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Lattice structure manufacturing with polymers and metals can benefit from the use of Eulerian 

paths. In this research, two types of lattice fabrication methods are studied where the Eulerian path 

can be applicable. Polymer lattice is improved by using a new assembly design, while a new way 

of metal lattice fabrication is discussed. 

For the fused filament fabrication process, a new interlocking design and assemble-based lattice 

structure building approach is investigated by increasing continuity in layers and avoiding support 

structures. To minimize contour plurality, Eulerian paths between the edges were enforced. Two 

configurations in the form of cubic and octet lattice structures are examined. The compressive 

performance of the designed lattice structures is compared with the traditional single-build direct 

3D printed lattice structures. The mechanical performance (e.g., peak stress, specific energy 

absorption) of the assembled structures is found to be generally better than their direct print 

counterparts. The empirical constants of the Ashby-Gibson power law are found to be larger than 

their suggested values in both direct print and assembly techniques. However, their values are 

more compliant for octet assembled structures, which are less susceptible to manufacturing 

imperfections. 



 

 

A novel method of metal lattice manufacturing is introduced where a straight wire is bent to make 

intermediate structures, they are stacked, and loose nodes are joined to get the final lattice. The 

limitations of this method are studied, and a machine is constructed that can overcome some of the 

limitations and produce fabricable and stackable structures. These structures, generated by a 

custom-made visual basic code, can be periodic or aperiodic using a function to optimize the 

topology. The transient liquid phase (TLP) diffusion bonding method is studied as an appropriate 

joining method due to the inaccessibility of the nodes after stacking. 
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CHAPTER 1: INTRODUCTION 

Lattice structures, a class of cellular solids, consist of repetitive connected members or tessellated 

unit cells with multiple struts that are connected through end-point contacts or nodes [1]. 

Periodically assembling these unit cells forms a complex structural network [2], which can be a 

bending- or stretch-dominated structure that follows Maxwell’s criterion [3].  

These low-density structures have the potential to demonstrate higher performance than monolithic 

structures and are often better suited for applications in mechanical, phononic, thermal, and 

biological fields [4], [5]. Furthermore, compared to stochastic cellular structures (i.e., irregular 

foams), the mechanical properties of the periodic cellular structures are more predictable and often 

exhibit superior performance and multi-functional properties [6] due to their well-ordered 

geometries [7], [8].  

The superior performance expected from a lattice structure depends on proper design parameters 

(cell dimension) and manufacturing accuracy (overall porosity and properly connected nodes) [9]. 

However, the far extents of 3D cellular architecture are often unaffordable due to design and 

manufacturing limitations [10]. Fabrication imperfections, i.e., topological (variations in nodal 

connectivity and missing struts) and dimensional (variations in cellular dimensions) [11], are 

common in lattice structures due to the multi-stage complex manufacturing process [1], and can 

cause significant degradation in their intended performance, e.g., elastic moduli and compressive 

yield strength [10], [12], [13]. 

Due to complicated architecture and nodal connectivity, the traditional lattice manufacturing 

processes available today are not economical. Most of the manufacturing techniques of lattices are 



 

2 

 

additive based. Some of the most commonly used lattice structure manufacturing techniques are 

interlocked modular design, electroless nickel plating, robocasting, high-temperature forming, 

wire woven, investment casting, etc. [14]–[18]. 3D printing techniques like fused filament 

fabrication (FFF) for polymers, as well as selective laser melting (SLM), and electron beam 

melting (EBM) for metals are some of the popular lattice manufacturing methods [19]–[22]. 

However, these manufacturing processes face challenges like material entrapment, the limited 

scope of printable material, uncontrolled microstructure, contour plurality, and staircase effect, 

which significantly reduce a lattice’s mechanical properties [23]. Contour plurality is the concept 

of having multiple discrete contours in a single layer of the material deposition-based 3D printing 

process. Studies have shown continuity in the material deposition in 3D printing can result in 

higher overall structural strength [24], [25]. Multiple discrete contours can intertwine more 

manufacturing defects to the 3D printed structures.  

To resolve some of the issues with manufacturing lattice structures using the 3D printing process, 

an eighteenth-century concept of the Eulerian path (or, Eulerian trail) is incorporated into this 

thesis. This term is fundamental to graph theory. If we consider a collection of points which are 

connected with some collection of paths, where paths are noted as edges and points are noted as 

nodes, an Eulerian path is a trail that follows every edge only once allowing revisiting to the nodes. 

This concept can be synonymously applied to the material deposition toolpath for a lattice 

manufacturing. Each route of the toolpath can be considered an edge, and each corner of the lattice 

can be considered a node. The contour plurality can be significantly reduced if the deposition 

toolpath follows the Eulerian path, which is the most continuous path possible between two nodes. 

The Eulerian path and its application in 3D printing and lattice manufacturing by wire bending are 

discussed in Chapters 2 and 3, respectively. 
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The remaining portion of the thesis is organized as follows: 

Chapter 2 is the study of lattices using Fused Filament Fabrication (FFF), also known as FDM 

(Fused Deposition Modeling). In addition, a new type of lattice manufacturing method of 

assembling separately printed strut structures is presented. Part of this chapter has already been 

published in the journal of “3D Printing and Additive Manufacturing”.  

Chapter 3 focuses on the possibility and manufacturability of a metal lattice manufacturing process 

using continuous metal rods bent at certain places; several parts are stacked, dipped, and joined to 

form the final structure.  
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This chapter is published in the journal of “3D Printing and Additive Manufacturing” under the name “Mechanical Performance 

of 3D Printed Lattice Structures: Assembled vs. Direct Print.” Except for section 2.2.2. 

 

CHAPTER 2 : MECHANICAL PERFORMANCE OF 3D PRINTED POLYMER 

LATTICE STRUCTURES: ASSEMBLED VS. DIRECT PRINT 

2.1 Introduction 

3D printing or additive manufacturing (AM) relies on the incremental deposition of one or two-

dimensional forms of raw materials, such as polymer or metal, to form a three-dimensional object. 

AM can be used to fabricate complicated geometries, including lattice structures. However, 3D 

printed lattice structures are prone to deficiencies in mechanical performance, functionality, and 

feasibility caused by anisotropy, insufficient interlayer adhesion, microvoids or uncontrolled 

porosity, staircase effect, uneven surfaces, overhang support, shrinkage, and required resources 

[1], [26], [27]. Cellular structures have voids designed within them by the tessellated pattern used. 

During slicing of the object into layers, the process can generate numerous disconnected features, 

which are defined as contour plurality [26]–[29]. The presence of contour plurality exemplifies the 

lack of performance by discontinuous and interrupted path plans, which can cause reduced 

structural integrity, surface roughness, anisotropy, and weaker interlayer adhesion [26], [30]–[32]. 

A large body of research exists in the literature aimed at comparing the characteristics and 

performance of lattice structures that are fabricated with extrusion-based processes. Higher 

compressive strength in Kagome lattice structures is reported along the print orientation and the 

smoother 3D printed surface [30]. Building a cellular structure in a layer-based AM usually 

requires a support structure. Increasing the cell's complexity or reducing its size will introduce 

trapped or difficult-to-remove support structures, another limitation for direct print lattice 

structures with an extrusion-based AM process [31]. 
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Dong et al. [32] studied the significance of process parameters and build direction in extrusion-

based printing of lattice structures. They used the Taguchi method to optimize the process 

parameters for improved print quality and mechanical performance. Three non-stochastic lattice 

structures (BCC, BCC-Z, and 4+1 vertical strut pattern) were printed with PLA material, and their 

shear and bending strengths were experimentally investigated [33]. They found that the 3D printed 

lattice structures behaved well under high-shear and out-of-plane compressive load applications. 

The mechanical performance of lattice structures is often predicted by using the Gibson-Ashby 

equation, which is expressed with a quadratic or higher-order scaling relationship between 

strength, modulus, and relative density. However, due to the fabrication imperfections discussed 

previously, the performance behavior of a 3D printed lattice may not follow the empirical constant 

of the power law. To address this shortcoming, post-processing of 3D printed lattice structures 

(e.g., annealing) has been proposed for amorphous and semi-crystalline composites [34]. A recent 

attempt to delineate fundamental linkages between volumetric porosity, surface roughness defects, 

and the resulting performance of lattice structures was reported by Jiang et al. [35], where they 

used principal component analysis to determine the elastic strain fields variation and develop an 

exponential degradation factor in the Gibson-Ashby equation. 

In light of the challenges associated with direct 3D printing of lattice structures and informed by 

the prior works reported in the literature, a comprehensive study of lattice fabrication techniques 

is conducted, and their performance is analyzed for extrusion-based processes. The pre-processing 

knowledge base of extrusion-based 3D printing is compiled and contemplated with post-

processing performance measurement for lattice structure printing.  The effect of contour plurality 

on mechanical performance is investigated. To reduce contour plurality, a continuous filament 

deposition-based design is proposed that requires the assembly of the separately printed parts for 
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constructing lattice structures. Both cubic and octet lattice structures are printed using the assembly 

technique. Their mechanical performance at different length scales is measured and compared with 

the traditional direct print structures of similar patterns. The results from the compression tests are 

compared with existing analytical models for comparison. 

2.2 Methodology 

2.2.1 Design philosophy and printing of lattice structures  

3D printing process parameters such as filament deposition direction and build direction can affect 

the mechanical performance of 3D printed lattices. Rajpurohit et al. [24] showed that raster angle 

can be a defining factor for the tensile strength of a 3D printed part. Parts made with a 0° raster 

angle (load along the filament deposition) exhibited the highest tensile strength compared to all 

other raster angles. Kiendl et al. [36] also obtained similar results with 0° raster layup having the 

highest tensile strength. 

Based on their deformation behaviors, cellular solids are categorized into bending- and stretch-

dominated structures. The bending-dominated structures typically show one or more degrees of 

freedom, often with sparse strut nodal connectivity. As nodal connectivity is increased, the nodes 

(joints) become more rigid, causing higher stiffness with struts experiencing mainly tension or 

compression depending upon their alignment, hence, leading to stretch-dominated structures [6], 

[37].  

A set of strut assemblies, the building elements of 3D structures, are designed with an interlocking 

mechanism, as shown in Figure 2-1. The macro struts are printed separately on the print bed along 

a continuous toolpath with nearly zero support material. The relative density of both printed lattices 

(cubic and octet) is kept between 6% to 16% by changing the strut length from 14 mm to 24 mm 
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for cubic cells and from 9.9 mm to 17 mm for octet cells. To ensure successful material deposition 

in each layer during direct lattice print, the cross-sectional dimensions of the struts are kept at 2 

mm x 2 mm for the cubic unit cell and 1.4 mm x 1.4 mm for the octet unit cell. Below these 

dimensions, the continuity of extruded material becomes highly irregular. Similarly, above a 24 

mm cubic cell size, the bridging method to print filament without support becomes insufficient, 

and delamination is observed in the overhanging strut. The octet lattice's strut angle is maintained 

at 45º due to its support-free extrudability. 

 

Figure 2-1: Design of Assembly-based lattice structures, (a) Unit strut sub-assembly and baseplate 

definition for a cubic lattice, (b) assembly method for 2x2x2 cell size cubic lattice, (c) fully 

assembled and unit cell for cubic lattice, (d) unit strut sub-assembly and baseplates definition for 

2x2x1 cell size octet lattice, (e) assembly method for 2x2x1 cell size octet lattice, and (f) fully 

assembled and unit cell for octet lattice. 
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2.2.2 Implication of Eulerian path on designing strut sub-assembly 

Both types of lattice structures (cubic as bending dominated and octet as stretch dominated) are 

designed in this work to demonstrate the effect of the continuous deposition of materials. To 

decrease contour plurality and increase continuity in the material deposition path the design was 

done with the concept of Eulerian path in mind. If we look at the design of cubic strut sub-

assembly, we can see that a strut can be constructed with continuous toolpath along the strut length 

like Figure 2-2(c), with a mixture of continuous toolpath along the strut length and a zig-zag 

toolpath like Figure 2-2(d), or completely zig-zag toolpath like Figure 2-2(e). According to the 

previous studies [24], [36] continuous toolpath (Figure 2-2(c)) is the most desirable option for 

ensuring higher mechanical properties. To confirm the toolpath continuity, the concept of Euler 

path can be employed in the design. 

 

Figure 2-2: Possibilities of filament deposition toolpath on a cubic strut sub-assembly, (a) and (b) 

isometric and top view of the cubic strut sub-assembly design, (c) continuous, (d) mixed, and (e) 

zig-zag toolpath along the strut length. 
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The Eulerian path or Euler path and its associated terms (Eulerian Circuit, Hamiltonian Path, and 

Hamiltonian Circuit) are the fundamental concepts of graph theory. The terminologies utilized in 

this research are described below [38]: 

Graph: a graph is a set of objects where some objects are related to each other in pairs. 

Node: An object in the graph is considered a point or node. 

Vertex/Edge: The connection between two nodes is an edge. 

Eulerian path: A path that uses every edge in a graph only once, visiting all the nodes (nodes can 

be visited multiple times) 

Eulerian circuit: If an Eulerian path starts and ends at the same node, it is called an Eulerian circuit. 

Hamiltonian path: Hamiltonian path uses each node only once, and does not need to use all the 

edges.  

Hamiltonian circuit: If a Hamiltonian path starts and ends at the same node, it is called a 

Hamiltonian circuit. 
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Figure 2-3: Terminologies of graph theory, (a) graph, nodes, and edges, (b) Eulerian path, (c) Non-

Eulerian path, (d) Eulerian circuit, (e) Hamiltonian path, (f) Hamiltonian circuit. 

A deposition toolpath that follows an Eulerian circuit is the most continuous path possible for the 

toolpath. If one layer of the material deposition’s toolpath can be constructed as an Eulerian circuit, 

the whole layer can be printed without any obstacle. The necessary condition for an Eulerian circuit 

in a graph of toolpath for each node (in this case, the nodes of the lattices eventually represent the 

node of the graph, too) to have vertices (in this case, struts of the lattices) with an even number of 

degree. In other words, each neighboring nodes should relate to each other in such a way that the 

toolpath can go to and from a neighboring node, which makes a pair. If the toolpath is made with 

these sets of toolpath pairs, the toolpath can be continuous and need not be disrupted, creating an 

unbroken contour.  

Both the strut sub-assembly of cubic and octet lattices can be divided into two equal and separate 

parts between each node pair, as shown in Figures 2-4 and 2-5. If we consider each corner of the 

sub-assembly as one node, the design consists of each node connected to the neighboring node 
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with two paths. So, the material deposition nozzle can take one path to go forward and another 

path to go backward and hence complete the Eulerian circuit.  

 

Figure 2-4: Designing cubic strut sub-assembly that follows the Eulerian path completing the 

Eulerian circuit, (a) dividing each path between the nodes in strut sub-assembly, (b) Eulerian path 

followed by the material deposition toolpath. 
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Figure 2-5: Designing octet strut sub-assembly that follows the Eulerian path Eulerian circuit, (a) 

dividing each path between the nodes in strut sub-assembly, (b) Eulerian path followed by the 

material deposition toolpath. 

2.2.3 Printing parameters and processes 

An extrusion-based 3D printer (Ender 3) was used to print the polymer lattice structures in this 

study. All samples were printed using Polylactic Acid (PLA) material, with a nozzle size of 0.4 

mm, nozzle temperature of 205°C, and bed temperature of 70°C. The digital models of the octet 

and cubic lattices were created in Rhino 6. Lattice structures after assembly are shown in Figure 

2-6. The strut assemblies were printed flat on the 3D printer bed and joined using cyanoacrylate-

based adhesive (GlueMasters), which takes less than 2 minutes. The direct print lattice structures 

were printed following the bridging method for the overhanging horizontal struts. The total build 

times and the time saving between the cubic and octet structures using direct print and assembly 

manufacturing are listed in Table 2-1. Efforts were made during the design phase to minimize 

variation in the unit cell parameters (i.e., relative density, cell size, strut dimensions) to ensure 
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consistency between the structure type. However, a slight variation can be observed (as shown in 

Table 2-2) due to design, extrusion, and assembly limitations. For each density of four types of 

lattices studied one specimen was manufactured for compressive test. 

 

Figure 2-6: Lattices designed and manufactured by the assembly method with different lattice 

densities. (a) Cubic lattices (2x2x2) and (b) Octet lattices (2x2x1).

   

   

   

   



 

14 

 

Table 2-1: Print time for cubic and octet lattices.  

Lattice 

type 

Cell dimension 

Strut 

length, 

𝐥 (mm) 

Print time for 

direct print 

lattice (min) 

Print time for 

assembled lattice 

(min) 

Time 

Saving 

(%) 

Cubic 2x2x2 

14 34 21 38 

16 39 24 38 

18 49 29 40 

20 54 31 42 

22 59 34 42 

24 68 36 47 

Octet 2x2x1 

9.9 22 13 40 

11.31 26 15 42 

12.73 31 17 45 

14.14 35 18 48 

15.56 40 19 52 

16.97 44 21 52 
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2.3 Results and discussion 

The direct print and assembled lattice samples were tested under out-of-plane quasi-static 

compression using an MTS Criterion universal testing machine with a 50-kN load cell at a 10-Hz 

data acquisition rate and a 5-mm/min crosshead speed. Stress values were calculated as the 

measured applied compressive force divided by the surface area of the lattice at each loading 

increment, whereas the ratios of the corresponding crosshead displacements to the initial distance 

between the loading heads were used to calculate the non-dimensional displacements, commonly 

used strain like responses for lattice structures [6], [39].  

The compressive stress-strain curves of the cubic direct print lattice structures are shown in Figure 

2-7(a). Depending on the strut thickness-to-length ratio, t l⁄ , as defined in Figure 2-1, peak stress 

varies from the minimum of 0.2 MPa for t l⁄ = 0.08 to the maximum of 2.0 MPa for t l⁄ = 0.14, 

with max strain reaching 0.022. If the curves were associated with a fully solid material, the 

transition point at peak stress would correspond to the onset of inelastic response and plastic 

deformation. However, for lattice structures, the transition point can be caused by different 

mechanisms, such as plastic deformation, lateral instability, or a combination of instability of the 

struts under axial compression and plastic deformation, with the latter being more confined to the 

highest-stress locations in the joint regions.  
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Figure 2-7: Out-of-plane compressive response of (a) cubic direct print and (b) cubic assembled 

lattice structures at different t l⁄  values. 

The stress-strain curves of the cubic assembled lattice structures are shown in Figure 2-7(b), with 

the initial peak stress ranging from 0.21 MPa for t l⁄ = 0.08 to 2.33 MPa for t l⁄ = 0.14. The 

maximum strain is considerably greater than those observed in Figure 2-7(a), indicating that the 

structure is capable of resisting load and absorbing energy with increasing strains in the post-

buckled regime. Unlike in the cubic direct print structures, stress rises rapidly near the max strain, 

indicating a total crush and densification of the cellular structure. For example, densification starts 
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at ϵ ≈ 0.8 for t l⁄ = 0.08 and gradually decreases to ϵ ≈ 0.65 as t l⁄  increases to 0.14. The peak 

stress values for t l⁄ < 0.11 are very similar in both direct print and assembled lattice structures. 

However, for t l⁄ > 0.11, the peak stress in assembled structures surpasses that in the direct print 

structures.  

To better examine the stress-strain response of the cubic direct print lattice structures, Figure 2-

8(a) shows the photographs of the loaded structure at four distinct compressive strain values for 

the test article with t l⁄ = 0.11. The lateral deformation of the struts is visible at ϵ = 0.009. A 

closer look indicated that crack initiation began around ϵ = 0.014 with rupture at ϵ = 0.019 near 

the strut joints in multiple locations, highlighting the eventual cause of failure in these structures. 

It is also worth noting that failure was reached in a very short time after the quasi-static loading 

was initiated. 

 

Figure 2-8: Compressive behavior of (a) cubic direct print and (b) cubic assembled lattice 

structures for 𝑡 𝑙⁄ = 0.11.  

(a) 
ϵ =	0.005	

Buckling	initiated
Crack	initiated

Struts	ruptured

ϵ =	0.009	 ϵ =	0.014	 ϵ =	0.019	

(b) ϵ =	0.02	

Buckling	
initiated

Plastic	hinge
Crack	initiated

ϵ =	0.1	 ϵ =	0.2	 ϵ =	0.3	 ϵ =	0.4	 ϵ =	0.75	
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The photos in Figure 2-8(b) highlight the progressive collapse response of one cubic assembled 

lattice sample with t l⁄ = 0.11. Unlike the cubic direct print, crack initiation did not begin until 

ϵ ≈ 0.4 or later. A similar trend was observed in all the cubic assembled lattice structures 

regardless of t l⁄  values. The plastic hinge formations observed at the nodes in Figure 2-8(b) 

demonstrate that the adhesive-bonded joints have no noticeable detrimental effect on the 

mechanical performance of the assembled lattice structure.  

The differences observed in the cubic direct print and assembled lattice structures are mainly 

attributed to how each lattice is printed. In the cubic direct print lattice, the filaments are oriented 

in planes that are parallel to the cross-section of the struts generating contour plurality, whereas, 

in the cubic assembled lattice, the filaments are aligned along the axis of the struts, which 

eliminates contour plurality. When struts experience buckling-induced lateral bending, each strut 

cross-section experiences compression on one side and tension on the other. The formation of 

cracks and rupture in the struts, as seen in Figure 2-8(a), gives a clear indication of weak inter-

layer adhesion aggravated by intrinsic porosity and the smaller contact area between filaments in 

direct print struts, which ultimately result in a tensile failure.  

In the case of octet lattice structures, both direct print and assembled specimens demonstrate a 

similar compressive response at different t l⁄  values as captured by the stress-strain curves in 

Figure 2-9 and the photos in Figure 2-10. The initial peak stress occurs at lower strain levels as 

density is reduced in both cases. For example, at t l⁄ = 0.08, the initial peak stress appears at 3% 

strain in direct print and 4.5% strain in the assembled lattice. The pattern is consistent with that 

found in the recent work that simulates the peak stress for t l⁄ = 0.02 to occur at 0.4% strain for 

octahedral truss unit cell [40]. The presence of the second peak around ϵ ≈ 0.4 in Figure 2-9, not 

seen in Figure 2-7, is indicative of the formation of additional plastic hinges and a progressive 
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collapse of the octet lattice structures, which is also not hampered in any discernible way by the 

use of bonded joints in the octet assembled lattice structures. A nearly total crush and densification 

is observed in Figure 2-9 at ϵ ≈ 0.55 for t l⁄ = 0.14 increasing to ϵ ≈ 0.8 for t l⁄ = 0.08. 

Moreover, there is no evidence of delamination or fracture failure in any of the octet lattice 

structures before reaching ϵ ≈ 0.4, regardless of the fabrication method. Contour plurality still 

exists in octet direct print lattice; however, the contact area between filaments has increased due 

to the inclined struts. 

 

Figure 2-9: Out-of-plane compressive response of (a) octet direct print and (b) octet assembled 

lattice structures at different 𝑡 𝑙⁄  values. 
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Figure 2-10: Compressive behavior of (a) octet direct print and (b) octet assembled lattice 

structures for 𝑡 𝑙⁄ = 0.11. 

As to the reasons for the differences observed previously in the cubic direct print and assembled 

lattice structures not being present in the octet direct print and assembled structures, we should 

look at the architecture of the struts in the cubic and octet structures. The struts in the cubic lattices 

are longer and have a larger cross-sectional area than those in the octet lattices, but the aspect ratios 

are roughly equal for similar t l⁄  values. However, as shown in Figure 2-1, there are 12 struts 

between two adjacent horizontal layers in the cubic lattice, but there are twice as many (24) struts 

in the octet lattice structures. Also, whereas the struts are vertical in the cubic lattice, they are 

oriented at 45º in the octet lattice structures. Lastly, while in the cubic lattice structures, only two 

vertical struts are connected at each node from top and bottom, the strut connectivity in the octet 

lattice structure can be in one of two forms, as highlighted in Figure 2-1. Besides the architectural 

differences, there is a clear difference in how the applied compressive load is transferred to the 

lattice structure. A closer examination of the behavior in Figure 2-8 shows that the middle 

horizontal layer in the cubic lattice structures experiences no discernable out-of-plane 

displacement under loading. However, that is clearly not the case in the octet lattice structures 

(Figure 2-10), where the middle layer has to deform laterally in order to comply with the instability 

(a) 

(b) 

Buckling	visible

ϵ =	0.06	 ϵ =	0.08	 ϵ =	0.1	 ϵ =	0.2	 ϵ =	0.3	 ϵ =	0.4	

ϵ =	0.06	 ϵ =	0.08	 ϵ =	0.1	 ϵ =	0.2	 ϵ =	0.3	 ϵ =	0.4	

Buckling	visible
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and lateral deformation of the struts with increasing load values, which is quite visible at ϵ ≈ 0.1. 

What all of these differences point to is that the way the struts are loaded in the octet lattice 

structures makes their compressive response less sensitive to the filament orientation and inherent 

imperfections present in each printed layer, which is not the case for the cubic lattice structures.      

The plots of specific energy absorption (SEA) for the cubic and octet lattice structures are shown 

and compared in Figure 2-11 as a function of t l⁄ . The cubic assembled lattice structures outperform 

their direct print counterparts, with the difference being over ten times for all t l⁄  values. In 

contrast, the difference in SEA for the assembled and direct print octet lattice structures is not as 

drastic but still significant, with the former being roughly 10 to 20% greater for all values of t l⁄ . 

Comparing the range of SEA values by their more progressive and ductile response, the octet 

lattice structures can carry approximately three to four times more specific energy than their cubic 

counterparts. This characteristic would be useful in applications where energy absorption is an 

important design criterion.  

 

Figure 2-11: Specific energy absorption at different 𝑡 𝑙⁄  values for (a) cubic and (b) octet lattice 

structures with different fabrication methods. 
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Table 2-2 compares the measured properties of the cubic and octet lattice structures with each 

other as well as in relation to the properties of the solid PLA as reported in the literature [41]. Since 

the compressive strength and elastic modulus of solid PLA are significantly greater than those of 

the lattice structures, the relative values shown in Table 2-2 for strength and modulus do not appear 

to vary considerably for different fabrication methods. However, the results discussed previously 

show that for the cubic lattice structures, the fabrication method can make a significant difference, 

whereas, for the octet lattice structures, it does not.  Similar comparisons can also be made in terms 

of SEA and relative density.  
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Table 2-2: Measured properties of direct print and assembled lattice structures (σs= 60.6 MPa, Es 

= 2.03 GPa [30]). 

 

 
Cubic Lattice Octet Lattice 

Direct print Assembled Direct print Assembled 

t/l Relative strength, 
𝛔

𝛔𝐬
 (%) 

0.08 0.35 0.35 0.71 0.88 

0.09 0.51 0.45 0.96 1.07 

0.10 0.73 0.68 1.39 1.54 

0.11 0.96 1.04 2.06 1.98 

0.13 2.16 2.21 2.56 2.33 

0.14 3.28 3.85 3.20 3.47 

 Relative elastic modulus, 
𝐄

𝐄𝐬
(%) 

0.08 1.94 0.54 0.74 0.31 

0.09 2.16 1.43 0.88 0.77 

0.10 2.65 1.93 1.11 1.16 

0.11 2.97 2.22 1.44 1.39 

0.13 3.97 3.38 1.64 1.49 

0.14 5.50 5.42 2.10 2.07 

 Specific energy absorption (J/Kg) 

0.08 23.8 297 1121 1358 

0.09 35.7 346 1110 1845 

0.10 34.9 351 1300 1859 

0.11 42.9 574 1478 1792 

0.13 73.7 834 2131 2593 

0.14 91.6 1050 2654 2936 

 Relative density, 
𝛒

𝛒𝐬
 (%) 

0.08 6.10 5.99 5.60 5.46 

0.09 7.13 7.00 6.29 6.27 

0.10 8.30 8.25 7.77 7.91 

0.11 9.73 9.70 9.95 9.60 

0.13 12.8 12.7 12.5 12.1 

0.14 15.8 16.3 15.5 16.3 



 

24 

 

2.3.1 Prediction of strength and stiffness for octet and cubic lattice structures 

The effective properties of octet lattice structures were developed by Deshpande et al. [42] using 

what is known as the DFA model, which was further modified by Dong et al. [39]. Depending 

upon the t l⁄ , which also affects the relative density, ̅, of the struts, the peak stress in the out-of-

plane (z) direction, σzz, corresponding to elastic buckling and plastic yielding are estimated, 

respectively, as 

σzz =  
k2π2Es √2

6
(

t

l
)

4

      (2.1) 

σzz = 2√2σys (
t

l
)

2

      (2.2) 

where Es and σys represent the elastic modulus and yield strength of the base material, 

respectively. For PLA material, Es = 2.03 GPa and σys = 60.6 MPa [41]. Parameter k represents 

the column end fixity coefficient, which is bounded between 1 for pinned-pinned and 2 for 

clamped-clamped supports, with 1 < k < 2 representing boundary conditions that provide partial 

rotational restraint that falls between the two extreme cases. According to the modified DFA 

model, the elastic modulus of octet lattice in the out-of-plane direction, EZZ is predicted as 

EZZ =  
2√2Es

3
(

t

l
)

2

                                                                (2.3) 

Based on the data summarized in Table 2-2, the results obtained from Eqs. (2.1) and (2.2) are 

shown in Figure 2-12(a) while considering different values for k2. The compressive strength and 

modulus values obtained experimentally in this study are also shown in the same figure.  The 

analytical equation for elastic buckling appears to capture the compressive strength of the octet 

lattice structures by using k2 = 2 for up to t l⁄ = 0.11 and k2 = 1 beyond that. Of course, as 
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shown in Figure 2-9, the drop in stress following the initial peak appears to be caused by a 

combination of buckling and plastic deformation, and the overall response of the structure cannot 

be characterized by elastic buckling. The modulus predictions from Eq. (2.3) appear to generally 

fall below the experimental results, as shown in Figure 2-12(b) for most t l⁄  values, indicating that 

the octet lattice structure is stiffer than the analytical prediction. 

 

  

Figure 2-12: Out-of-plane compressive (a) strength and (b) elastic modulus for octet lattice 

structures at different t l⁄  values. 

The equations for compressive responses (i.e., stress and modulus) of the cubic lattice structure 

are derived in a similar manner as those presented earlier for the octet lattice structures. For the 

2 × 2 × 2 cubic lattice structure, the peak stress, σzz corresponding to elastic buckling and plastic 

yielding are estimated, respectively, as  

σzz =
3

16
 k2π2Es (

t

l
)

4

                 (2.4) 

σzz =  
9

4
σys(

t

l
)2     (2.5) 
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The elastic modulus, Ezz for a 2 × 2 × 2 cubic lattice structure can be predicted as: 

Ezz =  
9

4
Es(

t

l
)2      (2.6) 

Equations (2.4) through (2.6) are plotted in Figure 2-13 as a function of t l⁄  for a 2x2x2 cubic 

lattice structure under out-of-plane compression. The experimentally measured values of 

compressive failure stress and modulus are also shown for comparison. As shown in Figure 2-

13(a), at lower t l⁄  values, the failure mode appears to be captured by the elastic buckling equation 

with k2 = 1. When t l⁄  increases, the failure mode comes closer to elastic buckling predictions 

with the strut joints providing partial rotational restraint with k2 = 1.5 or in between the pinned-

pinned and clamped-clamped boundary conditions. However, as shown by the photos in Figure 2-

9, there is a distinct difference in the compressive response of cubic direct print and assembled 

lattice structures, with the latter showing evidence of both buckling and plastic deformation. This 

shows a different behavior than the stretch-dominated octet lattice structure. The aspect ratio of 

vertical struts decreases by increasing t l⁄  which helps the strut absorb more energy before failure. 

Thus, in the 3D printed lattice structure, increasing t l⁄  improves the joints of cubic structures 

compared to octet structures.  
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Figure 2-13: Out-of-plane compressive (a) strength and (b) elastic modulus for cubic lattice 

structures at different 𝑡 𝑙⁄  values. 

The elastic modulus data is plotted for both direct print and assembled cubic structures in Figure 

2-13(b). It can be observed that the analytical equation over-predicts the elastic modulus for both 

direct print and assembled cubic structures. The primary reason for the difference is attributed to 

the fact that the struts are assumed to have a fully solid cross-section in Eq. (2.6), whereas they 

tend to have some level of porosity due to inter-bead voids that are present along the entire length 

of each strut. If porosity within the struts can be measured and included, the Es value in Eq. (2.6) 

would be reduced depending on the average void volume fraction among the struts, and that would 

tend to shift the curve downward and closer to the experimentally measured values. The fact that 

the measured modulus for the cubic direct print lattice structures is higher than the corresponding 

assembled lattice can be attributed to both higher inter-bead voids as well as the presence of 

adhesive bonds, which tend to be more flexible than PLA in the assembled lattice. 

To evaluate the performance of direct print and assembled lattice structures, their performance is 

analyzed using the Gibson-Ashby model of cellular solids [43]. The performance of porous 

structures decreases with the topology and their relative density. This loss of performance is often 
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expressed with a quadratic or higher-order scaling relationship [1]. The comprehensive study by 

Gibson-Ashby represents the relationship between specific performance to the specific density, 

which is also known as a power law. Based on the failure mode analysis, plastic hinges during 

failure is observed. For such a failure mode, the performance loss has been expressed with the 

following equation. 

σlatt

σys
= C (

ρlatt

ρs
)

n

     (2.7) 

Here, 𝜌𝑠 is the solid material density, 𝜌𝑙𝑎𝑡𝑡 is the volumetric density of the lattice structure which 

can be varied by changing the geometric parameters during structural design. 𝜎𝑙𝑎𝑡𝑡  and 𝜎𝑦𝑠 are the 

peak strength of the lattice and yield strength of the material, respectively. The exponential 

constant 𝑛 indicates the loss of mechanical elastic property due to a reduction in relative density, 

which is determined empirically. Additionally, the mechanical performance loss has been 

attributed to constituent material properties, cell type (e.g., FCC, BCC, Cuboid) [44], and 

arrangement of struts (i.e., number of struts joined at each node) [45]. Such geometric constants 

of proportionality are included in coefficient 𝐶. The expected value for bending-dominated (cubic) 

structure is reported as 𝑛 = 1.5, and for stretch-dominated (octet) structure is reported as 𝑛 = 1 for 

plastic hinge failure [43], [46].  

To determine the empirical constants n and C, Eq. (2.7) was plotted on a logarithmic scale (Figure 

2-14), and the results are provided in Table 2-3. A distinct difference between cubic and octet 

lattices can be observed in the 𝑛 and 𝐶 values due to their geometric load-bearing efficiency 

through the strut. The arrangement of the strut is often expressed via bending-dominated vs. 

stretch-dominated structure by using Maxwell’s number defined as 𝑀 = 𝑏 − 3𝑗 + 6 [47]. Here, 𝑏 

is the number of struts, and 𝑗 is the number of joints of the lattice unit cell. For 𝑀 < 0, the structure 
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is expected to be bending dominated or under-stiff, and otherwise, the structure may be stretch 

dominated or over-stiff. For a bending-dominated (fixed joint) cell, the value of 𝑛 is often reported 

= 2~3, whereas 𝑛 = 1~2 has been reported for a stretch-dominated lattice [35], [48]. The current 

experiment consistently matches these empirical constant value ranges for both direct print and 

assembled lattice structures, demonstrating the fabrication fidelity.  

  

Figure 2-14: Log-log plot of peak strength ratio vs. density ratio for (a) cubic and (b) octet lattice 

structures. 

The empirical 𝑛 and 𝐶 do not account for material and manufacturing imperfections in the equation 

[9, 22]. It should be noted that the suggested values for the empirical constants 𝑛 and 𝐶 are 

determined assuming homogenized properties applicable to large lattice structures where the 

boundary effects may be ignored. However, their experimental values shown in Table 2-3 are used 

to simply demonstrate the relative differences between the two manufacturing methods based on 

a common standard. Although the direct print and assembled cubic structures have the same nodal 

connectivity and geometric layout, they did not perform the same due to different intrinsic defects 

in the two manufacturing methods. The defects in the direct print lattice structures are due to 
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interlayer adhesion and surface roughness of the struts, including contour plurality. The proposed 

assembled structures fabrication technique is designed to minimize those issues and thus 

demonstrate better mechanical behavior (peak stress, energy absorption). The impact of filament 

continuity can be observed better in the octet assembled lattice structure, which has n = 1.23, 

where the direct print counterpart has n = 1.46 for the loss of strength, as shown in Figure 2-14(b) 

and Table 2-3. 

Table 2-3: Value of the constants n and C for peak strength in Eq. (2.7). 

 Cubic Lattice Octet Lattice 

Constant Direct 

print 

Assembled Direct 

print 

Assembled 

n 2.38 2.49 1.46 1.23 

C 2.73 3.62 0.53 0.32 

2.4 Conclusions 

The effects of filament deposition following Eulerian path on the mechanical performance of direct 

print and assembled lattice structures were investigated. Both bending-dominated cubic and 

stretch-dominated octet lattice structures were printed using the assembled technique and 

compared with traditional direct print structures. Due to the continuity of the filament deposition, 

both assembled lattices experienced buckling and progressive failure through the formation of 

plastic hinges, making the assembled lattice structures suitable for energy-absorbing applications. 

For the direct print lattice structures, the architecture made a difference, with the cubic lattice 

failing due to fracture shortly after buckling while the octet lattice structure continued to exhibit 

progressive failure. 
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The proposed assembly technique makes low relative density lattice structures possible (<6%), 

which are often not viable in direct printing with the parameters used in this study. Similarly, the 

proposed technique also elevates the fabrication limitations of 3D printed lattice cell size and can 

print larger than 24 mm cells. This also allows the printing of smaller cell sizes as no support 

structure is required for the intricate internal architecture. Since the strut sub-assemblies are printed 

in a horizontal orientation to ensure filament continuity, the strut angle can be varied and printed 

without support. This will allow the proposed assembly technique to print gradient or non-periodic 

lattice structures, which may not be feasible through direct printing. Currently, the assembly time 

is insignificant due to a relatively small number of unit cells. However, as the number of cells is 

increased or the lattice itself becomes irregular, perhaps when conforming to a given shape or 

when different unit cells are used in different areas, then the assembly time must be included in 

comparing the manufacturing efficiency of assembled to direct print lattice structures.
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CHAPTER 3 : METAL LATTICE MANUFACTURING USING EULERIAN WIRE 

STRUCTURES 

3.1 Introduction 

Due to the recent advancements in metal 3D printing technology, manufacturing of a wide-range 

of lightweight metal lattice structures using these processes became possible [49]. This technology 

uses low-dimensional raw materials, like molten filament or powder, which are incrementally 

consolidated. 3D printing is considered a rapid manufacturing process to construct a virtually 

constructed design of lattice structures [49]. Among the seven categories of additive manufacturing 

classified by ASTM, material extrusion method [50] and powder bed fusion [51], [52] can be used 

to fabricate very complex structures, including metallic lattice structures. For manufacturing metal 

lattices, the material extrusion method, also known as the direct ink method, can be used with raw 

materials like aqueous or polymer-based metallic ink [53]. However, manufacturing a thin section 

or a narrow lattice strut can be challenging as this method is prone to flaws like internal pores, 

cracks, rough surface finish, and warping due to shrinkage.  

The quality of a metal lattice manufactured by powder bed fusion relies on the temperature source, 

the process parameters, and the post-processing measures taken. Selective laser melting (SLM), a 

type of powder bed fusion that uses laser to melt raw metal powder, can result in unstable 

microstructures [9], [51], disconnected struts, and warping [15] due to uncontrolled thermo-

mechanical behavior of the process [54]. On the contrary, a highly controlled preheated vacuum 

environment in the electron beam melting (EBM) method makes the process significantly 

controllable. This technique can produce lattice struts with negligible thermal residual stress, 

which makes this process beneficial for manufacturing lattice structures [19]. Although metal 
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lattices from nano to macro scale are fabricable using metal 3D printing processes, manufacturing 

and geometric imperfection [55] with low surface quality [52], [56] and the huge initial cost of 

production makes them infeasible in general use.  

Other techniques of manufacturing open-cell metal lattice other than 3D printing are robocasting 

[14], investment casting[18], coating in sacrificial mold [15], interlocked modular design [57], 

[58], and diffusion bonding of titanium alloys [17]. Robocasting uses a robotic deposition process 

to print with metallic ink. This process is heavily disrupted by nozzle agglomeration. A 3D printed 

sacrificial mold is used in the investment casting process. Liquid metal is cast into the mold, which 

faces some issues like early solidification and underfills. Coating with sacrificial mold also uses a 

polymer template like the previous method. This process uses the coating method of electroless 

nickel-plating for making hollow-tube metallic structures. The diffusion bonding of titanium alloy 

uses high-temperature forming to construct a sandwich structure with a pyramidal lattice core, 

which is generated by cutting a perforation pattern from a thin sheet of metal. This sheet is then 

bent and assembled into an interlocked periodic structure.  

Metal lattices called “wire-woven metals” using a textile-based weaving process are becoming 

more prominent in manufacturing metal open cell structures [16], [59]. Straight wires are crimped 

or preformed into a specific pattern called “textilecore” [60]. These wires with symmetric 

geometries with wavy or helical patterns are ‘woven’ in separate groups from different directions 

to create Kagome or bulk diamond-type lattice structures. This set of woven wires is joined by 

various methods of soldering, adhesive bonding, brazing, or sintering. With this technique, large 

periodic lattices are manufacturable within a very short time, but heterogeneity and aperiodicity 

are not possible within the structure due to the weaving pattern. Because of the required extreme 

tolerance, unjointed nodes are usual within the lattice.  
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In this thesis, the manufacturing of complex lattice structures manufactured by bending 1D metal 

wires using a customized wire bending machine is investigated. This study is a continuation of the 

research done in these papers [10], [23], where the wire was bent in the 2D plane and manually 

bent to 3D to get cubic lattices. The primary objective is to find a method to construct 3D objects 

and more complex lattices with wire. The designs of the lattices described in this thesis have 

multiple separate unit layers, which are stacked and joined to get the final shape. The designs of 

the lattices are done in such a way that the intermediate unit layers are fabricable and stackable. In 

this method multilayer periodic or aperiodic lattice structure is also feasible. A bending machine 

is constructed with a specific design mindset, which allows it to construct the unit layers without 

any fabricability issues. The layers are then stacked and temporarily locked, which is called a loose 

lattice. Depending on the size and complex geometry, the nodes of the loose lattice can be 

inaccessible, and no traditional process can be applied to join them. The transient liquid phase 

(TLP) diffusion bonding process was investigated as it incorporates a dipping step in a liquid 

carrier system (LCS) which helps to access all the nodes. Because of the requirement of the 

vacuum furnace in the TLP diffusion bonding process, the design concepts are validated by making 

one layer structure and joining by regular soldering. The feasibility test of TLP diffusion bonding 

was also done for cubic-type lattice structures.  

3.2 Manufacturing challenges of making 3D structures by wire bending method 

Wire bending is predominantly used in making dental archwire in Orthodontics. Various research 

is done to improve the bending of a dental archwire. The improvement of the wire bender was 

done alongside. Other applications are in sculpture and jewelry. Due to the precision and 

customization needed in making archwires, several types of machines have been developed. A 

desktop wire bending machine called LAMBDA can manufacture a dental brace only using the x 
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and y axes [61]. It also contains a heating system to make the bend permanent. Due to its simplicity, 

this robot cannot make more complex 3D parts than a dental brace. To be able to make more 

complex structures, an approach with a six-degree of freedom robot with a gripping unit was 

employed [62]. This robot, including the gripper, has a heating mechanism like the previous one. 

A commercial version of a similar robot was distributed with the name of SureSmile [63].  Jin-

jiang et al. [64] proposed a wire bending machine with a wire feeder, a fixed die or pin from the 

bottom, and a rotational die or pin from the top to make a 3D structure. This type of design is very 

efficient in bending at a small angle with versatility, but the space occupied by the fixed and 

rotational die system obstructs the 3D bending opportunity. A CNC design proposed by Hamid et 

al. [65] also has the option to rotate the bending mechanism, which is relatively big to have a small 

continuous 3D structure. A desktop wire-feed prototyping machine was proposed by Chang et al. 

[66], which can bend a wire and simultaneously join wires with a platform with 2 degrees of 

freedom. Other machines like automatic bending archwire machine (ABAM) [67] and cartesian 

robot for wire bending [68] all have the capability to bend 2D and, in some cases, a structure with 

a 3D shape but lack the capability to make a 3D structure directly from the machine. A theoretical 

study was done on finding the sequences of 3D wire bending by France et al., but bending tool 

space was not considered in this study. Figure 3-1 shows different types of bending machines 

previously used. 
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Figure 3-1: (a) DiWire by Pensalab[69], (b) Desktop bending machine [64], (c) Wire bender using 

ROS [62], (d) SureSmile Robot [63] 

Bending a continuous straight wire to a 3D shape has its unique challenges. Previously Pensalab, 

with their commercial wire bender Diwire attempted to make a bending machine with a 3D shape 

manufacturability. They presented their first 3D bendable design but later discarded it because of 

the self-hitting of the wire, or wire hitting the device itself. This problem is further explored by 

Lira et al. [70] . They made a replica of Diwire’s design and showed that to achieve certain wire 

sculpture shells, some specific fabricable Eulerian wire designs can be manufactured through the 

bending machine shown in Figure 3-2, which are then assembled to get the final shape. Lira et al. 

tried to confirm fabricability by taking small parts that are fabricable and combining them as they 

are separately fabricable. With this approach, they could optimize the wire path while bending, but 

no study has been done on whether the fabricable parts are stackable to have a final piece. Hence 

finding a proper solution is still in question. 
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Figure 3-2 : Eulerian wire for sculptures, (a)-(e) Process demonstrated by Lyra et al. [70] for making 

a fabricable wire part. Bending a 3D structure from a bending machine. (f) and (g) shows the 

ARMADILLO model digitally manufactured by fabricable sub-parts. 

To demonstrate the difficulty of a bending machine to make a 3D structure, a generalized bending 

machine can be imagined for studying the bending operations. The final bending machine is 

designed following the understanding of 3D bending machine’s capability and limitations. The 

bending machine needs to have a wire holder and a feeder within the system shown in Figure 3-3. 

The machine itself will occupy a space which is unusable as the wire cannot go through the 

machine or itself.  A bending mechanism is needed which can be attached to the machine from the 
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bottom or from the top. In this analogy we will consider it attached from the bottom to have 

maximum space. There are two ways to rotate the bent part in 3D we can achieve it by two ways: 

firstly, allowing the bending mechanism rotate; secondly, letting the wire itself rotate about its 

own axis. We will consider the later one. Some machines use a stopper die or pin to counteract the 

bending pin movement, but it also takes up space to obstruct the 3D part. We will assume the wire 

holder will act as a stopper pin to counteract the bending pin motion and help the bending process. 

 

Figure 3-3: A generalized form of a wire bending machine with its coordinate system and 

nomenclature. (a) A wire bending machine consist of a wire feeder, wire holder and a bending pin 

with their occupied spaces, (b) coordinate system, (c) rotation about wire’s own axis, (d) bending 

about Z-axis, (e) feed along X-axis. 
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Let us see with an example that how the self-hitting of the wire can halt the 3D structure 

fabricability using a wire bending process. Let us consider a cube (unit cell of a primitive cubic 

structure) that we want to manufacture using only a bending machine with a wire feeding 

mechanism, wire holding mechanism, and a wire bending mechanism. The input would be the 

straight wire, and the output would be the complete cube structure itself with the nodes presumably 

loosely touched with each other. The cube has 12 struts in its unit cell with 8 nodes (Figure 3-4(a)). 

All the nodes' topological orientations are the same, so we can start bending from any node. A 

continuous wire is fed through a bending mechanism (Figure 3-5), and each bend of the wire is 

obtained by rotating the bending tool clockwise or counter-clockwise, depending on the direction 

of the bend. The bending mechanism with the tool can rotate with respect to the wire, or the wire 

can rotate with respect to the bending tool, which is technically the same in this case. From Figure 

3-5, we can see that it is possible to bend from node 1 to node 4, but the bend requires to go from 

node 4 to node 1, which is impossible as the wire will have to hit or go through itself to make this 

move. If we skip the move, for now, we can go to nodes 5, 6, 7, and 8, respectively, without hitting 

the wire or bending mechanism. But again, we cannot do anything else from here because of the 

‘wire hitting itself’ situation. For a primitive cubic structure, 5 struts are missing out of 12 (Figure 

3-4(b)).  

 

Figure 3-4: (a) Primitive cubic unit cell with nodes numbered, (b) fabricable structure from a 

bending machine. 
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Figure 3-5: Bending operations required for obtaining a fabricable primitive cubic unit cell 

 

The missing strut count can be further reduced if some manual bending and overlapping of struts 

is allowed. If we extend the layer shown in Figure 3-6, for the cubic, the extended part shown in 
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the left picture can be manually rotated and bent to decrease the missing struts. This process can 

further decrease the missing struts count to three but engages one overlapping strut, which is 

undesirable because it will increase the structure's weight.  

 

Figure 3-6: Allowing manual bending to cover more missing struts, (a) extending the fabricable 

cubic structure, (b) intermediate step, (c) structure after manual bending with overlapping. 

Currently, there is no mathematical formulation for finding fabricable wire bent structures as 

bending is a global phenomenon [70]. The problem of finding a fabricable path without manual 

effort and missing struts can be relatable to an eighteenth-century problem called The Königsberg 

bridge problem (Figure 3-7(a)). In this problem, Mathematician Leonhard Euler tried to solve the 

problem of finding a route using the bridges around the islands in Königsberg, where someone has 

to use each bridge only once. Euler concluded that it is mathematically impossible to do that as 

each island has an odd number of bridge connections. He designated each island as one node and 

each bridge as one edge. Each node has a degree which is the number of edges from one node to 

other nodes. These degrees of nodes decide if a problem like this is solvable. The Eulerian path is 

defined from this analogy as discussed in Chapter 2. The existence of the Eulerian path is only 

possible in two cases. The first one is if each node has an even number of connectivity, meaning 

each island is connected with other islands with an even number of bridges. Secondly, if there are 



 

42 

 

only two nodes with an odd number of edges, the starting and ending node have to be one of those 

two nodes (Figure 2-3).  

 

Figure 3-7: (a)The Königsberg problem, (b) corner of a big cubic lattice is enlarged in the inset, 

node 2 has three edges, which violates the criteria for being a Eulerian path. 

If a similar analogy is applied to the problem of finding a fabricable path, it is possible to relate 

the edges or bridges in the Königsberg problem with struts in the lattice structures. The person 

who is crossing the bridges is analogous to the bending mechanism, which will take each path 

(strut) to go to the nodes and make a bend at that node. In a thought experiment it can be assumed 

that the bending mechanism going to each node of a straight wire and conducting the bends (Figure 

3-9). It is the same as feeding the wire, but now the machine space can be evaluated between the 

designs.  

Let us consider a corner of a big primitive cubic structure. The corner node is connected with other 

nodes with an odd number of struts which is three in this case. For a structure to be fabricable, the 

machine or the feeding mechanism can go through all the struts only once. If we do not allow any 

bending through the machine after the structure is built, the machine can go to each node only 

once. If there is an overlap or the node has an odd number of edges (in our case, struts), the path 
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for the machine is not Eulerian. So, the machine cannot do the bending without hitting the already 

constructed structure. From this analogy, it is comprehensible that it is not possible to have a 

structure directly bent from a machine that has any node with more than two strut connections 

(Figure 3-8). So to be fabricable, a bending pattern should follow an Eulerian path (using each 

strut only once). If we impose the rule that the machine can go to each node only once, the bending 

pattern must follow a path called the Hamiltonian path. The Hamiltonian path is the path which 

uses each node in a graph only once but does not necessarily use all the edges. So a design with a 

Hamiltonian path confirms the movement of the machine through all the nodes, but there can be 

missing struts in the structure as the path does not need to use all the edges. 

 It is to be noted that existence of an Eulerian path does not confirm fabricability. In other words, 

all fabricable structures follow the Eulerian path, but not all structures that follow the Eulerian 

path are fabricable. So, a fabricable output structure has to fulfill two necessary but not sufficient 

conditions:  

(i) The path of the movement of the machine has to be an Eulerian path.  

(ii) Each node of the Eulerian path can have a maximum of two edges. 

 

Figure 3-8: A node with more than two edges is impossible to fabricate via bending as the bending 

mechanism has to go through pre-bent wire. 
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Figure 3-9: Assuming the bending mechanism is moving along the straight wire to do bends at 

certain nodes 

3.2.1 Fabricability of a wire structure 

To make a lattice structure using the wire bending method, unit layer structures that are fabricable 

are designed and stacked in the required orientations. This structures are noted as loose structures 

as the nodes are not connected. After that, a joining method is used to complete the manufacturing 

process of making lattices. It must be made sure that the unit layer structure is fabricable (the wire 

does not hit itself or the bending machine) and the structures are stackable according to the 

orientation required for the lattice.  
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By deeply observing the bending situations, some remarks were made to ensure the fabricability 

of a unit wire structure. The approach is to construct a 2D layer first, then shift the layer to another 

plane from the current bending plane to have a 3D layer-based structure. 

First, we must confirm a design is fabricable in 2D. For the following reasons, the 2D designs can 

be in a situation of not fabricable: 

• A 2D structure cannot be fabricable if the 2D design has a loop in it. In other words, if the 

bending machine visits the same node twice at any time following the instruction (Making 

a Hamiltonian Circuit, enough condition not to be fabricable). An example is shown in 

Figure 3-5, where an O loop is not possible due to the hitting of the wire itself. 

• A 2D structure cannot be fabricable even if it does not have a loop in the design or the 

bending mechanism does not visit the same point twice. An example is shown in Figure 3-

10. The spiral shape is bendable if the bending is started from point a. If started from point 

b, at step 4 of the bending process, it crosses the XX’ line and hence hits the bending 

mechanism, making the 2D structure not fabricable. This phenomenon can describe as the 

bending machine is moving from an outward point to an inward point. While bending the 

bigger dimensions of outside is responsible for the bent structure to cross the XX’ line. So, 

if a 2D wire structure crosses the wire feed line at any point during the bending operation, 

the 2D wire structure is not fabricable. 
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Figure 3-10: A desired spiral shaped design has a different situation if started from point a and 

point b. The part is fabricable from point a but not fabricable from point b, as it crosses the XX’ 

line at step four of the construction.  

After ensuring a design is fabricable in 2D space, we can shift the design to a parallel layer and 

start bending in a plane that is parallel to the previous plane (Figure 3-11) by following the 

necessary conditions. Let us introduce some notations to express certain actions (e.g., rotating and 

feeding maneuvers) in the machine: 

● Feeding the wire is denoted by symbol F with the subscript denoting the amount of feeding 

in milimeter as l. So, feeding 10 mm with the wire feeder is transcribed as 𝐹10 (Figure 3-

3(e)). 

● Bending the wire is denoted by symbol B with the subscript of bending angle 𝜃. So, bending 

a wire with a counter-clockwise rotation of 90º is transcribed as 𝐵90. The rotation is 

evaluated from the top view (Figure 3-3(d)). 
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● Rotating the wire about its own axis as R with a rotation angle 𝛾. So, rotating a wire with 

an counter-clockwise rotation about its own axis is transcribed as 𝑅90. The rotation is 

evaluated from the front view (Figure 3-3(c)). 

Now, to move a constructed plane (where the 2D structure is already done) to the parallel of the 

bending plane, we have to follow this maneuver:   

𝑆𝑛𝑒𝑥𝑡_𝑙𝑎𝑦𝑒𝑟 =  𝑅−90𝐵−90𝐹𝑙𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟
𝐵−90𝑅−90                                    (3.1) 

Figure 3-11 shows how this set of instructions moves the first layer up the bending machine and 

allows the bending tool to bend in a parallel layer without interruption. This maneuver will allow 

any already constructed layer or set of layers to the upper portion of the machine. Here,  𝑙𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟 

is the distance between two fabricable parallel layer and must be bigger than half of the wire feeder 

or holder width dimension 𝑤𝑚. This is further elaborated in the design of the machine section.  
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Figure 3-11: Bending sequence for shifting a 2D plane to a parallel plane, following the bending 

sequence of  𝑅−90𝐵−90𝐹𝑙𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟
𝐵−90𝑅−90.  

If a 2D layer is fabricable and the stated algorithm is applied, technically, the amount of the layers 

bent would be infinite (Figure 3-12) (practically, because of the weight of the structure, the part 

will sag over the bending tool and induce error). The length and width dimensions of the 2D layer 

cannot exceed in such a way it would hit the bending machine when the 2D layer is moved to the 

left (Figure 3-11, fifth step). 
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Figure 3-12: Shifting multiple planes parallel to each other, making a unit layer structure. 

3.2.2 Unit fabricable structure 

In this research, two types of fabricable unit layer structures are studied: (i) Triangular type and 

(ii) Square type. These two types of structures can be stacked to get almost every type of open strut 

type lattice structure. These two types can also be periodic or aperiodic. Periodic structure makes 

the topological properties practically the same all over the part. To have a topologically optimized 

part, process of manufacturing aperiodic lattices is necessary. 

The triangle-type unit layer is constituted by triangle-shaped structures compiled in layers (Figure 

3-13). It is achieved by bending the wire in an alternating way. 𝜃 can be from <180˚ to the smallest 

bend angle possible with the bending tool. The angles (𝜃1, 𝜃2, 𝜃3, …) can be equal or not equal, 

depending on the periodicity or aperiodicity of the final structure. If the triangles need to be 
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aperiodic, but the nodes need to be in the same plane, the lengths of the struts (𝑙1, 𝑙2, 𝑙3, …) need to 

be adjusted. The instruction set for one triangle unit cell is constructed as: 

𝑆𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒_𝑢𝑛𝑖𝑡 =  (𝐹𝑙𝑖
𝐵−𝜃𝐹𝑙𝑖+1

𝐵𝜃)                                                (3.2) 

If there are k unit cells in the whole structure (considering one triangle shape is part of one unit 

cell), the instruction set would be as follows: 

(𝑆𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒_𝑙𝑎𝑦𝑒𝑟)𝑘 =  ∑ 𝑆𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒_𝑢𝑛𝑖𝑡
𝑘
𝑛=1 =  ∑ (𝐹𝑙2𝑛−1

𝐵−𝜃𝐹𝑙2𝑛
𝐵𝜃)𝑘

𝑛=1                    (3.3) 

This will make one layer with triangles. If there are multiple layers, the current layer needs to be 

shifted to the next layer by using Equation (3.1). If there are m layers in the unit structure, the 

instruction set should be as follows,  

𝑆𝑢𝑛𝑖𝑡_𝑙𝑎𝑦𝑒𝑟 = (∑ (𝑆𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒_𝑙𝑎𝑦𝑒𝑟)𝑘
𝑚−1
𝑛=1 + 𝑆𝑛𝑒𝑥𝑡_𝑙𝑎𝑦𝑒𝑟) +  (𝑆𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒_𝑙𝑎𝑦𝑒𝑟)𝑘              (3.4) 

The square type of unit layer involves four bending angles and four struts as a unit repeatable 

instruction. The instruction for a square shape (all 𝜃 = 90˚) should be as follows: 

𝑆𝑠𝑞𝑢𝑎𝑟𝑒_𝑢𝑛𝑖𝑡 =  (𝐹𝑙𝑣_𝑖
𝐵−𝜃𝐹𝑙ℎ_𝑖

𝐵−𝜃𝐹𝑙𝑣𝑖+1
𝐵𝜃𝐹𝑙ℎ𝑖+1

𝐵𝜃)                          (3.5) 

Similar to the triangle type, the instruction set for a unit layer can be written as follows: 

𝑆𝑢𝑛𝑖𝑡_𝑙𝑎𝑦𝑒𝑟 = (∑ (𝑆𝑠𝑞𝑢𝑎𝑟𝑒_𝑙𝑎𝑦𝑒𝑟)𝑘
𝑚−1
𝑛=1 + 𝑆𝑛𝑒𝑥𝑡_𝑙𝑎𝑦𝑒𝑟) +  (𝑆𝑠𝑞𝑢𝑎𝑟𝑒_𝑙𝑎𝑦𝑒𝑟)𝑘         (3.6) 

Instruction sets from Equations (3.4) and (3.6) can be applied using a Rhino visual basic code 

(.rvb) to make the G-code required for the bending machine which is stated in a later section. 
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Figure 3-13: Unit layer structure with triangular repeating cells. 

 

 

Figure 3-14: Unit layer structure with square repeating cells. 

Equations (3.1)-(3.6) describe the bending operation for in-phase structures. The unit layer 

structures can be out of phase and still fabricable as it does not contradict any of the rules stated 
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before. By out of phase, it is meant that if one layer ends at the bottom, the next layer will start 

from the top and vice versa. Figure 3-15 shows out-of-phase triangular and out-of-phase square 

structures. Out-of-phase triangular structures can be beneficial as they are the core structure 

required for the BCC (body-centered cubic) or structures generated by stacking more layers over 

BCC. The bending operations set can be constructed for out-of-phase structures by shifting by one 

instruction in the equation after each layer and changing the angles in the next layer instruction in 

Equations (3.4) and (3.6). 

 

Figure 3-15: Out of phase unit layer structures (a) triangular, (b) square. 

3.2.3 The stackable unit layer structure 

Fabricable structures are not guaranteed to be stackable with each other. It is observed that two 

types of situations can occur in terms of ability to stack. In this thesis, they are referred to as first-

degree and second-degree stacking. The first-degree of stacking occurs when two unit layer 
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structures are put one over another. The necessary condition to be stackable in this way is that all 

nodes need to be on the same plane for both structures. If the nodes do not align with each other, 

a node gap can occur, which will result in weak mechanical properties in lattice structures. Figure 

3-16(a) shows an example of a first-degree stacking.  

Second-degree stacking occurs when a unit layer structure needs to be insertable into another 

structure or set of structures. Basically, the group of structures will have a hole where the unit layer 

structure needs to be inserted. By observation, two types of effects were observed: hole topology 

effect and stacking chronology. The hole topology effect can be observed when a single unit layer 

needs to be inserted, where the insert structure cannot be bigger than the hole. Also, if the hole 

converges, the insert has to converge. If the hole diverges, the insert can only have a dimension 

less than the beginning dimension of the hole (Figure 3-12 (b)(i)). The second type of stacking 

issue can be observed if two or more unit layers need to be inserted into a base structure. The 

orientation and chronology can affect how we can stack unit layers one after another. If multiple 

inserts are to be stacked from different orientations, their stackability will depend on their 

topology. The left Figure 3-16 (b)(ii) shows that for some orientations; it does not matter what the 

stacking chronology is. But in the right figure stacking layer 1 first will block the pathway for 

stacking layer 2. But the opposite does not do the same. Stacking layer 2 does not block the hole 

for layer 1.  So for stacking, some visual and 3D observation needs to be done beforehand. 
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Figure 3-16: Analysis of stacking of different structures, (a) first-degree stacking, (b) second-

degree stacking, (i) hole topology effect, and (ii) stacking chronology effect. 
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3.2.4 Node wrapping 

Node wrapping phenomena needs to be considered while designing two stackable unit layers. 

Because of the diameter of the wire, two stacked layers’ nodes cannot go through each other, and 

each node occupies some volume. Because of this, one layer’s nodes need to wrap over another 

layer’s nodes, and this defect cannot be solved in any way. This defect can be minimized by 

readjusting strut lengths and bending angles to have a perfect fit with each other, and together they 

will act as one node before stacking other structures. 

 

Figure 3-17: Node wrapping for two out-of-phase triangular structures (a) unit layer structures 

before stacking, (b) after stacking with node wrapping, (c) front view for node wrapping. 
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3.3 Manufacturing process of Lattice using Metal wire 

3.3.1 Design of the bending machine 

The bending machine is designed to have four degrees of freedom which are represented by the X, 

Y, Z, and W axes (Figure 3-18(a)). The X-axis contains the wire feed mechanism, which has a 

450mm linear rail module and holds the carriage of the Y-axis rotation motor. The Y-axis is a 

rotary axis that is used to rotate the wire about its own centerline . The Y-axis motor is a hollow 

shaft motor with a hollow chuck in its head, which is to facilitate continuous bending of a straight 

wire. The total feed of the G-code will always be within the limit of the X-axis linear rail module, 

which is 450 mm. If a long G-code is needed to be applied, it is broken into sections. The carriage 

is stopped at the end of the X-axis, the chuck is loosened, the carriage is moved back while the 

wire with the bent structure is kept in its place, and again the next part of the G-code is started. 

 

Figure 3-18: Parts of the bending machine, (a) Wire bending machine, (b) wire holder, (c) bending 

tool (d) FlashCut motor controller. 
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The Z-axis is used for engaging and disengaging the bending tool to the straight wire. The bending 

tool is a fork-like instrument whose centerline goes through the wire to execute the bending both 

clockwise and counter-clockwise Figure 3-18(c). 

The whole system is driven by a controller system, “FlashCut” Figure 3-18(d). The G-code 

generated from the fabricability checking software is described in the next section. The G-code 

can be directly executed through the FlashCut CNC software to the FlashCut motor controller 

system. The CNC software needs to be calibrated with the motors before use.  

 The things that help the bending machine to make a practically infinite number of intermediate 

stackable layers are the wire holder and the bending tool system. The holder's dimension 𝑤𝑚 and 

ℎ𝑚, defines the lowest limit for interlayer distance and highest limit for the 2D plane’s width, 

respectively (Figure 3-18(b)). When one intermediate layer is constructed, to move to the next 

intermediate layer, the previous intermediate layer needs to rotate along the wire holder and the 

side of it, according to Figures 3-11 and 3-12. Therefore, the minimum intermediate layer distance 

must be bigger than 𝑤𝑚/2. 

3.3.2 Checking the fabricability of a structure for a given instruction set 

A custom visual basic based code is written to construct the G-Code and check the bending 

sequence to avoid any collision with the tool or the bending machine. The code’s input is the 

instruction set required for the unit layer structure. The code follows the instructions and visual 

interpretation of the bending and rotation performed by the instructions. While the code runs the 

visual interpretation, it simultaneously fills up the initially empty G-Code. If it is found that no 

self-hitting of the wire is happening throughout all the bending, feeding and rotation operations, 

the G-code is ready to be used in the bending machine system through FlashCut’s CNC software.  
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Figure 3-19: Process flow and simulation using Rhino and FlashCut CNC. 

For one operation in the machine, a set of G-Codes need to be engaged. For example, one 

clockwise bending operation (e. g. , 𝐵90) needs to follow the following instructions one by one: 

1 Feeding the straight wire (if no feeding is already done) 

2 Engagement of the bending tool 

3 Clockwise rotation of the bending tool 

4 Counter-clockwise rotation of the bending tool  

5 Disengagement of the bending tool  
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According to the instructions, the G-code looks like this: 

1 G01 X8;                  Assuming Lx or Ly is 10 mm, 2 mm is fed in the rotation operation 

2 G01 Z10;                   Z axis moves 0 to 10 mm to engage a straight wire, depending on the calibration 

3 G01 W-190 X10;   W is calibrated to each degree of rotation here, and the rotation is 190 degree 

4 G01 W-100;           The tool is partially reverted; this helps to disengage the wire from the tool 

5 G01 Z0;       Moves the tool to its initial position 

6 G01 W0;                 Rotates the tool to its initial position 

 Because of the character of the bending tool, the X feed in line 3 and the partial revert position of 

the tool in line 4 is essential to have a smooth bending operation.  Without proper disengaging, the 

tool tends to pull off the wire, hence destroying the part. 

3.4 Proposed lattice designs that are fabricable using the proposed bending machine 

3.4.1 Fabrication process for body centered cubic (BCC) structure  

BCC has a strut node connectivity of Z = 8. To achieve this a single unit cell requires four out-of-

phase triangular shapes, which are stacked one over another in a specific way shown in Figure 3-

20. First, a design of the phase-shifted layers is simulated (Figure 3-20 (a)) in Rhino, and G-code 

is generated. The bending machine is used to make the four separate but similar structures like 

Figure 3-20(b). Two of them are stacked over each other where they have a 90-degree angle in the 

x-y plane between them. Another set of two is stacked in a similar way and turned over upside 

down to have the middle nodes align with each other (Figure 3-20(d) and (e)). In Figure 3-20, four 

unit cells are constructed by stacking four phase-shifted fabricable triangular wire parts.  
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Figure 3-20: Construction of BCC structure using stackable and fabricable Eulerian wire: (a) 

fabricable design, (b) after bending, (c) first degree stacking of two layers, (d) first degree stacking 

of two sets of layers, (e) BCC structure, (f) four unit cells constructed from the process, (g) BCC 

unit cell. 

3.4.2 Fabrication Process for the primitive cubic structure  

The cubic structure has a strut node connectivity of Z = 6, which can be achieved by using square 

unit layer lattices stacked following first and second-degree stacking. Two unit layers construct a 

structure with nodal connections in parallel planes. Transverse missing struts can be filled up with 

a second-degree stacked unit square lattice shown in Figure 3-21(e). The surface of the cubic lattice 

can experience missing struts. If the manufactured part has a lot of unit cells, the missing strut 

percentage will go down, as they occur only at the surface layer.  
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Figure 3-21: Construction of cubic structure using stackable and fabricable Eulerian wire: (a) 

fabricable design, (b) after bending, (c) first degree stacking of two layers, (d) after stacking two 

layers, (e) second degree stacking of two sets of layers, (f) primitive cubic structure, (g) eight unit 

cells constructed from the process, (h) cubic unit cell. 

3.4.3 Fabrication process for primitive cubic structure allowing manual bending 

A cubic lattice can also be manufactured using a continuous rod [10], [23]. To have a structure 

like this, manual bending is necessary at some points. Figure 3-22 (a, b) show the design and 

manual bending points for the construction of a metal lattice. This design can also suffer missing 

struts at the surface like the previous cubic lattice design. 
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Figure 3-22: Construction of cubic structure using stackable and fabricable continuous Eulerian 

wire: (a) fabricable design, (b) after bending, (c) after manual bending, (d) four unit cells 

constructed from the process, (e) cubic unit cell from manual bending. 

3.4.4 Fabrication process for octet structure  

Octet structures are more complicated than the previous structures. It has a strut node connectivity, 

Z = 12. The shape of a unit octet is shown in Figure 3-23 (f). An octet structure has similar 

connectivity as both FCC and BCC. In other words, FCC and BCC are subsets of the octet 

structure. Therefore, more layers can be stacked in pre-constructed BCC and FCC structures to get 

an octet structure. Figure 3-23 shows how an octet structure can be constructed from a pre-

constructed BCC structure. After building a BCC structure (Figure 3-23(a)), a layer is taken for 

reference. Phase shifted triangular structures are stacked horizontally to get the horizontal strut 

node connections available in octet, hence doing a second-degree stacking.   
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Figure 3-23: Construction of octet structure using stackable and fabricable Eulerian wire: (a) 

preconstructed BCC, (b) one layer taken for making octet, (c) second degree stacking, (d) octet 

single layer, (e) four octet unit cell constructed from the process, (f) octet unit cell. 

3.5 Loose lattice joining method 

After generating a loose lattice structure, the unjointed nodes need to be joined by a convenient 

metal joining method. If the unit cell size of the lattice structure is small and the geometry is 

complex, the traditional metal joining methods would not be a good solution.  Joining methods 

like soldering and arc or other types of welding will not be reachable to some particular nodes.  

One way of joining the nodes would be dipping the loose structure into a liquid carrier system 

(LCS) which delivers adhesive material to the nodes. Previously, studies have been done to find 

effective joining methods for loose lattices [71], [72]. One way would be polymer-metal adhesive 

bonding by using epoxy as LCS, and the other way would be transient liquid phase (TLP) diffusion 
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bonding, where the LCS is made of a solvent, a binder, and inorganic particles which need to be 

transferred to the nodes. In a vacuum furnace with high temperature, the inorganic particles 

transferred to the nodes will diffuse to the base metal, hence joining the nodes of the loose 

structure. 

In this research, TLP diffusion bonding was investigated as a potential method of joining the loose 

lattice. TLP bonding is used as a metal-metal joining method that has both diffusion and brazing 

characteristics. In this method, metal/alloy particles are delivered in between the two to-be-

connected surfaces of the base material used in the loose lattice. The base material used for loose 

lattice is AISI 1006 low carbon steel, and Nicrobraz 51 powder was taken as the inorganic metal 

particle, which is to be transferred to the nodes for diffusion. As a binder polymer, Polymethyl 

methacrylate (PMMA) was chosen. This amorphous thermoplastic material has a sufficient gap-

filling quality, which is essential for node joining. Its low density (~1.17 gm/cm3), relatively high 

flash point(>250˚C), and good tensile strength (72 MPa) make it perfect for this purpose. As a 

solvent, 1,3 Dioxolane was considered as it has a quick evaporation rate, low density 

(~1.06 gm/cm3) with very low toxicity. The solute and solvent were stirred with a magnetic 

stirrer for about 8 hours before mixing the inorganic particles (Nicrobraz powder). The Nicrobraz 

powder was added to the solution with a 45% (v/v) ratio. These concentrations for binder, solvent, 

and inorganic particles were optimized by Khoda et al. [71]. As the inorganic metal powder has a 

different density than the solution, sedimentation occurs if the suspension is kept still. Before 

dipping the loose structure, the suspension was stirred using a magnetic stirrer, and the loose 

structure was dipped. The dipping method is elaborately discussed in Chapter four. 

If the dipped loose lattice is kept at a high temperature, the interlayer alloy (Nicrobraz powder) 

will melt and join the interlayers by capillary action. A liquid bridge connects between the two-



 

65 

 

joining surfaces, and local diffusion happens between the interlayer alloy and the base metal, 

which ultimately joins the nodes. A furnace by Desktop Metal was used in this study. The 

temperature profile is shown in Figure 3-24. The temperature goes over 500˚C after about 17 hours, 

which is over the evaporation temperature of the binder PMMA. After about 21 hours, the 

temperature goes over 1200˚C, which ensures the diffusion process. After achieving the highest 

temperature, the part is cooled down for over 35 hours to have the least amount of residual stress 

in the part. Figure 3-25 shows some of the constructed lattices by joining soldering for proof of 

concept and by joining using TLP process.  

 

Figure 3-24: Temperature profile obtained from experiment in furnace (Desktop Metal) 
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Figure 3-25: Manufactured lattice structures, (a,b) Primitive cubic lattice by second degree 

stacking (copper wire with solder joining),  cubic lattice from continuous rod (c) after dipping, (d) 

after joining, (e) higher cell size(2×2×2)  (AISI 1006 metal with TLP joining), (f) BCC, (g) octet, 

(h) FCC lattice manufactured by proposed process (Copper wire with solder joining).
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CHAPTER 4 : CONCLUSIONS 

In this study, two new types of manufacturing lattices with two different materials (polymer and 

metal) are proposed and discussed. For polymer lattice manufacturing, it is found that filament 

deposition direction has an effect on polymer lattice manufacturing, and it can be minimized by 

utilizing assembled parts following Eulerian paths for continuity in filament deposition. Continuity 

in filament deposition changes the failure mode for both bending and stretch-dominated lattice 

structures and makes them suitable for applications that require energy absorption. A low relative 

density was also achievable by the assembly method, and even less density is achievable by design, 

where the direct print is restricted by the parameters of the manufacturing process. As the assembly 

method does not incorporate support materials, a lot of manufacturing options open up, which are 

unachievable by direct print, e. g. strut angle variation, very low density, and complicated porosity 

without material entrapment.  

For the range of relative density tested for cubic and octet structures (5.46% – 16.3%) generally 

the relative strength is found higher in assembly-based structures. In cubic structure, middle base 

plate did not show any load bearing behavior, where octets’ middle base plate showed significant 

deformation. Direct print and assembled cubic structures showed significant difference in failure, 

while failure for octet for both type was almost the same. These can be attributed by the difference 

in printing process of direct and assembled based structures. In conclusion, assembly based lattices 

can be a potential candidate for all lightweight applications. As future work other designs for 

lattices like BCC, FCC, cuboct etc. can be done and tested. These characteristics of different 

lattices can be useful in selecting the assemble based design for various applications. 
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A novel way of manufacturing metal lattice was also studied, the challenges of bending a 3D 

structure from a machine are acknowledged, and some way of overcoming this obstacle of wire 

hitting itself is discussed. Some new ideas for manufacturing wire metal lattices are presented, and 

some possibilities of periodic and aperiodic cubic, BCC, FCC, and octet lattices are introduced.  

For the joining of the loose lattice manufactured by this process, Transient liquid phase (TLP) 

diffusion bonding is proposed and studied. From the study it can be concluded that this new metal 

lattice fabrication process has potential to be used as a regular metal lattice manufacturing process. 

As future work aperiodic metal lattice manufacturing process can be studied. As the dimension 

can be programable through an automatic process, presented lattice manufacturing process can be 

used in quick fabrication of topologically optimized metal structures. The versatility of the 

fabricable designs can facilitate the manufacturing of auxetic materials using wire bending process. 
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