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ABSTRACT 

 The process of determining parameters of black hole mergers requires 

complicated formulae like the Einstein Field Equations (EFEs) that can only be solved 

numerically with the help of supercomputers. This paper sought to explore an alternative 

method to prediction of parameters through the use of 1st order Post-Newtonian 

Expansion (PNE), which is a way of approximating solutions to the EFEs. Two binary-

black hole mergers, GW170814 and GW170809 were analyzed with the use of 1st order 

PNE to obtain the chirp mass and radiated energy parameters. These parameters were 

then compared with the parameters obtained using numerical solutions to the EFEs and it 

was found that 1st order PNE is insufficient in the case of these two mergers. This does 

not entirely discount the use of 1st order PNE for prediction, but higher order 

approximations may yield better predictive results. 
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1. INTRODUCTION 

 Uncovering the secrets of black holes and the early universe is a major endeavor 

for astrophysicists, and within the past decade, major strides have been made in detector 

technology. These strides are in the area of gravitational wave detection, which is itself a 

major subject of research today with several projects both already running and planned to 

further study them. The current detection facilities include LIGO, Virgo, and KAGRA 

though the main focus of this particular project is on data from the LIGO-Hanford and 

Virgo facilities. LIGO was the first to receive a gravitational wave signal, on September 

14, 2015, and they denoted the event GW150914 [7].  

 Gravitational waves are produced by massive objects undergoing extreme 

accelerations, such as orbiting black holes/neutron stars. Even the Earth-Sun system 

produces gravitational waves, though these are beyond the sensitivity of current detectors 

which barely reach into the kHz range. For more details on high frequency detection, see 

[3]. We will define the specifics of a gravitational wave in a later section. This paper will 

focus on orbiting black holes, and even more specifically on black hole mergers, which 

occur when these orbiting objects are inspiral over long periods of time. At the point of 

merger, they produce a large burst of gravitational waves that “chirps” in frequency when 

detected. Readers are assumed to have a basic understanding of Newtonian dynamics and 

calculus, the dynamics behind binary black holes will be covered in the background 

section.  

These gravitational waves can be modeled and described in depth by the Einstein 

field equations (EFEs), which are sets of dense differential equations describing how the 

local geometry of space-time changes due to the local energy in the area. Due to the 
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nature of these equations, solving them exactly requires simplified symmetry conditions, 

such as a single stationary black hole, or other simple object. More complex systems, 

such as the orbiting black holes that this paper will deal with, require computational 

solutions to the EFEs that can create precise models. With these models, one can match 

experimental and analytical data to determine parameters of the system being analyzed, 

such as mass, energy released, and any other variables of interest.  

 

1.1 Computational Alternatives 

Computational solutions of the EFEs have some drawbacks, such as the length of 

time necessary to ensure precision and the hardware required to reduce said time to 

months instead of years. Consequently, the EFEs are not the main focus of this paper, and 

they will not be described in depth. Instead, see [14] for more details on numerical 

relativity.  

Until computational times decrease significantly, when seeking basic analysis and 

confirmation of detected events, the downsides of numerical relativity outweigh the 

benefits, and an alternative method is preferred. This paper will instead focus on one such 

alternative method, Post-Newtonian Expansion (PNE), and how well it can be used to 

predict parameters of black hole mergers. This method is used to analyze processed 

experimental data and obtain parameters based on arguments using classical physics 

combined with some relativistic arguments. PNE are approximate solutions to the EFEs 

that consist of power-series that can be expanded to as many orders as we might want for 

different parameters. This paper focuses entirely on the first-order approximation and 
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how well we can utilize the singular parameter obtained to gather more information on 

the observed event through the use of some reasonable assumptions.  

 

1.2 Literature Examples 

 The literature surrounding black hole mergers has some examples of PNE being 

used to do analysis of a system of two orbiting black holes, usually going to higher-order 

approximations of at least third order. 

 L. Blanchet [6] discusses using high order PNE to model compact binary systems. 

He describes the reasons why PNE can be utilized to describe compact binary systems 

and goes into the assumptions necessary for accuracy in both higher and lower order 

approximations.  

 Campanelli, Manuela, et al. [8] compare models created using PNE to numerical 

relativity models and conclude that higher order PNE waveforms have advantages over 

lower order ones. Higher order waveforms yield better waveforms in analysis.  

 

1.3 Outline 

 This paper focuses on two gravitational events, GW170814 [1] and GW170809 

[2] which have already been confirmed to be black hole mergers, and their specific 

parameters. A direct analysis of LIGO data was done using Python, specifically PyCBC 

[4] which is designed to analyze gravitational wave data. This analysis involved band-

passing and frequency filtering to clean the signal, and then the frequencies associated 

with this data were determined. This frequency data was then plotted versus time with 

linear regression to determine the slope. The slope was then used to determine chirp mass 
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and, through some analysis, energy emitted by gravitational waves. These parameters 

were then compared to the parameters already found to determine effectiveness of 1st 

order PNE analysis.  

 

1.4 Outline 

 In this paper we will start in Section 2 by describing the basics of gravitational 

waves and compact binary systems. We will then move on to a brief overview of first 

order PNE in Section 3, deriving the expressions we will use later to determine our 

parameters. Next, we will describe our process of analyzing gravitational wave data in 

Section 4, and then move on to a discussion of results and our conclusions in Section 5.  
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2. BACKGROUND 

 The majority of the background of this paper revolves around general relativity 

and Einstein's predictions surrounding the theory. The theoretical framework of general 

relativity is far beyond the scope of this paper, but the beauty of our first order PNE 

methods is that a rigorous understanding of general relativity is not required to still be 

able to make parameter predictions of compact two body systems.  

 

2.1 Gravitational Waves 

 Gravitational waves are a perturbation of space created by massive objects 

undergoing acceleration, and like all waves, they have a frequency, and an amplitude, 

sometimes called strain, a dimensionless quantity. These waves transmit energy as they 

perturb spacetime, and this energy transmission is the reason for inspiral and merger, as 

the gravitational waves take energy from the orbit and cause it to decay. The specifics of 

the energy decay will be discussed later. Any orbiting system has this energy decay, 

though for systems like the Earth orbiting the Sun, the energy decay is on a long time 

scale.  

Einstein first predicted the existence of gravitational waves in 1916 [10], later 

providing a rigorous solution of the EFE for cylindrical gravitational waves [9]. We note 

here that this phenomenon is not predicted by standard Newtonian gravitational analysis, 

which assumes that physical interactions such as gravity propagate instantaneously, 

which is one reason PNE is called “Post-Newtonian” as it stands in-between the 

assumptions of general relativity and Newtonian mechanics.  



 6 

 As mentioned in section one, even the Earth-Sun system generates gravitational 

waves, but in this paper, we will be looking at specific compact two body systems so that 

we can properly apply PNE.  

 

2.2 Two-Body Systems 

 We will wait until our section on black holes to properly define compactness in 

our case, but we can define a two-body system. A two-body system in our case will be a 

system of two black holes, though the more generic case is any system of two orbiting 

objects. For example, the Earth-Sun system is a two-body system. 

We assume that neither object is spinning, which only means that our energy 

radiated value will be a lower bound prediction.  We also assume that their orbits are 

Keplerian, so that we can use some arguments using Kepler’s laws and remain generally 

circular until merger. There are very few examples of elliptical mergers as the energy 

radiated will tend to circularize the orbit, but there have been very recent estimates of 

orbital eccentricity in numerical relativity simulations due to the GW190521 event [11]. 

As these events are rare and under large mass conditions, our circular orbit assumption 

can still hold. For more information on PNE assumptions, see [13] which describes the 

mass range in which non-chaotic behavior occurs that allows for the use of PNE. 

 

2.3 Black Holes 

 Black holes come in four flavors, which come from a combination of charge and 

rotation. For the purposes of this paper, we will focus on Schwarzschild black holes, 

which are uncharged and non-rotating which comes from an earlier assumption. At a 
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most basic level, black holes are massive objects which have been compressed to below a 

metric known as the Schwarzschild radius, at which irreversible gravitational collapse 

occurs. The Schwarzschild radius is defined as follows, 

𝑟" =
#$%
&#

. 

Equation 1 

With G being the gravitational constant, c being the speed of light, and M being the mass 

of the object. With this metric we can now complete our definition of a compact two 

body system, in which compactness in our case will be distances of within an order of 

magnitude to the Schwarzschild radius of each black hole. The orbit of these objects will 

be constrained to a single plane. Now with black holes defined, we have one thing left to 

define before moving on to our section on PNE.  

 

2.4 Gravitational Quadrupole Moment and Chirp Mass 

 Before going into the details of Post-Newtonian expansion, we will first talk 

about the gravitational quadrupole moment, and chirp-mass of a compact binary system. 

The gravitational quadrupole is a measure of how stretched out a mass along a particular 

axis, and we will give the mathematical definition for our system in our section on PNE. 

The chirp mass of our system is related to the two masses of our black hole 

system. It effectively is a reduced mass that measures the gravitational wave emission 

from a binary system. The chirp mass will be defined as, 

ℳ = (($(#)
"
%

(($*(#)
$
%
. 

Equation 2 
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With 𝑚+ and 𝑚# being the masses of each object in our two-body system. The reason 

why we are using chirp mass instead of attempting to determine the separate masses of 

each individual black hole, is because we only need a 1st order Post-Newtonian 

expansion to determine chirp-mass, and it still provides detail about the system that can 

be used in conjunction with some assumptions to calculate a few parameters. We do not 

need to derive this form because it will appear in our derivation of 1st order PNE and we 

will rewrite the expression as the chirp mass. We now have a solid framework in place of 

our system, so we can move on to the theoretical framework behind parameter 

estimation.  
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3. POST-NEWTONIAN EXPANSION 

 Post-Newtonian expansions are designed as approximate solutions of Einstein's 

field equations for the metric tensor. They are power series solutions to the EFE that can 

be expanded or contracted depending on which parameters are desired to be extracted. 

For a thorough derivation, see [17] which provides a rigorous description of the different 

mathematical steps involved for general PNE of any order. Since this paper is focused on 

the first order expansion, there will be a derivation of this expansion in simpler terms, 

utilizing the quadrupole moment of the two-body system in question, which is related to 

the stress-energy tensor of the system. We are using this because it is the lowest order 

term in the Newtonian limit, in which +
&
⟶ 0, with 𝑐 being the speed of light. Time 

variation in the quadrupole moment can also produce gravitational radiation, unlike time 

variation in the lower multipole or monopole moments, which will give us our 

gravitational wave source. This limit is possible since c is very large (~10,). 

Also note that there are a couple of assumptions made under PNE, namely that the 

system is slowly moving and weakly stressed. These assumptions are quite relative with 

regards to the systems in question, since this paper is dealing with compact-binary 

systems which are moving at speeds in excess of 50% the speed of light, with large 

changing gravitational fields, but PNE still holds under these conditions [5]. 

 

3.1 Derivation of 1st Order PNE 

The majority of this derivation comes from [15]. Start with the general two body 

system we have described, orbiting in a Cartesian coordinate system (x, y, z), with 

masses 𝑚+ and 𝑚#. The Quadrupole moment of this system is,  
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𝑄-. = ∫𝑑/𝑥𝜌(𝑥, 𝑦, 𝑧)(𝑥-𝑥. −
+
/
𝑟#𝛿-.), 

Equation 3 

with 𝑟 being the radial distance from the origin (the system center of mass), 𝛿-. being the 

Kronecker delta, and	𝜌(𝑥, 𝑦, 𝑧) being the mass density. For a two-body system A ∈ (1,2) 

rotating in the x-y plane, this equivalent to, 

𝑄-. = : 𝑚0
0∈(+,#)

⎣
⎢
⎢
⎢
⎢
⎡
2
3
𝑥0# −

1
3
𝑦0# 𝑥0𝑦0 0

𝑥0𝑦0
1
3𝑦0

# −
2
3𝑥0

# 0

0 0 −
1
3 𝑟0

#
⎦
⎥
⎥
⎥
⎥
⎤

 

Equation 4 

Einstein found [9] that the gravitational wave strain ℎ at a distance 𝑑3is defined as, 

ℎ-. =
#$
&&4'

4#5()
46#

, 

Equation 5 

with the rate at which the energy of the gravitational wave is changing due to these waves 

over time given by  

47*+
46

= &"

+89$ ∫∫ C
4:
46
C
#
𝑑𝑆 = $

;&%
∑ 4"5()

46"
4"5()
46"

/
-,.<+  , 

Equation 6 

with C4:
46
C
#
= ∑ 4:()

46
4:()
46

/
-,.<+  , the integral being over a sphere at radius 𝑑3, 𝐺 being the 

gravitational constant, and 𝑐 being the speed of light. Utilizing some trigonometry, we 

can simplify Equation 4. The orbit is assumed to be in the x-y plane, and circular, which 

means 𝑟 = 𝑟+ + 𝑟# and frequency 𝑓 = =
#9

, giving us 
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𝑄-.0(𝑡) =
(,>,

#

#
𝐼-.,  

Equation 7 

with 𝐼?? = cos(2𝜔𝑡) + +
/
, 𝐼@@ =

+
/
− cos(2𝜔𝑡), 𝐼@? = 𝐼?@ = sin(2𝜔𝑡) and 𝐼@? =

+
/
. We 

can combine our expressions in Equation 7 to find 𝑄-.(𝑡) =
A>#

#
𝐼-. with 𝜇 being the 

reduced mass 𝜇 = ($(#
($*(#

 and apply that to Equation 6 to find, 

47*+
46

= /#$
;&%

𝜇#𝑟B𝜔8. 

Equation 8 

The energy loss from this system mainly takes energy from the orbital energy, 

𝐸C>D = − $%A
#>

, 

Equation 9 

and therefore 

47-./
46

= $%A
#>#

4>
46
= − 47*+

46
. 

Equation 10 

Assuming the energy radiated away over each orbit is small in comparison to 𝐸C>D, each 

orbit can be described as approximately Keplerian. We can use Kepler’s third law, 𝑟/ =

$%
=#

 [16], and its derivative, 4>
46
= − #

/
𝑟 4=
46

+
=

, in combination with Equations 8 and 10 to 

obtain our final equation,  

(4=
46
)/ = (E8

;
)/ $

%A"%#

&$%
𝜔++ = (E8

;
)/ ($ℳ)%

&$%
𝜔++, 

Equation 11 



 12 

where 𝑀 = 𝑚+ +𝑚# and ℳis the chirp mass from Equation 2. This can be converted 

into a frequency equation, to find  

4G
46
= E8

;
𝜋
!
"($ℳ

&"
)
%
"𝑓

$$
" . 

Equation 12 

This finishes our derivation of our equation that we will use to perform parameter 

estimation, which we can now move on to.  
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4. PARAMETER ESTIMATION 

Now that we have an expression that contains chirp mass, we can do some 

rearranging and use it alongside experimental data to obtain some parameters.  

 

4.1 Chirp Mass Estimation 

From Equation 12, we can rearrange terms to get an equation of the form, 

𝑓!
$$
" 𝑑𝑓 = E8

;
𝜋
!
"($ℳ

&"
)
%
"𝑑𝑡, 

Equation 13 

which can then be integrated to find 

− /
,
𝑓!

!
" = E8

;
𝜋
!
"($ℳ

&"
)
%
"𝑡 + 𝑐. 

Equation 14 

We can rearrange this again and isolate frequency to give our final equation 

𝑓!
!
" = − #;8

;
𝜋
!
"($ℳ

&"
)
%
"𝑡 + 𝑐. 

Equation 15 

This equation relates the frequency of the gravitational waveform, which increases as the 

orbiting black holes inspiral towards a merger. The constant of integration is known as 

the time of coalescence [15] which is beyond the scope of this paper. By measuring the 

𝑓!
!
", and plotting against time, we can use simple linear regression to find a best fit line. 

From that line we can obtain a slope and solve for chirp mass. We can do this without 

any assumptions of a particular waveform model by measuring the t between successive 
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zero crossings and estimating the frequency as 𝑓 = +
#H6

 since 𝑓 = +
I
 and we will be 

finding half the time to complete one cycle.  

 We can do all of this using Python and PyCBC [4], the specific code used can be 

found in Appendix A. The data from LIGO-Hanford and VIRGO was whitened, band-

passed and frequency filtered at the frequencies recommended by PyCBC. After analysis, 

the VIRGO data was found to be too noisy for the analysis without assumption of 

waveform and so only LIGO-Hanford (L1 and H1 respectively) was used. The data was 

first high pass filtered, to remove frequencies lower than what is reasonable for the data 

sets we are working with. The data was then whitened to bring the waveform into better 

focus, and then the data was high and low passed to reduce noise.  The result of this 

filtering can be seen below, in Figure 1. 
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Figure 1. The strain data for both GW170814 and GW170809 plotted against GPS time, 

which is shown in seconds form, note that for GW170814, the data was whitened slightly 

more than GW170809 though there still is some noise present. 

This data was then transferred into R for regression analysis, the results of which 

can be seen below, in Figure 2.  
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Figure 2. The regression models for each merger, fitting 𝑓!
!
" to time and creating a best 

fit line for the purpose of finding slope. 

The main reason R was chosen for regression over Python is that R is better suited 

for this kind of data analysis. Python was still required since R does not easily analyze 

the main data format that the gravitational wave strain data comes in. The calculated 

chirp-masses can be seen below, in Table 1, with R2 values and uncertainties. 
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 Chirp Mass (𝑀⨀) R2 Uncertainty (±𝑀⨀) 

GW170814 (H1) 172.6 0.2494 158.6 

GW170814 (L1) 215.5 0.7756 98.06 

GW170809 (H1) 62.6 0.09525 71.95 

GW170809 (L1) 205.5 0.8362 77.81 

Table 1. Chirp masses with uncertainties and R2 calculated from the slopes of the linear 

regression models. 

See Appendix B for how these values were calculated using R. We will discuss 

these further in the results section. From these chirp masses, we can move on to 

estimating radiated energy.  

 

4.2 Radiated Energy Estimation 

To estimate the maximum radiated energy, we need the frequency of gravitational 

waves at maximum amplitude, the distance between the two black holes, and an 

estimation of the mass of each black hole. The frequency of gravitational waves at 

maximum amplitude was found for each data set using the zero-crossing data already 

collected. These were then averaged for each object. 

We can then use these to estimate the orbital angular velocity as #9G012
#

= 𝜔. 

From here we turn to Kepler’s third law, where 

𝑟/ = $%I#

B9#
 [16], 

Equation 16 
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with M as the orbited mass, 𝑇 as the orbit period, and 𝑟 as the distance between the 

binary objects. Equation 16 can be rearranged using 𝑇 = #9
=

 to obtain 𝑟 = ($%
=#
)
$
", where 𝑟 

is the distance between the black holes and 𝑀 is the combined black hole masses. We can 

finally find the mass of each black hole by assuming the black holes have equal masses, 

which is reasonable as they do to an order of magnitude. From this assumption we can 

use the chirp mass to find the mass as  

𝑚 = 2
$
%ℳ, 

Equation 17 

where 𝑚 is the mass of either black holes and ℳ is the chirp mass, this follows directly 

from the chirp mass formula.  

Finally, we can use our orbital energy formula from Section 3, and all of our 

values obtained above to calculate the energy radiated away assuming all of it is 𝐸C>D =

− $%A
#>

 from Equation 9. This value will be positive as we are looking at it from the 

perspective of the energy of the gravitational wave and not the energy lost. The tabulated 

results of all of these calculations can be seen in Table 2, below. 

 𝑓(K? (Hz) m (𝑀⨀) r (km) 𝐸C>D	(𝑀⨀𝑐#) 

GW170814 (L1) 136.5 247.5 709.7 63 

GW170809 (L1) 102.4 236.1 846.1 49 

Table 2. Parameters found using the previous analysis, uncertainties not included as 

these values are entirely approximations. 
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Note that for these parameters, only the chirp-masses with an 𝑅# > 0.5 were used 

to estimate parameters as these are the only values of statistical significance. With this, 

we have our estimated parameters of both mergers, and we can move on to a discussion 

of our results.  
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5. CONCLUSION 

Our final estimated parameters compared to the parameters found from formal 

sources can be seen in Table 3, below. 

 Chirp Mass (𝑀⨀) Radiated Energy (𝑀⨀𝑐#) 

GW170814 (predicted) 215.5±98.06 63 

GW170809 (predicted) 205.5±77.81 49 

GW170814 (actual) 24.1!+.+*+.B 2.7!M./*M.B 

GW170809 (actual) 24.9!+.N*#.+ 2.7!M.8*M.8 

Table 3. Actual and predicted values of parameters for GW170814 and GW170809 [1], 

[2]. 

 For GW170814 and GW170809, only the chirp masses found for the data from 

the L1 detector were of statistical significance, and they were both an order of magnitude 

off of the actual chirp masses determined by numerical relativity methods. The same was 

true of the radiated energy parameters obtained. The main reason for this comes down to 

noise filtering in the data, and since we are dealing with an 𝑓!
!
", we require better data 

resolution than the methods employed were able to give us. This would lead us to the 

conclusion that a 1st order PNE approximation is insufficient for parameter predication 

the two mergers we explored in this paper. This does not entirely discount the use of 1st 

order PNE approximation, but the use cases must be carefully analyzed, and it is perhaps 

best left in the classroom to introduce students to gravitational wave analysis, instead of 

being used in any official capacity.  
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5.1 Further Avenues 

 There are some avenues to take to improve this analysis, instead of using zero 

crossings to estimate frequency, we could combine a tangent line analysis of the strain 

data to find derivative values and combine that with Equation 8 to find a better calculated 

value for chirp mass that does not rely on linear regression [15]. This would require more 

sophisticated analysis of strain data, and if the data is still noisy then it might prove just 

as unreliable as our regression model, but it is an alternative that could be explored.  

 We also could do matched waveform filtering, where we build up our own 

gravitational waveform in Python using PyCBC [4], compare it to our model until we 

match the waveform as best we can, and then perform our frequency analysis on our 

model. This is more work/time as the analysis requires some amount of trial and error 

and relies on an underlying assumption of a specific waveform, but can be effective if 

more detailed understanding is required. This is also how numerical relativity results are 

compared to experimental data, except instead of building a waveform from some 

assumptions, you instead numerically solve the EFEs.  

 There are also other parameters we could estimate using some basic physics 

methods and assumptions. These parameters are the distance to the source of 

gravitational waves and luminosity, the latter of which would enable us to take redshift 

into account in our calculations. In the case of this paper, redshifts for these sources were 

already found to be >0.2 which does not greatly affect our conclusions, as our values in 

the detector frame would not change significantly enough to affect our results in the 

source frame. The physics and assumptions involved with these parameters were also 

beyond the scope of this paper. For more information on how to estimate luminosity or 
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distance from the information we have obtained in this paper, [15] describes the entire 

process in detail.  

   
  



 23 

REFERENCES 

[1] Abbott, Benjamin P., et al. "GW170814: a three-detector observation of gravitational 
waves from a binary black hole coalescence." Physical Review Letters 119.14 
(2017): 141101. 

[2] Abbott, B. P., et al. "GWTC-1: a gravitational-wave transient catalog of compact 
binary mergers observed by LIGO and Virgo during the first and second 
observing runs." Physical Review X 9.3 (2019): 031040. 

[3] Aggarwal, Nancy, et al. "Challenges and opportunities of gravitational-wave searches 
at MHz to GHz frequencies." Living Reviews in Relativity 24.1 (2021): 1-74. 

[4] Alex Nitz, et al. Gwastro/pycbc: V2.0.2 Release of Pycbc. v2.0.2, Zenodo, 2 Mar. 
2022, doi:10.5281/zenodo.6324278. 

[5] Blanchet, Luc, et al. "Gravitational radiation from inspiralling compact binaries 
completed at the third post-Newtonian order." Physical Review Letters 93.9 
(2004): 091101. 

[6] Blanchet, Luc. "Gravitational radiation from post-Newtonian sources and inspiralling 
compact binaries." Living Reviews in Relativity 17.1 (2014): 1-187. 

[7] B. P. Abbott et al., Phys. Rev. Lett. 116(6), 061102 (2016). 

[8] Campanelli, Manuela, et al. "Comparison of numerical and post-Newtonian 
waveforms for generic precessing black-hole binaries." Physical Review D 79.8 
(2009): 084010. 

[9] Einstein, Albert. "Über gravitationswellen." Albert Einstein: Akademie‐Vorträge: 
Sitzungsberichte der Preußischen Akademie der Wissenschaften 1914–1932 
(2005): 135-149. 

[10] Einstein, Albert, and Nathan Rosen. "On gravitational waves." Journal of the 
Franklin Institute 223.1 (1937): 43-54. 

[11] Einstein, A. "Näherungsweise Integration der Feldgleichungen der Gravitation, 22 
Jun 1916." (1916). 

[12] Gayathri, V., et al. "Eccentricity estimate for black hole mergers with numerical 
relativity simulations." Nature Astronomy (2022): 1-6. 

[13] Hartl, Michael D., and Alessandra Buonanno. "Dynamics of precessing binary black 
holes using the post-Newtonian approximation." Physical Review D 71.2 (2005): 
024027. 



 24 

[14] Lehner, Luis. "Numerical relativity: a review." Classical and Quantum Gravity 
18.17 (2001): R25. 

[15] LIGO Scientific and VIRGO collaborations, et al. "The basic physics of the binary 
black hole merger GW150914." Annalen der Physik 529.1-2 (2017): 1600209.  

[16] Vogt, Erich. "Elementary derivation of Kepler’s laws." American Journal of Physics 
64.4 (1996): 392-396. 

[17] Yang, Jinye. "Post-Newtonian Theory." (2020). 

 
  



 25 

APPENDIX A: Python Code 

from pycbc.filter import highpass_fir, lowpass_fir 
from pycbc.psd import welch, interpolate 
from pycbc import catalog 
import matplotlib.pyplot as pylab 
import numpy 
from gwpy.time import tconvert 
import datetime 
from math import floor 
 
def gravitational_function_GW170814_H1(z): 
    m = catalog.Merger("GW170814") 
    mchirp = m.median1d('mchirp') 
    print(mchirp) 
 
    ifo = 'H1' 
 
    #Read data, remove low freq, content 
    data = catalog.Merger("GW170814").strain(ifo) 
    data = highpass_fir(data, 15, 10) 
     
    #Calculate the noise spectrum 
    psd = interpolate(welch(data), 1.0 / data.duration) 
         
    #Whiten 
    white_strain = (data.to_frequencyseries() / psd ** 0.5).to_timeseries() 
 
    #remove some of the high and low 
    smooth = highpass_fir(white_strain, 35, 10) 
    smooth = lowpass_fir(white_strain, 150, 10) 
     
    #Time shift and flip 
    if ifo == 'L1': 
        smooth *= -1 
        smooth.roll(int(.007 / smooth.delta_t)) 
     
    zoom = smooth.time_slice(m.time - 0.026, m.time + 0.025) 
     
    zero_crossings = numpy.where(numpy.diff(numpy.sign(zoom)))[0] 
 
    zero_times = [] 
    for i in zero_crossings: 
        zero_times.append(zoom.sample_times[i]) 
 
    delta_zeroes = [] 
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    for i in range(len(zero_times) - 1): 
        delta_zeroes.append(zero_times[i + 1] - zero_times[i]) 
 
    frequencies = [] 
    for i in delta_zeroes: 
        frequencies.append(float((1 / (i * 2))**(-8/3))) 
 
    decimal_times = [] 
    for i in zero_crossings: 
        decimal_times.append(zoom.sample_times[i] - 
floor(zoom.sample_times[i])) 
 
    decimal_avg_times = [] 
    for i in range(len(zero_times) - 1): 
        decimal_avg_times.append(float((decimal_times[i + 1] + 
decimal_times[i])/2)) 
 
    max_frequency = 1/(2*min(delta_zeroes)) 
    print(max_frequency) 
    #datetime.datetime.now().second 
    #print(delta_zeroes) 
    #print(frequencies) 
    #print(decimal_avg_times) 
    #print(whitened) 
 
    if z == 1: 
        pylab.plot(smooth.sample_times, smooth, label=ifo) 
        pylab.xlim(m.time - 0.1, m.time + 0.05) 
        pylab.ylim(-100, 100) 
        pylab.ylabel('Strain') 
        pylab.xlabel('GPS Time (s)') 
        pylab.legend() 
        pylab.title("Filtered/Bandpassed Strain Data for GW170814 - H1") 
        pylab.show() 
 
    return frequencies, decimal_avg_times 
 
def gravitational_function_GW170814_L1(z): 
    m = catalog.Merger("GW170814") 
    mchirp = m.median1d('mchirp') 
    print(mchirp) 
 
    ifo = 'L1' 
 
    #Read data, remove low freq, content 
    data = catalog.Merger("GW170814").strain(ifo) 
    data = highpass_fir(data, 15, 10) 
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    #Calculate the noise spectrum 
    psd = interpolate(welch(data), 1.0 / data.duration) 
         
    #Whiten 
    white_strain = (data.to_frequencyseries() / psd ** 0.5).to_timeseries() 
 
    #remove some of the high and low 
    smooth = highpass_fir(white_strain, 35, 10) 
    smooth = lowpass_fir(white_strain, 150, 10) 
     
    #Time shift and flip 
    if ifo == 'L1': 
        smooth *= -1 
        smooth.roll(int(.007 / smooth.delta_t)) 
     
    zoom = smooth.time_slice(m.time - 0.026, m.time + 0.025) 
    zero_crossings = numpy.where(numpy.diff(numpy.sign(zoom)))[0] 
 
    zero_times = [] 
    for i in zero_crossings: 
        zero_times.append(zoom.sample_times[i]) 
 
    delta_zeroes = [] 
    for i in range(len(zero_times) - 1): 
        delta_zeroes.append(zero_times[i + 1] - zero_times[i]) 
 
    frequencies = [] 
    for i in delta_zeroes: 
        frequencies.append(float((1 / (i * 2))**(-8/3))) 
 
    decimal_times = [] 
    for i in zero_crossings: 
        decimal_times.append(zoom.sample_times[i] - 
floor(zoom.sample_times[i])) 
 
    decimal_avg_times = [] 
    for i in range(len(zero_times) - 1): 
        decimal_avg_times.append(float((decimal_times[i + 1] + 
decimal_times[i])/2)) 
 
    max_frequency = 1/(2*min(delta_zeroes)) 
    print(max_frequency) 
    #datetime.datetime.now().second 
    #print(delta_zeroes) 
    #print(frequencies) 
    #print(decimal_avg_times) 
    #print(whitened) 
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    if z == 1: 
        pylab.plot(smooth.sample_times, smooth, label=ifo) 
        pylab.xlim(m.time - 0.1, m.time + 0.05) 
        pylab.ylim(-100, 100) 
        pylab.ylabel('Strain') 
        pylab.xlabel('GPS Time (s)') 
        pylab.legend() 
        pylab.title("Filtered/Bandpassed Strain Data for GW170814 - L1") 
        pylab.show() 
 
    return frequencies, decimal_avg_times 
 
def gravitational_function_GW170809_H1(z): 
    m = catalog.Merger("GW170809") 
    mchirp = m.median1d('mchirp') 
    print(mchirp) 
 
    ifo = 'H1' 
 
    #Read data, remove low freq, content 
    data = catalog.Merger("GW170809").strain(ifo) 
    data = highpass_fir(data, 15, 15) 
     
    #Calculate the noise spectrum 
    psd = interpolate(welch(data), 1.0 / data.duration) 
         
    #Whiten 
    white_strain = (data.to_frequencyseries() / psd ** 0.5).to_timeseries() 
 
    #remove some of the high and low 
    smooth = highpass_fir(white_strain, 35, 15) 
    smooth = lowpass_fir(white_strain, 150, 15) 
     
    #Time shift and flip 
    if ifo == 'L1': 
        smooth *= -1 
        smooth.roll(int(.007 / smooth.delta_t)) 
     
    zoom = smooth.time_slice(m.time - 0.085, m.time - 0.035) 
    zero_crossings = numpy.where(numpy.diff(numpy.sign(zoom)))[0] 
 
    zero_times = [] 
    for i in zero_crossings: 
        zero_times.append(zoom.sample_times[i]) 
 
    delta_zeroes = [] 
    for i in range(len(zero_times) - 1): 
        delta_zeroes.append(zero_times[i + 1] - zero_times[i]) 
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    frequencies = [] 
    for i in delta_zeroes: 
        frequencies.append(float((1 / (i * 2))**(-8/3))) 
 
    decimal_times = [] 
    for i in zero_crossings: 
        decimal_times.append(zoom.sample_times[i] - 
floor(zoom.sample_times[i])) 
 
    decimal_avg_times = [] 
    for i in range(len(zero_times) - 1): 
        decimal_avg_times.append(float((decimal_times[i + 1] + 
decimal_times[i])/2)) 
 
    max_frequency = 1/(2*min(delta_zeroes)) 
    print(max_frequency) 
    #datetime.datetime.now().second 
    #print(delta_zeroes) 
    #print(frequencies) 
    #print(decimal_avg_times) 
    #print(whitened) 
 
    if z == 1: 
        pylab.plot(smooth.sample_times, smooth, label=ifo) 
        pylab.xlim(m.time - 0.3, m.time + 0.05) 
        pylab.ylim(-100, 100) 
        pylab.ylabel('Strain') 
        pylab.xlabel('GPS Time (s)') 
        pylab.legend() 
        pylab.title("Filtered/Bandpassed Strain Data for GW170814 - H1") 
        pylab.show() 
 
    return frequencies, decimal_avg_times 
 
def gravitational_function_GW170809_L1(z): 
    m = catalog.Merger("GW170809") 
    mchirp = m.median1d('mchirp') 
    print(mchirp) 
 
    ifo = 'L1' 
 
    #Read data, remove low freq, content 
    data = catalog.Merger("GW170809").strain(ifo) 
    data = highpass_fir(data, 15, 15) 
     
    #Calculate the noise spectrum 
    psd = interpolate(welch(data), 1.0 / data.duration) 
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    #Whiten 
    white_strain = (data.to_frequencyseries() / psd ** 0.5).to_timeseries() 
 
    #remove some of the high and low 
    smooth = highpass_fir(white_strain, 35, 15) 
    smooth = lowpass_fir(white_strain, 150, 15) 
     
    #Time shift and flip 
    if ifo == 'L1': 
        smooth *= -1 
        smooth.roll(int(.007 / smooth.delta_t)) 
     
    zoom = smooth.time_slice(m.time - 0.11, m.time - 0.053) 
    zero_crossings = numpy.where(numpy.diff(numpy.sign(zoom)))[0] 
 
    zero_times = [] 
    for i in zero_crossings: 
        zero_times.append(zoom.sample_times[i]) 
 
    delta_zeroes = [] 
    for i in range(len(zero_times) - 1): 
        delta_zeroes.append(zero_times[i + 1] - zero_times[i]) 
 
    frequencies = [] 
    for i in delta_zeroes: 
        frequencies.append(float((1 / (i * 2))**(-8/3))) 
 
    decimal_times = [] 
    for i in zero_crossings: 
        decimal_times.append(zoom.sample_times[i] - 
floor(zoom.sample_times[i])) 
 
    decimal_avg_times = [] 
    for i in range(len(zero_times) - 1): 
        decimal_avg_times.append(float((decimal_times[i + 1] + 
decimal_times[i])/2)) 
 
    max_frequency = 1/(2*min(delta_zeroes)) 
    print(max_frequency) 
    #datetime.datetime.now().second 
    #print(delta_zeroes) 
    #print(frequencies) 
    #print(decimal_avg_times) 
    #print(whitened) 
 
    if z == 1: 
        pylab.plot(smooth.sample_times, smooth, label=ifo) 
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        pylab.xlim(m.time - 0.3, m.time + 0.05) 
        pylab.ylim(-100, 100) 
        pylab.ylabel('Strain') 
        pylab.xlabel('GPS Time (s)') 
        pylab.legend() 
        pylab.title("Filtered/Bandpassed Strain Data for GW170814 - L1") 
        pylab.show() 
 
    return frequencies, decimal_avg_times 
 
gravitational_function_GW170809_L1(1) 
#gravitational_function_GW170809_H1(1) 
#gravitational_function_GW170814_L1(1) 
#gravitational_function_GW170814_H1(1) 
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APPENDIX B: R Code 

library(reticulate) 
library(tidyverse) 
library(ggplot2) 
library(glue) 
library(gridExtra) 
 
c = 3*10^8 #Speed of light [m][s^-1] 
G = 6.6743*10^(-11) #Gravitational constant [m^3][kg^-1][s^-2] 
M_sun = 1.9891*10^30 #Mass of sun [kg] 
 
setwd("~/Desktop/Honors Thesis Project") 
gobj <- import('gravitational_object_function_old') 
 
#Importing data 
frequency_data_GW170814_H1 <- 
gobj$gravitational_function_GW170814_H1(integer(1)) 
frequency_data_GW170814_L1 <- 
gobj$gravitational_function_GW170814_L1(integer(1)) 
frequency_data_GW170809_H1 <- 
gobj$gravitational_function_GW170809_H1(integer(1)) 
frequency_data_GW170809_L1 <- 
gobj$gravitational_function_GW170809_L1(integer(1)) 
 
data.frame( 
  time = frequency_data_GW170814_H1[[2]], 
  frequency = frequency_data_GW170814_H1[[1]] 
) -> merger_GW170814_H1 
 
data.frame( 
  time = frequency_data_GW170814_L1[[2]], 
  frequency = frequency_data_GW170814_L1[[1]] 
) -> merger_GW170814_L1 
 
data.frame( 
  time = frequency_data_GW170809_H1[[2]], 
  frequency = frequency_data_GW170809_H1[[1]] 
) -> merger_GW170809_H1 
 
data.frame( 
  time = frequency_data_GW170809_L1[[2]], 
  frequency = frequency_data_GW170809_L1[[1]] 
) -> merger_GW170809_L1 
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#Trimming data 
 
#merger_GW170814_H1 = merger_GW170814_H1[-c(), ] 
#merger_GW170814_L1 = merger_GW170814_L1[-c(), ] 
#merger_GW170809_H1 = merger_GW170809_H1[-c(), ] 
#merger_GW170809_L1 = merger_GW170809_L1[-c(), ] 
 
gravfit1.m <- lm(frequency ~ time, data = merger_GW170814_H1) 
gravfit2.m <- lm(frequency ~ time, data = merger_GW170814_L1) 
gravfit3.m <- lm(frequency ~ time, data = merger_GW170809_H1) 
gravfit4.m <- lm(frequency ~ time, data = merger_GW170809_L1) 
 
slope_coefficients <- c(coef(gravfit1.m)[2], coef(gravfit2.m)[2], coef(gravfit3.m)[2], 
coef(gravfit4.m)[2]) 
 
 
chirp_mass <- vector("integer", 4) 
for(i in seq_len(4)) { 
  chirp_mass[i] <- ((slope_coefficients[i]*(-5/256)*(pi)^(-
3/8))^(3/5)*(1/G)*(c^3))/M_sun 
} 
chirp_mass 
 
ggplot( 
  data = merger_GW170814_H1,  
  aes(x = time, y = frequency) 
) +  
  geom_point() +  
  labs( 
    x = "Time (s)", y = expression("(Frequency (Hz))"^(-8/3)), 
    title = glue("Frequency vs Time for GW170814"), 
    subtitle = glue("H1 Data") 
  ) +  
  geom_abline(aes(intercept = coef(gravfit1.m)[1],  
                  slope = coef(gravfit1.m)[2])) -> x1 
 
ggplot( 
  data = merger_GW170814_L1,  
  aes(x = time, y = frequency) 
) +  
  geom_point() +  
  labs( 
    x = "Time (s)", y = expression("(Frequency (Hz))"^(-8/3)), 
    title = glue("Frequency vs Time for GW170814"), 
    subtitle = glue("L1 Data") 
  ) +  
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  geom_abline(aes(intercept = coef(gravfit2.m)[1],  
                  slope = coef(gravfit2.m)[2])) -> x2 
 
ggplot( 
  data = merger_GW170809_H1,  
  aes(x = time, y = frequency) 
) +  
  geom_point() +  
  labs( 
    x = "Time (s)", y = expression("(Frequency (Hz))"^(-8/3)), 
    title = glue("Frequency vs Time for GW170809"), 
    subtitle = glue("H1 Data") 
  ) +  
  geom_abline(aes(intercept = coef(gravfit3.m)[1],  
                  slope = coef(gravfit3.m)[2])) -> x3 
 
ggplot( 
  data = merger_GW170809_L1,  
  aes(x = time, y = frequency) 
) +  
  geom_point() +  
  labs( 
    x = "Time (s)", y = expression("(Frequency (Hz))"^(-8/3)), 
    title = glue("Frequency vs Time for GW170809"), 
    subtitle = glue("L1 Data") 
  ) +  
  geom_abline(aes(intercept = coef(gravfit4.m)[1],  
                  slope = coef(gravfit4.m)[2])) -> x4 
 
big1 <- grid.arrange(x1, x2, x3, x4, ncol = 2) 
 
summary(gravfit1.m) 
summary(gravfit2.m) 
summary(gravfit3.m) 
summary(gravfit4.m) 
 
ggsave("figure5.png", plot = big1, width = 8, height = 5) 

 
 
 
 
 
 
 
 
 



 35 

AUTHOR’S BIOGRAPHY 

 Jarrod E. Rudis was born in Bethlehem, PA and has lived both there and 

Washington state in his elementary school years before ending up in Berwick, ME for the 

rest of grade school. He graduated from Noble High School in 2018. His love of Star 

Trek and desire for understanding of the universe led him to study Physics and 

Mathematics at the University of Maine Orono, where he is a dual degree in Physics and 

Mathematics. 

 After graduation, Jarrod intends to take a break from being a student before 

pursuing a graduate degree in physics.  


	Utilizing Post-Newtonian Expansion to Determine Parameters of Compact Binary Black Hole Mergers
	Microsoft Word - Jarrod_Rudis_Honors_Thesis.docx

