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The Influence of anthropogenic activities on lake water quality is well documented, but how 

those influences interact with the effects of natural features, such as watershed geology or lake 

morphometry, has been less explored. Further, some aspects of lake condition are influenced by factors 

that are not lake or watershed specific, but occur across large regions, such as weather patterns. All 

these factors may be interrelated in some instances, which can complicate lake condition assessments 

which have the purpose of determining how lakes are being affected by human activities. This 

dissertation investigates how lake assessments can integrate the interactions among natural features of 

lakes, their watersheds, and anthropogenic influences. Chapter 1 discusses the variety of factors that 

may affect lake condition and how those influences may confound lake condition assessments. Chapter 

2 details the creation of a hydrogeomorphic lake classification, based on ecoregions and lake depth, that 

partitioned lakes into groups that share similarities in background water quality condition. In chapter 3, 

a logistic regression model is described that uses maximum depth and relative lake area beneath the 

epilimnion to predict which low-nutrient lakes (total phosphorus < 15 µg/L) may exhibit naturally-

occurring anoxia. In chapter 4, water clarity patterns from different types of reference lakes (detailed in 

chapter 2) were modeled to allow for comparisons between yearly water clarity values in non-reference 



 

 
 

lakes and a reference baseline that shifts over time. Cumulative precipitation during the lake 

stratification season was the primary driver of yearly differences in background lake water clarity. In 

chapter 5, methods were developed to measure the effect of anthropogenic shoreland disturbance on 

the condition of littoral habitat. Multi-metric indices based on various habitat measures were 

established that determine if the littoral habitat is different from a natural reference condition. Chapter 

6 summarizes the research in this dissertation and offers potential foci of future lake research in Maine. 

The overall goal of this dissertation was to advance our collective understanding of how lakes may be 

variably affected by natural and anthropogenic factors, thereby allowing for better-informed lake 

assessments and the development of more comprehensive, achievable lake management goals. The 

research presented herein underscores the importance of considering the interactions of multiple cross-

scale factors when evaluating lake condition, especially those related to landscape traits that influence 

runoff water chemistry, natural lake-specific features such as basin morphometry, large-scale weather 

patterns, and localized shoreland development.  
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CHAPTER 1. INTRODUCTION 

Lake Assessment in Maine 

Lake assessments are completed in order to determine the condition of lakes, either for a single 

point in time or to evaluate whether lake condition is stable or changing through time. Lake assessments 

commonly focus on parameters related to the trophic condition and water chemistry of lakes. Trophic 

condition measures relate to how much biological productivity is occurring in the lake and may be used 

to determine if a lake is likely to experience a potentially harmful algae bloom. Trophic condition is 

generally assessed with water samples that are tested for chlorophyll-a (the pigment found in algae 

cells) or phosphorus (the nutrient that generally limits algae growth in northeast U.S. lakes), or with 

Secchi Disk Transparency (SDT, a measure of lake clarity that correlates to both chlorophyll-a and 

phosphorus) readings. Lake water chemistry is assessed to determine the status of other factors that 

relate to various lake dynamics, such as water temperature, dissolved oxygen, acidity, and dissolved 

organic carbon. Understanding how these various parameters are influenced by features of the lake’s 

watershed, weather patterns, and local anthropogenic factors is necessary for interpreting lake data 

accurately and making sound lake management decisions. Regular monitoring of lake condition, 

throughout the yearly ice-off period and over multiple years, contributes greatly to an understanding of 

lake processes and how lake condition is affected by the surrounding environment.  

The earliest records of lake monitoring data collected in Maine are from 1938; systematic 

monitoring of Maine’s lakes started in earnest in 1970 by the Maine Department of Environmental 

Protection (DEP; ME DEP 2015). Since then, >1,000 volunteer and professional scientists have actively 

monitored Maine’s lakes, providing data necessary for lake condition assessments. Monitoring 

methodology has been largely consistent during this time because of coordinated training and program 

management efforts by the Maine DEP and the Lake Stewards of Maine. As a result, current lake 
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researchers now have a unique opportunity to examine decades of lake monitoring data for purposes 

beyond general condition assessments and trend analysis. There is potential to learn more about how 

Maine’s lakes function in general, and to develop new tools that will inform future lake assessment 

efforts. By combining lake monitoring data with other datasets, such as land cover, geological 

information, and lake morphology, it is possible to learn more about how lakes respond to variability in 

their surrounding landscapes. This is especially relevant when trying to determine which aspects of lake 

condition may be attributable to natural watershed features (e.g., bedrock and surficial geology), 

anthropogenic factors (e.g., conversion of riparian forest to residential development), or lake 

morphology (e.g., maximum depth).  

The landscape of Maine is considerably diverse both in patterns of human settlement and 

features of the natural landscape. The state has a land area of 91,647 km2 and its elevation ranges from 

sea level to 1,608 m. Land use in the state is highly variable, ranging from relatively unpopulated forest 

(northwestern quadrant), to common dairy and cropland agriculture (<100 km from coast and the 

northeast), to urban and suburban development (largely southern and coastal). All the state was 

glaciated, but land currently below ~128 m above present sea level contains nutrient-rich marine-

derived clay, which has implications for both agricultural activity and lake productivity. Consequently, 

the diversity of the Maine landscape has variable effects on lakes in the state, depending upon where 

the lakes are geographically located and how much human alteration has occurred in their watersheds. 

These interacting factors can confound interpretations of lake monitoring data, as many interacting 

natural and anthropogenic factors must be considered for lake data to be evaluated in the proper 

context. 

The mission of the Lakes Assessment Section of the DEP is to monitor and assess the status of 

Maine lakes under the auspices of the federal clean water act (33 U.S.C §§ 1251 et seq) and the Maine 

water quality statute for lakes (MRS 38, §465-A). It is also charged with making informed assessments of 
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lake condition and helping resource managers make sound decisions to support lake health and 

rehabilitation. These tasks become increasingly difficult without a clear understanding of the 

comparative influence between naturally-occurring phenomena and human-induced changes in lakes 

and their watersheds. To address these knowledge gaps, we performed four research studies: three that 

leveraged decades of lake monitoring data available in the Maine lakes database, and one that 

developed new methods to evaluate an under-studied but important component of lake condition. The 

overall goal of this dissertation is to advance the collective understanding of Maine lakes in general and 

to provide tools for more comprehensive condition assessments. These studies focus on:  

1. The effects of natural features of landscapes and watersheds on lake condition, and the 

interaction between natural features and human alteration in the watershed;  

2. The role of lake morphometry in the development of seasonal hypolimnetic anoxia; 

3. Differentiating between regional vs. local effects on lake water clarity trends; and  

4. How shoreland disturbance affects the natural condition of littoral habitat. 

 

Interpreting Lake Monitoring Data: Natural vs. Anthropogenic Influences 

Maine lakes occur across gradients in natural characteristics of their landscapes such as surficial 

and bedrock geology, soil types, topography, watershed hydrology, proximity to the ocean, atmospheric 

deposition, climate trends, and elevation. These natural features of lake watersheds influence the 

biological condition of lakes through nutrient availability, organic matter processing, primary 

production, and the shaping of chemical environments (Omernik 1977, Prairie and Kalff 1986, Norton et 

al. 1989,  D'Arcy and Carignan 1997, DeVito et al. 2000, Soranno et al. 2015). 

Excess phosphorus (P, the limiting nutrient in most temperate lakes; Wetzel 2001) that causes 

accelerated eutrophication is the principal cause of impairment that affects Maine lakes, either directly 
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or indirectly (Maine DEP 2018). Phosphorus can enter stormwater runoff and reach lakes via many 

pathways including soil erosion, shoreland development, excess fertilizer application (which may also 

add N03 or NH4, two other limiting nutrients), untreated storm water, and inadequately treated sewage 

or industrial effluent in the watershed. Various land use practices can produce variable rates of P export 

into lakes and their tributary waters (Dennis 1986, Petrone 2010, Soranno et al. 2015, Chen et al. 2016). 

Extra P in lakes generally leads to declines in water clarity and the promotion of nuisance algal growth. 

These detrimental effects may lead to further water quality problems such as lake anoxia, habitat 

degradation, diminished recreational opportunities, threatened drinking water supplies, and reductions 

in property values (Michael et al. 1996).  

While the occurrence of excess P in Maine lakes is most commonly exacerbated by human 

activities, the bedrock and surficial material composition of watersheds, susceptibility of watershed soils 

to physical or chemical weathering, and concentration of dissolved organic carbon (DOC) play integrated 

roles in the P concentration and resulting trophic condition of lakes. Lake morphometry (e.g., surface 

area, maximum depth) can affect the dynamics of nutrient processing as a function of residence time 

and thermal resistance to mixing. This may be relevant to whether a lake experiences seasonal anoxia in 

the hypolimnion and, consequently, whether sediment P is released because of that anoxia. The effects 

of climate change (warmer air temperatures, more frequent and heavier precipitation events; 

Fernandez et al. 2020) on Maine lakes may differentially affect lakes with various morphological traits, 

especially as morphology relates to lake volume and residence time. The effects of climate change may 

also influence lake variably in different areas of Maine due to landscape-scale watershed characteristics, 

potentially related to the erodibility and nutrient content of watershed soils, later winter ice-on, or 

earlier spring ice-off. Secchi depth transparency (SDT) trends over time, which is the primary evaluation 

method that ME DEP uses for water quality statute attainment for Maine lakes, can reveal temporal 

changes in lake clarity that are not necessarily specific to an individual lake, such as change attributed to 
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regional precipitation patterns or changes in air temperature (Schindler et al. 1996, Read and Rose 2013, 

Rose et al. 2017). 

Lakes may be variably affected by other anthropogenic influences besides P concentration. Road 

salt (NaCl) is applied throughout the northeast US for winter ice management, and its use is logically 

more concentrated in urban areas (Kaushal et al. 2005). Runoff containing excess road salt can salinize 

lakes (Dugan et al. 2017), but road salt in watershed soils exchanges Ca and Mg for Na, thereby 

increasing the export of Ca and Mg into lakes (Sutherland et al. 2018). While Cl can be toxic to aquatic 

life at high concentrations (Coldsnow and Relyea 2018) and change plankton community composition at 

sublethal concentrations (Greco et al. 2021, Hintz et al. 2022), increases in lake Ca can create suitable 

habitat for infestations of exotic invasive bivalves that require higher Ca levels for shell creation (Davis et 

al. 2015). Application of road salts can also affect the recovery of lakes and soil from the effects of acid 

rain; the increase in available Na from road salts increases the export of Ca and Mg from soils, despite 

declines in atmospheric SO4 deposition which also extracts Ca and Mg (Rosfjord et al. 2007).  

The conversion of lake shorelands from natural vegetation to residential development is often 

cited as a contributing factor to cultural eutrophication of lakes because of increased land erosion and 

loss of nutrient retention capacity of riparian vegetation, whether development is considered in the 

watershed (Dennis 1986), along riparian corridors (Soranno et al. 1996), or as development density 

along lakeshores (Garrison and Wakeman 2000, Garrison et al. 2010). However, recent research has 

highlighted the detrimental effects of lake shoreland disturbance specifically on littoral habitat, 

specifically in the northeast US (USEPA 2009, 2016; Kaufmann et al. 2014a).  

The following topics have been developed in Chapters 2, 3, 4, and 5:  
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Landscapes and Watersheds, and their Effect on Lake Condition 

The mechanisms of watershed P mobilization and bioavailability in Maine lakes vary across 

geological and hydrological settings. Dillon and Kirchner (1975) found that P export from watersheds 

differed greatly between igneous and sedimentary geology-dominated watersheds. This was evident in 

both forested watersheds and agricultural watersheds, with sedimentary watersheds exporting higher 

and greater ranges of P concentrations. Precipitation patterns, which can vary widely across Maine 

(USDA 2012a), are linked to stormwater runoff that has direct association with P loading to surface 

waters (Soranno et al 1996). P export is also related to catchment size (Prairie and Kalff 1986) and 

topography (D'Arcy and Carignan 1997). The potential for lake P loading is closely related to the 

hydrologic setting; DeVito et al (2000) showed that lakes with close groundwater connections were 

likely to have the greatest increase in lake P concentration and that catchment wetlands can be effective 

at mitigating P export into lakes.  

Reinhardt et al. (2004) found that increases in stream water total P were coincident with 

increased discharge and depressed pH. The total P in stream water was strongly associated with P 

adsorbed to particulate Al and Fe, with the Al and P entering the stream in dissolved form from the 

more acidic forest soils. Al and P were dissolved in the acidic soil, mobilized Al was precipitated in the 

stream, and then mobilized P was adsorbed to the Al. At circum-neutral pH, increases in P export from a 

Maine watershed with eroding agricultural soils rich in adsorbed P encountered higher pH in the stream 

environment where groundwater (with a pH in the low 7 range) degassed CO2 in the stream, raising the 

pH to low- to mid-8s, and desorbing P from stream sediment (McDonald et al. 2019). The adsorption 

capacity of soil for dissolved P increases at lower pH and decreases at higher pH. 

The condition of some Maine lakes is influenced by the presence of Presumpscot Formation soils 

in their watershed. These marine-derived sediments were deposited on now emergent land when ocean 

water inundated the area after deglaciation, up to what is currently 128 m above Maine’s current 
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coastline, between about ca. 15,000 - 14,000 years BP (referred to as the marine limit; Thompson and 

Borns 1985). These sediments presently occur in low relief areas and are easily eroded. Presumpscot 

soils contain the mineral apatite (Ca5(PO4)3(OH)); apatite from any rock type or surficial material is the 

principal natural source of P in lakes (Norton et al. 2019). In Maine coastal regions, agricultural land and 

population centers commonly co-occur with the Presumpscot Formation. Furthermore, lake P 

concentration in Maine is positively correlated with the presence of Presumpscot soils, wetlands, 

agriculture, and human disturbance in watersheds (Nieratko 1992, Doolittle 2018). 

While it is not feasible to conduct geochemical studies of each lake and its watershed in Maine, 

it is possible to focus on a few landscape attributes that influence the trophic condition of lakes because 

of similarities in hydrogeological settings. This approach is useful for aggregating lakes into groups that 

may have similar baseline water conditions, and also similar responses to anthropogenic disturbance in 

the watershed. This approach also facilitates the designation of minimally-disturbed reference lakes, 

which provide suitable comparisons for the expected conditions of different types of lakes (Stoddard et 

al. 2006, Herlihy et al. 2013).  

Lake Morphometry and its Effect on Anoxia 

Lake morphometry can affect various aspects of lake P metabolism (Taranu and Gregory-Eaves 

2008), and one important connection may exist between lake morphometry and the occurrence of 

seasonal anoxia in the hypolimnion. Dissolved oxygen (DO) depletion can occur in the hypolimnion of 

lakes when the respiration rate, from the aerobic decomposition of organic matter, exceeds the rate of 

DO replenishment from photosynthetic activity or lake mixing. This can diminish or eliminate habitat for 

oxygen respiring organisms and cause the release of P from lake sediment into water via the reduction 

of iron hydroxide (Wetzel 2001). In addition to morphometry, DOC concentrations can influence the 

stability of lake stratification and associated DO; lakes with elevated DOC concentration can be more 

strongly stratified, which increases hypolimnetic DO depletion caused by greater isolation of bottom 
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water, enhanced decomposition of organic matter, and heightened DOC photo-oxidation rates 

(Hutchinson 1957, Knoll et al. 2018). 

Lake hypolimnetic anoxia (DO < 2 mg/L) is generally intensified in lakes with high algal growth 

and organic detrital input, both of which contribute to high nutrient availability. However, lakes in 

watersheds with minimal human development may exhibit seasonal anoxia because of morphometry 

(Molot et al. 1992), acidic DOC exported from watershed wetlands (Nürnberg 2004), or both. Many lakes 

in Maine experience seasonal anoxia despite minimal nutrient enrichment. Seasonal anoxia has been 

observed in 647 of 951 surveyed Maine lakes during peak summer stratification (1 August – 7 

September), despite relatively low epilimnetic TP concentrations in most Maine lakes during this period 

(median = 9.0 µg/L, 25th percentile = 6.5 µg/L, 75th percentile = 13.0 µg/L; ME DEP 2015). Thus, some 

Maine lakes may experience hypolimnetic anoxia during peak stratification due to factors unrelated to 

enhanced nutrient inputs from anthropogenic sources. 

The occurrence or absence of seasonal anoxia in lakes influences lake conditions year-round. For 

accurate interpretations of lake condition and the development of sound management objectives, it is 

important to determine if a lake is exhibiting anoxia because of natural features of the lake or if the 

anoxia is caused or exacerbated from excess nutrients originating from anthropogenic activities in the 

watershed. 

Regional vs. Local Effects on Lake Condition   

Water clarity, as measured with Secchi disk transparency (SDT), is a ubiquitously used and 

inexpensive water quality metric. The measurement is simple to collect, such that it can be completed 

with minimal expense and training, and the metric correlates to many other lake variables. In most 

temperate lakes, SDT correlates to trophic measures such as total P and chlorophyll-a, as well as 

suspended sediment and Colored Dissolved Organic Matter (CDOM) (Brezonik et al. 2019). SDT is highly 

useful for long-term lake monitoring because it provides a measure reflecting lake and watershed 
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disturbance at the local scale, such as changes in nutrient additions, watershed erosion, and 

resuspension of shallow lake sediment (Soranno et al. 2015, Gunn et al. 2001). Because of the robust 

utility of information generated and the ability of data to be collected frequently by trained volunteers, 

SDT trends are the primary evaluation tool in water quality statute attainment decisions for Maine lakes 

(ME DEP 2015). However, SDT temporal trends can also reflect changes in factors affecting lake 

condition that are not specific to an individual lake, such as regional precipitation patterns or air 

temperature (Schindler et al. 1996, Read and Rose 2013, Rose et al. 2017).  

A declining SDT temporal trend may be falsely attributed to local factors in cases where a lake is 

only showing a regional response to weather patterns. Alternatively, SDT trends showing stable or even 

decreasing water clarity may not reveal regional trends caused by positive influences on water clarity 

because local factors, such as watershed erosion, may overpower the regional pattern (Rose et al. 2017). 

As factors affecting lake water clarity interact at multiple spatial and temporal scales, the differentiation 

of cross-scale influences on water clarity is essential for informed interpretation of lake clarity data and 

any resulting management decisions.  

Shoreland Development and its Effect on Littoral Habitat 

National Lake Assessment (NLA) surveys evaluate the quality of littoral and lakeshore habitat by 

enumerating the types and coverage extents of various components of habitat features in the littoral 

zone (woody structure, inorganic substrate types and features, macrophyte beds, undercut banks, etc.) 

as well as the riparian area (layers and types of terrestrial vegetation). Poor habitat quality is generally 

less complex and may be missing components that are important to various types of lake-dependent 

biota. In the 2007 NLA, the USEPA (2009) identified that 36% of US lakes had poor lakeshore (riparian 

and littoral) habitat. In the Northern Appalachian ecoregion, in which Maine is located, 57% of lakes had 

moderate or high levels of lakeshore disturbance, and 55% of lakes had fair or poor littoral habitat 

condition. The 2012 NLA showed similar results as the 2007 survey, showing 51% of US lakes were in fair 
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or poor condition for lakeshore habitat. In New England lakes, 28% and 18% of lakes were in poor 

condition for lake habitat complexity and littoral habitat, respectively (USEPA 2016). 

These NLA survey findings showed that lakeshore disturbance, and its resulting effects on littoral 

habitat, is a major concern for lakes in the Northeast US (USEPA 2009, 2016; Kaufmann et al. 2014a). 

This identified a gap in the available lake assessment tools in this region, as systematic approaches to 

littoral habitat condition evaluation are not commonly practiced. This is especially relevant in Maine, 

where lake habitat condition is specifically addressed in a water quality statute, stating that lake 

“habitat must be characterized as natural” (MRS 38, §465-A). “Natural” is defined in statute as “living in, 

or as if in, a state of nature not measurably affected by human activity” (MRS 38, §466), but methods to 

measure the effect of human activity on lake littoral habitat have not been established. 

Disturbance in lake watersheds and along shorelines is generally included as a contributing 

factor to lake eutrophication (Soranno et al. 1996, Dennis 1986, Garrison and Wakeman 2000, Garrison 

et al. 2010), but methods to isolate its effect on littoral habitat quality have not been incorporated into 

assessments of lakes in Maine. By developing methods to do so, an assessment gap may be filled and an 

important provision in the Maine water quality statutes may be fully addressed. With this assessment 

capability, lake resource managers will be better able to prioritize efforts to rehabilitate lakeshores and 

improve littoral habitat condition where that intervention is needed most.  

Summary of Chapters 

A common theme in this dissertation was the development of tools that help to inform lake 

assessments by enhancing the ability to differentiate between natural and anthropogenic factors that 

influence lakes. To investigate various aspects of lakes and their watershed that affect lake condition, 

the following four studies were pursued: 
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1) Chapter 2, Landscapes and watersheds (Deeds et al. 2020): This study describes a 

Hydrogeomorphic-based lake classification, tested with mixed-effect linear models, that was 

used to determine which natural features of lakes and their watersheds show the greatest 

influence on lake condition. This classification allows for the establishment of water quality 

benchmarks to determine if lakes are meeting their expected thresholds for lakes in reference 

(minimally developed) or altered (heavily developed) watersheds based on the unique qualities 

inherent to each type of lake. 

Needs addressed: Categorizing lakes by common landscape traits that affect water quality in 

similar ways and defining expected data ranges based on levels of human watershed 

disturbance will help interpret monitoring data by providing context for lake data with respect 

to the important natural and anthropogenic features of their watershed. 

2) Chapter 3, Lake Morphometry (Deeds et al. 2021a): We developed a predictive logistic 

regression model that uses lake morphometry and stratification variables to estimate the 

likelihood of hypolimnetic anoxia occurring in low-nutrient (TP < 15 µg/L) Maine lakes. We 

tested the predictive potential of variables related to basin morphometry, positioning of lake 

thermal strata, epilimnetic TP, and DOC. We found that maximum lake depth and the percent of 

lake area below the epilimnion provided the most robust model.  

Needs addressed: Understanding which natural lake variables, outside of nutrient 

concentration, help to predict the occurrence of anoxic conditions will aid in the interpretation 

of lake data that show seasonal anoxia. This distinction will help prioritize management and 

remediation efforts by determining if hypolimnetic anoxia is a result of natural lake 

characteristics or human activities.  
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3) Chapter 4, Regional vs. Local Effects (Deeds et al. 2021b): We used smoothed mixed-effect 

generalized additive model curves derived from temporal Secchi disk transparency data 

collected from minimally-disturbed Maine reference lakes over time to serve as a dynamic 

baseline for changes in regional water clarity through time. Mann-Kendall Tau trend analyses on 

the residual differences between the reference baseline data and yearly Secchi data in non-

reference lakes were used to assess the trends from the non-reference lakes by accounting for 

regional variability and focusing the assessment on local-scale changes in lake water clarity. A 

dynamic factor analysis revealed that cumulative precipitation during the lake stratification 

season explained the greatest amount of variability in reference lake water clarity in this 

dataset. 

Needs addressed: It is often challenging to determine if variations in Secchi disk clarity trends in 

lakes over time are due to regional background factors (e.g., weather) or localized watershed 

alterations (e.g., anthropogenic land development). The use of baseline trends of expected 

water clarity values from minimally disturbed reference lakes will facilitate better-informed 

interpretations of clarity trend data for individual lakes. 

4) Chapter 5, Shoreland Disturbance (Deeds et al., to be submitted to Lakes and Reservoir 

Management): We developed an assessment methodology within the framework of the 

National Lake Assessment (NLA) that supports the evaluation of littoral habitat for individual 

lakes based on comparison to a natural reference condition. We used data from NLA littoral 

habitat surveys to create multi-metric indices with linear discriminant models that predict the 

likelihood each lake meeting the expected reference condition for littoral habitat. Linear 

discriminant model scores from individual sites were used to create 95% bootstrapped 

confidence intervals that placed lakes into categories of natural, intermediate, or impaired for 

littoral habitat.  
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Needs addressed: Residential development on lakeshores adversely affects littoral habitat, but 

there currently is not a widely used method to determine if habitat impairment is occurring in 

individual lakes. Maine’s water quality statute for lakes states that “habitat must be 

characterized as natural,” signifying a regulatory need for an assessment methodology 

addressing habitat condition. The ability to isolate shoreland development as a specific stressor 

to lakes with systematic evaluations of littoral habitat will facilitate the prioritization of 

shoreland condition rehabilitation on lakes that need it most. 

 

The research included in this dissertation will help to elucidate the differences in lake condition 

that may be attributed to natural features of the landscape versus changes to the landscape induced by 

human alteration. This was done by leveraging data from hundreds of thousands of lake monitoring 

events that have occurred over several decades, as well as developing new assessment methods, to 

better understand the network of interacting factors that influence the condition of Maine lakes. 
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CHAPTER 2. A HYDROGEOMORPHIC AND CONDITION CLASSIFICATION FOR MAINE, USA, LAKES 

Chapter Abstract 

The water quality of lakes is influenced by natural landscape features, anthropogenic watershed 

activities, and local-scale characteristics of lake basins. Lake assessment for water quality standards is 

enhanced by a lake classification framework that allows for comparison of lakes of similar types and the 

creation of benchmark water quality values from reference lakes. Conventional lake classifications, such 

as those based on trophic state alone, commonly do not incorporate the natural features of the 

landscape or lake-specific characteristics that influence lake condition. We present a Hydrogeomorphic 

(HGM)-based lake classification, tested with linear mixed effects modeling, to determine which natural 

features of lakes and their watersheds show the greatest influence on lake condition. A priori 

classification schemes were created for model testing using combinations of various HGM features. 

Model strength was evaluated based on ability to predict mean lake total phosphorus and specific 

conductivity values. Aggregated Level IV Ecoregions stratified by two categories of maximum lake depth 

offered the most robust lake classification. We defined condition classes of reference, intermediate, and 

altered lakes based on the gradient of developed watershed area that is unique to each lake class. This 

approach to lake classification has implications for any region or study, as HGM variables relevant to the 

population of lakes of interest may be tested for efficacy in a variety of schemes to suit the goals of the 

classification. 

Introduction 

Lakes in Maine are distributed along environmental gradients that reflect differences in surficial 

and bedrock geology, soil types, topography, watershed hydrology, proximity to the ocean, atmospheric 

deposition, climate patterns, terrestrial vegetation, and elevation, all of which have a role in the export 

of phosphorus (P) into lakes (Omernik 1977, Prairie and Kalff 1986, Norton et al. 1989,  D'Arcy and 

Carignan 1997, DeVito et al. 2000, Soranno et al. 2015). Gradients of these environmental factors 
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influence the biological condition of lakes through the availability of nutrients, processing of organic 

matter, primary production of autotrophs, and regulation of chemical habitat in lakes.  

Excess P in Maine lakes is the cause, either directly or indirectly, of impairment due to 

accelerated cultural eutrophication (Maine DEP 2018). P can enter runoff to lakes through many 

mechanisms, including soil erosion, excess fertilizer application, unmitigated storm water, and 

improperly treated sewage and industrial effluent. Different land uses have variable export rates of P 

into surface waters (Petrone 2010, Soranno et al. 2015, Chen et al. 2016). Excess P in lakes generally 

creates nuisance algal growth that may lead to lake anoxia and habitat degradation, undesirable 

recreation conditions, threatened drinking water supplies, and reduced property values (Michael et al. 

1996). 

Some Maine lakes are affected by the presence of marine-derived sediments (known as the 

Presumpscot Formation) in their watershed. These sediments were deposited on now emergent 

landscape when ocean water inundated the land up to 128 m above present-day sea level after 

deglaciation, well inland from the current coastline, between about 15,000 - 14,000 years BP (called the 

marine limit; Thompson and Borns 1985) (Figure 2.1). These sediments occur in low relief areas, are 

easily eroded and transported, and contain apatite (Ca5(PO4)3(OH)), an important source of P to lakes 

(Norton et al. 2019). Much of Maine’s agricultural land and population settlements are sited on the 

Presumpscot Formation. Mean P concentration in Maine lakes correlates positively with the presence of 

the Presumpscot Formation, wetland area, agriculture, and human disturbance in watersheds (Nieratko 

1992).  
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Conversion of watershed land area from natural land cover to agricultural, urban, or residential 

land can adversely affect water quality from a loss of stormwater infiltration and increased erosion of 

watershed soils (Fraterrigo and Downing 2008, Taranu and Gregory-Eaves 2008). Agricultural areas and 

the associated application of P-rich fertilizers or livestock waste contribute excess P to watersheds, 

elevating the trophic state of lakes (Jones et al. 2001, Jones et al. 2004, Taranu and Gregory-Eaves 2008, 

Nielsen et al. 2012). Urban or suburban development can lead to increased trophic state in lakes from 

municipal or private septic sewage effluent (Muscutt and Withers 1996) and increased erosion of P-

carrying sediment resulting from increased impervious surface area (Newman et al. 2006, Merugu and 

Seetharaman 2013). Application of road salt to mitigate winter icing can have lasting effects on the 

chemistry of watershed soils and lakes, resulting in increased concentration of ions in lake water 

 

Figure 2.1. Potential location of marine-derived sediments in Maine (shaded area). The area of post-

glacial marine inundation extends from modern sea level to approximately 85 m elevation. 
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(Sutherland et al. 2018), especially Cl- which can be toxic to aquatic life (Nandana et al. 2013). Increased 

Cl- concentrations in lakes can also disrupt seasonal mixing regimes, leading to persistent hypolimnetic 

anoxia (Dupuis et al. 2019). Lakes in urban or suburban areas also may have elevated total dissolved 

solids, hardness, and alkalinity (Merugu and Seetharaman 2013).  

The effect of natural and anthropogenic features of watersheds on lake water quality are 

commonly interrelated. Fraterrigo and Downing (2008) and Nielsen et al. (2012) highlight the 

importance of interactions among watershed land use, the nutrient transport capacity of individual 

watersheds, and lake water quality. Lakes that have watersheds with high capacity for nutrient 

transport, where nutrients are readily conveyed overland to receiving waters (Fraterrigo and Downing 

2008), are influenced by nutrient inputs far from the lake more than lakes in watersheds with low 

capacity to transport nutrients. Lakes in watersheds with low transport capacity may only be influenced 

by land use conditions close to the lakeshore. Nutrient transport capacity is affected by watershed 

geology, soil types, and hydrologic connectivity (Fraterrigo and Downing 2008). Taranu and Gregory-

Eaves (2008) demonstrated that watershed agriculture influences all lakes, and shallow lakes are more 

susceptible to P enrichment than deeper lakes. 

There are several approaches to lake classification. Trophic-based classifications (i.e., 

oligotrophic, mesotrophic, eutrophic), historically used in many state programs, are useful for describing 

nutrient levels and the variety of biological assemblages that may exist in a group of lakes (e.g., 

Uttormark and Wall 1975). Biological classifications use biotic community data to identify lake types 

based on similar assemblages of plants or animals (e.g., Neale and Rippey 2008). Habitat-based 

classifications are used to define the biological potential in lakes of similar types based on lake-level 

habitat evaluations (e.g., Olivero-Sheldon and Anderson 2016). However, a limitation of classification 

schemes such as these is the necessity of obtaining field data. If data availability is limited, this reduces 

the number of lakes in the classification-building dataset; uncharacterized lakes may only be assigned to 
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classification groups after new data have been collected. Another limitation of these classifications is 

that lake type assignments may be subject to interpretation or may change altogether if trophic status 

or habitat conditions evolve, allowing lakes to move between designations. While the approaches to 

classification discussed above may be suitable for some lake management needs, a classification used 

for assessments related to water quality standards must have clear, unchanging distinctions among 

types. For this purpose, a successful lake classification: 

1. creates groups of lakes that are similar, using clearly-defined features that do not change; 

2. establishes reference conditions and expected water quality ranges; 

3. can be applied to lakes with little or no sampling data; 

4. provides a well-defined classification scheme that promotes interpretation and 

communication of water quality assessments.  

An alternative to habitat- or sample-based approaches is a classification that incorporates 

Hydrologic (e.g., landscape drainage), Geologic (e.g., soil types and parent material), and/or 

Morphological (e.g., depth) characteristics of lakes (Martin et al. 2011). Such an HGM classification 

integrates multiple lake and watershed characteristics that influence lake condition. Geographic 

characteristics can group lakes that have similar central tendencies in water quality data (Cheruvelil et 

al. 2008). Morphological variables help describe lake-to-lake variation of in-lake processes and water 

quality but can miss unifying features of lakes at larger spatial scales. A true HGM approach, combining 

lakes from areas of similar landscapes with morphological variables may offer the best classification 

system for water quality assessment purposes (Martin et al. 2011, Soranno et al. 2015). 

An HGM lake classification framework supports lake water quality assessment and management 

programs by 1) assisting data interpretation; 2) simplifying management decisions by grouping similar 

lakes that may respond predictably to similar management approaches, and 3) establishing conditions 
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for reference water quality values (Stoddard et al. 2006, Herlihy et al. 2013). Developing waterbody 

classifications and determining appropriate reference conditions increases understanding of lake and 

watershed processes by describing how lakes of similar type respond to changes in their watersheds. 

We propose three condition classes within each HGM lake type: 

1. Reference lakes have watershed condition and water quality that are closest to undisturbed, 

or “natural” condition. Water quality parameters in these lakes indicate the least disturbed 

condition for a lake type in a region (e.g., Stoddard et al. 2006). This condition class will help 

define what ‘natural’ water quality conditions should be for different types of lakes.  

2. Intermediate Lakes indicate the normal range of conditions that most lakes show, after 

some watershed alteration. The designation of an “intermediate” lake condition will provide 

expected water quality parameter values for the majority of lakes within each type. 

3. Altered lakes are in watersheds that represent the most anthropogenically disturbed for 

their respective classification type. Water quality parameters reflect diminished lake 

condition, and will inform lake assessments and management strategies by characterizing 

poor lake water quality conditions for different types of lakes. 

There are two goals of the classification presented herein. First, to define lake types based on 

HGM variables that have similar natural conditions and are affected by changes in their watershed in 

similar ways. This is done by evaluating several a priori HGM classification models for their strength of 

classification with linear mixed effects modeling based on water quality response variables. Second, we 

developed a Watershed Quality Index (WQI) to define reference, intermediate, and altered watershed 

condition classes for all HGM lake types. 
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Methods 

Study Area 

Maine has a land area of 91,647 km2 and approximately 2800 lakes > 4 ha. Elevation ranges from 

sea level to 1608 m. Six United States Geological Survey (USGS) Hydrologic Unit Code 4 (HUC4) drainage 

areas (mean land area approx. 14,000 km2) fall within Maine (USGS et al. 2013; Figure A.1a). The 

northwestern quadrant of the state is relatively unpopulated. The northern and northwestern interior 

has a history of timber harvesting and re-growth. Dairy and cropland agricultural operations are largely 

within 100 km of the coast, and in the northeastern part of the State. These land uses were historically 

more extensive and are common throughout the populated portion of Maine. The state’s urban centers 

are located primarily in southern and coastal areas, as well as along the main stems of its larger rivers.  

Datasets 

Lake Data - Data for Maine lakes were obtained and summarized from the Maine Lakes 

Database (Maine DEP 2004). The data were collected by state agency staff, certified volunteer monitors, 

and other collaborators from 1472 stations on 1060 lakes (representing surveys on 84% of lake surface 

area in Maine for lakes >4 ha). Data were screened for time period (1988-2017) and frequency 

(minimum 3 y of sample data per water quality parameter), resulting in 735 sampling stations in 592 

lakes. Large lakes or lakes with multiple basins generally have more than one sampling station. Water 

quality data are based on integrated epilimnetic core samples collected during summer stratification 

and analyzed for trophic indicators (chlorophyll-a, Chl; total phosphorus, TP; and Secchi disk 

transparency, SDT), specific conductivity (SpCon), and alkalinity (Alk). All water quality data were log-

transformed for statistical analyses. All statistical analyses were performed with R software, version 3.6 

(R Core Team 2013). 

Hydrogeomorphic (HGM) Data - Five geographical schemes were used to reflect hydrogeologic 

variations across Maine: 1) USGS HUC4-level areas which represent major river basins or aggregations of 
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smaller coastal drainages (Figure A.1a); 2) level III and 3) level IV Ecoregions (Figures A.1b and c, 

respectively), which are areas of land with similar geology, soils, climate, land use, vegetation, and 

hydrology (Omernik and Griffith 2014; Omernik 1987, 1995 and 2004); 4) Maine’s Biophysical regions, 

which are areas of land with similar vegetation and landscape features (McMahon 1990) (Figure A.1d); 

and 5) the marine limit (Figure 2.1). To combine similar HUC4 areas, Level IV Ecoregions, and Biophysical 

regions, a hierarchical cluster analysis was performed on these regionalization schemes using median 

values for lake TP and SpCon in each sub-region with the “cluster” package in R (Maechler et al. 2019) 

(Ward’s method, Euclidian distance, Figure A.2). These two variables were used because they are related 

to mutually independent stressors for lakes: TP for nutrient enrichment and SpCon for urban and 

residential watershed development. Adjacent sub-regions that clustered together were grouped 

together (Figure A.1e-g). HUC4 areas were also combined into an alternative Ecological Drainage Unit 

(EDU) scheme to represent major drainage areas in Maine (Figure A.1h). The marine limit (Figure 2.1) 

was used to separate lakes into those with potential for Presumpscot Formation in their watersheds and 

those without. A final scheme was tested that separated the St. John River Drainage in northern Maine 

(Figure A.1h) from the rest of the state above the marine limit. 

Lake surface area and maximum depth were used for morphological parameters as they are 

both easily measured and available for most Maine lakes. Surface area values were derived in GIS from 

the National Hydrography Dataset (NHD; USGS et al. 2013). Two lake size categories were established 

based on the median surface area for all Maine lakes > 4 ha (median = 50 ha). Maximum depth values 

are based on bathymetric surveys (Maine Geolibrary 2011a). Lakes were placed into two depth 

categories based on the mean SDT for Maine lakes (~5 m); lentic waters deeper than twice the mean 

SDT (10 m = the photic zone; French et al. 1982) were designated as deep lakes, waters ≤10 m deep 

were designated as shallow lakes.  
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Watershed Condition Data 

Large-scale characteristics of land area related to human land use settlement were associated 

with each lake’s direct drainage area (DDA) in GIS. Lake DDAs differ from watersheds in that they 

exclude upstream lakes and their DDAs. The DDAs were used in this analysis because they showed the 

strongest correlations between watershed condition data and lake water quality variables, stronger than 

total watershed area or isometric buffer areas around lake shorelines.  

The Maine Land Cover Dataset (MELCD) covers all of Maine at 5 m spatial resolution, providing 

suitable resolution for statewide land cover data (Maine Geolibrary 2006). Impervious cover (IC) data 

were generated by the Maine Office of GIS with IMPERV, a raster dataset that quantifies impervious 

cover across Maine at 5 m resolution (Maine Geolibrary 2005). Impervious areas include buildings, 

roads, and parking lots. Census blocks are small geographic areas delineated by other mapped features 

(e.g., roads, rivers, political boundaries) by the U.S. Census Bureau that represent similar densities of 

population and housing units (Maine Geolibrary 2011b). The census blocks determine population 

statistics for specific areas. MELCD, IC, population, and housing unit density data were aggregated for 

individual DDAs using GIS.  

To determine the effect of watershed condition on various classification schemes, the 

percentage of undeveloped land (TotUnd) in each DDA was calculated by subtracting developed land 

areas from the total area (MELCD land cover classes: urban/residential: High, Medium, and Low 

Intensity Development, Roads; agricultural/timber harvest: Crops, Hay, Clearcut, and Blueberry). TotUnd 

values were used to exclude the 25% of lakes with the most heavily developed watersheds from 

classification development, thereby emphasizing natural landscape factors that differentiate Maine’s 

lakes (USEPA 2000). After excluding the most heavily developed watersheds, the number of lakes used 

for the models were 295 and 279 for TP and SpCon, respectively. 
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Classification Development 

Lake classification groupings based on various combinations of HGM variables were evaluated 

with linear mixed effect models using the “lme4” package in R (Bates et al. 2015). We used the HGM 

variables as random effects on the intercept of each model (Zuur et al. 2009). Model intercepts were 

allowed to vary by HGM lake class. TP and SpCon were used as response variables in separate models. 

Overall model strength was evaluated based on Akaike Information Criterion (AIC), which provides an 

estimation of model strength, based on the number of model parameters and the log-likelihood of the 

model. The corrected AIC (AICc) accounts for model fit and complexity and is corrected for small sample 

sizes. A smaller AICc indicates a better-fit model (Cheruvelil et al. 2008). AICc values and other model 

averaging parameters were calculated with the “AICcmodavg” package (Mazerolle 2017) for each 

grouping scheme separately for TP and SpCon models. Analyses of variance (ANOVAs) and Tukey HSD 

post-hoc tests were performed to determine which lake types were significantly different within each 

classification. 

After the final classification scheme was chosen, TotUnd was used to create a watershed quality 

index (WQI), enabling the placement of lakes in condition classes. Because the intensity and types of 

human disturbance vary across Maine, values of TotUnd were arcsin square-root transformed and 

rescaled 0-1 independently for each lake type. The arcsin square-root transformation is effective for 

proportional data because it accentuates differences among untransformed values as they approach 0 

or 100%. This is important due to the high portion of DDAs in Maine that are largely undeveloped. This 

transformation enabled the WQI to accentuate differences in watershed condition unique to each lake 

type that influence lake water quality. Small differences in land cover percentages are particularly 

important concerning impervious surfaces, where slight increases in impervious area have significant 

effects on water quality and aquatic biota (Danielson et al. 2016). WQI thresholds to categorize 

condition classes were based on watershed condition, not lake water quality data, so that lake water 
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quality value ranges indicative of the least- and most-disturbed watershed condition specific to each 

lake type could be determined. Three versions of condition class thresholds were tested based on 10th, 

25th, 75th, and 90th percentiles of the distribution of WQI values. The low and high ends of the WQI 

distribution served as thresholds for Altered and Reference lakes, respectively (version one: 10th/90th 

percentiles, version two: 25th/75th, version three: 25th/90th). Lakes that fell between threshold values 

were categorized as Intermediate lakes. Two-way ANOVAs were used for TP and SpCon separately to 

determine which WQI threshold values differentiated condition classes best among lake types, with 

water quality as the response variable and lake type and condition class as predictors with interaction.  

Results 

Lake Water Quality and Watershed Condition 

Trophic measures of TP, Chl, and SDT were correlated (|R| ≥ 0.5), as were Alk and SpCon (Table 

2.1). Alk and SpCon showed the strongest correlations to watershed condition variables, particularly 

measures of agricultural and impervious area. The metric of TotUnd showed the strongest inverse 

correlations to lake TP and SpCon. Therefore, TotUnd was used to evaluate classification groupings for 

relatedness to trophic condition and water chemistry.  

Classification Scheme Selection 

Models were tested for 10 geographic area schemes, then the morphological variables of depth, 

size and depth + size combined were added to each scheme. Models with only morphological variables 

were tested as well, resulting in 43 a priori lake classification schemes (Table 2.2). The number of lake 

types in each scheme ranged from two (DepthCat) to 51 (Level4 + DepthCat + SizeCat). AICc values 

ranged from -232 to -125 (TP) and -178 to -124 (SpCon). The top 10 models for TP and SpCon, based on 

AICc, are in Table 2.3. Lower AICc values mean that the water quality parameters are more similar within 

a single lake type than other lake types in a particular classification scheme.  
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Aggregated Level IV Ecoregion Groups (Figure 2.2) stratified by depth category (Eco4 + Depth) 

was the overall strongest classification model for TP (Table 2.3). This was followed by Eco4 + Depth + 

Size (ΔAICc = 2.07). The remaining TP models are comparatively unsuitable with ΔAICc values >10. The 

strongest SpCon models were Eco4, Eco4 + Size (ΔAICc = 1.47), and Eco4 + Depth (ΔAICc = 2.06). Eco4 + 

Depth was chosen as the final lake classification scheme due to high AICc ranking for both TP and SpCon. 

This classification was supported by significant differences among lake types for water quality values 

identified by ANOVA results (TP:  F4,290 = 25.013, p < 0.001; SpCon: F4,274= 11.398, p < 0.001; Figure 2.3). 

These “Maine Lake Regions” delineated by the Eco4 + Depth classification reflect differences in geology 

and land use (Table 2.4), and climate (Table 2.5) across the state. 

Watershed Quality Index (WQI) and Condition Class Development  

Watershed condition criteria were established for each Eco4 + Depth lake type. TotUnd had the 

strongest inverse correlation to TP and SpCon lake data among tested metrics (Pearson’s R = -0.500 and 

-0.625, respectively; Table 2.1) and was consequently used for delineating watershed condition classes.  

TotUnd was arcsin square root transformed and re-scaled to 0-1 for each lake type. This new 

value, Watershed Quality Index (WQI), is distinct from the homogenous statewide TotUnd metric. WQI 

distributions for each lake type were visually inspected with histograms. WQI Version 3 (25th/90th 

percentiles) was the strongest model based on F-values of the predictors and the interaction effects for 

both TP and SpCon (lake type*WQI v. 3; TP:  F8,434 = 3.95, p <0.001; SpCon: F8,404 = 4.50, p <0.001) (Table 

A.1). Tukey HSD post-hoc tests showed numerous significant differences among WQI v. 3 condition 

classes within lake types (Figure 2.4). Threshold TP and SpCon values, serving as benchmarks for 

reference and altered lake condition, were assigned based on the mean values from the corresponding 

condition classes for each lake type (Table 2.6). Shallow and deep lakes in the Northern region were 

treated in one category for condition classes due to low sample size. 
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Table 2.1. Pearson’s R correlation matrix of water quality parameters and watershed condition data. 

Values ≥0.5 and ≤-0.5 are in bold; n = 465 lakes. 

Parameters Alk SpCon TP Chl SDT 

Water Quality 
Parameters 

Alkalinity -- -- -- -- -- 

Specific Conductivity 0.729 -- -- -- -- 

Total Phosphorus 0.476 0.479 -- -- -- 

Chlorophyll-a 0.383 0.422 0.863 -- -- 

Secchi Disk Transparency -0.369 -0.356 -0.866 -0.770 -- 

Lake 
Morphometry 

Lake Maximum Depth -0.076 -0.133 -0.560 -0.373 0.643 
Lake Surface Area 0.115 -0.080 -0.155 -0.078 0.199 

Census Data 
Estimated DDA Population 0.371 0.449 0.250 0.251 -0.131 

Estimated DDA Housing Units 0.317 0.296 0.120 0.141 -0.026 

Roads 
DDA road density  0.100 0.254 0.058 0.044 0.074 

DDA total road length 0.307 0.188 0.062 0.097 0.012 

Land Cover 
Classes (MELCD 

and IMPERV) 

High Intensity Development 0.178 0.388 0.193 0.194 -0.137 

Medium Intensity Development 0.175 0.410 0.225 0.220 -0.158 

Low Intensity Development 0.233 0.475 0.220 0.201 -0.116 

Open Space 0.240 0.327 0.167 0.144 -0.187 

Crops 0.566 0.492 0.432 0.390 -0.285 

Deciduous Forest 0.096 -0.014 0.030 -0.006 0.067 

Hay/Pasture 0.495 0.576 0.450 0.388 -0.274 

Herbaceous Vegetation -0.109 0.075 -0.104 -0.077 0.067 

Evergreen Forest -0.130 -0.123 -0.201 -0.100 0.094 

Mixed Vegetation 0.151 0.167 0.060 0.049 -0.048 

Scrub/Shrub Vegetation 0.031 0.097 -0.067 -0.034 -0.019 

Roads & Runways 0.076 0.378 0.053 0.059 0.061 

Forested wetlands 0.214 0.201 0.327 0.306 -0.364 

Wetlands 0.046 -0.036 0.268 0.285 -0.326 

Shore -0.089 -0.127 -0.133 -0.091 0.106 

Bare land 0.032 0.178 0.083 0.111 -0.051 

Open Water -0.039 -0.111 -0.144 -0.086 0.151 

Blueberry fields -0.064 -0.069 -0.049 -0.077 0.043 

Clear-cut timber harvest area 0.129 -0.013 -0.080 -0.130 0.010 

Light/partial cut timber harvest 0.047 -0.142 -0.046 -0.096 0.003 

Heavy/partial cut timber harvest -0.237 -0.283 -0.215 -0.232 0.157 

Forest regeneration area 0.088 -0.145 -0.046 -0.047 -0.003 

Impervious Surfaces 0.185 0.572 0.187 0.168 -0.057 

Hi + Med + Low development 0.253 0.527 0.256 0.238 -0.144 

Forest area + wetland area -0.156 -0.079 -0.159 -0.095 0.128 

Agricultural area 0.549 0.583 0.456 0.390 -0.267 

Crops + Hay/Pasture 0.572 0.610 0.477 0.415 -0.286 

Total Undeveloped Land (TotUnd) -0.520 -0.625 -0.500 -0.437 0.290 
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Table 2.2. Lake classification schemes tested with linear mixed effect models for TP and SpCon. Maps of 

the various geographic schemes listed here are in Figures 2.1, 2.2 and A1. 

Model # Model Parameters # Lake Types Geographic/ Morphometric Scheme 

1 SizeCat 2 small lakes: < 50 ha; large lakes ≥ 50ha 

2 DepthCat 2 shallow lakes: < 10 m; deep lakes ≥ 10 m 

3 DepthCat + SizeCat 4 DepthCat * SizeCat 

4 HUC4 6 

USGS HUC4 Drainage Areas (Fig S1a) 
5 HUC4 + DepthCat 12 

6 HUC4 + SizeCat 12 

7 HUC4 + DepthCat + SizeCat 24 

8 EDU 3 

Ecological Drainage Units (Fig S1e) 
9 EDU + DepthCat 6 

10 EDU + SizeCat 6 

11 EDU + DepthCat + SizeCat 12 

12 Biophysical 15 

Biophysical Regions (Fig S1d) 
13 Biophysical + DepthCat 29 

14 Biophysical + SizeCat 29 

15 Biophysical + DepthCat + SizeCat 50 

16 Level3 3 

Level III Ecoregions (Fig S1b) 
17 Level3 + DepthCat 6 

18 Level3 + SizeCat 6 

19 Level3 + DepthCat + SizeCat 12 

20 Level4 17 

Level IV Ecoregions (Fig S1c) 
21 Level4 + DepthCat 31 

22 Level4 + SizeCat 29 

23 Level4 + DepthCat + SizeCat 51 

24 Marine 2 

Marine Sediment/Non-Marine Sediment (Fig 
1) 

25 Marine + DepthCat 4 

26 Marine + SizeCat 4 

27 Marine + DepthCat + SizeCat 8 

28 MarineSJ 3 

Marine Sediment/Non-Marine Sediment + St. 
John River Basin 

29 MarineSJ + DepthCat 6 

30 MarineSJ + SizeCat 6 

31 MarineSJ + DepthCat + SizeCat 12 

32 Eco4 3 

Aggregated Level IV Ecoregions (Fig 2) 
33 Eco4 + DepthCat 6 

34 Eco4 + SizeCat 6 

35 Eco4 + DepthCat + SizeCat 12 

36 Biop 4 

Aggregated Biophysical Regions (Fig S1h) 
37 Biop + DepthCat 8 

38 Biop + SizeCat 8 

39 Biop + DepthCat + SizeCat 16 

40 HUC4_Agg 4 

Aggregated HUC4 Drainage Areas (Fig S1g) 
41 HUC4_Agg + DepthCat 8 

42 HUC4_Agg + SizeCat 8 

43 HUC4_Agg + DepthCat + SizeCat 16 
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Table 2.3. Linear mixed effect model results for predicting total phosphorus and specific conductivity. 

Model # Grouping Scheme K AICc ΔAICc ModelLik AICcWt Res.LL 

Total Phosphorus 
      

33 Eco4 + Depth 4 -232.74 0 1.00 0.73 120.44 

35 Eco4 + Depth + Size 5 -230.67 2.07 0.36 0.26 120.44 

13 Biop + Depth 4 -221.35 11.39 0.00 0.00 114.74 

37 Biop_Agg + Depth 4 -221.22 11.52 0.00 0.00 114.68 

15 Biop + Depth + Size 5 -219.28 13.46 0.00 0.00 114.74 

39 Biop_Agg + Depth + Size 5 -219.15 13.59 0.00 0.00 114.68 

29 MarineSJ + Depth 4 -214.93 17.81 0.00 0.00 111.53 

31 MarineSJ + Depth + Size 5 -212.86 19.88 0.00 0.00 111.53 

25 Marine + Depth 4 -211.46 21.28 0.00 0.00 109.80 

2 DepthCat 3 -209.80 22.94 0.00 0.00 107.94 

Specific Conductivity       

32 Eco4 3 -178.73 0 1.00 0.31 92.41 

34 Eco4 + Size 4 -177.26 1.47 0.48 0.15 92.70 

33 Eco4 + Depth 4 -176.67 2.06 0.36 0.11 92.41 

20 Level4 3 -176.27 2.46 0.29 0.09 91.18 

21 Level4 + Depth 3 -176.27 2.46 0.29 0.09 91.18 

22 Level4 + Size 3 -176.27 2.46 0.29 0.09 91.18 

23 Level4 + Depth + Size 3 -176.27 2.46 0.29 0.09 91.18 

35 Eco4 + Depth + Size 5 -175.18 3.55 0.17 0.05 92.70 

28 MarineSJ 3 -160.17 18.56 0.00 0.00 83.13 

29 MarineSJ + Depth 4 -159.33 19.40 0.00 0.00 83.74 
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Table 2.5. Mean area-weighted monthly climate data summarized for the three Maine Lake Regions 

delineated by the Eco4 + Depth classification (Figure 2.2). Data from USDA-NRCS (2012a-c). 

Lake 
Region 

Avg Precip 
(mm) 

Avg Min 
Temp (°C) 

Avg Max 
Temp (°C) 

Coastal 116.8 1.2 12.3 

Inland 114.6 -0.7 10.8 

Northern 105.7 -1.6 9.5 

 

Table 2.4. Land area percentages of surficial geology and land cover types in each of the three Maine Lake 

Regions delineated by the Eco4 + Depth classification (Figure 2.3). 

Surficial Geology (500K) Type Coastal Interior Northern 

Beach deposits 0.0 0.0 0.0 

Bedrock 1.1 5.9 1.3 

Emerged beach deposits 0.0 0.0 0.0 

End moraine 0.5 0.0 0.1 

Eolian deposits 0.2 0.0 0.0 

Eskers 1.8 1.3 0.2 

Glacial outwash deposits 0.6 1.0 1.2 

Glaciomoraine deposits (coarse-grained facies) 4.5 0.4 0.0 

Glaciomoraine deposits (fine-grained facies) 25.3 0.8 0.0 

Ice-contact glaciofluvial deposits (exclusive of eskers) 2.8 1.5 1.5 

Lake-bottom deposits 0.2 0.3 0.3 

Ribbed moraine 0.0 4.1 0.1 

Stagnation moraine 0.0 0.0 9.7 

Stream alluvium 0.9 0.6 1.6 

Swamp, marsh, and bog deposits 3.6 4.6 3.6 

Thin drift, undifferentiated 1.6 0.2 3.8 

Till 56.9 79.1 76.4 

MELCD (2004) Type    

Urban/Residential 6.52 1.29 1.25 

Agriculture 8.20 1.04 5.79 

Timber Harvest 8.28 15.94 15.69 

Forest/Wetland 70.83 74.50 74.84 

Barren/other 0.90 0.53 0.18 

Water 5.27 6.71 2.24 
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Figure 2.2. Level IV Ecoregions of Maine and the boundaries of aggregated ecoregions resulting from 

cluster analysis.  The aggregated ecoregions serve as geographical boundaries for the Eco4 + Depth 

classification scheme, partitioning lakes into Coastal, Inland and Northern regions. Individual Level IV 

Ecoregions are labeled and demarcated with dashed lines within each of the three main regions. 
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Figure 2.3. Boxplots for TP (A) and SpCond (B) for lake classes in the Eco4 + Depth scheme. DL = Deep 

Lakes (≥10 m maximum depth), SL = Shallow Lakes (<10 m maximum depth). Statistically different 

groups are noted with different lowercase letters above each box (Tukey’s HSD, α = 0.05). Similar letters 

indicate non-significant differences. 
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Figure 2.4. Boxplots for lake type and condition class for TP (A) and SpCon (B). DL = Deep Lakes (≥10 m 

maximum depth), SL = Shallow Lakes (<10 m maximum depth). Results of Tukey HSD post-hoc analyses 

for within-type condition class distinctions are in text above plots. Alt = Altered, Int = Intermediate, Ref = 

Reference. Deep and Shallow lakes from the Northern region were combined due to low sample size. 

Statistically different groups within each lake type are noted with different lowercase letters above each 

box (Tukey’s HSD, α = 0.05). Shared letters indicate non-significant differences within lake types. 

A 
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Discussion 

The classification proposed here for Maine lakes addresses differences in natural lake condition 

as well as water quality changes due to anthropogenic activity in the direct watershed. Primary 

advantages of this classification include: 

1. ease of interpretation, as the classification is based on ecoregional boundaries and one simple 

morphological metric - maximum lake depth; 

2. lake type assignment is possible without complex or long-term monitoring data;  

3. water quality gradients among lake classes are defined using conventional monitoring 

parameters; 

Table 2.6. Threshold values for TP and SpCond for deep and shallow lakes in reference and altered condition 

classes for each lake type. Values are based on mean values from reference shallow and deep lakes from each 

type (±SE). Water quality values for reference lakes are expected to be less than those listed in the reference 

columns below, and values for altered lakes are expected to be greater than those in the altered columns below. 

Intermediate lakes are expected to have values in between reference and altered. Deep and shallow lakes in the 

Northern region were combined for the condition class analysis due to small sample size. Full summary statistics 

from all lake types and condition classes are presented in Table A.1. *Indicates sample size of lakes with 

parameter data too small to calculate standard error (n<3). 

Lake Type 
Total Phosphorus (µg/L) Specific Conductivity (µS/cm) 

Reference  Altered Reference  Altered 

Coastal Deep Lakes 8.3 ± 0.7 13.4 ± 4 34.2 ± 3.2 66.3 ± 4 

Coastal Shallow Lakes 12.3 ± 1.4 18.5 ± 12 30 ± 4.2 80 ± 12 

Inland Deep Lakes 7.5* 10.3 ± 7.7 19.8* 40.4 ± 7.7 

Inland Shallow Lakes 6.4 ± 0.5 8.2 ± 2.9 30.4 ± 2.3 37.3 ± 2.9 

Northern Lakes 7.3 ± 1.7 48.4 ± 24 72.6 ± 22.9 146.6 ± 24 
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4. groupings that establish reference conditions, which are necessary for most water quality 

agency assessments (Table 2.6); 

5. reduction of statistical noise in future data analyses resulting from comparisons of lakes of 

dissimilar types.  

The Eco4 + Depth scheme shows statistical strength and practicality in implementation for lake 

assessments related to water quality standards. This lake classification reflects gradients in water quality 

variables that respond to different stressors: TP for trophic productivity and SpCon for salt 

concentration. Read et al. (2015) also found that specific conductivity was related to regional and basin-

specific conditions, whereas lake-specific features (e.g., basin morphometry) were most important in 

governing TP and other trophic variables. The effectiveness of maximum depth as a categorical variable 

in this classification supports Taranu and Gregory-Eaves (2008), who documented that shallow lakes are 

more susceptible to P enrichment than deeper lakes. 

Excess watershed P is generally the result of over-application of P-rich fertilizers and transport 

of soil particles via erosion; but lakes can be naturally higher in P because of geological factors such as 

the presence of marine silt and clay (Nieratko 1992). In Maine, lake specific conductivity values may be 

influenced by natural factors such as geology, proximity to the marine environment (Norton et al. 1989), 

and anthropogenic influences such as the application of road salt (Sutherland et al. 2018). The variety of 

potential stressors measured by these two water quality variables accentuates the utility of having a set 

of reference lakes for various classes of lakes that are known to have only minimal human alteration in 

their watersheds (Table 2.6).  

The Eco4 regions highlight landscape differences that affect lake water quality (Figure 2.2). The 

Coastal region corresponds with the area below the inland limit of marine sediment (Figure 2.1), where 

the Presumpscot Formation silt and clay contribute to the productivity of lakes. This region has the 
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greatest exposure to marine aerosols that can lower pH and mobilize Al and base cations in watershed 

runoff (Wright et al. 1988, Norton et al. 1989). This sea salt effect is compounded by the application of 

road salt in this most heavily developed area of Maine (Table 2.4). Sutherland et al. (2018) 

demonstrated that road salt can have lasting effects on cations in runoff and lakes due to soil ion 

exchange, similar to the effect of marine-derived salts. 

The Inland region is largely undeveloped, with mountainous terrain in the west and less 

irregular, and rolling topography in the east. The climate is cold in winter, which is meaningful for lakes 

because of the longer duration of winter ice cover (Hodgkins et al., 2002). Timber harvesting and 

recreation are the primary land uses (Table 2.4). Soils are generally acidic and coarse-loamy or loamy, 

although soils in some northern sections are poorly drained. Due to these landscape conditions and little 

human influence, lakes in the Inland region show less variation among condition classes than those in 

the other two regions (Figure 2.4).  

The Northern Region has the only widespread calcareous bedrock in the state, resulting in lakes 

with naturally high alkalinity and P concentrations in the eastern part of the region. The lakes in the 

western portion of this region have slightly lower alkalinity, but lake alkalinity is still higher in this area of 

the Northern region than in the other two lake regions (Griffith et al. 2009). Timber harvesting and 

recreation are the most common land uses in the west, and agriculture is highly prevalent in the east. A 

mixture of intense agriculture and remote wilderness in this region results in the widest ranges of water 

quality for any of the lake types in this classification (Figures 2.4, 2.5). 

The lake regions have disparate climatic conditions for both annual precipitation and 

temperature (Table 2.5). Temperature differences among these regions are substantial, causing 

variances in the length of winter ice cover and summer productivity season. The Coastal region has the 

warmest average minimum and maximum temperatures of the three regions. Sections of the Coastal 

region include the southernmost latitudes in Maine, and there is a moderating influence of the ocean on 
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winter air temperatures. These factors combine to create a comparatively shorter winter ice-over period 

in this region and therefore a longer period of summer bioproductivity. The Northern region has the 

coldest annual average temperatures and lowest annual precipitation of the three areas (USDA-NRCS 

2012a-c).  

The dataset of lakes used to build the classification excluded 25% of lakes with the most heavily 

developed watersheds. However, the resulting lake regions reflect population distribution patterns in 

Maine, most notably in the Coastal region (Figure 2.2). The most densely settled areas in Maine are near 

the coast, which is reflected in the population density of the Coastal region (43.8 people km-2 per 2010 

Census). Populations are more sparsely distributed in the Inland and Northern sections of the state (2.9 

and 3.1 people km-2, respectively). The population density that has developed in the Coastal region due 

to fertile land and proximity to coastal and larger riverine waters is likely compounding the influences of 

the natural landscape on lake water quality. 

Watershed Quality Index and Condition Classes 

The WQI was based on TotUnd because this metric was the strongest predictor of lake water 

quality condition based on linear regression models of watershed condition (Table 2.1). The TotUnd 

value was likely the strongest correlate for a statewide assessment because it excludes the most 

prevalent anthropogenically-created land cover types. The urban and residential development classes 

(High, Medium, and Low Intensity; Roads) address human activities in densely populated areas of the 

state, while Crops, Hay, Clearcut, and Blueberry land cover classes represent the agricultural and 

forestry practices that are most influential on water quality in the less-populated areas. 

Our condition classes revealed significant differences in SpCon and TP between reference and 

altered classes for most lake types at α=0.05 (Figure 2.4). Coastal lakes showed significant differences 

for SpCon between all reference, intermediate, and altered condition classes, demonstrating the effects 

of high watershed development in this densely populated region of Maine, especially on deeper, larger 
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lakes. Significant differences in water quality existed between altered and reference lakes for TP and 

SpCon in Coastal deep lakes, Coastal shallow lakes, Inland deep lakes, and Northern lakes, indicating that 

suitable reference lakes exist in these areas (Figure 2.4). A low number of Inland lakes (especially Inland 

shallow lakes) and generally lower concentrations of human urban or agricultural land development in 

this region likely led to non-significant differences in water quality values across watershed condition 

classes (Figure 2.4). This region has low population and little agriculture due to its mountainous terrain 

and less fertile soils. The Northern region shows a wide range in water quality values (Figures 2.3, 2.4; 

Table 2.6). This is partially due to calcareous geology and agricultural activity in the eastern portion of 

this area, resulting in high lake alkalinity and nutrient (N and P) concentrations. In contrast, surface 

waters in the more remote western portion of this area have lower alkalinity and little land use pressure 

other than timber harvesting (Griffith et al., 2009).  

The methods to determine thresholds of watershed development to define reference and 

altered conditions mirror the “ambient distribution” approach proposed in Stoddard et al. (2006), 

except that we used the ambient watershed condition (land use) to predict water quality values 

indicative of most- and least-disturbed conditions, rather than using ambient nutrient concentrations to 

predict biological condition. Herlihy et al. (2013) defined reference lakes for the U.S. National Lake 

Assessment through a process of screening water quality, land use, and aerial photographs. While that 

approach was appropriate for that study, we did not include water quality data in our condition 

classification, as that would have created an assumption of the expected natural ranges of water quality 

parameters for the various lake types. Despite differing approaches, our WQI thresholds of ≥90th 

percentile for reference lakes and <25th percentile for altered lakes are similar to the results of Herlihy et 

al. (2013), who defined site quality based on disturbance gradients of the least disturbed 15-25% and 

most disturbed 20-30% of sites, respectively.  
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Further work to refine and validate reference and altered lake designations could help 

strengthen water quality threshold values for the condition classes. For example, a screening process 

using dated aerial photography, as used by Herlihy et al. (2013), could provide verification of our 

condition classes based on current watershed condition at the time of lake surveys. This may be 

especially relevant for reference lakes in areas of Maine facing timber harvesting pressure, which can 

occur quickly over large portions of watersheds and have detrimental effects on lake water quality if 

managed poorly (Ahtiainen 1992, Steedman 2000, Wilkerson et al. 2010). 

Conclusions 

The HGM classification framework in this study is based on large-scale landscape patterns, 

defined by aggregated Level IV Ecoregions and the maximum depth of individual lakes. Both attributes 

influence the condition of lakes and water quality indicators. The distinctions used in this lake 

classification are easily made – ecoregional boundaries are well established, and maximum lake depths 

are easily measured. Even though lake depth may change episodically in lakes with managed water 

levels, best professional judgment can place any lake into deep or shallow depth categories.  

The goal of this classification was to build a framework with large-scale landscape features so 

that data may be applied consistently across a large region with a variable local landscape. However, it 

does not directly incorporate data on multiple factors that influence lakes at local scales but are much 

more resource-intensive to acquire at large scales, such as residence time, lake volume, sediment 

chemistry, susceptibility to anoxia, or human development on the immediate shoreline. The addition of 

such parameters may help refine future lake classifications if they can be applied at large scales.  

Maine’s lakes may differ from lakes in other regions in several ways. Most lakes in Maine were 

formed naturally by glacial processes. While many lakes are dammed to enhance and regulate water 

levels, there are relatively few lakes with substantial water level fluctuations. There are no Maine lakes 

with permitted effluent point-source discharges, except two federal fish hatcheries and one waste 
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water treatment facility in southern Maine. Other lake classification studies may have issues that were 

not necessary to consider here, such as lake-level management, water scarcity issues, intensely 

urbanized watersheds, or N-limited rather than P-limited productivity.  

While the HGM variables and water quality response parameters used in other lake 

classifications may differ, lake management needs and local water quality laws will dictate appropriate 

variables for analysis in other studies. In addition, relevant water quality response variables will differ 

according to classification goals. Regardless of HGM and response variables used, any variables can be 

tested for effectiveness in lake classification development using the approach described here.  

Establishing condition classes within lake types using measures of watershed development most 

relevant to the study region can help to inform water quality management decisions, such as comparing 

water quality values to an expected reference condition. In jurisdictions with multiple lake water quality 

class designations, this approach may help to define numeric water quality condition criteria for each 

class. As environmental agencies proceed towards developing biological criteria for lakes (e.g., with 

aquatic macrophytes, macroinvertebrates, or sediment diatoms), the availability of condition classes 

that are reflective of watershed condition and supported with descriptive water quality measures will be 

highly important in the development of those criteria. 
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CHAPTER 3. PREDICTING ANOXIA IN LOW-NUTRIENT TEMPERATE LAKES 

Chapter Abstract 

Absence of dissolved oxygen (anoxia) in the hypolimnion of lakes can eliminate habitat for 

sensitive species and may induce the release of sediment-bound phosphorus. Lake anoxia generally 

results from decomposition of organic matter, which is exacerbated by high nutrient loads. Total 

Phosphorus (TP) in lakes is regulated by static aspects of the lake’s watershed, but lake TP can be readily 

increased by human activities. In some low-nutrient lakes, basin morphometry may induce naturally-

occurring anoxia. The occurrence of natural anoxia is especially important to consider in lake water 

quality assessments that compare observed conditions to expected reference conditions. To investigate 

the occurrence of natural vs. anthropogenically-influenced anoxia, we constructed a logistic regression 

model to calculate the probability of low-nutrient lakes (TP < 15 µg/L) developing aerial anoxic extent ≥ 

10% by testing the predictive potential of variables related to basin morphometry, depths of lake 

thermal strata, epilimnetic TP, and dissolved organic carbon (DOC). Maximum lake depth and the 

proportion of lake area under the top of the metalimnion were the most important variables to predict 

the likelihood of hypolimnetic anoxia, which correctly predicted anoxic condition in 84% of lakes (Model 

1). Adding TP as a third variable to Model 1 produced a significantly improved model (Model 2) but the 

prediction success rate was comparable (86%). We also present a model for lakes with limited 

bathymetric data, which predicts anoxia with 81% accuracy based on maximum lake depth and mean 

thermocline depth at peak stratification. DOC was relatively low (mean = 4.3 ± 1.5 mg/L) in the study 

lakes and its inclusion did not improve model performance. In Model 1, lakes with an anoxic extent ≥ 

10% of lake area had significantly higher epilimnetic TP than lakes with oxic hypolimnia, regardless of 

prediction category or success. Our results indicate that including TP as a variable helps refine models 

based on morphometry alone, but lake morphometry and stratification dynamics are the most 
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important factors in the development of anoxic extent in low-nutrient temperate lakes. Our approach 

informs studies concerned with identifying key factors that influence regime shifts in a variety of 

ecosystems. 

Introduction 

Depleted dissolved oxygen (DO) concentrations in lake hypolimnia can diminish or eliminate 

available habitat and induce phosphorus (P) release from lake sediment into the overlying water 

through the reduction of oxidized iron (Fe) secondary phases (Wetzel 2001). Hypolimnetic DO declines 

when the respiration rate from aerobic decomposition of organic matter exceeds the oxygen 

replenishment rate from primary production or lake mixing. Lake anoxia (DO < 2 mg/L) is exacerbated in 

lakes with high nutrient concentrations; excess P promotes algal growth which adds to the detrital load 

and promotes anoxic conditions. In highly colored (dystrophic) lakes, elevated concentrations of 

dissolved organic carbon (DOC) can cause stronger thermal stratification and increased DO depletion 

from greater isolation of bottom waters, heightened decomposition, and increased DOC photo-

oxidation rates (Hutchinson 1957, Knoll et al. 2018). Lakes free from extensive watershed development 

may exhibit seasonal anoxia as a result of morphometry and acidic DOC exported from watershed 

wetland areas (Nürnberg 2004). Lake basin morphometry may be a primary driver of both DO depletion 

rates and the areal extent of anoxia in some low-nutrient lakes (Molot et al. 1992). TP, which we used as 

a filter for lake selection, is regulated by static aspects of the lake’s watershed that include bedrock and 

surficial geology, topography, and hydrology. However, human activity can easily alter the flux of TP 

from the watershed to the lake, inducing cascading and interrelated effects on lake ecology. It is 

necessary to determine if the drivers for lake anoxia are natural features of the system (i.e., lake basin 

morphometry) or due to increased nutrient input (potentially from anthropogenic sources) in order to 

make sound assessments of lake condition and appropriate management decisions. However, this is not 

always possible due to limited data availability. 
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Many studies have created models to predict the DO depletion rate in lake hypolimnia, in the 

general form of Areal Hypolimnetic Oxygen Demand (AHOD; Strom 1931). Most of these models involve 

a combination of measures related to nutrient load and lake morphometry (Hutchinson 1957, Reckhow 

1977, Welch and Perkins 1979, Charlton 1980, Cornet and Ringler 1980, Vollenweider and Janus 1982, 

Reckhow and Chapra 1983, Clark et al. 2002, Rippey and McSorely 2009, Müller et al. 2012, Schwefel et 

al. 2018). Other models have combined morphometry and nutrient load with hypolimnetic water 

temperature (Cornett and Rigler 1980), mean DO at spring turnover (Livingstone and Imboden 1996), or 

days from onset of summer stratification (Yuan and Jones 2020). However, studies that evaluate AHOD 

measure the net DO consumption rate until anoxia sets in, and not the areal extent of anoxic conditions 

after they develop fully following peak stratification. The areal extent of anoxia is the areal portion of 

the lake sediment covered with anoxic water, which has implications for the extent of sediment P 

release and deep-water or benthic habitat suitability. DO depletion rates are not correlated with the 

extent or duration of anoxia in a lake, as demonstrated by Nürnberg (1995). 

Reckhow (1977) developed a model that calculated the probability of anoxia based on lake 

morphometry (mean depth), hydrology (annual water load), and external TP load. The model predicted 

anoxia to occur when water load was small and external TP load was high. As a result, the model 

underestimates anoxia in low-nutrient lakes which may be anoxic for reasons other than high 

productivity (Nürnberg 1995). Molot et al. (1992) successfully predicted hypolimnetic DO concentrations 

at the end of summer (i.e., during peak stratification, when the thermal gradient between the 

epilimnion and hypolimnion is greatest) using lake morphometry, TP concentrations, and mean DO at 

spring turnover. They found that the lake volume to sediment area ratio was especially important in 

predicting the end-of-summer DO profiles in oligotrophic and oligo-mesotrophic lakes < 20 m deep. 

However, spring DO profiles can be difficult to collect or model, and many lake managers need a more 



 

43 
 

straightforward approach to evaluate risk of natural anoxia. Additionally, neither of these models were 

intended to predict the expected areal extent of anoxia. 

Nürnberg’s (1995) Anoxic Factor (AF), defined as the ratio of temporal and spatial extent of 

anoxic sediment to the lake surface area, is highly effective at quantifying the extent and duration of 

anoxia, but requires sequential collection of DO profiles for an accurate calculation. The need for weekly 

to monthly DO profiles for adequate resolution (Nürnberg 2004) may limit the utility of the AF, 

especially in regions with many under-surveyed lakes. Modeling AF using nutrient concentration and 

lake morphometry is an option (Nürnberg 2004), but a simpler approach to determine expected 

conditions with a predictive model may be advantageous in some circumstances. This is generally the 

case for assessments that require comparisons to natural conditions, particularly if datasets from many 

remote lakes are necessary to establish a reference dataset. A simple predictive model may be a 

beneficial alternative where such sampling efforts are not possible. 

In Maine lakes, anoxia has been observed in 647 of the 951 surveyed lakes (ME DEP, 2015) 

during peak stratification (defined here as 1 August – 7 September). However, most Maine lakes have 

relatively low epilimnetic TP concentrations during peak stratification (median = 9.0 µg/L, 25th percentile 

= 6.5 µg/L, 75th percentile = 13.0 µg/L). Thus, there may be many Maine lakes experiencing natural, as 

opposed to anthropogenically induced, hypolimnetic anoxia during peak stratification due to factors 

unrelated to nutrient concentration. Much limnological research focuses on impaired or eutrophic 

systems, while the majority of the world’s lakes exist at higher latitudes (45°-75°N; Verpoorter et al. 

2014) and are more likely to be nutrient limited (Abell et al. 2012). Maine lakes (43.0°- 47.3°N) are likely 

more similar to those of Canada and Scandinavia, which exist in similar climates, were glaciated, and 

many of which have largely undeveloped watersheds. 

Many lake water quality assessments are predicated based on the comparison of observed 

condition to natural (or reference) condition (Stoddard et al. 2006, Herlihy et al. 2013). Given the 
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importance of anoxia to overall ecosystem health and the variety of factors that influence its 

manifestation, it is necessary for comprehensive lake assessments to determine which lakes are 

predisposed to anoxia from natural conditions and which lakes are anoxic due primarily to excess 

nutrient concentration from anthropogenic activities. Most studies modeling DO depletion rate or the 

extent of anoxia in lakes combine measures of lake morphometry and nutrient concentration, which 

may not apply to low-nutrient lakes where anoxia may not be strongly influenced by the nutrient 

concentration.  

Our goal was to develop a predictive model that uses morphometric and stratification variables 

to estimate the probability of natural anoxia occurring in low-nutrient (TP < 15 µg/L) Maine lakes. More 

broadly, we seek to identify the most influential abiotic variables in the expression of a key ecosystem 

attribute that result in abrupt shifts in ecosystem structure and function. This is especially relevant when 

considering the role of natural vs. anthropogenically-influenced factors that affect habitat availability in 

pristine environments. 

Methods 

Study Area and Data Sources 

Maine (Figure 3.1A) has an area of 91647 km2. Elevation ranges from sea level to 1608 m. The 

entire state was glaciated by the Laurentide Ice Sheet until between 15000 and 10000 years ago, south 

to north (Thompson and Borns 1985). The climate is north-temperate. The present Köppen climate zone 

is humid continental (Dfb; Beck et al. 2018), characterized by cold snowy winters, warm summers, and 

precipitation distributed throughout the year (Kottek et al. 2006). There are nearly 2800 lakes > 4 ha. 

Population density is highest in the southern and coastal areas and near the mainstems of larger rivers. 
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Peak stratification temperature and DO profile data from 1989 to 2018 (n ≥ 3 y) were compiled 

from the deepest location of each lake. This time period captures the period of peak stratification in 

Maine lakes that ends before thermoclines start to erode, typically in late August to mid-September, 

north to south. This data screening step produced a dataset with 8070 profiles from 414 lakes (Maine 

Lakes Database, ME DEP 2015; Figure B.1). Profile data were typically taken from just below the water’s 

surface, every meter through the epilimnion and metalimnion, every other meter after 15 m, and every 

5 m below 25 m. If anoxia (DO < 2 mg/L) was observed, then one-meter profiles extended through the 

entire water column. Deepest measurements were 0.5 - 1 m above the lake bottom.  

Figure 3.1. (A) Location of Maine (solid black), and (B) location of randomly selected training (n = 192, 

80%) and validation (n = 43, 20%) lakes in model-building dataset. 
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Lake chemistry data were obtained from ME DEP (2015). TP and DOC samples were collected 

from an integrated epilimnetic core sample during peak stratification. TP and DOC are included in our 

statistical analysis (if sample years between 1989-2018 were n ≥ 3) to determine the role of nutrients 

and organic matter in lake anoxia (Knoll et al. 2018). While chlorophyll-a serves as a more direct 

measure of biological activity, TP was used here to facilitate comparisons to related studies that used TP 

as a measure of biological activity related to DO loss in lakes (Reckhow 1977, Molot et al., 1992, Clark et 

al. 2002, Rippey and McSorely 2009, Schewefel et al. 2017). In the current analysis, the use of TP and 

chlorophyll-a as measures of productivity were interchangeable, as each parameter produced similar 

model results. 

Data Processing 

Depths of the thermocline (horizontal plane of greatest temperature differential between 

adjacent layers) and the top and bottom of the metalimnion (depth interval with greatest water 

temperature gradient between the epilimnion and hypolimnion) were calculated for each profile in R (R 

Core Team 2019) using the rLakeAnalyzer package (Winslow et al. 2019). Rather than using only 

differences in water temperature between profile measurements to delineate stratification layer 

boundaries, rLakeAnalyzer calculates the position of strata based on temperature-derived water density 

estimates. The algorithm looks for the maximum change in water density between measurements and 

magnitudes of differences between adjacent depths to estimate depth values, rather than using only the 

difference in temperature between measured depths (Read et al. 2011). Lake profiles that did not have 

a developed thermocline (maximum temperature differential < 1°C below 1 m depth) were excluded 

from the analysis. Depths of the thermocline and the top and bottom of the metalimnion were averaged 

for each year in each lake, then a grand mean was calculated for the average position of each layer from 

each profile across all years in each lake. 
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Below the anoxia threshold (< 2.0 mg DO/L), sediment P that is bound to redox-sensitive Fe(III) 

compounds may be released into the water column, although the presence of adequate Al(OH)3 in the 

sediment can limit the release of P even under anoxic conditions (Kopáček et al. 2005, Lake et al. 2007, 

Wilson et al. 2008). The shallowest depth of anoxia that extended to the lake bottom was determined 

for each profile. 

Bathymetric data were obtained from the Maine Office of GIS (MEGIS 2011). This dataset is a 

collection of data from multiple sources. Most data were collected in the mid- to late-1900s and consist 

of depth measurements manually collected along transects. Data resolution varies by lake surface area 

(A0), ranging from 1.3 points/ha for small lakes (A0 ~ 4 ha) to 0.1 points/ha for larger lakes (A0 ~ 400 ha). 

Despite the coarseness of the data compared to the current technique of GPS-enabled sonar-captured 

bathymetry, the dataset includes data on such a large number of Maine lakes that it has substantial 

utility. 

Lake volumes were calculated using a model developed in ArcMap 10.6.1 (Esri 2017) for low-

resolution bathymetric data. This model most closely approximates volume calculations derived using 

high-resolution (average 2.5 points per ha) bathymetry from 14 Maine lakes (D. Buckley, unpublished 

data). Raster files were generated from the MEGIS bathymetric data using the Create IDW 

geoprocessing tool in ArcMap (settings: cell size = 10 m, power = 5, point search radius = 12). Zero-depth 

points were created along shorelines so as to not overweight the shallow water bathymetry points. The 

raster output was then clipped to the lake boundary using the Extract by Mask tool with lake polygons 

from the National Hydrography Dataset (USGS et al. 2013). Lake strata areas and volumes were derived 

in 0.1 m depth increments using the raster package in R (Hijmans 2019). 

Average depths of the thermocline and metalimnion (top and bottom) were associated with the 

area and volume values for the corresponding stratum for each lake based on bathymetry data. These 

values were combined with other basic lake morphometric measurements (total surface area, total 
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volume, maximum depth) to create 34 discrete morphological variables for testing in the logistic 

regression model (Table 3.1). Values for fetch (length of lake along the axis of prevailing winds – SW to 

NE during the maximum stratification period), MaxL (longest span of open water regardless of cardinal 

direction) and MaxW (longest span of open water perpendicular to MaxL) were calculated with the 

lakemorpho package in R (Hollister and Stachelek 2017). 

Only lakes with maximum depth (zmax) ≥ 10 m were used in the model-building dataset, 

excluding shallow polymictic lakes that would likely not exhibit anoxia without substantial nutrient 

enrichment (median thermocline for study lakes = 6.8 m; Table 3.1). Maximum depth was used as a 

screening criterion over a direct measure of stratification (such as Schmidt Stability; Schmidt, 1928) to 

widen the applicability of the model to lakes without detailed bathymetry or historic profile data. Lakes 

with mean epilimnetic TP > 15 µg/L during the peak stratification period were excluded from the 

analysis to limit the role of nutrient enrichment in the development of hypolimnetic anoxia. This value is 

supported by the model created by Molot et al. (1992) for oligotrophic and oligo-mesotrophic lakes, 

which predicts that lakes with epilimnetic TP > 15 µg/L will have depleted hypolimnetic DO at the end of 

summer. The final model-building dataset consisted of 235 lakes (Figure 3.1B).  

The depth of anoxia that was consistent to the bottom (thereby excluding DO minima with oxic 

conditions beneath) and the corresponding bathymetric stratum of each lake were used to calculate the 

potential maximum areal coverage of peak stratification anoxic water. Model results would likely be 

strengthened if anoxic extent were based on continuous profile data, so more accurate maxima may be 

determined, but this was not an option in this large-scale study that uses data from a large number of 

lakes.  
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Table 3.1 Variables tested in logistic regression model building analysis, with minimum, median and 

maximum values from the dataset (n = 235 lakes). Units are noted in description column. Descriptive 

statistics for variables that change seasonally are for peak stratification only. 

Variable Description Minimum Median Maximum 

zmax Lake maximum depth (m) 10.00 17.10 96.30 

z Lake average depth (volume/area) (m) 1.52 5.20 31.13 

A0 Lake total surface area (m2) 2.48x104 1.93x106 3.05x108 

V0 Lake total volume (m3) 7.86x104 1.03x107 5.50x109 

AV0 Lake area/volume ratio 0.03 0.19 0.66 

Thermx Avg. depth of peak stratification thermocline (epilimnion thickness) (m) 2.60 6.80 17.40 

ThermV Relative volume of water under average thermocline depth (% of V0) 1.26 70.23 97.29 

ThermA Relative area of lake under average thermocline depth (% of A0) 0.43 35.43 74.90 

ThermAV Area/Volume ratio of lake under thermocline depth 0.02 0.09 0.22 

ThermZ Thickness of hypolimnion below thermocline (m) 2.20 9.80 85.60 

ThermZ% Thickness of hypolimnion below thermocline (% of zmax) 16.78 60.63 88.89 

MetaTx Average depth of top of peak stratification metalimnion (m) 0.70 4.90 15.10 

MetaTV Relative volume of water under top of metalimnion (% of V0) 3.62 84.82 99.54 

MetaTA Relative area of lake under top of metalimnion (% of A0) 1.03 49.29 79.43 

MetaTAV Lake Area:Volume ratio under top of metalimnion 0.03 0.10 0.29 

MetaTZ Thickness of hypolimnion below top of metalimnion (m) 3.80 11.80 87.00 

MetaTZ% Thickness of lake below top of metalimnion (% of zmax) 0.27 0.74 0.95 

MetaBx Average depth of bottom of peak stratification metalimnion (m) 3.30 9.50 18.60 

MetaBV Relative volume of water under bottom of metalimnion (% of V0) 0.18 44.89 95.22 

MetaBA Relative area of lake under bottom of metalimnion (% of A0) 0.03 17.38 71.54 

MetaBAV Area/Volume ratio of lake under bottom of metalimnion 0.02 0.08 0.20 

MetaBZ Thickness of hypolimnion below bottom of metalimnion (m) 0.60 7.20 83.70 

MetaBZ% Thickness of lake below bottom of metalimnion (% of zmax) 4.20 44.17 86.92 

SSx Average Schmidt Stability (J/m2) 1.20 107.60 3900.70 

z:z Average depth/Maximum Depth ratio 0.11 0.29 0.61 

SDR Shoreline development ratio: (perimeter/2√(π×A0)) 1.09 2.11 10.98 

SDI Shoreline development index: (perimeter/𝐴0) 0.00 0.01 0.03 

Cir Comparison to perfect circle: ((perimeter/MaxL)/𝜋) 0.36 1.25 28.04 

Fetch Length of open water along NE (45) direction (km) 0.16 1.32 18.18 

MaxL Longest span of open water regardless of cardinal direction (km) 0.24 2.61 17.93 

MaxW Longest span of open water perpendicular to MaxL (km) 0.15 1.10 17.46 

L:W MaxL / MaxW 0.42 2.16 11.77 

DV Volume development ratio (Hutchinson 1957): ((3 × 𝑧)/zmax) 0.34 0.88 1.84 

OI Osgood Index: z/√𝐴0 (m/km) 0.83 3.96 32.31 

TP Total peak stratification epilimnetic phosphorus concentration (µg/L) 2.66 7.00 14.77 

DOC Peak stratification Dissolved Organic Carbon concentration (mg/L) 1.67 4.00 10.50 
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Logistic Regression Model 

Logistic regression produces a model that predicts the occurrence of a binary response variable 

(response vs. non-response). With binary data, the values of the response variables do not follow a 

linear trend, and errors are not normally distributed across the entire range of data (Peng et al. 2001). In 

logistic regression, the logit transformation on the dependent variable (Y) rectifies these issues by using 

an ordinary least squares regression. Logistic regression was used here because it does not assume a 

linear relationship between the binary response as do other regression techniques and some empirical 

models. We do not assume that the extent of lake anoxia has a linear relationship to the variables 

contributing to its development, especially as hypolimnetic DO approaches zero. Hypolimnetic DO 

depletion rate is asymptotic rather than linear over time (Yuan and Jones 2020), and it follows that 

factors causing the development of hypolimnetic anoxic area may be nonlinear as well. Additionally, our 

dataset includes many lakes (~25%) with no recorded peak stratification anoxic conditions. Because we 

are interested in why some lakes remain oxic throughout peak stratification, and what factors may 

predispose a lake to a naturally occurring anoxia, using logistic regression to predict the binary condition 

of oxic or anoxic conditions during peak stratification was appropriate. More details on the method are 

in Appendix B.1. 

We focused on the extent of areal contact between anoxic water and lake sediment to 

investigate the role of lake morphometry in DO consumption in lake hypolimnia and set the binary 

response to “1” if a lake had an anoxic hypolimnion exceeding 10% of lake surface area at least once in 

the ≥ 3 years of profiles. This value was chosen because it created roughly the same number of 

responses (1, becomes anoxic at least in one year) as non-responses (0, remains oxic in all years). The 

235 lakes were randomly separated into 80% training (n = 192, 112 with response) and 20% validation (n 

= 43, 20 with response) datasets.  
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Logistic regression models were created with the glm function in R (family=binomial, link=logit). 

Models were made for each of the 34 morphometric variables plus TP, and also in combinations of two 

variables for a total of 630 models. Models combining three or more variables did not increase model 

performance and are not presented here. Models were excluded from consideration if the variables 

were correlated at a threshold of R > |0.6|. Allison (2012) suggests that problems with multicollinearity 

in logistic regression occur when R > |0.78|, or R2 > 0.6. 

Model statistics were calculated with the compareGLM function of the rcompanion package in R 

(Mangiafico 2016). The models were ranked for performance based on the corrected Akaike Information 

Criterion (AICc), which provides an estimation of model strength based on log-likelihood and the 

number of included parameters. AICc is corrected for small sample sizes and accounts for model fit and 

complexity. ΔAICc provides the difference in AICc values from each model to the strongest (lowest AICc 

value) model. McFadden, Cox and Snell, and Nagelkereke pseudo R-squared statistics, calculated with 

compareGLM, were also used in model comparisons. 

The final model was compared to the null model (no variables) and to the final model + TP with 

likelihood-ratio tests using the lmtest package in R (Zeileis and Hothorn 2002). These comparisons were 

made for two reasons: 1) to verify that the final model was significantly different from the null model, 

and 2) to see if adding TP to the final model significantly alters model performance. This would indicate 

whether the anoxic extent development is affected by nutrient concentration rather than occurring 

primarily as a function of lake morphometry specifically in low-nutrient lakes. We also present the top-

ranking model that did not use volume-derived or area-derived metrics to test the application of our 

approach to lakes with limited bathymetric data. 

Top-ranking models were evaluated on both training and validation datasets with the following 

additional metrics to evaluate model performance: percent correctly classified for all lakes, sensitivity 

(percent of anoxic lakes correctly classified), specificity (percent of oxic lakes correctly classified), and 
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area under the receiver operating characteristic (ROC) curve, which is a measure of the relationship 

between false positive rates (1 – specificity) and sensitivity (Hein et al. 2012). The Area Under Curve 

(AUC) value measures the area of the ROC indicating correctly classified cases. An AUC approaching 1 

indicates a more successful model (AUC = 1.0 indicates 100% accuracy), while an AUC value of 0.5 (50% 

accuracy) indicates the model predicts no better than random chance. The mean probability of response 

(𝜋𝑥) was used as the probability threshold in prediction calculations because it maximized model 

performance.  

Diagnostic statistics were checked to verify that assumptions of logistic regression were met in 

all models presented here. Associations among variables and the calculated logit values were visually 

inspected for linearity. The standard residual error of all lakes was checked to ensure that no values 

were > 3, which would indicate outlier data points. Variance inflation factors (VIF) were calculated for 

each model to check for multicollinearity; VIF > 5 indicates problems with correlation among model 

variables (Fox and Monette 1992). 

Results 

Logistic Regression Model 

The variables maximum depth (zmax) and relative lake area (percentage of total) below the top of 

the metalimnion (MetaTA) accounted for the best model to predict anoxia in low-nutrient Maine lakes 

(AICc = 178.0; Table 3.2). This model (Model 1) was significantly different from the null model (F = 91.0, 

p < 0.001). Model prediction success metrics are summarized in Table 3.3. Model 1 shows that the 

likelihood of anoxia increases with decreasing zmax and increasing relative lake area below the top of the 
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Table 3.2. Top-ten ranking models and fit statistics from logistic regressions on training dataset (80% of dataset lakes, n = 192), plus the top-

ranking model using no bathymetry-derived morphometric variables (zmax + Thermx). All models df = 191. Parameter definitions in Table 3.1. All 

lakes are zmax ≥ 10 m and peak stratification epilimnetic TP < 15 µg/L. 

 

 

  

Model Parameters Rank 
McFadden 

R2 
Cox and 
Snell R2 

Nagelkerke 
R2 

AIC AICc ΔAICc 

zmax + MetaTA 1 0.349 0.377 0.508 177.8 178.0 0.0 

zmax + MetaTV 2 0.340 0.370 0.498 180.2 180.4 2.4 

zmax + ThermA 3 0.324 0.356 0.479 184.3 184.6 6.6 

ThermAV + z:z 4 0.324 0.356 0.479 184.3 184.6 6.6 

ThermAV + Dv 5 0.323 0.355 0.478 184.6 184.8 6.8 

MetaTV + MetaTZ 6 0.322 0.354 0.477 184.8 185.1 7.1 

MetaTV + ThermZ 7 0.316 0.349 0.470 186.3 186.5 8.5 

MetaTV + MetaBZ 8 0.314 0.347 0.467 186.9 187.1 9.1 

zmax + ThermV 9 0.311 0.344 0.463 187.8 188.0 10.0 

MetaTA + MetaBZ 10 0.311 0.344 0.464 187.8 188.0 10.0 

zmax + Thermx 29 0.289 0.325 0.438 193.5 193.3 15.6 
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Table 3.3. Prediction success metrics for training and validation datasets from models based on lakes with TP < 15 µg/L (Models 1 and 2), TP < 10 

µg/L (Models 3 and 4), and lakes without bathymetric data (Model 5). Table Legend: TP Criterion = maximum values for total phosphorus used in 

lake screening; Subset = training (T, 80%) or validation (V, 20%) datasets; n = number of lakes in each subset; % Correct = percentage of lakes 

correctly classified with the model; Sensitivity = percent presences (anoxia present) correctly classified, Specificity = percent absences (anoxia 

absent) correctly classified; AUC = percent Area Under Receiver Operating Curve. Equation variables: Log10(zmax) is the log of the maximum lake 

depth in m; 𝒔𝒊𝒏−𝟏√𝐌𝐞𝐭𝐚𝐓𝐀 is the arcsin square root of the percent of lake area under the top of the metalimnion at peak stratification, 

log10(TP) is the log of the mean epilimnetic total phosphorus concentration in µg/L at peak stratification, and 𝐥𝐨𝐠𝟏𝟎(𝐓𝐡𝐞𝐫𝐦𝒙) is the logarithm 

of the mean peak stratification thermocline depth in m. 

Model 
Number 

TP Criterion 
(Max. 
Value) 

Equation AICc Subset 
n 

(lakes) 
% 

Correct 
Sensitivity Specificity AUC 

1 15 
Logit = 10.028 – 10.423*log10(zmax) + 

5.0207*sin−1√MetaTA  
178.0 

T 192 80.2 81.3 78.8 86.3 

V 43 83.7 85.0 82.6 92.4 

2 15 
Logit = 1.140 – 0.196*log10(zmax) + 

5.953*sin−1√MetaTA + 7.496*log10(TP)  
159.2 

T 192 80.2 82.1 77.5 89.6 

V 43 86.0 85.0 87.0 93.9 

3 10 
Logit = 9.171– 9.468*log10(zmax) + 

4.448*sin−1√MetaTA 
158.4 

T 158 79.7 82.3 77.2 86.0 

V 37 83.8 90.9 73.3 89.7 

4 10 
Logit = -2.718 – 8.358*log10(zmax) + 

4.657*sin−1√MetaTA + 11.821*log10(TP) 
135.9 

T 158 83.5 86.1 81.0 90.1 

V 37 81.1 90.9 66.7 93.0 

5 15 
Logit = 13.775 – 5.969 *log10(zmax)  

- 6.343*log10(Thermx̅) 
193.3 

T 192 74.5 75.9 72.5 82.2 

V 43 81.4 85.0 78.3 91.5 
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metalimnion (Figure 3.2). All three coefficients were significant (p < 0.001). All model assumptions were 

met: the logit scale was visually observed to be linear with zmax and MetaTA, the standard residual error 

was < 3 for all lakes, and there was no multicollinearity between variables (VIF < 2).  

AICc values ranged from 178.0 for Model 1 to 268.7 (ΔAICc = 90.7) for the lowest-ranked of 630 

tested models (ThermA + MetaTZ%). The top ten strongest models have a ΔAICc < 10, indicating that 

these models may offer similar results compared to the best model presented here. The strongest 

model that included TP with one morphometry variable ranked 11th (MetaBAV + TP, ΔAICc = 10.1). A 

model with TP as the only variable was ranked 300th (ΔAICc = 45.3). 

Model 1 successfully predicted the correct response in 80.2% of lakes from the training dataset 

and 83.7% of lakes from the validation dataset. Validation dataset sensitivity, specificity, and ROC were 

85.0%, 82.6%, and 92.4%, respectively (Table 3.3).  

Inclusion of TP in the model 

To examine the interaction of lake nutrients with morphometric variables known to be 

important to lake anoxia, TP was added to Model 1 as a third variable to create Model 2 (zmax + MetaTA
 + 

TP). Diagnostics supported the structure of Model 2: variables were linear with logit function, standard 

residual error < 3, and VIF <2. The AICc for Model 2 was 161.2, compared to 178.0 for Model 1 (Table 

3.2), and the two models were significantly different (F = 18.6, p < 0.001). This indicates that the 

addition of TP to the Model 1 significantly increases model strength; however, this addition of TP did not 

meaningfully enhance prediction rates. The validation dataset for Model 2 had a successful prediction 

rate of 86.0%, sensitivity of 85.0%, specificity of 87.0% and ROC of 93.9%, values that are slightly higher 

but comparable to those of Model 1 (Table 3.3).  

To further investigate the role of TP in these study lakes, alternative models were developed 

with a more stringent nutrient threshold of TP < 10 µg/L (Models 3 and 4; Table 3.3). However, despite 
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lower AICc values, the prediction rates for this model were generally comparable to those of Models 1 

and 2 which used TP < 15 µg/L (Table 3.3). Consequently, the focus here remains the TP < 15 µg/L 

models. 

Model Without Bathymetry Data 

To apply the model to lakes without bathymetric data necessary for areal and volume estimates 

(Table 3.1), we present the top-ranking model that uses no bathymetrically-derived measures of lake 

volume or area of lake strata (Model 5, Table 3.3). Model 5 predicts the likelihood of anoxia based on 

maximum depth of the lake (zmax) and the average depth of the thermocline (Therm𝑥) (Figure 3.3). All 

three coefficients were significant (p < 0.001) and all regression model assumptions were met. The 

anoxic conditions of 81.4% of lakes in the validation dataset were correctly predicted with this model, 

and AUC was 91.5 (Table 3.3). This was the 29th ranked model overall (ΔAICc = 13.5). 

Water Chemistry and Prediction Success 

Training and validation datasets were combined to compare Model 1 and 2 anoxia predictions 

against DOC and TP concentrations (Figures 3.4, 3.5). DOC did not show a significant difference among 

predicted conditions for Model 1 (F = 0.801, p = 0.372) but did for Model 2 (F = 4.650, p = 0.032). There 

were no significant differences in DOC for prediction correctness (Model 1: F = 0.274, p = 0.601; Model 

2: F = 0.228, p = 0.634), or the interaction between predicted condition and prediction correctness 

(Model 1: F = 1.889, p = 0.171; Model 2: F = 0.158, p = 0.691) (Figure 3.4). Lakes that were predicted to 

be anoxic had significantly higher TP than lakes predicted to be oxic in both Models 1 and 2 (Model 1: F 

= 32.114, p < 0.001; Model 2: F = 100.650, p < 0.001). TP did not differ significantly among lakes based 

on prediction correctness alone for Models 1 or 2 (Model 1: F = 0.254, p = 0.615, Model 2: F = 0.420, p = 

0.518). The interaction effect of predicted condition and prediction correctness was significant for TP in 

both Models 1 (F = 35.782, p < 0.001) and Model 2 (F = 10.550, p = 0.001). Tukey HSD post hoc tests for 

Model 1 revealed that TP concentrations in anoxic lakes were higher than in oxic lakes regardless of 
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predicted condition (Figure 3.5A). For Model 2, lakes that were successfully predicted to be anoxic had 

significantly higher TP than lakes that were predicted to be oxic, regardless of prediction success. Lakes 

incorrectly predicted to be anoxic had TP concentrations similar to lakes incorrectly predicted to be oxic 

but had significantly higher TP than correctly predicted oxic lakes (Figure 3.5B).  

  

Figure 3.2. Probability of anoxia function calculated by Model 1 (Table 3.3). Maximum Depth = zmax in 

m; MetaTA = percent of the lake total area beneath the top of the metalimnion (= bottom of the 

epilimnion). 
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Figure 3.3. Probability of anoxia function calculated by Model 5 (Table 3). Maximum Depth = zmax in m; 

Thermx = average depth of peak stratification thermocline in m. 
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Figure 3.4. (A) Model 1 and (B) Model 2 predictions and outcomes vs mean epilimnetic DOC 

concentration at peak stratification. Different letters along x-axes indicate significant differences at α = 

0.05. 
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Figure 3.5. (A) Model 1 and (B) Model 2 predictions and outcomes vs mean epilimnetic TP concentration 

at peak stratification. Different letters along x-axes indicate significant differences at α = 0.05. 
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Discussion 

This study shows that the existence of anoxic conditions may be successfully predicted in low-

nutrient temperate lakes ≥10 m deep based on morphometry and stratification dynamics alone, without 

inclusion of a measure of nutrient concentration. While the addition of lake TP concentration to Model 1 

slightly increased chances of successful prediction (Model 2), this does not appear necessary for 

effective identification of lakes that are susceptible to naturally-occurring anoxia. The poor performance 

of the TP-only model (ΔAICc = 45.3) underscores the greater importance of lake morphometry in the 

development of anoxia in these low-nutrient lakes. Our approach was effective at identifying principal 

variables that predict a critical ecological response. 

Our diagnostic models predict that the likelihood of hypolimnetic anoxia increases with 

decreasing zmax and an increasing MetaTA, which represents the percent of the total lake area below the 

epilimnetic mixing zone during the period of peak stratification (Figure 3.2). Maximum depth was 

correlated to lake volume (R2 = 0.516, p < 0.001), which is important because deeper, more voluminous 

dimictic lakes hold a larger reserve of DO and can better mitigate its loss in the hypolimnion before the 

autumnal mixing event replenishes DO to the entire water column. Deeper lakes also have sustained 

colder hypolimnetic water through the summer months because of greater thermal stability, higher DO 

acquired during spring overturn due to increased solubility, and decreased sediment oxygen demand in 

colder water. Further, zmax was correlated to other lake measures, such as surface area (R2 = 0.327, p < 

0.001), TP (R2 = 0.221, p < 0.001) and DOC (R2 = 0.029, p = 0.007),); all of which affect DO demand in 

lakes. MetaTA relates to DO depletion by providing a measure of the areal extent of the lake sediment 

area in contact with water below the epilimnion. In lakes with large shallow areas where much of the 

lake sediment is in contact with epilimnetic waters (small MetaTA), DO loss from decomposition of 

sediment organic matter may be largely replenished from surface mixing in the epilimnion. In contrast, if 
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this shallow area of the lake is proportionally small (large MetaTA), the larger isolated portion of the lake 

will undergo DO consumption without epilimnetic replenishment.  

We had a similar strong prediction success rate in validation data (n = 43 lakes) for both Models 

1 and 2 (84% and 86%, respectively; Table 3.3). However, there was a significant difference in 

performance between Models 1 and 2, as indicated by the results of likelihood-ratio tests and the 

difference in their respective AICc values. The significantly higher epilimnetic TP in Model 1 lakes that 

were anoxic versus oxic, regardless of prediction category or correctness (Figure 3.5A), indicates that 

Model 1 results are associated with lake TP even though individual model parameters were not strongly 

correlated with TP alone (zmax: R2 = 0.22; MetaTA: R2 = 0.02). This result attributes Model 1 prediction 

failures to differences in lake TP concentration. Not surprisingly, Model 2 (zmax + MetaTA + TP) presented 

significant differences in TP among lakes based on actual and predicted anoxic condition. Lakes that 

were predicted to be anoxic (correctly or incorrectly) had higher TP than correctly predicted oxic lakes, 

but anoxic lakes that were incorrectly predicted to be oxic had similar TP to oxic lakes regardless of 

prediction success (Figure 3.5B). Lakes that were incorrectly predicted in Model 2 did not have 

significantly different TP. These results indicate that including TP helps to refine the model based on 

morphometry alone, and that nutrient concentration still influences the development of anoxic extent in 

low-nutrient lakes. Incorrect predictions in Model 2 could not be explained by patterns in spatial 

distribution of lakes (Appendix S1: Figures B2, B3), bedrock geology (Appendix S1: Figure B.4), natural 

features of the lake or landscape, or anthropogenic condition of watersheds. It is possible that these 

incorrect predictions are related to temporal factors, such as timing of spring turnover or onset of 

summer stratification (Livingstone and Imboden 1996, Yuan and Jones 2020), which were not included 

in this study but may inform future analyses with this dataset.  

Incorrect predictions in Model 2 may also be associated with the narrow ranges of lake depth 

and epilimnetic TP used to constrain the study dataset. By reducing the variability in these parameters, 
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we are introducing the possibility of missing descriptive relationships in shallower, more nutrient rich 

lakes. This may be especially relevant with our low TP criterion, as samples with low TP concentrations 

may have been inaccurately evaluated because of analytical challenges with low detection limits and 

increased possibility of contamination.  

Lakes that exhibit anoxia despite being predicted to be oxic based on morphometry alone 

(Model 1), or morphometry and TP concentrations (Model 2), may develop a more extensive anoxic area 

than correctly-predicted oxic lakes with similar morphometry. It is possible that these lakes are 

particularly vulnerable to anoxia from comparatively small increases in nutrient concentration. This 

group of lakes deserves closer study, as well as identification in lake management investigations 

regarding the creation of lake-specific thresholds for shoreline development and nutrient load 

assimilation (Nürnberg 1997). 

In attempts to further minimize the role of TP in predicting anoxic extent, thereby accentuating 

the role of lake morphometry, we created alternative versions of Models 1 and 2 using a more 

restrictive criterion of including only lakes with < 10 µg/L TP (Models 3 and 4; Table 3.3). These models 

had lower AICc values but overall similar prediction success rates to Models 1 and 2. This suggests that 

there may not be great differences in the association of morphometry, or morphometry and TP, with 

the development of anoxic extent among lakes with either TP < 10 or TP < 15 µg/L. The lower AICc 

values may be due to lower sample size of lakes with TP < 10 µg/L compared to TP < 15 µg/L lakes; 

regardless, this change in model structure did not translate into substantially better prediction rates.  

Model 5 may be used in lakes where detailed bathymetry data are not available (Table 3.3). This 

model predicts that the likelihood of hypolimnetic anoxia increases with decreasing maximum depth 

and decreasing depth of the average thermocline (Thermx) (Figure 3.3). While Thermx is correlated 

strongly with the average depth to the top of the metalimnion (MetaTx; R2 = 0.94), it is weakly 

associated with the relative lake area under the top of the metalimnion (MetaTA; R2 = -0.12), the 
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parameter used in Models 1-4. In the current dataset, except for associations with metalimnion, Thermx 

was most strongly correlated to total lake volume (V0; R2 = 0.55). Therefore, Thermx likely works in this 

model partially because it is serving as an estimate of V0. As discussed above, deeper, higher volume 

lakes have larger reserves of DO and a greater thermal stability and are better able to mitigate DO loss 

during stratification. Despite correlating to V0, Thermx was not strongly correlated to zmax (R2 = 0.31), so 

no collinearity problems were identified with Model 5. Prediction success metrics were similar but 

slightly lower for Model 5 compared to Model 1 (81.4% vs. 83.7% correct in validation datasets; 0.92 

AUC for both). There may be utility in applying this model to lakes where only a single profile is 

available, but prediction accuracy would likely be increased if long-term average thermocline depth was 

used instead. 

Bathymetric data detailed enough for calculating the morphometric variables used in this study 

may be unavailable in many situations, possibly making Model 5 of more widespread applicability than 

the other models presented in this study. However, the availability of models developed with detailed 

stratigraphic morphometry data (Models 1 - 4) may enhance the validity of non-bathymetric models 

(Model 5), because comparisons may be made to models developed from lakes with more detailed data.  

DOC was not an important predictor variable in any iteration of these models, suggesting that 

DOC variation at the range observed in this dataset (mean = 4.3 ± 1.5 mg/L; Table 3.1) does not play an 

important role in the areal extent of hypolimnetic anoxia in deep, low-nutrient temperate lakes. This 

supports the findings of Nürnberg (1995), who determined that DOC accounted for only a minor role in 

AF and that lake morphometry and biological productivity were the primary drivers controlling the 

extent of lake anoxia. However, other studies of different lake types have found that increases in DOC 

have led to increased anoxia in a shallow eutrophic temperate lake (zmax = 2.9 m, Brothers et al. 2014) 

and a small humic boreal lake (zmax = 12 m, Couture et al. 2015). Model 2 lakes predicted to be anoxic 

had significantly higher DOC than lakes predicted to be oxic, but no other differences in DOC were 
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observed among prediction categories in Models 1 or 2 (Figure 3.4). Model 2 lakes predicted to be 

anoxic were also higher in TP (Figure 3.5B), suggesting that the higher DOC concentration in these lakes 

is due to increased biological productivity (Nürnberg and Shaw 1999). DOC may be a latent variable in 

the development of anoxia in these lakes, since DOC concentration can affect light attenuation and 

thermocline positioning (Fee et al. 1996). 

TP was used in this study as a proxy for the biological activity that may contribute to loss of DO 

through the decomposition of organic matter. Using chlorophyll-a, a direct measure of lake biological 

productivity, produced similar model results. This was not surprising as the close relationship between 

TP availability and chlorophyll-a concentration is well documented and serves as the basis of 

management activities in most temperate lakes. However, the TP-chlorophyll-a relationship, while 

robust in large datasets (and strongest during peak stratification in most Maine lakes), may be weaker at 

smaller scales. Yuan and Jones (2020) found that chlorophyll-a was more successfully predicted by TP for 

individual lakes when TP was partitioned into dissolved P, P bound to suspended sediments, and P 

bound in phytoplankton cells. Future studies of lakes with a wider range of DOC than lakes in the 

present study, and consideration of other variables such as suspended solids, may help to further 

quantify the interactions of TP, chlorophyll-a, and DOC in the anoxic extent of lakes. 

We tested several lake morphometric variables that relate to potential for wind-driven mixing 

events during the stratification period (SDR, Fetch, MaxL, MaxW, L:W, OI; Table 3.1). None of these 

variables appeared in any of the top 25 ranked models, which was surprising as AF is correlated with OI 

(Nürnberg 1995), and OI helps to explain some of the variance between TP and AF (Nürnberg 2019). 

Average depth was also not an important variable for predicting areal extent of anoxia, but it has been a 

component of models in other studies linking shallower average depth with increased probability of 

anoxia (Reckhow 1977) and higher DO consumption rates (Cornet and Ringler 1980, Rippey and 

McSorley 2009). These unexpected results may be related to the constrictions placed on the zmax and TP 
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in our dataset. We purposefully excluded lakes that were shallow enough to likely experience only 

ephemeral stratification. While lakes with zmax < 10 m may develop ephemeral anoxia during short 

stratification periods, frequent mixing and wind-driven disturbance of sediment may also contribute to 

elevated trophic state in these lakes. Alternatively, zmax may have been more important than other 

morphometric variables due to several lakes in the dataset with large surface area, shallow average 

depth, and small deep holes that are susceptible to local anoxia. Therefore, the use of zmax may account 

for this situation and produce a better model for these lakes. Additionally, we excluded lakes with TP ≥ 

15 µg/L, because lakes above that threshold may have anoxic condition governed by nutrient 

concentration rather than basin morphometry (Molot et al. 1992). By excluding shallower lakes and only 

including lakes with lower TP, our models found that different morphometric variables more 

successfully predict the occurrence of anoxia in low- nutrient, deeper lakes. While these constraints on 

lake morphometry and condition may limit model applicability in some areas where smaller and 

nutrient-rich lakes are the norm, it may apply well in northern latitudes where low-nutrient lakes are 

more common (Abell et al. 2012). 

Our models can help identify low-nutrient lakes that may be especially sensitive to development 

of natural anoxic conditions. Combining the likelihood of natural anoxia with Al:Fe sediment chemistry 

data (Kopáček et al. 2005) can provide a valuable assessment of how vulnerable a lake is to internal 

release of sediment-bound P, informing lake management with loading allowances and restoration 

targets. There is potential for guiding management decisions for high nutrient lakes as well, as these 

models may help identify situations where eutrophication is being exacerbated by natural basin 

morphometry, or lakes that will still experience anoxia even if excesses in nutrients and organic matter 

in water and sediments are reduced. These models can potentially support decisions necessary in long-

term restoration plans with respect to artificial hypolimnetic aeration or chemical treatments for the 

precipitation of P. 
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Our results have clear implications for fisheries management as well. The model response could 

be re-calibrated with a hypoxia threshold of 5.0 mg/L DO, a minimum value required to support most 

coldwater fisheries such as salmonids (Davis 1975). This adaptation of the model would address the 

probability of particular amounts of habitat loss for coldwater fish due to natural hypoxia in specific 

lakes. In a fisheries management version, it may be of interest to focus on volumetric DO loss measures 

in order to quantify the potential loss of available three-dimensional habitat, rather than the two-

dimensional area of sediment-water interface as we did here.  

All of the top-ranking models (Table 3.2) included variables related to maximum lake depth and 

area or volume metrics related to the position of stratification layers, rather than whole-lake measures. 

This emphasizes the importance of thermal stratification of lake layers in the development of anoxia in 

lakes. Consequently, annual variability in the positioning of these layers likely has implications for year-

to-year fluctuations in anoxic condition.  

There are many opportunities for further work to extend this model and refine its approach for 

a variety of study questions. For example, we did not account for temporal weather variability or the 

climate gradient from costal to northern Maine, which may explain the limited importance of variables 

such as fetch or OI in our results. We also did not account for the annual variability in DOC concentration 

or quality in lakes and watershed runoff that can occur due to photochemical degradation of DOC 

(Porcal et al. 2010). Water temperature metrics were not included as potential model variables, 

although temperature (and temperature gradients between stratification layers) likely relate to the 

extent of hypolimnetic anoxia. Water temperature may be especially important if this analysis were 

expanded to larger geographic areas, spanned multiple climate regions, or incorporated forecasts of 

future climate conditions.  

In light of research addressing the role of lake morphometry in stratification changes brought 

about by climate change, our results suggest that it may be possible to identify which lakes are more 
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susceptible to increasing anoxic extent due to a warming climate. Both Schindler (2001) and Kraemer et 

al. (2015) found lakes developed deeper thermoclines (among other modifications) in response to 

variables attributed to climate change in surveys of global and boreal lakes, respectively. Schindler 

(2001) attributed the deepening thermoclines to reduced runoff which increased residence time and 

lowered allochthonous DOC inputs, thereby increasing solar radiation penetration. According to our 

models, this scenario would reduce the likelihood of anoxia, as the area below the epilimnion would 

decrease. However, Robertson and Ragotzkie (1990) and Snucins and Gunn (2000) found that 

thermoclines were shallower in warmer years due to faster onset of spring stratification and rapid 

heating of surface waters. Maine lakes have been experiencing increasingly earlier ice-outs since the 

mid-20th century (Hodgkins et al. 2002, Ellis and Greene 2019). Given the low mean DOC concentrations 

of lakes in our study, it is likely that these lakes are more likely to experience increasingly shallower 

thermoclines as temperatures warm and ice-off periods lengthen. This is supported by preliminary 

analyses of long-term temperature data for Maine lakes (ME DEP, unpublished data). In this situation, 

these deep, low DOC lakes will be increasingly susceptible to anoxia as the percentage of area beneath 

the epilimnion increases. Lakes with zmax 10-25 m may be the most susceptible to shallower 

thermoclines, as these lakes show the greatest differences in probability of anoxia attributed to MetaTA; 

deeper lakes (>25 m) may be more resilient to the development of anoxic conditions from an expanding 

MetaTA (Figure 3.2). This may be especially critical as low-nutrient lakes become rarer across the 

landscape (Stoddard et al. 2016). Models such as these, which enhance our understanding about the 

ecological dynamics of pristine systems and habitats, will help inform management objectives intent on 

preserving them, including on the terrestrial landscape. 

In summary, our results suggest that morphometry and stratification dynamics may be the most 

important variables in predicting the development of anoxia in low-nutrient deep lakes. The models 

presented here identify a way to evaluate the potential for natural anoxia without the need to 
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incorporate direct measures of nutrient condition that may require extensive and costly sampling in 

some lakes. These diagnostic models provide lake managers with simple yet robust tools to evaluate the 

potential for natural anoxic conditions in either single lakes (e.g., drinking water supplies) or many lakes 

across a region (e.g., regional studies, agency water quality assessments), and compare observed results 

to an expected reference condition. This approach does not replace the pioneering work on quantifying 

the extent of lake anoxia (e.g., Nürnberg 1995, 2004) or predicting DO profiles (Molot et al. 1992) but 

addresses a gap in the literature by developing a method to quantify the probability of natural anoxia 

occurring in low-nutrient lakes. This was an especially critical gap for lake research in areas similar to 

Maine: glaciated, north-temperate climate, with primarily smaller, low-nutrient lakes. The methods used 

to build the models presented here helped identify which variables are effective at predicting an 

important ecosystem attribute and will help to inform future assessments regarding observed versus 

expected conditions with respect to ecological regime shifts. 
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CHAPTER 4. SHIFTING BASELINES AND CROSS-SCALE DRIVERS OF LAKE WATER CLARITY: APPLICATIONS 

FOR LAKE ASSESSMENT 

Chapter Abstract 

Temporal Secchi depth trends are used in lake assessment to evaluate lake condition and 

possible shifts in trophic state. For accurate lake assessments, it is important to differentiate regional 

trends from lake-specific trends, but this can be confounded by interacting factors. We present a 

divergent trend analysis which uses temporal patterns of Secchi depth water clarity from 1999-2018 for 

five different types of reference lakes from minimally disturbed watersheds to create dynamic baselines 

against which we evaluate Secchi depth trends from non-reference lakes in Maine, USA. We used mixed-

effect generalized additive models to generate smoothed curves of the expected baseline Secchi depth 

for each reference lake type to account for the nonlinear dynamics of lake condition through time. The 

majority of non-reference lakes (74%) showed no difference between measured trend (actual Secchi 

depth data) and divergent trend (residual Secchi depth from baseline trends). The most common 

difference in lakes with inconsistent trend test results showed stability in measured trends but apparent 

declining trends in divergent Secchi depth clarity. We used a Dynamic Factor Analysis (DFA) model to 

help interpret the variation and shifts observed in baseline reference lake trends. The best DFA model 

identified two common trends in water clarity among lake types and precipitation during the primary 

stratification season as the most informative covariable. Because precipitation amount and intensity are 

expected to increase according to predictive climate models for the Northeast US, our results suggest 

that baseline lake clarity in Maine will decrease with climate change. 
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Introduction 

Water clarity, as quantified with Secchi depth, is perhaps the most widely used lake water 

quality metric due to its simplicity of measurement, low cost, and correlation to many lake variables. In 

most temperate lakes, Secchi depth correlates to trophic measures of total phosphorus and chlorophyll-

a, in addition to suspended sediment and Colored Dissolved Organic Matter (CDOM) (Brezonik et al. 

2019). Secchi depth is highly informative for long-term lake monitoring as it provides a measure of 

ecosystem disturbances at the local scale, including nutrient additions, watershed erosion, and 

resuspension of lake sediment (Gunn et al. 2001). However, temporal Secchi depth trends can also 

correlate to large-scale factors that influence water clarity which are not specific to an individual lake, 

such as regional precipitation or air temperature (Schindler et al. 1996, Read and Rose 2013, Rose et al. 

2017).  

The identification of water quality changes caused by localized anthropogenic activities is the 

basis of the need for lake assessments. Local influences on lake clarity often include increased 

watershed erosion or excess nutrient loading, both of which are generally related to anthropogenic 

activities (Soranno et al. 2015). Water quality assessments for lakes are generally predicated on the 

comparison of the observed condition to a baseline condition defined from minimally disturbed 

reference lakes (Stoddard et al. 2006, Herlihy et al. 2013). Many factors influence lake water clarity at 

multiple scales, so it is critical to differentiate the nonlinear dynamics in water clarity trends due to 

regional effects from those due to local factors.  

Secchi depth trends may be falsely interpreted as declining water quality due to local factors 

when the lake is only responding to a regional factor such as weather patterns. Alternatively, lakes with 

stable Secchi depth may not indicate the influence of a positive regional trend because local effects, 

such as watershed erosion and nutrient enrichment, may counter or overwhelm the regional pattern 

(Rose et al. 2017). Therefore, the time period of interest and concurrent weather factors become 
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relevant to proper assessment of lake Secchi depth trends. The literature reveals discrepancies for 

Maine lake Secchi depth trends, with studies finding different results for clarity trends during slightly 

different but overlapping time periods. McCullough et al. (2013) found that water clarity (using satellite-

inferred Secchi depth) declined in Maine lakes during the period of 1995-2010. However, Canfield et al. 

(2016) reported that satellite-inferred lake clarity was stable for 1990-2010, but lake clarity based on 

Secchi depth field measurements increased from 1976-2013. Neither McCullough et al. (2013) nor 

Canfield et al. (2016) attempted to separately analyze lakes in minimally-disturbed watersheds to 

differentiate influencing variables on water clarity patterns between regional and local factors. 

The degree to which lake clarity is sensitive to precipitation patterns varies with many attributes 

of lakes and their watersheds, such as watershed land use (Rose et al. 2017, McCullough et al. 2019). For 

example, agricultural land generally exports more nutrients, particularly phosphorous and nitrogen, to 

lakes in runoff than other land use types (Vaithiyanathan and Correll, 1992, Carpenter et al. 1998). 

Sensitivity to precipitation is an important factor for water clarity in reference lakes, such as those 

included here, with largely undeveloped watersheds. Water clarity appears to be less sensitive to 

precipitation changes in lakes with higher catchment to lake area ratios or higher percent wetland area 

in the watershed, and more sensitive if the lake has a lower watershed forested area, greater maximum 

depth, lower trophic state, or clarity controlled by CDOM rather than algal abundance (Rose et al. 2017, 

McCullough et al. 2019). Due to the variable nature of lake response to climate patterns and the 

predicted changes to climate in the northeastern United States (Fernandez et al. 2020), it is necessary to 

further our understanding of how climate change will affect baseline conditions in various lake types.  

We established temporal patterns of Secchi depth water clarity in five different types of 

reference lakes from minimally disturbed watersheds (Deeds et al. 2020) to establish a baseline against 

which we evaluate Secchi depth trends from non-reference lakes in Maine, USA. We define “measured 

trend” as the trend based on actual Secchi depth measurements, and “divergent trend” as the trend 
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based on the residual differences between the measured values and the expected Secchi depth values 

based on the reference lake baseline trends within the corresponding lake type. This approach enhances 

conventional assessments of lake trends by creating nonlinear, dynamic baselines of expected lake 

condition during the same time period. These dynamic baselines help to disentangle the effects of 

widespread regional factors and localized anthropogenic impacts on Secchi depth trends. It is important 

to understand why temporal shifts are occurring in reference lakes, especially if shifts in temporal 

patterns are due to yearly weather variation which is predicted to change in the future. To better 

understand how and why baseline lake Secchi depth trends shift over time, we applied a Dynamic Factor 

Analysis to trends observed in the five types of reference lakes to detect shared patterns in Secchi depth 

trends and evaluate the influence of regional climate covariables among different lake types. 

Methods 

Study Area 

Maine has a land area of 91,647 km2 and approximately 5,000 lakes > 1 ha. Elevation ranges 

from sea level to 1,608 m. The state was completely deglaciated by about 10,000 years ago. Most lakes 

have natural outlets although many are depth- and area-enhanced with outlet dams. The northern and 

northwestern portions of the state have a history of timber harvesting and re-growth, and periodic 

serious pest invasions with massive dieback. The northwestern quadrant of the state is relatively 

unpopulated. Dairy and cropland agricultural operations are largely within 100 km of the coast, which 

largely coincides with nutrient-rich and easily erodible marine clay deposits (Deeds et al. 2020). 

Agriculture is also prevalent in the northeastern part of the state. Human population is most dense in 

southern Maine and near the Atlantic coast. Development near lakeshores is primarily residential, both 

summer and year-round. 

Deeds et al. (2020) identified five unique hydrogeomorphic lake types (henceforth, “lake types”) 

in three regions of Maine based on Omernik Level IV ecoregional groupings (Omernik 1987) and 
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maximum lake depth: Coastal Deep Lakes, Coastal Shallow Lakes, Inland Deep Lakes, Inland Shallow 

Lakes and Northern Lakes; Figure 4.1). Northern Lakes is a grouping of both deep and shallow lakes in 

this study to accommodate low sample size in this under-surveyed region of Maine. The threshold 

between deep and shallow lakes was defined as maximum depth = 10 m, which is the approximate 

mean depth of the photic zone in our dataset of Maine lakes (approximated as twice mean Secchi depth; 

French et al. 1982). Anthropogenic watershed pressures vary in form and intensity across Maine, so a 

Watershed Quality Index was developed that identified reference, intermediate, and altered condition 

categories of lake watersheds that were specific to the scales of watershed disturbance observed in 

each lake type (Deeds et al. 2020). This was done by calculating percentiles of total watershed 

disturbance (urban, residential, agricultural, and harvested forest land cover) that occur in the direct 

watersheds of lakes in each type. Reference lakes have ≥ 90th percentile least disturbed Watershed 

Quality Index values for direct watersheds, altered lakes are ≤ 25th percentile most disturbed, and 

intermediate lakes have Watershed Quality Index values between the 25th and 90th percentiles. Secchi 

depth trends from the reference lakes of each type were used to create baseline trends for the 

calculation of residual values (i.e., difference from baseline) of Secchi depth trends in non-reference 

lakes. 

Divergent Trend Analysis 

Secchi depth readings have been collected in Maine lakes by state agency staff, professional 

researchers, and community scientists using standardized protocols since 1971, coordinated by the Lake 

Stewards of Maine’s Volunteer Lake Monitoring Program. Trained monitors are frequently re-certified 

for data collection and recording procedures. Secchi depth measurements are taken with a viewing 

scope to reduce glare and to reduce reading variability occurring from various weather conditions. Data 

are quality controlled and maintained in a database housed at Maine Department of Environmental 

Protection (ME DEP 2015).  
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Figure 4.1. Map of Maine, USA, showing boundaries of three lake regions (Deeds et al. 2020), locations 

of reference lakes of five types, and random locations used to assemble weather data from Daymet’s 

single-pixel interpolated weather data extraction tool (Thornton et al. 2020) for the Dynamic Factor 

Analysis. 



 

76 
 

Secchi depth data were summarized for each lake in each year of a 20-year study period (1999-

2018) by calculating the mean values during the approximate period of peak lake stratification in Maine 

(1 August – 7 September). Only lakes with ≥ 10 yr of Secchi depth data with no ≥ 5 yr gaps in data record 

were included in the analysis. These criteria were relaxed for Northern Lakes, where long-term datasets 

are not as common, to ≥ 7 yr of data with no gaps ≥ 10 years. These data restrictions yielded a dataset 

with 310 lakes. Mann-Kendall Tau trend analysis was used to detect changes in Secchi depth over time 

using the Kendall package in R (McLeod 2015; R Core Team 2021). This non-parametric test determines 

whether median values of Y (Secchi depth, in this case) will increase or decrease with further increases 

in X (years) (Helsel et al. 2020). The Mann-Kendall Tau algorithm computes the positive or negative 

difference between each value (starting with the second value in a series) and all subsequent values. A 

value of 1, 0 or -1 is assigned to each position, and the sum of these integers (S) is computed. The test 

statistic Tau (τ) is calculated as  

   𝜏 =
𝑺

(
𝒏(𝒏−𝟏)

𝟐
)
                                   (1) 

and varies from -1 to 1. Tau is analogous to the Pearson’s correlation coefficient in regression analysis, 

with larger negative values indicating stronger negative trends and larger positive values indicating 

stronger positive trends. If S and τ are significantly different from zero, then a statistically significant 

trend is identified (Helsel et al. 2020). Maine DEP currently designates lakes with Secchi depth trends 

with τ ≥ |0.5| over ≥ 10 years as exhibiting a changing trophic condition (ME DEP 2015). 

Reference lakes (Deeds et al. 2020) were used to establish reference lake trends that reflect 

non-anthropogenic regional variation in Secchi depth values across Maine (Table C1). We required that 

there be a minimum of three lakes in each year (from the subset of lakes that met the data inclusivity 

restrictions above) to calculate the yearly reference baseline trends. Two lake types, Inland Shallow 

Lakes and Northern Lakes, had insufficient sample size of reference lakes that met these data density 
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criteria, so intermediate-disturbance lakes (based on the Watershed Quality Index, Deeds et al. 2020) 

were added to supplement the reference datasets for these lake types. Inland Shallow and Northern 

Lakes also had incomplete time series during the study period (some years with < 3 lakes with Secchi 

depth data), so Inland Shallow Lakes are represented from 2004-2018 and Northern Lakes are 

represented from 1999-2013. Forty of the 310 study lakes were designated as reference, leaving 270 

non-reference lakes for comparison to baseline trends.  

Reference lake time series were transformed into smoothed curves based on mixed-effed 

generalized additive models (GAMs) using the mgcv package in R (Wood 2021), with Secchi depth as the 

response variable, year as a fixed effect, and individual lake as a random intercept to account for 

differences in mean clarity among lakes. GAM models were used here because of their effectiveness at 

approximating values in nonlinear data. GAMs extend generalized linear models by replacing linear 

terms of Generalize Linear Models with smoothing functions called splines (Shadish et al. 2014). GAMs 

fit non-linear data with cubic splines, which are turning points in the data. The smoothing factor k 

indicates the number of cubic splines in the model, and therefore, the smoothness of the model fit; a 

lower k results in a smoother surface. If k = number of observations (years of data here), then the GAM 

curve intersects each observation point. To standardize the degree of smoothing across lake types with 

different number of observations (years), we restricted k by dividing the number of years of data for 

each lake by 3, as this calculation provided nonlinear model curves that best approximated Secchi depth 

variability while avoiding overfitting (Fisher et al 2017). 

For individual lakes, the annual mean of measured Secchi depth values was subtracted from the 

yearly GAM-derived value of its respective reference lake type to obtain yearly residual values based on 

the baseline trend. These time series based on residual values were then analyzed with Mann-Kendall 

trend tests to produce the “divergent” trend result. Trend test results indicate if a lake is increasing in 

clarity (significantly positive τ), decreasing in clarity (significantly negative τ), or if clarity is stable or too 
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variable to detect a trend (τ not significantly different from zero). For each lake type, the results of the 

divergent trend test results were compared to the results of the trend tests based on measured values.  

Dynamic Factor Analysis  

Dynamic Factor Analysis (DFA) is fully described in Zuur et al. (2003). In brief, it is a multivariate 

analysis used to estimate underlying common trends and important covariates among multiple time 

series. DFA models separate time series in terms of a combination of common trends and factor 

loadings (discussed below), explanatory variables (covariates), a level parameter (constant), and a noise 

component (unexplained error). Different covariables may be added to the model to test for improved 

performance. DFA was applied to the reference lake Secchi depth data to determine if observed 

patterns in baseline trends are associated with underlying common patterns or identifiable covariates.  

The DFA model equation may be distilled to matrix notation, in a form similar to linear 

regression:    

                                                     𝑦𝑡 = 𝑍𝛼𝑡 + 𝑐 + 𝐷𝑥𝑡 + 𝑒𝑡      (2) 

Where yt  is an N × 1 vector of the variable y for N time series at time t, αt is the value of the common 

trends at time t, c is the level parameter which is a N × 1 vector of constants that allows each linear 

combination of common trends to move up or down, and et is a N × 1 vector of noise component 

(unexplained error) at time t. The matrix Z consists of the number of time series (N) × the number of 

common trends (M) and contains the factor loadings which determine the linear combinations of 

common trends. Factor loading values are compared to determine which response variables are most 

strongly related to each common trend. Explanatory values may be added as a vector 𝑥 of L covariates 

at time t; D is an N × L matrix containing regression coefficients. Note that α represents hypothetical 

variables (common trends) that cannot be explained by measured explanatory variables (𝑥). Therefore, 

the intent of DFA is to create a model with a reasonable fit and a minimum M. A higher M will increase 
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model fit but will also cause more parameters to have to be estimated, which may complicate 

interpretation. Common trends across all time series account for autocorrelation and reduce dimensions 

among the time series by representing undescribed processes that share similarity among time series. 

Factor loading values are calculated for each time series to measure the magnitude of the association of 

each time series with each common trend.  

All DFA analyses were completed in R using the MARSS package (Holmes et al. 2020). The five 

time series used in the DFA were composed of standardized z-scores [(value – mean)/standard 

deviation] of yearly reference lake mean Secchi depth measurements, with one time series for each lake 

type. Z-scores are used rather than absolute measurements in DFA so that the analysis is focused on 

year-to-year differences within and among time series rather than the magnitude of differences in data 

among time series.  

Akaike’s corrected Information Criterion (AICc) was used as a measure of DFA model goodness-

of-fit because it may be calculated for different types of variance, any value of M, or when there are 

relatively few observed data points (Zuur et al. 2003). Models with differences between AICc values 

(ΔAICc) < 2 are highly similar, and models with ΔAICc in the 2-7 range may be highly competitive 

(Burnham and Anderson 2002). Evidence ratios were calculated to aid in model comparisons using the R 

package qpcR (Speiss 2018). This ratio indicates the strength of evidence that the top scoring model is 

the best; for example, an evidence ratio of 10 indicates that evidence for the top model being the best 

one is 10 times stronger than the model in question. DFA model fit for individual lake types was 

evaluated with the ratio of the residual sum of squares (based on differences between the data and 

modeled estimates) and the observation sum of squares (based on differences among observations to 

the overall mean) (SSresiduals/SSobservations = SSratio). High values of SSratio indicate that a particular time 

series, or a portion of that time series, are not fitted well with the chosen DFA model. Ratio values closer 

to zero indicate a better model fit (Zuur et al. 2003).  
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After the best-performing model structure was selected, different covariates were tested to 

examine if climate variables were associated with identified trends. To generate covariates, weather 

data were obtained from Daymet (https://daymet.ornl.gov) using the single pixel extraction tool. 

Daymet provides interpolated estimates of daily weather parameters in a 1 km2 grid for continental 

North America, PR, and HI (Thornton et al. 2020). The single-pixel extraction tool calculates daily 

weather data for a given GPS coordinate based on the closest 1 km2 grid cell. To summarize weather 

data both across Maine and within the three lake regions, we generated random points across each of 

the lake regions, with the number of points standardized by land area (approximately 1 point per 10,000 

km2: Coastal = 22, Inland = 35 and Northern = 27 points; Figure 4.1). Mean monthly values during the 

study period were calculated for all points to generate monthly statewide weather parameters, and the 

process was repeated for points within each region so that we could investigate differences in weather 

patterns among regions. Average air temperature, total precipitation, percent of days with any 

precipitation, and percent of days with intense precipitation (defined as ≥ 10 mm/d; Griffiths and 

Bradley 2007) were summarized by monthly means. Monthly climate metrics were aggregated into 

various time periods in each year: winter (Dec – Feb), spring (Mar – May), summer (July – Aug), winter 

and spring (Dec – May), the approximate lake stratification season in Maine (April – August), and water 

year (previous October – September, inclusive). Covariate models were ranked by model strength with 

ΔAICc and Evidence Ratios. Sum of Squares metrics, discussed above, were used to evaluate model 

improvement within each lake type by comparing SSratio values from the non-covariate models to the 

SSratio in covariate models.  

Results 

Divergent Trend Analysis 

Inland Deep and Inland Shallow reference lakes showed significantly improving water clarity 

from 1999-2018 (Table 4.1, Figure 4.2A). Trends for Coastal Deep, Coastal Shallow and Northern   

https://daymet.ornl.gov/
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Figure 4.2. (A) Reference lake mean Secchi depth values (± mean se) with predicted GAM 

smoothing trend curves (solid lines). Dashed line at Secchi depth = 5.6 m represents the overall 

mean Secchi depth for reference lakes in this study. (B) Time series of z-scores [(value – 

mean)/standard deviation] for reference lake mean Secchi depth measurements for each lake 

type used in the Dynamic Factor Analysis. Y axis is unitless. 0 = no difference from mean of each 

lake type. Vertical dashed lines at 2000 and 2010 are for visual reference. Co. = Coastal, In. = 

Inland. 
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Table 4.1. Mann-Kendall trend tests results for mean Secchi depth values (measured) and GAM-

predicted Secchi depth values for five reference lake types from 1999-2018. * indicates significance at α 

= 0.05. 

 

reference lakes showed non-significant (stable or variable) measured Secchi depth trends. Trend tests 

based on GAM-derived smoothed Secchi depth values showed the same results as measured value 

trends in reference lakes. Coastal Deep Lakes had the highest overall mean Secchi depth (6.84 m) while 

Inland Shallow Lakes had the lowest overall mean Secchi depth (4.25 m) (Table C2).  

The differences in Mann-Kendall results between measured and divergent trend tests for non-

reference lakes varied in six different ways, including no difference between tests (Table 4.2). Example 

progressions for the five observed changes from actual trend to residual trend are displayed in Figure 

4.3. For most lakes, results were consistent between measured and divergent trend tests (n = 200 out of 

270 non-reference lakes, or 74%). Twenty-six lakes (10% of total) show stable Secchi depth in measured 

trends but declining Secchi depth in divergent trends (measured: stable to divergent: negative; Figure 

4.3E-F). All but one of these lakes were Inland Deep Lakes. The third most common result was a change 

from a measured trend of stable clarity to a divergent trend of increasing clarity (measured: stable to 

divergent: positive; n = 22, 8%; Figures 4.3F-G). All but one of these lakes were Coastal Deep Lakes. The 

other two potential result changes, either negative or positive measured trends with stable divergent  

Reference Lake Type 

Measured Secchi depth 
(Yearly means) 

GAM-predicted Secchi 
depth 

τ p τ p 

Coastal Deep -0.189 0.256 -0.242 0.144 

Coastal Shallow -0.211 0.206 -0.263 0.112 

Inland Deep 0.591 <0.001* 0.895 <0.001* 

Inland Shallow 0.600 0.002* 0.657 0.001* 

Northern 0.010 1.000 0.086 0.692 
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Table 4.2. Comparison of trend test outcomes between measured and divergent trend tests for non-

reference lakes. Positive = significantly increasing Secchi depth, Negative = significantly decreasing 

Secchi depth, Stable = Secchi depth trend had non-significant result, No Difference Between Tests = 

matching outcome between measured and divergent trend tests. α = 0.05. Total values for all lake types 

combined are in bottom row in italics. 

trends, were represented by a small number of lakes (n = 8 and 14, or 4% and 5%, respectively; Figures 

4.3A-B, 4.3C-D).  

Of the five lake types, Inland Deep had the largest proportion of lakes with a difference in test 

results between measured and divergent trends (56%, Table 4.2). The most common difference in Inland 

Deep Lakes was measured: stable to divergent: negative (Figure 4.3E-F). Northern Lakes had different 

trend test results in 43% of lakes, with at least one lake representing all four of the change categories. 

Coastal Deep Lakes showed different results in 29% of lakes, and the most common change was 

measured: stable to divergent: positive (Figure 4.3G-H). Only two of 12 Inland Shallow Lakes showed a 

change in trend test result, and both were measured: positive to divergent: stable (Figure 4.3C-D). 

Coastal Shallow Lakes had the lowest percentage of lakes exhibiting a change in trend test result (5%). 

  

Lake Type 

Total 
number of 

non-
reference 

lakes 

Measured: 
Negative 

─ 
Divergent: 

Stable 

Measured: 
Positive 

─ 
Divergent: 

Stable 

Measured: 
Stable  

─ 
Divergent: 
Negative 

Measured: 
Stable  

─ 
Divergent: 

Positive 

No 
Difference 
Between 

Tests 

Percent 
of lakes 

matching 
reference 

trend 

Coastal Deep 113 6 1 0 21 85 29% 

Coastal Shallow 77 1 3 0 0 73 5% 

Inland Deep 54 0 5 25 0 24 56% 

Inland Shallow 12 0 2 0 0 10 17% 

Northern 14 1 3 1 1 8 43% 

Totals  270 8 14 26 22 200 26% 
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Figure 4.3. Examples of measured and divergent trend analyses from individual non-reference lakes for 

the four observed changes in trend test result. Measured Secchi depth trend plots (left) show the mean 

yearly Secchi depth readings in meters (dots), LOESS moving-average curve based on Secchi depth 

readings (solid lines), reference GAM curve for the respective lake types (heavy dashed lines), and the 

residual distances of the measured Secchi depth readings from the expected reference condition (light 

dashed vertical lines). Divergent Secchi depth plots (right) show the same data as the measured plots 

(left), but with the reference GAM line flattened at zero and the Secchi depth yearly means shown as 

residual distances in m from the reference GAM. The τ and p values for the trend tests are displayed in 

each plot with test result (positive = significantly increasing trend in water clarity, negative = significantly 

declining trend, and stable = non-significant trend. The four changed outcomes are represented by rows: 

(A-B) measured: negative to divergent: stable; (C-D) measured: positive to divergent: stable; (E-F) 

measured: stable to divergent: negative; and (G-H) measured: stable to divergent: positive. Reference 

trends used in each plot: A, B, G, H: Inland Deep Lakes; C-F: Coastal Deep Lakes.  
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Dynamic Factor Analysis 

Standardized time series of Secchi depth z-scores showed variation among lake types, but all 

types displayed an apparent increase in Secchi depth from approximately 2011 to 2018 (except 

Northern Lakes, where data were absent) (Figure 4.2B). The selected DFA model (AIC = 244.18, ΔAICc = 

3.44, evidence ratio = 5.59; Model 4, Table C3) had diagonal and equal variance and two common 

trends, indicating that variance was shared among lake types and there was no year-to-year correlation 

among types. This model was chosen because it had the lowest AICc scores and evidence ratio among 

models with two common trends. Three models had lower AICc scores and one common trend, but 

common trends in these models showed associations with only two lake types (Inland Deep and Inland 

Shallow). Model 4 identified a second common trend that provided an association with two additional 

lake types (Coastal Deep and Coastal Shallow) and lower (stronger) values of SSratio across multiple lake 

types. DFA Models 2-6 all had ΔAICc < 7, so these may all be considered similar enough for consideration 

as an appropriate model (Burnham and Anderson 2002). Model 4 was chosen as the best model among 

these competitive models. It presented associations with two more lake types than Models 1-3, and 

SSratio values indicated better model fit within each lake type. 

The common trends associated with Model 4 indicated two separate patterns in Secchi depth 

trends among the five lake types. Common trend 1 starts with an increase from 1999 until 2003, after 

which it steadily decreases until 2012, then gradually increases again until 2018 (Figure 4.4). Common 

trend 2 is stable from 1999 until the late 2008, and then has a sharp increase until it remains relatively 

stable from 2015 through 2018. Factor loading values indicate the strength and direction of association 

with this trend for each individual lake type. Common trend 1 is associated most strongly with Coastal 

Deep and Coastal Shallow Lakes. Common trend 2 is most strongly associated with Inland Deep and 

Inland Shallow Lakes. Northern Lakes were not strongly associated with either trend (factor loadings for 

both trends < 0.2).  
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Figure 4.4. The two common trends and factor loading values for DFA Model 4. Lake types with 

factor loading values < 0.20 have been excluded from each common trend. Y axes are unitless. CDL 

= Coastal Deep Lakes, CSL = Coastal Shallow Lakes, IDL = Inland Deep Lakes, ISL = Inland Shallow 

Lakes, NL = Northern Lakes. 
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SSratio (SSresiduals/SSobservations) values evaluate the DFA model fit for each lake type (Table 4.3). 

Northern Lakes have the highest SSratio value for Model 4 (42.96), indicating the weakest fit among the 

five lake types. Coastal Deep and Coastal Shallow Lakes have moderately low SSratio values (0.99 and 

1.25), and the Inland Deep and Inland Shallow types show the lowest SSratio values and best overall 

Model 4 fit (0.42 and 0.35, respectively). Model 4 fits for each lake type are shown in Figure 4.5A along 

with observed Secchi depth data (z-scores) and associated common trends. 

Annual weather data were z-scored and applied to Model 4 as covariates (𝑥𝑡 in Equation 2) to 

see if regional weather patterns might improve DFA model fit. Mean monthly statewide precipitation for 

April – August (hereafter, “Precipitation”), which is the approximate stratification period for most 

dimictic lakes in Maine; Figure 4.6) was chosen as the best covariate model (AIC = 225.33, ΔAICc = 0; 

Table C4). Precipitation was chosen as the best covariate because it had strong performance based on 

its AICc score and produced the greatest improvements in model fit across all lake types as measured by 

SSratio (Table 4.3). The evidence ratio suggests that Model 4 + Precipitation is over 460 times more likely 

to be the best model over Model 4 with no covariates (ΔAICc = 12.27; Table C4). Combinations of paired 

precipitation and air temperature covariates were also tested (e.g., Precipitation + Degree Days) but 

none exceeded model performance of Precipitation as the sole covariate and are not presented here. 

Sixteen covariate models showed improved AICc scores over the no covariate model (Model 4). Two 

other covariate models had ΔAICc < 7, which indicates that two other climate metrics (percent of days 

with precipitation during the stratification period and number of degree days during the water year) 

may also improve model fit for Secchi depth trends in this DFA (Table C4).  

There was improvement in model performance in all lake types with the addition of 

Precipitation as a covariable to Model 4 (Table 4.3). The greatest difference in model performance for a 

single lake type was for Northern Lakes (ΔSSratio = 41.67, or 188% improvement), which had the overall 

weakest fit in Model 4 with no covariates. Coastal Shallow Lakes had the next largest increase in model 



 

88 
 

Table 4.3. Sum of Squares (SS) model comparisons between DFA Model 4 (no covariates) and Model 4 + Precipitation covariate (mean monthly 

April – August precipitation) for observations of the fitted model and model residuals. SSratio (SSresiduals/SSobservations) is a model fit statistic, with 

lower SSratio values indicating a better fit model for that lake type. ΔSSratio is the mathematical difference between the SSratio values of Model 4 

and Model 4 + Precipitation; positive values indicate increased model performance (Zuur et al. 2003). ΔSSratio percent difference is the percent 

difference between the two SS ratios and presents a normalized metric for model change with the addition of the covariate within each lake 

type. SSres = SS of the residuals (based on differences among data and modeled estimates), SSobs = SS of the observations (based on differences 

among observations and the overall mean). 

  

Lake Type 

Model 4 Model 4 + Precipitation 

ΔSSratio 
ΔSSratio 
Percent 

Difference SSres SSobs SSratio SSres SSobs SSratio 

Coastal Deep 7.05 7.10 0.99 6.83 9.43 0.72 0.27 31% 

Coastal Shallow 8.32 6.63 1.25 5.75 11.28 0.51 0.74 84% 

Inland Deep 4.30 10.36 0.42 3.65 11.45 0.32 0.10 26% 

Inland Shallow 2.93 8.41 0.35 1.85 9.17 0.20 0.15 53% 

Northern 13.45 0.31 42.96 6.78 5.24 1.29 41.67 188% 



 

89 
 

 

 

Figure 4.5. (A) DFA Model 4 (no covariables) for each lake type and (B) Model 4 + Precipitation fit results 

for each lake type. Points are observed Secchi depth values (z-scores), black lines represent DFA model 

fits, and purple and blue dashed lines represent common trends 1 and 2, respectively. The shaded area 

is the 95% confidence interval of the model fit line for each lake type. Each lake type is shown with its 

most strongly related common trend, except for Northern Lakes which had no strong common trend 

association (factor loadings < 0.2). Vertical dashed lines at 2000 and 2010 are for visual reference. Co. = 

Coastal, In. = Inland. Y axes are unitless. 
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fit (ΔSSratio = 0.74, 84%). The remaining three lake types showed moderate improvement in model fit 

(Table 4.3). The increase in model responsiveness with the addition of Precipitation is seen graphically 

by comparing the model fits (solid black lines) in Figures 4.5A (Model 4 alone) and 4.5B (Model 4 + 

Precipitation).  

Water clarity in both Coastal lake types was significantly correlated with statewide Precipitation 

(Deep: R2 = 0.343, p = 0.007; Shallow: R2 = 0.454, p = 0.001), while lake types in the other regions were 

not significantly correlated (Inland Deep: R2 = 0.016, p = 0.608; Inland Shallow: R2 = 0.035, p = 0.502; 

Northern: R2 = 0.153, p = 0.149). No differences in Precipitation were identified among regions (F = 

0.163, p = 0.921; Figure 4.6), and results of correlation tests among lake types and precipitation 

estimates from their respective regions were not different from the correlations with statewide 

precipitation data. 

Figure 4.6. Precipitation (mean monthly precipitation during the stratification season, Apr-Aug, in 

mm) for the three lake regions and the Maine statewide average from 1999-2018. Data are from 

Daymet (Thornton et al. 2020). Vertical dashed lines at 2000 and 2010 are for visual reference. 
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Discussion  

Divergent Trend Analysis 

Mean water clarity increased for reference Inland Deep and Inland Shallow Lake types during 

the study period (Table 4.1). The other three lake types did not show significant changes in water clarity 

during the same time. The approximate period of 2011-2018 shows increases in GAM-derived clarity 

trends for all reference lakes except for Northern Lakes, where these data are absent (Figure 4.2). This 

seven-year period of increasing clarity in Coastal and Inland lake types coincides with a period of steady 

decrease in the amount of precipitation during the stratification period (Figure 4.6).  

Comparisons of measured Secchi depth trends to divergent Secchi depth trends based on 

reference lakes of various types show that lakes most commonly exhibited no difference or one of four 

differences in trend test result (Table 4.2, Figure 4.3). The majority of lakes (74%) showed matching 

trend test results, indicating that the non-reference lake Secchi depth trend was similar to the baseline 

reference lake trend, and therefore the lake reflected regional baseline Secchi depth patterns. The most 

common difference in trend test result was where measured trends were stable and divergent trends 

were declining, meaning that a lake’s Secchi depth measured trend is stable according to actual Secchi 

depth measurements, but the divergent trend analysis shows an apparent decline in water clarity 

because Secchi depth did not increase as expected according to reference lake trends (Figure 4.3E-F). 

This difference in trend test result indicates that there may be local factors influencing lake clarity more 

strongly than regional factors. This result was mostly associated with Inland Deep Lakes, which had a 

significantly increasing measured Secchi depth trend in reference lakes (Table 4.1). The next most 

common change in trend test result was measured: stable to divergent: positive, indicating again that 

the lake trend was identified as stable with measured Secchi depth data, but a period of declining water 

clarity in the baseline trend created an apparent increase in water clarity for the non-reference lake 

(Figure 4.3G-H). This occurrence may be due to a periodic decline in baseline water clarity observed in 
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reference lakes, or possibly changes in local conditions that contributed to increased lake clarity in the 

non-reference lake. This result was most common in Coastal Deep Lakes, which showed a period of 

declining water clarity from about 2003-2012, as reflected in Common Trend 1. The third most common 

change in trend test result was measured: positive to divergent: stable, which suggests that measured 

lake clarity increases may be attributed to the “background” signal that was observed in reference lakes 

(Figure 4.C-D). In this instance, the trend in non-reference lake clarity is consistent with the regional 

baseline trend observed in reference lakes, suggesting that local drivers such as land use are not 

influencing lake clarity. The final difference observed in trend results, measured: negative to divergent: 

stable, only occurred in a small number of lakes (3%). This change indicates that a lake showed a trend 

of declining water clarity, but the baseline trend showed a similar decline during the same period. This is 

analogous to the measured: positive to divergent: stable result, but in the opposite direction. There are 

two other possible results that were not encountered in our study: measured: positive to divergent: 

negative and measured: negative to divergent: positive. Both of these results would indicate that water 

clarity in the non-reference lake is trending in the same direction of the reference baseline but that the 

trend is not as strong.  

The strongly increasing Secchi depth trend in Inland Deep reference lakes has the potential to 

create a large difference in trend between the expected baseline condition seen in reference lakes 

versus the observed conditions in non-reference lakes, because for a non-reference lake to be 

considered stable in the divergent analysis, it would also have to exhibit a similarly steep increase in 

Secchi depth measurements over time. Consequently, the trend analyses for Inland Deep Lakes had the 

largest proportion of non-reference lakes show apparent reductions in clarity (positive to stable or 

stable to negative) in the divergent trends (56%; Table 4.2). Even lakes with moderately increasing water 

clarity may appear to show stable or apparent declining clarity when compared against a strong 

reference trend (Figure 4.3C-D). Inland Shallow reference lakes also showed a significantly increasing 
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water clarity trend, but only 2 of 12 non-reference Inland Shallow Lakes (17%) had differing divergent 

trend results (Table 4.2). It is not possible to draw strong conclusions with this low sample size, and the 

results are likely confounded by the inclusion of non-reference lakes in calculation of the baseline trend 

(see Methods), but it seems that the non-reference Inland Shallow Lakes are generally following the 

regional baseline pattern observed for this lake type. 

Coastal lake types had the largest number of sampled lakes in this study, but also the lowest 

proportion of lakes exhibiting differences in divergent trend test result (apart from the under-sampled 

Inland Shallow Lakes). This indicates clarity trends in non-reference Coastal Deep and Coastal Shallow 

Lakes are generally consistent with the baseline clarity trends observed in Coastal reference lakes. 

Possible explanations for this may be that reference and non-reference watersheds for both Coastal lake 

types are more similar than in other lake types. The approach used here to define reference lakes used 

the gradient of watershed disturbance unique to each lake type (Deeds et al. 2020). Lakes in the Coastal 

region may experience greater pressures from watershed development and recreation than other Maine 

lake types due to their high water clarity and proximity to population centers. This is especially relevant 

for the Coastal Deep reference lakes, which are larger and have the highest water clarity of all Maine 

reference lake types. Regardless of differential development pressures, since the reference lakes of both 

Coastal lake types showed non-significant (stable) trends in water clarity over the study period (Table 

4.1), we infer that most non-reference lakes in this region also have stable water clarity. 

Northern Lakes also had non-significant reference lake trend (Table 4.1), perhaps due to high 

variability in water clarity rather than stability (Figure 4.2). Additionally, low sample size and lack of true 

reference lakes with long-term data likely affected the results for this lake type. Higher amounts of 

watershed development, especially agriculture, occur in Northern Lakes compared to the other four 

reference lake types (Table C2), as non-reference lakes were used to generate the Northern Lake GAM 

reference trend. Lakes in watersheds with prevalent agriculture can experience increased effects of 
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precipitation (Rose et al. 2017), as stormwater runoff from agricultural land generally has higher 

nutrient concentrations than runoff from other land cover types (Carpenter et al. 1998). 

Dynamic Factor Analysis 

To advance our understanding of nonlinear dynamics and shifting baselines of Secchi depth in 

Maine reference lakes, we employed a Dynamic Factor Analysis to investigate possible commonalities in 

Secchi depth trends among the various types of Maine lakes. We applied climatic variables as covariates 

to examine the associations of precipitation and air temperature patterns with Secchi depth trends. 

The DFA model that best fit our reference lake data had two common trends that showed 

associations with Coastal Deep and Coastal Shallow Lakes (Common trend 1) and Inland Deep and Inland 

Shallow Lakes (Common trend 2). Northern Lakes were not strongly associated with either common 

trend, indicating that neither common trend reflects the temporal patterns of water clarity observed in 

these lakes. This may be due to the high variability in water clarity observed in the Northern Lakes, 

which do not reflect true “reference” conditions observed in the minimally disturbed watersheds of 

reference lakes of the other four types. The high variability in Northern Lake clarity data was reflected in 

the especially poor DFA model fit for these lakes, as measured by the SSratio (Table 4.3).  

April through August mean monthly precipitation was the strongest covariable in the DFA 

covariate models (Table C3). Many other studies have also demonstrated the effect of precipitation on 

lake water clarity (Schindler et al. 1996, Read and Rose 2013, Rose et al. 2017, McCullough et al. 2019). 

Six covariate models had ΔAICc < 7, indicating that many alternative weather variables may help inform 

clarity trends (Burnham and Anderson 2002), including precipitation intensity, frequency of 

precipitation, and number of degree days. Precipitation can decrease water clarity in lakes through the 

erosion and continued suspension of soil particles that transport nutrients and CDOM from the 

watershed into the water. Elevated concentrations of nutrients can stimulate algal growth and 

additional CDOM in lake water can reduce light penetration, both of which will reduce water clarity 
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(Schindler et al. 1996, Rose et al. 2017). This association may be especially relevant over longer time 

periods, as fluctuations in precipitation during the lake stratification period over multiple decades has 

been shown to influence lake water color and subsequent chlorophyll-a response (Carpenter and Pace 

2018). It is surprising, however, that mean monthly cumulative precipitation showed a stronger 

association with Secchi depth trends than measures of precipitation intensity, which can be an 

indication of weather events that induce greater amounts of watershed soil erosion. It may be that the 

large spatial scale of this study produces a stronger association to regional precipitation amounts than 

precipitation intensity because intense rainfall events, typically convective storms, are generally more 

localized and may not be recorded by remote weather stations. Exploring this distinction further may be 

especially relevant in Maine, where an increasing frequency of intense storms has already been 

documented (Fernandez et al. 2015). Studies focused on single lakes, or groups of lakes in close 

proximity, with local weather stations may show stronger associations with precipitation intensity rather 

than cumulative totals (e.g., Coats 2010).  

ΔSSratio (Table 4.3) may be considered as a measure of sensitivity to precipitation, as this metric 

evaluates change in DFA model fit with the addition of precipitation as a covariable. The DFA non-

covariate model had a poor fit for Northern Lakes especially; however, this lake type had the largest 

improvement in model fit with the addition of the Precipitation covariate (Table 4.3). The sensitivity of 

precipitation in these Northern Lakes may be due to the high amounts of watershed agriculture in these 

lakes compared to the other lake types. Rose et al. (2017) found that watershed agriculture, where 

present, was most important in explaining lake water clarity variability between dry and wet years. 

Runoff in the watersheds of the Northern Lakes used as reference lakes here likely carries higher 

concentrations of nutrients than runoff in the watersheds of other lake types considered in this study. 

The improvements in DFA model fit were greater for the two Coastal lake types than for the two 

Inland lake types with the addition of the Precipitation covariate, as measured by ΔSSratio (Table 4.3). We 
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expected that the two deep lake types, Coastal and Inland, would have the greatest response to a 

precipitation covariate after the findings of other studies that water clarity in deep, unproductive lakes 

are more sensitive to precipitation (Rose et al. 2017, McCollough et al. 2019). However, sensitivity to 

precipitation seemed to be related more strongly to lake region here than to other characteristics of 

lakes or their watersheds. The shallow Coastal and Inland lake types in our study actually showed 

greater sensitivity to precipitation than the Coastal and Inland deep lakes, as measured by ΔSSratio 

percent differences (Table 4.3). It is possible that these shallower lakes are more sensitive to 

precipitation than deep lakes in the same region because of the greater proportions of the lake volume 

that is replaced with stormwater during precipitation events. Further, the shallow lakes are more likely 

to be polymictic and experience periodic resuspension of lake sediment and nutrients throughout the 

stratification season, particularly in association with storms (Stockwell et al. 2020).  

Variables such as maximum depth, catchment area: lake area ratio, or residence time did not 

explain the patterns in sensitivity to precipitation among reference lakes (Table C2). Instead, water 

clarity in both Coastal lake types was significantly correlated with statewide precipitation whereas lake 

types in the other regions were not. We were not able to detect stronger correlations between regional 

precipitation estimates and the water clarity values among lake types and regions, and we also did not 

identify a difference in precipitation amounts among our lake regions. Further research exploring the 

connections between weather patterns and lake condition may help to explain the different dynamics 

we observed among lake regions. 

The pattern of decreasing precipitation during the stratification period from 2011-2018 (Figure 

4.6) appears to correspond with a period of increasing Secchi depth in all lake types (Figure 4.2). Our 

covariate model shows that including precipitation as a covariate improves DFA model fit for all lake 

types (Table 4.3). Precipitation amounts in Maine have oscillated over time, but the annual statewide 

average precipitation has increased 15% from 1895 to 2018, and 30% from 1960 - 2018 (Fernandez et al. 
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2020). High-intensity weather events and total amount of precipitation has been predicted to increase 

in frequency according to climate models for the northeast US and Maine (Diffenbaugh et al. 2005, 

Mallakpour and Villarini 2017, Fernandez et al. 2020). Considering these model projections, our results 

indicate that baseline Secchi depth values in Maine lakes could shift toward lower water clarity, 

especially if those increases occur during the stratification period. This is of particular relevance for 

water quality assessments that evaluate lake condition based on the expected condition of minimally-

disturbed reference lakes. Understanding how precipitation patterns will influence the expected lake 

condition and Secchi depth trends in the future will allow lake researchers to adapt to shifting baselines 

of reference lake condition. 

Seven of 16 covariate models that improved model fit over Model 4 included an air temperature 

variable (Table C4). Ambient air temperatures can affect almost all hydrological, chemical, physical, and 

biological properties of lake systems, including the watershed. However, lakes may respond 

heterogeneously to widespread increases in air temperatures (O’Reilly et al. 2015). The response of 

lakes to variation in air temperatures can be dependent on interactions among air temperature, 

maximum depth, and water clarity (Snucins and Gunn 2000, Rose et al. 2016). Clearer lakes have greater 

light penetration, making them more susceptible to increases in water temperature, both in the mixing 

zone and in the hypolimnion, as well as inducing deeper thermoclines (Schindler 2001, Read and Rose 

2013). Alternatively, warm years may induce shallower summer thermocline depths due to more rapid 

warming of surface waters and onset of stratification earlier in spring (Robertson and Ragotzkie 1990, 

Snucins and Gunn 2000). Thus, clear lakes, such as the set of reference lakes in this study (all types have 

mean Secchi depth > 4 m), will be variably susceptible to the effects of climate warming based on future 

precipitation patterns and any changes in water clarity (Read and Rose 2013, McCollough et al. 2019). 

The connections among lake clarity, precipitation, and air temperature in a changing climate have 
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implications for shifting baselines of expected lake clarity trends and should continue to be the focus of 

future studies. 

Lake-specific variables beyond maximum depth categories were not incorporated in this DFA, 

but other factors certainly have an effect on the weather sensitivity related to water clarity. For 

example, an important variable that might be considered in local-scale studies is the lake-specific 

potential for sediment P release or retention, depending on the sediment aluminum (Al) ratios with iron 

(Fe) and P, as determined by sequential extractions of sediment (Psenner and Pucsko 1988, Kopáček et 

al. 2005, Lake et al. 2007). Irreversible sequestration of PO4 by sediment Al diminishes sediment release 

of P during anoxia that could cause higher algal productivity, leading to reduction of water clarity. 

Common trends identified through the DFA may have captured some latent factors (Zuur et al. 2003) 

that incorporate similarities among lakes or that were associated with lake types. 

Our analysis was possible because of long-term datasets, which are invaluable for enhancing our 

understanding of how ecological systems change and react to their environments over time. We show 

that long-term data from minimally-disturbed reference sites can improve ecological assessments by 

separating site-specific effects from regional shifts in baseline conditions. We were able to account for 

nonlinear dynamics in lake condition over time by developing predictive smoothing curves to measure 

shifts in baseline water clarity through time. Without long term-datasets, it would be impossible to 

account for these nonlinear dynamics, which represent interactions among regional weather patterns 

and local watershed activity. Annual data collection from reference lakes, which is not always a funding 

priority for agencies (but should be), is important for research examining trends in water quality and 

interactions between lakes and their watersheds.  
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This work has established a connection between weather patterns and the temporal shifts in 

baseline lake conditions that may be expected to vary during climate change. By enhancing our 

understanding of the relationship between precipitation and water clarity over time, this research may 

aid in the interpretation and prediction of the effects of climate change on water clarity trends in 

pristine lakes in Maine and elsewhere.  
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CHAPTER 5. ASSESSMENT INDICES OF LITTORAL HABITAT CONDITION                                                               

FOR LAKES IN MAINE AND NEW ENGLAND, USA 

Chapter Abstract 

Littoral habitat is critical for lake biota but it is adversely affected by residential shoreland 

development through the loss of riparian and nearshore vegetation and reduced structural complexity. 

However, there currently exists no assessment methodology for evaluating littoral habitat condition at 

the single-lake scale in the northeast US. We addressed this assessment need by creating multi-metric 

indices of littoral habitat condition that focus on residential development as the stressor. We did this by 

calculating a collection of littoral metrics based on the NLA (National Lake Assessment) Physical Habitat 

(PHAB) survey field observations, the literature, and others created for this study. Metrics were used to 

build Linear Discriminant Analysis (LDA) models to find the best combination of littoral habitat measures 

to predict site classification based on measures of shoreland disturbance. Lake PHAB survey data were 

used from NLA surveys as well as state-level surveys completed in Maine, New Hampshire, and 

Vermont. We partitioned data into six groups of lakes: two groups in a Maine-only dataset (Deep and 

Shallow lakes, n = 102), and four groups of New England regional lakes (Deep-Large, Deep-Small, 

Shallow-Large, Shallow-Small, n = 361). The two Maine LDA models showed prediction success rates in 

model validation datasets >90%, while the four Regional Models ranged from 80.8% to 85.4%. We used 

95% bootstrapped confidence intervals based on LDA scores from each site on a lake to make 

assessment designations of natural (meeting reference quality), impaired (not meeting reference 

quality), or intermediate (existing between natural and impaired) littoral habitat condition for each lake. 

Regional Deep-Large lakes had the largest proportion of natural lakes (47%), while Regional Shallow-

Small lakes had the highest proportion of impaired lakes (47%) among the six lake groups. Our results 

show that efficacious single-lake littoral habitat assessments may be completed within the framework of 
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NLA PHAB methodology, but that confidence in assessment results, and therefore better-informed 

management decisions, can be improved with finer-scale observation data.  

Introduction 

Suitable littoral habitat is essential for lake biota, but residential development along lakeshores 

has detrimental effects on the structure and function of these habitats (Kaufmann et al. 2014a). Physical 

habitat in the littoral areas of lakes is commonly evaluated in three major components: coarse woody 

habitat (CWH; submerged tree debris), littoral macrophytes, and substrate composition (e.g., 

percentages of boulders, cobble, gravel, sand, silt, and clay-sized particles). CWH provides 

structure for large and small fish, and colonization surfaces for bacteria, surficial diatoms, and 

macroinvertebrates (Everett and Ruiz 1993, Roth et al. 2007, Lawson et al. 2011, Twardochleb et al. 

2016, Dustin and Vondracek 2017). CWH may be diminished in littoral areas where vegetation has been 

removed from nearby riparian areas, which reduces recruitment of new woody structure (Christensen et 

al. 1996, Jennings et al. 2003, Francis and Schindler 2006, Marburg et al. 2006, Dustin and Vondracek 

2017, Chhor et al. 2020). Deliberate CWH removal may occur in littoral areas intended for recreational 

swimming or boating (Lepore 2013). Loss of CWH has cascading effects on prey availability, growth 

rates, reproductive success, and mortality across trophic levels in lake communities (Everett and Ruiz 

1993, Schindler et al. 2000, Sass et al. 2006, Helmus and Sass 2008, Brauns et al. 2011).  

Macrophyte communities are an important biological component of lake littoral areas, but also 

provide habitat structure for other lake biota. Littoral macrophytes can influence spawning, refuge, and 

feeding in fish communities (Crowder and Cooper 1982, Savino and Stein 1982) and provide important 

nursery grounds for young fish (Hayse and Wissing 1996, Weaver et al. 1997). Macrophyte beds help to 

keep lake water clear through sediment retention, nutrient uptake, and absorption of wave energy 

(Scheffer et al. 1993). Alterations in macrophyte community composition have been associated with 

human land use patterns along lake shores, as measured by declines in community composition metrics 
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(Hatzenbeler et al. 2004, Mikulyuk et al. 2011, Beck et al. 2013) or changes in relative abundances of 

functional groups (Radomski and Goeman 2001, Alahuhta et al. 2014, Dustin and Vondracek 2017, 

Chhor et al. 2020). The effects of shoreland development on littoral macrophyte communities may be 

more pronounced in deeper lakes with lower watershed development, indicating cross-scale linkages 

among littoral communities, shoreland development, lake morphology, and land use in the larger 

watershed (Beck et al. 2013). Declines in faunal species that depend on macrophytes for structural 

habitat have been related to altered macrophyte communities associated with riparian disturbance 

(Butler and DeMaynadier 2008). 

Littoral substrate composition may be altered in areas where lake shoreland has been 

anthropogenically developed. This is especially relevant in cobble and gravel habitats, which provide 

important interstitial spaces for macroinvertebrates and incubation areas for developing fish eggs. 

Erosion from the shoreland area can cover the littoral zone with fine sediments (e.g., sand or silt), 

restricting water circulation in these spaces and eliminating this habitat for oxygen-sensitive species 

(Merrell et al. 2009, Horne 2020, Ostendorp et al. 2020).  

The 2007 National Lakes Assessment (NLA) found that 36% of the U.S. lakes had poor lakeshore 

habitat (i.e., little structural complexity and potentially missing components), and lakes with poor 

lakeshore habitat were three times more likely to be in poor biological health (USEPA 2009). In the 

Northern Appalachian Ecoregion, where New England is located (Figure 5.1A), 57% of lakes had 

moderate or high levels of lakeshore disturbance. Additionally, 55% of Northern Appalachian lakes had 

fair or poor shallow water habitat. For comparison, only 20% of lakes were in fair or poor condition with 

respect to phosphorus concentration, which is commonly regarded as the primary stressor to most 

northeastern US lakes. The 2012 NLA supported the findings of the 2007 NLA, showing that 51% of the 

nation’s lakes had lakeshore habitat classified as ‘most disturbed’ or ‘moderately disturbed’ (USEPA 

2016). Reduced riparian vegetation cover was identified as a primary   
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Figure 5.1. A) Locations of the six US states comprising the New England region and the Northern 

Appalachian ecoregion used in the National Lakes Assessment. B) Lakes included in this study to create 

littoral habitat assessment models. Lakes surveyed as part of the National Lakes Assessment are circles; 

lakes surveyed as part of state-level surveys are triangles. CT = Connecticut, ME = Maine, MA = 

Massachusetts, NH = New Hampshire, RI = Rhode Island, VT = Vermont. 
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stressor to 21% of Northern Appalachian lakes, behind only phosphorus (31%) and nitrogen (22%). For 

New England specifically, the 2012 NLA results indicated that 28% and 18% of lakes were in the ‘most 

disturbed condition’ for lake habitat complexity (a combination of riparian and littoral habitats) and 

shallow water habitat, respectively (USEPA 2016).  

Shoreland disturbance is generally included as a contributing factor to lake eutrophication 

(Soranno et al. 1996, Dennis 1986, Garrison and Wakeman 2000, Garrison et al. 2010), but systematic 

procedures to isolate its effect on littoral habitat have not been largely incorporated into assessments of 

individual lakes. The purpose of the NLA is to evaluate lakes across the US, not to serve as a tool for 

evaluation of single lakes. However, single-lake evaluation is a primary objective of most state 

environmental agencies and other lake-focused resource managers. NLA research determined that 

lakeshore disturbance is a major concern for lakes in the Northeast US because of its adverse effects on 

littoral habitat (USEPA 2009 and 2016, Kaufmann et al. 2014a). These findings identified a gap in 

assessment needs in this region, especially in Maine where lake habitat condition is specifically 

addressed in the water quality statute for lakes (MRS 38, §465-A). Recognizing this need, we sought to 

develop an assessment methodology within the framework of the NLA that would support the 

evaluation of littoral habitat based on comparisons to a natural, minimally disturbed reference condition 

(Stoddard et al. 2006). We achieved this by slightly modifying the NLA physical habitat survey approach 

and recalculating a collection of potential metrics to develop indices of littoral habitat condition. Our 

goals were to 1) numerically describe the range of littoral habitat conditions in natural (reference 

quality) settings in New England lakes, 2) isolate the effects of shoreland development as a specific 

stressor to littoral habitat, and 3) develop a systematic assessment method that objectively determines 

if littoral habitat is measurably different, or not, from the expected reference condition of individual 

lakes. 

 

http://www.mainelegislature.org/legis/statutes/38/title38sec465-A.html
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Methods 

Physical Habitat Surveys  

Physical habitat (PHAB) survey protocols and lake selection methods for the NLA are described 

in Kaufmann et al. (2014a, 2014b) and USEPA (2017). In brief, the percent coverage of a variety of 

littoral and riparian habitat characteristics (Table 5.1) are estimated by trained field crews at 10 

randomly placed, equidistantly spaced shoreland stations (Figure 5.2). Each station consists of a 10 m x 

15 m littoral plot (linear longer edge along shore) and a 15 m x 15 m riparian plot. Cover classes are used 

to estimate percent coverage of various habitat components. NLA cover classes include absent (0%), 

sparse (0-10%), moderate (10-40%), heavy (40-75%), and very heavy (>75%). Littoral habitat coverage 

estimates consist of three functional groups of aquatic macrophytes (submerged, floating-leaved, and 

emergent), fish cover types (large and small woody habitat, total macrophytes, live trees, overhanging 

riparian vegetation, ledges, boulders, and human structures), and substrate composition. Multiple layers 

of the vegetative canopy in the riparian plot are estimated, from ground cover to trees ≥ 5 m tall. 

Indicators of human influence within and adjacent to PHAB plots are recorded and enumerated as any 

of 13 different types of influences observed within (one point) or adjacent to (0.5 points) sites. NLA 

surveys occur once every five years, with the first three assessments completed in 2007, 2012, and 

2017. 

Lake Selection 

NLA survey lakes were selected by the US EPA with a spatially balanced probability sampling 

design from a set of US waterbodies with surface area ≥4 ha (2007 NLA) or ≥1 ha (2012 NLA and 2017 

NLA) and ≥1 m maximum depth (Figure 5.1B; USEPA 2017). Additional reference lakes were hand-picked 

by the EPA to represent lakes in minimally-disturbed watersheds within each ecoregion. 
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Table 5.1. Physical Habitat (PHAB) metrics for littoral, riparian, and human influence field observations 

collected in the National Lake Assessment surveys. All observations were enumerated with percent 

cover classes except for human influence metrics, which were scored either a one (inside plot), 0.5 

(adjacent to plot), or 0 (not observed near or in plot). 

Littoral habitat structure: 

SUBMGT Submergent plant cover 
EMRGT Emergent plant cover 
FLOAT Floating-leaved plant cover 
FC_LWH Large woody habitat (>30 cm diameter) cover 
FC_SWH Small woody habitat (<30 cm diameter) cover 
FC_LIVETR Live tree cover 
FC_OVERH Overhanging vegetation cover 
FC_LEDGE Ledges cover 
FC_BOULD Boulder cover 
FC_HUMAN Human structure littoral habitat cover 
SUB_BEDR Percent bedrock cover 
SUB_BOULD Percent boulder cover 
SUB_COB Percent cobble cover 
SUB_GRAV Percent gravel cover 
SUB_SAND Percent sand cover 
SUB_SCM Percent silt, clay, or muck cover 
SUB_WOOD Percent wood cover 
SUB_ORG Percent organic detritus cover 

Riparian vegetation/condition: 

C_BIG Large tree canopy cover (> 5m tall and > 30 cm DBH) 
C_SM Small tree canopy cover in riparian plot (> 5m tall and < 30 cm DBH) 
UN_WDY Large shrub and sapling cover (0.5 m - 5 m tall) 
GC_WDY Ground woody vegetation cover (< 0.5 m tall) 
GC_INUN Percent riparian plot cover inundated with water 
GC_NONW Ground non-woody vegetation cover 

Human Influence (HI) (in or adjacent to PHAB plot): 

HI_Buildings Buildings 
HI_ParkBeach Recreational park facilities or human-made beach 
HI_Comm Commercial facilities 
HI_DocksBoats Docks or boats 
HI_RowCrop Row crop agriculture 
HI_Fields Agricultural pasture or hay fields 
HI_Orchard Orchards 
HI_Lawn Lawns 
HI_Wall Walls or dikes 
HI_Trash Trash or landfill 
HI_Roads Roads  
HI_Powerlines Powerlines 
HI_LowImpTr Low-impact trails or other minimal sign of human influence 
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Many of the EPA-selected lakes for NLA in New England (Figure 5.1) are quite small due to the 

high prevalence of small waterbodies in this region (e.g., 70% of Maine lakes are ≤ 10 ha). While small 

lakes are ecologically important, they do not receive the same intensity of shoreland development 

pressure as larger lakes in New England. To better represent larger lakes and their greater development 

stress, additional state-level surveys were completed in Maine, New Hampshire, and Vermont on hand-

picked lakes that reflect a broader gradient of lake size and shoreland development based on desktop 

reconnaissance with aerial imagery and local knowledge regarding the shoreland condition of various 

lakes. Lakes included in this analysis were surveyed between 2007 and 2019. Survey data from these 

hand-picked lakes were combined with NLA PHAB survey data from these states as well as Connecticut, 

Massachusetts, and Rhode Island for creation of New England Regional habitat assessment models 

(Figure 5.1B).  

We investigated the efficacy of littoral habitat condition indices for Maine lakes, as well as for 

lakes in all of New England, including Maine lakes (hereafter, “Regional”). Departures from standard NLA 

methodology occurred in state-level surveys in two instances: Maine split the moderate cover class (10-

40%) into two groups: 10-25% and 25-40% because of the large number of observations that occurred 

within 10-40% coverage during early pilot surveys. The Maine-only analysis used all six cover classes 

Figure 5.2. A) NLA Physical Habitat survey design of 10 equidistant, randomly placed points around a 

lake (A-J). B) Schematic of riparian and littoral survey plots that are established at each of the 10 

stations.  
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collected in those surveys. Vermont recorded absolute percentage values for all observations. Maine 

and Vermont state-level survey data were both included in Regional analyses, but data from those 

states were reduced to the five cover classes used in NLA so that those data would harmonize with the 

remainder of the Regional surveys that were collected with standard NLA methodology (five cover 

classes).  

Vermont crews did not collect full substrate composition (but did record percent sand coverage 

of littoral plots) in state-level surveys, but the number of state surveys they completed made a 

substantial contribution to the Regional dataset. Consequently, Regional models were calculated 

without metrics requiring complete substrate composition.  

Non-metric multidimensional scaling was used to test patterns of littoral habitat metrics across 

gradients of lake trophic condition, depth, surface area, ecoregion, and state to investigate various 

groupings of lakes that may reflect gradients in natural habitat condition (natural is defined here as not 

being measurably different from the conditions measured in minimally-disturbed reference sites). The 

most informative environmental gradients identified were lake depth and surface area (Figure S1). 

Therefore, habitat condition models were developed for two Maine lake groups (Deep and Shallow) and 

four Regional lake groups (Deep-Large, Deep-Small, Shallow-Large, and Shallow-Small). Sub-groupings of 

deep and shallow lakes in the smaller Maine-only dataset based on lake surface area had decreased 

model performance so were not used here. The cut-off value for deep and shallow lakes was 10 m 

maximum depth, which is limnologically relevant in a classification of Maine lakes, as it is associated 

with many other lake variables including trophic condition (Deeds et al. 2020). Other studies have also 

determined that lake depth has an association with the habitat and biological communities in littoral 

areas (Beck et al. 2013, Lewin et al. 2014). The criteria designating large lakes were ≥ 81 ha (200 ac) for 

Regional deep lakes and ≥ 12 ha (30 ac) for Regional shallow lakes, as these surface areas roughly 
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bisected the Regional depth-stratified lake datasets. The Maine-only analysis included 102 lakes; 361 

lakes were included in the Regional analysis.  

Metric Calculations 

Raw PHAB field observations, from NLA methods (Table 5.1), were used to calculate a variety of 

metrics for potential inclusion in linear discriminate models (Table 5.2). Characteristics of riparian and 

littoral habitats, and human influence metrics used in the NLA, were calculated following Kaufmann et 

al. (2014a). Additional metrics were calculated according to Miler et al. (2014) and new ones were 

created for this study. All metrics were scaled 0-1 based on the minimum and maximum values of each 

metric observed within each lake group. In contrast to the NLA approach, which groups all site data for 

each lake (A-J) and evaluates that lake as a single site, we maintained separate site scores so that each 

lake could be evaluated with scores from 10 sites each. This was to account for lakes with differing levels 

of shoreland development along different sections of the shore. Whole-lake metrics were included in 

the collection of candidate lake metrics to capture potentially important lake-wide measures. Because 

PHAB observations are based on cover class bins, we used the mid-point of each bin in relevant metric 

calculations.  

Determining Reference vs. Highly Developed Shoreland sites 

We adapted the lakeshore human disturbance index used in NLA (RDis_IX, Kaufmann et al. 

2014b) to a metric that focuses on residential development (e.g., buildings or lawns) as the primary 

anthropogenic stressor on lakeshores (RDis_Site; Table 5.2), rather than a focus on agriculture as the 

primary human influence stressor on lakeshores. Agricultural land use in the watershed can be the most 

significant stressor on the entire lake in some situations, but typically littoral habitat condition is 

controlled by other human activities. We adapted this metric to better represent residential 

development as the primary stressor on New England lakeshores, and to address the impact that it can 

have on littoral habitat (Christensen et al. 1996, Francis and Schindler 2006, Marburg et al. 2006, Merrell   
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Table 5.2. Physical Habitat (PHAB) calculated metrics for littoral, riparian, and human influence. 

Name Source1 Description 

Littoral habitat structure: 

TOTMAC N Total macrophyte cover: (SUBMGT + EMRGT + FLOAT) 

FLTEMG N FLOAT + EMRGT plant cover 

SUBFLT N SUBMGT + FLOAT leaf plant cover 

FC_NAT N Sum of all fish cover metrics except FC_Human 

FC_ALL N Sum of all fish cover metrics 

SUB_VAR N Littoral substrate site variety (number of substrate types at site) 

SUB_PSIZE N Littoral Substrate Mean Particle Size: Cover-weighted log10 mean diam (mm); estimated from 
substrate cover type percentages 

SMNTCVR N Total of some natural fish cover types (FC_SWH, FC_LIVETR, FC_OVERH, FC_LEDGE, FC_BOULD) 

LITCVR_Q N Shallow water habitat index: (SMNATCVR / 1.5 + FC_LWH/0.2875 + FLTEMRG / 1.515) / 3 

LITCVR_B N Alternative shallow water habitat index: (FC_NAT + (FC_LWH / 0.2875)) / 2 

LITCVR_C N Alternative shallow water habitat index:                                                                                                  
(FC_NAT + (FC_LWH / 0.2875)) + ((EMRGT + FLOAT) / 1.515) / 3 

LK_SUB_VAR N Littoral Substrate Variety (Mean number of Substrate Types per site in lake) 

LK_LITCVRQ N Lake Mean for LITCVRQ across all sites 

LK_LITCVRB N Lake Mean for LITCVRB across all sites 

LK_SMNTCVR N Lake Mean for SMNTCVR across all sites 

TWH C Total Woody Habitat (FC_LIVETR + FC_OVERH + FC_LWH + FC_SWH) 

TLWH C Total Littoral Woody Habitat (FC_LIVETR + FC_LWH + FC_SWH) 

FINES C Total substrate fines (SUB_SCM + SUB_ORG) 

ROCKY C Total rocky substrate (SUB_BOULD + SUB_COB + SUB_GRAV) 

TOTFC N All fish cover metrics 

HCI C Habitat Complexity Index: (FC_LWH + FC_LIVETR + FC_LEDGE + FC_BOULD) 

VCI C Vegetation Community Index: (TOTMAC) / (1 - (SUB_BEDR + SUB_BOULD)) 

SHANNON M Shannon-Wiener habitat diversity of: TOTMAC, FC_LWH, FC_SWH, FC_LIVETR, FC_OVERH, FC_LEDGE, 
FC_BOULD 

SIMPSON M Simpson habitat diversity of: TOTMAC, FC_LWH, FC_SWH, FC_LIVETR, FC_OVERH, FC_LEDGE, 
FC_BOULD 

EVENNESS M Evenness of habitat features: TOTMAC, FC_LWH, FC_SWH, FC_LIVETR, FC_OVERH, FC_LEDGE, 
FC_BOULD 

Riparian vegetation/condition: 
rvpCAN C Presence or absence of lower-level vegetation canopy (C_SM or UN_WDY) 
rviCanopy N Total canopy cover: (C_SM + UN_WDY) 

rviWoody N Total cover of riparian vegetative layers: (C_SM + UN_WDY + GC_WDY + GC_INUN) 

rviwoody2 N* Natural Riparian Cover Complexity: Total cover of riparian vegetative layers  
       (C_SM + UN_WDY + GC_WDY + GC_INUN + GC_NONW + rvpCan) 

RVeg_Site N* Site-level Riparian Vegetation Condition: (((rviWoody2/max(rviWoody2)) + (GC_INUN 
/max(GC_INUN)))/2) 

Human Influence Metrics: 

HI_LB C Site Human Influence score for lawn and buildings: (HI_Lawn + HI_Buildings) 

HI_NONLB C Site Human Influence score for all HI metrics except HI_Lawn and HI_Buildings 

HI_ANY N Proportion of stations around lake with any human influence within plots (# of sites with Human 
Influence score > 0 / Total number of sites) 

RDis_Site N* Lakeshore Human Disturbance Index – Site level: (1 - (1/(1+(HI_NONLB) + (5*HI_LB))) + HI_ANY)/2   

RipScore C Riparian Condition Score: (1+RVeg_Site) / (1+RDis_Site) 
1N = NLA (Kaufmann et al. 2014a); M = Miler et al. 2014; C = current study. 
*metrics were modified from their original formulae.  
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et al. 2009, Brauns et al. 2011, Dustin and Vondracek 2017). We also adapted the NLA Riparian 

Vegetation Complexity Index (RVegQ, Kaufmann et al. 2014b) to be a more appropriate measure of 

natural riparian vegetation at New England lakeshores. This was done by including the cover and 

complexity of all layers of riparian vegetation and natural ground cover (e.g., duff vs. bare ground) to 

create the metric RVeg_Site. RDis_Site and RVeg_Site were combined into a single metric, RipScore 

(Table 5.2), to place all sites along a gradient of most natural (minimal human influence, high RipScore) 

to most disturbed (greatest human influence, low RipScore). 

Sites were designated as “reference” that scored above the 80th percentile of RipScore values, 

and “developed” if they fell below the 20th percentile of RipScore values as these thresholds provided 

the best separation of lakeshore condition. Sites designated as either reference or developed were used 

to create separate datasets for building linear discriminant models to predict site condition based on 

littoral habitat metrics. The model-building datasets had an equal number of sites designated as either 

“reference” or “developed”. The model-building datasets were randomly partitioned into training and 

validation sub-sets (80% and 20% of sites, respectively). The training sub-set was used to build and train 

the candidate models, and the validation sub-set was to test the effectiveness of the candidate models 

with new data. Overall model effectiveness was evaluated based on the percent of sites correctly 

classified (as reference or developed) by the model in both the training and validation sub-sets of data. 

Linear Discriminant Modeling 

Linear discriminant analysis (LDA) models were built for the six groups of lakes discussed above, 

using the MASS package in R (Venables and Ripley 2002). LDA effectively identifies the best combination 

of metrics for classifying new data with multi-metric indices (Danielson et al. 2012). Combinations of 

metrics were tested in as many as 3,000,000 iterations per model (e.g., 10 metrics in a model x 25 

potential metrics) for each lake. Models were chosen with combinations of metrics that best predicted 
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(discriminated) the correct affiliation of sites between the a priori reference and developed site 

categories and had no correlated metrics (Variance Inflation Factors < 5; Fox and Monette 1992).  

The final step of our model selection process was a sensitivity analysis which measured the 

change in model effectiveness when a particular metric is absent from that model. To do this, we ran 

successive LDA models within each lake group that were missing one of the metrics from the full model. 

We enumerated the importance of each metric within each model by calculating the difference in the 

percent of correctly identified sites from training and validation datasets between full n-metric models 

and n-1 metric models, creating the variables ΔTrain% and ΔValid% for each metric, respectively. 

ΔTrain% and ΔValid% represent the change in the percent correct from each category (new value – 

original value), so negative values indicate declines in model performance. Metrics which did not 

decrease model performance (ΔTrain% and ΔValid% ≥ 0) when absent were omitted from final models. 

We also used the results of the sensitivity analyses to evaluate the importance of each metric within the 

final version of each model, because metrics with lower ΔTrain% and ΔValid% values (i.e., more 

negative) had a greater effect on model success.  

LDA models were applied to all sites from each lake to place lakes in habitat condition 

assessment categories. LDA scores are the linear combination of the products of metric values and their 

model coefficients. Here, LDA scores were calculated for each of the 10 sites. Higher (positive) LDA 

scores indicated that the site has habitat closer to undisturbed reference conditions, and lower 

(negative) values indicate habitat conditions were closer to those found in disturbed sites. LDA scores 

near zero designate intermediate habitat condition. Bootstrapped 95% confidence intervals (CIs) were 

calculated from the 10 LDA scores for each lake with the Boot package in R (10k resample with 

replacement; Canty and Ripley 2021). The accelerated bias-corrected (BCA) method was used because it 

is non-parametric and corrects for skewness and bias in the bootstrap distribution. It is considered the 

most consistently effective technique for calculating CIs (Puth et al. 2015). The CIs based on the 10 LDA 
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scores for each lake were used to determine if the lake had littoral habitat more indicative of natural or 

developed shoreland conditions. This approach of using CIs is effective at capturing the variation and 

overall condition of the sites based on these scores and their distance from zero. CIs that do not cross 

zero indicate that the data are significantly different from zero. If the CI’s lower bound for a lake was > 

0, the lake was designated as natural, meaning the habitat is reflective of reference-quality conditions; if 

the CI upper bound was < 0, it was designated as impaired, meaning that the habitat is measurably 

different from the expected reference condition; and if the CI range contained 0, the lake was assigned 

intermediate status, indicating that the habitat condition exists between natural and impaired.  

Results 

The top LDA models for the Maine-Deep and Maine-Shallow PHAB data both had over 90% of 

sites correctly classified in validation datasets, with 90.5% of the Maine-Deep and 90.6% of the Maine-

Shallow sites correctly classified (Table 5.3). The percent classified correctly in the validation datasets 

from the Regional lake groupings ranged from 85.4% (Regional Deep-Large and Deep-Shallow) to 80.8% 

of sites (Regional Shallow-Large). The Maine-only models for deep and shallow lakes showed better 

model performance by 5.1% and 9.4% each when compared to the average percentage of correctly 

categorized sites in the validation data from their deep and shallow Regional model counterparts 

(average of Regional Deep and Shallow lakes combined). LDA models with Maine-only data but with five 

cover classes instead of six (10-25% and 25-40% cover classes combined into the 10-40% cover class per 

NLA methodology) had lower model performance. The top-performing model for Maine-Deep lake 

datasets with five cover classes had 83.5% correct in the training dataset and 88.1% correct in the 

validation data, representing declines in model performance of 3.3% and 2.4%, respectively. The best 

Maine-Shallow model with five cover classes had 75.3% and 75.8 % correct in training and validation 

datasets, respectively, representing declines in respective model performance of 2.5% and 14.8%. 
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Table 5.3. Metrics used and performance statistics for Linear Discriminant Analysis models for each lake 

type. 

  

Metric  
Maine 
Deep 

Maine 
Shallow 

Regional 
Deep - 
Large 

Regional 
Deep - 
Small 

Regional 
Shallow - 

Large 

Regional 
Shallow - 

Small 

EMRGT  
 

X X 
 

X 
 

FLOAT  X 
 

X 
 

 X 

FLTEMG  
    

 
 

SUB_SAND  X X X X X 
 

SUB_SCM  
 

X 
  

 
 

LK_SUB_VAR  
   

X  X 

SUB_VAR  X 
   

 
 

SUB_PSIZE  X 
   

 
 

EVENNESS  
 

X X 
 

 
 

FC_SMH  
 

X 
  

 
 

FC_LWH  X 
   

 X 

FC_NAT  
    

 
 

FINES  
   

X  X 

HCI  
 

X X 
 

X X 

LITCVRB  
 

X 
  

X 
 

LK_LITCVRB  
  

X X  
 

LK_LITCVRQ  X 
   

X X 

LK_SMNTCVR  X X X X X 
 

SHANNON  X 
  

X X X 

SIMPSON  
    

 
 

SMNTCVR  
   

X  
 

TWH  
  

X X  X 

TOTFC  
  

X 
 

X X 

TLWH  
   

X  X 

Depth Criteria ≥ 10 m < 10 m ≥ 10 m ≥ 10 m < 10 m < 10 m 

Size Criteria -- -- ≥ 200 ac 20-200 ac ≥ 30 ac < 30 ac 

Number of Lakes1 56 46 64 58 103 125 

Training % Correct 

Validation % Correct 

86.8 77.8 80.1 73.4 75.1 75.5 

90.5 90.6 85.4 85.4 80.8 81.6 

1Lakes in the Maine-Deep and Maine-Shallow groups were also used in the Regional models. 
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The metrics included in the top models varied across lake groupings, but several were common 

among multiple lake groups (Table 5.3). SUB_SAND and LK_SMNTCVR were the most common, occurring 

in five models each. HCI and SHANNON occurred in four models and five metrics (EMRGT, FLOAT, 

LK_LITCVRQ, TOTFC, TWH) were common among three models. Most metrics decreased with riparian 

disturbance (lower RipScore) with the most noticeable exception of SUB_SAND, which increased with 

shoreland disturbance (Figure 5.3). 

Sensitivity analyses showed that one model performed best with 10 metrics (Regional Shallow 

Small), two with nine metrics (both Regional Deep models), and the rest with eight metrics (Table 5.4). 

The absence of remaining metrics would have decreased model performance as measured by ΔTrain% 

and ΔValid%. Some metrics were not a factor in either the validation or training datasets, having a value 

of zero for ΔTrain% or ΔValid but not both. These metrics were left in the models because a decline in 

either value indicates a decline in overall model performance. 

Whole-lake metrics (LK_SMNTCVR, LK_LITCVRQ, LK_LITCVRB) were among the most important 

metrics (lowest ΔTrain% and ΔValid% values) in all lake models (Table 5.4). SUB_SAND was also among 

the most important metrics in all models (mean SUB_SAND for all models: ΔTrain% = -2.4; ΔValid% = -

6.4) but was relatively less important in Maine shallow lakes (sixth most important of eight metrics; 

ΔTrain% = -2.6; ΔValid% = -3.1). Macrophytes were important in the Regional Deep lakes (RDL: FLOAT 

ΔTrain% = -1.8, ΔValid% = -4.2; RDS: EMRGT ΔTrain% = -1.8, ΔValid% = -4.1) but were not as important in 

the Maine Deep model (FLOAT ΔTrain% = -1.1, ΔValid% = -0.0). Substrate variability (SUB_VAR) was 

important in the Maine deep model but not the Regional deep lake models. Emergent macrophtyes 

were important in the Regional Shallow-Large lake model (EMRGT ΔTrain% = -1.8, ΔValid% = -4.1), but 

macrophyte metrics were less important in the other two shallow lake models.  

LDA Scores were calculated for each site according to corresponding model coefficient values (Table 

5.4). Mean LDA scores (the mean score from all sites on a lake) ranged from -1.820 to 2.428 (𝑥̅ = 0.144 ± 
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0.020 SE) in Maine Deep lakes (Figure 5.4A) and from -2.514 to 2.514 (𝑥̅ = 0.263 ± 0.019 SE) in Maine 

Shallow lakes (Figure 5.4B). Regional deep lake scores ranged from -1.826 to 2.455 (𝑥̅ = 0.100 ± 0.014 SE) 

and -2.048 to 2.324 (𝑥̅ = 0.080 ± 0.016 SE) in large and small lakes, respectively (Figures 5.5A, 5.5B). 

Regional shallow lakes LDA scores ranged from -2.140 to 2.011 in large lakes (𝑥̅ = 0.080 ± 0.008 SE) and -

1.866 to 3.108 in small lakes (𝑥̅ = -0.029 ± 0.008 SE) (Figures 5.6A, 5.6B). All individual lake assessment 

scores are in Table D1. Upper and lower bounds of 95% bootstrapped confidence intervals based on LDA 

scores for each lake were used to place lakes in habitat condition assessment categories (Figs 4-6; Table 

D1).  

Lake groups had generally similar proportions of natural, intermediate, and impaired lakes 

(Figure 5.7). The Regional Shallow-Small lake model was an exception to this with 47% (n = 59) of lakes 

designated as impaired, which was the highest impairment percentage among all lake groups. Regional 

Shallow-Small lakes also had the lowest percentage of natural lakes (30%, n = 37). Maine-Shallow Lakes 

had only 26% impaired lakes (n = 12), the lowest percent impaired of all groups. Regional Deep-Small 

had the highest percentage of natural lakes (41%, n = 24).  

RDis_Site (human influence) values were highest in Maine-Deep and Regional Deep-Large lakes 

(although Regional Deep-Large RDis_Site scores were only significantly higher than those of two other 

lake groups at α = 0.05), indicating the most intense human influence occurred within these two lake 

types (Figure 5.8A). Maine shallow lakes had the highest RVeg_Site values (Riparian vegetation 

condition) among the six lake types, suggesting this class of lakes had the most natural riparian 

vegetation condition (Figure 5.8B). RipScore values were more evenly distributed across lake types, but 

Regional deep lakes were lower than most (i.e., most disturbed; Figure 5.8C). LDA scores across all lake 

groups were similarly associated with RDis_Site (negatively) and RipScore (positively) (Figures 5.8D, 

5.8F). The associations among LDA scores and RVeg_Site scores were slightly more variable but was 

positive across five lake groups, with Maine Shallow lakes being the exception (Figure 5.8E). 
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Figure 5.3. Scatterplots of RipScore vs. final model metrics from all six LDA models, with linear regression lines. 

RipScore was used to evaluate site condition; a higher value indicates a more natural shoreland condition. All 

metrics have been scaled 0-1 based on the minimum and maximum values within each lake group. MED = Maine 

Deep, MES = Maine Shallow; RDL = Regional Deep Large, RDS = Regional Deep Small, RSL = Regional Shallow 

Large, RSS = Regional Shallow Small. 



 

118 
 

Table 5.4. Model coefficients (LD1) and sensitivity values for Training (ΔTrain%) and Validation (ΔValid%) 

datasets, which is the change in percent correct in a new model missing only that metric for six Linear 

Discriminant Analysis models. Metrics are sorted by ΔValid%, which represents the importance of that 

metric to correct site classification in the validation dataset. 

  

Metric LD1 ΔTrain% ΔValid% Metric LD1 ΔTrain% ΔValid% 

Maine Deep (MED) Maine Shallow (MES) 

SUB_SAND -1.333 -2.7 -4.8 HCI 3.916 -4.6 -15.6 

SUB_PSIZE 1.423 -2.2 -4.8 LK_SMNTCVR -3.997 -6.6 -12.5 

SUB_VAR -5.431 -2.2 -4.8 SUB_SCM 1.382 -1.3 -12.5 

FC_LWH 0.762 -1.1 -4.8 EVENNESS 2.327 -3.3 -6.2 

LK_LITCVRQ 4.049 -8.8 -2.4 LITCVRB 1.667 -3.9 -3.1 

FLOAT 0.695 -1.1 0.0 SUB_SAND -0.647 -2.6 -3.1 

LK_SMNTCVR -0.072 -1.1 0.0 EMRGT -0.944 -1.3 -3.1 

SHANNON 0.657 -1.1 0.0 FC_SMH -0.758 -1.3 0.0 

Regional Deep-Large (RDL) Regional Shallow-Large (RSL) 

SUB_SAND 1.657 -1.8 -4.2 LK_SMNTCVR 3.984 -3.0 -5.5 

LK_LITCVRB 3.410 -7.7 -4.2 SUB_SAND -0.995 -0.6 -5.5 

LK_SMNTCVR 0.587 -4.1 -4.2 EMRGT 2.693 -1.8 -4.1 

TOTFC -3.742 -3.2 -4.2 LITCVRB 3.279 -1.2 -4.1 

FLOAT 1.657 -1.8 -4.2 TOTFC -2.589 -1.2 -2.7 

EMRGT 2.349 -4.1 -2.1 LK_LITCVRQ -1.474 -0.6 -2.7 

TWH 5.556 -3.2 -2.1 HCI -0.681 -0.9 -1.3 

HCI 1.017 -2.7 -2.1 SHANNON 1.367 0.3 -1.3 

EVENNESS -0.301 -2.3 0.0  
Regional Deep-Small (RDS) Regional Shallow-Small (RSS) 

LK_LITCVRB 2.502 -4.3 -7.4 LK_LITCVRB 3.889 -3.3 -3.9 

LK_SMNTCVR 2.633 -2.4 -7.4 HCI -2.063 0.7 -3.9 

SUB_SAND -1.074 -0.5 -7.4 SUB_SAND -0.854 -1.4 -3.0 

TWH 2.439 -1.9 -2.5 SMNTCVR 4.159 0.0 -3.0 

SHANNON 0.705 -0.9 -2.5 FC_LWH 3.035 -0.7 -2.0 

LK_SUB_VAR -1.911 -1.9 0.0 SIMPSON 0.722 0.3 -2.0 

SMNTCVR -1.406 -1.4 0.0 LK_SMNTCVR -0.994 0.5 -2.0 

TLWH -1.591 -1.4 0.0 LITCVRB -3.166 -0.9 -1.0 

FINES -0.416 -0.5 0.0 FC_NAT 0.593 0.0 -1.0 

    FLTEMG 0.627 -0.7 0.0 

Applying models to new survey data (example for Maine-Deep): 
 

LDA Score = 0.695*FLOAT + 0.762*FC_LWH -1.333*SUB_SAND - 5.431*SUB_VAR +  
1.423*SUB_PSIZE + 0.657*SHANNON - 0.072*LK_SMNTCVR + 4.049*LK_LITCVRQ 
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Figure 5.4. Mean LDA scores and bootstrapped 95% confidence intervals (CIs) from models for Maine 

lakes with habitat condition assessment results. The horizontal bars show the range of the CIs. See Table 

5.2 for depth and size criteria. 
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Figure 5.5. Mean LDA scores and bootstrapped 95% confidence intervals (CIs) from models for New 

England regional deep and shallow lakes with habitat condition assessment results. The horizontal bars 

show the range of the CIs. See Table 5.2 for depth and size criteria. 
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Figure 5.6. Mean LDA scores and bootstrapped 95% confidence intervals (CIs) from models for New 

England regional deep and shallow lakes with habitat condition assessment results. The horizontal bars 

show the range of the CIs. See Table 5.2 for depth and size criteria. 
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Figure 5.7. Proportion of assessment designations within each lake type. Numbers within each bar 

segment indicate number of lakes within each assessment category. MED = Maine deep, MES = 

Maine shallow; RDL = regional deep large, RDS = regional deep small, RSL = regional shallow large, 

RSS = regional shallow small. See Table 2 for depth and size criteria. 
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Figure 5.8. A-C: Boxplots of site-level riparian metrics used in the analysis, averaged for each lake within 

each lake group. RDis_Site measures human influence, RVeg_Site measures riparian vegetation 

condition, and RipScore is the combination of RDis_Site and RVeg_Site (see Table 2). Different lowercase 

letters above boxplots indicate significant differences from Tukey HSD post-hoc tests (α = 0.05). D-F: 

Scatterplots of mean riparian metrics vs. mean LDA model scores for each lake with linear regression 

lines for each lake group. MED = Maine Deep, MES = Maine Shallow; RDL = Regional Deep Large, RDS = 

Regional Deep Small, RSL = Regional Shallow Large, RSS = Regional Shallow Small. 
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Discussion  

This study shows that littoral habitat observations collected according to the NLA methods may 

be used to perform assessments of habitat condition for individual lakes. Models using only Maine lake 

data had better performance than those based on New England Regional lakes, but all models correctly 

predicted site condition with >80% accuracy as indicated by validation success rates (Table 5.3). These 

models provide needed assessment tools that allow resource managers to objectively determine 

whether or not lake shoreland development is adversely affecting littoral habitat.  

We were able to increase our confidence in assessments of Maine lakes by recording cover class 

observations at a slightly finer scale of assessment, especially in shallow lakes. In the Maine state-level 

surveys, the 10-40% cover class (used in NLA studies) was divided into 10-25% and 25-40% groups, 

which likely contributed to the increased LDA model performance compared to that for the Regional 

models (Table 5.3). Combining observations of habitat cover that occur from 10-40% may obscure 

important but fine-scale differences among sites. These results suggest that differences in habitat 

structure at within this coverage range may be most important in shallow lakes where there may be 

more variety habitat structure and stasis in condition, perhaps due to reduced wave action or lessened 

littoral slope in shallow areas of lakes (Francis and Schindler 2006, Marburg et al. 2006). Full substrate 

metrics, which were not used in the regional models, were important in the Maine-only models and may 

have contributed to increased model performance as well. For future single-lake habitat assessments, it 

may be most appropriate to develop models that partition cover classes into six or more groups and 

focus the assessments at smaller regional scales than considered here in the regional models. If new 

model development in is not possible due to data or resource constraints, this study has shown that a 

Regional index may be applied using existing NLA PHAB methodology that maintains a suitable level of 

performance (>80% validation success rates for all Regional models) for most lake littoral habitat 

assessment applications.  
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The separation of lakes into morphological groups helped to increase model performance. 

Deeds et al. (2020) showed the importance of hydrogeomorphic variables in shaping lake conditions 

across Regional landscapes. Maximum depth was likely an important grouping variable here because of 

the association of lake depth with several related variables, including lake surface area which was 

specifically used to partition deep and shallow lakes in the Regional assessment. Deeper lakes are 

generally larger, which increases the fetch of the lake, permitting greater wave action. Increased wave 

energy on lakeshores shapes littoral habitat by suspending and removing smaller sediment particles and 

organic debris, leaving coarser-grained substrates, and redistributing woody habitat to calmer areas of 

lakes (Marburg et al. 2006). Lake depth may also relate to the slope of the littoral area, which can 

redistribute woody habitat into deeper depths. Deeper waters may not always be evaluated in PHAB 

surveys which only extend 10 m from shore.  

Lewin et al. (2014) found a more pronounced effect of shoreland development in deeper lakes, 

attributing the relationship to the proportionally smaller littoral zones found in deep lakes. This was 

reflected in our regional models, as the two Regional Deep lake models had higher rates of prediction 

success compared to their Regional Shallow Lake counterparts (with the exception of training percent 

correct in Reginal Deep-Small lakes). The Maine Deep lakes had increased percent correct in training 

data but similar percent correct values in the validation datasets. These results suggest that there may 

be a closer association between littoral habitat condition and lakeshore alteration in deeper lakes (Table 

5.3).  

While the results of this study cannot be used for general condition assessments of littoral 

habitat due to the non-randomized selection for many lakes in the dataset, the proportion of 

assessment categories determined in each model type may be instructive for understanding model 

results. The Regional analysis showed that larger proportions of Shallow-Small lakes were designated as 

impaired compared to the other three Regional lake groups (Figure 5.7). Regional Shallow-Small lakes 
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had significantly lower lakeshore disturbance (RDis_Site) and significantly higher RipScores (combination 

of RDis_Site and riparian vegetation condition) than other Regional lakes, indicating that these lakes 

have comparatively more natural shorelands than other Regional lakes, overall (Figure 5.8A, C). The 

higher proportion of impaired assessments in Regional Shallow-Small lakes may be due in part to the 

wider variation in habitat condition among these lakes compared to other lakes in New England. Several 

of the surveyed shallow lakes in this dataset are small, remote ponds with minimal human alteration, 

while others are located near urban centers and receive a great deal of development pressure. This is 

reflected in the wider ranges and higher upper end of LDA values among these lakes; Regional Shallow-

Small lakes have a maximum LDA of 3.108, which is 0.653-1.097 higher than the maximum scores of 

other three Regional lake models (Table D1). High values at the upper end of LDA scores of Regional 

Shallow-Small lakes created a sub-group of 12 lakes with very high LDA scores (Figure 5.6B). Most lakes 

in this group did not approach the most natural habitat conditions observed, as the top-end LDA scores 

here were so high. This was reflected in the model results, as the Regional Shallow-Small lake group is 

the only one with negative mean LDA value and which has the majority of lakes in the impaired 

assessment category (Table D1). A closer examination of lake condition and habitat assessments within 

this group may help to determine if all lakes assessed as impaired have truly degraded habitat or if some 

assessments are a function of a wider variability of lakeshore conditions within this group. 

LDA model scores generally increased (more natural littoral habitat conditions) with decreasing 

RDis_Site (human influence, Figure 5.8D) and decreased with lower RipScores (human influence and 

riparian vegetation condition; Figure 5.8F). However, there were exceptions to these associations which 

resulted in habitat assessments that did not reflect expected habitat conditions (e.g., Upper Jo-Mary 

Lake in Maine: mean RipScore = 0.723, mean LDA Score = -0.847; result = impaired; Fig. 4A and Table 

D1). Lakes that had high RipScores but low LDA scores indicated that some lakes may have natural 

factors that influence assessment of littoral habitat condition. For example, shorelines and littoral areas 
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with dense boulder coverage, as is the case in Upper Jo-Mary Lake, typically have homogenous substrate 

composition and are largely unsuitable for plant growth. This lake is also relatively large (748 ha), so it 

likely has a large enough fetch to redistribute woody habitat to more protected areas (Marburg et al. 

2006). Naturally sandy lake shores can be common in this area of Maine, as well as other parts of New 

England. These conditions affect multiple metrics that are important in Maine Deep LDA models (sandy 

shores: SUB_SAND; substrate particle size distribution: SUB_PSIZE; substrate homogenization: SUB_VAR; 

lack of observed woody habitat and macrophytes: FC_LWH, LK_LITCVRQ, and LK_SMNTCVR;). These 

results highlight the importance of considering multiple aspects of lakeshores that affect littoral habitat 

before final condition assessments are made. Shoreland disturbance metrics such as RipScore and 

RDis_Site may be used to help determine if poor littoral habitat scores are due to shoreland alteration, 

natural conditions, or other factors such a water level fluctuation.  

Manual lake water level fluctuations occur in some lakes in New England, usually either for 

macrophyte control (Cooke et al. 2005), flood control, or power generation at hydropower facilities 

(Mjelde et al. 2013). Drawdown can have adverse effects on littoral habitat, especially when coupled 

with shoreland development (Evtimova and Donohue 2016, Carmignani and Roy 2021). We did not 

specifically address the effect of water level drawdowns in our littoral habitat condition assessment 

models, but poor littoral habitat scores in some lakes with otherwise minimally developed shorelands 

(e.g., Chittenden, Green River, Little Averill) may be explained by seasonal water level fluctuations. 

Linkages among manual water level manipulations, shoreland development, and littoral habitat 

condition should continue to be investigated. 

SUB_SAND, the percentage of sand coverage within the littoral plot substrate, was present in all 

models and was among the most important metrics in each lake group except for Maine-Shallow (Table 

5.4). The presence of sand coincided with increased shoreland disturbance in all models (Figure 5.3). 

Sand may be present in abundance within the littoral area and associated with residential development 
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for a variety of reasons. It may be natural, as sandy shore sites may be more desirable for residential 

home placement and recreational lake use. However, sand in the littoral area may also be due to 

increased erosion from shoreland development and land uses (e.g., unmitigated earthwork or 

improperly maintained dirt roads and driveways; Garrison et al. 2010), or the manual placement of sand 

for beach areas along the shore. Regardless of how the sand arrived in the littoral area, sand represents 

poor littoral habitat with little complexity, and our results suggest that higher coverage of sand is 

associated with greater shoreland development and impaired habitat condition.  

LK_SMNTVR, which occurred in all six LDA models, represents a variety of habitat structures in 

the littoral zone (Table 5.2). This is a lake-wide metric, meaning all 10 sites receive the same score, 

calculated as the average of SMNTCVR across all sites for a lake. Two other lake-wide metrics 

(LK_LITCVRB, LK_LITCVRQ) also occurred in all lake group models. The importance of a lake-wide metric 

across all model types signifies that there can be effects of shoreland development that affect littoral 

habitat throughout entire lakes, such as extensive loss of riparian vegetation which can diminish the 

amount of CWH in the littoral zone (Christensen et al. 1996, Jennings et al. 2003, Francis and Schindler 

2006, Marburg et al. 2006, Dustin and Vondracek 2017, Chhor et al. 2020). HCI (Habitat Complexity 

Index, present in four models) is site-specific and captures the effects of localized shoreland 

development. The mix of whole-lake and site-specific metrics (HCI and others) in our models suggests 

that there are interacting effects of shoreland disturbance operating at multiple scales that influence 

littoral habitat condition in lakes. 

Metrics incorporating several habitat variables (e.g., site-specific: TLWH, FC_Nat, EVENNESS, 

LITCVRB, HCI, SMNCVR; and whole-lake: LK_SMNTCVR, LK_LITCVRB, LK_LITCVRQ) occurred in all models. 

These metrics all incorporate various aspects of littoral habitat structure: live and downed trees, various 

sizes of woody structure, substrate type and complexity, and macrophyte abundance. These types of 

metrics highlight the natural variability observed in littoral habitat structures. As shoreland development 
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increases, the values of these metrics decrease, signifying homogenization of habitat structure and loss 

of habitat types from the littoral area. Lakes in need of habitat rehabilitation that are evaluated with 

habitat models, which depend more heavily on these types of metrics (i.e., low ΔTrain% and ΔValid% 

values), will likely benefit greatest from a lake-wide approach to shoreland vegetation restoration and 

maintenance of natural littoral macrophyte beds. 

All models contained at least one macrophyte-related metric (EMRGT, FLOAT, FLTEMG, 

TOTMAC, SUBFLT, VCI, SHANNON, and LK_LITCVRQ, which incorporates FLTEMG). Regional large lakes 

(deep and shallow) had macrophyte metrics among the most important, but we did not observe an 

increased importance of macrophytes in our deep lake models. This contrasts with the findings of Beck 

et al. (2013) who showed that the effect of shoreland development on macrophyte communities was 

especially pronounced on deeper, more highly developed lakes. However, our metrics generally showed 

decreased macrophyte abundance at sites with greater riparian disturbance (Figure 5.3). Macrophyte 

communities across sites and lakes may be differentially affected by a variety of land use practices 

(Chhor et al. 2020) and water chemistry, especially differences in alkalinity (Mikulyuk et al. 2017). 

Numerous other studies also found that emergent macrophytes were especially affected by land use 

along lakeshores (Alahuhta et al. 2014, Dustin and Vondracek 2017, Chhor et al. 2020). In conventional 

biological assessments, which are commonly focused on detecting species-level changes in community 

composition, it would be more informative to use species-oriented metrics such as community richness 

or tolerance values to better elucidate the effects of shoreland development on macrophyte 

communities. For basic habitat assessments such as this, where macrophytes are being considered 

largely for their contribution to littoral habitat structure and function for multiple trophic levels, 

evaluation of functional groups (i.e., emergent, floating, submergent) should be adequate. Use of the 

shoreland disturbance metrics described here, in conjunction with species-oriented evaluations of 
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littoral macrophytes, may help to advance understanding of the linkages between shoreland 

development and the biological condition of littoral macrophyte communities. 

We used 95% bootstrapped confidence intervals (CIs) based on single-site evaluations to 

accommodate wide varieties of types and condition of habitat in lakes. The LDA models effectively 

compare the habitat observed in a lake to an expected natural condition, and the CIs assess if there is 

enough natural habitat around the lake that is accessible to lake fauna within a specified confidence 

interval. Lakes may have variable levels of shoreland development along different sections of the shore. 

High within-lake variability occurred in some of our lakes, which influenced the condition assessments. 

For example, some Maine Deep lakes (e.g., Woodbury, Jamie’s, and Chamberlain) all have negative 

mean LDA scores suggesting “impaired” conditions, but the range of the confidence interval places them 

in the intermediate category (Figure 5.4B). As with any assessment decision, best professional judgment 

should always be exercised to ensure that each lake is properly evaluated through an informed decision-

making process. This also applies to placing lakes in the appropriate groups for model calculation. 

Analyses for lakes that are borderline between multiple groups based on depth or size may benefit from 

evaluations with applicable models for properly informed condition assessments. 

The goal of many lake assessments is to help prioritize actions for the rehabilitation of impaired 

lake condition. In the event of littoral habitat impairment, the rehabilitation is likely more 

straightforward than other impairments such as nutrient enrichment due to internal P loading or non-

point source pollution from the watershed. The assessments described here focus on shoreland 

development as the primary stressor that is degrading littoral habitat. Therefore, stressor identification, 

which can be costly and time-consuming for other impairments, is likely unnecessary. Lake resource 

managers may address most littoral habitat impairments with shoreland vegetative buffer restoration 

activities. Maine has a successful program in place that addresses proper lakeshore property 
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management (LakeSmart; Cole et al. 2018). LakeSmart provides a model for other states to create 

similar programs, as has been done in Vermont (LakeWise; dec.vermont.gov). 

Lakes designated as impaired with respect to their littoral habitat may serve as a priority for 

agencies and resource managers to focus lakeshore improvement efforts. Lakes with natural littoral 

habitat may be targeted for conservation priorities. The intermediate designation may be beneficial for 

lake-focused associations to prioritize lakeshore protection efforts locally. The work required to improve 

lakeshore condition, and subsequently littoral habitat condition, may be considerably less than in lakes 

with impaired habitat status. Moreover, restoring lakeshore condition has other obvious benefits to lake 

condition, such as prevention of erosion and reduction of nutrient runoff, particularly phosphorus. For 

organizations with limited resources, striving to make the greatest gains in lake condition, shoreland 

rehabilitation on intermediate lakes may yield a valuable cost-benefit opportunity. 

The habitat surveys described here may be readily adopted by community scientist groups with 

minimal training, following the model of volunteer lake water quality monitors that have contributed 

greatly to the general knowledge of lake condition for decades (Bigham Stevens et al. 2015, Poisson et 

al. 2020). These surveys have relatively simple observations, no required taxonomy (as is the case with 

macrophyte or macroinvertebrate identification), and no laboratory fees. If done properly, the surveys 

require less than a day of field work and need not be repeated within weeks or months, in contrast to 

Secchi disk transparency, dissolved oxygen, and determination of lake phosphorus concentration. There 

is potential for greatly increasing capacity for agency littoral habitat assessments by engaging lake-

focused community groups. Furthermore, littoral habitat assessments such as this can yield almost 

instantaneous results, which would be a considerable benefit for community scientists who can grow 

restless waiting to learn the results and interpretation from their monitoring efforts. 

https://dec.vermont.gov/watershed/lakes-ponds/lakeshores-lake-wise
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There are many opportunities to refine the surveys and models described here to enhance the 

success of littoral habitat condition assessments. We improved assessment confidence by increasing the 

number of cover classes from five to six, but there may be finer scale separations in cover classes that 

could provide further benefits. Additionally, NLA methodology surveys only 10 sites per lake regardless 

of lake size (Kaufmann et al. 2014a, 2014b). We considered each site on a lake independently, and 

grouped lake information only after sites were evaluated. It is possible that these assessments may 

benefit from more than 10 sites, possibly based on the surface area or shoreline length of lakes. This 

may be especially relevant for large lakes that can hold a wide variety of littoral habitat types and 

shoreland condition. Future work should include power analyses of the number of sites necessary to 

maximize both model effectiveness and efficiency of field efforts. 

Conclusions 

The models described here may be used to determine the degree of departure of littoral habitat 

from an established reference condition, which may be the goal of many agency assessments (Stoddard 

et al. 2006). This work builds upon numerous studies that have established a linkage between 

diminished littoral habitat and the conversion of lakeshores from natural vegetation to residential land 

use. By incorporating findings from those studies and the established methods developed through the 

NLA, we established a new assessment framework to help improve the condition of lakes with 

diminished littoral habitat due to anthropogenic shoreland development. 
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CHAPTER 6. CONCLUSIONS 

This dissertation examined the interacting roles of natural and anthropogenic factors that shape 

lake condition in Maine. The influence of anthropogenic activity on lake condition is well documented, 

but various aspects of lake water and habitat quality may be further explained by natural characteristics 

of the watershed or lake. Other aspects of lake condition are influenced by large-scale factors that are 

not lake or watershed specific, such as weather patterns. Littoral habitat is adversely affected by local-

scale residential development on lakeshores. The overall goal of this dissertation was to advance our 

collective understanding of lake condition and how lakes may be variably affected by natural and 

anthropogenic factors, thereby allowing for better-informed lake assessments and development of 

more comprehensive, achievable lake management goals. 

Chapter Summaries 

In Chapter 1, the rationale behind lake assessments and the long-term record of lake monitoring 

in Maine was discussed. Among the benefits of such a long empirical history of lake assessment is the 

comprehensive dataset on Maine lakes that now exists. This dataset may be used to pursue new 

research questions, including those focused on the interacting roles of various factors that influence lake 

condition. In this dissertation, we developed our understanding of which aspects of lake condition are 

related to natural features (e.g., watershed geology or lake morphology), which aspects may be more 

attributable to anthropogenic influences (watershed land use), and how these factors may interact to 

shape the condition of Maine lakes. We focused our analyses on how the condition of lakes is affected 

by natural features of landscapes and watersheds (Chapter 2), the role of lake morphometry in the 

development of seasonal hypolimnetic anoxia (Chapter 3), the differentiation between regional and 

local-scale effects on temporal lake clarity trends (Chapter 4), and how anthropogenic shoreland 

disturbance influences littoral habitat (Chapter 5). We addressed these research questions by using data 
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from hundreds of thousands of lake monitoring events from the past several decades as well as 

developing new assessment methods to describe the natural littoral habitat condition.  

In Chapter 2, a lake classification was developed that tested the importance of various 

hydrologic, geologic, and morphometric characteristics on shaping background lake water quality 

characteristics, as measured by total epilimnetic phosphorus (P) and specific conductivity. We found 

that aggregated Level IV ecoregions (Omernik 1987, 1995 and 2004; Omernik and Griffith 2014) 

combined with categories based on maximum lake depth captured relevant patterns in water quality 

conditions observed in Maine lakes. Using land cover data, the expected ranges of water quality values 

in minimally disturbed, moderately disturbed, and highly disturbed watersheds were defined for 

reference, intermediate, and altered watershed conditions, respectively. These expected ranges of total 

P and specific conductivity will be helpful in future lake assessments because they offer more context for 

interpretation of lake monitoring data and trends. The classification also offers a framework for future 

lake studies and may be especially useful for those investigations requiring data from similar reference 

lakes that represent the minimally disturbed condition.  

Needs addressed: This study enhances lake data assessment capabilities by providing more 

context about important patterns in natural and anthropogenic features of lake watersheds across 

Maine. 

In Chapter 3, a logistic regression model was used to identify the morphological and 

stratification variables that best predict likelihood of seasonal hypolimnetic anoxia (defined as dissolved 

oxygen < 2 mg/L consistent to the lake bottom) developing in low nutrient lakes (TP < 15 µg/L). 

Maximum lake depth and the proportion of lake area beneath the epilimnion were used in the primary 

predictive model, which correctly predicted anoxic condition in 84% of lakes. The addition of epilimnetic 

TP as a third model variable increased model performance, but only slightly. These models filled a need 

to identify which lakes may be experiencing seasonal anoxia for reasons other than excess nutrient 



 

135 
 

concentrations. Evaluations of lake condition now may include an assessment of whether hypolimnetic 

anoxia is occurring because of natural lake features or if it is likely being induced or exacerbated by 

nutrient enrichment. This allows for more comprehensive appraisals of individual lake condition, which 

can support better informed lake management decisions.  

Needs addressed: These results will support well-informed assessments of lake condition, which 

will help to prioritize management and remediation efforts by determining if hypolimnetic anoxia is a 

result of natural lake characteristics or human activities. 

In Chapter 4, natural variation in lake water clarity over time was defined using smoothed 

Generalized Additive Model curves of Secchi Disk Transparency (SDT) data based on reference lakes 

defined in Chapter 2. As these reference lakes represent lakes in the most undisturbed watersheds 

within each lake type, any variation in water clarity over time is likely due to regional factors, such as 

precipitation (patterns and amounts) and seasonal air temperature. The reference curves were then 

used to compare SDT data from non-reference lakes by calculating residual values between non-

reference lake SDT data and the smoothed SDT curves from reference lakes of their respective lake type. 

This “divergent trend analysis” offers an assessment tool that allows for a comparison to a shifting 

baseline reference condition over time, so that lake condition may be properly evaluated against a 

reference condition through time. This addressed an uncertainty that often arose in assessments of lake 

clarity trends, as temporal clarity patterns were often hypothesized to be related to weather patterns. A 

Dynamic Factor Analysis (DFA) revealed that cumulative precipitation during the stratification period 

(April – August) accounted for the most yearly variability in the reference lake clarity data among 

weather variables tested. Our results suggest that baseline lake clarity will decrease in the northeast US 

concurrent with predicted increases in precipitation with climate change (Fernandez et al. 2020). 
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Needs addressed: These findings will support better-informed interpretations of clarity trend 

data for individual lakes. This study provides a framework for similar interpretations of other water 

quality parameters where data exist. 

Chapter 5 described a new assessment method that was developed to evaluate the effect of 

anthropogenic shoreland development on littoral habitat condition in lakes. This was done by creating 

multi-metric indices of littoral habitat condition that focus on residential development as the stressor. 

Linear Discriminant Analysis (LDA) models were built to find the combination of littoral habitat metrics 

that best predicted the shoreland condition at each site. Bootstrapped confidence intervals based on 

LDA scores from each site on a lake were used to make assessment designations of natural, 

intermediate, or impaired to characterize the littoral habitat condition for individual lakes. This research 

fills an assessment need in the northeastern U.S., where shoreland development adversely impacted 

littoral habitat (USEPA 2009, 2016; Kauffman et al. 2014a), but no established methodology to evaluate 

this linkage on individual lakes has been widely used. This gap in lake assessment tools is of increased 

importance in Maine where lake habitat condition is included in the water quality statute for lakes, 

stating that lake “habitat must be characterized as natural” (MRS 38, §465-A). Despite this regulatory 

requirement, no numerical definition of “natural” lake habitat previously existed for Maine lakes.  

Needs addressed: The ability to quantify specific effects of shoreland development on lakes with 

systematic evaluations of littoral habitat will allow for the prioritization of shoreland condition 

rehabilitation activities on lakes that need it most. 

Suggestions for Future Research 

This dissertation provides a framework for future research opportunities and raises numerous 

research questions regarding the assessment of Maine’s lakes, and may be applicable to lakes in other 

regions where necessary data exist. The lake classification (Chapter 2) provides a framework for future 

studies by partitioning lakes into a priori groupings, further stratified by degree of human alteration, 
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that may respond in similar ways to their environment and alterations therein. For example, the 

classification was used in Chapter 4 to establish reference baselines of SDT through time. The reference 

lakes of each lake type showed variable trends in lake clarity during the same period, reflecting the 

variation in background lake clarity across Maine even in the most undisturbed lakes. The classification 

framework and strategy may also be useful in future studies examining the biological condition of lakes, 

especially with respect to the structure and function of planktonic communities.  

The likelihood of lakes to exhibit natural anoxia (Chapter 3) will be an important assessment 

component in determining the vulnerability of lakes in Maine to experiencing deteriorated conditions. 

Future work with this predictive model should incorporate sediment chemistry information. Lakes that 

have extractable Al:Fe and Al:P ratios that favor sediment P release under anoxic conditions (Kopáček et 

al. 2005) and are expected to exhibit seasonal anoxia may reveal an increased propensity to release 

sediment-bound P as well as other redox sensitive elements. This additional information in lake 

condition assessments will inform lake management decisions involving P loading allowances and 

restoration targets. These results may help in determining management action strategies for high 

nutrient lakes as well. It may now be possible to identify lakes where developing eutrophication is 

exacerbated by naturally-occurring anoxia, or lakes that will still experience anoxia even if excesses in 

nutrients and organic matter in water and sediments are reduced. These models can also support the 

development of long-term restoration plans where the feasibility of artificial hypolimnetic aeration or 

chemical treatments are being considered for the sequestration of sediment P. 

The divergent trend analysis (Chapter 4) describes a method that may be used to examine any 

number of environmental parameters over time against a reference baseline. Although analyses may be 

limited by data availability, this type of trend analysis may be applied to other measures of lake 

condition such as total P, chlorophyll-a, or dissolved organic carbon. For parameters that may not have 

robust enough datasets for a divergent trend analysis for each lake type, data from various types may be 
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combined into aggregations of reference lake types that contain adequate sample size for establishing 

reference baselines (e.g., all reference coastal lakes, all reference deep lakes, all reference lakes in 

Maine, etc.). We tested several weather variables in our DFA model to explain variation in the reference 

lake water clarity trends attributable to regional weather patterns. This type of analysis could be 

expanded to answer different study questions by including various other datasets, if available, such as 

temporal changes in human population density or watershed land use.  

The littoral habitat assessments (Chapter 5) represent a new method of lake condition 

assessment and provide a measure for the stressor of shoreland development. This method may be 

used to place lakes into assessment categories (impaired, natural, etc.) based on habitat condition, as 

specified in the water quality statue for Maine lakes (MRS 38, §465-A). Lakes that are listed as impaired 

for habitat in Maine’s Integrated Report to the US EPA (305(b) report, ME DEP 2016) will be officially 

prioritized for rehabilitation of shoreland condition. This assessment framework creates opportunities 

for the establishment of biological criteria in Maine lakes. Future research on biological communities of 

macrophytes or macroinvertebrates in lake littoral zones could use a similar approach as described here 

(e.g., using the same 10 sites along shorelines), and the metrics established here could be used to define 

the gradient of disturbance and habitat condition necessary for various taxonomic groups. Establishing 

biological criteria for lakes would connect our understanding of how shoreland development affects the 

structure of littoral habitat to how the function of that habitat is affected. The Maine lakes statute (MRS 

38, §465-A) indicates that habitat should be characterized as natural; the intent was likely that lake 

biological communities should exist in a natural state, as supported by habitat in a natural condition. 

More comprehensive assessments of lake biological communities, especially in the littoral zone, would 

offer a direct measure of whether the habitat was truly supporting natural biological communities. 

Large-magnitude lake water level drawdowns (> 1 m), which occur on <100 Maine lakes, were not 

considered in these models but have an important effect on lake littoral habitat (Carmignani and Roy 
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2021). Future work on littoral habitat condition could focus on the creation of a littoral assessment 

method specifically for lakes with large water level drawdowns in Maine. There are further 

opportunities to refine the assessment method with different numbers of cover classes or by 

establishing the necessary number of evaluation sites for lakes of different sizes or shoreline lengths. 

Now that the method is established, general condition assessments of lake littoral habitat in Maine may 

be pursued; a study has already begun to investigate the littoral habitat condition within each of the 

lake classification types detailed in Chapter 2 by surveying lakes chosen with a randomized probability-

based lake selection method. 

Lake assessment methods that focus on parameters not directly addressed in this dissertation 

may still benefit from the application of the analyses described here. Cyanobacteria blooms in Maine 

lakes have become more prevalent in recent years. Even some lakes that have been historically oligo- or 

mesotrophic have experienced sudden cyanobacteria blooms that pose a threat to public health through 

the presence of cyanotoxins (Cottingham et al., 2015; Favot et al., 2019). Much research regarding 

cyanobacteria is currently focused on environmental indicators that may help predict the occurrences of 

blooms, and especially the release of cyanotoxins (Descy et la. 2016, Bukowska et al. 2017, Zhao et al. 

2019). As discussed in Chapter 2, the geochemical composition of lake watersheds contributes to the 

overall trophic condition of lakes, and therefore may influence the likelihood of a lake to exhibit 

cyanobacteria blooms. This may be particularly relevant with respect to mobilization of Al and P from 

watershed soils, and the adsorbing and desorbing of P based on changes in pH through interactions with 

groundwater and surface waters (Reinhardt et al. 2004, McDonald et al. 2019). Additionally, there may 

be predictive potential related to the Al:Fe ratios in lake sediment and the likelihood for low-nutrient 

lakes to experience seasonal hypolimnetic anoxia, as discussed in Chapter 3. Further biological 

assessments of cyanobacteria species present in various lake types, perhaps through targeted 
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environmental DNA (eDNA) sampling and analysis, may help to determine which lakes may be especially 

at risk of sudden cyanobacteria blooms. 

The most collected samples for lake monitoring (SDT, TP, and Chlorophyll-a) are taken because 

they evaluate lake trophic condition. However, SDT and TP are surrogates for trophic state. Chlorophyll-

a is commonly considered a direct measure of trophic condition, but there are often confounding factors 

affecting its relationship with lake TP (Yuan and Jones 2020). These measurements should continue 

because of the rich datasets that are based on them, and because the simplicity of measurement 

(especially SDT) keep community scientists engaged by contributing meaningful data to lake 

assessments. However, with advancing technology, many other measures may be added to lake 

monitoring which offer more direct measures of the biological condition of lakes. For example, eDNA 

samples can provide an efficient inventory of species that are likely present in a system, and this 

represents an opportunity for rapid characterization of planktonic communities in lakes (Ruppert et al. 

2019, Yang et al. 2020, He et al. 2021). While taxonomic work is required to maintain adequate libraries 

of DNA information to validate eDNA sample results, the requirement of having a taxonomic specialist 

optically identify organisms from each sample is unnecessary. A potential drawback of planktonic 

community characterization, despite the wealth of information generated from the data, is that multiple 

samples are needed over the course of the open-water season to adequately characterize the 

composition of these communities. Further, diel variation in organism location in the water column also 

may confound results of lake plankton community assessments. Sampling regimes that account for diel 

and seasonal variability in plankton communities may not be possible in all situations, even with highly 

efficient eDNA sampling techniques. For holistic planktonic community assessments completed in one 

sampling event, sediment diatoms may offer the most effective and efficient sampling method. These 

samples offer an evaluation of the community of lake diatoms that have sunken to the bottom of the 

lake, with their siliceous exoskeletons still intact. Through species identification based on the 
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exoskeletons, the community of living diatoms may be reconstructed from recent years (surficial 

sediment) or historic periods (sediment below surface), to evaluate trophic status condition and changes 

in the biological communities over time (Vermaire and Gregory-Eaves 2007, Beck et al. 2016). There is 

potential for eDNA methods to be applied to sedimented plankton communities as well, streamlining 

efficiency for this powerful assessment method (Ibrahim et al. 2021). 

It will be informative to examine multiple components of lake characteristics in a singular 

analysis – both established methods (e.g., sediment chemistry, flushing rate, average depth, watershed 

soil types) and those developed here (i.e., lake type, likelihood of anoxia, divergent clarity trend results, 

and shoreland condition) to determine which factors may be of greatest importance in determining lake 

condition. Lake condition is likely dependent upon multiple related factors, and the importance of these 

interacting factors may vary among the lake types identified in Chapter 2. A lake “vulnerability index” 

has been used in Maine since the 1970s, largely based on Vollenweider (1975), which helps determine 

which lakes are more susceptible to increases in P concentration from increased P watershed inputs. 

With the advancement of lake assessment methods discussed above, there is an opportunity to refine 

the vulnerability index to include a wider variety of information and learn more about the relative risks 

involved with watershed disturbance for different types of lakes. This refinement could help further 

focus assessment needs, and restoration action priorities and objectives for lakes across Maine. 

The assessment methods and models described here may have applicability in other regions. 

Many details focused on parameters important to the condition of Maine lakes, but most would be 

readily exchanged for factors relevant to lakes in other geographical areas of study. For example, if the 

lake classification framework described here (Chapter 2) was to be applied elsewhere, it is likely that the 

collection of influencing parameters would change. Large watershed geographical groupings may be 

more important than ecoregions in areas where riverine reservoirs are more common than natural 

lakes, and lake size may be more important than lake depth. Different traits of lakes and their 
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landscapes may be more informative in other regions as well, such as residence time, elevation, and lake 

watershed size. Factors contributing to the extent of anoxia (Chapter 3) may change in areas where 

lakes do not experience seasonal mixing or winter ice cover. Further, the development of natural anoxia 

may be irrelevant in areas where low-nutrient lakes are rare. However, the logistic regression models 

used here may be useful for predicting other lake responses such as vulnerability to invasive species 

infestations, mixing frequency, or occurrence of harmful algae blooms. The comparison of temporal 

water quality patterns to a reference baseline through time (Chapter 4) has broad applicability for a 

number of parameters, although the application may be limited in some areas without suitable 

reference lakes. In the absence of reference lakes, the response variable under consideration (e.g., SDT) 

may be compared to the trends observed in the entire population of lakes, thereby offering a baseline 

comparison to similar waterbodies. The littoral habitat condition assessments (Chapter 5) have wide 

applicability outside of the region considered here; lakes are affected by human watershed alteration 

worldwide (Mammides 2020). The development of additional metrics should be pursued, especially in 

other regions, which may provide models that better address habitat condition and variability in those 

areas.  

Despite technological advancements in lake assessment methods, support for conventional 

methods should not be reduced. For instance, the Secchi disk is a powerful tool not only for gathering 

lake assessment data, but also for providing beginning volunteer lake monitors with an entry-level task 

that connects them more deeply to a lake that they care about. The capacity for lake assessment in 

Maine is undeniably powered by the engagement of community lake monitors, a group largely 

comprised of volunteers. The Maine DEP may be responsible for final assessments of lake condition, but 

without the rich dataset of information gathered by these community scientists those assessments 

would be impossible. Therefore, efforts should continue that keep the Maine lakes community engaged 

in lake monitoring and lake-related issues. This includes prioritizing the funding of community-based  
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lake monitoring programs which often are forced to operate with insufficient funds. Fostering the 

enthusiasm of lake advocates across the state will help to preserve and protect the lakes of Maine for 

generations to come. 
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APPENDIX A. CLASSIFICATION 

Table A. 1. Two-way ANOVA results for lake type (Eco4 + Depth) and three versions of condition classes 

based on various WQI thresholds specific to each lake type: v1 = 10th/90th percentiles, v2 = 25th/75th 

percentiles, v3 = 25th/90th percentiles to delineate altered, intermediate, and reference lakes. 

Total Phosphorus           

 df Sum Sq. 
Mean 

Sq. 
F p 

Class 4 4.92 1.23 51.22 <0.001 

WQI.v1 2 1.49 0.74 30.95 <0.001 

Class:WQI.v1 8 0.74 0.09 3.86 <0.001 

Residuals 434 10.43 0.02   

      

Class 4 4.92 1.23 51.85 <0.001 

WQI.v2 2 1.65 0.82 34.67 <0.001 

Class:WQI.v2 8 0.71 0.09 3.74 <0.001 

Residuals 434 10.31 0.02   

      

Class 4 4.92 1.23 52.50 <0.001 

WQI.v3 2 1.74 0.87 37.14 <0.001 

Class:WQI.v3 8 0.74 0.09 3.95 <0.001 

Residuals 434 10.18 0.02   

      

Specific Conductivity 

 df Sum Sq. 
Mean 

Sq. 
F p 

Class 4 4.12 1.03 37.46 <0.001 

WQI.v1 2 1.36 0.68 24.75 <0.001 

Class:WQI.v1 8 0.85 0.11 3.85 <0.001 

Residuals 404 11.12 0.03   

      

Class 4 4.12 1.03 40.81 <0.001 

WQI.v2 2 2.36 1.18 46.77 <0.001 

Class:WQI.v2 8 0.76 0.10 3.77 <0.001 

Residuals 404 10.20 0.03   

      

Class 4 4.12 1.03 40.84 <0.001 

WQI.v3 2 2.22 1.11 44.03 <0.001 

Class:WQI.v3 8 0.91 0.11 4.50 <0.001 

Residuals 404 10.19 0.03   
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Table A. 2. Total Phosphorus (TP, in µg/L) summary data for each lake type and condition class within 

the Eco4-depth classification scheme. These data are illustrated in Figures 2.2 and 2.3. DL = Deep Lakes 

(≥10 m), SL = Shallow Lakes (< 10 m). DL = Deep Lakes; SL = Shallow Lakes; Ref = Reference; Int = 

Intermediate; Alt = Altered. 

Lake Type 
# 

Lakes 
Min 1st.Q Median Mean 3rd.Q Max 

Lakes 
w/o 
Data 

Interquartile 
Range 

Coastal-DL-Ref 22 4.7 6.8 8.0 8.4 8.6 18.2 1 6.8 - 8.6 

Coastal-DL-Int 147 4.0 7.0 8.7 8.9 10.3 20.0 38 7.0 - 10.3 

Coastal-DL-Alt 57 5.6 9.7 12.2 14.4 17.6 33.5 9 9.7 - 17.6 

All Coastal Lakes 226 4.0 7.4 9.1 10.3 11.4 33.5 48 7.4 - 11.4 

Coastal-SL-Ref 16 7.6 8.3 9.3 11.4 13.1 23.1 1 8.3 - 13.1 

Coastal-SL-Int 100 7.3 9.8 12.1 13.9 15.4 45.7 23 9.8 - 15.4 

Coastal-SL-Alt 39 7.0 12.0 15.3 17.8 20.5 56.5 4 12.0 - 20.5 

All Coastal Ponds 155 7.0 9.7 12.7 14.7 17.6 56.5 28 9.7 - 17.6 

Inland-SL-Ref 3 7.0 7.1 7.3 7.3 7.4 7.5 1 7.1 - 7.4 

Inland-SL-Int 18 6.0 9.2 11.1 11.5 13.0 19.3 7 9.2 - 13.0 

Inland-SL-Alt 7 7.5 8.5 10.5 10.3 11.8 13.1 1 8.5 - 11.8 

All Inland Ponds 28 6.0 7.8 10.6 10.7 12.2 19.3 9 7.8 - 12.2 

Inland-DL-Ref 15 3.7 5.5 6.3 6.4 7.4 8.2 4 5.5 - 7.4 

Inland-DL-Int 94 4.0 6.0 6.9 7.2 8.0 13.7 29 6.0 - 8.0 

Inland-DL-Alt 37 4.4 5.6 8.0 8.3 9.2 16.3 12 5.6 - 9.2 

All Inland Lakes 146 4.0 7.4 9.1 10.3 11.4 33.5 146 7.4 - 11.4 

Northern-Ref 3 5.7 6.5 7.3 7.3 8.2 9.0 1 6.5 - 8.2 

Northern-Int 26 6.3 9.2 13.0 13.4 16.8 24.6 8 9.2 - 16.8 

Northern-Alt 4 16.7 17.2 19.5 48.4 50.7 138.0 0 17.2 - 50.7 

All Northern Lakes 33 5.7 9.0 13.2 18.7 17.1 138.0 9 9.0 - 17.1 
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Table A. 3. Specific Conductivity (SpCon, in µS/cm) summary data for each lake type and condition class 

within the Eco4-depth classification scheme. These data are illustrated in Figures 2.2 and 2.3. DL = Deep 

Lakes (≥10 m), SL = Shallow Lakes (< 10 m). DL = Deep Lakes (>=10 m), SL = Shallow Lakes (< 10 m). DL = 

Deep Lakes; SL = Shallow Lakes; Ref = Reference; Int = Intermediate; Alt = Altered. 

Lake Type 
# 

Lakes 
Min 1st.Qu Median Mean 3rd.Qu. Max 

Lakes 
w/o 
Data 

Interquartile 
Range 

Coastal-DL-Ref 
22 19.0 26.2 32.5 34.2 39.1 76.3 5 26.2 - 39.1 

Coastal-DL-Int 
147 25.7 39.3 47.5 48.8 57.3 98.0 34 39.3 - 57.3 

Coastal-DL-Alt 57 28.0 47.3 64.5 66.3 79.5 155.4 17 47.3 - 79.5 

All Coastal Lakes 226 19.0 38.2 47.6 51.5 61.2 155.4 56 38.2 - 61.2 

Coastal-SL-Ref 16 17.3 22.2 27.3 30.1 31.3 71.1 3 22.2 - 31.3 

Coastal-SL-Int 100 18.5 40.3 52.3 57.8 71.1 219.6 25 40.3 - 71.1 

Coastal-SL-Alt 39 27.3 48.4 70.2 80.0 85.6 347.6 13 48.4 - 85.6 

All Coastal Ponds 155 17.3 32.9 52.0 59.7 71.9 347.6 41 32.9 - 71.9 

Inland-SL-Ref 3 19.8 19.8 19.8 19.8 19.8 19.8 2 19.8 - 19.8 

Inland-SL-Int 18 22.0 29.1 30.7 32.6 34.4 56.8 8 29.1 - 34.4 

Inland-SL-Alt 7 17.4 34.1 37.0 40.4 41.4 74.9 1 34.1 - 41.4 

All Inland Ponds 28 17.4 28.9 31.7 34.6 37.7 74.9 11 28.9 - 37.7 

Inland-DL-Ref 15 22.6 23.5 29.4 30.4 37.1 42.0 5 23.5 - 37.1 

Inland-DL-Int 94 18.8 24.0 27.6 29.2 33.1 46.5 35 24.0 - 33.1 

Inland-DL-Alt 37 19.3 29.2 32.7 36.7 38.6 61.5 11 29.2 - 38.6 

All Inland Lakes 146 19.0 38.2 47.6 51.5 61.2 155.4 51 38.2 - 61.2 

Northern-Ref 3 49.7 61.1 72.6 72.6 84.0 95.5 1 61.1 - 84.0 

Northern-Int 26 23.5 31.7 51.6 57.5 76.3 131.3 9 31.7 - 76.3 

Northern-Alt 4 79.1 129.7 159.8 146.6 176.7 187.6 0 129.7 - 176.7 

All Northern Lakes 33 23.5 33.0 59.9 74.3 90.9 187.6 10 33.0 - 90.9 
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Figure A.1. Maps showing geographical schemes for lake classification schemes tested with linear mixed effect modeling.   

 
  

A.1a) HUC4 Areas A.1b) Level III Ecoregions 
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A.1c) Level IV Ecoregions A.1d) Maine Biophysical Regions 
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A.1e) Maine Biophysical Region aggregated areas  
(“Biop”, from cluster analysis) 

A.1f) HUC4 aggregated areas, from cluster analysis 
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A.1g) Level IV Ecoregion aggregated areas (“Eco4”, from cluster 
analysis) 

A.1h) Ecological Drainage Units (EDU) based on HUC4 areas  
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Figure A. 2. Cluster dendrograms used to guide formation of regional groupings for (a) Level IV 

Ecoregions, (b) biophysical regions, and (c) HUC4 drainage areas.  Areas that clustered together and 

were geographically adjacent were grouped together in classification trials. 
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APPENDIX B. ANOXIA 

B1. Logistic Regression 

The basic equation for logistic regression is:  

( )( ) n nLogit Y X = +   

where the logit is the natural logarithm (ln) of the odds of Y happening, α is the y-intercept, Xn is the 

predictor, and βn is the coefficient for variable n. In Logistic regression, X for each variable n can be 

categorical or continuous, but Y is always categorical. The null hypothesis of logistic regression models is 

that all β values equal zero, meaning that there is no linear relationship in the population. A rejection of 

the null hypothesis indicates that at least one β > 0 and that a linear relationship exists between X and 

the logit(Y) (Peng et al. 2002). The logit is converted to a probability of response, π: 

( )

( )1

Logit Y

Logit Y

e

e
 =

+
 

where π varies from 0 to 1. In application of the model, values of π are comparted to a probability 

threshold to evaluate the predicted response for each case. 

 

 

 

 

 

Figure B. 1. Histogram of all lake profiles from lakes with n ≥ 3 late summer profiles (1 August – 7 

September) from the ME DEP lakes database (2015). 
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Figure B. 2. Spatial Distribution of correctly predicted lakes (blue) and incorrectly predicted lakes (red) with prediction success 

for each logistic regression model. 
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Figure B. 3. Spatial Distribution of anoxic (purple) and oxic (yellow) lakes with prediction success for each logistic regression 

model. 
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Figure B. 4. Model 1 results shown with intrusive igneous bedrock geology.  A larger proportion 

(66%) of study lakes (zmax ≥ 10m, TP ≤ 15 µg/L) are found on this type of bedrock geology, but 

there were no significant associations found between lakes with this geology and anoxic 

condition or predictive model results. 
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APPENDIX C. TRENDS 

Table C. 1. Number of lakes used in the creation of reference lake trends, and the mean number of years 

of data for individual lakes in each lake type during 1999-2018. Inland Shallow and Northern Lake types 

include non-reference quality lakes to meet our data inclusion restrictions. 

 

 

 

  

Reference Lake 
Type 

Number of Reference 
Lakes 

Mean years of data 
per Lake  

Coastal Deep 10 17.3 

Coastal Shallow 10 15.1 

Inland Deep 6 14.7 

Inland Shallow 8 13.2 

Northern 6 10.3 
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Table C. 2. Selected traits of reference lakes for the five lake types in the study. SD = standard deviation, IQR = interquartile range (75th - 25th 

percentile values). 

Metric 
Coastal Deep Coastal Shallow Inland Deep Inland Shallow Northern 

Mean SD IQR mean SD IQR mean SD IQR mean SD IQR mean SD IQR 

Maximum Depth (m) 20.0 12.1 6.4 5.2 2.8 3.5 19.2 4.8 4.7 6.2 2.8 2.5 28.7 16.5 23.2 

Mean Depth (m) 7.4 3.4 5.6 2.2 1.3 1.7 7.2 2.1 1.4 3.3 1.6 1.9 9.1 4.3 4.1 

Catchment Area (km2) 14.5 25.9 8.3 4.1 7.8 1.1 101.1 101.3 153.8 15.3 14.3 19.5 109.6 88.0 154.3 

Surface Area (ha) 173.7 241.6 266.9 28.8 25.4 9.0 1332.9 818.4 652.3 138.9 97.0 142.3 1435.6 1506.3 2621.9 

Volume (m3) 18.2 33.1 15.9 1.0 0.9 0.7 100.0 76.6 109.3 4.7 3.8 6.4 164.9 194.2 333.2 

Flushes yr-1 1.7 1.8 1.7 3.6 3.2 3.7 2.0 1.8 1.4 2.5 2.2 2.0 3.1 4.4 2.9 

Catchment:Lake Area 10.0 6.7 11.5 11.1 9.2 7.4 7.0 4.7 5.9 9.3 6.1 5.9 21.4 29.7 7.2 

Dissolved Organic Carbon (mg/L) 3.5 1.0 1.1 4.5 2.2 2.1 5.2 2.0 2.4 5.1 1.3 1.6 5.7 1.5 1.7 

Total Phosphorus (ug/L) 6.8 1.8 1.4 9.3 3.1 2.7 5.7 0.8 0.4 9.3 3.3 3.2 9.4 4.4 3.4 

Chlorophyll-a (ug/L) 3.4 1.4 1.8 4.1 2.1 2.8 2.9 0.9 0.6 4.3 2.8 1.2 5.2 3.4 3.4 

Secchi Disk Transparency (m) 6.8 2.3 2.2 5.1 1.2 1.2 5.9 1.5 2.3 4.3 1.3 0.8 5.3 2.4 1.0 

Estimated Catchment Population 104.0 177.8 90.1 24.1 38.6 13.3 6.6 10.2 9.9 75.1 79.2 93.8 147.3 104.9 149.2 

Total Developed Wshed Area (%) 0.1 0.3 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.4 0.3 0.3 

Total Forest + Wetland Wshed Area (%) 81.3 12.1 16.4 75.6 29.9 27.6 80.6 11.2 15.5 66.5 8.9 8.1 73.1 4.0 3.8 

Total Agricultural Wshed Area (%) 1.4 1.1 1.1 0.2 0.3 0.3 0.0 0.0 0.0 1.2 1.8 2.2 8.4 8.1 7.0 

Total Undeveloped Wshed Area (%) 1.4 1.1 1.1 0.2 0.3 0.3 0.0 0.0 0.0 1.2 1.8 2.2 8.4 8.1 7.0 

Total Forested Wshed Area (%) 97.4 1.0 1.4 99.2 0.6 1.2 99.9 0.1 0.1 96.7 2.1 2.8 89.5 8.3 7.6 

Total Wetland Wshed Area (%) 78.3 14.3 19.6 72.7 28.8 26.5 74.8 10.7 5.4 64.2 9.0 8.5 64.0 9.0 5.9 
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Table C. 3. Model results for different types of variance and different numbers of common trends (M) 

for Dynamic Factor Analysis models incorporating Secchi depth time series for five separate lake types. 

The model selected as best for this analysis, Model 4, had two common trends and diagonal and equal 

variance which indicates shared variance among lake types with no year-to-year correlations among lake 

types. Other variance types: diagonal and unequal = unique variance for each lake type and no year-to-

year correlations among lake types; equal var/covariance = same variance for each lake type and same 

covariance among sites (most constrained); unconstrained = variances all different (least constrained). 

 

 

 

  

Model # Variance Type M logLik AICc ΔAICc 
ΔAICc  

Evidence Ratio 

1 equal var/covariance  1 -112.68 240.74 0.00 -- 

2 diagonal and unequal 1 -109.19 241.21 0.47 1.26 

3 diagonal and equal 1 -114.91 242.84 2.10 2.86 

4 diagonal and equal 2 -110.68 244.18 3.44 5.59 

5 equal var/covariance 2 -110.42 246.27 5.53 15.84 

6 diagonal and unequal 2 -106.36 246.39 5.65 16.83 

7 diagonal and equal 3 -110.82 252.49 11.75 355.96 

8 equal var/covariance 3 -110.41 254.51 13.76 974.98 

9 diagonal and unequal 3 -106.52 255.66 14.92 1.73E+03 

10 diagonal and equal 4 -110.68 257.94 17.20 5.42E+03 

11 unconstrained 1 -103.33 259.00 18.26 9.25E+03 

12 equal var/covariance 4 -110.41 260.38 19.64 1.84E+04 

13 diagonal and unequal 4 -106.49 261.99 21.25 4.12E+04 

14 unconstrained 2 -102.24 271.24 30.50 4.19E+06 

15 unconstrained 3 -102.51 283.80 43.06 2.24E+09 

16 unconstrained 4 -102.24 291.98 51.24 1.34E+11 
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Table C. 4. Model comparison table for DFA model 4 (from Table C3) and climate covariables. Model 4 

(with no covariables) is Ranked 17th in model strength compared to models with covariates. Data for the 

10 strongest covariate models and the no-covariate model are presented here. Legend: PRCP = mean 

monthly precipitation; PDAY = percent of days with any precipitation; PINT = percent of days with 

precipitation > 10mm; TAVG = mean of daily average air temperatures; DD = total cumulative degree 

days (days > 18.3°C or 65°F). Lowercase suffixes indicate time period: st = stratification season (April – 

August); su = summer (June - August); w = water year (previous October – September, inclusive). Spring 

(April-June) and winter (December-February) were also calculated but did not improve model 

performance. PRCPst, in bold, was chosen as the best covariate model for this analysis. Combinations of 

paired precipitation and air temperature covariates were also tested (e.g., PRCPst + DDAYst) but did not 

exceed model performance of PRCPst as the sole covariate and are not presented here. 

 

  

Covariate 
Model 

Ranking 
Covariate LogLik AIC AICc ΔAICc 

Evidence 
Ratio 

1 PRCPst -97.67 225.33 231.91 0 -- 

2 PDAYst -99.02 228.04 234.62 2.71 3.88 

3 DDAYwa -99.28 228.57 235.14 3.23 5.03 

4 PDAYspsu -99.92 229.84 236.41 4.50 9.49 

5 PDAYsu -100.47 230.94 237.51 5.60 16.44 

6 PRCPspsu -100.47 230.94 237.52 5.61 16.53 

7 PINTst -101.75 233.49 240.07 8.16 59.15 

8 PRCPsu -102.47 234.94 241.51 9.60 121.51 

9 DDAYsp -102.51 235.02 241.59 9.68 126.47 

10 TAVGwa -103.04 236.07 242.65 10.74 214.86 

17 
No Covariates 
(Model 4) 

-110.68 241.36 244.18 12.27 461.74 
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APPENDIX D. HABITAT 

 

Figure D. 1. Non-metric multi-dimensional scaling (NMDS) plot of lakes based on habitat metric data. 

Colored areas represent size classes of lakes (Large ≥ 81 ha), colors and shapes of dots represent 

different states, and dot size indicates maximum lake depth (MaxZ, in m). Vectors show the relative 

importance (line length) and direction of association of lakes with the continuous variables Latitude 

(Lat), Longitude (Long), Surface area (Area) and maximum depth (MaxZ). This plot illustrates general 

patterns in the data that led to the creation of lake types based on depth and size criteria; there was no 

apparent separation in data based on state. 
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Table D. 1. Results of habitat model assessments for individual lakes. LAKE ID: Lake Identification names 

or codes, MEAN LDA SCORE: Individual lake Linear Discriminant Analysis model scores, MEAN 

RIPSCORE: mean score indicating degree of riparian disturbance (see main text and Table 3), BCI (LOW) 

and BCI (HIGH): Low and High values for 95% Bootstrapped Confidence Intervals based on LDA scores 

from all sites on each lake, and BCI ASSESSMENT: the resulting lake littoral habitat assessment based on 

BCI scores. Regional results include Maine lakes, as calculated with Regional indices. See text for details. 

Maine Deep 

LAKE NAME 
MIDAS 

(LAKE ID) 
MEAN LDA 

SCORE 
MEAN 

RIPSCORE 
BCI (LOW) BCI (HIGH) 

BCI 
ASSESSMENT 

DEBOULLIE 1512 2.428 0.727 1.943 2.857 Natural 

PARKER 5186 2.385 0.591 2.092 2.728 Natural 

THREECORNERED 5424 2.177 0.437 1.771 2.532 Natural 

ELLIS 4086 2.053 0.800 1.798 2.293 Natural 

TORSEY 5307 1.861 0.349 1.328 2.293 Natural 

LITTLE JIM 5090 1.850 0.659 1.577 2.108 Natural 

B POND 3276 1.799 0.838 1.512 2.129 Natural 

WADLEIGH 572 1.676 0.784 1.140 2.402 Natural 

LITTLE BIG WOOD 2630 1.594 0.516 1.220 2.202 Natural 

BIG REED 2842 1.485 0.627 1.245 1.748 Natural 

TROUT 3212 1.295 0.702 1.089 1.515 Natural 

BLACK 1506 1.245 0.767 0.878 1.496 Natural 

GRASS 104 1.169 0.801 0.747 1.657 Natural 

ECHO 5814 1.145 0.255 0.802 1.410 Natural 

SEBEC 848 0.797 0.235 0.365 1.102 Natural 

TWIN #1 2026 0.760 0.688 -0.081 1.299 Intermediate 

TOGUS 9931 0.714 0.266 0.273 1.159 Natural 

NEQUASSET 5222 0.580 0.502 -0.407 1.298 Intermediate 

NAHMAKANTA 698 0.317 0.797 -0.028 0.707 Intermediate 

PEAKED MOUNTAIN 1254 0.281 0.435 -0.019 0.505 Intermediate 

GARDNER 1528 0.226 0.657 -0.055 0.546 Intermediate 

UPPER NARROWS 98 0.153 0.289 -0.383 0.912 Intermediate 

LOWER SO BR 4222 0.074 0.633 -0.172 0.383 Intermediate 

PORTER 12 0.072 0.284 -0.324 0.549 Intermediate 

WILSON - KN 3832 0.070 0.377 -0.202 0.394 Intermediate 
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MARANACOOK 5312 0.054 0.253 -0.410 0.664 Intermediate 

CHAMBERLAIN 2882 -0.071 0.679 -0.467 0.220 Intermediate 

JAMIES 5302 -0.109 0.534 -1.091 0.321 Intermediate 

BUBBLE 4452 -0.110 0.589 -0.519 0.278 Intermediate 

VARNUM 3680 -0.221 0.468 -0.551 0.081 Intermediate 

FLYING 5182 -0.232 0.203 -0.767 0.628 Intermediate 

TUNK 4434 -0.344 0.660 -0.758 -0.036 Impaired 

WOODBURY 5240 -0.372 0.213 -0.742 0.427 Intermediate 

THREE CORNER 5384 -0.375 0.434 -0.668 0.023 Intermediate 

WEBBER 5408 -0.402 0.324 -0.914 0.010 Intermediate 

LOWER HADLOCK 4610 -0.419 0.380 -0.864 0.042 Intermediate 

WASSOOKEAG 227 -0.427 0.194 -0.710 0.011 Intermediate 

TRICKEY 3382 -0.514 0.185 -0.755 -0.040 Impaired 

SALMON 5352 -0.593 0.372 -0.868 -0.244 Impaired 

TRIPP 3758 -0.645 0.273 -1.016 -0.039 Impaired 

CHINA W 54482 -0.695 0.624 -0.788 -0.507 Impaired 

WEBB 3672 -0.782 0.246 -0.980 -0.591 Impaired 

WILSON - FR 3682 -0.800 0.198 -1.170 -0.178 Impaired 

PHILLIPS 4300 -0.812 0.110 -1.125 -0.471 Impaired 

BRETTUNS 3608 -0.885 0.141 -1.150 -0.619 Impaired 

PLEASANT 3446 -0.898 0.181 -1.050 -0.556 Impaired 

COBBOSSECONTEE 5236 -0.993 0.166 -1.388 -0.541 Impaired 

PENNESSEEWASSEE 3434 -1.000 0.168 -1.382 -0.472 Impaired 

ANDROSCOGGIN LAK 3836 -1.057 0.392 -1.420 -0.713 Impaired 

CHINA E 54481 -1.060 0.178 -1.348 -0.831 Impaired 

BRANDY 9685 -1.103 0.089 -1.319 -0.689 Impaired 

GREAT 5274 -1.158 0.209 -1.585 -0.706 Impaired 

MESSALONSKEE 5280 -1.191 0.190 -1.597 -0.667 Impaired 

UPPER MARY JO 243 -1.261 0.723 -1.440 -1.075 Impaired 

LONG 1682 -1.820 0.140 -2.044 -1.606 Impaired 

 

 

Maine Shallow 

LAKE NAME MIDAS 
MEAN LDA 

SCORE 
MEAN 

RIPSCORE 
BCI (LOW) BCI (HIGH) 

BCI 
ASSESSMENT 
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UNNAMED 9486 2.514 0.594 1.726 3.006 Natural 

GOULD 5474 2.507 0.511 1.486 3.308 Natural 

CRANBERRY 3066 1.794 0.444 0.909 2.108 Natural 

FOURTH ST JOHN 2416 1.758 0.613 0.799 2.174 Natural 

MCLEAN 1550 1.365 0.423 1.023 1.816 Natural 

SKITACOOK 1730 1.310 0.375 0.374 1.843 Natural 

8TH DEBSCONEAG 608 1.129 0.711 0.627 1.850 Natural 

SECOND BUTTERMILK 836 0.994 0.770 0.508 1.680 Natural 

MYRICK 4416 0.975 0.640 0.697 1.325 Natural 

LITTLE WATCHIC 3398 0.965 0.624 0.360 1.668 Natural 

HUDSON 2724 0.847 0.689 0.402 1.249 Natural 

LOWER MIDDLE BR 4494 0.754 0.647 0.061 1.353 Natural 

ROCKY 2018 0.752 0.816 0.532 1.261 Natural 

PERLEY 3140 0.732 0.475 0.260 1.383 Natural 

GILMAN 4 0.690 0.293 -0.044 1.783 Intermediate 

JAYBIRD 3178 0.678 0.638 0.338 1.235 Natural 

FARRINGTON 3200 0.673 0.534 -0.011 1.174 Intermediate 

NELSON 3610 0.567 0.554 0.160 1.328 Natural 

KATAHDIN 2016 0.518 0.785 -0.266 1.254 Intermediate 

MARTINS #2 2054 0.473 0.750 0.310 0.591 Natural 

LITTLE 7871 0.442 0.387 -0.296 0.944 Intermediate 

COFFEELOS 2712 0.420 0.684 0.132 0.895 Natural 

PICKERAL 9687 0.397 0.724 -0.226 0.808 Intermediate 

HAVENER 5718 0.339 0.578 -0.226 0.901 Intermediate 

MARTINS #1 2052 0.281 0.692 -0.655 0.725 Intermediate 

CUSHMAN 3224 0.118 0.321 -0.367 0.447 Intermediate 

BLACK 351 0.001 0.300 -0.228 0.226 Intermediate 

ATWOOD 4250 -0.074 0.653 -0.540 0.476 Intermediate 

JIMMY 5244 -0.121 0.327 -0.563 0.496 Intermediate 

TWIN #2 2028 -0.197 0.786 -0.497 0.131 Intermediate 

CROWELL 5200 -0.197 0.471 -0.533 0.120 Intermediate 

LONG 5444 -0.212 0.303 -0.568 0.057 Intermediate 

PARKER 3388 -0.466 0.188 -0.850 0.005 Intermediate 

WOOD 435 -0.482 0.478 -0.952 -0.055 Impaired 

WOOD 3456 -0.500 0.146 -0.649 -0.299 Impaired 
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NORTH 5344 -0.520 0.680 -1.575 -0.082 Impaired 

LOVEJOY 5664 -0.585 0.248 -1.721 0.369 Intermediate 

POCASSET 3824 -0.623 0.249 -0.980 -0.297 Impaired 

SEWALL 9943 -0.665 0.386 -0.931 -0.455 Impaired 

ABRAMS 4444 -0.706 0.225 -1.274 0.793 Intermediate 

HOBBS 4806 -0.858 0.325 -1.198 -0.481 Impaired 

COCHNEWAGON 3814 -0.860 0.110 -1.249 -0.452 Impaired 

EAST 5349 -0.865 0.333 -1.388 -0.315 Impaired 

HORSESHOE 4788 -0.926 0.681 -1.376 -0.145 Impaired 

ALAMOOSOOK 4336 -1.040 0.166 -1.263 -0.835 Impaired 

DYER LONG 5386 -1.620 0.385 -2.126 -1.249 Impaired 

 

 

Region – Deep Large 

LAKE NAME LAKE ID STATE 
MEAN 

LDA 
SCORE 

MEAN 
RIPSCORE 

BCI (LOW) 
BCI 

(HIGH) 
BCI 

ASSESSMENT 

MAIDSTONE LAKE 
NLA06608-

9999 
VT 2.455 0.453 2.090 2.698 Natural 

DEBOULLIE 1512 ME 2.131 0.638 1.729 2.368 Natural 

TOGUS 9931 ME 1.795 0.245 1.098 2.454 Natural 

PARKER 5186 ME 1.784 0.522 1.480 2.156 Natural 

WADLEIGH 572 ME 1.718 0.687 1.222 2.192 Natural 

NONE 
NLA17_CT-

10010 
CT 1.630 0.575 1.023 2.246 Natural 

TORSEY 5307 ME 1.625 0.316 1.346 1.856 Natural 

ECHO 5814 ME 1.470 0.236 1.153 1.666 Natural 

LITTLE BIG WOOD 
POND 

NLA17_ME-
10003 

ME 1.096 0.648 0.802 1.730 Natural 

MARANACOOK 5312 ME 1.061 0.579 0.463 2.043 Natural 

PHILLIPS 4300 ME 1.052 0.412 0.765 1.382 Natural 

NEQUASSET 5222 ME 0.744 0.447 0.522 1.035 Natural 

SEBEC 848 ME 0.716 0.219 0.134 1.203 Natural 

GREEN RIVER 
GREEN 
RIVER 

VT 0.621 0.345 -0.278 1.441 Intermediate 

PORTER 12 ME 0.611 0.261 0.298 0.828 Natural 
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SEBASTICOOK LAKE 
NLA12_ME-

109 
ME 0.599 0.223 0.137 1.001 Natural 

FLYING 5182 ME 0.509 0.192 0.078 0.941 Natural 

WILSON - FR 3682 ME 0.495 0.453 0.043 0.807 Natural 

WILLOUGHBY 
WILLOUGH

BY 
VT 0.487 0.176 -0.016 1.213 Intermediate 

UPPER NARROWS 98 ME 0.481 0.265 -0.077 0.903 Intermediate 

SALEM SALEM VT 0.467 0.244 -0.575 0.936 Intermediate 

CHAIN OF PONDS 
NLA12_ME-

103 
ME 0.462 0.478 0.142 1.059 Natural 

CHAMBERLAIN 2882 ME 0.418 0.598 0.113 0.592 Natural 

SALMON 5352 ME 0.370 0.336 -0.263 0.681 Intermediate 

CHINA W 54482 ME 0.358 0.671 0.122 0.552 Natural 

NAHMAKANTA 698 ME 0.344 0.698 0.067 0.600 Natural 

TUNK 4434 ME 0.340 0.582 0.012 0.563 Natural 

VARNUM 3680 ME 0.216 0.417 -0.097 0.576 Intermediate 

CHINA E 54481 ME 0.119 0.380 -0.313 0.345 Intermediate 

MESSALONSKEE 5280 ME 0.098 0.485 -0.295 0.420 Intermediate 

CANOBIE Canobie NH -0.027 0.134 -0.339 0.275 Intermediate 

GARDNER 1528 ME -0.036 0.579 -0.371 0.258 Intermediate 

WASSOOKEAG 227 ME -0.064 0.184 -0.389 0.335 Intermediate 

PENNESSEEWASSEE 3434 ME -0.064 0.162 -0.424 0.189 Intermediate 

TRICKEY 3382 ME -0.065 0.177 -0.340 0.198 Intermediate 

PLEASANT LAKE 
NLA17_ME-

10006 
ME -0.115 0.571 -0.514 0.280 Intermediate 

GLEN GLEN VT -0.121 0.503 -0.548 0.321 Intermediate 

BRANDY 9685 ME -0.126 0.255 -0.274 0.024 Intermediate 

WOODBURY 5240 ME -0.134 0.200 -0.469 0.165 Intermediate 

CASPIAN LAKE 
NLA06608-

0369 
VT -0.142 0.186 -0.293 0.029 Intermediate 

PENCON PENCON NH -0.177 0.504 -0.562 0.061 Intermediate 

WILSON - KN 3832 ME -0.287 0.340 -0.586 0.120 Intermediate 

HOLLAND HOLLAND VT -0.368 0.326 -0.837 0.236 Intermediate 

WEBBER 5408 ME -0.396 0.295 -0.593 -0.192 Impaired 

SUNSET (BENSON) 
SUNSET 

(BENSON) 
VT -0.448 0.197 -1.014 0.022 Intermediate 

SQUARE 3916 ME -0.462 0.248 -0.784 -0.135 Impaired 

ANDROSCOGGIN 
LAKE 

3836 ME -0.566 0.353 -1.291 0.010 Intermediate 
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TRIPP 3758 ME -0.574 0.252 -1.075 -0.023 Impaired 

WEBB 3672 ME -0.584 0.228 -0.956 -0.094 Impaired 

GREAT 5274 ME -0.639 0.197 -1.020 -0.108 Impaired 

GROTON GROTON VT -0.681 0.168 -1.440 -0.080 Impaired 

MOLLYS FALLS 
MOLLYS 

FALLS 
VT -0.739 0.297 -1.334 -0.396 Impaired 

UPPER MARY JO 243 ME -0.792 0.635 -1.163 -0.486 Impaired 

SHADOW (GLOVER) 
SHADOW 
(GLOVER) 

VT -0.794 0.097 -1.102 -0.466 Impaired 

DUCK LAKE 
NLA06608-
NELP-0253 

ME -0.796 0.553 -1.091 -0.493 Impaired 

CHITTENDEN 
CHITTENDE

N 
VT -0.888 0.211 -1.229 -0.602 Impaired 

COBBOSSECONTEE 5236 ME -0.944 0.161 -1.505 -0.558 Impaired 

ISLAND POND 
NLA06608-

0038 
VT -1.008 0.118 -1.241 -0.827 Impaired 

GREAT AVERILL 
GREAT 

AVERILL 
VT -1.078 0.154 -1.537 -0.764 Impaired 

COBBETTS Cobbetts NH -1.148 0.103 -1.459 -0.828 Impaired 

LAKE WARAMAUG 
NLA06608-

0037 
CT -1.211 0.095 -1.818 -0.594 Impaired 

LONG LAKE 
NLA17_ME-

10025 
ME -1.217 0.556 -1.526 -0.940 Impaired 

SWAMP POND 
NLA17_NH-

10003 
NH -1.359 0.514 -1.651 -1.037 Impaired 

ARLSAL ARLSAL NH -1.826 0.077 -2.114 -1.495 Impaired 

 

 

Region – Deep Small 

LAKE NAME LAKE ID STATE 
MEAN 

LDA 
SCORE 

MEAN 
RIPSCORE 

BCI (LOW) 
BCI 

(HIGH) 
BCI 

ASSESSMENT 

LONG POND 
NLA17_VT-

10018 
VT 2.324 0.536 1.975 2.596 Natural 

RIGA LAKE 
NLA17_CT-

10002 
CT 1.648 0.558 1.516 1.766 Natural 

ELLIS 4086 ME 1.603 0.629 1.328 1.944 Natural 

HOWARD POND 
NLA12_ME-

106 
ME 1.523 0.086 1.370 1.706 Natural 

BLACK 1506 ME 1.488 0.604 1.347 1.595 Natural 

THREECORNERED 5424 ME 1.356 0.339 1.109 1.541 Natural 



 

182 
 

SPRING LAKE - VT 
NLA06608-

4252 
VT 1.272 0.249 0.975 1.457 Natural 

LITTLE JIM 5090 ME 1.181 0.515 0.975 1.425 Natural 

BIG REED POND 
NLA06608-
EMAP:ME2

54L 
ME 1.095 0.493 0.847 1.302 Natural 

PUSHINEER POND 
NLA06608-
NELP-2155 

ME 1.088 0.420 0.841 1.273 Natural 

BIG REED 2842 ME 1.030 0.496 0.909 1.154 Natural 

PEAKED 
MOUNTAIN POND 

NLA17_ME-
10002 

ME 0.975 0.466 0.785 1.219 Natural 

WALLUM LAKE 
NLA06608-

0754 
MA 0.726 0.318 0.552 0.897 Natural 

GRASS 104 ME 0.725 0.629 0.455 0.948 Natural 

SILVER LAKE 
NLA17_VT-

10002 
VT 0.695 0.560 0.577 0.791 Natural 

FLYING POND 
NLA12_ME-

114 
ME 0.664 0.208 0.353 1.026 Natural 

JAMIES 5302 ME 0.660 0.419 0.248 0.939 Natural 

BUBBLE 4452 ME 0.642 0.474 0.520 0.783 Natural 

TULLY LAKE 
NLA17_MA-

10004 
MA 0.576 0.577 0.288 0.902 Natural 

B POND 
NLA17_ME-

HP001 
ME 0.459 0.530 0.237 0.607 Natural 

WEST HILL POND 
NLA17_CT-

10003 
CT 0.451 0.585 0.151 0.738 Natural 

SPONEL SPONEL NH 0.332 0.485 0.105 0.521 Natural 

THREE CORNER 
POND 

NLA17_ME-
10009 

ME 0.287 0.567 0.094 0.445 Natural 

CENTER CENTER VT 0.235 0.309 -0.056 0.532 Intermediate 

WILLARD Willard NH 0.177 0.453 0.050 0.370 Natural 

HALUSWH HALUSWH NH 0.169 0.561 -0.034 0.325 Intermediate 

LOWER SO BR 4222 ME 0.138 0.571 -0.005 0.277 Intermediate 

FEMALE POND 
NLA06608-
EMAP:ME0

11L 
ME 0.130 0.370 -0.367 0.378 Intermediate 

ECHO (HUBDTN) 
ECHO 

(HUBDTN) 
VT 0.050 0.353 -0.259 0.397 Intermediate 

HILLS POND 
NLA17_NH-

10066 
NH 0.039 0.558 -0.293 0.247 Intermediate 

MORRIS 
RESERVOIR 

NLA17_CT-
10004 

CT 0.005 0.538 -0.272 0.314 Intermediate 

LOVELLS POND 
NLA17_MA-

10019 
MA -0.011 0.592 -0.321 0.140 Intermediate 
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PEQUAWKET POND 
NLA17_NH-

10006 
NH -0.052 0.494 -0.326 0.166 Intermediate 

LOWER HADLOCK 4610 ME -0.077 0.297 -0.294 0.158 Intermediate 

RUSSELL RUSSELL NH -0.122 0.449 -0.240 0.062 Intermediate 

LOOFRE LOOFRE NH -0.189 0.206 -0.413 0.003 Intermediate 

WOODWARD 
WOODWAR

D 
VT -0.228 0.167 -0.593 0.063 Intermediate 

CRYEAT CRYEAT NH -0.274 0.115 -0.550 -0.022 Impaired 

SPRING LAKE - ME 
NLA06608-

ELS:1E1-052 
ME -0.318 0.432 -0.692 -0.168 Impaired 

BAKLWEN BAKLWEN NH -0.345 0.235 -0.700 0.060 Intermediate 

LAKE RESCUE 
NLA17_VT-

10016 
VT -0.383 0.519 -0.614 -0.167 Impaired 

BEEBE LAKE 
NLA06608-

0997 
VT -0.442 0.126 -0.721 -0.133 Impaired 

WHITE LAKE 
NLA17_NH-

10891 
NH -0.470 0.534 -0.653 -0.181 Impaired 

ROOD ROOD VT -0.470 0.371 -0.622 -0.386 Impaired 

GORTON POND 
NLA06608-

2354 
RI -0.627 0.192 -0.817 -0.335 Impaired 

NIPBAR NIPBAR NH -0.639 0.157 -0.888 -0.283 Impaired 

BRETTUNS 3608 ME -0.662 0.108 -0.896 -0.409 Impaired 

HALHAN HALHAN NH -0.787 0.269 -1.183 -0.433 Impaired 

THIRD 
CONNECTICUT LAKE 

NLA17_NH-
10999 

NH -0.924 0.534 -1.177 -0.489 Impaired 

OTTKEE OTTKEE NH -1.087 0.371 -1.240 -0.893 Impaired 

NORWICH POND 
NLA12_MA-

110 
MA -1.098 0.147 -1.310 -0.978 Impaired 

GILUNY GILUNY NH -1.160 0.554 -1.428 -0.886 Impaired 

ECHFRN ECHFRN NH -1.176 0.119 -1.348 -0.940 Impaired 

YAWGOO POND 
NLA06608-

2162 
RI -1.264 0.379 -1.421 -1.030 Impaired 

LAKE PARKER 
NLA12_VT-

102 
VT -1.294 0.130 -1.599 -0.908 Impaired 

BEACH POND 
NLA06608-

3890 
RI -1.355 0.179 -1.518 -1.123 Impaired 

LITTLE AVERILL 
POND 

NLA17_VT-
10003 

VT -1.585 0.636 -1.689 -1.389 Impaired 

BEADER BEADER NH -2.048 0.064 -2.189 -1.915 Impaired 

LONG POND 
NLA17_VT-

10018 
VT 2.324 0.536 1.975 2.596 Natural 

RIGA LAKE 
NLA17_CT-

10002 
CT 1.648 0.558 1.516 1.766 Natural 
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ELLIS 4086 ME 1.603 0.629 1.328 1.944 Natural 

HOWARD POND 
NLA12_ME-

106 
ME 1.523 0.086 1.370 1.706 Natural 

BLACK 1506 ME 1.488 0.604 1.347 1.595 Natural 

THREECORNERED 5424 ME 1.356 0.339 1.109 1.541 Natural 

SPRING LAKE - VT 
NLA06608-

4252 
VT 1.272 0.249 0.975 1.457 Natural 

LITTLE JIM 5090 ME 1.181 0.515 0.975 1.425 Natural 

BIG REED POND 
NLA06608-
EMAP:ME2

54L 
ME 1.095 0.493 0.847 1.302 Natural 

PUSHINEER POND 
NLA06608-
NELP-2155 

ME 1.088 0.420 0.841 1.273 Natural 

 

 

Region – Shallow Large 

LAKE NAME LAKE ID STATE 
MEAN 

LDA 
SCORE 

MEAN 
RIPSCORE 

BCI (LOW) 
BCI 

(HIGH) 
BCI 

ASSESSMENT 

BILLINGS LAKE 
NLA17_CT-

10023 
CT 2.011 0.861 1.641 2.384 Natural 

DYER LONG 5386 ME 1.666 0.592 1.501 1.893 Natural 

ALAMOOSOOK 4336 ME 1.664 0.487 1.288 1.945 Natural 

SEWALL 9943 ME 1.568 0.578 1.344 1.790 Natural 

EAST 5349 ME 1.567 0.548 1.168 1.927 Natural 

HORSESHOE 4788 ME 1.482 0.588 1.282 1.768 Natural 

GRASSY POND 
NLA06608-

0418 
NH 1.471 0.634 1.173 1.785 Natural 

HOBBS 4806 ME 1.339 0.499 1.127 1.565 Natural 

HAVENER POND 
NLA17_ME-

10018 
ME 1.238 0.639 0.767 1.996 Natural 

CUSHMAN 3224 ME 1.220 0.306 1.041 1.452 Natural 

ABRAMS 4444 ME 1.129 0.536 0.807 1.443 Natural 

MIDDLE CHAIN 
POND 

NLA06608-
ELS:1E1-096 

ME 1.090 0.673 0.669 1.464 Natural 

HALLS POND 
NLA17_CT-

10005 
CT 1.052 0.747 0.850 1.315 Natural 

PICKERAL 9687 ME 0.995 0.617 0.761 1.281 Natural 

DERBY LAKE 
NLA06608-

0294 
VT 0.995 0.232 0.800 1.187 Natural 
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PARKER 3388 ME 0.972 0.449 0.780 1.304 Natural 

TROUT 3212 ME 0.936 0.615 0.476 1.257 Natural 

POCASSET 3824 ME 0.923 0.248 0.575 1.305 Natural 

LONG POND 
NLA17_NH-

10917 
NH 0.920 0.534 0.671 1.191 Natural 

LOWER MIDDLE 
BRANCH POND 

NLA17_ME-
10001 

ME 0.903 0.559 0.523 1.143 Natural 

LONG 5444 ME 0.826 0.289 0.612 1.283 Natural 

LOVEJOY 5664 ME 0.824 0.248 0.182 1.207 Natural 

LILY (VERNON) 
LILY 

(VERNON) 
VT 0.813 0.260 0.413 1.268 Natural 

LITTLE LAKE 
NLA12_ME-

122 
ME 0.764 0.497 0.556 0.932 Natural 

WOOD 3456 ME 0.756 0.404 0.464 1.056 Natural 

FARRINGTON 3200 ME 0.718 0.468 0.454 0.980 Natural 

KNOWLTON POND 
NLA06608-

0946 
CT 0.716 0.559 0.521 1.076 Natural 

PERLEY 3140 ME 0.662 0.422 0.447 0.975 Natural 

JIMMY 5244 ME 0.655 0.315 0.340 0.926 Natural 

COFFEELOS 2712 ME 0.619 0.585 0.476 0.753 Natural 

COCHNEWAGON 3814 ME 0.594 0.398 0.248 1.131 Natural 

SKITACOOK LAKE 
NLA17_ME-

10029 
ME 0.594 0.580 0.134 1.014 Natural 

BUCKLEY DUNTON 
LAKE 

NLA17_MA-
10003 

MA 0.568 0.745 0.027 1.011 Natural 

HUDSON POND 
NLA17_ME-

10004 
ME 0.541 0.620 0.137 0.968 Natural 

CROWELL 5200 ME 0.532 0.429 0.309 0.860 Natural 

BLACK LAKE 
NLA17_ME-

10021 
ME 0.511 0.619 0.294 0.604 Natural 

CROSBY POND 
NLA17_ME-

HP002 
ME 0.499 0.599 0.151 0.778 Natural 

SOPER POND 
NLA12_ME-

104 
ME 0.479 0.552 -0.007 0.850 Intermediate 

WALLINGFORD 
WALLINGFO

RD 
VT 0.462 0.575 0.198 0.784 Natural 

FOSTERS FOSTERS VT 0.446 0.390 -0.105 0.976 Intermediate 

BAGWSR BAGWSR NH 0.374 0.545 0.083 0.608 Natural 

PACHAUG POND 
NLA06608-

0242 
CT 0.355 0.301 -0.254 1.051 Intermediate 

CHANDLER CHANDLER VT 0.340 0.378 0.058 0.634 Natural 

THOMPSONS 
THOMPSON

S 
VT 0.304 0.440 -0.085 0.584 Intermediate 
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GILLETT GILLETT VT 0.285 0.552 -0.728 0.784 Intermediate 

HIGHLAND LAKE 
NLA12_NH-

104 
NH 0.282 0.253 -0.170 0.676 Intermediate 

LITTLE HOSMER 
LITTLE 

HOSMER 
VT 0.272 0.265 -0.078 0.543 Intermediate 

NORTH 5344 ME 0.264 0.588 -0.199 0.489 Intermediate 

SCITUATE 
RESERVOIR 

NLA12_RI-
112 

RI 0.259 0.520 -0.093 0.615 Intermediate 

HLFGRA HLFGRA NH 0.243 0.263 0.034 0.542 Natural 

UPPER KIMBALL 
POND 

NLA17_NH-
10067 

NH 0.230 0.603 0.001 0.463 Natural 

ARMINGTON LAKE 
NLA06608-

0550 
NH 0.197 0.279 -0.339 0.699 Intermediate 

KATAHDIN 2016 ME 0.184 0.663 -0.248 0.595 Intermediate 

SCHOOL HOUSE 
POND 

NLA06608-
3846 

RI 0.180 0.708 -0.110 0.471 Intermediate 

KEECH POND 
NLA17_RI-

10001 
RI 0.085 0.588 -0.517 0.487 Intermediate 

BELLEVILLE POND 
NLA12_RI-

102 
RI -0.013 0.388 -0.269 0.271 Intermediate 

SMITHS MILLPOND 
NLA17_ME-

10042 
ME -0.019 0.433 -0.435 0.361 Intermediate 

LONG (SHEFLD) 
LONG 

(SHEFLD) 
VT -0.044 0.484 -0.496 0.390 Intermediate 

NORTON 
RESERVOIR 

NLA17_MA-
10002 

MA -0.074 0.749 -0.461 0.346 Intermediate 

FOURTH SAINT 
JOHN POND 

NLA17_ME-
10040 

ME -0.154 0.547 -0.410 0.158 Intermediate 

SOUTH AMERICA 
SOUTH 

AMERICA 
VT -0.197 0.534 -0.631 0.072 Intermediate 

WONONPAKOOK 
LAKE 

NLA06608-
1125 

CT -0.199 0.372 -0.454 0.085 Intermediate 

STUMP POND 
NLA06608-

1586 
RI -0.230 0.351 -0.717 0.282 Intermediate 

MESSERSCHMIDT 
POND 

NLA12_CT-
107 

CT -0.358 0.568 -0.711 0.003 Intermediate 

BABROX BABROX NH -0.366 0.581 -0.683 -0.054 Impaired 

GROTON 
RESERVOIR 

NLA06608-
0326 

CT -0.374 0.188 -0.597 -0.133 Impaired 

WRIGHTSVILLE 
WRIGHTSVI

LLE 
VT -0.397 0.290 -0.731 -0.170 Impaired 

LAKHOK LAKHOK NH -0.426 0.533 -0.811 -0.080 Impaired 

SPAULDING POND 
NLA12_NH-

111 
NH -0.427 0.248 -0.889 0.196 Intermediate 

ROUEAT ROUEAT NH -0.447 0.416 -0.870 0.019 Intermediate 
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GILSAN GILSAN NH -0.465 0.513 -0.710 -0.190 Impaired 

MILLER MILLER VT -0.477 0.282 -0.891 0.037 Intermediate 

FLAT RIVER 
RESERVOIR 

NLA12_RI-
108 

RI -0.477 0.296 -0.984 -0.110 Impaired 

MEEMAR MEEMAR NH -0.504 0.446 -0.860 -0.145 Impaired 

FOURTH MACHIAS 
LAKE 

NLA06608-
EMAP:ME2

63L 
ME -0.526 0.460 -0.893 -0.010 Impaired 

PINE PINE VT -0.539 0.382 -0.936 -0.305 Impaired 

POTBRL POTBRL NH -0.539 0.387 -0.857 -0.113 Impaired 

HALFWAY POND 
NLA06608-

ELS:1D1-
035 

MA -0.544 0.490 -0.721 -0.329 Impaired 

SIP POND 
NLA17_NH-

10004 
NH -0.554 0.531 -0.949 -0.229 Impaired 

TOMHEGAN POND 
NLA06608-

ELS:1E2-027 
ME -0.669 0.654 -1.044 -0.228 Impaired 

ABENAKI ABENAKI VT -0.672 0.395 -0.946 -0.429 Impaired 

LONG MEADOW 
POND 

NLA12_CT-
108 

CT -0.688 0.182 -1.075 -0.384 Impaired 

SLACK RESERVOIR 
NLA06608-

1906 
RI -0.690 0.199 -1.173 -0.014 Impaired 

GILMAN POND 
NLA17_ME-

10020 
ME -0.725 0.441 -1.026 -0.306 Impaired 

BOWDISH 
RESERVOIR 

NLA06608-
4413 

RI -0.794 0.190 -1.083 -0.340 Impaired 

MILMLD MILMLD NH -0.805 0.501 -1.172 -0.390 Impaired 

SPECRO SPECRO NH -0.819 0.307 -1.157 -0.513 Impaired 

NINEVAH NINEVAH VT -0.848 0.254 -1.234 -0.230 Impaired 

GREKIN GREKIN NH -0.870 0.434 -1.117 -0.543 Impaired 

ROSELAND LAKE 
NLA12_CT-

104 
CT -0.889 0.309 -1.238 -0.533 Impaired 

CRAHEN CRAHEN NH -0.928 0.356 -1.109 -0.779 Impaired 

BACK LAKE 
NLA06608-

0662 
NH -0.954 0.155 -1.334 -0.224 Impaired 

HINKLEY'S POND 
NLA06608-

0198 
MA -0.961 0.173 -1.231 -0.703 Impaired 

BRINDLE POND 
NLA17_NH-

10052 
NH -0.968 0.562 -1.154 -0.705 Impaired 

BR6AWEN BR6AWEN NH -0.981 0.244 -1.208 -0.650 Impaired 

CHAPMAN POND 
NLA06608-

2566 
RI -1.066 0.258 -1.380 -0.604 Impaired 

PROEFF PROEFF NH -1.220 0.175 -1.690 -0.781 Impaired 
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SILHLS SILHLS NH -1.337 0.094 -1.731 -0.791 Impaired 

BABAMH BABAMH NH -1.376 0.157 -1.544 -1.164 Impaired 

COLUMBIA LAKE 
NLA12_CT-

115 
CT -1.517 0.038 -1.815 -1.163 Impaired 

LONG POND 
NLA12_MA-

104 
MA -1.530 0.187 -1.787 -1.262 Impaired 

CEDAR CEDAR VT -1.557 0.179 -1.743 -1.151 Impaired 

LITTLE (WELLS) 
LITTLE 

(WELLS) 
VT -2.140 0.198 -2.569 -1.762 Impaired 

BILLINGS LAKE 
NLA17_CT-

10023 
CT 2.011 0.861 1.641 2.384 Natural 

 

 

 

Region – Shallow Small 

LAKE NAME LAKE ID STATE 
MEAN 

LDA 
SCORE 

MEAN 
RIPSCORE 

BCI (LOW) 
BCI 

(HIGH) 
BCI 

ASSESSMENT 

MUD (WESTMR)-W 
MUD 

(WESTMR)-
W 

VT 3.108 0.569 2.818 3.437 Natural 

NONE 
NLA17_CT-

10019 
CT 2.689 0.648 1.809 3.160 Natural 

PEACE DALE 
RESERVOIR 

NLA17_RI-
10010 

RI 2.292 0.690 1.718 2.759 Natural 

TROUT POND 
NLA06608-

NH250L 
NH 2.281 0.586 1.972 2.618 Natural 

CROOKED POND 
NLA06608-

ELS:1C2-032 
NH 2.245 0.806 1.898 2.557 Natural 

OTTER POND 
NLA06608-

ELS:1E3-002 
ME 2.078 0.735 1.561 2.407 Natural 

NONE 
NLA17_VT-

10007 
VT 2.063 0.633 1.752 2.314 Natural 

EIGHTH 
DEBSCONEAG 
POND 

NLA17_ME-
10007 

ME 2.033 0.636 1.707 2.462 Natural 

LAKE WOOD 
NLA06608-
ACAD_LAKE

S_0435 
ME 1.986 0.666 1.631 2.352 Natural 

HORSESHOE LAKE 
NLA12_ME-

126 
ME 1.951 0.684 1.762 2.361 Natural 

WOOD 435 ME 1.907 0.434 1.642 2.146 Natural 
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RODERIQUE POND 
NLA06608-

ELS:1C3-003 
ME 1.881 0.733 1.754 2.154 Natural 

WEBSTER POND 
NLA12_ME-

129 
ME 1.590 0.544 1.402 1.753 Natural 

BLAKE (SUTTON) 
BLAKE 

(SUTTON) 
VT 1.409 0.469 1.208 1.607 Natural 

GOULD POND 
NLA17_ME-

10043 
ME 1.398 0.550 1.014 1.890 Natural 

TEN THOUSAND 
ACRE POND 

NLA12_ME-
116 

ME 1.354 0.793 1.134 1.528 Natural 

HALFMILE POND 
NLA06608-

ELS:1E1-128 
ME 1.329 0.694 1.015 1.746 Natural 

JAYBIRD 3178 ME 1.303 0.564 1.008 1.851 Natural 

NONE 
NLA17_MA-

10018 
MA 1.175 0.803 0.984 1.323 Natural 

BEEBE (SUNDLD) 
BEEBE 

(SUNDLD) 
VT 1.142 0.455 0.881 1.466 Natural 

BASSETT POND 
NLA17_MA-

10022 
MA 1.049 0.784 0.873 1.163 Natural 

WALLACE POND 
NLA06608-

0802 
MA 1.017 0.496 0.400 1.571 Natural 

SECOND 
BUTTERMILK POND 

NLA17_ME-
10010 

ME 0.904 0.699 0.618 1.149 Natural 

BIG MUDDY BIG MUDDY VT 0.848 0.574 0.559 1.164 Natural 

HALLS POND 
NLA17_CT-

10021 
CT 0.846 0.625 0.172 1.435 Natural 

NELSON POND 
NLA17_ME-

10030 
ME 0.801 0.657 0.557 0.994 Natural 

LITTLE (ELMORE) 
LITTLE 

(ELMORE) 
VT 0.747 0.594 0.486 1.023 Natural 

MCLEAN LAKE 
NLA17_ME-

10039 
ME 0.552 0.576 0.211 0.797 Natural 

LITTLE (WINHLL) 
LITTLE 

(WINHLL) 
VT 0.549 0.585 0.305 0.814 Natural 

NONE 
NLA17_MA-

HP001 
MA 0.460 0.585 0.155 0.747 Natural 

ROCKY 2018 ME 0.422 0.709 0.148 0.855 Natural 

UPPER POND 
NLA06608-
NELP-3355 

ME 0.411 0.617 0.187 0.617 Natural 

BISSONNETTE 
POND 

NLA17_CT-
10001 

CT 0.406 0.716 0.205 0.624 Natural 

NONE 
NLA17_MA-

10017 
MA 0.395 0.626 0.052 0.689 Natural 

MILE POND 
NLA17_VT-

10005 
VT 0.350 0.553 0.087 0.712 Natural 

ORWELL; ORWELL; VT 0.347 0.601 -0.006 0.638 Intermediate 
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BARBER POND 
NLA17_RI-

10006 
RI 0.336 0.729 0.198 0.473 Natural 

PATTACONK 
RESERVOIR 

NLA17_CT-
HP001 

CT 0.314 0.621 -0.041 0.666 Intermediate 

MUD (LEICTR) 
MUD 

(LEICTR) 
VT 0.223 0.486 -0.157 0.672 Intermediate 

UNION POND 
NLA06608-

0582 
CT 0.216 0.085 -0.193 0.642 Intermediate 

ATWOOD POND 
NLA17_ME-

10023 
ME 0.208 0.592 -0.030 0.425 Intermediate 

LITTLE GREENOUGH 
POND 

NLA17_NH-
10002 

NH 0.179 0.697 -0.170 0.443 Intermediate 

GRIST MILLPOND 
NLA06608-

0546 
MA 0.151 0.471 -0.157 0.511 Intermediate 

MUD POND 
NLA12_ME-

113 
ME 0.066 0.590 -0.042 0.239 Intermediate 

BLACKAMORE 
POND 

NLA17_RI-
10011 

RI 0.043 0.630 -0.196 0.281 Intermediate 

ROUGLM ROUGLM NH 0.031 0.447 -0.224 0.275 Intermediate 

PLAINFIELD POND 
NLA06608-

0674 
MA 0.024 0.410 -0.410 0.444 Intermediate 

FERRISBURGH; 
FERRISBUR

GH; 
VT 0.007 0.389 -0.218 0.351 Intermediate 

POSNEGANSET 
POND 

NLA17_RI-
10019 

RI 0.003 0.608 -0.427 0.511 Intermediate 

ADDER POND 
NLA06608-

0050 
NH -0.010 0.721 -0.352 0.364 Intermediate 

NONE 
NLA17_NH-

10001 
NH -0.018 0.623 -0.475 0.312 Intermediate 

DEEP HOLE POND 
NLA12_NH-

107 
NH -0.052 0.630 -0.276 0.207 Intermediate 

REYLTL REYLTL NH -0.064 0.572 -0.327 0.206 Intermediate 

WAUREGAN 
RESERVOIR 

NLA12_CT-
118 

CT -0.088 0.563 -0.557 0.177 Intermediate 

SLATERSVILLE 
RESERVOIRS 

NLA17_RI-
10002 

RI -0.104 0.679 -0.302 0.167 Intermediate 

TURTLEHEAD POND 
NLA06608-

0806 
VT -0.110 0.490 -0.615 0.170 Intermediate 

MITCHELL MITCHELL VT -0.145 0.479 -0.660 0.468 Intermediate 

NONE 
NLA17_VT-

10019 
VT -0.221 0.526 -0.524 0.251 Intermediate 

PERLEY POND 
NLA17_ME-

HP003 
ME -0.223 0.586 -0.523 0.245 Intermediate 

KIASWH KIASWH NH -0.237 0.711 -0.521 -0.064 Impaired 

RANDALL POND 
NLA17_RI-

10008 
RI -0.258 0.609 -0.594 0.088 Intermediate 
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KILBURN POND 
NLA17_NH-

10530 
NH -0.307 0.622 -0.871 0.074 Intermediate 

VOYDATCH POND 
NLA06608-

0226 
NH -0.330 0.241 -0.711 0.031 Intermediate 

LOOLFRE LOOLFRE NH -0.334 0.190 -0.642 -0.092 Impaired 

HAYNES RESERVOIR 
NLA06608-

0354 
MA -0.337 0.677 -0.791 -0.014 Impaired 

CRANBERRY 
MEADOW 

CRANBERRY 
MEADOW 

VT -0.369 0.298 -0.710 -0.132 Impaired 

BEARDSLEY POND 
NLA06608-

0805 
CT -0.371 0.266 -0.904 0.382 Intermediate 

LAKE KENOSIA 
NLA06608-

0293 
CT -0.381 0.113 -0.870 -0.026 Impaired 

SHAW POND 
NLA12_MA-

106 
MA -0.381 0.498 -0.554 -0.247 Impaired 

UNNAMED 
NLA12_MA-

108 
MA -0.384 0.298 -0.650 -0.159 Impaired 

MARLBORO-431; 
MARLBORO

-431; 
VT -0.395 0.351 -0.613 -0.231 Impaired 

SMIWAS SMIWAS NH -0.407 0.449 -0.812 0.111 Intermediate 

KEYSER; KEYSER; VT -0.413 0.197 -0.814 0.113 Intermediate 

MARTINS #1 2052 ME -0.419 0.614 -0.781 -0.122 Impaired 

MARTINS #2 2054 ME -0.437 0.659 -0.556 -0.202 Impaired 

CRESCENT CRESCENT VT -0.437 0.311 -0.783 -0.220 Impaired 

LONEAT LONEAT NH -0.440 0.311 -0.857 0.015 Intermediate 

LITTLE POND 
NLA17_ME-

10014 
ME -0.460 0.556 -0.884 -0.104 Impaired 

LITTLE WATCHIC 
POND 

NLA17_ME-
10011 

ME -0.478 0.650 -0.757 -0.087 Impaired 

WALKER (COVNTY) 
WALKER 

(COVNTY) 
VT -0.485 0.227 -0.863 0.006 Intermediate 

SHIPPEE POND 
NLA12_VT-

109 
VT -0.491 0.485 -0.755 -0.178 Impaired 

NONE 
NLA17_ME-

10016 
ME -0.491 0.545 -0.738 -0.184 Impaired 

VONDELL VONDELL VT -0.542 0.380 -0.920 -0.173 Impaired 

UNNAMED 
NLA12_VT-

115 
VT -0.599 0.382 -0.853 -0.343 Impaired 

NOJOE; NOJOE; VT -0.599 0.382 -0.855 -0.358 Impaired 

BEECHER BEECHER VT -0.635 0.414 -0.923 -0.291 Impaired 

KIMCNT KIMCNT NH -0.656 0.419 -0.839 -0.525 Impaired 

MYRICK LAKE 
NLA17_ME-

10038 
ME -0.658 0.605 -0.808 -0.521 Impaired 
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BEARDSLEY POND 
NLA12_CT-

105 
CT -0.667 0.384 -0.897 -0.362 Impaired 

NONE 
NLA17_NH-

10059 
NH -0.670 0.658 -0.773 -0.426 Impaired 

LIMCLM LIMCLM NH -0.671 0.399 -1.192 -0.224 Impaired 

DRY POND 
NLA17_MA-

10007 
MA -0.689 0.667 -0.947 -0.383 Impaired 

MILL POND 
NLA12_NH-

112 
NH -0.704 0.224 -1.022 -0.467 Impaired 

KENNOT KENNOT NH -0.722 0.641 -1.085 -0.261 Impaired 

DUCK POND 
NLA12_NH-

115 
NH -0.731 0.558 -1.028 -0.501 Impaired 

SANTRO SANTRO NH -0.732 0.362 -1.245 -0.385 Impaired 

RICHMOND POND 
NLA17_VT-

10004 
VT -0.778 0.593 -0.869 -0.615 Impaired 

KNAPP BROOK #1 
KNAPP 

BROOK #1 
VT -0.807 0.296 -1.089 -0.558 Impaired 

MUD (PEACHM) 
MUD 

(PEACHM) 
VT -0.816 0.538 -1.056 -0.474 Impaired 

CRANBERRY POND 
NLA17_ME-

10019 
ME -0.829 0.435 -1.060 -0.683 Impaired 

ELLSWORTH POND 
NLA17_NH-

10063 
NH -0.835 0.618 -1.128 -0.609 Impaired 

BASCHM BASCHM NH -0.854 0.576 -1.060 -0.622 Impaired 

NATDIX NATDIX NH -0.856 0.455 -1.156 -0.353 Impaired 

OTTARNIC POND 
NLA17_NH-

10058 
NH -0.922 0.530 -1.169 -0.464 Impaired 

TWIN #2 2028 ME -0.953 0.687 -1.111 -0.757 Impaired 

EPPELEY POND 
NLA12_RI-

110 
RI -0.953 0.666 -1.256 -0.771 Impaired 

DOLCON DOLCON NH -0.966 0.412 -1.082 -0.772 Impaired 

SCHOFIELD SCHOFIELD VT -0.974 0.437 -1.173 -0.720 Impaired 

SPRUCE (WILMTN) 
SPRUCE 

(WILMTN) 
VT -1.005 0.127 -1.524 -0.612 Impaired 

TAYSAL TAYSAL NH -1.022 0.216 -1.293 -0.605 Impaired 

TUTTLE (HARDWK) 
TUTTLE 

(HARDWK) 
VT -1.043 0.381 -1.285 -0.784 Impaired 

BESSE BOG 
RESERVOIR 

NLA12_MA-
111 

MA -1.118 0.425 -1.459 -0.882 Impaired 

STANNARD STANNARD VT -1.144 0.417 -1.436 -0.687 Impaired 

DICKS POND 
NLA17_MA-

10001 
MA -1.150 0.643 -1.365 -0.868 Impaired 

CARRY POND 
NLA06608-

ELS:1E3-071 
ME -1.228 0.568 -1.431 -0.969 Impaired 
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LEVEL HILL ROAD 
FARM POND 

NLA12_ME-
134 

ME -1.360 0.146 -1.601 -0.828 Impaired 

SPRDEE SPRDEE NH -1.370 0.673 -1.482 -1.187 Impaired 

GOOSE POND 
NLA06608-
ALPS-1218 

ME -1.423 0.505 -1.798 -1.080 Impaired 

KETTLE BROOK 
RESERVOIR #1 

NLA06608-
1122 

MA -1.469 0.404 -1.792 -1.223 Impaired 

NONE 
NLA17_VT-

10009 
VT -1.475 0.447 -1.634 -1.299 Impaired 

RICHMOND RICHMOND VT -1.476 0.407 -1.670 -1.357 Impaired 

UNKNOWN 
(AVYGOR) 

UNKNOWN 
(AVYGOR) 

VT -1.477 0.425 -1.657 -1.333 Impaired 

ROUBAR ROUBAR NH -1.566 0.408 -1.804 -1.286 Impaired 

LONG POND 
NLA06608-

1222 
MA -1.698 0.113 -1.881 -1.435 Impaired 

STRATTON SKI 
AREA; 

STRATTON 
SKI AREA; 

VT -1.866 0.159 -2.157 -1.555 Impaired 
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