
The University of Maine The University of Maine

DigitalCommons@UMaine DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

Summer 8-2022

Optimization of a Lightweight Floating Offshore Wind Turbine with Optimization of a Lightweight Floating Offshore Wind Turbine with

Water-Ballast Motion Mitigation Technology Water-Ballast Motion Mitigation Technology

William Ramsay
University of Maine, william.ramsay@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd

 Part of the Acoustics, Dynamics, and Controls Commons, and the Civil Engineering Commons

Recommended Citation Recommended Citation
Ramsay, William, "Optimization of a Lightweight Floating Offshore Wind Turbine with Water-Ballast Motion
Mitigation Technology" (2022). Electronic Theses and Dissertations. 3622.
https://digitalcommons.library.umaine.edu/etd/3622

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of
DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/etd
https://digitalcommons.library.umaine.edu/fogler
https://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/294?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/etd/3622?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

OPTIMIZATION OF A LIGHTWEIGHT FLOATING OFFSHORE WIND

TURBINE WITH WATER-BALLAST MOTION MITIGATION

TECHNOLOGY

By

William Ramsay

B.S., University of Maine, 2020

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Mechanical Engineering)

The Graduate School

The University of Maine

August 2022

Advisory Committee:

Dr. Andrew J. Goupee, Donald A. Grant Associate Professor of Mechanical Engineering,

Advisor

Dr. Anthony Viselli, P.E., Manager of Offshore Model Testing and Structural Design at

the Advanced Structures and Composites Center

Dr. Richard Kimball, Presidential Professor in Ocean Engineering and Energy

© 2022 William Ramsay
All Rights Reserved

ii

OPTIMIZATION OF A LIGHTWEIGHT FLOATING OFFSHORE WIND

TURBINE WITH WATER-BALLAST MOTION MITIGATION

TECHNOLOGY

By William Ramsay

Thesis Advisor: Andrew J. Goupee, Ph.D.

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Master of Science
(in Mechanical Engineering)

August 2022

Floating offshore wind turbines are a promising technology to address energy needs

utilizing wind resources offshore. The current state of the art is based on heavy, expensive

platforms to survive the ocean environment. Typical design techniques do not involve

optimization because of the computationally expensive time-domain solvers used to model

motions and loads in the ocean environment. However, this project uses an efficient

frequency domain solver with a genetic algorithm to rapidly optimize the design of a novel

floating wind turbine concept. The concept utilizes liquid ballast mass to mitigate motions

on a lightweight post-tensioned concrete platform, with a target of half the levelised cost of

energy of current technologies.

This thesis will present the optimization methodology for the cruciform hull design with

tuned mass dampers and IEA 15 MW turbine. The need for lowering the levelised cost of

energy of offshore wind technologies is explained, along with the challenges of reducing cost

in these floating systems. A method utilizing a staged constraint handling technique

coupled with a genetic algorithm is developed, encompassing input variable selection,

hydrostatic constraints, and dynamic constraints. Finally, results of the optimization are

presented, including wind and wave conditions, hull and turbine specifications, and

convergence criteria. Finally, a conclusion on the results of the optimization is made and

suggestions for future work are presented.

DEDICATION

In gratitude to my mother and father

iii

ACKNOWLEDGEMENTS

I would like to begin by thanking the Department of Energy for their vision in developing

the ATLANTIS project, without which this research effort would not have been possible.

Thank you to the offshore wind team at the Advanced Structures and Composites

Center, I am continually humbled by their collective brilliance in bringing the University of

Maine to the forefront of floating offshore wind in the United States. In particular, I would

like to thank Dr. Anthony Viselli, whose skilled leadership and technical knowledge has

guided the team and the project. I thank Dr. Rich Kimball, whose innovative ideas have

been central to our success. Benjamin Blood diligently translated Excel sheets into

MATLAB functions which was invaluable. I would like to thank Chris Allen, whose

knowledge and dedication to his work impresses me everyday. His extensive analytical and

coding skills have touched or are the basis of much of the work presented here. Finally, I

would like to thank my advisor, Dr. Andrew Goupee, whose intellect, patience, and

kindness are unsurpassed and who guided this research extensively. I would not be where I

am today without his continued support and belief in me.

iv

TABLE OF CONTENTS

DEDICATION .. iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . ix

1. INTRODUCTION .. 1

1.1 Motivation. 1

1.2 Proposed Design and Solution Method. 2

2. METHODS . 8

2.1 Genetic Algorithm and Constraint Handling . 10

2.1.1 Input Variables . 13

2.1.2 Constraints . 15

2.1.3 Objective . 18

2.2 Hydrostatic function . 18

2.2.1 Rolling Diaphragm Concept . 25

2.3 Frequency Domain Function . 26

2.3.1 Response Surface Model . 29

2.3.2 Controller Scheduling . 31

2.3.3 Design Load Case Downselection . 35

2.4 Metric Space Calculation. 36

2.4.1 Mechanical System Costs . 39

v

3. RESULTS . 41

3.1 Optimized Platform Summary . 41

3.2 Turbine Specifications . 43

3.3 Wind and Wave Conditions . 45

3.4 Genetic Algorithm Specifications and Convergence . 49

3.5 Optimized Platform Design . 53

3.5.1 Hydrostatic specifications . 54

3.5.2 Frequency Domain Inputs and Dynamic Performance . 59

4. CONCLUSIONS AND FUTURE WORK .. 64

4.1 Conclusions. 64

4.2 Future Work . 65

REFERENCES . 67

APPENDIX – MATLAB CODE .. 70

BIOGRAPHY OF THE AUTHOR .. 168

vi

LIST OF TABLES

2.1 Input Variables Ranges. 15

2.2 HDF inputs . 19

2.3 Frequency domain inputs . 28

2.4 Format of TMD motion matrix . 33

2.5 Example RNA Horizontal Acceleration r[7] . 33

2.6 Example RNA Vertical Acceleration r[8] . 34

2.7 Example Pitch Angle r[9] . 34

2.8 Damping ratios . 34

2.9 Design Load Cases. 35

2.10 Wind Bins for DLC 1.1, 1.6. 36

2.11 Metric Space Material Factors . 37

2.12 Metric Space Manufacturing and Installation Factors . 38

3.1 Mass and Equivalent Masses of Platform Components . 43

3.2 IEA 15 MW Turbine Specifications . 44

3.3 Turbine quasi-static characteristics . 45

3.4 Summary of Environmental Design Parameters . 48

3.5 Environmental conditions for DLCs included in simulation 49

3.6 Genetic algorithm . 50

3.7 Converged values for different optimizer runs . 51

vii

3.8 Standard deviation for the 100th generation . 51

3.9 Input Variable Converged Values . 55

3.10 Mass and hydrostatic properties for the optimized platform 56

3.11 Change in pitch stiffness with TMD motion . 56

3.12 Frequency domain inputs . 60

3.13 Control scheduling and platform motions . 61

3.14 Caption . 62

viii

LIST OF FIGURES

1.1 Comparison of floating offshore wind turbine platforms [8]. 3

1.2 A photo from the 2018 model test. 5

1.3 The cruciform hull concept . 6

2.1 Coordinate system . 9

2.2 Flowchart of the GA .. 11

2.3 Flowchart of one iteration of the GA. 12

2.4 A diagram showing the definition of the input variables. 14

2.5 Exploded views of the keystone (left) and one leg (right) 20

2.6 A diagram of the boundary conditions applied to the plate. 22

2.7 Loading, Shear and Moment Diagrams of the beam approximation 24

2.8 Sketch of rolling diaphragm concept . 26

2.9 A diagram of the FDF model [19] . 27

2.10 A graph showing the locations of the training points for the RSM 29

2.11 A graph showing a surface mesh of the platform below the waterline.

Due to symmetry in two planes only one-quarter of the platform was

generated. 30

2.12 A graph comparing the X1 values in terms of period from WAMIT

with the polynomial fit. 31

2.13 Graph of the % of the total system cost for each input variable. 40

3.1 Rendering of the converged platform with the IEA 15 MW turbine 42

ix

3.2 Map of the project site location . 46

3.3 Population histogram for the 1st generation. 52

3.4 Population histogram for the 50th generation . 52

3.5 Population histogram for the 100th generation . 53

3.6 Surface plot of LCOE vs radius and width with constraint values

overlayed on the surface . 54

3.7 Drawing of the platform with IEA 15 MW turbine . 57

3.8 Drawing of the hull . 58

3.9 Drawing of the internal geometry of the platform. 59

3.10 RAO comparing the platform heave with the TMD on and off 62

3.11 RAO comparing the platform heave with the TMD on and off 63

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

Modern society faces an existential dilemma. As industrialized countries support a

modern lifestyle driven by consumerism, energy consumption continues to grow. Even

amongst the highest energy users the primary source continues to be non-renewable energy

sources such as oil, coal and natural gas [1]. Coupled with developing nations reliance on

dirty fuel sources such as coal, a warming planet already seeing the effects of climate

change, and increasing energy prices [2], the need for energy source diversification has

never been stronger. Offshore wind power is a resource with strong potential to fill this

need in the United States. In fact, while the total U.S. energy consumption is 13

quads/year [3], the total potential of offshore wind, accounting for losses and including

conservative assumptions regarding technical, legal, regulatory and social inhibiting factors

is still 25 quads/year [4]. With 58% of this potential in water depths requiring floating

platforms, the potential for floating offshore wind technologies as part of the United States’

power portfolio is strong.

The state of the art of floating offshore wind technology however, is expensive.

According to NREL, existing FOWT technologies have achieved a levelized cost of energy

(LCOE) of 15-18 ¢/kWh at best, which is high compared to the 3-5 ¢/kWh for land based

turbines [5]. Much of this cost is from the steel used to make large and heavy platforms

designed to keep the system as stable as possible, survive large sea storms, and maintain

similar dynamics to onshore wind turbines. An arm of the Department of Energy, the

Advanced Research Projects Agency - Energy (ARPA-E), which funds emerging but

unproven technologies, identified floating offshore wind as a research area with significant

potential because of the un-tapped but currently expensive power resource. To address this

cost difference, the ARPA-E Aerodynamic Turbines Lighter and Afloat with Nautical

1

Technologies and Integrated Servo-control (ATLANTIS) program set out to generate:

"radically new FOWT designs with significantly lower mass/area; a new generation of

computer tools to facilitate control co-design of the FOWTs; and generation of real-data

from full and lab-scale experiments to validate the FOWT designs and computer tools" [6].

To bring floating offshore wind technology down to a competitive cost, the goal of this

project is to design a floating offshore wind turbine concept with a 7.5 ¢/kWh or less

LCOE. The current work fits into the first ATLANTIS program category. Building on the

University of Maine’s experience with post-tensioned concrete, and a previous collaboration

with NASA on tuned mass dampers utilizing ballast water to stabilize the platform, this

project proposes a lightweight floating platform with significantly lower costs than current

designs. Additionally, in keeping with a controls co-design methodology, the platform is

optimized for the lowest possible cost with the use of computationally efficient analysis

tools.

1.2 Proposed Design and Solution Method

The three main types of floating offshore wind turbine platforms are spars, tension-leg

platforms, and semi-submersibles. Spars achieve their stability with the restoring force

created between the low center of gravity and the high center of buoyancy. However, they

require deep drafts to achieve this stability which also necessitates assembly offshore,

increasing costs. Tension-leg platforms can be stable and light due to stability achieved

from the tension in the mooring lines, but anchoring to the seabed is difficult, especially as

wind turbine sizes increase. Finally, semi-submersible platforms achieve their stability from

a large water plane area. A visual comparison of the platform types is shown in Figure 1.1.

Designs must be large enough to avoid typical wave period excitation ranges of 5-20

seconds, but since period is inversely proportional to water plane area, existing designs

have been large and heavy, and therefore expensive [7].

2

Figure 1.1: Comparison of floating offshore wind turbine platforms [8]
,

The typical design process of a floating offshore wind turbine is done sequentially, owing

to the computationally intensive time domain simulations required. To satisfy design

requirements by the International Electrotechnical Commission, the combinations of winds,

waves, and currents for all of the design load cases requires thousands of simulations. As a

result, platforms cannot be optimized with an analytical function due to the non-linear

design constraints. Furthermore, stochastic optimization techniques are infeasible using all

design load cases with time domain simulations due to the computational time required. In

order to develop the novel cruciform platform concept with tuned mass damper (TMD)

elements, and simultaneously minimize the cost to meet the ARPE-E project goals, a novel

optimization technique was developed.

3

Other projects have proposed solutions to floating offshore wind turbine optimization

problems. Most focus on replacing time-domain simulations in the optimization with

various methods. In [9], a spar was developed by generating 12 feasible designs with a

spreadsheet calculator, executing a frequency domain simulation to down-select three best

designs, and then performing time domain simulations on the set to choose a finalized

design. This approach is similar to the current work in the progression from hydrostatic

calculations showing feasible designs to frequency domain simulations. However, with only

12 designs to choose from, there is no way to guarantee the search space is optimal, as one

can do by examining statistics of repeated genetic algorithm (GA) runs. Additionally, with

the manual manipulation involved in spreadsheet calculations, it limits the set of designs

that could be considered, and subsequent redesigns would also be time intensive.

Replacement of the time-domain simulations has also been proposed with the use of

machine learning to develop a statistical model of a mooring system in [10]. A similar

approach was taken in parts of the current work: to replace the wave loadings on the hull

that are typically obtained from the potential flow solver WAMIT, a response surface

model was developed. However, statistical methods based on training points from the full

time-domain simulation were deemed unsuitable. With the number of input variables

required for the floating platform problem presented here at six, the number of training

points for a statistical model would have required too many time domain simulations to be

practical.

A similar method to the present work was developed by [11], where they developed an

analytical model to replace time domain simulations. Their analytical model only

considered a subset of the degrees of freedom, as the frequency domain simulation in this

work does. In order to verify their analytical models, they were benchmarked against the

time domain solver OpenFAST, similar to the present work. While [11] also used a

damping device, their optimization only focused on the parameters for the damping device,

and not the platform itself to minimize the overall cost.

4

Figure 1.2: A photo from the 2018 model test

The present work is based on the use of a TMD element to reduce platform mass and a

novel optimization approach to minimize the cost of the platform. Drawing from a 2018

proof-of-concept basin test of a 1/50th scale semi-submersible platform with TMDs

utilizing water ballast, potential was seen for a platform concept taking advantage of the

motion mitigation properties of the TMD [12]. A photo of the test is shown in Figure 1.2.

Since semi-submersible designs already require significant amounts of ballast to float with

much of their height underwater, the ballast water can be used by the TMD to stabilize the

platform without adding weight. Furthermore, with the motion mitigation from the TMD

the wave periods do not need to be avoided so the waterplane area of the platform can be

reduced, reducing the mass of material used in the platform.

The University of Maine has previous experience with post-tensioned concrete in the

development of the VolturnUS semi-submersible floating offshore wind turbine platform

5

Figure 1.3: The cruciform hull concept

[13]. Post-tensioned concrete is advantageous over steel in corrosion resistance,

manufacturing cost, and material cost. With this in mind, the University of Maine

developed a cruciform hull shape to be made of post-tensioned concrete on which to base

the current work. The cruciform shape is easily constructed and allows room for ballast

water and TMD equipment. The cruciform is shown in Figure 1.3. In keeping with

industry trends towards larger turbines, the platform was designed around the IEA 15 MW

reference turbine, a research turbine with power output consistent with state-of-the art and

future industry turbines.

Owing to the highly nonlinear constraints, a GA was chosen for the optimization

architecture. A GA assesses fitness of a given design based on the objective of the

6

optimization, subject to constraints. The objective, minimization of the LCOE, was

calculated based on a model developed by ARPA-E for the ATLANTIS program.

Significant work, and the focus of this thesis, was on the development of the constraint

functions. Similar to the requirements that would be set by a turbine OEM, typical values

of horizontal and vertical acceleration, and pitch angle limits were set for IEA 15 MW

turbine. In addition, a model was required that accounted for the TMD and its travel

limits. To capture these dynamic constraints, a frequency domain model was developed to

save computational time over a time domain simulation. To generate the necessary inputs

for the frequency domain model, a hydrostatic function was also developed. This model

also output constraints related to geometric compatibility and initial stability. Since the

hydrostatic constraints are essential to any design’s suitability (a design that does not float

is obviously not practical, for example), a staged constraint handling method was

developed. When the hydrostatic constraints were violated, the GA skipped the execution

of the frequency domain model. This saved significant computational time because while

the frequency domain model took at least 90 seconds to run, the hydrostatic model

required less than one second.

The work of this thesis focuses on the optimization of the cruciform type hull. In

particular, the main developments of this thesis were input variable selection, integration of

constraint functions with the GA, development of a hydrostatic function to generate

constraints and inputs to the frequency domain function; and control scheduling. The

methods section details the GA parameters, the staged constraint handling method, input

variable selection, and details of the objective and constraint functions. Following are the

Results, detailing wind and wave conditions used, specifications of the IEA 15 MW turbine

and the converged platform, simulation results for the platform, and convergence criteria

for the GA.

7

CHAPTER 2

METHODS

After an initial platform concept was developed to demonstrate potential for the

ARPA-E ATLANTIS program, work began on development of the optimizer. The

optimizer needed to produce results with enough fidelity to adequately describe the system,

while simultaneously being computationally efficient to allow 12,000 designs to be analyzed

in a single optimization run. In summary, the typical analysis process analyzing

hydrostatic quantities, then using them as inputs in dynamic models was replaced by

MATLAB functions executed sequentially in producing the fitness of a single design point.

The details of the genetic algorithm optimizer, and the MATLAB functions used to analyze

the fitness of designs are described in this chapter. Descriptions of the model use a

coordinate system shown in Figure 2.1.

8

Figure 2.1: Coordinate system

9

2.1 Genetic Algorithm and Constraint Handling

The optimization used a genetic algorithm (GA) with tournament selection and niching

as proposed by [14]. The present optimization follows the method in Section 3.4 of [15]

which also uses real coded variables, as in continuous rather than binary variables. The

method aims to find the genes, the specific values of input variables, that minimize a

fitness function composed of an objective and subject to constraints. The objective was

minimization of the LCOE, and a number of constraints were imposed, based on geometric

feasibility, hydrostatic stability, and motion limits. The LCOE is defined as,

LCOE =
Total Lifetime Cost

Total Lifetime Output
(2.1)

Novel in this optimization effort was the use of a constraint function with a staged

approach, whereby computationally inexpensive hydrostatic quantities were calculated first,

and for those deemed infeasible, further calculations were not made. For those that passed

the first round of constraints, more computationally expensive modeling was done. The

method of separating fitness and constraint functions so as not to penalize feasible design

configurations was proposed by [14] and has been used extensively. In this optimization,

there was further separation in the constraints based on first checking hydrostatic and

geometric criteria and skipping computationally intensive frequency domain calculations

for infeasible designs from the first hydrostatic check. It is the belief of the author no one

has published on this method. As such, the fitness of a given design was assigned as

F (x) =

f(x), if gHDF (x) & gFDF (x) = 0

fmax + gHDF , if gHDF (x) > 0

fmax + gFDF , if gHDF (x) = 0

(2.2)

where x is a vector of design parameters, F (x) is the fitness, f(x) is the objective function

value, gHDF (x) is the hydrostatic function (HDF) which is less computationally expensive,

gFDF (x) is the frequency domain function (FDF) which is more computationally expensive,

10

and fmax is the highest value of the objective function between two individuals in the

tournament selection of the reproduction. The GA is shown graphically in Figure 2.2.

Begin

Initialize Population
(Generation = 0)

Assign Fitness
(Objective and Constraints)

Termination Criteria?

end

Reproduction
(Selection)

Mating Pool

Crossover

Mutation

Generation =
Generation + 1

yes

no

Figure 2.2: Flowchart of the GA

The predefined process box for "Assign fitness" represents equation 2.2 and the logic for

determining the fitness value for one generation is depicted in Figure 2.3.

11

Start

Hydrostatic functionIndividuals from
population

Hydrostatic
constraints

Constraints zero?Response surface model

Mass, stiffness
and damping matrices

Frequency domain model

Freq. domain
constraints

Assign Constrain Value

Assign constraint value

Metric space calculation

Objective:
LCOE

Assign fitness

End

no

yes

Figure 2.3: Flowchart of one iteration of the GA.

12

The bold text processes in Figure 2.3 are Matlab functions which are detailed in this

chapter, and comprised the majority of the research effort. The constraint values from the

HDF and the FDF are also described.

2.1.1 Input Variables

The input variables are:

• r, the outer radius of the platform

• w, the outer width of the platform

• d, the draft of the platform

• hp, the displacement limit which is a bound on the travel of the rolling diaphragm

plate 1

• f , the freeboard of the platform

• a, the aspect ratio which is the ratio between the inner length along the radius and

inner width of the platform.

The input variables are shown in Figure 2.4. hp is not included in this diagram because it

describes the travel limit of the rolling diaphragm plate.

1The rolling diaphragm behaves as a TMD, sprung to the hull and moving with the ballast water. This
is modeled as a sprung mass with a dashpot in the FDF model. For more details see Section 2.2 Hydrostatic
Function.

13

AA

SECTION A-A

SWL
d

f
r

L

W

a = L/W

w

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure 2.4: A diagram showing the definition of the input variables

Selection of input variables was based on the minimum number of variables to

adequately affect the objective, minimization of the LCOE, and of which have an effect on

the constraints. The outer platform dimensions r, w, d, and f influences the hydrostatics,

static heel allowance, space for ballast and rolling diaphragm movement and dynamic

response of the system, and the total mass of concrete which is the main cost driver in the

LCOE calculation. The displacement limit hp of the rolling diaphragm affects the space

available for ballast, and importantly, the amount the TMD modeled in the FDF can move

influences the dynamic performance. Finally, a changes the space for ballast water, in

addition to the center of gravity of the ballast and moment arm of the TMD.

14

The limits of the input variables are themselves geometric constraints, and are as

follows in Table 2.1.

Table 2.1: Input Variables Ranges

Variable Lower limit Upper limit

r [m] 32.5 45

w [m] 8 21

d [m] 7.5 15

hp [m] 3 7

f [m] 3 15

a 1 2

The outer platform dimensions r, w, d and f were chosen based on an initial system

design considering a set of reasonable designs in terms of initial hydrostatic stability and

compatability with the IEA 15 tower and mass. The rolling diaphragm travel range hp was

chosen based on observing typical TMD motion extremes from the FDF and the upper

limit such that there would be adequate space for ballast water. The ballast tank aspect

ratio a tends toward filling the leg length, so it was set to be no less than 1, and the upper

limit of 2 is near the full length of the leg for most width and radius combinations.

2.1.2 Constraints

The constraints were penalized differently based on the severity of their impact on

platform feasibility. In particular,
gh = ph

6∑
n=1

gn + pf , if
6∑

n=1

gn > 0

gf = pf
10∑
n=7

gn, if gh = 0

(2.3)

where gh is the sum of the constraints calculated by the HDF, gf is the sum of the

constraints calculated by the FDF, gn is an individual constraint calculated by the HDF or

15

FDF, of which there were 10 total. The penalties for each stage were ph = 1000 and

pf = 100, thus a more severe penalty on designs that fail the HDF constraints was

assigned. If the HDF constraints were failed, the FDF did not execute and pf was added to

the constraints to ensure the GA did not favor designs that just barely fail the HDF

constraints.

The constraints were normalized by a baseline value and by the number of constraints

in their respective stage. That is,
gn = 0, if x ≥ xb

gn = x−xb

Nxb
if x < xb

(2.4)

where xb is some baseline value, x is the constraint quantity, and N is the number of

constraints in the stage. For some cases, the constraint value became infeasible when less

than zero, in which case, the constraint was assigned as
gn = 0; if x < 0

gn = −x
Nxb

if x ≥ 0

(2.5)

The constraints and their calculation were, for the HDF and FDF:

Hydrostatic Constraints

• The hull is initially unstable: g1 =
−GM

Nh · 16.44
where GM is the metacentric height of

the hull, and the baseline value of GM = 16.44 m is from an initial system design.

This accounts for metacentric heights less than zero which are obviously infeasible.

• The ballast water does not fit in the ballast chamber : g2 =
yTMD − yvac
NhyTMD

where yTMD

is the travel limit of the TMD, influenced by the input variable hp and the ratio of

the area of the rolling diaphragm plate to the area of the tank. yvac is the height of

the vacant space in the ballast tank above the ballast water. If the required ballast

mass with the rolling diaphragm at the limit of its travel interferes with the top of

the chamber, this constraint is non-zero.

16

• Negative ballast mass required : g3 =
−mb

Nh · 6.85× 106
where mb is the ballast mass in

the hull and 6.85× 106 kg is the ballast mass required from an initial system design.

This accounts for situations where the buoyancy of the hull requires negative ballast

mass to reach the specified draft.

• Linear hydrostatics violated : g4 =
−fmin

Nh · 3.79
where fmin is the minimum freeboard

under rated thrust. This constraint becomes non-zero when the deck is just exposed

to the waterline.

• Towout draft too large: g5 =
dtow − 10

Nh · 10
where dtow is the towout draft (the draft

without ballast) and 10 m is the maximum draft allowable. This constraint ensures

the hull does not sit too deep in port.

• Ballast chamber does not fit : g6 =
Lbal − Lavl

NhLavl

where Lbal is the length of the ballast

chamber and Lavl is the available space inside the hull along the radius for the ballast

water. This accounts for situations where the combination of aspect ratio and width

is incompatible with the space available.

FDF Constraints

• The horizontal RNA acceleration limit is exceeded : g7 =
aRNA,x − 2.5

Nf · 2.5
where aRNA,x is

the horizontal acceleration of the RNA and 2.5m/s2 is a typical value set by a turbine

OEM.

• The vertical RNA acceleration limit is exceeded : g8 =
aRNA,z − 2.0

Nf · 2.0
where aRNA,z is

the vertical acceleration of the RNA and 2.0m/s2 is a typical value set by a turbine

OEM.

• The pitch angle limit is exceeded : g9 =
θp − 10

Nf · 10
where θp is the pitch angle of the

tower and 10◦ is a typical value set by a turbine OEM.

• The TMD travel limit is exceeded : g10 = ytmd where ytmd is the maximum travel of

the TMD. This constraint accounts for designs where there are no damper

17

configurations (one period and varied damping ratios) that keep the TMD within the

limits for all design load cases. See the section on the FDF for details on how the

period and damping ratios are chosen.

2.1.3 Objective

The objective of the genetic algorithm was to minimize the LCOE. The objective

function was simply, as in Equation 2.2,

f(x) = LCOE (2.6)

Calculation of the objective was handled by the metric space calculation, as shown in

Figure 2.3. The metric space calculation was a model developed by ARPA-E for use by all

projects in the ATLANTIS program, the details of which are described in the section on

the metric space calculation.

2.2 Hydrostatic function

The hydrostatics function is a computationally efficient MATLAB function to calculate

the static stability and geometric compatibility constraints, and generate inputs for the

FDF. To allow geometry changes in MATLAB and to a Solidworks reference assembly, the

cruciform hull was broken up into parallelepipeds parameterized to the overall dimensions

of the system. The inputs are listed in Table 2.2.

18

Table 2.2: HDF inputs

Matlab Variable† Description

r ,w , d , f , hp , a Optimizer variables as described in Table 2.1

h Height, f + d

t Nominal wall thickness, 0.3 m

rts Outer radius of tower support, 5 m

hs Height of support above deck 15− f

nwall Number of additional walls for damage stability, 0

Lbal Length of ballast tank, a · (w − 2t)

rp Radius of rolling diaphragm plate

A0 Water plane area, 2wr + w(2r − w)

V0 Volume below waterline, A0 · d

Fb Buoyant force, gV0 · ρocean

Iwp Waterplane area moment of inertia, (2r − w)w3/12 + w(2r)3/12

BM Distance between center of buoyancy and metacentric height, Iwp/V0

KB Distance between keel and center of buoyancy, d/2

TMDlim,plate Limit of plate travel, hp − 0.5

TMDlim,h20 Limit of travel of water, TMDlim,h20 · πr_p2/((w − 2t)Lbal)
†The variables under this heading are identically named to the variables in the MATLAb funcion, except where subscripts

shown here are represented by underscores in the code.

The mass, KG and mass moments of inertia are then calculated for each component and

summed to obtain the overall system properties. Figure 2.5 shows the components of the

platform, each of which is an element in the MATLAB function and Solidworks assembly.

After the necessary system properties were calculated, the constraints were assigned.

19

(a) An exploded view of the keystone (b) An exploded view of one leg

Figure 2.5: Exploded views of the keystone (left) and one leg (right)

Before calculation of the constraints, the mass, center of gravity, and moments of

inertia needed to be found. The masses of each component were obtained by the

multiplication of the volume of each component and the concrete density, then summed to

find the total mass as in

m =
n∑

i=1

ρcVi (2.7)

where the indices are i, the component, and n, the total number of components. V is the

volume of each hull component and ρc is the density of the steel-reinforced concrete. The

volumes were parameterized to the system dimensions. For the tower, RNA and blades of

the IEA 15 MW, properties were from the publicly available reports from NREL [16],[17].

Before the final sum of the masses, an iteration was necessary to size the rolling

diaphragm plate. First, the necessary ballast was calculated:

mb =
Fb − Fp

g
−mdry (2.8)

where mb is the ballast mass, Fb is the buoyant force on the hull, g is the acceleration due

to gravity, and mdry is the mass of the system excluding ballast.

20

Next, the rolling diaphragm plate was sized based on the required ballast mass and an

assumed inertial loading. That is,

q =
Fhyd + Fint

πr2p
(2.9)

where Fhyd is the hydrostatic loading due to the ballast mass, Fint is the assumed inertial

loading of 0.5g, and rp is the radius of the plate. The boundary conditions on the plate

were assumed to be an annular bottom support with a constant distributed load on top

and a free edge around the plate. In reference to the real implementation, the annular load

is the springs on the bottom of the plate, the distributed load is the ballast load plus the

inertial loading, and the free edge is at the plate and rolling diaphragm interface. To

simplify the calculation it is noted that these boundary conditions produce zero slope at

the annular support. As a result, the moment and shear force on the plate at the annular

support can be provided by a fixed edge condition. Thus a fixed edge condition at the

annular load location can be applied to a smaller representative plate. This simplification

is described in Figure 2.6

21

Figure 2.6: A diagram of the boundary conditions applied to the plate.

The analytical solution from Roark’s Formulas for Stress and Strain [18] for the plate

with distributed loading and fixed edges, as in condition 3 in Figure 2.6 is

Mc =
qr2pa(3 + ν)

16
(2.10)

where Mc is the unit applied line moment loading (force-length per unit of circumferential

length) at the center of the plate, q is the load per unit area, rpa is the radius of the

representative plate and ν is Poisson’s ratio.

To find rpa, the annular load location producing the minimum peak bending moment

was needed. No analytical solution is known, so a beam model was substituted to find the

approximate location of the load. Although this approach neglects the stiffness effects of

22

the varying cross sectional area of the plate along its radius, the single-plate design

presented here was not intended as the final design, and thus only an approximate solution

that gave reasonable estimates for mass and cost was necessary. Due to the varying cross

sectional area of the plate, the distributed load is no longer constant, and thus the line load

on the substituted beam is

ql = −2q
√
r2p − x2 (2.11)

where ql is the load per unit length of the beam and x is the position along the beam. To

find the loading location where moment is minimized, the loading was numerically

integrated in Matlab. The shear and moment diagrams from numerical integration are

shown in Figure 2.7. The maximum moments and associated location were calculated for a

range of load locations across the beam length, and the point load location associated with

the minimum of these moments was chosen as the radial location for the annular loading

on the plate.

23

Figure 2.7: Loading, Shear and Moment Diagrams of the beam approximation

The location of the annular loading was found to be

rpa = 0.5031rp (2.12)

For a given design, rp is half the inner hull width.

With loading and radius found, Equation 2.10 was applied and the thickness of the

plate is

tp =

√
6Mc

σallow
(2.13)

where tp is the thickness of the plate and σallow given by the yield strength of stainless steel

with a factor of safety of 2. The mass of four plates was added to the hull mass, and

24

Equation 2.8 was re-calculated, producing a new required ballast mass. The plate size and

the ballast mass calculation were iterated to find the final masses summed in Equation 2.7.

The KG of each component was parameterized to the system dimensions, then summed

to obtain the overall KG:

KG =
n∑

i=1

mi ·KGi

mi

(2.14)

where the KG is the distance from the keel to the center of gravity and m is the mass.

To obtain the mass moments of inertia I around the x, y and z axis the moments of

inertia for each component are summed,

I =
n∑

i=1

Ii (2.15)

and the parallel axis theorem is applied to obtain the moments of inertia for each

component,

Ii = Ilocal +miL
2 (2.16)

where L is the distance between the x, y or z axis passing through the component centroid

and the hull centroid. Note that the ballast water was also modeled as a parallelepiped and

free surface effects were ignored in calculating the static heel angle.

2.2.1 Rolling Diaphragm Concept

The rolling diaphragm sized in the HDF is composed of a steel plate attached to springs

to set the natural period of the TMD. Around the plate is a support structure connected to

the rolling diaphragm (represented in red between the plate and support structure) which

acts as a seal and slides with low friction with the motion of the plate. The plate is

pressurized on the bottom (represented by red arrows) to set the resting point of the plate,

with opposing legs having pressurized pipes running between them. The pressurized pipes

have a damping element to change the damping with the sea state. This concept is shown

in Figure 2.8. This sketch is only a concept and is not shown to scale or representative of

actual dimensions of the designed system.

25

Figure 2.8: Sketch of rolling diaphragm concept

2.3 Frequency Domain Function

The frequency domain function is a two-dimensional, six degree of freedom frequency

domain dynamic response solver [19]. It considers wind and wave loading on the platform

with sprung and damped lumped masses to represent the tuned mass damper system. A

diagram of the model with degrees of freedom labeled is provided in Figure 2.9.

With total mass, KG and moment of inertia data calculated from the HDF, derivative

quantities were used as inputs for the FDF and as constraints. The key quantities input

into the FDF are shown in Table 2.3.

26

Figure 2.9: A diagram of the FDF model [19]

27

Table 2.3: Frequency domain inputs

Matlab Variable Description

Lwz Distance from the system CG to the waterline

Is Mass moment of inertia in the pitch DOF about the center of gravity

K11 Mooring tiffness in the surge direction

K33 Heave stiffness

zcg,tower Tower z center of gravity

Mtower Mass of the tower

zcg,hull Distance from CG of dry hull to system CG

Mhull Mass of the hull without ballast

zcg,RNA RNA z center of gravity

MRNA Mass of the RNA

Mptotal Total ballast mass

Mpxcg Ballast x center of gravity

Mpzcg Ballast z center of gravity

Ltbz Distance from the system CG to the hull and tower interface

htank Inner height of the ballast tank

wtank Inner width of the ballast tank

To obtain the motion constraints the outputs from Table 2.3 were passed into the

computationally-efficient FDF. The FDF uses wave forcing from WAMIT, wind-speed to

aerodynamic loading transfer functions derived from OpenFAST, and computes RAOs to

output response spectra and ultimate load information. For the purposes of this

optimization, the peak acceleration of the RNA, peak pitch angle, and maximum travel of

the TMD were required to calculate the constraints.

28

2.3.1 Response Surface Model

Though shown as a separate function in Figure 2.3, the response surface model (RSM)

was called within the FDF. Typically, the hydrostatic stiffness coefficients, added mass and

inertia coefficients, radiation damping coefficients, and wave excitation force and moments

on a hull are obtained from WAMIT, a computationally intensive potential flow solver.

However for the present work, a RSM was derived using inscribed central composite design

points for the three input variables describing the hull below the waterline, radius, leg

width, and draft. The design points used to train the RSM are shown in Figure 2.10.

Figure 2.10: A graph showing the locations of the training points for the RSM

Next, for each of the design points, a surface mesh was generated using MultiSurf [20],

taking advantage of symmetry in two planes. For example, a mesh is shown in Figure 2.11.

29

Figure 2.11: A graph showing a surface mesh of the platform below the waterline. Due to
symmetry in two planes only one-quarter of the platform was generated.

Then, fully quadratic polynomial functions were fit to the hydrostatic coefficients in

heave, roll, and pitch; the added mass in all six degrees of freedom; the radiation damping

coefficients in all six degrees of freedom; and the wave excitation forces and moments for all

six degrees of freedom, wave periods, and wave headings in their real and complex

components. To ensure an accurate fit, results from WAMIT were compared to the

polynomial function for a point not included in the inscribed central composite points. The

WAMIT values versus the polynomial fit for X1, the surge wave excitation force magnitude

versus period are shown in Figure 2.12, indicating excellent agreement between the RSM

and the WAMIT results. Each polynomial fit for the WAMIT quantities required were

compared with excellent agreement.

30

Figure 2.12: A graph comparing the X1 values in terms of period from WAMIT with the
polynomial fit.

2.3.2 Controller Scheduling

As detailed in [19] the FDF model output all responses for a given sea state and TMD

configuration; there was no logic to decide the best case. In order to assign FDF

constraints, the response of the platform for a specific TMD period and damping value was

needed. The FDF produced a matrix of values for each DLC case and each TMD

configurations. The TMD was set to have a range of possible periods and damping values,

with periods based on the bounds of typical ocean wave frequencies and the damping

values within an assumed physically possible range. It was also assumed that any period

could be set in the detailed design by the spring element. Thus, the output matrix had

rows equal to the number of DLCs and columns equal to the number of periods considered

31

times the number of damping values. As a result, the number of DLCs, periods and

damping ratios considered all added to the computational time. The period and damping

ratio for the TMD were needed to obtain the dynamic response for each platform, but

adding damping ratio and period as variables to the optimization would have required a

larger population in the GA, increasing computational time. Furthermore, the best

damping period varies by DLC, so there is not an obvious way to implement the damping

as an input variable. Therefore, a controls schedule was designed to minimize all platform

motions while passing constraints.

Controls over the TMD damping and period were scheduled with the assumption that a

real control scheme would result in the minimum motion response of the platform. Since in

a real embodiment, the spring would be fixed, but the damping could be changed along

with the sea-state on the scale of a few hours, logic was implemented to choose the best

damping ratio for each TMD period and DLC. There are multiple considerations in finding

the best damping ratio: first that the TMD motion must stay within travel limits inside

the platform (constraint g10); that the RNA cannot exceed the acceleration and pitch angle

limits (constraints g7, g8 and g9); and that the motion should be minimize the RNA

accelerations and pitch angle. A weighted average of the platform constraints g7, g8 and g9

was used as the metric to minimize for the purpose of finding the best damper setting.

That is,

R̄ =
9∑

n=7

r
[n]
i,j

r
[n]
max

(2.17)

where R̄ is the weighted average of platform motions; r is the maximum platform motion

for a given DLC, period, damping ratio; the superscript [n] corresponds to the platform

constraint number (e.g. r[7], the maximum horizontal acceleration of the RNA, is used in

the calculation of g7); the subscript i refers to the DLC; the subscript j refers to the period

and damping ratio combination; and the subscript max refers to the limiting value as taken

from typical turbine OEM values as used in the constraint calculation.

32

Based on a set range of DLCs, periods and damping ratios, the FDF produced matrices

of maximum values for r[6], r[7], r[8], r[9]. For example, the TMD limits are in the form of

Table 2.4. The limit of TMD travel varies based on platform geometry and an example

value of r[6]max = 5.0 m is used here. The values that pass are highlighted in green and the

values that fail are highlighted in red.

Table 2.4: Format of TMD motion matrix

T1 T2

DLC ζ1 ζ2 ζ3 ζ1 ζ2 ζ3

DLC1 2.0 3.0 4.0 6.0 5.5 5.1

DLC2 5.5 4.0 4.5 5.5 4.0 6.0

Since a design whose TMD travel would exceed physical space available is not feasible,

the TMD travel is a factor in deciding the period and damping ratios. r[7], r[8], r[9]. The

damping ratio for each DLC is set based on the following logic: if all damping ratios pass

as in (T1, DLC1), then the chosen damping ratio is based on the best weighted average

calculated by Equation 2.17. For the case where at least one index fails but more than one

pass like (T1, DLC2) then the chosen ζ is based on the lowest weighted average of those

that pass. Where only one ζ passes like (T2,DLC2) that is the chosen ζ. In the case of (T2,

DLC1) where no combinations pass, ζ is chosen such that r[6] is minimized. Appling this

logic to matrices for r[7], r[8] and r[9], we might obtain examples like those shown in Tables

2.5 through 2.8.

Table 2.5: Example RNA Horizontal Acceleration r[7]

T1 T2

DLC ζ1 ζ2 ζ3 ζ1 ζ2 ζ3

DLC1 1.0 2.0 3.0 1.0 2.0 3.0

DLC2 1.0 2.0 3.0 1.0 2.0 3.0

33

Table 2.6: Example RNA Vertical Acceleration r[8]

T1 T2

DLC ζ1 ζ2 ζ3 ζ1 ζ2 ζ3

DLC1 1.0 2.0 3.0 1.0 2.0 3.0

DLC2 1.0 2.0 3.0 1.0 2.0 3.0

Table 2.7: Example Pitch Angle r[9]

T1 T2

DLC ζ1 ζ2 ζ3 ζ1 ζ2 ζ3

DLC1 8.0 9.0 10.5 8.0 9.0 10.5

DLC2 8.0 9.0 10.5 8.0 9.0 10.5

Note that the values used in Table 2.5, Table 2.6 and Table 2.8 are only examples and

not representative of a real system. Also, recall that r[7]max = 2.0 m/s, r[8]max = 2.5 m/s, and

r
[9]
max = 10.0°. Green highlighted cells pass both TMD travel limits and the respective

platform motion constraints; orange values pass the platform motion constraints but fail

the TMD travel limits; red values fail just the platform motion constraints or both the

platform motion constraints and the TMD motion constraints. Applying the TMD

schedule, the resulting damping ratios are shown in Table 2.8.

Table 2.8: Damping ratios

DLC T1 T2

DLC1 ζ1 ζ3

DLC2 ζ2 ζ2

ζ1 for (T1, DLC1) was chosen because all TMD travel values were below the limit and

ζ1 resulted in the best weighted average for r[7], r[8], and r[9]. For (T1, DLC2), ζ2 was

34

chosen because although ζ1 resulted in a lower weighted average for r[7], r[8], and r[9], the

TMD travel was too high. ζ3 results for (T2, DLC1) because all three values of TMD travel

were too high but ζ3 was the lowest. Finally, ζ2 was chosen for (T2, DLC2) because it is the

only value with low enough TMD travel.

2.3.3 Design Load Case Downselection

Only a subset of DLCs from the ABS "Global Peformance Analysis of Floating Offshore

Wind Turbine Installations" [21] were included in the FDF. The load cases considered are

shown in Table 2.9.

Table 2.9: Design Load Cases

Condition DLC

Power production, normal sea state 1.1

Power production, extreme sea state 1.6

Parked, 50 year wind and wave 6.1

The DLCs were chosen to have the relevant cases that would result in the worst values

for the FDF constraints under normal and storm conditions. Therefore, startup, shutdown,

and damage stability cases were not simulated due to the need to minimize computational

time and the increase in complexity to the HDF model for damaged cases. A detailed

design review that goes through all of the DLCs was conducted after the optimization

effort.

To further reduce the computational time, certain wind bins were not included in the

FDF. To identify which wind bins could be neglected, the FDF constraints were recorded

for each wind bin in DLC 1.1 and 1.6 across a range of design points in the search space. If

a certain wind bin never resulted in the maximum value for r[7], r[8], and r[9] across all

damping ratios and periods considered, it was neglected in the optimization. Table 2.10

35

shows the wind bins considered for DLC 1.1 and 1.6. A complete description of the wind

and wave environment can be found in the results section.

Table 2.10: Wind Bins for DLC 1.1, 1.6

DLC Wind Bins (m/s)

1.1 10, 24

1.6 10, 12, 14, 16, 18, 20, 22, 24

6.1 50 year wind and wave

For the normal operational case DLC 1.1, the wind bin near rated and the maximum

wind speed were necessary. For the extreme sea state operational case DLC 1.6, the wind

speeds from near rated to the maximum wind speed were all considered.

With the input variables input into the HDF, the necessary constraints and inputs for

the FDF were generated. Then the dynamic constraints were assigned and all constraint

values were known for a given configuration. The next step was to assign the objective

value.

2.4 Metric Space Calculation

The ARPA-E ATLANTIS program compares designs from a variety of projects, and so

developed a model to compare the costs of each project [22]. The calculation of the LCOE

is defined as,

LCOE =
FCR · CapEx+OpEx

AEP
(2.18)

where FCR is the fixed charge rate (1/year), CapEx are the capital expenditures ($),

OpEx are the capital expenditures ($/year), and AEP is the annual energy production

(kWh). The LCOE has units of $/kWh.

36

To calculate the CapEx, [22] combines the cost of multiple materials into an equivalent

mass of steel of the platform by material multiplication factors. Specifically,

mj = ftj(1 + fmj + fij)mcj (2.19)

where the index j refers to the wind turbine component, m is the equivalent mass of the

component, ft is the material factor, fm is the manufacturing factor, fi is the installation

factor, and mc is the mass of the component. The material factors are reproduced in Table

2.11 and the manufacturing and installation factors are shown in Table 2.12.

Table 2.11: Metric Space Material Factors

Material ft UMaine adjusted ft

Aluminum alloys 4.0 -

Brass (70Cu30Zn, annealed) 1.1 -

CFRP laminate (carbon fiber reinforced polymer) 80.0 -

Copper alloys 1.5 -

GFRP laminate (glass-fiber reinforced plastic or fiberglass) 4.0 -

Lead alloys 0.6 -

Nickel alloys 3.0 -

Pre-stressed concrete 0.3 0.13

Titanium alloys 22.5 -

Steel of reference, to calculate ft factors 1.0 -

37

Table 2.12: Metric Space Manufacturing and Installation Factors

Component fm fi

Rotor 3.87 0.10

Hub 11.00 0.10

Nacelle 9.49 0.10

Tower 1.69 0.10

Floating platform 2.00 0.13

Mooring system 0.14 0.52

Anchor system 6.70 3.48

The hull in this optimization was constructed of pre-stressed concrete, and UMaine’s

experience with pre-stressed concrete justified the reduction of the material factor from 0.3

to 0.13. Specifically, the new material factor was proposed based upon cost estimating

completed for the DOE Wind Energy Technology Office under UMaine led contract

DE-EE0006713.0000, DE-EE0005990.0000. UMaine obtained three independent material,

construction, and assembly quotes for 6MW concrete hulls for 500MW farms. For

simplicity in the calculation worksheet, a single material factor ft of 0.13 was selected to

reflect the cost estimating data for materials, construction and assembly for the material

and therefore fm and fi were not changed.

An additional change was made to the sum of the masses. The array mcj is composed

of the rotor, hub, nacelle, tower, floating platform, mooring system and anchor system

masses. Although the rolling diaphragm plate is made of steel, it was added directly to the

platform mass as

mc5 = mconc + 4mplate (2.20)

where mplatform is the mass of the platform in concrete and mplate is the mass of one rolling

diaphragm plate. The design calculations for the plates were made assuming a single

uniform steel plate per platform leg. However, since a real implementation would involve

38

multiple smaller plates with an optimized shape to minimize mass, the calculated steel

mass was an overestimate. Therefore, it was included as concrete mass to avoid an

overestimate of the LCOE from the high expense of a solid steel plate.

2.4.1 Mechanical System Costs

Finally, an additional change was made to the metric space to include the costs of

mechanical equipment. ATKINS Houston Offshore Engineering was contracted to develop

a module to calculate the cost of mechanical equipment for the floating platform. Earlier in

the life cycle of the project, a different configuration of the TMD element was being

considered, for which the mechanical costing model was developed. Although the

configuration changed, the main sensitivity of the model involved the cost of pressure

vessels and compressors, which were still present in the current configuration at similar

pressures. While time constraints did not allow the development of a model specific to the

current system, because of the similarity of the equipment it was considered to be

sufficiently accurate. Furthermore, it is important to note that the cost of the mechanical

equipment does not exceed 0.54% of the entire system cost, so its contribution is small.

The inputs to the mechanical costing model that changed during the optimization are

leg length, width, and height; ballast tank length, width and height; the air reservoir

length, width and height; and the pressure required. To demonstrate their impact on the

LCOE, each of these variables were varied over their possible range while holding the other

variables constant. A plot of this is shown in Figure 2.13.

39

Figure 2.13: Graph of the % of the total system cost for each input variable.

As shown in Figure 2.13, the cost of the mechanical equipment is very small relative to

the total system cost. It varies from 0.47% to 0.54% at most. Therefore, although it is not

a perfect representation of the optimized system, it was included to capture the mechanical

system cost trend.

40

CHAPTER 3

RESULTS

3.1 Optimized Platform Summary

The optimized platform used post-tensioned concrete in a simple cruciform shape in

conjunction with damping devices in each radial leg utilizing ballast water to reduce

platform motion. The use of post-tensioned concrete reduces the manufacturing cost and

material cost of the hull significantly. Furthermore, the addition of the damping devices

allowed a smaller and lighter hull than traditional buoyancy-stabilized FOWT hull designs.

Typically designs such as semi-submersibles or barges achieve much of their rotational

stiffness from the water-plane area moment of inertia. To gain the required area moment of

inertia one may increase the area of the platform’s cut water-plane section. However, this

results in an undesirable increase in heave stiffness and produces minimal added pitch

inertia which can place the heave and pitch natural frequencies close to the wave energy

range [23]. As such, it is general practice to achieve adequate pitch stiffness by increasing

the distance of the water-plane area from the neutral axis which can require a significant

amount of structural framework to achieve. However the addition of the damping devices

allows for the system’s rigid body natural frequencies to lie within the wave excitation

range, with the platform relying on the dampers to mitigate undesired resonant excitation.

Finally, the platform was designed around the IEA 15 MW reference turbine, a theoretical

turbine designed to represent the industry trend of larger capacity turbines. A rendering of

the optimized platform design is shown in Figure 3.1.

Table 3.1 lists the mass of each component, the equivalent mass of the system in terms

of the reference steel (see the metric space calculations), and each components percentage

of the equivalent steel mass. Current platform designs account for more than 50% of the

equivalent mass of the entire system, according to ARPA-E analysis developed from [24].

The major advantage of this design is that the percentage of equivalent steel mass for the

41

Figure 3.1: Rendering of the converged platform with the IEA 15 MW turbine

floating platform is roughly 15% of the total mass, allowing a significant reduction in

overall cost.

The optimization effort using the genetic algorithm proved successful, with adequate

computational efficiency. The staged constraint method coupled with the frequency domain

function and parallel processing allowed for a relatively fast computational speed; the use

of a engineering workstation laptop executed the optimization between 1-2 days.

Furthermore, a solution was found that met cost targets and passed constraints, reaching

the goals of the ARPA-E project. Overall, ARPA-E set a cost target of 7.5 ¢/kWh, and the

optimizer produced a platform design of 7.53 ¢/kWh while passing all constraints.

42

Table 3.1: Mass and Equivalent Masses of Platform Components

Item Actual Mass (kg)
Equivalent

Steel Mass (kg)
Percentage of

Equivalent Mass (%)
Rotor 194,126 3,859,200 18.5
Hub 190,000 2,299,000 11.0
Nacelle 607,275 6,431,000 30.9
Tower 1,262,967 3,523,700 16.9
Floating Platform 7,905,400 3,216,700 15.4
Mooring System 140,040 232,470 1.12
Anchor System 114,000 1,274,520 6.12

3.2 Turbine Specifications

The platform was designed around the 15 MW reference turbine, a theoretical turbine

developed by the National Renewable Energy Laboratory (NREL), the Technical

University of Denmark (DTU), and the University of Maine. This turbine was developed as

a conservative estimate of actual industry capabilities. For example, the 12 MW GE

Haliade-X turbine was launched in 2021, and so the IEA 15 MW was developed to

represent the near-future of the industry [16], making it was an appropriate choice for

development of a novel platform design. This section details the relevant properties of the

turbine required for the optimization. More details of its performance can be found in [16],

the detailed mass information for the floating platform version in [17], and a CAD file and

other specifications can be found at [25].

The specifications of the IEA 15 MW are shown in Table 3.2.

43

Table 3.2: IEA 15 MW Turbine Specifications

Feature Value

Generator

Rated power (MW) 15

Power control strategy Variable speed, collective pitch

Rotor diameter (m) 240

Hub height (m) 150

Cut-in wind speed (m/s) 3

Rated wind speed (m/s) 10.59

Cut-out wind speed (m/s) 25

Range of rotational speed (RPM) 5-7.56

Blade

Maximum tip speed (m/s) 95

Swept area (m2) 45000

Turbine component masses

Nacelle (t) 507.3

Hub (t) 190.0

Yaw Bearing (t) 100.0

Blade x3 (t) 194.1

TOTAL (t) 991.4

Table 3.3 provides the quasi-static, power coefficient, thrust coefficient, and thrust force

for the turbine including turbine aerodynamics and control systems.

The peak thrust value provided at the rated wind speed was used in the calculation of

g4, the HDF constraint when linear hydrostatics were violated. Mass and geometry

presented above gives an overview of the what was needed calculate masses, COGs, and

44

Table 3.3: Turbine quasi-static characteristics

Wind speed (m/s) Power (MW) CP Thrust (MN) CT

3 0.07 0.10 0.59 0.82
4 3.71 0.36 0.74 0.81
5 2.72 0.44 0.95 0.82
6 1.19 0.48 1.21 0.83
7 4.34 0.49 1.46 0.81
8 6.48 0.49 1.79 0.80
9 9.23 0.49 2.15 0.80

10.59† 15.0 0.49 2.73 0.77
11 15.0 0.44 2.38 0.61
12 15.0 0.34 2.05 0.43
13 15.0 0.26 1.86 0.32
14 15.0 0.21 1.72 0.25
15 15.0 0.17 1.62 0.20
16 15.0 0.15 1.54 0.17
17 15.0 0.12 1.47 0.14
18 15.0 0.10 1.41 0.12
19 15.0 0.09 1.36 0.16
20 15.0 0.07 1.31 0.09
21 15.0 0.06 1.28 0.08
22 15.0 0.05 1.25 0.07
23 15.0 0.05 1.21 0.06
24 15.0 0.04 1.19 0.05
25 15.0 0.04 1.17 0.05

† Rated wind speed

moments in the HDF; more detailed specifications were obtained from the OpenFAST

input files found in the GITHUB [25].

3.3 Wind and Wave Conditions

The wind and wave conditions were developed with data for a project site in state

waters approximately 4 km south of Monhegan Island, Maine, USA. This site is

representative of typical conditions found off the Northeastern coast of the United States

and was deemed appropriate for offshore wind turbine systems under the ARPA-e

ATLANTIS program [6]. Water depths in the area are variable, ranging from 60 to 110 m.

The site is approximately 1.78 km by 3.38 km, and is bounded at the southern edge by the

45

4.83 km line indicating the extent of Maine state waters. The boundary coordinates are:

Northern: 43° 43’ 18.231"; Eastern: 69° 20’ 16.759"; Southern: 43° 42’ 15.436"; and

Western: 69° 17’ 36.544". A map of the site is shown in Figure 3.2.

Figure 3.2: Map of the project site location

The design conditions were based on approximately 12 years of oceanographic buoy

data collected by the UMaine Physical Oceanography Group (PhOG) within the School of

Marine Sciences less than 2.5 km from test site. For more information on the data

collection process or to download the data, refer to the UMaine buoy website [26].

The design conditions presented within this work were derived with the use of data

collected from (3) metocean buoys. The majority of the data presented here was derived

from 13 years of Buoy E01 measurements. The buoy collects the following data: significant

wave heights and peak periods, 8-minute average and 3-second gust wind speeds and

46

directions, sea and air temperatures, current speed and direction from 2m to 62m below

sea level, and air pressure. However, the E01 system did not record mean wave direction

and as such was supplemented with 2 years of data from Buoy E02 over two deployments

in 2011 and 2015 at the test site. Additionally, wave spectrum parameters for the region

were derived with 10-years of data collected from NOAA Station 44007.

• UMaine PhOG designation: E01

NOAA buoy designation: station 44032

Deployment location: 43◦ 42.94 N, 69◦ 21.32 W

Data range used: 7/9/2001-9/12/2014

Data types used: significant wave height, peak wave period, wind

speed/direction, current speed/direction

• UMaine PhOG designation: E02

NOAA buoy designation: N/A

Deployment location: 43◦ 42.39 N, 69◦ 19.18 W

Data range used: 8/11/2010-10/7/2011 and 11/14/2014-9/17/2015

Data types used: significant wave height, mean wave direction

• UMaine PhOG designation: N/A

NOAA buoy designation: station 44007

Deployment location: 43◦31’30” N, 70◦8’26” W

Data range used: 1/1/2007 - 6/20/2017

Data types used: wave spectral parameters

Analysis of the data presented here was completed following the guidelines of the

International Standard IEC 61400- 1 [27] and IEC 61400-3 [28]: Wind Turbines: Design

47

requirements and design requirements for offshore wind turbines. The resulting data points

required to generate the design load cases are shown in table 3.4. Next to each parameter

is the citation used to calculate each value. Note that for the individual extreme wave

heights, the significant wave height values were from [29] with their heights multiplied by

1.86 per guidance from [28]. The extreme sea currents at varying depths were obtained

from peaks over threshold analysis from Buoy EO1 with a generalized pareto extreme value

distribution.

Table 3.4: Summary of Environmental Design Parameters

Wind Design Parameters Value
Annual Average Wind Speed at 100m (m/s) [30] 8.75
Extreme 10 minute average 1 year wind speed at 4 m (m/s) [29] 18.4
Extreme 10 minute average 10 year wind speed at 4 m (m/s) [29] 21.8
Extreme 10 minute average 50 year wind speed at 4m (m/s) [29] 24.1
Extreme 10 minute average 500 year wind speed at 4m (m/s) [29] 26.7
Normal wind shear power law exponent per ABS [21] 0.14
Extreme wind shear power law exponent per ABS [21] 0.26
Metocean/Site Design Parameters
1 year significant wave height (m) [29] 6.4
10 year significant wave height (m) [29] 8.5
50 year significant wave height (m) [29] 9.8
500 year significant wave height (m) [29] 11.5
Mean Peak Period associated with 1 year sig wave Height (s) [29] 11.7
Mean Peak Period associated with 10 year sig wave Height (s) [29] 13.3
Mean Peak Period associated with 50 year sig wave Height (s) [29] 14.2
Mean Peak Period associated with 500 year sig wave Height (s) [29] 15.0
1 year individual extreme wave height (m) [29] 11.9
10 year individual extreme wave height (m) [29] 15.8
50 year individual extreme wave height (m) [29] 18.2
500year individual extreme wave height (m) [29] 23.0
Extreme 1 year sea current at depths 2m/10m/30m/62m (cm/s) [26] 77/63/48/45
Extreme 1 year sea current at depths 2m/10m/30m/62m (cm/s) [26] 89/79/67/67
Extreme 50 year sea current at depths 2m/10m/30m/62m (cm/s) [26] 105/88/81/88
Extreme 500 year sea current at depths 2m/10m/30m/62m (cm/s) [26] 127/99/104/129

Taking the data points developed in 3.4, the design load cases used in the optimization

were developed and are summarized in Table 3.5. As detailed in the Methods section of

this report, a subset of the full DLCs were used to save computational time, based on those

48

conditions which caused constraint failures. Hs is the significant wave height, Tp is the

peak period and γ refers to the spectral shape parameter for the JONSWAP. Each case was

considered with wind, wave and current headings of 90° from True North to minimize

simulation cases; this is aligned with the legs. The wind speeds are listed at hub height and

the current speeds are at a 2 m depth.

Table 3.5: Environmental conditions for DLCs included in simulation

DLC
Wind

speed (m/s) Hs (m) Tp (s) γ
Current

speed (m/s)
1.1 10 1.03 7.12 1.5 0.158
1.1 24 3.07 9.01 1.8 0.307
1.6 10 8.1 12.8 2.75 0.158
1.6 12 8.5 13.1 2.75 0.163
1.6 14 8.5 13.1 2.75 0.174
1.6 16 9.8 14.1 2.75 0.190
1.6 18 9.8 14.1 2.75 0.211
1.6 20 9.8 14.1 2.75 0.238
1.6 22 9.8 14.1 2.75 0.270
1.6 24 9.8 14.1 2.75 0.307
6.1 58.7 10.7 14.2 2.75 1.05

3.4 Genetic Algorithm Specifications and Convergence

The objective and constraint functions were written for a genetic algorithm MATLAB

code as used in [15]. Input parameters determining convergence criteria, crossover,

mutation, and niching behavior are listed in Table 3.6. Only the maximum generations,

population and number of genes were tuned from a set of values designed to work for most

problems. Specifically, with six input variables the number of genes is also six and the

number of individuals in the population was increased to 120, or 20 times the number of

genes. The maximum number of generations was set at 100.

49

Table 3.6: Genetic algorithm

Parameter Value

Maximum generations 100

Population number 120

Number of genes 6

Elite parameter 1

Best parameter 1

Probability of crossover 0.9

Probability of SBX crossover 0.5

Crossover strength parameter 1

Probability of mutation 0.02

Probability of PBM operation 0.5

Mutation strength parameter 100

Maximum allowable niching distance 0.1

Individuals checked during niching parameter 0.25

Drop parameter 0.5

Dyn parameter 0.001

To check that the genetic algorithm was not stuck in a local minima, multiple runs were

performed. By ensuring that the values of the genes for each run were close to each other,

it was concluded that the solution was adequately converged. Table 3.7 shows lists the

values between runs and their percent difference.

The standard deviation among the population in the last generation was also examined.

In the final generation, there should be a low standard deviation indicating a limited

spread of designs around the best individual. For example, Table 3.8 shows the standard

deviations for one of the optimization runs.

50

Table 3.7: Converged values for different optimizer runs

Variable Optimizer Run 1 Optimizer Run 2 Percent Difference
r [m] 37.58 37.89 0.83
w [m] 15.53 14.86 4.37
d [m] 12.50 12.33 1.37
hp [m] 6.33 6.79 6.98
f [m] 6.14 6.65 7.92
a 1.90 1.99 4.51

Table 3.8: Standard deviation for the 100th generation

Variable Converged Value Standard Deviation
r [m] 37.58 0.535
w [m] 15.53 0.507
d [m] 12.50 0.295
hp [m] 6.33 0.117
f [m] 6.14 1.69
a 1.90 0.069

To further illustrate the convergence of the optimizer, the histograms of the population

were created at different generations. At the start of an optimization run, the population

follows a random distribution across the range of possible input variable points as shown in

Figure 3.3. After 50 generations the genetic algorithm begins to find favorable designs, and

thus the population follows a distribution centered around specific gene values as shown in

Figure 3.4. After 100 generations the standard deviation of designs is very low, so almost

all the design points are tightly clustered around the best values as shown in Figure 3.5.

Another way of confirming the optimizer landed in the right search space is to plot

surfaces of input variables against the LCOE with constraint values overlayed. For

example, plotting the radius and width of the platform against the LCOE yields Figure

3.6. Here the darkest blue indicates designs that passed all constraints, with shading of

yellow indicating constraint failure. Since the staged constraint approach yields some

designs with very high constraint values relative to designs that just barely failed the

constraints, the constraints were normalized to better show the resolution of shading on the

plot. The red point shows the optimized design; it is just at the edge of failing constraints

51

Figure 3.3: Population histogram for the 1st generation

Figure 3.4: Population histogram for the 50th generation

52

Figure 3.5: Population histogram for the 100th generation

and also at the minimum possible LCOE that still pass constraints. This indicates the

best possible design for the problem posed.

3.5 Optimized Platform Design

This section presents information about the overall dimensions, masses, and COGs of

the optimized platform and are compared to a baseline design. The baseline design was

initially developed to demonstrate potential for the damper concept and is provided to

demonstrate the changes in properties when the system was optimized. It is important to

note that upon full analysis with the frequency domain function, the baseline design was

found not to pass all motion constraints. Additionally, the FDF inputs and dynamic

performance as related to the constraints is presented.

53

Figure 3.6: Surface plot of LCOE vs radius and width with constraint values overlayed on
the surface

3.5.1 Hydrostatic specifications

The input variables values for the optimized platform are listed in Table 3.9. These

variables correspond to those labeled in Figure 2.4. The optimized values were found to

minimize the LCOE while passing all the constraints, and more details on the convergence

criteria are provided in Genetic Algorithm Specifications and Convergence.

54

Table 3.9: Input Variable Converged Values

Variable Optimized Baseline Percent Change

r [m] 37.58 43.50 -13.61

w [m] 15.53 11.00 41.18

d [m] 12.50 10.50 19.05

hp [m] 6.33 * *

f [m] 6.14 8.00 -20.88

a 1.90 * *

The starred values in Table 3.9 were not compared because the baseline system was not

designed around the present damper design. Overall, the legs were made shorter and the

freeboard was reduced, however the width of the legs and the draft was increased to allow

for greater ballast mass.

General properties for the converged platform are listed in Table 3.10. This table also

compares the parameters for the baseline platform. Values for the displacement, COGs,

and inertias in Table 3.10 include the mass of the IEA 15 MW.

Observing the changes between the baseline system and the optimized system allows

some conclusions on the characteristics favored by the optimizer. The ballast mass is more

than twice the mass of the hull concrete mass; this is because the dampers are more

effective with more ballast mass, and because the relatively lightweight hull requires a

significant amount of ballast to float at the specified draft. Although the waterplane area

increases the heave and pitch stiffnesses, this is countered by the increase in mass from the

ballast, resulting in lengthened heave and pitch natural periods. The heave natural period

stays within the wave period avoidance range and the pitch natural period is outside of the

typically avoided 5-20 seconds.

The FDF assumes the pitch stiffness is constant. However, the stiffness varies with the

motion of the ballast water because of influence of the vertical center of gravity on the

55

Table 3.10: Mass and hydrostatic properties for the optimized platform

Parameter Optimized Baseline Percent Change
Hull displacement (m3) 26,170 18,827 39.00
Waterplane area (m2) 2,093 1,790 16.93
Hull concrete mass (t) 7,084 9,382 -24.59
Ballast mass, fluid (t) 15,850 6,853 131.3
Rolling diaphragm steel mass (t) 821.9 * *
Vertical COG from SWL (m) 6.701 10.82 -38.07
Vertical COB from SWL (m) -6.251 -5.25 19.07
Roll inertia about COG (kg ·m2) 3.399× 1010 2.924× 1010 16.24
Pitch inertia about COG (kg ·m2) 3.410× 1010 2.924× 1010 16.62
Yaw inertia about COG (kg ·m2) 1.464× 1010 1.027× 1010 42.55
KG (m) 19.20 21.32 -9.94
KB (m) 6.25 5.25 19.05
BM (m) 21.70 32.51 -33.25
GM (m) 8.75 16.44 -46.78
Heave natural period (s) 11.38 9.81 16.00
Pitch natural period (s) 27.15 21.61 25.64

Table 3.11: Change in pitch stiffness with TMD motion

TMD position Pitch stiffness [Nm/rad] Percent change vs resting
Up limit 1.84× 109 -17.61
Resting 2.23× 109 0
Down limit 2.63× 109 17.61

righting moment. An estimate of the range of possible values for the pitch stiffness is

shown in Table 3.11. The effects of the changing stiffness were not considered and this is a

limitation of the model, but not one with a significant change in the results.

The platform with the IEA 15 MW turbine is shown in Figure 3.7. This view shows the

hub height, rotor diameter, draft and freeboard. All platform designs maintained the 150

m hub height, so based on the value of the freeboard, the height of the tower interface

changed to maintain the hub height. The mooring system, which was assumed to have a

constant pretension, is not shown. A view of the platform showing outer dimensions is

shown in Figure 3.8.

56

 240.00

 12.09

 150.00

 6.55

SWL

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure 3.7: Drawing of the platform with IEA 15 MW turbine

57

 10

 27.50
 18.64

 75.15 15.53

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure 3.8: Drawing of the hull

The internals of the platform are shown in Figure 3.9. Noting the thin wall thickness

relative to the scale of the drawing, the dimensioning in this view is based on the internal

distances, versus the external distances shown in Figure 3.8. This view shows the wall

between the ballast chamber and the keystone with very little vacancy between; this is

because the optimizer favored the aspect ratio to produce long ballast chambers relative to

the width. The mass, COG, and moments of inertia of this component were included in the

optimizer. However, after final design the mass from this component would be replaced by

ballast water. As noted in the Methods section, the line of action of the dampers was

assumed to be in the center of the ballast chambers in plan.

58

AA

BB

 0.30 TYP

 28.39

 29.51

SECTION A-A

 6.33

 0.15
 18.04

SECTION B-B

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure 3.9: Drawing of the internal geometry of the platform

3.5.2 Frequency Domain Inputs and Dynamic Performance

The hydrostatic function took the input variables and generated inputs for the

frequency domain function shown in Table 3.12. The hydrostatic and frequency domain

constraints were all zero for the optimized platform.

59

Table 3.12: Frequency domain inputs

Matlab Variable Value

Lwz [m] -6.701

Is [kg ·m3] 3.410×1010

K11 [N/m] 6.360×104

K33 [N/m] 2.104×107

zcg,tower [m] 49.31

Mtower [kg] 1263000

zcg,hull [m] -9.636

Mhull [kg] 7.084×106

zcg,RNA [m] 142.2

MRNA [kg] 9.914×105

Mptotal [kg] 1.585×107

Mpxcg [kg] 23.08

Mpzcg [kg] -8.093

Ltbz [m] 8.299

The controller scheduling described in Chapter 1 resulted in a period of 19.47 seconds.

The best damping ratio and platform motions are shown in Table 3.13. The variables r6,

r7, r8, and r9 are the platform motions described in Chapter 1, the RNA horizontal max

acceleration, the RNA vertical max acceleration, the max pitch angle, the max TMD

displacement, and the Twbsmt is the tower base moment in kN ·m. Note that the max

TMD displacement was modeled as a point mass in the FDF, however this was taken as

the displacement of the plate as an estimate. The ballast water was assumed to fill the

chamber completely above the rolling diaphragm plates. On the downstroke, a buffer of 0.5

m was set to allow room for equipment below the diaphragm. Based on the area ratio

between the ballast water tank and plate, there was a maximum upward stroke of 5.83 m

60

for the optimized platform, which was nearly reached in DLC 6.1, resulting in the water

nearly touching the top of the tank. The constraint for r7, the vertical RNA acceleration

(limited at 2.00 m/s2) was just barely passed. Additionally, although further investigation

would be required, it’s important to note that the damping ratio stayed relatively constant

for DLC 1.6 and 6.1 which were the limiting motion cases. It’s likely that in the real design

a constant damping ratio tailored for the limiting motion cases would suffice.

Table 3.13: Control scheduling and platform motions

DLC/Wind Speed ζ r6 [m/s2] r7 [m/s2] r8 [◦] Twbsmt [kN ·m] r9 [m]

DLC 1.1/10 m/s 3 0.390 0.175 7.139 4.46×105 0.127

DLC 1.1/24 m/s 1 0.731 0.640 3.285 1.96×105 1.146

DLC 1.6/10 m/s 0.7 1.313 1.630 8.570 6.12×105 5.081

DLC 1.6/12 m/s 0.7 1.262 1.673 8.227 5.77×105 5.359

DLC 1.6/14 m/s 0.7 1.504 1.680 7.332 5.34×105 5.359

DLC 1.6/16 m/s 0.9 1.561 1.847 5.151 4.15×105 5.339

DLC 1.6/18 m/s 0.9 1.640 1.846 4.477 4.01×105 5.339

DLC 1.6/20 m/s 0.9 1.538 1.846 4.234 3.82×105 5.339

DLC 1.6/22 m/s 0.9 1.684 1.848 4.326 3.81×105 5.339

DLC 1.6/24 m/s 0.9 1.698 1.847 4.320 3.57×105 5.339

DLC 6.1/58.7 m/s 0.9 1.415 1.999 -0.252 7.99×104 5.822

In summary of the motions presented for each of the DLC cases from Table 3.13, the

maximum values are listed in Table 3.14 with the corresponding DLC and wind speeds

indicated.

To demonstrate the effect of the TMD on the platform, RAOs produced from the FDF

comparing the motion of the platform with the TMD turned off (plate motion locked out

with infinite damping) to the motion with the TMD on. The TMD period was set to 19.47

seconds and the damping ratio was held constant at 0.9 since this value was the most

61

Table 3.14: Caption

Property Maximum Value DLC/Wind Speed
Horizontal RNA Acceleration [m/s2] 1.698 DLC 1.6/24 m/s
Vertical RNA Acceleration [m/s2] 1.999 DLC 6.1/58.7 m/s
Platform Pitch [◦] 8.570 DLC 1.6/10 m/s
Tower Base Moment [kN ·m] 6.12×105 DLC 1.6/10 m/s
TMD Displacement [m] 5.822 DLC 6.1/58.7 m/s

Figure 3.10: RAO comparing the platform heave with the TMD on and off

effective at the majority of DLCs. The heave RAO is shown in Figure 3.10 and the Pitch

RAO is shown in Figure 3.11.

The heave RAO shows the TMD being effective within the wave period avoidance range

with a significant reduction. The massive reduction in motion for the pitch RAO shows

that without the TMD working the design would be unsuitable, but the inclusion of the

TMD results in a significant reduction in platform motion.

62

Figure 3.11: RAO comparing the platform heave with the TMD on and off

63

CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

An optimization framework for a novel floating platform concept using a TMD was

successfully completed, with the result of meeting desired cost targets with an LCOE of

7.53 ¢/kWh and passing constraints. The overall mass of the platform was 7,905,400 kg,

which as a percentage of the equivalent steel mass of the entire system was 15.4%, a

significant reduction from existing platform designs. Considering the cost of existing

floating offshore wind technologies, meeting the cost targets set by ARPA-E is a significant

step towards further development of the concept, and towards increasing the viability of

the offshore wind resource to power homes. Furthermore, successful execution of the

methods proposed in this work indicates the potential for a design methodology shift,

where components can be optimally sized for both cost and design constraints

simultaneously. Although final design work remains to check strength requirements, make

detailed designs of the TMD elements, run the model through a full suite of design load

cases, and conduct model testing, the work presented here is a promising step.

Since the post-tensioned concrete hull is significantly lighter than its equivalent mass in

steel, the design bypasses one of the primary barriers to offshore wind: the high capital

expenditure in material. In addition to the cost reductions allowed by the cheaper

material, this change was allowed by the optimization of the TMD with the platform.

Since the platform was designed around the TMD from the start it could be used to avoid

primary excitation modes. The typical wave period avoidance requirements of offshore

platform design were bypassed, significantly decreasing the necessary mass of the platform.

In the analysis of the platform, the genetic algorithm coupled with a unique constraint

handling technique provides insight on floating offshore turbines platform design

techniques. The majority of a typical design process was automated in the form of

64

MATLAB functions to handle initial hydrostatic calculations and dynamic response

predictions. Many prior works have optimized only parts of the design, such as a damping

element, or the outer dimensions of a hull. However, by automating the hydrostatic and

dynamic calculations to produce the necessary constraints, the optimizer was able to find

the best TMD element together with the hull, ultimately producing a less expensive design.

Crucially, with the use of the staged constraint handling technique and the frequency

domain function, the optimization could find a solution within a relatively short amount of

time.

4.2 Future Work

The optimization handled a significant portion of the design, however final design work

remains before the platform is ready for a model test and further development. Specifically,

three important areas of future work were not covered in this optimization: detailed

structural analysis, the full set of design load cases required by the IEC, and detailed

design of the TMD elements.

There were no structural load related constraints included in the optimization. Instead,

a conservative estimate of the wall thickness, kept uniform throughout the hull, was used

based on a preliminary design. A future version of the optimizer could include wall

thickness as an input variable and simple analytical expressions to calculate constraints.

Optimization of the wall thickness could potentially result in a lighter platform.

Additionally, detailed structural calculations must be made with the potential to add local

sizing adjustments and reinforcements.

Although every effort was made to identify the limiting design load cases to include in

the optimization, the cases included are only a small subset of those required for

certification. Upon running time domain simulations of all design load cases, if a case was

found that exceeded dynamic constraints, the optimization would need to be rerun with

that design load case.

65

The TMD element used in the optimization was not designed in detail because of

project time constraints. As a result, simplifications were made to the model with the

expectation that detailed specification would take place in a future design phase. The goal

with the existing model was to be relatively conservative. For example, the rolling

diaphragm plate was sized as a solid piece of steel. A real configuration would be engineered

to minimize weight, with the use of strategic cutouts, or materials other than steel. Only a

single diaphragm was considered, but a real configuration would involve multiple TMDs

because the one sized in each leg was impractically large. Additionally, as noted in the

methods section, the mechanical costing calculations were not exactly matched with the

TMD embodiment. With further design work on the TMDs, an improved costing model

would be developed. Overall, the TMD element was implemented with conservative mass

estimates, but future work is required to specify the TMD configuration more completely.

The method developed in this optimization was a step forward in terms of a platform

design with the use of the TMD and simple post-tensioned concrete hull. The optimization

techniques could also be a guide to future work. The MATLAB functions described here

were specific to the design of this platform, but as floating offshore wind turbine design

techniques advance a more general optimization tool could be developed for research use

with user-defined defined platform concepts.

66

REFERENCES

[1] statista, Global primary energy consumption by source 2019-2020. [Online]. Available:
https://www.statista.com/statistics/265619/primary-energy-consumption-
worldwide-by-fuel/#statisticContainer.

[2] V. Masson-Delmotte, A. P. P. Zhai, S. Connors, C. Péan, S. Berger, N. Caud,
Y. Chen, M. G. L. Goldfarb, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews,
T. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Z. (eds.), “Climate change 2021:
The physical science basis. contribution of working group i to the sixth assessment
report of the intergovernmental panel on climate change,” IPCC, Tech. Rep., 2021.

[3] “National offshore wind strategy: Facilitating the development of the offshore wind
industry in the united states.,” Department of Energy and Department of the
Interior, Tech. Rep., 2016.

[4] W. Musial, D. Heimiller, P. Beiter, G. Scott, and C. Draxl, “2016 offshore wind
energy resource assessment for the united states,” National Renewable Energy
Laboratory, Tech. Rep., 2016.

[5] T. Stehly, P. Beiter, D. Heimiller, and G. Scott, “2017 cost of wind energy review,”
National Renewable Energy Laboratory, Tech. Rep., 2018.

[6] ARPA-e, Aerodynamic turbines, lighter and afloat, with nautical technologies and
integrated servo-control (atlantis). [Online]. Available:
https://arpa-e.energy.gov/technologies/programs/atlantis.

[7] S. Bashetty and S. Ozcelik, “Review on dynamics of offshore floating wind turbine
platforms,” Energies, vol. 14, p. 6026, 2021.

[8] J. Jonkman, “Dynamics modeling and loads analysis of an offshore floating wind
turbine,” National Renewable Energy Laboratory, Tech. Rep., 2007.

[9] T. D. Pham and H. Shin, “A new conceptual design and dynamic analysis of a
spar-type offshore wind turbine combined with a moonpool,” Energies, vol. 12,
p. 3737, 2019.

[10] A. C. Pillai, P. R. Thies, and L. Johanning, “Mooring system design optimization
using a surrogate assisted multi-objective genetic algorithm,” Engineering
Optimization, vol. 51, pp. 1370–1392, 2018.

67

[11] X. Tong, X. Zhao, and A. Karcanias, “Passive vibration control of an offshore floating
hydrostatic wind turbine model,” Wind Energy, vol. 21, pp. 697–714, 2018.

[12] C. K. Allen, A. J. Goupee, J. Lindner, and R. Berry, “Simulation of a floating
offshore wind turbine with an integrated response mitigation technology,” in ASME
2018 1st International Offshore Wind Technical Conference, Nov. 2018.

[13] H. Dagher, A. Viselli, A. Goupee, R. Kimball, and C. Allen, “The volturnus 1:8
floating wind turbine: Design, construction, deployment, testing, retrieval, and
inspection of the first grid-connected offshore wind turbine in the us,” Tech. Rep.,
2017. [Online]. Available: https://www.osti.gov/biblio/1375022-volturnus-
floating-wind-turbine-design-construction-deployment-testing-
retrieval-inspection-first-grid-connected-offshore-wind-turbine-us.

[14] K. Deb, “An efficient constraint handling methods for genetic algorithms,”
Computational methods in applied mechanics and engineering, vol. 186, pp. 311–338,
2000.

[15] A. J. Goupee and S. S. Vel, “Two-dimensional optimization of material composition
and functionally graded materials using meshless analyses and a genetic algorithm,”
Computer methods in applied mechanics and engineering, vol. 195, pp. 5926–5948,
2006.

[16] E. Gaertner, J. Rinker, L. Sethuraman, F. Zahle, B. Anderson, G. Barter, N. Abbas,
F. Meng, P. Bortolotti, W. Skrzypinski, G. Scott, R. Feil, H. Bredmose, K. Dykes,
M. Shields, C. Allen, and A. Viselli, “Definition of the iea 15-megawatt offshore
reference wind turbine,” National Renewable Energy Laboratory, Tech. Rep., Mar.
2020.

[17] C. Allen, A. Viselli, H. Dagher, A. Goupee, E. Gaertner, N. Abbas, M. Hall, and
G. Barter, “Definition of the umaine volturnus-s reference platform developed for the
iea wind 15-megawatt offshore reference wind turbine,” National Renewable Energy
Laboratory, Tech. Rep., Jul. 2020.

[18] W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed.
McGraw-Hill, 2002.

[19] C. K. Allen, A. J. Goupee, and A. M. Viselli, “A computationally-efficient frequency
domain model of a floating wind turbine with hull-based tuned mass damper
elements,” Advanced Structures and Composites Center, Tech. Rep., 2021.

68

[20] AeroHydro, Multisurf. [Online]. Available: http://aerohydro.com/?page_id=151.

[21] Global performance analysis of floating offshore wind turbine installations, American
Bureau of Shipping, ABS Plaza, 16855 Northchase Drive, Houston TX 77060, Feb.
2014.

[22] M. Garcia-Sanz, “A metric space with lcoe isolines for research guidance in wind and
hydrokinetic energy systems,” Wind Energy, vol. 23, pp. 291–311, 2019.

[23] S. Chakrabarti, Handbook of Offshore Engineering, 1st ed. London, UK: Elsevier
Ltd., 2005.

[24] A. Myhr, C. Bjerkseter, A. Agotnes, and T. Nygaard, “Levelised cost of energy for
offshore floating wind turbines in a life cycle perspective,” Renewable Energy, vol. 66,
pp. 714–728, 2014.

[25] National Renewable Energy Laboratory, Ieawindtask37/iea-15-240-rwt. [Online].
Available: https://github.com/IEAWindTask37/IEA-15-240-RWT.

[26] U. of Maine Physical Oceanography Group, The university of maine ocean observing
system (omoos). [Online]. Available:
http://gyre.umeoce.maine.edu/buoyhome.php.

[27] Wind turbines - part 1: Design requirements, International Electrotechnical
Commission, 3, Rue de Varembe, PO Box 131, CH-1211 Geneva 20, Switzerland,
2008.

[28] Wind turbines - part 3: Design requirements for offshore wind turbines, International
Electrotechnical Commission, 3, Rue de Varembe, PO Box 131, CH-1211 Geneva 20,
Switzerland, 2009.

[29] A. Viselli, G. Forristall, and H. Dagher, “Estimation of extreme wave and wind
design parameters for offshore wind turbines in the gulf of maine using a pot
method,” Ocean Engineering, vol. 104, pp. 649–658, 2015.

[30] “Preliminary wind resource and energy assessment report for the aqua ventus wind
project,” AWS Truepower, Albany, NY, Tech. Rep., 2013.

69

APPENDIX

MATLAB CODE

This appendix lists the MATLAB scripts used in the optimization of the floater. Each file

needs to be in the same folder to run the optimization. The MATLAB scripts are organized

in three categories, genetic algorithm files (1), constraint files (2), and objective files (3).

1. Genetic Algorithm Files

(a) GA.m

1 clear all

2 close all

3 clc

4 %% declare global variables %%%

5 %all quantities in m/kg/s

6 % global rho_ocean rho_conc g thrust_rated pretension penalty1 penalty2;

7 % penalty1 = 1000;

8 % penalty2 = 100;

9 % %environmental constants

10 % rho_ocean = 1025; %density of ocean water

11 % rho_conc = 1890; %density of concrete

12 % g = 9.807; %gravity

13 % thrust_rated = 2400000; %thrust loading at (how many?) m/s

14 % pretension = 7920000; %downward mooring pretension (N)

15 %NASA Float GA Input Page

16 %3/24/21

17

18 %Main Genetic Algorithm (GA) Input Page

19 %Andrew Goupee

20 %Last modified: 4-27-04

21

70

22 %This m-file allows one to select the values of various GA parameters used

23 %in searching for the minimum of an objective function under linear and/or

24 %nonlinear constraints. Recommended values of the GA parameters are given

25 %in the UMGAtoolbox1.0 User's Guide. The paremeters to be chosen are as

26 %follows:

27

28 %GA parameters:

29 %max_gen - the maximum allowable number of generations

30 %n_pop - size of GA population (must be an even number)

31 %n_genes - number of genes in an individuals chromosome

32 %ub_1 - vector of upper bounds on genes (design parameters) for initial

33 % population, dimensions of 1 row x n_genes columns

34 %lb_1 - vector of lower bounds on genes (design parameters) for initial

35 % population, dimensions of 1 row x n_genes columns

36 %ub_2 - vector of upper bounds on genes (design parameters) for all

37 % populations after initial, dimensions of 1 row x n_genes columns

38 %lb_2 - vector of lower bounds on genes (design parameters) for all

39 % populations after initial, dimensions of 1 row x n_genes columns

40 %elite - elitism switch (1 is on, 0 is off)

41 %best - post crossover/mutation selection switch (1 selects the best of

42 % the parents and children, 2 selects the children)

43 %pc - probability of crossover per pair of parents

44 %pcg - probability of crossover per gene

45 %nc - crossover strength parameter (smaller values increase strength)

46 %pm - probability of mutation per individual

47 %pmg - probability of of mutation per gene

48 %nm - mutation strength parameter (smaller values increase strength)

49 %d_nich - maximum allowable normalized euclidian distance between mates

50 %nf_f - maximum percent of population to be searched for a compatible mate

51 %drop - overall percent reduction in chosen parameters (for those that

52 % apply) calculated during dynamic parameter alteration

53 %dyn - strength parameter for dynamic alteration scheme (larger values

54 % reduce parameters by percent alloted in 'drop' quicker)

71

55 %tolerance - convergence criteria: GA terminates if best individual does

56 % not improve more than value alloted here in number of generations given

57 % in

58 % 'span'.

59 %span - number of generations used in convergence criteria (see 'tolerance'

60 %)

61 %grad_switch - gradient based search switch (1 is on, 0 is off)

62 %plot_switch - plots best and average fitnesses as a function of

63 % generations (1 is on, 0 is off)

64

65 %As stated previously, this GA finds a minimum of an objective function

66 %under constraints. The objective function must be an m-file that accepts

67 %a vector of design parameters (which possesses the number of entries set

68 %in 'n_genes') and has a single scalar as an output. The constraint

69 %function must be an m-file that accepts a vector of design paramters and

70 %returns a single scalar proportional to the level of constraint violation.

71 %Please see UMGAtoolbox1.0 for advice on constructing objective and

72 %constraint functions. Please note that this page requires the following:

73

74 %Function inputs:

75 %objective - character string containing name of objective function m-file

76 %constraint - character string containing name of constraint function

77 % m-file

78

79 %The final result of the search and optimization procedure are contained in

80 %the following variables:

81 %x_min - value of solution at minimum found

82 %obj_value - value of the objective function at at specified solution

83

84

85 %Select GA paramters:

86 max_gen = 100; %5000;

87

72

88 n_pop = 120; %70;

89

90 n_genes = 6; %r,w,d,disp_lim,f,aspect

91

92 ub_1 = [45 21 15 7 15 2];

93

94 lb_1 = [32.5 8 7.5 3 3 1];

95

96 ub_2 = ub_1;

97

98 lb_2 = lb_1;

99

100 elite = 1;

101

102 best = 0;

103

104 pc = .9;

105

106 pcg = .5;

107

108 nc = 1;

109

110 pm = .02;

111

112 pmg = .5;

113

114 nm = 100;

115

116 d_nich = .1;

117

118 nf_f = 0.25;

119

120 drop = .5;

73

121

122 dyn = .001;

123

124 tolerance = .00001;

125

126 span = 10000;

127

128 grad_switch = 0;

129

130 plot_switch = 1;

131

132 %Provide objective and constraint function names

133 objective = 'objective';

134

135 constraint = 'constraints';

136

137 fprintf('starting run...\n')

138 tic

139 %Perform GA search and optimization

140 [x_min,obj_value,population_all]=GAmain(max_gen,n_pop,n_genes,ub_1,lb_1,...

141 ub_2,lb_2,elite,best,...

142 pc,pcg,nc,pm,pmg,nm,d_nich,nf_f,drop,dyn,tolerance,span,objective,...

143 constraint,grad_switch,plot_switch);

144 toc

145 %Final report

146 disp(' ')

147 disp(' ***** Final Report *****')

148 disp([' ' 'Solution Vector: ' '[' num2str(x_min) ']'])

149 disp([' ' 'Objective Func.: ' num2str(obj_value)])

150 fprintf('finished')

(b) GAmain.m

74

1 function [x_min,obj_value,population_all] = GAmain(max_gen,n_pop,...

2 n_genes,ub_1,lb_1,ub_2,lb_2,...

3 elite,best,pc,pcg,nc,pm,pmg,nm,d_nich,nf_f,drop,dyn,tolerance,...

4 span,objective,constraint,grad_switch,plot_switch)

5

6 %Main genetic algorithm (GA) program

7 %Andrew Goupee

8 %Last modified: 4-27-04

9

10 %This m-file is the main GA program. It peforms the actual search and

11 %optimization using the inputs and outputs shown above. This program is

12 %called from the m-file 'GA', in which the values of the inputs are

13 %established for this program. For descriptions of these inputs, as well

14 %as a description of the output, please see m-file 'GA'.

15

16 %This GA is a real-coded GA which utilizes tournament selection for a

17 %reproduction operator, a simulated binary crossover operator (SBX) and a

18 %parameter based mutation oparator (PBM). See UMGAtoolbox1.0 User's Guide

19 %for references on these various genetaic algorithm operators.

20

21 %Additional variables used in this program:

22 %pc_o, pcg_o, nc_o, pm_o, pmg_o, nm_o - same as pc, pcg, nc, pm, pmg and nm

23 % at the start of the GA. These parameters are used in the dynamic

24 % alteration process.

25 %pc_v, pcg_v, nc_v, pm_v, pmg_v, nm_v - vectors which store the parameters

26 % at each generation for plotting purposes.

27 %generation - generation number.

28 %population - matrix containing fitness, constraint and chromosome for each

29 % member of the population. Dimensions of n_pop rows x (n_genes + 2)

30 % columns.

31 %elite_no - individual number (corresponds to row in population) of the

32 % elite individual of the current population.

75

33 %avg_fit_vect - vector containing the average fitness of each generation.

34 %best_fit_vect - vector containing the fitness of the best individual in

35 % each generation.

36 %diff - difference between best individual in current generation and best

37 % individual 'span' generations prior.

38 %mating_pool - intermediate population

39

40 %Reset random number generator

41 rand('state',sum(100*clock));

42

43 %Store initial parameters used in dynamic alteration process

44 pc_o = pc;

45 pcg_o = pcg;

46 nc_o = nc;

47 pm_o = pm;

48 pmg_o = pmg;

49 nm_o = nm;

50

51 %Initialize parameter vectors used for plotting purposes

52 pc_v(1) = pc;

53 pcg_v(1) = pcg;

54 nc_v(1) = nc;

55 pm_v(1) = pm;

56 pmg_v(1) = pmg;

57 nm_v(1) = nm;

58

59 %Initialize generation number, corresponding generation

60 generation = 0;

61 [population] = create_population(n_pop,n_genes,ub_1,lb_1,objective,...

62 constraint);

63

64 %Create generation 0 fitness report, begin fitness trend vectors

65

76

66 [elite_no,avg_fit_vect(1),best_fit_vect(1)] = pop_report(generation,n_pop,...

67 population,n_genes);

68

69 %Initialize diff

70 diff = 10*tolerance;

71

72 %Begin looping through generations

73 generation = 1;

74 ii = 1;

75 population_all = zeros(n_pop,n_genes+2,max_gen);

76 while ((diff > tolerance) & (generation ≤ max_gen));

77

78 %Create mating pool via tournament selection with niching

79 [mating_pool] = reproduction(population,n_pop,elite,elite_no,n_genes,...

80 d_nich,nf_f,ub_2,lb_2);

81

82 %Perform crossover with SBX and mutation with PBM operators

83 [population] = SBX_PBM(mating_pool,pc,pcg,nc,pm,pmg,nm,ub_2,lb_2,...

84 objective,constraint,elite,best,n_pop,n_genes);

85

86 %Create current generation fitness report, determine elite no, etc.

87 [elite_no,avg_fit_vect(generation+1),best_fit_vect(generation+1)] = ...

88 pop_report(generation,n_pop,population,n_genes);

89

90 %Update GA parameters, plotting storage vectors

91 pc = pc_o*(1 - drop*(1 - exp(-dyn*generation)));

92 pcg = pcg_o*(1 - drop*(1 - exp(-dyn*generation)));

93 nc = nc_o*(1 + drop*(1 - exp(-dyn*generation)));

94 pm = pm_o*(1 - drop*(1 - exp(-dyn*generation)));

95 pmg = pmg_o*(1 - drop*(1 - exp(-dyn*generation)));

96 nm = nm_o*(1 + drop*(1 - exp(-dyn*generation)));

97

98 pc_v(generation+1) = pc;

77

99 pcg_v(generation+1) = pcg;

100 nc_v(generation+1) = nc;

101 pm_v(generation+1) = pm;

102 pmg_v(generation+1) = pmg;

103 nm_v(generation+1) = nm;

104

105 %Calculate new diff

106 if ((generation ≥ span) & (population(elite_no,2) ≤ 0));

107 diff = abs(best_fit_vect(generation+1)-...

108 best_fit_vect(generation-span+1));

109 end;

110

111 %Count up generation

112 generation = generation + 1;

113

114 %store all the generations

115 population_all(:,:,ii) = population;

116 ii = ii+1

117 %Save GA information

118 save ga_info;

119 fprintf('generation %d \n',generation)

120 time = toc;

121 fprintf('time running %.2f s \n',time)

122

123

124 end;

125

126 %Go to gradient based search if desired

127 if (grad_switch == 1);

128

129 %Establish initial guess

130 xo = population(elite_no,3:(n_genes+2));

131

78

132 %Declare options

133 options=optimset('Display','iter','MaxFunEvals',10000);

134

135 %Call fmincon and perform optimization

136 [x,fval,exitflag]=fmincon(objective,xo,[],[],[],[],lb_2,ub_2,...

137 constraint,options);

138

139 %Evaluate x_min, obj_value

140 x_min = x;

141 obj_value = fval;

142 else;

143 %Evaluate x_min, obj_value

144 x_min = population(elite_no,3:(n_genes+2));

145 obj_value = population(elite_no,1);

146 end;

147

148

149 %Plot objective function trends if required, parameter trends

150 if (plot_switch == 1);

151 figure(1);

152 clf;

153 hold on;

154 box on;

155 leg(1) = plot(avg_fit_vect);

156 leg(2) = plot(best_fit_vect,'r');

157 xlabel('Generation No.');

158 ylabel('Fitness');

159 title('Fitness Trends');

160 legend(leg, 'Population Average', 'Best Individual');

161

162 figure(2);

163 clf;

164 hold on;

79

165 box on;

166 leg1(1) = plot(pc_v);

167 leg1(2) = plot(pcg_v,'r');

168 leg1(3) = plot(pm_v,'g');

169 leg1(4) = plot(pmg_v,'k');

170 axis([1,generation+1,0,1]);

171 xlabel('Generation No.');

172 ylabel('Probability Value');

173 title('Crossover and Mutation Probability Trends');

174 legend(leg1, 'pc', 'pcg', 'pm', 'pmg');

175

176 figure(3);

177 clf;

178 hold on;

179 box on;

180 leg2(1) = plot(nc_v);

181 leg2(2) = plot(nm_v,'r');

182 xlabel('Generation No.');

183 ylabel('Parameter Value');

184 title('Crossover and Mutation Strength Parameter Trends');

185 legend(leg2, 'nc', 'nm');

186 end;

(c) createpopulation.m

1 function [population] = create_population(n_pop,n_genes,ub_1,lb_1,...

2 objective,constraint)

3 %Initial population creator

4 %Andrew Goupee

5 %Last modified: 4-21-04

6

7 %This function creates the initial population and assigns their fitness.

80

8 %The fitness of each individual is assigned as described by K. Deb in his

9 %paper 'An efficient constraint handling method for genetic algorithms'.

10 %Simply put, if an individual possesses a feasible solution, then the

11 %fitness of that individual is equal to the objective function. If an

12 %individual possesses an infeasible soltuion, then the fitness of that

13 %individual is equal to the fitness of the worst feastible solution in the

14 %population plus the constraint violation. For more details, please see

15 %the UMGAtoolbox1.0 User's Guide. Definitions for the inputs can be found

16 %in the m-file 'GA' and definitions of the outputs can be found in

17 %'GAmain'.

18

19 %Additional variables used in this function:

20 %worst - objective function value of worst feasible solution in the

21 % population

22

23

24 %Reset random number generator

25 rand('state',sum(100*clock));

26

27 %Size population

28 population = zeros(n_pop,(n_genes+2));

29

30 %Create genes values

31 for i = 1:n_pop;

32 for j = 3:(n_genes+2);

33 population(i,j) = (rand*(ub_1(j-2)-lb_1(j-2)))+lb_1(j-2);

34

35 end;

36 end;

37

38 %Determine objective function and constraint function values

39

40 %parfor

81

41 pop_fit = population(:,1);

42 pop_con = population(:,2);

43 chromosomes = population(:,3:(n_genes+2));

44 parfor ii = 1:n_pop;

45 pop_fit(ii) = feval(objective,[chromosomes(ii,:)]);

46 pop_con(ii) = feval(constraint,[chromosomes(ii,:)]);

47 end;

48 population(:,1) = pop_fit;

49 population(:,2) = pop_con;

50

51 %Determine worst feasible solution

52 worst = 0;

53 for i = 1:n_pop;

54 if ((population(i,1) > worst) & (population(i,2) ≤ 0));

55 worst = population(i,1);

56 end;

57 end;

58

59 %Assign fitness value, finish initial population

60 for i = 1:n_pop;

61 if (population(i,2) > 0);

62 population(i,1) = worst + population(i,2);

63 end;

64 end;

(d) pop report.m

1

2 function [elite_no,avg_fit,best_fit] = pop_report(generation,n_pop,...

3 population,n_genes);

4 %Population report generator

5 %Andrew Goupee

82

6 %Last modified: 4-23-04

7

8 %This function displays a report segment which contains the generation

9 %number, the population average fitness, and the statistics of the most fit

10 %individual in the current population. This function also returns the

11 %number of the most fit individual in the population, as well as the the

12 %value of the average fitness of the population and the value of the

13 %most fit individual in the population. For definitions of the inputs and

14 %outputs, see m-file 'GAmain'.

15

16 %Additional variables used in this function:

17 %fit_sum - sum of fitnesses

18

19

20 %Initialize best_fit, fit_sum, elite_no

21 best_fit = population(1,1);

22 fit_sum = 0;

23 elite_no = 1;

24

25 %Determine best fitness, sum of fitnesses

26 for i = 1:n_pop;

27 if (population(i,1) < best_fit);

28 best_fit = population(i,1);

29 elite_no = i;

30 end;

31 fit_sum = fit_sum + population(i,1);

32 end;

33

34 %Calculate average fitness

35 avg_fit = fit_sum/n_pop;

36

37 %Display fitness report

38 %disp(' ')

83

39 %disp(' ***** Population Fitness Report *****')

40 %disp([' ' ' Generation: ' num2str(generation)])

41 %disp([' ' 'Average Fitness: ' num2str(avg_fit)])

42 %disp([' ' 'Best Individual: ' 'chromosome = [' num2str(population...

43 % (elite_no,(3:n_genes+2))) ']'])

44 %disp([' ' 'constraint violation = ' num2str(population...

45 % (elite_no,2))])

46 %disp([' ' 'fitness = ' num2str(population...

47 % (elite_no,1))])

(e) reproduction.m

1 function [mating_pool] = reproduction(population,n_pop,elite,elite_no,...

2 n_genes,d_nich,nf_f,ub_2,lb_2);

3 %Reproduction function

4 %Andrew Goupee

5 %Last modified: 5-14-04

6

7 %This reproduction function creates a mating pool from a population of

8 %individuals. Tournament selection is employed for this purpose and a

9 %niching method is also used to maintain diversity in the population. For

10 %definitions of the inputs and outputs, please see m-file 'GAmain'.

11

12 %Additional variables used in this function:

13 %start - parameter used in filling out the remainder of the mating pool.

14 %individual_1 - first individual in tournament

15 %individual_2 - second individual in tournament

16 %d12 - euclidian distance between solutions

17 %count - counter

18 %opponent - intermediate individual to possibly compete in tournament

19 %nich_sum - component of d12

20 %gap - value used in calculating d12 (used for avoiding divide by zero

84

21 % erros)

22

23

24 %Initialize mating_pool

25 mating_pool = zeros(n_pop,(n_genes+2));

26

27 %Perform elitist operation if desired, initialize start parameter

28 start = 1;

29 if elite > 0;

30 mating_pool(1,:) = population(elite_no,:);

31 mating_pool(2,:) = population(elite_no,:);

32 start = 3;

33 end;

34

35 %Fill out mating pool

36 for j = start:n_pop;

37

38 %Select first individual for tournament, initialize second individual

39 individual_1 = population(random(n_pop),:);

40 individual_2 = individual_1;

41

42 %Initialize d12, count

43 d12 = 2*d_nich;

44 count = 1;

45

46 %Find second acceptable individual

47 while ((d12 > d_nich) & (count ≤ round(nf_f*n_pop)));

48

49 %Determine possible opponent

50 opponent = population(random(n_pop),:);

51

52 %Calculate new d12;

53 nich_sum = 0;

85

54 for k = 3:(n_genes+2);

55

56 %Calculate gap

57 if (ub_2(k-2) == lb_2(k-2));

58 gap = 1;

59 else;

60 gap = ub_2(k-2)-lb_2(k-2);

61 end;

62

63 nich_sum = nich_sum + ((individual_1(1,k)-opponent(1,k))/...

64 (gap))^2;

65 end;

66

67 d12=(nich_sum/n_genes)^.5;

68

69 %Assign individual_2 if necessary

70 if (d12 < d_nich)

71 individual_2 = opponent;

72 end;

73

74 %Count up count

75 count = count + 1;

76

77 end;

78

79 %Conduct tournament

80 if (individual_1(1,1) < individual_2(1,1));

81 mating_pool(j,:) = individual_1;

82 else;

83 mating_pool(j,:) = individual_2;

84 end;

85

86 end;

86

(f) SBX PBM.m

1 function [population] = SBX_PBM(mating_pool,pc,pcg,nc,pm,pmg,nm,ub_2,...

2 lb_2,objective,constraint,elite,best,n_pop,n_genes);

3 %Crossover and mutation function

4 %Andrew Goupee

5 %Last modified: 5-14-04

6

7 %This function takes the mating pool post tournament selection and applies

8 %the crossover and mutation operators to create a new population. The

9 %simulated binary crossover operator (SBX) and parameter based mutation

10 %operator (PBM) are used for this purpose. For details on the input and

11 %output definitions, please see m-file 'GAmain'. More details on these

12 %specific operators can be found in the UMGAtoolbox1.0 User's Guide.

13

14 %Additional variables used in this function:

15 %start - variable for determining where to begin SBX and PBM operations

16 %parent_1 - first parent

17 %parent_2 - second parent

18 %x1, x2 - parent genes

19 %difference - parameter used in SBX operations

20 %beta - parameter used in SBX operations

21 %alpha - parameter used in SBX operations

22 %u - random number between 0 and 1

23 %beta_bar - parameter used in SBX operations

24 %y1, y2 - children genes

25 %child_1 - first child

26 %child_2 - second child

27 %x - child gene before mutation

28 %∆ - parameter used in PBM operations

87

29 %∆_bar - parameter used in PBM operations

30 %y - child gene after mutation

31 %worst - worst feasible solution in populations

32 %group - collection of individuals competiting in 'best' tournament

33 %fit - vector fitnesses

34 %value - placeholder

35 %flag - indicates best individual in the 'best' tournament

36 %count - counter

37 %group2 - second collection of individuals in 'best' tournament

38 %fit2 - additional fitness vector

39 %gap - value used in mutation calculation (for ensuring there is no divide

40 % by zero)

41

42

43 %Create starting point

44 if (elite == 1);

45 population(1,:) = mating_pool(1,:);

46 population(2,:) = mating_pool(2,:);

47 start = 2;

48 else;

49 start = 1;

50 end;

51

52 %Begin looping through mating pool

53 for i = start:(n_pop/2);

54

55 %Extract parents from mating pool

56 parent_1 = mating_pool(2*i-1,:);

57 parent_2 = mating_pool(2*i,:);

58

59 %Perform crossover if necessary

60 if (rand ≤ pc);

61

88

62 %Loop through genes

63 for j = 3:(n_genes+2);

64

65 %Determine if genes are to be crossed

66 if (rand ≤ pcg);

67

68 %Perform crossover

69 if (parent_1(1,j) < parent_2(1,j));

70 x1 = parent_1(1,j);

71 x2 = parent_2(1,j);

72 else;

73 x1 = parent_2(1,j);

74 x2 = parent_1(1,j);

75 end;

76

77 if (x2 == x1);

78 difference = .01;

79 else;

80 difference = x2 - x1;

81 end;

82

83 beta = 1 + (2/difference)*...

84 (min([(x1-lb_2(1,j-2)),(ub_2(1,j-2)-x2)]));

85

86 alpha = 2 - beta^(-(nc+1));

87

88 u = rand;

89 if (u ≤ (1/alpha));

90 beta_bar = (alpha*u)^(1/(nc+1));

91 else;

92 beta_bar = (1/(2-alpha*u))^(1/(nc+1));

93 end;

94

89

95 y1 = 0.5*((x1+x2) - beta_bar*(x2-x1));

96 y2 = 0.5*((x1+x2) + beta_bar*(x2-x1));

97

98 if (parent_1(1,j) < parent_2(1,j));

99 child_1(1,j) = y1;

100 child_2(1,j) = y2;

101 else;

102 child_1(1,j) = y2;

103 child_2(1,j) = y1;

104 end;

105 else;

106 child_1(1,j) = parent_1(1,j);

107 child_2(1,j) = parent_2(1,j);

108 end;

109 end;

110 else;

111 %Just copy over parents to children if no crossover at all

112 child_1 = parent_1;

113 child_2 = parent_2;

114 end;

115

116 %Now perform mutation operations

117 %child_1

118 if (rand < pm);

119

120 %Erase fitness and constraint violation

121 child_1(1,1) = 0;

122 child_1(1,2) = 0;

123

124 %Loop through genes

125 for j=3:(n_genes+2);

126

127 %Determine if gene is to be mutated

90

128 if (rand < pmg);

129

130 %Perform mutation

131 x = child_1(1,j);

132

133 %Calcualte gap

134 if (ub_2(1,j-2) == lb_2(1,j-2));

135 gap = 1;

136 else;

137 gap = ub_2(1,j-2)-lb_2(1,j-2);

138 end;

139

140 ∆ = (min([(x-lb_2(1,j-2)),(ub_2(1,j-2)-x)]))/...

141 gap;

142

143 u = rand;

144 if (u ≤ 0.5);

145 ∆_bar = ((2*u+(1-2*u)*((1-∆)^(nm+1)))...

146 ^(1/(nm+1))) - 1;

147 else;

148 ∆_bar = 1 - (2*(1-u)+2*(u-0.5)*((1-∆)^(nm+1)))...

149 ^(1/(nm+1));

150 end;

151

152 y = x + ∆_bar*(ub_2(1,j-2) - lb_2(1,j-2));

153

154 child_1(1,j) = y;

155 end;

156 end;

157 end;

158

159 %child_2

160 if (rand < pm);

91

161

162 %Erase fitness and constraint violation

163 child_2(1,1) = 0;

164 child_2(1,2) = 0;

165

166 %Loop through genes

167 for j=3:(n_genes+2);

168

169 %Determine if gene is to be mutated

170 if (rand < pmg);

171

172 %Perform mutation

173 x = child_2(1,j);

174

175 %Calculate gap

176 if (ub_2(1,j-2) == lb_2(1,j-2));

177 gap = 1;

178 else;

179 gap = ub_2(1,j-2)-lb_2(1,j-2);

180 end;

181

182 ∆ = (min([(x-lb_2(1,j-2)),(ub_2(1,j-2)-x)]))/...

183 gap;

184

185 u = rand;

186 if (u ≤ 0.5);

187 ∆_bar = ((2*u+(1-2*u)*((1-∆)^(nm+1)))...

188 ^(1/(nm+1))) - 1;

189 else;

190 ∆_bar = 1 - (2*(1-u)+2*(u-0.5)*((1-∆)^(nm+1)))...

191 ^(1/(nm+1));

192 end;

193

92

194 y = x + ∆_bar*(ub_2(1,j-2) - lb_2(1,j-2));

195

196 child_2(1,j) = y;

197 end;

198 end;

199 end;

200 %Insert new members into population

201 population(i*2-1,:) = child_1;

202 population(i*2,:) = child_2;

203 end;

204

205 pop_fit = population(:,1);

206 pop_con = population(:,2);

207 mate_fit = mating_pool(:,1);

208 mate_con = mating_pool(:,2);

209 chromosomes = population(:,3:(n_genes+2));

210 % Calculate a objective and constraint function values

211

212 %parfor

213 parfor iii = 1:n_pop;

214 % if ((population(i,1) == mating_pool(i,1)) &...

215 % (population(i,2) == mating_pool(i,2)));

216 % % Nothing happens

217 % else;

218 % population(i,1) = feval(objective,[population(i,3:(n_genes+2))]);

219 % population(i,2) = feval(constraint,[population(i,3:(n_genes+2))]);

220 if ((pop_fit(iii) == mate_fit(iii)) &...

221 (pop_con(iii) == mate_con(iii)));

222 % Nothing happens

223 else

224 pop_fit(iii) = feval(objective,[chromosomes(iii,:)]);

225 pop_con(iii) = feval(constraint,[chromosomes(iii,:)]);

226 end;

93

227 end;

228

229 population(:,1) = pop_fit;

230 population(:,2) = pop_con;

231

232 %Find a new worst feasible solution between population and mating pool

233 worst = 0;

234 for i = 1:n_pop;

235 if ((population(i,1) > worst) & (population(i,2) ≤ 0));

236 worst = population(i,1);

237 end;

238

239 if ((mating_pool(i,1) > worst) & (mating_pool(i,2) ≤ 0));

240 worst = mating_pool(i,1);

241 end;

242 end;

243

244 %Reassign fitness

245 for i = 1:n_pop;

246 if (population(i,2) > 0);

247 population(i,1) = worst + population(i,2);

248 end;

249

250 if (mating_pool(i,2) > 0);

251 mating_pool(i,2) = worst + mating_pool(i,2);

252 end;

253 end;

254

255 %Perform best function if required

256 if (best == 1);

257 for i = 1:(n_pop/2);

258 group(1,:) = population(i*2-1,:);

259 group(2,:) = population(i*2,:);

94

260 group(3,:) = mating_pool(i*2-1,:);

261 group(4,:) = mating_pool(i*2,:);

262

263 fit = [group(1,1) group(2,1) group(3,1) group(4,1)];

264

265 [value,flag] = min(fit);

266

267 %Insert first new member into population

268 population(i*2-1,:) = group(flag,:);

269

270 count = 1;

271 for j = 1:4;

272 if (j == flag);

273 %Nothing happens

274 else;

275 group2(count,:) = group(j,:);

276 count = count + 1;

277 end;

278 end;

279

280 fit2 = [group2(1,1) group2(2,1) group2(3,1)];

281

282 [value,flag] = min(fit2);

283

284 %Insert second new member into population

285 population(i*2,:) = group2(flag,:);

286 end;

287 end;

288

289 %Refind worst

290 worst = 0;

291 for i = 1:n_pop;

292 if ((population(i,1) > worst) & (population(i,2) ≤ 0));

95

293 worst = population(i,1);

294 end;

295 end;

296

297 %Assign final fitness

298 for i = 1:n_pop;

299 if (population(i,2) > 0);

300 population(i,1) = worst + population(i,2);

301 end;

302 end;

2. Constraint Files

(a) constraints.m

1 %version 2

2 %William Ramsay

3 %function to generate constraints

4 function [c,ceq] = constraints(x)

5 ceq = [];

6 penalty1 = 1000;

7 penalty2 = 100;

8 %% hydrostatics module %%

9 [con,out] = hydrostatic_check(x);

10 c_hyd = penalty1*(sum(con.hydvals(:)))/length(con.hydnames);

11 %% freq domain module %%%

12 if c_hyd > 0

13 c = c_hyd+penalty2;

14 else

15 [con,out] = FreqDomainAnalysisCopy(con,out);

16 c_freq = penalty2*(sum(con.freqvals(:)))/length(con.freqnames);

17 c = c_hyd+c_freq;

96

18 end

(b) hydrostatic check.m

1 %version 2

2 %William Ramsay

3 %A function to calculate basic hydrostatics and constraints for the NASA floater

4 %all quantities in m - kg - s

5 %inputs

6 % r %radius (outer)

7 % w %width (outer)

8 % d %draft

9 % f %freeboard

10 % h %height (outer)

11 % t %nominal thickness

12 % t_air %thickness of air chamber

13 % r_ts %outer radius of tower support

14 % h_s %height of support above deck (15 is from elastodyn input

15 % TowerBsHt)

16 % L_air %length of air chamber (inner)

17 % L_bal %length of ballast chamber (inner)

18 % A0 %water plane area

19 % Fb %buoyant force

20 % BM %distance between center of buoyancy and metacentric height

21 % KB %distance between keel and center of buoyancy

22 % n_wall %number of extra walls in each leg (e.g. 1 wall = 2 vacant

23 % air chambers)

24

25 %outputs

26 %g1 %initial stability constraint

27 %g2 %adequate size of ballast chamber constraint

28 %g3 %flotation constraint

97

29 %g4 %air chamber + ballast chamber geometric constraint

30 %g5 %deck above water to maintain linear hydrostatics constraint

31 %out.vals %outputs required for frequency domain module

32 %out.names %corresponding names of each variable for the frequency

33 % domain module

34 %out.hydvals %outputs not used in frequency domain module but still

35 % desired as output, from hydrostatics module

36 %out.hydnames %" "

37

38 function [con,out] = hydrostatic_check(x)

39 %% define global variables %%%

40 %all quantities in m/kg/s

41 % global rho_ocean g thrust_rated;

42 rho_ocean = 1025;

43 g = 9.81;

44 thrust_rated = 2400000; %thrust loading at (how many?) m/s

45 %% initial calcs

46 r = x(1); %radius (outer)

47 w = x(2); %width (outer)

48 d = x(3); %draft

49 h_p = x(4); %plate position

50 f = x(5); %freeboard

51 asp = x(6); %aspect ratio

52

53 h = f+d; %height (outer)

54 t = .3; %nominal thickness

55 r_ts = 5; %outer radius of tower support

56 h_s = 15-f; %height of support above deck (15 is

57 % from elastodyn input TowerBsHt)

58 n_wall = 0; %number of additional walls

59 L_bal = asp*(w-2*t); %length of ballast tank

60 r_p = (w-2*t)/2; %radius of plate

61 A0 = w*2*r+(2*r-w)*w; %water plane area

98

62 V0 = A0*d; %volume below waterline

63 Fb = rho_ocean*g*V0; %buoyant force

64 Iwp = ((2*r-w)*w^3)/12+(w*(2*r)^3)/12; %water plane area moment of inertia

65 BM = Iwp/V0; %distance between center of buoyancy

66 %and metacentrix height

67 KB = d/2; %distance between keel and center of

68 %buoyancy

69 TMD_lim_plate = h_p - .5; %limit of plate travel, .5 is

70 % arbitrary buffer

71 if TMD_lim_plate < 0

72 fprintf('invalid initial plate position')

73 end

74 if f>15

75 fprintf('freeboard too large')

76 end

77 TMD_lim_h20 = TMD_lim_plate*pi*r_p^2/((w-2*t)*L_bal); %limit of travel of

78 % water

79 %% get masses %%

80 [M,M_total_dry,M_concrete,m_bal,m_bal_leg,mRNA,mtower,m,t_p,m_plate,...

81 P_res] = get_mass(r,w,h,t,r_ts,h_s,Fb,n_wall,r_p);

82 V_bal = m_bal_leg/rho_ocean;

83 h_bal = V_bal/(L_bal*(w-2*t)); %fully above plate through the whole chamber,

84 % h_bal now defined as height above plate

85 %% get KG %%

86 [KG,KG_hull,KGRNA,KGtower,KGb1,KGp1] = get_KG(M,m,M_concrete,d,h,t,h_s,...

87 h_bal,n_wall,h_p,t_p);

88 %% get moment of inertias %%

89 [Ix,Iy,Iz,Iyb,Iy_hull,Iytower,IxRNA,dxRNA,dztower,dzRNA,...

90 dyb1,dzb1,dyp1,dzp1,Iy_components,Ix_local,Iy_local,Iz_local,l] = ...

91 get_moments(m_bal_leg,KG,r,w,d,h,t,r_ts,h_s,L_bal,h_bal,n_wall,h_p,...

92 t_p,m_plate,r_p);

93 %% more calculated quantities %%

94 %pitch angle

99

95 GM = BM + KB - KG;

96 K55 = g*M*GM;

97 Lz = KGRNA - d;

98 momentfromRNAoffset = -dxRNA*mRNA*g;

99 momentfromthrust = thrust_rated*Lz;

100 staticpitchangle = (180/pi)*(1/K55)*momentfromRNAoffset;

101 pitchangle = (180/pi)*(1/K55)*momentfromthrust+staticpitchangle;

102 min_freeboard = f-sin(pitchangle*(pi/180))*r;

103 d_towout = M_total_dry/(rho_ocean*A0); %tow out draft (unballasted)

104

105 %% get nat periods (for reference) %%

106 % start with added mass

107 b = d*0.5; %vertical dimension of cross section

108 a = w*0.5; %horizontal dimension of cross section

109 Ar = pi*a^2;

110 abtable = [100,10,5,2,1,0.5,0.2,0.1];

111 CAtable = [1,1.14,1.21,1.36,1.51,1.70,1.98,2.23];

112 ab = a/b;

113 CA = interp1(abtable,CAtable,ab);

114 Ma_leg = r*Ar*CA*rho_ocean;

115 Ma = 4*Ma_leg; %total added mass

116 Ia = 2*(r/2)^2*Ma_leg; %total added inertia

117

118 K11 = 6.36E4;

119 K33 = g*A0*rho_ocean;

120 K55 = g*M*GM;

121

122 Tn11 = (2*pi)/sqrt(K11/M); %surge period

123 Tn33 = (2*pi)/sqrt(K33/(M+Ma)); %heave period

124 Tn44 = (2*pi)/sqrt(K55/(Ix+Ia)); %roll period

125 Tn55 = (2*pi)/sqrt(K55/(Iy+Ia)); %pitch period

126

127

100

128 %% freq domain- model inputs %%

129 Lwz = d-KG;

130 Is = Iy;

131 K11 = 6.36E+04;

132 K33 = g*A0*rho_ocean;

133 %K55 = K55

134 Tower_zcg = dztower;

135 Tower_mass = mtower;

136 Hull_zcg = KG_hull-KG;

137 Hull_mass = M_concrete;

138 RNA_zcg = dzRNA;

139 RNA_mass = mRNA;

140 Mh_total = 6.8531E+01;

141 Mh_xcg = 33.9212727;

142 Mh_zcg = -12.07;

143 Mp_total = m_bal;

144 Mp_xcg = dyb1;

145 Mp_zcg = (dzb1*m_bal_leg+dzp1*m_plate)/(m_bal_leg+m_plate); %including

146 % ballast and rd plate

147 Ltbz = Lwz+h_s+f;

148 tank_h = h-2*t;

149 tank_w = w-2*t;

150 rA_h = 0;

151 out.vals = [M;d;r;w;Lwz;Is;K11;K33;K55;Tower_zcg;Tower_mass;...

152 Hull_zcg;Hull_mass;RNA_zcg;RNA_mass;Mh_total;Mh_xcg;Mh_zcg;Mp_total;...

153 Mp_xcg;Mp_zcg;Ltbz;...

154 tank_h;tank_w;rA_h;m_plate;TMD_lim_plate];

155 out.names = {'system_mass';'draft';'hull_radius';'hull_width';'Lwz';'Is';...

156 'K11';'K33';'K55';'Tower_zcg';'Tower_mass';...

157 'Hull_zcg';'Hull_mass';'RNA_zcg';'RNA_mass';'Mh_total';'Mh_xcg';...

158 'Mh_zcg';'Mp_total';'Mp_xcg';'Mp_zcg';'Ltbz';...

159 'tank_h';'tank_w';'rA_h';'m_plate';'TMDlim'};

160 KGtmd = (KGb1*m_bal_leg+KGp1*m_plate)/(m_bal_leg+m_plate);

101

161 out.hydvals = [L_bal;f;h;t;h_bal;Iy_hull;KG;KG_hull;KGRNA;KGtower;KGb1;...

162 KGp1;KGtmd;pitchangle;...

163 n_wall;TMD_lim_plate;t_p;h_p;P_res];

164 out.hydnames = {'L_bal';'freeboard';'hull_height';'nominal_thickness';...

165 'h_bal';'Iy_hull';'KG';'KG_hull';'KGRNA';'KGtower';'KGb1';'KGp1';...

166 'KGtmd';'pitchangle';...

167 'n_wall';'TMD_lim';'t_plate';'plate_pos';'P_res'};

168 out.Iycomps = Iy_components';

169 %% constraints %%

170 if GM<0

171 % fprintf('GM < 0, initially unstable \n')

172 g1 = -GM/16.44; %16.44 from 'Cross 15MW Hydrostatics_Rev1_091420'

173 else

174 g1 = 0;

175 end

176

177 vacant_space = h-2*t-h_bal-h_p-t_p;

178 if vacant_space < TMD_lim_h20

179 %fprintf('ballast water does not fit in ballast chamber')

180 g2 = (TMD_lim_h20-vacant_space)/TMD_lim_h20;

181 else

182 g2 = 0;

183 end

184

185 if m_bal < 0

186 % fprintf('Negative ballast mass \n')

187 g3 = (-m_bal)/6.85E6; %6.85E6 is baseline ballast mass from 'Cross

188 % 15MW Hydrostatics_Rev1_091420'

189 else

190 g3 = 0;

191 end

192

193 if min_freeboard < 0

102

194 % fprintf('linear hydrostatics violated \n')

195 g4 = (-min_freeboard)/3.79; %3.79 from 'Cross

196 % 15MW Hydrostatics_Rev1_091420'

197 else

198 g4 = 0;

199 end

200

201 if d_towout > 10

202 % fprintf('towout draft too large \n')

203 g5 = (d_towout-10)/10;

204 else

205 g5 = 0;

206 end

207

208 ballastspace = r-w/2-2*t;

209 if ballastspace < L_bal

210 %fprintf('ballast chamber too long')

211 g6 = (L_bal-ballastspace)/ballastspace;

212 else

213 g6 = 0;

214 end

215

216 con.hydvals = [g1;g2;g3;g4;g5;g6];

217 con.hydnames = {'g1';'g2';'g3';'g4';'g5';'g6'};

218 con.hyddescrip = ["GM < 0, initially unstable";...

219 "Ballast water does not fit in ballast chamber";...

220 "Negative ballast mass";"linear hydrostatics violated";...

221 "towout draft too large";"ballast chamber too long"];

(c) get mass.m

1 %version 2

103

2 %William Ramsay

3 % a function to find the masses of platform components

4 function [M,M_total_dry,M_concrete,m_bal,m_bal_leg,mRNA,mtower,m,...

5 t_plate,m_plate,P_res] = get_mass(r,w,h,t,r_ts,h_s,Fb,n_wall,r_p)

6 rho_conc = 1890;

7 g = 9.81;

8 pretension = 7920000; %downward mooring pretension (N)

9 %labeling system:

10 %[quantity]_[leg/main component]_[sub component]

11 %1_1 %the 1st component of the 1st leg

12 a11 = t; %x length

13 b11 = r-t-w/2; %y length

14 c11 = h-2*t; %z length

15 L11 = [a11 b11 c11]; %vector for summing

16 %1_2 %the 2nd component of the 1st leg

17 a12 = w;

18 b12 = r-t-w/2;

19 c12 = t;

20 L12 = [a12 b12 c12];

21 %1_3

22 L13 = L11;

23 %1_4

24 a14 = a12;

25 b14 = b12;

26 c14 = t;

27 L14 = [a14 b14 c14];

28 %1_5

29 a15 = w;

30 b15 = t;

31 c15 = h;

32 L15 = [a15 b15 c15];

33 %1_7

34 a17 = w-2*t;

104

35 b17 = t;

36 c17 = h-2*t;

37 L17 = [a17 b17 c17];

38 %1_nwall (additional walls for damage stability)

39 for i=1:n_wall

40 L1n(i,:) = [a17 b17 c17];

41 end

42

43 %2_1

44 a21 = r-t-w/2;

45 b21 = t;

46 c21 = h-2*t;

47 L21 = [a21 b21 c21];

48 %2_2

49 a22 = r-t-w/2;

50 b22 = w;

51 c22 = t;

52 L22 = [a22 b22 c22];

53 %2_3

54 L23 = L21;

55 %2_4

56 a24 = a22;

57 b24 = b22;

58 c24 = c22;

59 L24 = [a24 b24 c24];

60 %2_5

61 a25 = t;

62 b25 = w;

63 c25 = h;

64 L25 = [a25 b25 c25];

65 %2_7

66 a27 = t;

67 b27 = w-2*t;

105

68 c27 = h-2*t;

69 L27 = [a27 b27 c27];

70 %2_nwall

71 for i=1:n_wall

72 L2n(i,:) = [a27 b27 c27];

73 end

74 if n_wall == 0

75 L1n = [0 0 0];

76 L2n = [0 0 0];

77 end

78 %5_1 %1st component of center

79 a51 = w;

80 b51 = t;

81 c51 = h;

82 L51 = [a51 b51 c51];

83 %5_2

84 a52 = t;

85 b52 = w-2*t;

86 c52 = h;

87 L52 = [a52 b52 c52];

88 %5_3

89 L53 = L51;

90 %5_4

91 L54 = L52;

92 %5_5

93 a55 = w-2*t;

94 b55 = w-2*t;

95 c55 = t;

96 L55 = [a55 b55 c55];

97 %5_6,%5_7 are not rectangular and are treated as special cases

98

99 %matrix of dimensions for summing

100 L = [L11;L12;L13;L14;L15;L17;L1n;L21;L22;L23;L24;...

106

101 L25;L27;L2n]; %legs 1 and 2

102 L = [L;L]; %add legs 3 and 4

103 L = [L;L51;L52;L53;L54;L55]; %add center excluding non-rectangular parts

104

105 m_rect = [L(:,1).*L(:,2).*L(:,3).*rho_conc]';

106

107 %non-rectangular components

108 %tower intersection

109 m56 = ((w-2*t)^2-pi*r_ts^2)*t*rho_conc;

110 %tower support

111 m57 = (h+h_s-t)*pi*(r_ts^2-(r_ts-t)^2)*rho_conc;

112 %tower

113 mtower = 1262976.25; %from FAST

114 %RNA

115 mRNA = 991401.5; %from FAST

116

117 m = [m_rect m56 m57]; %final mass addition of concrete components

118 M_concrete = sum(m); %just the concrete total mass

119

120 m = [m mtower mRNA]; %add the tower and RNA

121 M_total_dry = sum(m); %total mass excluding ballast (initial)

122

123 %calc ballast mass (initial)

124 m_bal = (Fb-pretension)/g-(M_total_dry);

125 m_bal_leg = m_bal/4; %per leg

126

127 %rolling diaphragm

128 [t_plate,m_plate,m_bal_leg,M_total_dry,P_res] = plate_sizing(m_bal_leg,...

129 M_total_dry,Fb,r_p);

130

131 m_bal = 4*m_bal_leg;

132

133 m = [m m_bal_leg m_bal_leg m_bal_leg m_bal_leg m_plate m_plate ...

107

134 m_plate m_plate];

135 M = sum(m);

(d) plate sizing.m

1 %william Ramsay

2 %function to calculate rolling diaphragm plate thickness

3

4 function[t_plate,m_plate,m_bal_leg,M_total_dry,P_res] = ...

5 plate_sizing(m_bal_leg,M_total_dry,Fb,r_p)

6

7 pretension = 7920000; %downward mooring pretension (N)

8 g = 9.81;

9 %material props

10 v = .3; %poissons ratio

11 S = 540E6; %yield strength

12 rho_steel = 8000; %density of s.steel

13 FOS = 2; %factor of safety

14 sigma_allow = S/FOS; %allowable stress

15 loc = .5031; %location of max moment from beam approximation

16

17 %calcs

18 M_total_dry_new = M_total_dry;

19 m_plate_new = 0;

20 m_plate = 1;

21 while abs(m_plate_new-m_plate) > 1E-4

22 m_plate = m_plate_new;

23 m_bal_leg = ((Fb-pretension)/g-(M_total_dry_new))/4;

24 F_hyd = m_bal_leg*g;

25 F_inert = m_bal_leg*0.5*g;

26 q = (F_hyd+F_inert)/(pi*r_p^2);

27 Mc = (q*(loc*r_p)^2*(3+v))/16;

108

28 t_plate = sqrt(6*Mc/sigma_allow);

29 m_plate_new = pi*r_p^2*t_plate*rho_steel;

30 M_total_dry_new = M_total_dry+4*m_plate_new; %m_total_dry

31 % remains unchanged within iteration, M_total_dry_new includes plate

32 % masses

33 end

34 M_total_dry = M_total_dry+4*m_plate;

35 F_tot = m_bal_leg*g+m_plate*g;

36 P_res = F_tot/(pi*r_p^2);

(e) get KG.m

1 %William Ramsay

2 %function to calculate KG of hull

3

4 function [KG,KG_hull,KGRNA,KGtower,KGb1,KGp1] = get_KG(M,m,M_concrete,...

5 d,h,t,h_s,h_bal,n_wall,h_p,t_plate)

6 %calculate KG for components of one leg

7 %labeling system:

8 %[quantity]_[leg/main component]_[sub component]

9 KG_1_1 = h/2; %external wall side

10 KG_1_2 = h-t/2; %external wall top

11 KG_1_3 = KG_1_1; %external wall side

12 KG_1_4 = t/2; %external wall bottom

13 KG_1_5 = h/2; %external wall endcap

14 KG_1_7 = h/2; %internal wall seperating ballast and air

15 % chamber

16 for i=1:n_wall %additional damage stability internal walls

17 % as specified by n_wall

18 KG_1_n(1,i) = h/2;

19 end

20 if n_wall == 0

109

21 KG_1_n = 0;

22 end

23 %KG of center components

24 KG_5_1 = h/2;

25 KG_5_2 = KG_5_1;

26 KG_5_3 = KG_5_1;

27 KG_5_4 = KG_5_1;

28 KG_5_5 = t/2;

29 KG_5_6 = h-t/2;

30 KG_5_7 = t+(h-t+h_s)/2;

31 %KG tower

32 KGtower = 41.01+h+h_s;

33 %KG RNA

34 KGRNA = 148.86+d;

35 %ballast

36 KGb1 = t+h_p+t_plate+h_bal/2; KGb2 = KGb1; KGb3 = KGb1; KGb4 = KGb1;

37 %rolling diaphragm plate

38 KGp1 = t+h_p+t_plate/2; KGp2 = KGp1; KGp3 = KGp1; KGp4 = KGp1;

39 %sum the parts:

40 %one leg

41 KG_all = [KG_1_1 KG_1_2 KG_1_3 KG_1_4 KG_1_5 KG_1_7 KG_1_n];

42 %add the other legs, component 5 (center), tower&RNA, ballast

43 KG_all = [KG_all KG_all KG_all KG_all KG_5_1 KG_5_2 KG_5_3...

44 KG_5_4 KG_5_5 KG_5_6 KG_5_7 KGtower KGRNA KGb1 KGb2 KGb3 KGb4 KGp1...

45 KGp2 KGp3 KGp4];

46 %overall KG

47 KG = sum(KG_all.*m)/M;

48 %calc KG for the concrete

49 KG_hull = sum(KG_all(1:end-10).*m(1:end-10))/M_concrete; %just the conc

(f) get moments.m

110

1 %William Ramsay

2 %function to get moments of inertia of hull and components

3

4 function [Ix,Iy,Iz,Iyb,Iy_hull,Iytower,IyRNA,dxRNA,dztower,dzRNA,...

5 dyb1,dzb1,dyp1,dzp1,Iy_components,Ix_local,Iy_local,Iz_local,l] = ...

6 get_moments(m_bal_leg,KG,r,w,d,h,t,r_ts,h_s,L_bal,h_bal,...

7 n_wall,h_p,t_plate,m_plate,r_p)

8

9 rho_conc = 1890;

10 %% dimensions for mass, mass moment of inertia calcs %%%%%%%%%%%%%%%%%%%%%

11 %1_1 %the 1st component of the 1st leg

12 a11 = t; %x length

13 b11 = r-t-w/2; %y length

14 c11 = h-2*t; %z length

15 dx11 = w/2-t/2; %distance along x from centroid of

16 % component to COG of platform

17 dy11 = w/2+(r-t-w/2)/2; %distance along y " "

18 dz11 = h/2 - KG; %distance along z " "

19 l11 = [a11 b11 c11 dx11 dy11 dz11]; %inputs for moment of inertia calc

20 %1_2 %the 2nd component of the 1st leg

21 a12 = w;

22 b12 = r-t-w/2;

23 c12 = t;

24 dx12 = 0;

25 dy12 = w/2+(r-t-w/2)/2;

26 dz12 = h-t/2-KG;

27 l12 = [a12 b12 c12 dx12 dy12 dz12];

28 %1_3

29 l13 = l11;

30 %1_4

31 a14 = a12;

32 b14 = b12;

33 c14 = c12;

111

34 dx14 = dx12;

35 dy14 = dy12;

36 dz14 = t/2 - KG;

37 l14 = [a14 b14 c14 dx14 dy14 dz14];

38 %1_5

39 a15 = w;

40 b15 = t;

41 c15 = h;

42 dx15 = 0;

43 dy15 = r-t/2;

44 dz15 = h/2 - KG;

45 l15 = [a15 b15 c15 dx15 dy15 dz15];

46 %1_7

47 a17 = w-2*t;

48 b17 = t;

49 c17 = h-2*t;

50 dx17 = 0;

51 dy17 = r-t-L_bal-t/2;

52 dz17 = h/2 - KG;

53 l17 = [a17 b17 c17 dx17 dy17 dz17];

54 %1_nwall

55 for i = 1:n_wall

56 dx1n(i,1) = 0;

57 dy1n(i,1) = w/2+(i*(r-t-L_bal-t-w/2)/(n_wall+1));

58 dz1n(i,1) = dz17;

59 l1n(i,:) = [a17 b17 c17 dx1n(i,1) dy1n(i,1) dz1n(i,1)];

60 end

61 %2_1

62 a21 = r-t-w/2;

63 b21 = t;

64 c21 = h-2*t;

65 dx21 = w/2+(r-t-w/2)/2;

66 dy21 = w/2-t/2;

112

67 dz21 = h/2 - KG;

68 l21 = [a21 b21 c21 dx21 dy21 dz21];

69 %2_2

70 a22 = r-t-w/2;

71 b22 = w;

72 c22 = t;

73 dx22 = w/2+(r-t-w/2)/2;

74 dy22 = 0;

75 dz22 = h-t/2 - KG;

76 l22 = [a22 b22 c22 dx22 dy22 dz22];

77 %2_3

78 l23 = l21;

79 %2_4

80 a24 = a22;

81 b24 = b22;

82 c24 = c22;

83 dx24 = dx22;

84 dy24 = dy22;

85 dz24 = t/2 - KG;

86 l24 = [a24 b24 c24 dx24 dy24 dz24];

87 %2_5

88 a25 = t;

89 b25 = w;

90 c25 = h;

91 dx25 = r-t/2;

92 dy25 = 0;

93 dz25 = h/2 - KG;

94 l25 = [a25 b25 c25 dx25 dy25 dz25];

95 %2_7

96 a27 = t;

97 b27 = w-2*t;

98 c27 = h-2*t;

99 dx27 = r-t-L_bal-t/2;

113

100 dy27 = 0;

101 dz27 = h/2 - KG;

102 l27 = [a27 b27 c27 dx27 dy27 dz27];

103 %2_nwall

104 for i = 1:n_wall

105 dx2n(i,1) = w/2+(i*(r-t-L_bal-t-w/2)/(n_wall+1));

106 dy2n(i,1) = 0;

107 dz2n(i,1) = dz27;

108 l2n(i,:) = [a27 b27 c27 dx2n(i,1) dy2n(i,1) dz2n(i,1)];

109 end

110 if n_wall == 0

111 l1n = [0 0 0 0 0 0];

112 l2n = l1n;

113 end

114 % legs 3 and 4 assigned below taking advantage of symmetry

115

116 %5_1 %1st component of center

117 a51 = w;

118 b51 = t;

119 c51 = h;

120 dx51 = 0;

121 dy51 = w/2-t/2;

122 dz51 = h/2 - KG;

123 l51 = [a51 b51 c51 dx51 dy51 dz51];

124 %5_2

125 a52 = t;

126 b52 = w-2*t;

127 c52 = h;

128 dx52 = w/2-t/2;

129 dy52 = 0;

130 dz52 = h/2 - KG;

131 l52 = [a52 b52 c52 dx52 dy52 dz52];

132 %5_3

114

133 l53 = l51;

134 %5_4

135 l54 = l52;

136 %5_5

137 a55 = w-2*t;

138 b55 = w-2*t;

139 c55 = t;

140 dx55 = 0;

141 dy55 = 0;

142 dz55 = t/2 - KG;

143 l55 = [a55 b55 c55 dx55 dy55 dz55];

144 %5_6,%5_7 are not rectangular and are treated as special cases

145

146 %matrix of dimensions for summing

147 l = [l11;l12;l13;l14;l15;l17;l1n;l21;l22;l23;l24;...

148 l25;l27;l2n];%legs 1 and 2

149 l = [l;l]; %add legs 3 and 4

150 l = [l;l51;l52;l53;l54;l55]; %add center excluding non-rectangular parts

151

152 %rectangular components

153 for i=1:size(l,1)

154 [m(i),Ix(i),Iy(i),Iz(i),Ix_local(i),Iy_local(i),Iz_local(i)] = ...

155 inertia_rect(l(i,1),l(i,2),l(i,3),l(i,4),l(i,5),l(i,6),rho_conc);

156 end

157

158 %non-rectangular components

159 %tower intersection

160 m56rect = (w-2*t)^2*t*rho_conc;

161 m56circ = pi*r_ts^2*t*rho_conc;

162 Iz56 = 1/6*m56rect*(w-2*t)^2-(1/2)*m56circ*r_ts^2;

163 Ix56 = m56rect*((1/12)*((w-2*t)^2+t^2)+(h-t/2-KG)^2)-m56circ*...

164 ((1/4)*r_ts^2+(h-t/2-KG)^2);

165 Iy56 = Ix56;

115

166 Iz56_local = Iz56;

167 Ix56_local = m56rect*(1/12)*((w-2*t)^2+t^2)-m56circ*(1/4)*r_ts^2;

168 Iy56_local = Ix56_local;

169 %tower support

170 m57 = pi*(r_ts^2-(r_ts-t)^2)*(h-t+h_s)*rho_conc;

171 Iz57 = 1/2*m57*(r_ts^2+(r_ts-t)^2);

172 Iy57 = 1/12*m57*(3*(r_ts^2+(r_ts-t)^2)+(h-t+h_s)^2)+m57*...

173 (t+(h-t+h_s)/2-KG)^2;

174 Ix57 = Iy57;

175 Iz57_local = Iz57;

176 Ix57_local = 1/12*m57*(3*(r_ts^2+(r_ts-t)^2)+(h-t+h_s)^2);

177 Iy57_local = Ix57_local;

178 Ix_local = [Ix_local Ix56_local Ix57_local];

179 Iy_local = [Iy_local Iy56_local Iy57_local];

180 Iz_local = [Iz_local Iz56_local Iz57_local];

181 %tower

182 mtower = 1262976.25; %from FAST

183 dxtower = 0;

184 dytower = 0;

185 dztower = 41.01+h+h_s-KG;

186 Ixtower = 1402392343.14 + mtower*(dytower^2+dztower^2);

187 Iytower = 1402392343.14 + mtower*(dxtower^2+dztower^2);

188 Iztower = 28138239.03 + mtower*(dxtower^2+dytower^2);

189 %RNA

190 mRNA = 991401.5; %from FAST

191 dxRNA = 6.82;

192 dyRNA = 0;

193 dzRNA = 148.86+d-KG;

194 IyRNA = 1.6E8 + mRNA*(dyRNA^2+dzRNA^2);

195 IxRNA = mRNA*(dxRNA^2+dzRNA^2);

196 IzRNA = 1.6E8 + mRNA*(dxRNA^2+dyRNA^2);

197

198 %ballast

116

199 %leg 1

200 dxb1 = 0; %xCOG of ballast tank 1

201 dyb1 = r-t-L_bal/2;

202 dzb1 = t+h_p+t_plate+h_bal/2-KG;

203 Iyb1 = 1/12*m_bal_leg*((w-2*t)^2+h_bal^2)+m_bal_leg*(dxb1^2+dzb1^2);

204 Ixb1 = 1/12*m_bal_leg*(L_bal^2+h_bal^2)+m_bal_leg*(dyb1^2+dzb1^2);

205 Izb1 = 1/12*m_bal_leg*((w-2*t)^2+L_bal^2)+m_bal_leg*(dxb1^2+dyb1^2);

206 %leg 2

207 Ixb2 = Iyb1; Iyb2 = Ixb1; Izb2 = Izb1;

208 %leg 3

209 Ixb3 = Ixb1; Iyb3 = Iyb1; Izb3 = Izb1;

210 %leg 4

211 Ixb4 = Ixb2; Iyb4 = Iyb2; Izb4 = Izb1;

212 Iyb = Iyb1+Iyb2+Iyb3+Iyb4;

213

214 %rolling diaphragm plates

215 %leg 1

216 dxp1 = 0;

217 dyp1 = r-t-r_p;

218 dzp1 = t+h_p+t_plate/2-KG;

219 Ixp1 = 1/4*m_plate*r_p^2+1/12*m_plate*t_plate^2+m_plate*(dyp1^2+dzp1^2);

220 Iyp1 = 1/4*m_plate*r_p^2+1/12*m_plate*t_plate^2+m_plate*(dxp1^2+dzp1^2);

221 Izp1 = 1/2*m_plate*r_p^2+m_plate*(dxp1^2+dyp1^2);

222 %leg 2

223 Ixp2 = Iyp1; Iyp2 = Ixp1; Izp2 = Izp1;

224 %leg 3

225 Ixp3 = Ixp1; Iyp3 = Iyp1; Izp3 = Izp1;

226 %leg 4

227 Ixp4 = Ixp2; Iyp4 = Iyp2; Izp4 = Izp1;

228

229 %final sum

230 Ix = [Ix Ix56 Ix57 Ixtower IxRNA Ixb1 Ixb2 Ixb3 Ixb4 Ixp1 Ixp2 Ixp3 Ixp4];

231 Iy = [Iy Iy56 Iy57 Iytower IyRNA Iyb1 Iyb2 Iyb3 Iyb4 Iyp1 Iyp2 Iyp3 Iyp4];

117

232 Iz = [Iz Iz56 Iz57 Iztower IzRNA Izb1 Izb2 Izb3 Izb4 Izp1 Izp2 Izp3 Izp4];

233 Iy_hull = sum(Iy(1:end-10));

234 Iz_hull = sum(Iz(1:end-10));

235 Iy_components = Iy;

236 Ix = sum(Ix);

237 Iy = sum(Iy);

238 Iz = sum(Iz);

(g) FreqDomainAnalysisCopy.m

1 %version 2

2 function[con,out] = FreqDomainAnalysis(con,out)

3 g = 9.81;

4

5

6 %% This routine calculates the global performance response of a combined

7 % FOWT-TMD system as per

8 %% "A computationally-efficient frequency domain model of a floating wind

9 % turbine with hull-based

10 %% tuned mass damper elements", Allen et. al. 2021

11 %% C. Allen - 1/26/2021

12 %% modifications for use in optimization of NASA floater W.Ramsay 2021

13

14 addpath('Wind Stuff')

15 addpath('Wave Stuff')

16 set(0,'DefaultFigureWindowStyle','docked')

17 warning on

18

19 %% Outputs:

20 %% TMD_config_table - Table of unqiue TMD configurations (note the first

21 % config has TMD masses zeroed and is to be considered Baseline case)

22

118

23 %% The following outputs of system responses are matrcies of size (n x m)

24 % where "n" is the number of unique design env and "m" is the number of

25 % unique TMD configurations

26 %% RNAx_sigma_r, RNAx_sigma_Rmax, RNAx_avg - RNA fore-aft acceleration

27 % stanadard deviation, maximum and mean responses (m/s^2)

28 %% RNAz_sigma_r, RNAz_sigma_Rmax, RNAz_avg - RNA vertical acceleration

29 % stanadard deviation, maximum and mean responses (m/s^2)

30 %% Surge_sigma_r, Surge_sigma_r, Surge_avg - Platform surge stanadard

31 % deviation, maximum and mean response at the system CG (m)

32 %% Heave_sigma_r, Heave_sigma_r, Heave_avg - Platform heave stanadard

33 % deviation, maximum and mean response at the system CG (m)

34 %% Pitch_sigma_r, Pitch_sigma_r, Pitch_avg - Platform pitch stanadard

35 % deviation, maximum and mean response at the system CG (deg)

36 %% TwrBsM_sigma_r, TwrBsM_sigma_r, TwrBsM_avg - Tower base moment

37 % stanadard deviation, maximum and mean response (kN-m)

38 %% in matrix of outputs, rows 1-11 DLC 1.2 cut in to cut out, 12-22 DLC 1.6

39 %% cut in to cut out, 23 6.1 50 yr event

40 %%%

41 %% Analysis inputs/settings %%%

42 %%%

43

44 %% Hydrostatic spread sheet containing input parameters

45 % fname='Cross 15MW Hydrostatics_Rev1_091420.xlsx';

46 % [num,txt,raw]=xlsread(fname,'Freq Dom Model Inputs','A1:B25');

47 % assign papermeter values

48 for i=1:size(out.vals,1)

49 eval(sprintf('%s=%f;',out.names{i,1},out.vals(i,1)));

50 end

51 for i=1:size(out.hydvals,1)

52 eval(sprintf('%s=%f;',out.hydnames{i,1},out.hydvals(i,1)));

53 end

54 %% List of design load cases to consider, must have matlab data structure

55 % file in "Design Conditions\MATLAB DLC Data Structures

119

56 %% To alter DLC inputs, make changes in .xlsx file in "Design Conditions"

57 % folder and rerun "Create_Env_MATLAB_File.m"

58 DLC_name=[{'DLC1.1'};{'DLC1.6'};{'DLC6.1'}];

59

60 %% Define TMD configuration props

61 % T_target = linspace(4,25,20)'; %% Range TMD target periods (s)

62 T_target = linspace(4,25,20)'; %% Range TMD target periods (s)

63 M_cap = linspace(.76,.76,length(T_target))';

64 % DR=0.1;%[0.05:.05:.3]'; %% Range of TMD damping coe. to be considered (-)

65 % (fraction of 1, i.e. 10% = .1)

66 DR = [.3;.5;.7;.9;1;1.5;2;3];

67 n_TMDs=4; %% Number of TMDs (-)

68 %M_TMD=Mp_total*.713/n_TMDs; %% Mass of (1) TMD (kg)

69 sm=n_TMDs+4; %% number of DOFs

70

71

72 %%%

73 %% Simulation constants %%%

74 %%%

75 ph20=1025; %% Sea water density (kg/m^3) - GLOBAL

76 %=9.80665; %% Acceleration due to gravity (m/s^2) (magnitude) -

77 wave_dir=0; %% Wave direction (deg)

78

79 w_wind=linspace(0,9,2500)'; %% Vector of wind spectrum freq. (rad/s)

80 w_wave=linspace(2*pi/30,2*pi/1.3,2500)'; %% Vector of wave spectrum freq. (rad/s)

81 T_wave = (2*pi)./w_wave;

82 %%%

83 %% Define unaltered system props %%

84 %%

85 Tower_Iyy=Tower_mass*Tower_zcg^2; %% Tower Iyy moment of inertia about the

86 % system's CG (kg-m2)

87 Hull_Iyy=Hull_mass*Hull_zcg^2; %% Hull Iyy moment of inertia about the

88 % system's CG (kg-m2) (empty hull, no ballast mass!)

120

89 RNA_Iyy=RNA_mass*RNA_zcg^2;

90

91 Mt=RNA_mass; %% RNA mass (kg)

92 Ltz=RNA_zcg;% Vertical distance from the system's CG to the RNA CG (m)

93 Kt=4.63e6; %% Tower eq. stiffness (N/m)

94 Ct=.01*2*sqrt(Kt*Mt); %% Tower damping (N-s/m)

95 RNA_overhang_moment=-7.02E+07; %% Direct drive over hanging moment

96

97 %% Load tower structural response STDs

98 load('TowerStruSTD.mat');

99 TowerStruSTD=[0 0 .001;3.99 0 001;TowerStruSTD]; %% Add zero wind velicity

100 % for wave only conditions

101 TowerStruSTD=[TowerStruSTD;25 0 .7;100 0 .7]; %% Dummy values for anything

102 % above cut out (.7Hz ¬1st mode, use so what T1 does not go to infinity in

103 % later calcs...)

104

105 %% thrust vs. wind speed lookup table

106 thrust_U=[0,0;4,354936.490200000;6,887586.324700000;8,...

107 1419692.82300000;10,1652928.19800000;12,1510327.84700000;...

108 14,1321692.19500000;16,1056546.96000000;18,917092.301200000;...

109 20,859354.493800000;22,783374.787800000;24,732727.937600000;...

110 58.7000000000000,-0.0779283000000000;65.1000000000000,...

111 0.0319585000000000];

112

113 %% Load WAMIT outputs

114 get_HydrodynamicValues %% Interp WAMIT hydrodynamic values

115

116 %%%

117 %% Load env. conditions for specificed DLCs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

118 %%%

119

120 c=1;

121

121

122 for DLC_i=1:size(DLC_name,1)

123 load(sprintf(['Design_Conditions\\MATLAB DLC Data Structures\\%s ...' ...

124 'Simulation List.mat'],DLC_name{DLC_i,1}));

125 for LC=1:size(DLC.index,1)

126 tspan_LC(c,1)=DLC.simulation_time(LC,1);

127

128 %% Get design wave env.

129 gamma(c,1)=DLC.gamma(LC,1);

130 Hs(c,1)=DLC.sig_wave_height(LC,1);

131

132 Tp(c,1)=DLC.peak_period(LC,1);

133 U_hub_LC(c,1)=DLC.wind_speed(LC,1);

134 LC_name{c,1}=sprintf('%s LC %d',DLC_name{DLC_i,1},LC);

135 [Sj]=Jonswap(gamma(c,1),w_wave/(2*pi),Hs(c,1),Tp(c,1));

136 Sw_LC(:,c)=Sj/(2*pi);

137 M0=trapz(w_wave,Sw_LC(:,c).*w_wave.^0);

138 M1=trapz(w_wave,Sw_LC(:,c).*w_wave.^1);

139 T1_wave_LC(c,1)=2*pi*M0/M1;

140

141 %% Get wind env

142 Iref=.16;

143 Zref=150;

144 k='X';

145 [TI,¬]=IEC_TurbIntensity(Iref,U_hub_LC(c,1),'NTM');

146 load(sprintf('Kimal_U%.0f.mat',DLC.wind_speed(LC,1)))

147 Sk=kimal(:,2);

148 Sk(1,1)=Sk(2,1)*0;

149 Sk_LC(:,c)=interp1(kimal(:,1),Sk,w_wind)/(2*pi);

150 sigma(c,1)=.01*TI*U_hub_LC(c,1);

151 M0=trapz(w_wind,Sk_LC(:,c).*w_wind.^0);

152 M1=trapz(w_wind,Sk_LC(:,c).*w_wind.^1);

153 T1_wind_LC(c,1)=2*pi*M0/M1;

154 T1_wind_wave_LC(c,1)=mean([T1_wave_LC(c,1),T1_wind_LC(c,1)]);

122

155

156 c=c+1;

157 end

158 end

159 % Do this section once and store outputs

160

161 %%%

162 %% Loop over all possible DFA confiurations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

163 %%%

164 c=2;

165 TMD_config=[4 1 .000001 1];

166 DFA_descrip{1,1}='Baseline Response - TMDs Off';

167 M_TMD = zeros(size(T_target,1),1);

168 for i=1:size(T_target,1) %% Loop over pitch DFA freq. targets

169 M_TMD(i,1)=Mp_total*M_cap(i,1)/n_TMDs + m_plate; %% Mass of (1) TMD (kg)

170 for j=1:length(DR) %% Loop over pitch DFA damping values

171 TMD_config(c,:)=[n_TMDs DR(j,1) T_target(i,1) M_TMD(i,1)];

172 c=c+1;

173 end

174 end

175 TMD_config_table=array2table([[[1:1:size(TMD_config,1)]'],TMD_config]);

176 TMD_config_table.Properties.VariableNames=matlab.lang.makeValidName(...

177 {'TMD_Configuration_ID','Num_TMDs','Damping_Ratio','Target_Period',...

178 'MassPerTMD'});

179

180 %%%

181 %% Calculate peak responses and std for design load cases %%%%%%%%%%%%%%%%%

182 %%%

183 Heave_sigma_r = zeros(size(Hs,1),size(TMD_config,1)); ...

184 Heave_Rmax = Heave_sigma_r; Heave_avg = Heave_sigma_r;

185 RNAx_sigma_r = Heave_sigma_r; RNAx_Rmax = Heave_Rmax; RNAx_avg = Heave_avg;

186 RNAz_sigma_r = Heave_sigma_r; RNAz_Rmax = Heave_Rmax; RNAz_avg = Heave_avg;

187 Pitch_sigma_r = Heave_sigma_r; Pitch_Rmax = Heave_Rmax;

123

188 Pitch_avg = Heave_avg;

189 Surge_sigma_r = Heave_sigma_r; Surge_Rmax = Heave_Rmax;

190 Surge_avg = Heave_avg;

191 TwrBsM_sigma_r = Heave_sigma_r; TwrBsM_Rmax = Heave_Rmax;

192 TwrBsM_avg = Heave_avg;

193 TMD1_sigma_r = Heave_sigma_r; TMD1_Rmax = Heave_Rmax; TMD1_avg = Heave_avg;

194

195 for TMD_i=1:size(TMD_config,1)

196 nTMDi=TMD_config(TMD_i,1);

197 MTMDi=TMD_config(TMD_i,4);

198 wTMDi=2*pi/TMD_config(TMD_i,3);

199 KTMDi=wTMDi^2*MTMDi;

200 CTMDi=2*sqrt(MTMDi*KTMDi)*TMD_config(TMD_i,2);

201

202 TMD_input=[[Mp_xcg Mp_zcg MTMDi KTMDi CTMDi];

203 [0 Mp_zcg MTMDi KTMDi CTMDi];

204 [0 Mp_zcg MTMDi KTMDi CTMDi];

205 [-Mp_xcg Mp_zcg MTMDi KTMDi CTMDi]];

206

207 ballast=[[TMD_input(1,1:2),(Mp_total/n_TMDs)-TMD_input(1,3)];

208 [TMD_input(2,1:2),(Mp_total/n_TMDs)-TMD_input(2,3)];

209 [TMD_input(3,1:2),(Mp_total/n_TMDs)-TMD_input(3,3)];

210 [TMD_input(4,1:2),(Mp_total/n_TMDs)-TMD_input(4,3)]];

211

212

213 Ballast_mass=sum(ballast(:,3)); %% Mass of ballast not used in DFAs (kg)

214 Ballast_zcg=sum(ballast(:,2).*ballast(:,3))/Ballast_mass; %% Vertical

215 % CG of ballast not used in DFAs (m)

216 Ballast_Iyy=sum(ballast(:,3).*(ballast(:,1).^2+ballast(:,2).^2)); %%

217 % MOI of ballast not used in DFAs (kg-m2)

218

219 Ms=Hull_mass+Tower_mass+Ballast_mass;

220 Lsz=((Ballast_zcg*Ballast_mass)+(Hull_zcg*Hull_mass)+(Tower_zcg*...

124

221 Tower_mass))/Ms;

222 Is=(Hull_Iyy+Ballast_Iyy+Tower_Iyy)-Ms*Lsz^2; %% Tower+Hull+Ballast

223 % inertia about its CG

224

225 %% Assemble mass, stiffness and damping matricies

226 [M,K,C]=get_M_K_C(system_mass,Mt,Ltz,Ms,Is,Lsz,Kt,Ct,K11,K33,...

227 K55,TMD_input,Lwz);

228

229 %% Calculate hydrodynamic RAOs for all DOFs based on WAMIT hydrodnamic

230 % forcing

231

232 [RAO_mag_wave,¬,¬]=get_RAOs_Wave(g,T,F11_re,F22_re,F33_re,F11_im,...

233 F22_im,F33_im,Cr11,Cr22,Cr33,Cr13,Ma11,Ma22,Ma33,Ma13,Lsz,...

234 Ltz,Ltbz,Lwz,Mp_xcg,Mp_zcg,RNA_mass,Tower_mass,Tower_zcg,M,K,C);

235

236 for LC=1:size(Hs,1)

237 %% Wave env

238 Sw=Sw_LC(:,LC);

239 tspan=tspan_LC(LC,1);

240 U_hub=U_hub_LC(LC,1);

241 [Sw_max,imax]=max(Sw);

242 limit=.01;

243 WvLowCOff=max([0 w_wave(min(find(Sw≥Sw_max*limit & ...

244 w_wave<w_wave(imax))))]);

245 WvHiCOff=w_wave(max(find(Sw≥Sw_max*limit & w_wave>w_wave(imax))));

246 Freq_Index=find(w_wave≥WvLowCOff & w_wave≤WvHiCOff);

247 dw_wave=abs(w_wave(2,1)-w_wave(1,1));

248

249 %% Wind env

250 PDF(:,1)=[0:1:50]';

251 % PDFc1 = [0:1:50]';

252 PDF(:,2)=normpdf(PDF(:,1),U_hub,sigma(LC,1));

253 % PDF = [PDFc1,normpdf(PDFc1,U_hub,sigma(LC,1))];

125

254 Sk=Sk_LC(:,LC);

255 Sk(1,1)=Sk(2,1);

256 dw_wind=abs(w_wind(2,1)-w_wind(1,1));

257

258 %% Calculate aerdynamic RAOs for all DOFs

259

260 [RAO_mag_wind,¬,¬]=get_RAOs_Wind(Lsz,g,Ltz,Ltbz,Lwz,RNA_mass,...

261 RNA_zcg,Tower_mass,Tower_zcg,M,K,C,U_hub,PDF,Ma11,Ma22,...

262 Ma33,Ma13,w_wind);

263

264 %% Calc mean pitch offsets due to thrust load

265 thrust=interp1(thrust_U(:,1),thrust_U(:,2),U_hub);

266

267 F_thrust=zeros(size(K,1),1);

268 F_thrust(sm,1)=thrust;

269 F_thrust(3,1)=RNA_overhang_moment; %% Direct drive over hanging moment

270 dX_thrust=K\F_thrust;

271

272 %% Platform heave

273 T1=T1_wave_LC(LC,1);

274 Heave_sigma_r(LC,TMD_i)=sqrt(trapz(Sw(Freq_Index).*abs...

275 (RAO_mag_wave(Freq_Index,2)).^2)*dw_wave);

276 Heave_Rmax(LC,TMD_i)=(2*Heave_sigma_r(LC,TMD_i)^2*log(tspan/T1))^.5;

277 Heave_avg(LC,TMD_i)=0;

278

279 %% RNA fore-aft acceleration

280 T1=((sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave(...

281 Freq_Index,sm).*w_wave(Freq_Index).^2).^2)*dw_wave)*...

282 T1_wave_LC(LC,1))+(sqrt(trapz(Sk.*abs(RAO_mag_wind...

283 (:,sm).*w_wind.^2).^2)*dw_wind)*T1_wind_LC(LC,1)))/...

284 (sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave(...

285 Freq_Index,sm).*w_wave(Freq_Index).^2).^2)*dw_wave)...

286 +sqrt(trapz(Sk.*abs(RAO_mag_wind(:,sm).*w_wind.^2).^2)*dw_wind));

126

287

288 RNAx_sigma_r(LC,TMD_i)=sqrt(trapz(Sw(Freq_Index).*abs(...

289 RAO_mag_wave(Freq_Index,sm).*w_wave(Freq_Index).^2).^2)*dw_wave)...

290 +sqrt(trapz(Sk.*abs(RAO_mag_wind(:,sm).*w_wind.^2).^2)*dw_wind);

291 RNAx_Rmax(LC,TMD_i)=(2*RNAx_sigma_r(LC,TMD_i)^2*log(tspan/T1))^.5;

292 RNAx_avg(LC,TMD_i)=0;

293

294 %% RNA vertical acceleration

295 T1=((sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave(...

296 Freq_Index,sm+2).*w_wave(Freq_Index).^2).^2)*dw_wave)*...

297 T1_wave_LC(LC,1))+(T1_wind_LC(LC,1)*sqrt(trapz(Sk.*abs(...

298 RAO_mag_wind(:,sm+2).*w_wind.^2).^2)*dw_wind)))/(...

299 sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave(...

300 Freq_Index,sm+2).*w_wave(Freq_Index).^2).^2)*dw_wave)...

301 +sqrt(trapz(Sk.*abs(RAO_mag_wind(:,sm+2).*w_wind.^2).^2)*dw_wind));

302 RNAz_sigma_r(LC,TMD_i)=sqrt(trapz(Sw(Freq_Index).*abs(...

303 RAO_mag_wave(Freq_Index,sm+2).*w_wave(Freq_Index).^2).^2)*dw_wave)...

304 +sqrt(trapz(Sk.*abs(RAO_mag_wind(:,sm+2).*w_wind.^2).^2)*dw_wind);

305

306 RNAz_Rmax(LC,TMD_i)=(2*RNAz_sigma_r(LC,TMD_i)^2*log(tspan/T1))^.5;

307 RNAz_avg(LC,1)=0;

308

309 %% Platform pitch

310 T1=((sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave...

311 (Freq_Index,3)).^2)*dw_wave)*T1_wave_LC(LC,1))+...

312 (sqrt(trapz(Sk.*abs(RAO_mag_wind(:,3)).^2)*dw_wind)...

313 *T1_wind_LC(LC,1)))/...

314 (sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave(Freq_Index,3)).^2)...

315 *dw_wave) + sqrt(trapz(Sk.*abs(RAO_mag_wind(:,3)).^2)*dw_wind));

316 Pitch_avg(LC,TMD_i)=dX_thrust(3,1);

317 Pitch_sigma_r(LC,TMD_i)=sqrt(trapz(Sw(Freq_Index).*abs...

318 (RAO_mag_wave(Freq_Index,3)).^2)*dw_wave)...

319 + sqrt(trapz(Sk.*abs(RAO_mag_wind(:,3)).^2)*dw_wind);

127

320 Pitch_Rmax(LC,TMD_i)=(2*Pitch_sigma_r(LC,TMD_i)^2*log(tspan/T1))...

321 ^.5+Pitch_avg(LC,1);

322

323

324 %% Platform surge

325 T1=((sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave(Freq_Index,1)).^2)...

326 *dw_wave)*T1_wave_LC(LC,1))+(sqrt(trapz(Sk.*abs...

327 (RAO_mag_wind(:,1)).^2)*dw_wind)*T1_wind_LC(LC,1)))/...

328 (sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave(Freq_Index,1)).^2)...

329 *dw_wave) + sqrt(trapz(Sk.*abs(RAO_mag_wind(:,1)).^2)*dw_wind));

330 Surge_avg(LC,TMD_i)=dX_thrust(1,1);

331 Surge_sigma_r(LC,TMD_i)=sqrt(trapz(Sw(Freq_Index).*abs...

332 (RAO_mag_wave(Freq_Index,1)).^2)*dw_wave)...

333 + sqrt(trapz(Sk.*abs(RAO_mag_wind(:,1)).^2)*dw_wind);

334 Surge_Rmax(LC,TMD_i)=(2*Surge_sigma_r(LC,TMD_i)^2*log(tspan/T1))...

335 ^.5+Surge_avg(LC,TMD_i);

336

337 %% Tower Base Moment

338 TwrStd=interp1(TowerStruSTD(:,1),TowerStruSTD(:,2),U_hub);

339 TwrStd_T=interp1(TowerStruSTD(:,1),TowerStruSTD(:,3),U_hub);

340 T1=((sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave(...

341 Freq_Index,sm+1)).^2)*dw_wave)*T1_wave_LC(LC,1))+(sqrt(...

342 trapz(Sk.*abs(RAO_mag_wind(:,sm+1)).^2)*dw_wind)*T1_wind_LC(...

343 LC,1))+(TwrStd*TwrStd_T))/...

344 (sqrt(trapz(Sw(Freq_Index).*abs(RAO_mag_wave(...

345 Freq_Index,sm+1)).^2)*dw_wave)...

346 +sqrt(trapz(Sk.*abs(RAO_mag_wind(:,sm+1)).^2)*dw_wind)+TwrStd);

347 TwrBsM_sigma_r(LC,TMD_i)=sqrt(trapz(Sw(Freq_Index).*abs(...

348 RAO_mag_wave(Freq_Index,sm+1)).^2)*dw_wave)...

349 +sqrt(trapz(Sk.*abs(RAO_mag_wind(:,sm+1)).^2)*dw_wind)+TwrStd;

350 TwrBsM_avg(LC,TMD_i)=RNA_mass*sin(Pitch_avg(LC,TMD_i))*Ltz*g+...

351 Tower_mass*sin(Pitch_avg(LC,TMD_i))*Tower_zcg*g+thrust*(...

352 Ltz-Ltbz)+RNA_overhang_moment;

128

353 TwrBsM_Rmax(LC,TMD_i)=(2*TwrBsM_sigma_r(LC,TMD_i)^2*log(...

354 tspan/T1))^.5+TwrBsM_avg(LC,TMD_i);

355

356 %% TMD

357 %now calc TMD motions

358 T1=T1_wave_LC(LC,1);

359 TMD1_sigma_r(LC,TMD_i)=sqrt(trapz(Sw(Freq_Index).*abs(...

360 RAO_mag_wave(Freq_Index,4)).^2)*dw_wave);

361 TMD1_Rmax(LC,TMD_i)=(2*TMD1_sigma_r(LC,TMD_i)^2*log(tspan/T1))^.5;

362 TMD1_avg(LC,TMD_i)=0;

363

364 end

365 if TMD_i == 1

366 heaveRAO(:,1) = RAO_mag_wave(:,2);

367 pitchRAOdeg(:,1) = (RAO_mag_wave(:,3)+...

368 RAO_mag_wind(:,3)).*(180/pi);

369 elseif TMD_i == 16

370 heaveRAO(:,2) = RAO_mag_wave(:,2);

371 pitchRAOdeg(:,2) = (RAO_mag_wave(:,3)+...

372 RAO_mag_wind(:,3)).*(180/pi);

373 end

374 end

375

376

377 figure(1)

378 plot(T_wave,heaveRAO(:,1))

379 hold on

380 plot(T_wave,heaveRAO(:,2))

381 hold off

382 title('Heave RAO')

383 xlabel('Wave Period (s)')

384 ylabel('Heave RAO (m/m)')

385 legend('Damper off','Damper on')

129

386 set(gca,'FontName','Times')

387

388 figure(2)

389 plot(T_wave,pitchRAOdeg(:,1))

390 hold on

391 plot(T_wave,pitchRAOdeg(:,2))

392 hold off

393 title('Pitch RAO')

394 xlabel('Wave Period (s)')

395 ylabel('Pitch RAO (deg/m)')

396 legend('Damper off','Damper on')

397 set(gca,'FontName','Times')

398

399 %% Covert output units

400 Pitch_sigma_r=Pitch_sigma_r*180/pi;

401 Pitch_Rmax=Pitch_Rmax*180/pi;

402 Pitch_avg=Pitch_avg*180/pi;

403

404 TwrBsM_sigma_r=TwrBsM_sigma_r*.001;

405 TwrBsM_Rmax=TwrBsM_Rmax*.001;

406 TwrBsM_avg=TwrBsM_avg*.001;

407

408

409 %% Find TMD configs satisfying motion limits & assign constraints

410 %test 'select DR'

411

412 [RNAx_Rmax_DR,RNAz_Rmax_DR,Pitch_Rmax_DR,TwrBsM_Rmax_DR,DR_DLC,...

413 TMD1_Rmax_DR,TMD_best,g10] = select_DR(RNAx_Rmax,RNAz_Rmax,...

414 Pitch_Rmax,TwrBsM_Rmax,TMD1_Rmax,TMDlim,TMD_config,DR,T_target);

415 [g7,g8,g9,g10,TMD_best,winningindex] = evaluate_motions(RNAx_Rmax_DR,...

416 RNAz_Rmax_DR,Pitch_Rmax_DR,DR_DLC,T_target,TMD_best,g10);

417 RNAx_Rmax_opt = max(RNAx_Rmax(:,winningindex)); %max horizontal RNA acceler

418 RNAz_Rmax_opt = max(RNAz_Rmax(:,winningindex)); %max vertical RNA accelerat

130

419 Pitch_Rmax_opt = max(Pitch_Rmax(:,winningindex)); %max pitch angle

420 TwrBsM_Rmax_opt = max(TwrBsM_Rmax(:,winningindex)); %max tower base moment

421 %% other desired outputs

422

423 out.responsevalsDR(:,:,1) = RNAx_Rmax_DR;

424 out.responsevalsDR(:,:,2) = RNAz_Rmax_DR;

425 out.responsevalsDR(:,:,3) = Pitch_Rmax_DR;

426 out.responsevalsDR(:,:,4) = TwrBsM_Rmax_DR;

427 out.responsevalsDR(:,:,5) = DR_DLC;

428 out.responsevalsDR(:,:,6) = TMD1_Rmax_DR;

429 out.responsenamesDR = {'RNAx_Rmax_DR';'RNAz_Rmax_DR';'Pitch_Rmax_DR';...

430 'TwrBsM_Rmax_DR';'DR_DLC';'TMD1_Rmax_DR'};

431

432 out.responsevals(:,:,1) = RNAx_Rmax;

433 out.responsevals(:,:,2) = RNAz_Rmax;

434 out.responsevals(:,:,3) = Pitch_Rmax;

435 out.responsevals(:,:,4) = TwrBsM_Rmax;

436 out.responsenames = {'RNAx_Rmax';'RNAz_Rmax';'Pitch_Rmax';'TwrBsM_Rmax'};

437 out.TMDspec = TMD_best;

438 out.TMD1_Rmax = TMD1_Rmax;

439

440 out.freqvals = [RNAx_Rmax_opt;RNAz_Rmax_opt;Pitch_Rmax_opt;TwrBsM_Rmax_opt;...

441 TMD_best.T;winningindex];

442 out.freqnames = {'RNAx_Rmax_opt';'RNAz_Rmax_opt';'Pitch_Rmax_opt';...

443 'TwrBsM_Rmax_opt';...

444 'T_damp';'winningindex'};

445

446 con.freqvals = [g7;g8;g9;g10];

447 con.freqnames = {'g7';'g8';'g9';'g10'};

448 con.freqdescrip = ["horizontal RNA acceleration too high";...

449 "vertical RNA acceleration too high";"pitch angle too high";...

450 "TMD motion too high"];

131

(h) get HydrodynamicValues.m

1 %% Load polynomial fits for added mass, damping and wave excitation

2 load NASAWAMIT.mat;

3

4 %% Hull parameters

5 d0 = [draft hull_radius hull_width];

6

7 %% Fit WAMIT added-mass and radiation damping

8 T_WAMIT=flipud(unique(AB(:,1)));

9 w_WAMIT=2*pi./T_WAMIT;

10 T=2*pi./w_wave;

11

12 %% FK + diffraction loads

13 F11_re=polyvalW(X(find(X(:,3)==1 & X(:,2)==wave_dir),4:13),d0)*ph20*g;

14 F11_im=polyvalW(X(find(X(:,3)==1 & X(:,2)==wave_dir),14:23),d0)*ph20*g;

15

16 F22_re=polyvalW(X(find(X(:,3)==3 & X(:,2)==wave_dir),4:13),d0)*ph20*g;

17 F22_im=polyvalW(X(find(X(:,3)==3 & X(:,2)==wave_dir),14:23),d0)*ph20*g;

18

19 F33_re=polyvalW(X(find(X(:,3)==5 & X(:,2)==wave_dir),4:13),d0)*ph20*g;

20 F33_im=polyvalW(X(find(X(:,3)==5 & X(:,2)==wave_dir),14:23),d0)*ph20*g;

21

22 %% Added mass

23 Ma11=polyvalW(AB(find(AB(:,2)==1 & AB(:,3)==1),4:13),d0)*ph20;

24 Ma22=polyvalW(AB(find(AB(:,2)==3 & AB(:,3)==3),4:13),d0)*ph20;

25 Ma33=polyvalW(AB(find(AB(:,2)==5 & AB(:,3)==5),4:13),d0)*ph20;

26 Ma13=polyvalW(AB(find(AB(:,2)==1 & AB(:,3)==5),4:13),d0)*ph20;

27

28 % %% Radiation Damping

29 Cr11=polyvalW(AB(find(AB(:,2)==1 & AB(:,3)==1),14:23),d0)*ph20.*w_WAMIT;

30 Cr22=polyvalW(AB(find(AB(:,2)==3 & AB(:,3)==3),14:23),d0)*ph20.*w_WAMIT;

132

31 Cr33=polyvalW(AB(find(AB(:,2)==5 & AB(:,3)==5),14:23),d0)*ph20.*w_WAMIT;

32 Cr13=polyvalW(AB(find(AB(:,2)==1 & AB(:,3)==5),14:23),d0)*ph20.*w_WAMIT;

33

34

35 %% Interp WAMIT values to specified wave period range

36 F11_re=interp1(T_WAMIT,F11_re,T);

37 F11_im=interp1(T_WAMIT,F11_im,T);

38

39 F22_re=interp1(T_WAMIT,F22_re,T);

40 F22_im=interp1(T_WAMIT,F22_im,T);

41

42 F33_re=interp1(T_WAMIT,F33_re,T);

43 F33_im=interp1(T_WAMIT,F33_im,T);

44

45 Ma11=interp1(T_WAMIT,Ma11,T);

46 Ma22=interp1(T_WAMIT,Ma22,T);

47 Ma33=interp1(T_WAMIT,Ma33,T);

48 Ma13=interp1(T_WAMIT,Ma13,T);

49

50 Cr11=interp1(T_WAMIT,Cr11,T);

51 Cr22=interp1(T_WAMIT,Cr22,T);

52 Cr33=interp1(T_WAMIT,Cr33,T);

53 Cr13=interp1(T_WAMIT,Cr13,T);

(i) IEC TurbIntensity

1 function[TI,sigma]=IEC_TurbIntensity(Iref,Vhub,Model)

2

3 %% NTM, ETM and EWM turbulance intensity based on IEC 61400-1 Section

4 % 6.3.1, 6.3.2 and 6.3.3

5 %% NOTE: ETM Model valid for Class I turbines only

6

133

7 %% INPUTS %%

8 %% Iref - refernce turb intensity at 15 m/s

9 %% VHub - Hub height wind speed (m/s)

10 %% Model - Normal Turb. Model = "NTM", Extreme Turb. Model = "ETM"

11

12 %% OUTPUTS %%

13 %% simga - wind speed standard deviation (m/s)

14 %% TI - Turbulance intensity (%)

15

16 if strcmp(Model,'NTM')==1

17 b=5.6; %% (m/s) Section 6.3.1.3

18 sigma=Iref*(.75*Vhub+b);

19 TI=100*(sigma/Vhub);

20 elseif strcmp(Model,'ETM')==1

21 c=2; %% (m/s) Section 6.3.2.3

22 Vref=50; %% Table 1 - Class I turbine

23 Vave=.2*Vref;

24 sigma=c*Iref*(.072*((Vave/2)+3)*((Vhub/c)-4)+10);

25 TI=100*(sigma/Vhub);

26 elseif strcmp(Model,'EWM1')==1 || strcmp(Model,'EWM50')==1

27 c=2; %% (m/s) Section 6.3.2.3

28 Vref=50; %% Table 1 - Class I turbine

29 Vave=.2*Vref;

30 sigma=.11*Vhub;

31 TI=100*(sigma/Vhub);

32 end

(j) get M K C.m

1 function [M,K,C]=get_M_K_C(system_mass,Mt,Ltz,Ms,Is,Lsz,Kt,Ct,K11,K33,...

2 K55,TMD_input,Lwz)

3 %% Check for NaN values and replace with 0's

134

4 ii=find(isnan(TMD_input(:,4))==1);

5 TMD_input(ii,4)=0;

6 ii=find(isnan(TMD_input(:,5))==1);

7 TMD_input(ii,5)=0;

8

9 %% Assemble mass, stiffness and damping matricies

10 sm=4+size(TMD_input,1); %% Matrix size

11

12

13 M=zeros(sm,sm);

14 M(1,1)=Ms+sum(TMD_input(:,3));

15 M(2,2)=Ms+Mt;

16 M(3,3)=Is+-Ms*Lsz^2;

17 M(1,3)=Ms*Lsz;

18 M(sm,sm)=Mt;

19

20 for i=1:size(TMD_input,1)

21 M(i+3,i+3)=TMD_input(i,3);

22 end

23

24 K=zeros(size(M));

25 K(1,1)=K11+Kt;

26 K(1,3)=Ltz*Kt+Lwz*K11;

27 K(1,sm)=-Kt;

28 K(2,2)=K33;

29 K(3,3)=K55+Kt*Ltz^2+K11*Lwz^2;

30 K(3,sm)=-Kt*Ltz;

31 K(sm,sm)=Kt;

32 for i=1:size(TMD_input,1)

33 K(i+3,i+3)=TMD_input(i,4);

34 K(2,2)=K(2,2)+TMD_input(i,4);

35 K(2,i+3)=-TMD_input(i,4);

36 K(3,3)=K(3,3)+TMD_input(i,4)*TMD_input(i,1)^2;

135

37 K(3,i+3)=TMD_input(i,4)*TMD_input(i,1);

38 end

39

40 C=zeros(size(M));

41 C(1,1)=Ct;

42 C(1,3)=Ltz*Ct;

43 C(1,sm)=-Ct;

44 C(3,3)=Ct*Ltz^2;

45 C(3,sm)=-Ct*Ltz;

46 C(sm,sm)=Ct;

47 for i=1:size(TMD_input,1)

48 C(i+3,i+3)=TMD_input(i,5);

49 C(2,2)=C(2,2)+TMD_input(i,5);

50 C(2,i+3)=-TMD_input(i,5);

51 C(3,3)=C(3,3)+TMD_input(i,5)*TMD_input(i,1)^2;

52 C(3,i+3)=TMD_input(i,5)*TMD_input(i,1);

53 end

54

55

56

57 for i=1:size(M,1)

58 for j=1:size(M,2)

59 if i>j

60 M(i,j)=M(j,i);

61 K(i,j)=K(j,i);

62 C(i,j)=C(j,i);

63 end

64 end

65 end

(k) get RAOs Wave.m

136

1 function [RAO_mag,RAO_phase,w]=get_RAOs_Wave(g,T,F11_re,F22_re,F33_re,...

2 F11_im,F22_im,F33_im,Cr11,Cr22,Cr33,Cr13,Ma11,Ma22,Ma33,Ma13,Lsz,...

3 Ltz,Ltbz,Lwz,Mp_xcg,Mp_zcg,RNA_mass,Tower_mass,Tower_zcg,M,K,C)

4

5 %% Check to see if any on-axis mass terms are zero, if so, remove them for

6 % now

7 keep = zeros(size(M,1),2);

8 for i=1:size(M,1)

9 if M(i,i)>0

10 keep(i,1)=1;

11 else

12 keep(i,2)=0;

13 end

14 end

15 index=find(keep==1);

16 M=M(index,index);

17 K=K(index,index);

18 C=C(index,index);

19

20 %% Calculate RAOs for all DOFs based on WAMIT hydrodnamic forcing

21 sm=size(M,1); %% Matrix size

22 w=(2*pi)./T;

23 RAO_mag = zeros(size(T,1),sm); RAO_phase = RAO_mag;

24

25 for i=1:size(T,1)

26

27 F=zeros(size(M,1),1);

28 F(1,1)=complex(F11_re(i,1),F11_im(i,1));

29 F(2,1)=complex(F22_re(i,1),F22_im(i,1));

30 F(3,1)=complex(F33_re(i,1),F33_im(i,1))+Lwz*F(1,1);

31

32

33 Ca=zeros(size(C));

137

34 Ca(1,1)=Cr11(i,1);

35 Ca(2,2)=Cr22(i,1);

36 Ca(3,3)=Cr33(i,1);

37 Ca(1,3)=Cr13(i,1)+Ca(1,1)*Lwz;

38 Ca(3,1)=Ca(1,3);

39

40 Ma=zeros(size(M));

41 Ma(1,1)=Ma11(i,1);

42 Ma(2,2)=Ma22(i,1);

43 Ma(3,3)=Ma33(i,1);

44 Ma(1,3)=Ma13(i,1)+Ma(1,1)*Lwz;

45 Ma(3,1)=Ma(1,3);

46

47 %% Aerodynamic damping and loads

48 H=(-w(i,1)^2*(M+Ma)+1i*w(i,1)*(C+Ca)+(K))^-1;

49 X=H*F;

50 %% Transform platform DOFs to SWL to match OpenFAST Output

51

52 %% Loop over DOFs and calc RAOs

53 for j=1:size(M,1)

54 RAO_mag(i,index(j,1))=sqrt(real(X(j,1))^2+imag(X(j,1))^2);

55 RAO_phase(i,index(j,1))=angle(X(j,1));

56 end

57 end

58

59 Ltwr=(Tower_zcg-Ltbz);

60 Lrna=(Ltz-Ltbz);

61

62

63

64 RAO_twrbsM_mag = zeros(size(w,1),1); RAO_twrbsM_phase = RAO_twrbsM_mag;

65 RAO_RNAz_mag = RAO_twrbsM_mag; RAO_RNAz_phase = RAO_twrbsM_mag;

66 RAO_TMD1_mag = RAO_twrbsM_mag; RAO_TMD1_phase = RAO_twrbsM_mag;

138

67

68 for ii=1:size(w,1)

69 t=[0:.01:T(ii,1)]';

70 p=linspace(0,2*pi,length(t))';

71 RNA_FA=RAO_mag(ii,sm)*sin(w(ii,1)*t-RAO_phase(ii,sm));

72 RNA_V=RAO_mag(ii,2)*sin(w(ii,1)*t-RAO_phase(ii,2));

73 pitch=RAO_mag(ii,3)*sin(w(ii,1)*t-RAO_phase(ii,3));

74 heave=RAO_mag(ii,2)*sin(w(ii,1)*t-RAO_phase(ii,2));

75 RNA_z=heave+cos(pitch)*Ltz-RNA_FA.*sin(pitch);

76 RNA_z=RNA_z-mean(RNA_z);

77

78 twrbsM=RNA_mass*RNA_FA*-w(ii,1)^2*Lrna+RNA_mass*sin(pitch)*...

79 Ltz*g+-RNA_mass*RNA_V.*sin(pitch)*Ltz*-w(ii,1)^2+...

80 Tower_mass*RNA_FA*-w(ii,1)^2*(Tower_zcg/Ltz)*Ltwr+Tower_mass*...

81 sin(pitch)*Tower_zcg*g+-Tower_mass*RNA_V.*sin(pitch)*Tower_zcg*-...

82 w(ii,1)^2;

83

84 %convert TMD motion relative to platform

85 z_heave=heave;

86 z_pitch=Mp_xcg*pitch;

87 TMD = RAO_mag(ii,4)*(sin(w(ii,1)*t-RAO_phase(ii,4)))- z_heave + z_pitch;

88

89

90 [RAO_twrbsM_mag(ii,1),oio]=max(twrbsM);

91 RAO_twrbsM_phase(ii,1)=p(oio);

92

93 [RAO_RNAz_mag(ii,1),oio]=max(RNA_z);

94 RAO_RNAz_phase(ii,1)=p(oio);

95

96 [RAO_TMD1_mag(ii,1),oio] = max(TMD);

97 RAO_TMD1_phase(ii,1) = p(oio);

98

99

139

100 if isnan(RAO_RNAz_mag(ii,1))==1

101 RAO_RNAz_mag(ii,1)=0;

102 end

103

104 end

105 plot(t,TMD)

106 RAO_mag(:,sm+1)=RAO_twrbsM_mag;

107 RAO_phase(:,sm+1)=RAO_twrbsM_phase;

108

109 RAO_mag(:,sm+2)=RAO_RNAz_mag;

110 RAO_phase(:,sm+2)=RAO_RNAz_phase;

111

112 RAO_mag(:,4) = RAO_TMD1_mag;

113 RAO_phase(:,4) = RAO_TMD1_phase;

114

115 % figure(1)

116 % hold on

117 % plot(w,RAO_mag(:,4))

118

119 % plot(2*pi/w,RAO_RNAz_mag)

(l) get RAOs Wind.m

1 function [RAO_mag,RAO_phase,w]=get_RAOs_Wind(Lsz,g,Ltz,Ltbz,Lwz,RNA_mass,...

2 RNA_zcg,Tower_mass,Tower_zcg,M,K,C,U,PDF,Ma11,Ma22,Ma33,Ma13,w_thrust)

3

4 %% Derive damping values based on wind speed PDF

5

6 TowerDamping=[4,354000;5,244000;6,410000;7,209000;8,209000;9,227000;...

7 10,227000;11,148000;12,148000;13,132000;14,12400;15,21400;16,17100;...

8 17,64300;18,96400;20,96400;22,96400;24,96400;25,0;100,0];

9 SurgeDamping=[4,185000;5,206000;6,246000;7,225000;8,193000;9,276000;...

140

10 10,135000;11,296000;12,-98300;13,-5610;14,4300;15,-6230;16,...

11 62.5000000000000;17,13300;18,15300;20,40000;22,40000;24,40000;...

12 25,0;100,0];

13 PitchDamping=[4,3250000000.00000;5,3590000000.00000;6,2180000000.00000;...

14 7,8330000000.00000;8,419000000;9,3410000000.00000;10,1830000000.00000;...

15 11,5330000000.00000;12,1190000000.00000;13,2110000000.00000;...

16 14,2330000000.00000;15,4780000000.00000;16,5410000000.00000;...

17 17,5610000000.00000;18,5180000000.00000;20,4710000000.00000;...

18 22,4710000000.00000;24,4710000000.00000;25,0;100,0];

19

20

21 Cax=0;

22 Cap=0;

23 Cat=0;

24 for i=1:size(PDF,1)

25 Ui=PDF(i,1);

26 Pi=PDF(i,2);

27 if Ui≥min(SurgeDamping(:,1)) && Ui≤max(SurgeDamping(:,1))

28 Cax=Cax+interp1(SurgeDamping(:,1),SurgeDamping(:,2),Ui)*Pi;

29 Cap=Cap+interp1(PitchDamping(:,1),PitchDamping(:,2),Ui)*Pi;

30 Cat=Cat+interp1(TowerDamping(:,1),TowerDamping(:,2),Ui)*Pi;

31 end

32 end

33

34

35 %% Load thrust RAOs for specific wind speed

36 load(sprintf('Thrust_RAO_U%.0f.mat',U));

37 w=Thrust_RAO(:,1);

38 Amp_Fx=interp1(w,Thrust_RAO(:,2),w_thrust);

39 Phase_Fx=interp1(w,Thrust_RAO(:,3),w_thrust);

40 Amp_My=interp1(w,Thrust_RAO(:,4),w_thrust);

41 Phase_My=interp1(w,Thrust_RAO(:,5),w_thrust);

42 w=w_thrust;

141

43 T=(2*pi)./w;

44 %% Check to see if any on-axis mass terms are zero, if so, remove them for

45 % now

46 keep = zeros(size(M,1),2);

47 for i=1:size(M,1)

48 if M(i,i)>0

49 keep(i,1)=1;

50 else

51 keep(i,2)=0;

52 end

53 end

54 index=find(keep==1);

55 M=M(index,index);

56 K=K(index,index);

57 C=C(index,index);

58

59 %% Calculate RAOs for all DOFs based on aerodynamic forcing

60 sm=size(M,1); %% Matrix size

61 RAO_mag = zeros(size(T,1),sm); RAO_phase = RAO_mag;

62

63 for i=1:size(w,1)

64

65 F=zeros(size(M,1),1);

66 F(sm,1)=complex(Amp_Fx(i,1)*cos(Phase_Fx(i,1)*(pi/180)),Amp_Fx(i,1)...

67 *sin(Phase_Fx(i,1)*(pi/180)));

68 F(3,1)=complex(Amp_My(i,1)*cos(Phase_My(i,1)*(pi/180)),Amp_My(i,1)...

69 *sin(Phase_My(i,1)*(pi/180)));

70 Ma=zeros(size(M));

71 Ma(1,1)=Ma11(1,1);

72 Ma(2,2)=Ma22(1,1);

73 Ma(3,3)=Ma33(1,1);

74 Ma(1,3)=Ma13(1,1)+Ma(1,1)*Lwz;

75 Ma(3,1)=Ma(1,3);

142

76

77

78 %% Aerodynamic damping and loads

79 Caero=zeros(size(C));

80 Caero(1,1)=Cax+Cat;

81 Caero(1,3)=Ltz*Cat+Lsz*Cax;

82 Caero(1,sm)=-Cat;

83 Caero(3,3)=Cap+Cat*Ltz^2+Cax*Lsz^2;

84 Caero(3,sm)=-Cat*Ltz;

85 Caero(sm,sm)=Cat;

86 for v=1:size(M,1)

87 for k=1:size(M,2)

88 if v>k

89 Caero(v,k)=Caero(k,v);

90 end

91 end

92 end

93

94 H=(-w(i,1)^2*(M+Ma)+1i*w(i,1)*(C+Caero)+(K))^-1;

95 X=H*F;

96

97 % % % % % %% Transform platform DOFs to SWL to match OpenFAST Output

98 % % X(1,1)=X(1,2)+sin(-X(3,1))*-Lwz;

99

100 %% Loop over DOFs and calc RAOs

101 for j=1:size(M,1)

102 RAO_mag(i,index(j,1))=sqrt(real(X(j,1))^2+imag(X(j,1))^2);

103 RAO_phase(i,index(j,1))=angle(X(j,1));

104 end

105 end

106

107 Ltwr=(Tower_zcg-Ltbz);

108 Lrna=(Ltz-Ltbz);

143

109

110 RAO_twrbsM_mag = zeros(size(w,1),1); RAO_twrbsM_phase = RAO_twrbsM_mag;

111 RAO_RNAz_mag = RAO_twrbsM_mag; RAO_RNAz_phase = RAO_twrbsM_mag;

112

113

114 for ii=1:size(w,1)

115 t=linspace(0,T(ii,1),100);%[0:.01:T(ii,1)]';

116 p=linspace(0,2*pi,length(t))';

117 RNA_FA=RAO_mag(ii,sm)*sin(w(ii,1)*t-RAO_phase(ii,sm));

118 RNA_V=RAO_mag(ii,2)*sin(w(ii,1)*t-RAO_phase(ii,2));

119 pitch=RAO_mag(ii,3)*sin(w(ii,1)*t-RAO_phase(ii,3));

120 heave=RAO_mag(ii,2)*sin(w(ii,1)*t-RAO_phase(ii,2));

121 RNA_z=heave+cos(pitch)*Ltz-RNA_FA.*sin(pitch);

122 RNA_z=RNA_z-mean(RNA_z);

123

124 twrbsM=RNA_mass*RNA_FA*-w(ii,1)^2*Lrna+RNA_mass*sin(pitch)*Ltz*g+-...

125 RNA_mass*RNA_V.*sin(pitch)*Ltz*-w(ii,1)^2+...

126 Tower_mass*RNA_FA*-w(ii,1)^2*(Tower_zcg/Ltz)*Ltwr+Tower_mass*...

127 sin(pitch)*Tower_zcg*g+-Tower_mass*RNA_V.*sin(pitch)*Tower_zcg*-...

128 w(ii,1)^2;

129

130 [RAO_twrbsM_mag(ii,1),oio]=max(twrbsM);

131 RAO_twrbsM_phase(ii,1)=p(oio);

132

133 [RAO_RNAz_mag(ii,1),oio]=max(RNA_z);

134 RAO_RNAz_phase(ii,1)=p(oio);

135

136 if isnan(RAO_RNAz_mag(ii,1))==1

137 RAO_RNAz_mag(ii,1)=0;

138 end

139 end

140

141 RAO_mag(:,sm+1)=RAO_twrbsM_mag;

144

142 RAO_phase(:,sm+1)=RAO_twrbsM_phase;

143

144 RAO_mag(:,sm+2)=RAO_RNAz_mag;

145 RAO_phase(:,sm+2)=RAO_RNAz_phase;

(m) select DR.m

1 %William Ramsay

2 %function to select best damping ratio for each DLC

3 %first, find indices

4 %inputs

5 %RNAx_Rmax % a matrix of horizontal max accelerations with

6 % dimensions (# DLCs)x(# damping ratios x #

7 % periods)+(TMD off config) where column order is

8 % Column 1 = DR1,T1; Column 2 = DR2,T1. First column

9 % is TMD off.

10 %RNAz_Rmax % a matrix of vertical max accelerations with " "

11 %Pitch_Rmax % a matrix of max pitching angles with " "

12 %TMD1_Rmax % a matrix of TMD motions with " "

13 %TMD_config % a matrix of TMD configurations, with columns

14 % (#TMDs active; damping ratio; period; damper mass)

15 %TMDlim % limit on TMD motion

16 %DR % array of damping ratios

17 %outputs

18 %RNAx_Rmax_DR % a matrix of horizontal max accelerations with

19 % dimensions (# DLCs)x(# periods)+(TMD off config)

20 % where each entry is the lowest weighted response

21 % in terms of available damping ratios

22 %RNAz_Rmax_DR % " "

23 %Pitch_Rmax_DR % " "

24 %DR_DLC % a matrix of best performing damping ratios for each

25 % DLC and

145

26 % period

27 function [RNAx_Rmax_DR,RNAz_Rmax_DR,Pitch_Rmax_DR,TwrBsM_Rmax_DR,DR_DLC,...

28 TMD1_Rmax_DR,TMD_best,g10] = select_DR(RNAx_Rmax,RNAz_Rmax,...

29 Pitch_Rmax,TwrBsM_Rmax,TMD1_Rmax,TMDlim,TMD_config,DR,T_target)

30

31 %preallocate

32 RNAx_Rmax_DR = zeros(size(RNAx_Rmax,1),length(T_target)+1);

33 RNAz_Rmax_DR = RNAx_Rmax_DR; Pitch_Rmax_DR = RNAx_Rmax_DR;

34 g10 = zeros(size(RNAx_Rmax,1),length(T_target)+1); DR_DLC = RNAx_Rmax_DR;

35

36 g10(:,1) = 99; %assign constraint value to TMD off position so that the

37 % optimizer doesn't choose this

38

39 %assign column of damper off configs

40 RNAx_Rmax_DR(:,1) = RNAx_Rmax(:,1); RNAz_Rmax_DR(:,1) = RNAz_Rmax(:,1);

41 Pitch_Rmax_DR(:,1) = Pitch_Rmax(:,1); DR_DLC(:,1) = ones...

42 (size(DR_DLC,1),1)'.*TMD_config(1,2);

43 TwrBsM_Rmax_DR(:,1) = TwrBsM_Rmax(:,1);

44

45 m = 2; %initialize column index new optimum DR matrices

46 pass_i = TMD1_Rmax ≤ TMDlim; %indices that pass TMD motion limit

47

48 %cycle through sets of damping ratios for each period

49 for i = 2:length(DR):size(TMD_config,1) %cycle through each period to

50 % select best DR

51 ci = i:i+(length(DR)-1); %current index one set of damping ratios

52

53 %cycle through DLCs

54 for j = 1:size(RNAx_Rmax,1)

55 RNAx_c = RNAx_Rmax(j,ci); %array of horizontal accel for each

56 % DR at current period and DLC

57 RNAz_c = RNAz_Rmax(j,ci); %" " vertical accel " "

58 Pitch_c = Pitch_Rmax(j,ci); %" " pitch accel" "

146

59 TwrBsM_c = TwrBsM_Rmax(j,ci); %" " tower base moment " "

60 TMD1_c = TMD1_Rmax(j,ci); %" " TMD motion " "

61 pass_ci = pass_i(j,ci); %logical array of passing vals for

62 % current period and DLC

63

64 %assign values based on best DR and passing TMD motion limits

65 if ¬any(pass_ci) %true if there are no configs that

66 % pass TMD motion limit

67 [g10(j,m),minTMD1_ci] = min(TMD1_c); %assign constraint,

68 % index for min TMD1

69 RNAx_Rmax_DR(j,m) = RNAx_c(minTMD1_ci); %DR chosen by

70 % minimum TMD motion

71 RNAz_Rmax_DR(j,m) = RNAz_c(minTMD1_ci);

72 Pitch_Rmax_DR(j,m) = Pitch_c(minTMD1_ci);

73 DR_DLC(j,m) = DR(minTMD1_ci);

74 TMD1_Rmax_DR(j,m) = TMD1_c(minTMD1_ci);

75 TwrBsM_Rmax_DR(j,m) = TwrBsM_c(minTMD1_ci);

76 else %else all TMD motions are within limits

77 wsum = RNAx_c./2.5+RNAz_c./2.0+Pitch_c./10; %DR chosen by minimum

78 % response amongst passing TMD motion indexes

79 wi = find(wsum == min(wsum(pass_ci)));

80 RNAx_Rmax_DR(j,m) = RNAx_c(wi);

81 RNAz_Rmax_DR(j,m) = RNAz_c(wi);

82 Pitch_Rmax_DR(j,m) = Pitch_c(wi);

83 DR_DLC(j,m) = DR(wi);

84 TMD1_Rmax_DR(j,m) = TMD1_c(wi);

85 TwrBsM_Rmax_DR(j,m) = TwrBsM_c(wi);

86 end

87 end

88 m = m+1; %counter for best DR matrix index

89 end

90 TMD_best.g9init = g10;

91 g10 = max(g10);

147

92 g10;

(n) evaluate motions.m

1 %William Ramsay

2 %version 2

3 %function to find best damper period

4 function [g7,g8,g9,g10,TMD_best,wi] = evaluate_motions(RNAx_Rmax_DR,...

5 RNAz_Rmax_DR,Pitch_Rmax_DR,DR_DLC,T_target,TMD_best,g10)

6 g7 = zeros(1,length(T_target)+1); g8 = g7; g9 = g7; gsum = g7; wsum = g7;

7 for m = 1:length(T_target)+1

8 RNAx_i = find(RNAx_Rmax_DR(:,m) < 2.5); %find indices that satisfy

9 % motion limits

10 RNAz_i = find(RNAz_Rmax_DR(:,m) < 2.0);

11 Pitch_i = find(abs(Pitch_Rmax_DR(:,m)) < 10);

12 if length(RNAx_i) < size(RNAx_Rmax_DR,1) %if length of indices vector

13 % is less than load cases, constraint is non-zero

14 g7(m) = (max(RNAx_Rmax_DR(:,m))-2.5)/2.5;

15 gsum(m) = gsum(m)+1; %sums number of constraints that don't pass

16 % for each TMD config

17 end

18 if length(RNAz_i) < size(RNAz_Rmax_DR,1)

19 g8(m) = (max(RNAz_Rmax_DR(:,m))-2.0)/2.0;

20 gsum(m) = gsum(m)+1;

21 end

22 if length(Pitch_i) < size(Pitch_Rmax_DR,1)

23 g9(m) = (max(abs(Pitch_Rmax_DR(:,m)))-10)/10;

24 gsum(m) = gsum(m)+1;

25 end

26 RNAx_Rmax_avg = mean(RNAx_Rmax_DR(:,m));

27 RNAz_Rmax_avg = mean(RNAz_Rmax_DR(:,m));

28 Pitch_Rmax_avg = mean(abs(Pitch_Rmax_DR(:,m)));

148

29 wsum(m) = RNAx_Rmax_avg/2.5+RNAz_Rmax_avg/2.0+Pitch_Rmax_avg/10;

30 %normalized sum of all three responses

31 end

32 pass_i = g10 == 0; %logical array of period indices that pass TMD motion

33 zero_i = gsum == 0; %logical array of period indices that don't fail any

34 % RNA motion constraints

35 one_i = gsum == 1; %logical array of period indices that fail one RNA

36 % motion constraint

37 two_i = gsum == 2; %logical array of period indices that fail two RNA

38 % motion constraint

39 if any(pass_i&zero_i) %executes if there are any configs that pass TMD

40 % constraints and have no failed RNA motion constraints

41 wi = find(wsum == min(wsum(pass_i&zero_i))); %finds index of minimum

42 % weighted sum that passes TMD & 0 RNA failure

43 elseif any(pass_i&one_i)

44 wi = find(wsum == min(wsum(pass_i&one_i)));

45 elseif any(pass_i&two_i)

46 wi = find(wsum == min(wsum(pass_i&two_i)));

47 elseif any(pass_i)

48 wi = find(wsum == min(wsum(pass_i)));

49 else %else there are none that pass TMD motion, so the minimum TMD

50 % motion is chosen

51 [¬,wi] = min(g10);

52 end

53 g7 = g7(wi);

54 g8 = g8(wi);

55 g9 = g9(wi);

56 g10 = g10(wi);

57 if wi == 1

58 TMD_best.T = 0;

59 else

60 TMD_best.T = T_target(wi-1);

61 end

149

62 TMD_best.DR_DLC = DR_DLC;

63 TMD_best.DR_best = DR_DLC(:,wi);

3. Objective Files

(a) objective.m

1 %William Ramsay

2 %function to get objective

3 %version 2

4 function [LCOE] = objective(x)

5

6 %% hydrostatics module %%

7 [¬,out] = hydrostatic_check(x);

8 for i=1:size(out.vals,1)

9 eval(sprintf('%s=%f;',out.names{i,1},out.vals(i,1)));

10 end

11 for i=1:size(out.hydvals,1)

12 eval(sprintf('%s=%f;',out.hydnames{i,1},out.hydvals(i,1)));

13 end

14 %% ATKINS mechanical system module %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 load('DFASheets.mat');

16 inMat = zeros(20,1);

17 inMat(1,1) = hull_radius-hull_width/2; %pontoon length

18 inMat(2,1) = hull_width; %pontoon width

19 inMat(3,1) = hull_height; %pontoon height

20 inMat(4,1) = L_bal; %b tank length

21 inMat(5,1) = tank_w; %b tank width

22 inMat(6,1) = tank_h; %b tank height

23 inMat(7,1) = 4; %no of ballast tanks

24 inMat(8,1) = L_bal; %air reservoir length

25 inMat(9,1) = hull_width-2*nominal_thickness; %air res width

150

26 inMat(10,1) = plate_pos; %air res height

27 inMat(11,1) = 4; %no of air res tanks

28 inMat(12,1) = 165; %install pressure (kPa)

29 inMat(13,1) = 8; %time frame to achieve install (hrs)

30 inMat(14,1) = P_res/1000; %active pressure (kPa)

31 inMat(15,1) = 60; %time frame from install to active (min)

32 inMat(16,1) = 9.1; %air temp operation

33 inMat(17,1) = -17.9; %minimum air temp

34 inMat(18,1) = 28.9; %max air temp

35 inMat(19,1) = -19.2; %max diurnal temp

36 inMat(20,1) = 12; %diurnal variation time (hrs)

37 [outMat, ¬] = DFA_SystemDesignTool(inMat, DFASheets);

38 %% ARPA-E metric space module %%

39 %metric space constant values

40 %inputs

41 R = 120; %rotor radius

42 Lg = 0.0345; %generator losses

43 Ldt = 0; %drive train losses

44 Lw = 0.05; %wake effect losses

45 Le = 0; %electrical losses

46 Lo = 0; %other losses

47 Av = 0.9387; %wind turbine availability

48 Cp = 0.52; %max power coefficient

49 V1 = 8; %wind speed below rated

50

51 %vectors for M2 calculation

52 %components are

53 %[rotor,hub,nacelle,tower,floatingplatform,mooringsystem,anchorsystem]

54

55 mc = [194126,190000,607275,1262976.25,Hull_mass+4*m_plate,140040,114000];

56 fi = [0.10,0.10,0.10,0.10,0.13,0.52,3.48]; %vector of installation costs

57 % /cost per KG of original component

58 fm = [3.87,11.00,9.49,1.69,2.00,0.14,6.70]; %vector of manufacturing costs

151

59 % /cost per KG of original component

60 ft = [4.0,1.0,1.0,1.0,0.13,1.0,1.0]; %vector of material costs/cost per

61 % KG of ref steel

62

63 csRef = 2; %cost per KG of ref steel

64 vCutIn = 3; %cut in wind speed

65 vCutOut = 25; %cut out wind speed

66 WSI = 0.90593; %wind shear impact

67 FCR = 0.082; %fixed charge rate

68 shapeWeibull = 2.1; %weibull shape factor

69 scaleWeibull = 10.13; %weibull scale factor

70 Per = 15000000; %rated power

71 OpExPerKW = 86; %OpEx per kW per year

72 CapEx_mechanicals = sum(outMat(21:24));

73 CapEx_DFA = CapEx_mechanicals;

74

75 %these are commented out within 'ATLANTIS_Metrics

76 outputPlot = 0; %does not plot output

77 minM1 = 1; %lowerbound of M1 for plotting

78 maxM1 = 1; %upperbound of M1 for plotting

79

80 %the only variables is mc, the vector of component masses

81 [¬, ¬, LCOE] = ...

82 ATLANTIS_Metrics(R, Lg, Ldt, Lw, Le, Lo, Av, Cp, V1, mc, fi, fm, ...

83 ft, csRef, vCutIn, vCutOut, WSI, FCR, shapeWeibull, scaleWeibull, Per, ...

84 OpExPerKW, CapEx_DFA, outputPlot, minM1, maxM1);

(b) DFA SystemDesignTool.m

1 % inMat: A 20 x 1 matrix consisting of the following inputs:

2 % 1: Pontoon Length (m)

3 % 2: Pontoon Width (m)

152

4 % 3: Pontoon Height (m)

5 % 4: Ballast Tank Length (m)

6 % 5: Ballast Tank Width (m)

7 % 6: Ballast Tank Height (m)

8 % 7: No of Ballast Tank (qty)

9 % 8: Air Reservoir Length (m)

10 % 9: Air Reservoir Width (m)

11 % 10: Air Reservoir Height (m)

12 % 11: No of Air Reservoir Tank (qty)

13 % 12: Install Pressure of Air Reservoir Tanks (kPa)

14 % 13: Time Frame to Achieve Install Pressure (hrs)

15 % 14: Required Air Reservoir Tank Pressure for Active Damper Control

16 % Process (kPa)

17 % 15: Time frame for the Air Reservoir Tank to go from Install

18 % pressure to the required air reservoir pressure for damper

19 % control process (minutes)

20 % 16: Air Temperature during Operating Condition (degrees celsius)

21 % 17: Minimum Design Air Temperature (degrees celsius)

22 % 18: Maximum Design Air Temperature (degrees celsius)

23 % 19: Maximum Diurnal Temperature (degrees celsius)

24 % 20: Time Interval between Diurnal Variation (hrs)

25

26 % DFASheets: All the excel sheets from the Atkins spreadsheets in matrix

27 % form (included in this folder)

28

29 % outMat: A 27 x 1 matrix consisting of the first 27 outputs in the Atkins

30 % excel spreadsheet (the index of this matrix corresponds to the sr #

31 % column of this excel sheet)

32

33 % lastOut: The last output (28th) of the Atkins spreadsheet. This is a

34 % seprate variable because this is a character instead of a number.

35

36 % NOTE: Some inputs have constraints. These are found in the Instruction

153

37 % sheet in the Atkins workbook.

38

39 function [outMat, lastOut] = DFA_SystemDesignTool(inMat, DFASheets)

40 % Checking constraints

41 Instruction = DFASheets{2};

42 inputsWithConstraints = [1:6, 8:10, 12, 14];

43 count = 1;

44 for i = 1:length(inputsWithConstraints)

45 currInput = inMat(inputsWithConstraints(i));

46 if (currInput < Instruction(i, 1) || currInput > Instruction(i, 2))

47 inputsOutOfRange(count) = inputsWithConstraints(i);

48 count = count + 1;

49 end

50 if currInput < Instruction(i,1)

51 inMat(inputsWithConstraints(i)) = Instruction(i,1);

52 elseif currInput > Instruction(i,2)

53 inMat(inputsWithConstraints(i)) = Instruction(i,2);

54 end

55 end

56

57 if (exist('inputsOutOfRange'))

58 errorString = sprintf("The following inputs are out of ..." + ...

59 "range:\n %d", inputsOutOfRange(1));

60 if (length(inputsOutOfRange) > 1)

61 for i = 2:length(inputsOutOfRange)

62 errorString = errorString + sprintf(", %d", ...

63 inputsOutOfRange(i));

64 end

65 end

66 errorString = errorString+sprintf('\n');

67 % fprintf(errorString);

68 end

69

154

70 AirCompPkg = DFASheets{8};

71 UtilityAirRecSizing = DFASheets{7};

72 InsAirPkg = DFASheets{9};

73 AirPipeSizing = DFASheets{10};

74 ReliefValveSize = DFASheets{11};

75

76 outMat = zeros(27, 1);

77

78 Lp = inMat(1);

79 Wp = inMat(2);

80 Hp = inMat(3);

81 Lb = inMat(4);

82 Wb = inMat(5);

83 Hb = inMat(6);

84 Nb = inMat(7);

85 La = inMat(8);

86 Wa = inMat(9);

87 Ha = inMat(10);

88 Na = inMat(11);

89 Pia = inMat(12);

90 Tia = inMat(13);

91 Pfa = inMat(14);

92 Tadp = inMat(15);

93 T_nor = inMat(16);

94 T_min = inMat(17);

95 T_max = inMat(18);

96 T_dir = inMat(19);

97 Tid = inMat(20);

98

99 %Finding output 1

100

101 Var = La * Wa * Ha;

102 Pa = 101;

155

103 Pmin = Pia;

104 Qs = (Var * (Pfa - Pmin) / (Tadp * Pa)) * Na;

105

106 D_18 = Pia * (T_max + 273 + T_dir) / (T_max + 273);

107 D_29 = Pfa * (T_max + 273 + T_dir) / (T_max + 273);

108 D_41 = Pia * (T_nor + 273 + T_dir) / (T_nor + 273);

109 D_54 = Pfa * (T_nor + 273 + T_dir) / (T_nor + 273);

110

111 Di = zeros(4, 1);

112 Di(1) = ((Var * (Pia - D_18)/((Tid * 60) * Pa))) * Na;

113 Di(2) = ((Var * (Pfa - D_29)/((Tid * 60) * Pa))) * Na;

114 Di(3) = ((Var * (Pia - D_41)/((Tid * 60) * Pa))) * Na;

115 Di(4) = ((Var * (Pia - D_54)/((Tid * 60) * Pa))) * Na;

116

117 offRow = 0;

118 offCol = 1;

119 potentialRows = find(AirCompPkg(:, 3) ≥ Qs + max(Di));

120 row = find(AirCompPkg(:, 3) == min(AirCompPkg(potentialRows, 3)));

121 row_1 = row;

122 %fprintf("row: %d\n", row);

123 powerComp = AirCompPkg(row + offRow, offCol);

124

125 powerControlPanel = 0.5;

126 powerCooler = 0.75;

127

128 outMat(1) = powerComp + powerControlPanel + powerCooler;

129

130 % Finding output 2

131

132 powerInsAirPkg = 5.59;

133 powerControlPanel = 0.5;

134 powerCooler = 0.75;

135 powerAirDryer = 0.75;

156

136

137 outMat(2) = powerInsAirPkg + powerControlPanel + powerCooler + ...

138 powerAirDryer;

139

140 % Finding output 3

141

142 outMat(3) = outMat(1);

143

144 % Finding output 4

145

146 massCol = offCol + 3;

147 massComp = AirCompPkg(row + offRow, massCol);

148 outMat(4) = massComp / 1000;

149

150 % Finding output 5

151

152 Tr = 180;

153 Pc = AirCompPkg(row, 2);

154 utilityAirRecieverSize = Qs * Tr / 60 * Pa / (Pc - Pmin);

155 potentialRows = find(UtilityAirRecSizing(:, 1) ≥...

156 utilityAirRecieverSize);

157 row = find(UtilityAirRecSizing(:, 1) == min...

158 (UtilityAirRecSizing(potentialRows, 1)));

159 row_5 = row;

160 col = 4;

161 outMat(5) = UtilityAirRecSizing(row, col) / 1000;

162

163 % Finding output 6

164

165 outMat(6) = InsAirPkg(6) / 1000;

166

167 % Finding output 7

168

157

169 outMat(7) = Lp - (Lb + La);

170

171 % Finding output 8

172

173 outMat(8) = Wp;

174

175 % Finding output 9

176

177 outMat(9) = Hp;

178

179 % Finding output 10

180

181 outMat(10) = AirCompPkg(row_1, 6);

182

183 % Finding output 11

184

185 outMat(11) = AirCompPkg(row_1, 7);

186

187 % Finding output 12

188

189 outMat(12) = AirCompPkg(row_1, 8);

190

191 % Finding output 13

192

193 outMat(13) = UtilityAirRecSizing(row_5, 2);

194

195 % Finding output 14

196

197 outMat(14) = UtilityAirRecSizing(row_5, 3);

198

199 % Finding output 15

200

201 outMat(15) = InsAirPkg(3);

158

202

203 % Finding output 16

204

205 outMat(16) = InsAirPkg(4);

206

207 % Finding output 17

208

209 outMat(17) = InsAirPkg(5);

210

211 % Finding output 18 through 20

212

213 W = zeros(7, 1); % weights

214 Xcg = zeros(7, 1);

215 Ycg = zeros(7, 1);

216 Zcg = zeros(7, 1);

217

218 W(1) = outMat(4) * 1000;

219 W(2) = outMat(5) * 1000;

220 W(3) = outMat(6) * 1000;

221 W(4:7) = repmat(875, 4, 1);

222

223 Wtot = sum(W);

224

225 Xcg(1) = outMat(10) / 2;

226 Xcg(2) = outMat(14) / 2;

227 Xcg(3) = outMat(15) / -2;

228 Xcg(4) = 0;

229 Xcg(5) = Lp / 2;

230 Xcg(6) = 0;

231 Xcg(7) = -Lp / 2;

232

233 Ycg(1) = outMat(11) / 2;

234 Ycg(2) = outMat(13) / 2;

159

235 Ycg(3) = outMat(16) / -2;

236 Ycg(4) = Lp / 2;

237 Ycg(5) = 0;

238 Ycg(6) = -Lp / 2;

239 Ycg(7) = 0;

240

241 Zcg(1) = outMat(12) / 2;

242 Zcg(2) = outMat(13) / 2;

243 Zcg(3) = outMat(17) + 5;

244 Zcg(4:7) = repmat(Hp, 4, 1);

245

246 outMat(18) = dot(W, Xcg) / Wtot;

247 outMat(19) = dot(W, Ycg) / Wtot;

248 outMat(20) = dot(W, Zcg) / Wtot;

249

250 % Finding output 21

251

252 col = 5;

253 outMat(21) = AirCompPkg(row_1, col);

254

255 % Finding output 22

256

257 col = 5;

258 outMat(22) = UtilityAirRecSizing(row_5, col);

259

260 % Finding output 23

261

262 outMat(23) = 65000;

263

264 % Finding output 24

265

266 Va = 20;

267 d = (12*sqrt((4*(Qs/4)*35.3147)/(3.14*60*Va*3.281)))*25.4;

160

268

269 offRow = 15;

270 potentialRows = find(AirPipeSizing(16:30, 22) ≥ d);

271 row = find(AirPipeSizing(16:30, 22) == min(AirPipeSizing...

272 (potentialRows + offRow, 22)));

273 col = 24;

274

275 totPipeCost = AirPipeSizing(row + offRow, col) * Lp * 4;

276 valveInsCost = AirPipeSizing(row + offRow, col + 1);

277

278 outMat(24) = totPipeCost + valveInsCost;

279

280 % Finding output 25

281

282 outMat(25) = AirPipeSizing(row + offRow, 18);

283

284 % Finding output 26

285

286 pipeWeight = AirPipeSizing(row + offRow, 23);

287 outMat(26) = pipeWeight * Lp * 1.25 * 4;

288

289 % Finding output 27

290

291 Qa = Qs / 4;

292 C = 356;

293 K = 0.975;

294 P_1 = Pfa * 1.1 + Pa + 20;

295 Kb = 1;

296 M = 28.97;

297 T = 273 + T_nor;

298 W = Qa * 1.18 * 60;

299 Z = 1;

300

161

301 A = 13160*W*sqrt(Z*T)/(C*P_1*K*Kb*sqrt(M));

302

303 offRow = 6;

304 col = 21;

305 potentialRows = find(ReliefValveSize(7:20, col) ≥ A);

306 row = find(ReliefValveSize(7:20, col) == min(ReliefValveSize...

307 (potentialRows + offRow, col)));

308 outMat(27) = ReliefValveSize(row + offRow, col);

309

310 % Finding lastOut (size designation)

311 sizeIndex = row;

312 sizeDes = {'T', 'R', 'Q', 'P', 'N', 'M', 'L', 'K', 'J', 'H', ...

313 'G', 'F', 'E', 'D'};

314 lastOut = sizeDes{sizeIndex};

315

316 end

(c) ATLANTIS Metrics.m

1 % Author: Ben Blood Summer 2020

2 % Edited: William Ramsay March 2021, commented out plots, added DFA

3 % CapEx input

4

5 % ATLANTIS_Metrics

6

7 % Summary: Takes the brown numbers from ATLANTIS_Metrics excel sheet that

8 % are variables as inputs

9 % and yields metrics M1, M2, and LCOE as outputs.

10

11 % Inputs:

12 % M1 Inputs:

13 % R : rotor radius

162

14 % Lg : generator losses

15 % Ldt : drive-train losses

16 % Lw : wake effect losses

17 % Le : electrical losses

18 % Lo : other losses

19 % Av : wind turbine availibility

20 % Cp : max power coefficient

21 % V1 : wind speed below rated

22 %

23 % M2 Inputs:

24 % ********Note: Elements for mc, fi, fm, and ft all correspond to the

25 % same component (e.g. element 1 of all matrices refer to component 1)***

26 %

27 % mc : a matrix where each element contains the mass of its component

28 % in kg

29 % fi : a matrix where each element contains the cost of installation

30 % of its component divided by the cost per kg of the original

31 % material for the

32 % component

33 % fm : a matrix where each element contains the cost per kg of

34 % manufacturing

35 % of its component divided by the cost per kg of the original

36 % material for the

37 % component

38 % ft : a matrix where each element contains the ratio between the

39 % cost of the material for its component, and the cost of the

40 % steel

41 % of reference

42 %

43 % LCOE Inputs:

44 % csRef : cost per kg of steel of reference

45 % vCutIn :

46 % vCutOut :

163

47 % WSI : Wind Shear Impact

48 % FCR : Fixed Charge Rate

49 % shapeWeibull : Weibull Shape Factor

50 % scaleWeibull : Weibull Scale Factor

51 % Per : Rated Power

52 % OpExPerKW : OpEx per kW per year

53 %

54 % Plot Inputs:

55 % outputPlot : if 1, the plot will output, and if 0, it will not

56 % minM1 : lower bound of M1 for plotting

57 % maxM1 : upper bound of M1 for plotting

58 %

59 % Variables:

60 % M1 Variables:

61 % Ar : swept rotor area

62 % rho : air density

63 % Pw1 : wind power at V1

64 % Pe1 : electrical power at V1

65 % mu : electromechical efficiency

66 %

67 % M2 Variables:

68 % m : a matrix where each element contains the equivalent mass of

69 % its component (corresponding to M2 input matrices)

70 % Meq : sum of all elements in matrix m

71 %

72 % LCOE Variables:

73 % V0 : a matrix that contains input velocities from 1 to 30

74 % m/s

75 % with 0.1 as an increment

76 % Pwind : a matrix where each element contains the wind power

77 % at the

78 % corresponding input velocity V0

79 % h1 : a matrix where each element contains the weibull

164

80 % probability density function result for input velocity

81 % V0

82 % Pelec : a matrix where each element contains the electric

83 % power

84 % calculated using the corresponding Pwind element,

85 % not exceeding Per

86 % indVin :

87 % indVout :

88 % interval :

89 % kk :

90 % nHoursYear : number of operating hours per year

91 % WhYear :

92 % maxWhYear : max element of WhYear

93 % CF :

94 % AEP : Annual Energy Production

95 % CapEx : Capital Expeditures

96 % OpEx : Operation Expenditures (including maintenance)

97 %

98 % Plotting Variables:

99 % M1_Plot : a matrix of preselected M1 values used for plotting

100 % M2_Plot : a matrix of M2 values computed from the corresponding

101 % M1 values along with previously inputted data

102 % Meq_Plot : a matrix of Meq values computed from the corresponding

103 % M1 values along with previously inputted data

104 %

105 % Outputs:

106 % M1 : Metric 1 of ATLANTIS worksheet

107 % M2 : Metric 2 of ATLANTIS worksheet

108 % LCOE : Levelized Cost of Energy

109 % M1_Plot : Matrix of M1 values used for plot. Null if plot

110 % is not outputted.

111 % M2_Plot : Matrix of M2 values used for plot, calculated based on

112 % corresponding M1 values. Null if plot is not

165

113 % outputted.

114

115

116 function [M1, M2, LCOE] = ATLANTIS_Metrics(R, Lg, Ldt, Lw, Le, Lo, Av, Cp, ...

117 V1, mc, fi, fm, ft, csRef, vCutIn, vCutOut, WSI, FCR, shapeWeibull, ...

118 scaleWeibull, Per, OpExPerKW, CapEx_DFA, outputPlot, minM1, maxM1)

119

120 % Computing M1

121 Ar = pi * R^2;

122 rho = 1.225;

123

124 mu = (1 - Lg) * (1 - Ldt) * (1 - Lw) * (1 - Le) * (1 - Lo) * Av;

125

126 Pw1 = 0.5 * rho * Ar * V1^3;

127 Pe1 = 0.5 * rho * Ar * Cp * mu * V1^3;

128

129 M1 = Pe1 / Pw1;

130

131 % Computing M2

132 n = length(mc);

133 for j = 1:n

134 m(j) = ft(j) * (1 + fm(j) + fi(j)) * mc(j);

135 end

136

137 Meq = sum(m);

138

139 M2 = Ar / Meq;

140

141 % Computing LCOE

142 AEP = ComputeAEP(M1, rho, Ar, WSI, scaleWeibull, shapeWeibull, Per,...

143 vCutIn, vCutOut);

144 CapEx = Meq * csRef + CapEx_DFA;

145 OpEx = OpExPerKW * Per / 1000;

166

146

147 LCOE = (FCR * CapEx + OpEx) / AEP;

148

149

150 end

167

BIOGRAPHY OF THE AUTHOR

William grew up in southern Maine, where he attended Marshwood High School. After

eventually settling on Mechanical Engineering, he finished his undergraduate degree at the

University of Maine. Having been lucky to participate in offshore wind research while

working on his bachelor’s degree, he was excited to continue that work with the research

presented here. His dog, a Siberian Husky, is named Taz. William Ramsay is a candidate

for the Master of Science degree in Mechanical Engineering from the University of Maine in

August 2022.

168

	Optimization of a Lightweight Floating Offshore Wind Turbine with Water-Ballast Motion Mitigation Technology
	Recommended Citation

	tmp.1662475164.pdf.A8WHA

