0.013604499 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.769168881 0.03445024 0.183072956 0.013307922 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.76919045 0.033028016 0.184356737 0.013424798 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.769173368 0.033366424 0.183975055 0.013485152 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.770642202 0.033543369 0.18232358 0.013490849 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.773995368 0.032341355 0.179220925 0.014442353 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.777595837 0.030407835 0.176142015 0.015854312 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.774426 0.0290998 0.178688946 0.017785253 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.759076444 0.02709577 0.189484565 0.024343221 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.726431218 0.02447251 0.219360206 0.029736066 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.683399734 0.023373174 0.255188769 0.038038323 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.656413028 0.025502463 0.276494918 0.041589591 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.645312806 0.026203057 0.283797595 0.044686542 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.646114101 0.025145318 0.285446717 0.043293864 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.646530434 0.024084799 0.284406076 0.044978691 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.646143188 0.02561105 0.286506029 0.041739733 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.643577748 0.024123634 0.332298619 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.644759705 0.355240295 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

0.905093112 0.052950415 0.041956473 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.908708127 0.063997466 0.027294407 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.936378564 0.045379907 0.018241529 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0.957950836 0.021568682 0.020480482 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.987814901 0.010541361 0.001643738 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

 

Table S3.1. Objective function values (OFV) representing model fit for the seven UMM scenarios in this study. Values 

were calculated as summed negative log likelihoods of (1) predicted length compositions from fishery-independent 

surveys, (2) predicted abundance from fishery-independent surveys, (3) predicted length compositions from 

commercial fleet catch, (4) predicted total commercial fleet catch, and (5) predicted recruitment. UMM scenarios are 

labeled as scenarios the same as in Table 3.3.   

 

 

UMM Scenario 

1 2 3 4 5 6 7 

OFV 68354.7 68787.1 69034.3 68408.3 68392.8 68833.9 69075.8 
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Figure S3.1. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for UMM Scenario 1 (the base case). Mohn’s rho values (Mohn) are displayed for 

each parameter and were calculated from seven-year peels.   
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Figure S3.2. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for UMM Scenario 2. Mohn’s rho values (Mohn) are displayed for each parameter 

and were calculated from seven-year peels.   
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Figure S3.3. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for UMM Scenario 3. Mohn’s rho values (Mohn) are displayed for each parameter 

and were calculated from seven-year peels.   
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Figure S3.4. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for UMM Scenario 4. Mohn’s rho values (Mohn) are displayed for each parameter 

and were calculated from seven-year peels.   
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Figure S3.5. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for UMM Scenario 5. Mohn’s rho values (Mohn) are displayed for each parameter 

and were calculated from seven-year peels.   
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Figure S3.6. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for UMM Scenario 6. Mohn’s rho values (Mohn) are displayed for each parameter 

and were calculated from seven-year peels.   
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Figure S3.7. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for UMM Scenario 7. Mohn’s rho values (Mohn) are displayed for each parameter 

and were calculated from seven-year peels.   
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Figure S3.8. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for the sensitivity analysis of growth and SAM. Mohn’s rho values (Mohn) are 

displayed for each parameter and were calculated from seven-year peels. These plots represent a growth shift of 1.5 

and a SAM of 82.41 mm.  
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Figure S3.9. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for the sensitivity analysis of growth and SAM. Mohn’s rho values (Mohn) are 

displayed for each parameter and were calculated from seven-year peels. These plots represent a growth shift of 1.25 

and a SAM of 83.81 mm.  
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Figure S3.10. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for the sensitivity analysis of growth and SAM. Mohn’s rho values (Mohn) are 

displayed for each parameter and were calculated from seven-year peels. These plots represent a growth shift of 1.375 

and a SAM of 83.11 mm.  
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Figure S3.11. Retrospective patterns of spawning stock biomass (SSB) in metric tons (mt), recruitment in millions of 

individuals, and fishing mortality for the sensitivity analysis of growth and SAM. Mohn’s rho values (Mohn) are 

displayed for each parameter and were calculated from seven-year peels. These plots represent a growth shift of 1.4375 

and a SAM of 82.76 mm.  
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APPENDIX B 

 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

Figure S4.1. Surface plots of the combined effects of spawning stock biomass (SSB), LM, and 

DM on recruitment (R). Red represents areas where the combined effects from SSB, LM, and DM 

yield R values lower than the reference point (75th percentile of R 1984-2013; calculated as 557 

million individuals) and green represents areas where the combined effects from SSB, LM, and 

DM yield R values higher than the reference point. The top-right plot represents a 90 degree 

clockwise rotation from the top-left plot. The bottom-left plot represents a 180 degree clockwise 

rotation from the top-left plot. The bottom-right plot represents a 270 degree clockwise rotation 

from the top-left plot. All plots generated in R (version 3.5.3) with package “akima” by 

interpolating observed values of variables.  
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Figure S4.2. Hindcasts 1989-2013 of acceptable ranges of spawning stock biomass (SSB) in mt 

of years “X-5” through “X-3” that yield the desired recruitment (R) levels of the given year. R 

difference represents the difference between the calculated recruitment at a given value of SSB at 

the associated LM and DM and the chosen R-based reference point; in this case, the 75th percentile 

of R 1984-2013. Locations where the blue line is above the dotted R difference = 0 line represent 

acceptable SSB ranges. Red lines represent where the blue line crosses the R difference = 0 line. 

Black dots represent the average SSB years “X-5” to “X-3”. As a testament to the reliability of the 

SSB/R relationship and the dynamic BRP calculator, each year’s observed SSB (black dot) 

matches whether or not recruitment was above the 75th percentile that year. 
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APPENDIX C 

 

SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

The two linear predictors used in the delta-GLMM: 

 

 

𝑝1(𝑖) =  𝛽1(𝑡𝑖) +  ∑ 𝐿𝜔1

𝑛𝜔1

𝑓=1

(𝑓)𝜔1(𝑠𝑖, 𝑓) +  ∑ 𝐿 1

𝑛𝜀1

𝑓=1

(𝑓)𝜀1(𝑠𝑖, 𝑓, 𝑡𝑖) 

 

 

(S5.1) 

+ ∑ 𝛾1

𝑛𝑝

𝑝=1

(𝑡𝑖 , 𝑝)𝑋(𝑠𝑖, 𝑡𝑖, 𝑝) +  ∑ 𝜆1

𝑛𝑘

𝑘=1

(𝑘)𝑄(𝑖, 𝑘) 

   

 

𝑝2(𝑖) =  𝛽2(𝑡𝑖) +  ∑ 𝐿𝜔2

𝑛𝜔2

𝑓=1

(𝑓)2(𝑠𝑖, 𝑓) + ∑ 𝐿 2

𝑛𝜀2

𝑓=1

(𝑓)𝜀2(𝑠𝑖, 𝑓, 𝑡𝑖) 

 

 

(S5.2) 

 

+ ∑ 𝛾2

𝑛𝑝

𝑝=1

(𝑡𝑖 , 𝑝)𝑋(𝑠𝑖, 𝑡𝑖 , 𝑝) + ∑ 𝜆2

𝑛𝑘

𝑘=1

(𝑘)𝑄(𝑖, 𝑘) 

 

where a list of parameters can be found in Table A1. From these predictors, encounter probability 

r1(i) and positive catch rates r2(i) can be estimated as: 

 

 𝑟1(𝑖) =  𝑙𝑜𝑔𝑖𝑡−1(𝑝1(𝑖)) (S5.3) 

 

 𝑟2(𝑖) =  𝛼𝑖  × 𝑒𝑥𝑝(𝑝1(𝑖)) (S5.4) 

 

where again a list of parameters can be found in Table A1. For more information, see Thorson et 

al. (2015) and Thorson (2019). 
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Table S5.1. A description of the parameters used in equations S5.1 through S5.4. Parameter definitions are from 

Thorson et al. 2019. For more information, see Thorson et al. (2015) and Thorson (2019).  

Parameter Description 

𝑝1(𝑖) First linear predictor for observation i 

𝑝2(𝑖) Second linear predictor for observation i 

𝑟1(𝑖) Encounter probability for observation i 

𝑟2(𝑖) Positive catch rate for observation i  

𝛽1(𝑡𝑖) Intercept for first linear predictor in time interval t  

𝛽2(𝑡𝑖) Intercept for second linear predictor in time interval t  

𝐿𝜔1(𝑓) Loadings matrix for spatial covariation for first linear predictor for factor f 

𝐿𝜔2(𝑓) Loadings matrix for spatial covariation for second linear predictor for factor f 

𝐿 1(𝑓) Loadings matrix for spatio-temporal covariation for first linear predictor for factor f 

𝐿 2(𝑓) Loadings matrix for spatio-temporal covariation for second linear predictor for factor f 

𝛾1(𝑡𝑖 , 𝑝) Impact of habitat covariate p on first linear predictor  in year t  

𝛾2(𝑡𝑖 , 𝑝) Impact of habitat covariate p on second linear predictor  in year  t  

𝜆1(𝑘) Impact of catchability covariate k on first linear predictor 

𝜆2(𝑘) Impact of catchability covariate k on second linear predictor 

𝜔1(𝑠𝑖 , 𝑓) Spatial factors for first linear predictor for knot s and factor f 

𝜔2(𝑠𝑖 , 𝑓) Spatial factors for second linear predictor for knot s and factor f 

𝜀1(𝑠𝑖 , 𝑓, 𝑡𝑖) Spatio-temporal factors for first linear predictor for knot s, factor f, and year t 

𝜀2(𝑠𝑖 , 𝑓, 𝑡𝑖) Spatio-temporal factors for second linear predictor for knot s, factor f, and year t 
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Table S5.1 Continued. 

𝑛𝜔1 Number of spatial factors for first linear predictor 

𝑛𝜔2 Number of spatial factors for second linear predictor 

𝑛 1 Number of spatio-temporal factors for first linear predictor 

𝑛 2 Number of spatio-temporal factors for second linear predictor 

𝑋(𝑠𝑖 , 𝑡𝑖, 𝑝) Covariate value for habitat covariate p in knot s and year t 

𝑄(𝑖, 𝑘) Covariate value for catchability covariate k for observation i 

𝑛𝑝 Number of habitat covariates 

𝑛𝑘 Number of catchability covariates 

𝑓 Factor number 

𝑝 Habitat covariate number 

𝑘 Catchability covariate number 

𝑡𝑖 Time interval number (year) associated with observation i 

𝑠𝑖 Spatial location number (knot) associated with observation i 

𝑖 Observation number (survey instance) 

𝛼𝑖 Area covered for observation i (effort offset) 

 

Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H.J. 2015. Geostatistical delta generalized 

linear mixed models improve precision for estimated abundance indices for West Coast 

groundfishes. ICES Journal of Marine Science. 72(5): 1297–1310. 

Thorson, J. 2019. Guidance for decisions using the Vector Autoregressive Spatio-Temporal 

(VAST) package in stock, ecosystem, habitat and climate assessments. Fisheries Research. 

210: 143-161.  
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APPENDIX D 

 

SUPPLEMENTARY MATERIAL FOR CHAPTER 6 

Table S6.1. Settings and data used in the lobster stock assessment model. Data and settings are identical to those used 

in Hodgdon et al. (2020). MEDMR: Maine Department of Marine Resources; NHFGD: New Hampshire Fish and 

Game Department; MADMF: Massachusetts Division of Marine Fisheries; NEFSC: New England Fisheries Science 

Center; mm: millimeter.  

Years 1984 through 2013 

Seasons 4 (Each 3 month time blocks) 

Number of sexes 1 (Averaged across male and female) 

Size range 53 mm to 223 mm carapace length 

Size bins 5 mm (For a total of 34 bins) 

Initial conditions First year size composition assumed from survey data 

Recruitment size 53 mm to 73 mm 

SSB/R relationship None 

Growth Prespecified seasonal growth transition matrices averaged across both sexes 

Number of 

commercial fleets 

1 

Commercial fleet 

selectivity at size 

Double logistic averaged across both sexes 

Survey data MEDMR Ventless Trap Survey 2006-2012 

Spring MEDMR/NHFGD Inshore Bottom Trawl Survey 2001-2013 

Fall MEDMR/NHFGD Inshore Bottom Trawl Survey 2000-2013 

Spring MADMF Bottom Trawl Survey 1984-2013 

Fall MADMF Bottom Trawl Survey 1984-2013 

Spring NEFSC Bottom Trawl Survey 1984-2013 

Fall NEFSC Bottom Trawl Survey 1984-2013 
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Table S6.1 Continued.  

Survey selectivity  

at size 

Double logistic averaged across both sexes 

Fishing mortality rate Instantaneous rates averaged across both sexes 

Natural mortality rate 0.15 year-1 across all size groups, seasons, and sexes 

 

Hodgdon, C., Tanaka, K., Runnebaum, J., Cao, J., and Chen, Y. 2020. A framework to incorporate 

environmental effects into stock assessments informed by fishery-independent surveys: a 

case study with American lobster (Homarus americanus). Canadian Journal of Fisheries 

and Aquatic Sciences. 77(10): 1700-1710. 
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APPENDIX E 

 

SUPPLEMENTARY MATERIAL FOR CHAPTER 7 

 
Figure S7.1. Interpolated anomalies from CMIP5 of bottom temperature in degrees Celsius (top) and salinity in parts 

per thousand (bottom) for RCP scenario 8.5 out to the reference periods 2006-2055 (right) and 2050-2099 (left). Data 

downscaled from NOAA’s Climate Change Web Portal (available from https://psl.noaa.gov/ipcc/ocn/). 
 

 

 

 

 

 

 

 

https://psl.noaa.gov/ipcc/ocn/
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Figure S7.2 SIs for the base case and each scenario of bottom temperature in degrees Celsius (top left), bottom salinity 

in parts per thousand (top right), depth in meters with scenario 3 included (right) and without (left), latitude (bottom 

left), and longitude (bottom right) to male adult lobsters in the spring. Note that scenario 4 SI curves are not presented 

as they are identical to the base case; only missing the temperature component. The base case is denoted as “BC”, and 

scenarios are listed as scenario 1 (S1), scenario 2 for inshore indices (S2i), scenario 2 for offshore indices (S2o), 

scenario 3 (S3), scenario 5 (S5), scenario 6 (S6), and scenario 7 (S7). Also marked are SIs of 0.2, 0.5, and 0.8, 

representing values that are “Fair”, “Good”, and “Excellent”, respectively.  
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Figure S7.3. SIs for the base case and each scenario of bottom temperature in degrees Celsius (top left), bottom 

salinity in parts per thousand (top right), depth in meters with scenario 3 included (right) and without (left), latitude 

(bottom left), and longitude (bottom right) to male adult lobsters in the fall. Note that scenario 4 SI curves are not 

presented as they are identical to the base case; only missing the temperature component. The base case is denoted as 

“BC”, and scenarios are listed as scenario 1 (S1), scenario 2 for inshore indices (S2i), scenario 2 for offshore indices 

(S2o), scenario 3 (S3), scenario 5 (S5), scenario 6 (S6), and scenario 7 (S7). Also marked are SIs of 0.2, 0.5, and 0.8, 

representing values that are “Fair”, “Good”, and “Excellent”, respectively.  
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Figure S7.4. SIs for the base case and each scenario of bottom temperature in degrees Celsius (top left), bottom 

salinity in parts per thousand (top right), depth in meters with scenario 3 included (right) and without (left), latitude 

(bottom left), and longitude (bottom right) to male juvenile lobsters in the spring. Note that scenario 4 SI curves are 

not presented as they are identical to the base case; only missing the temperature component. The base case is denoted 

as “BC”, and scenarios are listed as scenario 1 (S1), scenario 2 for inshore indices (S2i), scenario 2 for offshore indices 

(S2o), scenario 3 (S3), scenario 5 (S5), scenario 6 (S6), and scenario 7 (S7). Also marked are SIs of 0.2, 0.5, and 0.8, 

representing values that are “Fair”, “Good”, and “Excellent”, respectively.  
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Figure S7.5. SIs for the base case and each scenario of bottom temperature in degrees Celsius (top left), bottom 

salinity in parts per thousand (top right), depth in meters with scenario 3 included (right) and without (left), latitude 

(bottom left), and longitude (bottom right) to male juvenile lobsters in the fall. Note that scenario 4 SI curves are not 

presented as they are identical to the base case; only missing the temperature component. The base case is denoted as 

“BC”, and scenarios are listed as scenario 1 (S1), scenario 2 for inshore indices (S2i), scenario 2 for offshore indices 

(S2o), scenario 3 (S3), scenario 5 (S5), scenario 6 (S6), and scenario 7 (S7). Also marked are SIs of 0.2, 0.5, and 0.8, 

representing values that are “Fair”, “Good”, and “Excellent”, respectively.  
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Figure S7.6. SIs for the base case and each scenario of bottom temperature in degrees Celsius (top left), bottom 

salinity in parts per thousand (top right), depth in meters with scenario 3 included (right) and without (left), latitude 

(bottom left), and longitude (bottom right) to female juvenile lobsters in the spring. Note that scenario 4 SI curves are 

not presented as they are identical to the base case; only missing the temperature component. The base case is denoted 

as “BC”, and scenarios are listed as scenario 1 (S1), scenario 2 for inshore indices (S2i), scenario 2 for offshore indices 

(S2o), scenario 3 (S3), scenario 5 (S5), scenario 6 (S6), and scenario 7 (S7). Also marked are SIs of 0.2, 0.5, and 0.8, 

representing values that are “Fair”, “Good”, and “Excellent”, respectively.  
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Figure S7.7. SIs for the base case and each scenario of bottom temperature in degrees Celsius (top left), bottom 

salinity in parts per thousand (top right), depth in meters with scenario 3 included (right) and without (left), latitude 

(bottom left), and longitude (bottom right) to female juvenile lobsters in the fall. Note that scenario 4 SI curves are 

not presented as they are identical to the base case; only missing the temperature component. The base case is denoted 

as “BC”, and scenarios are listed as scenario 1 (S1), scenario 2 for inshore indices (S2i), scenario 2 for offshore indices 

(S2o), scenario 3 (S3), scenario 5 (S5), scenario 6 (S6), and scenario 7 (S7). Also marked are SIs of 0.2, 0.5, and 0.8, 

representing values that are “Fair”, “Good”, and “Excellent”, respectively.  
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Figure S7.8. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future period 

(Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their respective 

base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in columns 2 and 4 

are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI than the base case 

did. Red represents areas in a given scenario that were predicted to have a higher HSI than the base case did. The 

darker the respective shade, the greater the difference from the base case. Above each map is the scenario name and 

the average spatial HSI for that period and scenario. Results are for spring male adults. Note scenario 5 is combined 

seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages.  
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Figure S7.9. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future period 

(Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their respective 

base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in columns 2 and 4 

are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI than the base case 

did. Red represents areas in a given scenario that were predicted to have a higher HSI than the base case did. The 

darker the respective shade, the greater the difference from the base case. Above each map is the scenario name and 

the average spatial HSI for that period and scenario. Results are for fall male adults. Note scenario 5 is combined 

seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages.  
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Figure S7.10. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future period 

(Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their respective 

base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in columns 2 and 4 

are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI than the base case 

did. Red represents areas in a given scenario that were predicted to have a higher HSI than the base case did. The 

darker the respective shade, the greater the difference from the base case. Above each map is the scenario name and 

the average spatial HSI for that period and scenario. Results are for spring male juveniles. Note scenario 5 is combined 

seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages.  
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Figure S7.11. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future period 

(Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their respective 

base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in columns 2 and 4 

are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI than the base case 

did. Red represents areas in a given scenario that were predicted to have a higher HSI than the base case did. The 

darker the respective shade, the greater the difference from the base case. Above each map is the scenario name and 

the average spatial HSI for that period and scenario. Results are for fall male juveniles. Note scenario 5 is combined 

seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages.  
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Figure S7.12. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future period 

(Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their respective 

base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in columns 2 and 4 

are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI than the base case 

did. Red represents areas in a given scenario that were predicted to have a higher HSI than the base case did. The 

darker the respective shade, the greater the difference from the base case. Above each map is the scenario name and 

the average spatial HSI for that period and scenario. Results are for spring female juveniles. Note scenario 5 is 

combined seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages.  
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Figure S7.13. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future period 

(Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their respective 

base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in columns 2 and 4 

are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI than the base case 

did. Red represents areas in a given scenario that were predicted to have a higher HSI than the base case did. The 

darker the respective shade, the greater the difference from the base case. Above each map is the scenario name and 

the average spatial HSI for that period and scenario. Results are for fall female juveniles. Note scenario 5 is combined 

seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages.  
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